WO2016092124A1 - Methods used in a computer for selecting absorbent materials for purifying water, and applications thereof - Google Patents

Methods used in a computer for selecting absorbent materials for purifying water, and applications thereof Download PDF

Info

Publication number
WO2016092124A1
WO2016092124A1 PCT/ES2014/000224 ES2014000224W WO2016092124A1 WO 2016092124 A1 WO2016092124 A1 WO 2016092124A1 ES 2014000224 W ES2014000224 W ES 2014000224W WO 2016092124 A1 WO2016092124 A1 WO 2016092124A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
water
purification
selection
absorbent materials
Prior art date
Application number
PCT/ES2014/000224
Other languages
Spanish (es)
French (fr)
Inventor
Rocío PÉREZ RECUERDA
Francisco Ignacio Franco Duro
José Pascual Cosp
María Del Carmen Assiego De La Riva
Francisco Alaminos Camacho
Jesús CIFUENTES MELCHOS
Manuel Jesús CASTRO DÍAZ
Mónica BENÍTEZ GUERRERO
María Isabel GONZÁLEZ TRIVIÑO
Original Assignee
Universidad De Málaga
Empresa Municial De Aguas De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Málaga, Empresa Municial De Aguas De Málaga filed Critical Universidad De Málaga
Publication of WO2016092124A1 publication Critical patent/WO2016092124A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to methods implemented in computer selection of absorbent materials for water purification. Also, the invention relates to applications associated with said methods. STATE OF THE TECHNIQUE
  • Water is a limited and indispensable resource for both civilization and the environment and the life that develops in it. For this reason it is necessary to properly manage this resource, ensuring not only the availability but the quality of these waters.
  • These waters can be contaminated through different pathways that encompass natural and anthropogenic mechanisms with a variety, perhaps excessive, of contaminants.
  • pollutant that the waters have, they can be adequately purified for human consumption (drinking water) or reused for other purposes that do not require to reach the demanding conditions that a water must have to be destined for human consumption.
  • the clay minerals generally, minerals from the smectite group. These minerals have particular crystallochemical characteristics that make them have very interesting absorbent properties from an environmental point of view.
  • the crystalline structure of the smectite group minerals is based on the stacking of sheets formed by three layers.
  • Part of the Si 4+ of the tetrahedral layers (approximately 1 in 8) are isomorphically substituted by Al 3+ , generating an excess of negative charge on the surfaces of the sheets that are compensated with the existence of cations in the space between the sheets (interlaminar space).
  • the existence of these isomorphic substitutions that generate negative charges that have to be compensated, together with the location of OH groups on the surface and the existence of other structural defects provide the minerals of the smectite group with active adsorption centers that are going to confer very good adsorbent properties.
  • organo-clays have serious drawbacks. These derive, in the first place, from the uncontrolled reversibility of the adsorption process and the ease with which the alkylammonium cations of the organo-clays are released, transforming into potential contaminants.
  • the adsorbent materials object of the invention comprise, as raw material or base, clay minerals, preferably smectite minerals, more preferably dioctahedral smectite minerals (aluminum smectites) and / or trioctrahedral smectite minerals (magnesium smectites), more preferably even minerals of montmorillonite (Mont) and / or saponite (Sap), such forms obtainable from bentonites, with antagonistic crystallochemical characteristics, and whose abundance in nature makes them extremely economical.
  • clay minerals preferably smectite minerals, more preferably dioctahedral smectite minerals (aluminum smectites) and / or trioctrahedral smectite minerals (magnesium smectites), more preferably even minerals of montmorillonite (Mont) and / or saponite (Sap), such
  • Bentonites such as those referred to are very common throughout the land area, so, given that transport is one of the factors that make the product more expensive, the design of manufacturing systems should be as economical as possible to implement these systems. manufacturing where water purification is required. Indicate that montmorillonite and saponite themselves must be taken into account as part of the catalog of adsorbent materials given their excellent qualities in water purification.
  • the methods of production have been designed with the aim of generating a wide catalog of absorbent materials, economical, based on natural minerals (clays) and that are capable of removing contaminants from drinking water.
  • one of the characteristics that influence the design of the methods of obtaining it is the need to easily scale the synthesis according to the quantities required for each specific problem of purification of water for consumption.
  • the capacities of cationic change of the starting materials are determined by means of the ammonium acetate method (Sumner and Miller, 1996 ).
  • said methods of obtaining comprise a stage of delamination, after the stage, where appropriate, of conditioning (preferably by ultrasonic cavitation) that allows generating monolayers of the base or starting material ( clay ores, preferably smectite ores, more preferably dioctahedral smectite ores and / or trioctrahedral smectite ores, more preferably even Mont and / or Sap ores).
  • clay ores preferably smectite ores, more preferably dioctahedral smectite ores and / or trioctrahedral smectite ores, more preferably even Mont and / or Sap ores.
  • the invention relates to methods implemented in computer for the selection of absorbent materials for the treatment or purification of contaminated water, particularly for the selection of absorbent materials obtained by the processes for obtaining absorbent materials object of the invention.
  • These methods based on mathematical modeling, allow the selection of the most efficient and most economical type of material for the adsorption of contaminants present in waters intended for human consumption (heavy metals, organic metals, humic substances and mixtures thereof).
  • the stationary system type of complete mixture
  • the adsorbent material that is homogeneously dispersed in the water is added to achieve the removal of the contaminant
  • a system based on the use of column filters that pass the wastewater through a porous bed comprising a mixture, of suitable proportions, of sand and an adsorbent material from the catalog of materials described in the section previous.
  • Methods of obtaining the materials constituting the first object of the invention are object of the present invention, said methods comprising an ultrasonic cavitation stage, preferably high energy ultrasonic cavitation, an impregnation stage, preferably direct impregnation, and a stage of calcination); stages that allow the addition of metal oxides to the monolamines, said metal oxides, preferably iron oxides and / or aluminum oxides, providing new adsorption centers on those of the monolamines.
  • the materials, thus obtained have yields far superior to active carbon in the elimination of a large number of pollutants and a stability far superior to that of organo-clays.
  • object (second object) of the present invention are absorbent materials for the purification of water obtained by means of the obtaining procedures that constitute the first object of the invention, hereinafter referred to as oxides supported on 2: 1 monolamines of clays (OSML), comprising as base material 2: 1 monoláminas of clay minerals, preferably smectite minerals, more preferably dioctahedral smectite minerals and / or trioctrahedral smectite minerals, more preferably even montmorillonite (Mont) and / or saponite (Sap) minerals .
  • said second object extends to the intermediate materials of the obtaining processes that constitute the first object of the invention.
  • methods (third object) of the present invention are methods implemented in computer of selection of absorbent materials for the treatment or purification of contaminated water, particularly of selection of absorbent materials obtained by means of the processes of obtaining absorbent materials object of the invention.
  • Said third object extends to computer systems (for example, communication management platforms); as well as to computer programs or program instructions, more particularly to computer programs in or on carrier means, adapted to implement the methods that constitute said third object of the invention.
  • the computer program may be in the form of source code, object code or an intermediate code between source code and object code, such as partially compiled form, or in any other form suitable for use in the implementation of the methods constituting said third object of the invention.
  • the carrier medium can be any entity or device capable of carrying the program.
  • the carrier medium may comprise a storage medium, such as a ROM, for example a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example a ⁇ oppy disc or a hard disk.
  • the carrier means can be a transmissible carrier medium such as an electrical or optical signal that can be transmitted via electrical or optical cable or by radio or other means.
  • the carrier medium may be constituted by said cable or other device or medium.
  • the The carrier means may be an integrated circuit in which the computer program is encapsulated (embedded), said integrated circuit being adapted to perform, or to be used in carrying out the methods constituting said third object of the invention.
  • aspects of said third object of the invention are computer systems that implement said methods implemented in computer of selection of absorbent materials, as well as computer programs, storage media readable by computer systems, and transmissible signals capable of making a computer system carry out said methods implemented in computer selection of absorbent materials.
  • a fourth object of the invention relates to the use of the materials that constitute the second object of the invention, or of the intermediate materials of the obtaining procedures that constitute the first object of the invention, or of the methods implemented in computer selection of absorbent materials constituting the third object of the invention (including aspects of said third object) in the treatment or purification of contaminated water.
  • - Cation exchange capacity the minerals of the smectite group have adsorption centers, in which cations are retained, which are generated either by the isomorphic replacement of elements with different loads or by the presence of structural defects. These cations can be exchanged for others that are in an aqueous solution.
  • the cationic exchange capacity expresses the number of moles of adsorbed positively charged ions that can be exchanged per unit of dry mass of smectite.
  • - 2 1 monolamines: The crystalline structure of the smectite group minerals is based on the stacking of sheets formed by three layers.
  • the sheets of the smectite group minerals are formed by two tetrahedral layers and an octahedral layer. Hence, they are called 2: 1 sheets to differentiate them from other minerals such as those of the kaolinite group (1: 1) whose structure is based on the stacking of sheets formed by two layers, one octahedral and one tetrahedral.
  • Step 1. Ultrasonic cavitation. Dispersion and delamination to monolmina.
  • an ultrasonic system is used, preferably a high energy ultrasonic system, more preferably a high energy ultrasonic system that works continuously at 20kHz and 1000W.
  • a high energy ultrasonic system preferably a high energy ultrasonic system that works continuously at 20kHz and 1000W.
  • the adequate dispersion of the clay particle packages, preferably smectites, which are naturally aggregated in the starting samples, and in turn the total delamination of the dispersed particles in monolilamines 2: 1 is achieved. In this way, all adsorbent centers are exposed on the external surface.
  • reactors preferably cylindrical conical-based reactors (to favor the collection of materials), more preferably reactors made of an economic material that, in addition it must be inert in the chemical conditions in which the different reactions are to be carried out and must allow, directly, scaling depending on the amount of material to be synthesized.
  • the resulting aqueous suspension is kept under stirring in the reactors, preferably for 24 hours, more preferably with the aid of a 0.5 hp agitator with a 600 rpm output speed reducer and with a rod and propeller made of a material resistant to the physical-chemical conditions in which the impregnation takes place.
  • the same agitator can be used for the washing process at a suitable speed, particularly at 125 rpm in the preferred embodiment described in this section.
  • a suitable speed particularly at 125 rpm in the preferred embodiment described in this section.
  • 4 h in the preferred embodiment described in this section it is left to decant for a suitable time, preferably for 20 h, the liquid remaining on the deposited solid is removed and this process is repeated until the wash water has a suitable conductivity, preferably less than 10 ⁇ 8 / ⁇ .
  • the material obtained from the previous stages is a mixed suspension of the 2: 1 monollamines impregnated with the reactive material and a large amount of water.
  • This suspension must be dried in its entirety, for example with the help of a dryer by thermal convection transmission (at 70 ° C in a preferred embodiment; stationary or continuous, depending on the quantity to be manufactured) and allowing the samples to be dried homogeneously in the entrance of a furnace in which the impregnated sheets will be calcined to anchor the reagents on the surface and transform them into new absorbent active centers. Ovens will be used for this.
  • the materials are ground, for example in industrial ball mills, preferably inside cylinders (of sizes depending on the amount of material to be ground) with steel spheres (preferably> 10 mm in diameter ) that rotate at constant speed, for example with the help of rollers, until the dispersed particles are obtained. It is important to keep track of the grinding process since excessive grinding leads to the amorphousization of the material and the formation of hard aggregates that would nullify the adsorbent properties of the synthesized materials.
  • the size of this ball mill will be, where appropriate, directly scalable to the amount of material to be manufactured.
  • FeSML-Mont, FeSML-Sap The reactive solutions consist of aqueous solutions of FeCl 3 -6H 2 0 with the amount of equivalents that mark the cationic exchange capacities of smectites that are used as raw material.
  • FeOSML-Mont, FeOSML-Sap To prepare the precursor solution it is necessary to prepare two solutions containing the amounts of FeCl 3 -6H 2 0, on the one hand (solution
  • adsorption isotherms were determined for the different synthesized adsorbent materials, as well as the starting materials (Mont and Sap) and an active carbon commercial. These isotherms that describe the performance of these materials in the adsorption of contaminants. Although the isotherms obtained in the case of the removal of Ni (II), As (III) and Cd (II) are presented as an example, adsorption isotherms at 25 ° C have been determined for a large number of contaminants.
  • the synthesized materials have adsorbent properties markedly superior to those of active carbon.
  • said methods implemented in computer of selection of absorbent materials comprise the following steps: 1. Choice of adsorption system.
  • the method implemented in computer of selection of absorbent materials is based on mathematical modeling by adsorption isotherms that relate the amount of contaminant absorbed by the material against the amount of contaminant which remains untained once equilibrium is reached, particularly the amount in mg of contaminant absorbed per g of adsorbent material (qe) versus that of contaminant that remains untapped expressed in mg / L (Ce) once equilibrium is reached.
  • biparametric equations such as Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer-Emmet-Teller, Sips and Toth are used.
  • the method implemented in computer of selection of absorbent materials manages information about some of the variables that control the design of the filtering columns, such as material selection with higher yield, amount of adsorbent and adsorbent / sand ratio of the porous bed depending on the concentration of pollutant, the flow rate and the total volume of water to be purified, and finally the diameter and height of the column.
  • column adsorption models such as Thomas, Yoon-Nelson, Adams-Bohart (BDST), Wang and Wolborska-Pustelnik are used.
  • the method implemented in computer of selection of absorbent materials includes access by computer means to an updateable database related to the type of clay, pollutant and water, adsorption balance and economic cost of synthesis of the different adsorbents.
  • the scheme of the operation of the computer program is described in Figure 6.
  • the step of choosing the adsorption system allows the user of the method implemented in the computer of selection of absorbent materials to choose the appropriate adsorption system, particularly choosing between a column filter system and a stationary system.
  • the problem identification stage allows the user to define or identify the type of pollutant, its initial or incoming concentration, its desired final or exit concentration, the type of water to be treated or treated, and the volume and flow of said water to Debug or treat.
  • the selected adsorption system is the column filter system:
  • the expected result is modeled, based on the parameters and variables defined in the step of identifying the problem, of the use of each available absorbent material based on the experimental data, and / or, where appropriate, theoretical, available in relation to each available absorbent material as well as each contaminant, said experimental data, and / or, where appropriate, theorists, stored in a database.
  • the maternal models implemented are column adsorption models such as Thomas, Yoon-Nelson, Adams-Bohart (BDST), Wang and Wolborska-Pustelnik.
  • the adsorption system selected is the stationary system:
  • the modeling is based on the mathematical modeling by adsorption isotherms that relate the amount of contaminant absorbed by the material to the amount of contaminant that remains without retaining once equilibrium is reached, using biparametric equations such as Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer- Emmet-Teller, Sips and Toth.
  • the result of the different modeling and graphic adjustments is statistically analyzed, particularly by means of the chi2 statistical test, generating a list of the different absorbent materials available indicative of the efficiency of each absorbent material in relation to the problem identified and the adsorption system chosen.
  • Said list may also contain indication of the concentration, or particularly of the amount (depending on the parameters defined in the problem identification stage), of absorbent material to be used to purify or treat the water defined in the problem identification stage. and obtain, depending on the rest of the parameters and variables defined in said problem identification stage, the desired final or exit concentration of the contaminant for which it is desired to apply the method implemented in computer of selection of absorbent materials.
  • the list of absorbent materials may in turn contain an indication of the economic cost associated with the amount of each available absorbent material, so that the list may be indicative of the efficiency / cost ratio of the available absorbent materials.
  • the method implemented in computer of selection of absorbent materials can allow, in relation to the information related to economic costs, the definition and / or update of the parameters and variables determinants of said economic costs, such as the acquisition or acquisition price of the absorbent material (including base or starting material and, where appropriate, reagents), economic cost associated with its transportation, electricity cost associated with its acquisition and / or use, etc.
  • the evaluation and decision stage provides an indication of the efficiency in relation to all available absorbent materials, particularly the most efficient absorbent material and, where appropriate, an indication of the concentration or necessary amount of said absorbent material, and, where appropriate, the height of the bed to be used (depending on the amount of absorbent material), as well as, where appropriate, indication of the efficiency / cost ratio.
  • the method implemented in computer of selection of absorbent materials object of the invention can be implemented in a computer system, said computer system comprising for said implementation (a) a configuration module, (b) a processing module, (c) a module of storage, and (d) a decision module.
  • a configuration module for said implementation
  • a processing module for said implementation
  • a module of storage for said implementation
  • a decision module for said implementation
  • the configuration module is responsible for the execution of the stages of choosing the adsorption system and identifying the problem as well as, where appropriate, allowing the definition and / or updating of the parameters and variables that determine the economic costs associated to the quantities to be used of the different absorbent materials available, particularly of the economic costs associated to the quantity to be used of the absorbent material that would allow the adsorption process to be the most efficient;
  • the processing module is responsible for the execution of the modeling and data processing stage
  • the storage module comprises a database that is accessed by computer means and comprises experimental, and / or, where appropriate, theoretical data, available in relation to each available absorbent material as well as each contaminant;
  • the decision module is responsible for the execution of the evaluation and decision stage.
  • the method implemented in computer of selection of absorbent materials adjusts the data previously implemented in the database to the different isotherms and determines which of them has less chi2 for each clay studied and the necessary amount of these:
  • the software selects the one that is most efficient, in this case FeSML-Mont, and the necessary amount would be 0.066 g / 1.
  • the final concentration obtained by means of a stationary system turns out to be 10,146 ppb, thus validating the software.
  • Case 2 To reduce a Ni (II) contamination from 100 ppb to 20 ppb, 0.028 g / 1 of FeOSML-Mont clay would be needed.
  • Case 3 For a contamination of Pb (II), from 100 ppb to 10 ppb, 0.0166 g / 1 of FeSML-Mont clay would be needed.
  • Case 6 To treat a flow rate of 30 L / min of 50 ppb of Cu (II) and obtain a treated volume of 2000 L with 2 ppb of Cu (II), a bed with a 1000: 1 ratio of sand will be required: FeSML-Mont clay, intimately mixed, with a total height of 1.75 m, corresponding to one or several columns of 22 cm in diameter.
  • Case 7 A bed with a 1000: 1 sand ratio will be required: FeSML-Sap clay of 1.7 m total height and 21 cm in diameter to treat 15 L / min of 100 ppb of Cu (II) and obtain a treated volume 10000 L with 10 ppb of Cu (II).

Abstract

The invention relates to methods used in a computer for selecting absorbent materials for the treatment or purification of contaminated water, which comprise the steps of (1) selecting the adsorption system, (2) identifying the problem, (3) modelling and processing data, and (4) evaluating and deciding, and which provide an indication of efficiency, in particular of the most efficient absorbent material, and, if appropriate, of the necessary quantity or concentration of said material, and, if appropriate, of the cost-efficiency ratio. The invention also relates to computer systems, computer programs, carrier means and transmittable signals. The invention further relates to the use of said methods, computer systems, computer programs, carrier means or transmittable signals in the treatment or purification of contaminated water.

Description

Métodos implementados en computador de selección de materiales absorbentes para depuración de aguas, y aplicaciones de los mismos  Methods implemented in computer selection of absorbent materials for water purification, and applications thereof
SECTOR TÉCNICO TECHNICAL SECTOR
La presente invención se refiere a métodos implementados en computador de selección de materiales absorbentes para depuración de aguas. Asimismo, la invención refiere aplicaciones asociadas a dichos métodos. ESTADO DE LA TÉCNICA The present invention relates to methods implemented in computer selection of absorbent materials for water purification. Also, the invention relates to applications associated with said methods. STATE OF THE TECHNIQUE
El agua es un recurso limitado e indispensable tanto para la humanidad como para el medio ambiente y la vida que se desarrolla en él. Por esta razón resulta necesario realizar una gestión adecuada de este recurso, asegurando no sólo la disponibilidad sino la calidad de estas aguas. Estas aguas pueden contaminarse a través de diferentes vías que engloban mecanismos naturales como antropogénicos con una variedad, quizá excesiva, de contaminantes. Dependiendo de la cantidad de contaminante que tienen las aguas éstas pueden ser depuradas adecuadamente para consumo humano (aguas de consumo) o bien reutilizadas para otros fines que no requieran alcanzar las exigentes condiciones que debe poseer un agua para que sea destinada a consumo humano. Son las leyes las que marcan las concentraciones máximas de contaminantes que pueden existir en las aguas destinadas a consumo humano y en las aguas residuales depuradas (DIRECTIVA 98/83/CE). Water is a limited and indispensable resource for both humanity and the environment and the life that develops in it. For this reason it is necessary to properly manage this resource, ensuring not only the availability but the quality of these waters. These waters can be contaminated through different pathways that encompass natural and anthropogenic mechanisms with a variety, perhaps excessive, of contaminants. Depending on the amount of pollutant that the waters have, they can be adequately purified for human consumption (drinking water) or reused for other purposes that do not require to reach the demanding conditions that a water must have to be destined for human consumption. It is the laws that mark the maximum concentrations of pollutants that may exist in waters intended for human consumption and in purified wastewater (DIRECTIVE 98/83 / EC).
Generalmente los esfuerzos en investigación se han dirigido en la búsqueda de materiales capaces de depurar aguas residuales, quedando en un plano subordinado la depuración de aguas de consumo dado que la utilización de carbón activo se había considerado un método con una eficacia relativa en la eliminación de contaminantes en estas aguas (Scholz and Martin, 1997; Nishijima et al., 1997). No obstante, la utilización de carbón activo presenta una serie de inconvenientes que deben ser resueltos (Simson, 2008). Por ejemplo, su limitación en la adsorción de contaminantes inorgánicos o su falta de eficacia cuando las moléculas tienen un tamaño superior al de los poros donde se sitúan los centros activos, caso de ácido húmicos, fúlvicos, petróleo, emulsiones de aceites etc. se produce un bloqueo de los microporos primarios (Pelekani y Snoeyink, 1999; Simson, 2008) cayendo su eficacia en la adsorción de moléculas más pequeñas. Además, dado que el carbono activo no es miscible en medios polares la adsorción de metales de las aguas resulta inefectiva. In general, research efforts have been directed towards the search of materials capable of purifying wastewater, leaving in a subordinate plane the purification of drinking water since the use of active carbon had been considered a method with relative efficiency in the elimination of pollutants in these waters (Scholz and Martin, 1997; Nishijima et al., 1997). However, the use of active carbon presents a series of problems that must be resolved (Simson, 2008). For example, its limitation in the adsorption of inorganic pollutants or its lack of efficacy when the molecules are larger than the pores where the active centers are located, in the case of humic acids, fulvic acids, petroleum, oil emulsions etc. there is a blockage of primary micropores (Pelekani and Snoeyink, 1999; Simson, 2008) dropping their efficiency in the adsorption of smaller molecules. In addition, since active carbon is not miscible in polar media, the adsorption of metals from waters is ineffective.
Por esta razón, se han hecho esfuerzos en la investigación de métodos de depuración de aguas contaminadas con materiales sintetizados utilizando como material de partida los minerales de la arcilla, generalmente, minerales del grupo de la esmectita. Estos minerales poseen características cristaloquímicas particulares que hacen que tengan propiedades absorbentes muy interesantes desde un punto de vista ambiental. La estructura cristalina de los minerales del grupo de la esmectita se basa en el apilamiento de láminas formadas por tres capas. Dos de ellas de naturaleza tetraédrica, en las que los tetraedros de Sílicie utilizan tres de sus vértices para polimerizarse en dos direcciones, y una tercera capa situada entre las tetraédricas, en las que encontramos iones Al, Fe, Mg coordinados octaédricamente por los oxígenos de los tetraedros anteriormente descritos y por grupos OH. En cada lámina existen dos capas tetraédricas y una octaédrica. Por esta razón a estas láminas se las denomina láminas tipo 2:1. Parte de los Si4+ de las capas tetraédricas ( aproximadamente 1 de cada 8) son sustituidos isomórficamente por Al3+, generando un exceso de carga negativa en las superficies de las láminas que son compensadas con la existencia de cationes en el espacio existente entre las láminas (espacio interlaminar). La existencia de estas sustituciones isomórficas que generan cargas negativas que han de ser compensadas, junto con la localización de grupos OH en la superficie y la existencia de otros defectos estructurales proporcionan a los minerales del grupo de las esmectitas centros activos de adsorción que les van a conferir muy buenas propiedades adsorbentes. For this reason, efforts have been made in the investigation of methods of purification of water contaminated with synthesized materials using as starting material the clay minerals, generally, minerals from the smectite group. These minerals have particular crystallochemical characteristics that make them have very interesting absorbent properties from an environmental point of view. The crystalline structure of the smectite group minerals is based on the stacking of sheets formed by three layers. Two of them of tetrahedral nature, in which the Silicon tetrahedra use three of their vertices to polymerize in two directions, and a third layer located between the tetrahedral ones, in which we find Al, Fe, Mg ions octahedrally coordinated by the oxygens of the tetrahedra described above and by OH groups. In each sheet there are two tetrahedral and one octahedral layers. For this reason these sheets are called type 2: 1 sheets. Part of the Si 4+ of the tetrahedral layers (approximately 1 in 8) are isomorphically substituted by Al 3+ , generating an excess of negative charge on the surfaces of the sheets that are compensated with the existence of cations in the space between the sheets (interlaminar space). The existence of these isomorphic substitutions that generate negative charges that have to be compensated, together with the location of OH groups on the surface and the existence of other structural defects provide the minerals of the smectite group with active adsorption centers that are going to confer very good adsorbent properties.
Estas propiedades adsorbentes se han tratado de mejorar por ejemplo haciendo reaccionar estas esmectitas con cationes de alquilamonio sintetizando las denominadas organoarcillas. Existe una gran cantidad de bibliografía que describe la síntesis de las organoarcillas y sus aplicaciones (Sayed et al., 2003; Oliveira Pereira., 2005; Carmody et al., 2007), sobre todo, en la adsorción de contaminantes orgánicos. Sin embargo, las organoarcillas presentan serios inconvenientes. Éstos derivan, en primer lugar de la reversibilidad, no controlada, del proceso de adsorción y la facilidad con la que los cationes de alquilamonio de las organoarcillas se liberan, transformándose en contaminantes potenciales.  These adsorbent properties have been tried to improve, for example, by reacting these smectites with alkylammonium cations by synthesizing the so-called organo-clays. There is a large amount of literature that describes the synthesis of organo-clays and their applications (Sayed et al., 2003; Oliveira Pereira., 2005; Carmody et al., 2007), especially in the adsorption of organic pollutants. However, organo-clays have serious drawbacks. These derive, in the first place, from the uncontrolled reversibility of the adsorption process and the ease with which the alkylammonium cations of the organo-clays are released, transforming into potential contaminants.
Toda esta problemática, lleva a investigar el desarrollo de compuestos que fueran capaces, especialmente, de depurar las aguas destinadas a consumo humano, eficientes en la eliminación de contaminantes inorgánicos que no pueden ser eliminados eficazmente con el carbón activo, que sean eficaces también en la adsorción de contaminantes orgánicos, y que además, a diferencia de las organoarcillas, sean químicamente estables en un amplio rango de condiciones químicas. All this problem, leads to investigate the development of compounds that were capable, especially, of purifying water intended for human consumption, efficient in the Elimination of inorganic pollutants that cannot be effectively removed with active carbon, which are also effective in the adsorption of organic pollutants, and which, unlike organo-clays, are chemically stable in a wide range of chemical conditions.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Los materiales adsorbentes objeto de la invención comprenden, como materia prima o base, minerales de arcilla, preferentemente minerales de esmectita, más preferentemente minerales de esmectitas dioctaédricas (esmectitas alumínicas) y/o minerales de esmectitas trioctraédricas (esmectitas magnésicas), más preferentemente aún minerales de montmorillonita (Mont) y/o de saponita (Sap), dichos manerales obtenibles a partir de bentonitas, con características cristaloquímicas antagónicas, y cuya abundancia en la naturaleza hace que sean extremadamente económicas. Bentonitas como las referidas son muy comunes en toda la superficie terrestre por lo que, teniendo en cuenta que el transporte es uno de los factores que encarecen el producto, el diseño de los sistemas de fabricación debe ser lo más económico posible para implantar estos sistemas de fabricación allá donde se requiera la depuración de las aguas. Indicar que las propias montmorillonita y saponita deben ser tenidas en cuenta como parte del catálogo de materiales adsorbentes dadas sus excelentes cualidades en la depuración de las aguas. The adsorbent materials object of the invention comprise, as raw material or base, clay minerals, preferably smectite minerals, more preferably dioctahedral smectite minerals (aluminum smectites) and / or trioctrahedral smectite minerals (magnesium smectites), more preferably even minerals of montmorillonite (Mont) and / or saponite (Sap), such forms obtainable from bentonites, with antagonistic crystallochemical characteristics, and whose abundance in nature makes them extremely economical. Bentonites such as those referred to are very common throughout the land area, so, given that transport is one of the factors that make the product more expensive, the design of manufacturing systems should be as economical as possible to implement these systems. manufacturing where water purification is required. Indicate that montmorillonite and saponite themselves must be taken into account as part of the catalog of adsorbent materials given their excellent qualities in water purification.
Los métodos de obtención se han diseñado con el objetivo de generar un amplio catálogo de materiales absorbentes, económicos, basados en minerales naturales (las arcillas) y que sean capaces de eliminar contaminantes de las aguas de consumo. Además, una de las características que influyen en el diseño de los métodos de obtención es la necesidad de escalar fácilmente la síntesis en función de las cantidades que se requieren ante cada problemática específica de depuración de las aguas para consumo. Con el objeto de, en primer lugar, economizar los procesos y, en segundo lugar, evitar la saturación de los centros adsorbentes, se determinan las capacidades de cambio catiónico de los materiales de partida mediante el método del acetato amónico (Sumner and Miller, 1996). De esta forma, a diferencia los métodos sintéticos clásicos en la formación de los PILCS (pillared interlayer clays) publicados, en el diseño de las síntesis de los OSML (óxidos soportados sobre monoláminas 2: 1 de arcillas) que a más adelante se describen, los reactivos (óxidos metálicos) no se añaden en exceso sino que las cantidades que se añaden a los reactores son siempre iguales a los equivalentes correspondientes a la capacidad de cambio catiónico calculados para cada una de las esmectitas que se utilizan como materiales de partida. Otra diferencia importante frente al estado de la técnica se refiere a que dichos métodos de obtención comprenden una etapa de deslaminación, tras la etapa, en su caso, de acondionamiento (preferentemente mediante cavitación ultrasónica) que permite generar monocapas del material base o de partida (minerales de arcilla, preferentemente minerales de esmectita, más preferentemente minerales de esmectitas dioctaédricas y/o minerales de esmectitas trioctraédricas, más preferentemente aún minerales de Mont y/o de Sap). The methods of production have been designed with the aim of generating a wide catalog of absorbent materials, economical, based on natural minerals (clays) and that are capable of removing contaminants from drinking water. In addition, one of the characteristics that influence the design of the methods of obtaining it is the need to easily scale the synthesis according to the quantities required for each specific problem of purification of water for consumption. In order to, in the first place, to economize the processes and, in the second place, to avoid the saturation of the adsorbent centers, the capacities of cationic change of the starting materials are determined by means of the ammonium acetate method (Sumner and Miller, 1996 ). In this way, unlike the classic synthetic methods in the formation of the PILCS (pillared interlayer clays) published, in the design of the synthesis of the OSML (oxides supported on monoláminas 2: 1 of clays) that are described below, reagents (metal oxides) They are not added in excess, but the quantities added to the reactors are always equal to the equivalents corresponding to the cation exchange capacity calculated for each of the smectites used as starting materials. Another important difference compared to the prior art refers to the fact that said methods of obtaining comprise a stage of delamination, after the stage, where appropriate, of conditioning (preferably by ultrasonic cavitation) that allows generating monolayers of the base or starting material ( clay ores, preferably smectite ores, more preferably dioctahedral smectite ores and / or trioctrahedral smectite ores, more preferably even Mont and / or Sap ores).
Adicionalmente, la invención refiere métodos implementados en computador de selección de materiales absorbentes para el tratamiento o depuración de aguas contaminadas, particularmente de selección de materiales absorbentes obtenidos mediante los procedimientos de obtención de materiales absorbentes objeto de la invención. Dichos métodos, basados en modelado matemático, permiten seleccionar el tipo de material más eficiente y más económico para la adsorción de contaminantes presentes en aguas destinadas al consumo humano (metales pesados, orgánicos, sustancias húmicas y sus mezclas). Dichos métodos contemplan dos sistemas o escenarios distintos: De una parte, el sistema estacionario (tipo de mezcla completa), referido a la depuración de aguas residuales en balsas de decantación en las que se adiciona el material adsorbente que se dispersa homogéneamente en el agua para lograr la eliminación del contaminante; de otra parte, un sistema basado en la utilización de filtros en columna que hacen pasar las aguas residuales a través de un lecho poroso, que comprende una mezcla, de proporciones adecuadas, de arena y un material adsorbente del catálogo de materiales descrito en el apartado anterior.  Additionally, the invention relates to methods implemented in computer for the selection of absorbent materials for the treatment or purification of contaminated water, particularly for the selection of absorbent materials obtained by the processes for obtaining absorbent materials object of the invention. These methods, based on mathematical modeling, allow the selection of the most efficient and most economical type of material for the adsorption of contaminants present in waters intended for human consumption (heavy metals, organic metals, humic substances and mixtures thereof). These methods contemplate two different systems or scenarios: On the one hand, the stationary system (type of complete mixture), referred to the purification of wastewater in settling rafts in which the adsorbent material that is homogeneously dispersed in the water is added to achieve the removal of the contaminant; on the other hand, a system based on the use of column filters that pass the wastewater through a porous bed, comprising a mixture, of suitable proportions, of sand and an adsorbent material from the catalog of materials described in the section previous.
A continuación, y conforme a lo anterior, se hace referencia a diferentes objetos de la invención.  Next, and in accordance with the foregoing, reference is made to different objects of the invention.
Son objeto de la presente invención métodos de obtención de los materiales que constituyen el primer objeto de la invención, dichos métodos comprendiendo una etapa de cavitación ultrasónica, preferentemente cavitación ultrasónica de alta energía, una etapa de impregnación, preferentemente impregnación directa, y una etapa de calcinación); etapas que permiten la adición de óxidos metálicos a las monoláminas, dichos óxidos metálicos, preferentemente óxidos de hierro y/u óxidos de aluminio, aportando nuevos centros de adsorción sobre los propios de las monoláminas. Los estudios realizados han mostrado que los materiales, así obtenidos, presentan rendimientos muy superiores al carbón activo en la eliminación de un gran número de contaminantes y una estabilidad muy superior a la de las organoarcillas. Methods of obtaining the materials constituting the first object of the invention are object of the present invention, said methods comprising an ultrasonic cavitation stage, preferably high energy ultrasonic cavitation, an impregnation stage, preferably direct impregnation, and a stage of calcination); stages that allow the addition of metal oxides to the monolamines, said metal oxides, preferably iron oxides and / or aluminum oxides, providing new adsorption centers on those of the monolamines. Studies have shown that The materials, thus obtained, have yields far superior to active carbon in the elimination of a large number of pollutants and a stability far superior to that of organo-clays.
Son también objeto (segundo objeto) de la presente invención los materiales absorbentes para la depuración de aguas obtenidos mediante los procedimientos de obtención que constituyen el primer objeto de la invención, denominados en adelante óxidos soportados sobre monolaminas 2:1 de arcillas (OSML), que comprenden como material base monoláminas 2:1 de minerales de arcilla, preferentemente minerales de esmectita, más preferentemente minerales de esmectitas dioctaédricas y/o minerales de esmectitas trioctraédricas, más preferentemente aún minerales de montmorillonita (Mont) y/o de saponita (Sap). Asimismo, dicho segundo objeto se extiende a los materiales intermedios de los procedimientos de obtención que constituyen el primer objeto de la invención.  Also object (second object) of the present invention are absorbent materials for the purification of water obtained by means of the obtaining procedures that constitute the first object of the invention, hereinafter referred to as oxides supported on 2: 1 monolamines of clays (OSML), comprising as base material 2: 1 monoláminas of clay minerals, preferably smectite minerals, more preferably dioctahedral smectite minerals and / or trioctrahedral smectite minerals, more preferably even montmorillonite (Mont) and / or saponite (Sap) minerals . Likewise, said second object extends to the intermediate materials of the obtaining processes that constitute the first object of the invention.
Asimismo, son objeto (tercer objeto) de la presente invención métodos implementados en computador de selección de materiales absorbentes para el tratamiento o depuración de aguas contaminadas, particularmente de selección de materiales absorbentes obtenidos mediante los procedimientos de obtención de materiales absorbentes objeto de la invención. Dicho tercer objeto se extiende a sistemas informáticos (por ejemplo, plataformas de gestión de comunicaciones); así como a programas informáticos o instrucciones de programa, más particularmente a programas informáticos en o sobre unos medios portadores, adaptados para poner en práctica los métodos que constituyen dicho tercer objeto de la invención. El programa informático puede estar en forma de código fuente, de código objeto o en un código intermedio entre código fuente y código objeto, tal como en forma parcialmente complilada, o en cualquier otra forma adecuada para usar en la implementación de los métodos que constituyen dicho tercer objeto de la invención. El medio portador puede ser cualquier entidad o dispositivo capaz de portar el programa. Por ejemplo, el medio portador puede comprender un medio de almacenamiento, tal como una ROM, por ejemplo un CD ROM o una ROM semiconductora, o un medio de grabación magnético, por ejemplo un ñoppy disc o un disco duro. Además, el medio portador puede ser un medio portador transmisible tal como una señala eléctrica u óptica que puede transmitirse vía cable eléctrico u óptico o mediante radio u otros medios. Cuando el programa de ordenador esté contenido en una señal que puede transmitirse directamente mediante un cable u otro dispositivo o medio, el medio portador puede estar constituido por dicho cable u otro dispositivo o medio. Alternativamente, el medio portador puede ser un circuito integrado en el que esté encapsulado (embedded) el programa de ordenador, estando adaptado dicho circuito integrado para realizar, o para usarse en la realización de los métodos que constituyen dicho tercer objeto de la invención. Conforme a lo anterior, son aspectos de dicho tercer objeto de la invención sistemas informáticos que implementan dichos métodos implementados en computador de selección de materiales absorbentes, así como programas informáticos, medios de almacenamiento legible por sistemas informáticos, y señales transmisibles capaces de hacer que un sistema informático lleve a cabo dichos métodos implementados en computador de selección de materiales absorbentes. Likewise, methods (third object) of the present invention are methods implemented in computer of selection of absorbent materials for the treatment or purification of contaminated water, particularly of selection of absorbent materials obtained by means of the processes of obtaining absorbent materials object of the invention. Said third object extends to computer systems (for example, communication management platforms); as well as to computer programs or program instructions, more particularly to computer programs in or on carrier means, adapted to implement the methods that constitute said third object of the invention. The computer program may be in the form of source code, object code or an intermediate code between source code and object code, such as partially compiled form, or in any other form suitable for use in the implementation of the methods constituting said third object of the invention. The carrier medium can be any entity or device capable of carrying the program. For example, the carrier medium may comprise a storage medium, such as a ROM, for example a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example a ñoppy disc or a hard disk. In addition, the carrier means can be a transmissible carrier medium such as an electrical or optical signal that can be transmitted via electrical or optical cable or by radio or other means. When the computer program is contained in a signal that can be transmitted directly by means of a cable or other device or medium, the carrier medium may be constituted by said cable or other device or medium. Alternatively, the The carrier means may be an integrated circuit in which the computer program is encapsulated (embedded), said integrated circuit being adapted to perform, or to be used in carrying out the methods constituting said third object of the invention. In accordance with the foregoing, aspects of said third object of the invention are computer systems that implement said methods implemented in computer of selection of absorbent materials, as well as computer programs, storage media readable by computer systems, and transmissible signals capable of making a computer system carry out said methods implemented in computer selection of absorbent materials.
Un cuarto objeto de la invención se refiere al uso de los materiales que constituyen el segundo objeto de la invención, o de los materiales intermedios de los procedimientos de obtención que constituyen el primer objeto de la invención, o de los métodos implementados en computador de selección de materiales absorbentes que constituyen el tercer objeto de la invención (incluidos los aspectos de dicho tercer objeto) en el tratamiento o depuración de aguas contaminadas.  A fourth object of the invention relates to the use of the materials that constitute the second object of the invention, or of the intermediate materials of the obtaining procedures that constitute the first object of the invention, or of the methods implemented in computer selection of absorbent materials constituting the third object of the invention (including aspects of said third object) in the treatment or purification of contaminated water.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Asimismo, y con objeto de evitar interpretaciones alternativas, se comentan y definen a continuación los conceptos "capacidad de cambio catiónico" y "monolámitas 2:1" tal y como deben entenderse en el contexto de la presente invención:  Throughout the description and claims the word "comprises" and its variants are not intended to exclude other technical characteristics, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention. Likewise, and in order to avoid alternative interpretations, the concepts "capacity for cationic change" and "monolámitas 2: 1" are discussed and defined as they should be understood in the context of the present invention:
- Capacidad de cambio catiónico: los minerales del grupo de las esmectitas presentan centros de adsorción, en los que quedan retenidos cationes, que son generados bien por la sustitución isomórfica de elementos con diferente carga bien por la presencia de defectos estructurales. Estos cationes pueden ser cambiados por otros que estén en una disolución acuosa. La capacidad de cambio catiónico expresa el número de moles de iones de carga positiva adsorbidos que pueden ser intercambiados por unidad de masa seca de esmectita. - Monoláminas 2: 1 : La estructura cristalina de los minerales del grupo de la esmectita se basa en el apilamiento de láminas formadas por tres capas. En dos de estas capas los átomos de Si y Al se encuentran rodeados de oxígenos en una coordinación tetraédrica, en tanto que en la capa central los átomos de Al, Mg, Fe, etc están rodeados de oxígenos en una coordinación octaédrica. De esta forma, las láminas de los minerales del grupo de la esmectita están formadas por dos capas tetraédricas y por una capa octaédrica. De ahí que sean denominadas laminas 2: 1 para diferenciarlas de otros minerales como los del grupo de la caolinita (1 :1) cuya estructura se basa en el apilamiento de láminas formadas por dos capas, una octaédrica y otra tetraédrica. Los estudios en laboratorio que hemos realizado indican que la aplicación de ultrasonidos de alta energía sobre una suspensión de esmectita causa la disgregación completa de los paquetes apilados de láminas de esmectita. De esta forma, el material que se haya disperso en el agua son láminas individuales de esmectita a las que hemos denominado Monoláminas 2:1. - Cation exchange capacity: the minerals of the smectite group have adsorption centers, in which cations are retained, which are generated either by the isomorphic replacement of elements with different loads or by the presence of structural defects. These cations can be exchanged for others that are in an aqueous solution. The cationic exchange capacity expresses the number of moles of adsorbed positively charged ions that can be exchanged per unit of dry mass of smectite. - 2: 1 monolamines: The crystalline structure of the smectite group minerals is based on the stacking of sheets formed by three layers. In two of these layers the atoms of Si and Al are surrounded by oxygen in a tetrahedral coordination, while in the central layer the atoms of Al, Mg, Fe, etc. are surrounded by oxygen in an octahedral coordination. In this way, the sheets of the smectite group minerals are formed by two tetrahedral layers and an octahedral layer. Hence, they are called 2: 1 sheets to differentiate them from other minerals such as those of the kaolinite group (1: 1) whose structure is based on the stacking of sheets formed by two layers, one octahedral and one tetrahedral. The laboratory studies we have conducted indicate that the application of high-energy ultrasound on a smectite suspension causes the complete disintegration of the stacked packages of smectite sheets. In this way, the material that has dispersed in the water is individual sheets of smectite which we have called 2: 1 monolamines.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. Etapas de una realización preferida del proceso de síntesis de los OSMLFigure 1. Stages of a preferred embodiment of the OSML synthesis process
Figura 2. Isotermas de adsorción de los materiales adsorbentes del catálogo y el carbono activo frente al Ni (II). Figure 2. Adsorption isotherms of the adsorbent materials of the catalog and the active carbon against Ni (II).
Figura 3. Isotermas de adsorción de los materiales adsorbentes del catálogo y el carbono activo frente al As (III).  Figure 3. Adsorption isotherms of the adsorbent materials of the catalog and the active carbon against As (III).
Figura 4. Isotermas de adsorción de los materiales adsorbentes del catálogo y el carbono activo frente al Cd (I).  Figure 4. Adsorption isotherms of the adsorbent materials of the catalog and the active carbon against Cd (I).
Figura 5. Curvas de ruptura del material FeSML-Mont frente a aguas contaminadas con Pb y Cu.  Figure 5. FeSML-Mont material rupture curves against water contaminated with Pb and Cu.
Figura 6. Realización preferida del método implementado en computador de selección de materiales absorbentes para la depuración de aguas contaminadas.  Figure 6. Preferred embodiment of the method implemented in computer for the selection of absorbent materials for the purification of contaminated water.
MODOS DE REALIZACIÓN DE LA INVENCIÓN EMBODIMENTS OF THE INVENTION
La constitución y características de la invención se comprenderán mejor con ayuda de la siguiente descripción de ejemplos de realización, debiendo entenderse que la invención no queda limitada a estas realizaciones, sino que la protección abarca todas aquellas realizaciones alternativas que puedan incluirse dentro del contenido y del alcance de las reivindicaciones. Asimismo, el presente documento refiere diversos documentos como estado de la técnica, entendiéndose incorporado por referencia el contenido de todos estos documentos, así como de el contenido completo de los documentos a su vez referidos en dichos documentos, con objeto de ofrecer una descripción lo más completa posible del estado de la técnica en el que la presente invención se encuadra. La terminología utilizada a continuación tiene por objeto la descripción de los ejemplos de modos de realización que siguen y no debe ser interpretada de forma limitante o restrictiva. The constitution and characteristics of the invention will be better understood with the aid of the following description of embodiments, it being understood that the invention does not is limited to these embodiments, but the protection covers all those alternative embodiments that may be included within the content and scope of the claims. Likewise, the present document refers to various documents as prior art, being understood by reference the content of all these documents, as well as the complete content of the documents referred to in said documents, in order to offer a description as possible complete state of the art in which the present invention fits. The terminology used below is intended to describe the examples of embodiments that follow and should not be construed as limiting or restrictive.
A continuación se detallan los diferentes objetos de la invención descritos anteriormente, sin que el orden de exposición de los mismos, o en su caso de sus aspectos y/o de sus realizaciones preferidas, implique necesariamente que unos objetos sean más importantes que otros. MÉTODOS DE OBTENCIÓN DE LOS MATERIALES ABSORBENTES  The different objects of the invention described above are detailed below, without their order of exposure, or where appropriate their aspects and / or preferred embodiments, necessarily implying that some objects are more important than others. METHODS OF OBTAINING ABSORBENT MATERIALS
A continuación se describe un procedimiento de obtención tipo, preferido, de obtención de los materiales absorbentes objeto de la invención, esquematizado en la figura 1. Etapa 1.- Cavitación ultrasónica. Dispersión y deslaminación hasta monolámina. The following describes a method of obtaining the preferred type of obtaining the absorbent materials object of the invention, outlined in Figure 1. Step 1.- Ultrasonic cavitation. Dispersion and delamination to monolmina.
En esta primera etapa se utiliza un sistema de ultrasonidos, preferentemente un sistema de ultrasonidos de alta energía, más preferententemente un sistema de ultrasonidos de alta energía que trabaja de forma continua a 20kHz y a 1000W. Mediante la cavitación ultrasónica se consigue la adecuada dispersión de los paquetes de partículas de arcillas, preferentemente esmectitas, que se encuentran agregados de forma natural en las muestras de partida, y a su vez la deslaminación total de las partículas dispersas en monoláminas 2: 1. De esta forma, quedan expuestos en la superficie externa todos los centros adsorbentes. Etapa 2.- Impregnación de las monoláminas 2: 1 de esmectita con las soluciones reactivas, Tras la cavitación ultrasónica de flujo continuo se introduce la suspensión de las monoláminas 2: 1 de esmectitas en reactores, preferentemente reactores cilindricos de base cónica (para favorecer la recogida de los materiales), más preferentemente reactores fabricados en un material económico que, además, debe ser inerte en las condiciones químicas en las que se van a llevar a cabo las diferentes reacciones y debe permitir, de forma directa, el escalado en función de la cantidad de material que se deba sintetizar. In this first stage an ultrasonic system is used, preferably a high energy ultrasonic system, more preferably a high energy ultrasonic system that works continuously at 20kHz and 1000W. By means of ultrasonic cavitation the adequate dispersion of the clay particle packages, preferably smectites, which are naturally aggregated in the starting samples, and in turn the total delamination of the dispersed particles in monolilamines 2: 1 is achieved. In this way, all adsorbent centers are exposed on the external surface. Stage 2.- Impregnation of smectite 2: 1 monolamines with the reactive solutions, After the ultrasonic cavitation of continuous flow, the suspension of the 2: 1 monolamines of smectites is introduced into reactors, preferably cylindrical conical-based reactors (to favor the collection of materials), more preferably reactors made of an economic material that, in addition it must be inert in the chemical conditions in which the different reactions are to be carried out and must allow, directly, scaling depending on the amount of material to be synthesized.
Una vez introducida la suspensión de monoláminas 2:1 de arcillas, particularmente esmectitas, en el reactor, se añade exactamente la cantidad de reactivo equivalente a la capacidad de cambio catiónico del material de partida. En el siguiente apartado se describe como se generan las soluciones reactivas para la obtención de los diferentes materiales absorbentes.  Once the 2: 1 suspension of clays, particularly smectites, monolilamines is introduced into the reactor, exactly the amount of reagent equivalent to the cationic exchange capacity of the starting material is added. The following section describes how reactive solutions are generated to obtain the different absorbent materials.
La suspensión acuosa resultante se mantiene en agitación en los reactores, preferentemente durante 24 horas, más preferentemente con la ayuda de agitador de 0.5 CV con un reductor de velocidad de salida de 600 rpm y con una varilla y una hélice fabricadas en un material resistente a las condiciones físico-químicas en las que tiene lugar la impregnación.  The resulting aqueous suspension is kept under stirring in the reactors, preferably for 24 hours, more preferably with the aid of a 0.5 hp agitator with a 600 rpm output speed reducer and with a rod and propeller made of a material resistant to the physical-chemical conditions in which the impregnation takes place.
Etapa 3.- Decantación y lavado Stage 3.- Decantation and washing
Tras la impregnación de las monoláminas 2: 1 con las soluciones reactivas, se detiene la agitación y se deja decantar el sólido obtenido hasta el fondo del reactor. A continuación se retira el líquido que queda sobre el sólido depositado en el fondo, por ejemplo mediante una bomba de succión, y se añade un volumen de agua destilada determinado en función de la cantidad en peso del mineral de arcilla de partida, particularmente 30 L de agua destilada por Kg del mineral de arcilla de partida para el caso de las bentonitas referidas anterioremente, Mont y y Sap. After impregnating the 2: 1 monollamines with the reactive solutions, stirring is stopped and the solid obtained is allowed to decant to the bottom of the reactor. Then, the liquid remaining on the solid deposited in the bottom is removed, for example by means of a suction pump, and a volume of distilled water determined according to the amount by weight of the starting clay mineral is added, particularly 30 L of water distilled by Kg of the starting clay ore in the case of the bentonites referred to above, Mont yy Sap.
Para el proceso de lavado se puede utilizar el mismo agitador a un número de revoluciones adecuado, particularmente a 125 rpm en la realización preferida que se describe en este apartado. Tras un período de agitación, 4 h en la realización preferida que se describe en este apartado, se deja decantar durante un tiempo adecuando, preferentemente durante 20 h, se retira el líquido que queda sobre el sólido depositado y se repite este proceso hasta que el agua de lavado tenga una conductividad adecuada, preferentemente inferior a 10 μ8/αη. Etapa 4.- Secado y calcinación The same agitator can be used for the washing process at a suitable speed, particularly at 125 rpm in the preferred embodiment described in this section. After a period of stirring, 4 h in the preferred embodiment described in this section, it is left to decant for a suitable time, preferably for 20 h, the liquid remaining on the deposited solid is removed and this process is repeated until the wash water has a suitable conductivity, preferably less than 10 μ8 / αη. Stage 4.- Drying and calcination
El material obtenido de las anteriores etapas es una suspensión mezcla de las monoláminas 2: 1 impregnadas del material reactivo y una gran cantidad de agua. Esta suspensión debe ser secada en su totalidad, por ejemplo con la ayuda de un secadero mediante transmisión térmica por convección (a 70 °C en una realización preferida; estacionarios o continuos, según la cantidad a fabricar) y que permita secar las muestras homogéneamente en la entrada de un horno en el que se calcinarán las láminas impregnadas para anclar los reactivos en la superficie y transformarlos en nuevos centros activos absorbentes. Para ello se utilizarán hornos The material obtained from the previous stages is a mixed suspension of the 2: 1 monollamines impregnated with the reactive material and a large amount of water. This suspension must be dried in its entirety, for example with the help of a dryer by thermal convection transmission (at 70 ° C in a preferred embodiment; stationary or continuous, depending on the quantity to be manufactured) and allowing the samples to be dried homogeneously in the entrance of a furnace in which the impregnated sheets will be calcined to anchor the reagents on the surface and transform them into new absorbent active centers. Ovens will be used for this.
Etapa 5.- Molienda Stage 5.- Grinding
Tras la etapa de secado y calcinación, los materiales son molidos, por ejemplo en molinos de bolas industriales, preferentemente en el interior de cilindros (de tamaños dependientes de la cantidad de material a molturar) con esferas de acero (preferentemente >10 mm de diámetro) que giran a velocidad constante, por ejemplo con la ayuda de rodillos, hasta obtener las partículas dispersas. Es importante llevar un control del proceso de molienda dado que una molienda excesiva conduce a la amorfización del material y a la formación de agregados duros que anularían las propiedades adsorbentes de los materiales sintetizados. El tamaño de este molino de bolas será, en su caso, directamente escalable a la cantidad de material a fabricar. After the drying and calcination step, the materials are ground, for example in industrial ball mills, preferably inside cylinders (of sizes depending on the amount of material to be ground) with steel spheres (preferably> 10 mm in diameter ) that rotate at constant speed, for example with the help of rollers, until the dispersed particles are obtained. It is important to keep track of the grinding process since excessive grinding leads to the amorphousization of the material and the formation of hard aggregates that would nullify the adsorbent properties of the synthesized materials. The size of this ball mill will be, where appropriate, directly scalable to the amount of material to be manufactured.
Preparación de las soluciones reactivas para la fabricación de los materiales absorbentes Preparation of reactive solutions for the manufacture of absorbent materials
1.- Materiales FeSML-Mont, FeSML-Sap: Las soluciones reactivas consisten en soluciones acuosas de FeCl3-6H20 con la cantidad de equivalentes que marcan las capacidades de cambio catiónico de las esmectitas que se utilizan como materia prima. 2.- Materiales FeOSML-Mont, FeOSML-Sap: Para preparar la solución precursora se requiere preparar dos soluciones que contengan las cantidades de FeCl3 -6H20, por un lado (disolución1.- Materials FeSML-Mont, FeSML-Sap: The reactive solutions consist of aqueous solutions of FeCl 3 -6H 2 0 with the amount of equivalents that mark the cationic exchange capacities of smectites that are used as raw material. 2.- Materials FeOSML-Mont, FeOSML-Sap: To prepare the precursor solution it is necessary to prepare two solutions containing the amounts of FeCl 3 -6H 2 0, on the one hand (solution
A), y de NaOH, por otro (disolución B), equivalentes a las capacidades de cambio catiónico de las esmectitas de partida (Mont y Sap). Seguidamente se vierte, a temperatura ambiente y muy lentamente (Q=l/12 L/h), la disolución B sobre la disolución de A. Para este proceso de mezcla se requiere un control de pH continuo y dinámico mediante una bomba y un sensor de pH inmerso en la disolución A, de forma que el pH de la misma nunca sea superior a 1.75. Para conseguir que el pH nunca supere ese valor, la bomba de pH controla el flujo de una solución de HC1 en agua destilada (500 mi de H20 dest y 100 mi de HC1 al 37%). A), and NaOH, on the other (solution B), equivalent to the cationic exchange capacities of the starting smectites (Mont and Sap). It is then poured, at room temperature and very slowly (Q = l / 12 L / h), the solution B on the solution of A. For this mixing process a continuous and dynamic pH control is required by means of a pump and a pH sensor immersed in the solution A, so that its pH never exceeds 1.75. To ensure that the pH never exceeds that value, the pH pump controls the flow of a solution of HC1 in distilled water (500 ml of H 2 0 dest and 100 ml of HC1 at 37%).
3. - Materiales AlOSML-Mont, AlOSML-Sap: En este caso se utilizará como reactivo Policloruro de Aluminio (17% A1203) diluido en agua destilada en una relación 1 :30 en volumen. 3. - Materials AlOSML-Mont, AlOSML-Sap: In this case, Aluminum Polychloride (17% A1 2 0 3 ) diluted in distilled water in a 1: 30 volume ratio will be used as a reagent.
4. - (Óxidos mixtos Fe- Al soportados en monoláminas de esmectita) Materiales Fe-Al-OSML- Mont, Fe-Al-OSML-Sap: En este caso las soluciones reactivas serán mezclas de proporciones adecuadas de las soluciones descritas en los casos 2 y 3. MATERIALES ABSORBENTES 4. - (Fe-Al mixed oxides supported in smectite monolilamines) Materials Fe-Al-OSML- Mont, Fe-Al-OSML-Sap: In this case the reactive solutions will be mixtures of suitable proportions of the solutions described in the cases 2 and 3. ABSORBENT MATERIALS
Con el objeto de poder seleccionar el mejor material adsorbente para la eliminación de contaminantes de las aguas destinadas a consumo, se determinaron isotermas de adsorción dpara los distintos materiales adsorbentes sintetizados, así como de los materiales de partida (Mont y Sap) y un carbón activo comercial. Estas isotermas que describen el rendimiento de estos materiales en la adsorción de contaminantes. Aunque a continuación se presentan como ejemplo las isotermas obtenidas para el caso de la eliminación de Ni (II), As (III) y Cd (II), se han determinado isotermas de adsorción a 25°C para un gran número de contaminantes. In order to be able to select the best adsorbent material for the removal of contaminants from the water intended for consumption, adsorption isotherms were determined for the different synthesized adsorbent materials, as well as the starting materials (Mont and Sap) and an active carbon commercial. These isotherms that describe the performance of these materials in the adsorption of contaminants. Although the isotherms obtained in the case of the removal of Ni (II), As (III) and Cd (II) are presented as an example, adsorption isotherms at 25 ° C have been determined for a large number of contaminants.
Las isotermas (figuras 2, 3 y 4) representan, una vez que se alcanza el equilibrio, la cantidad en mg de contaminante adsorbido por g de material adsorbente (qe), frente a la concentración de contaminante que permanece sin retener expresado en mg/L (Ce). En estas gráficas una mayor pendiente implica un mayor rendimiento de los materiales en la adsorción de los contaminantes. The isotherms (Figures 2, 3 and 4) represent, once equilibrium is reached, the amount in mg of contaminant adsorbed per g of adsorbent material (q e ), compared to the concentration of contaminant that remains unbound expressed in mg / L (C e ). In these graphs a greater slope implies a greater yield of the materials in the adsorption of the contaminants.
Para el caso de los ejemplos seleccionados, los materiales sintetizados presentan propiedades adsorbentes notablemente superiores a las que tiene el carbón activo. Además se puede comprobar en primer lugar, que el rendimiento de los materiales adsorbentes depende del tipo de contaminante, y en segundo lugar, que para cada tipo de contaminante existe un adsorbente idóneo. In the case of the selected examples, the synthesized materials have adsorbent properties markedly superior to those of active carbon. In addition, it can be checked first, that the performance of adsorbent materials depends of the type of pollutant, and secondly, that for each type of pollutant there is a suitable adsorbent.
Estas isotermas de adsorción, junto al coste económico de la síntesis de dichos materiales, son variables importantes para la selección del material adsorbente óptimo y adecuado para la depuración de un agua contaminada.  These adsorption isotherms, together with the economic cost of the synthesis of said materials, are important variables for the selection of the optimum adsorbent material and suitable for the purification of a contaminated water.
Se han realizado numerosos experimentos de eliminación de contaminantes en aguas haciéndolas pasar por columnas filtrantes con lechos porosos formados por diferentes mezclas de un material inerte (arena de sílice) y los materiales adsorbentes objeto de la invención. Estos análisis permiten determinar las capacidades máximas de adsorción, para cada contaminante, de las columnas fabricadas con estos materiales, y a su vez, ajustar las características de la columna filtrante al volumen total de agua contaminada y a la concentración final de contaminantes que se desee en el agua purificada. Las curvas de ruptura representan la evolución de la concentración de contaminantes en el agua purificada respecto a su concentración inicial (C/Co) respecto al volumen eluido (L). En la Figura 5, se muestra a modo de ejemplo las curvas de ruptura del material FeSML-Mont en la adsorción de Cu (II) y Pb(II). Esta figura presenta notables diferencias en la capacidad adsorbente de este material en el lecho poroso frente a estos contaminantes.  Numerous experiments have been carried out to eliminate contaminants in water by passing them through filter columns with porous beds formed by different mixtures of an inert material (silica sand) and the adsorbent materials object of the invention. These analyzes allow to determine the maximum adsorption capacities, for each pollutant, of the columns manufactured with these materials, and in turn, adjust the characteristics of the filter column to the total volume of contaminated water and the final concentration of contaminants desired in the purified water. The rupture curves represent the evolution of the concentration of pollutants in the purified water with respect to their initial concentration (C / Co) with respect to the eluted volume (L). In Figure 5, the rupture curves of the FeSML-Mont material in the adsorption of Cu (II) and Pb (II) are shown by way of example. This figure shows notable differences in the adsorbent capacity of this material in the porous bed against these contaminants.
MÉTODOS IMPLEMENTADOS EN COMPUTADOR DE SELECCIÓN DE MATERIALES ABSORBENTES METHODS IMPLEMENTED IN COMPUTER SELECTION OF ABSORBENT MATERIALS
En una realización tipo, preferente, dichos métodos implementados en computador de selección de materiales absorbentes comprenden las siguientes etapas: 1. Elección del sistema de adsorción. In a typical, preferred embodiment, said methods implemented in computer of selection of absorbent materials comprise the following steps: 1. Choice of adsorption system.
2. Identificación del problema (tipo de contaminante, concentración inicial, concentración final deseada, tipo de agua y volumen/caudal a tratar).  2. Identification of the problem (type of contaminant, initial concentration, desired final concentration, type of water and volume / flow to be treated).
3. Modelización mediante el uso de distintos modelos matemáticos y procesamiento de datos para la elección de aquel que presente un mejor ajuste.  3. Modeling through the use of different mathematical models and data processing for the choice of one that presents a better fit.
4. Evaluación y decisión a nivel de los distintos materiales absorbentes disponibles, proporcionando información de la eficiencia y, en su caso, de la concentración y/o cantidad que se emplearía de cada uno de ellos, particularmente indicando cuál sería el material absorbente más eficiente y la cantidad o concentración del mismo que permitiría que el proceso de adsorción fuese el más eficiente y, en su caso, conllevase el menor coste económico posible. En una realización preferida, y para el caso de los sistemas estacionarios, el método implementado en computador de selección de materiales absorbentes se basa en el modelado matemático por isotermas de adsorción que relacionan la cantidad de contaminante absorbido por el material frente a la cantidad de contaminante que permanece sin retener una vez alcanzado el equilibrio, particularmente la cantidad en mg de contaminante absorbido por g de material adsorbernte (qe) frente a la de contaminante que permanece sin retener expresado en mg/L (Ce) una vez alcanzado el equilibrio. Para ello se emplean ecuaciones biparamétricas tipo Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer-Emmet-Teller, Sips y Toth. Esto permite, seleccionar el material adsorbente, con mayor rendimiento en relación al coste económico de fabricación. Asimismo, permite determinar la cantidad necesaria del adsorbente seleccionado para depurar completamente las aguas o sólo limitar su concentración hasta el valor que marque la normativa de los países en donde se vayan a realizar estas depuraciones. 4. Evaluation and decision at the level of the different absorbent materials available, providing information on the efficiency and, where appropriate, the concentration and / or quantity that would be used for each of them, particularly indicating which it would be the most efficient absorbent material and the amount or concentration thereof that would allow the adsorption process to be the most efficient and, where appropriate, entail the lowest possible economic cost. In a preferred embodiment, and in the case of stationary systems, the method implemented in computer of selection of absorbent materials is based on mathematical modeling by adsorption isotherms that relate the amount of contaminant absorbed by the material against the amount of contaminant which remains untained once equilibrium is reached, particularly the amount in mg of contaminant absorbed per g of adsorbent material (qe) versus that of contaminant that remains untapped expressed in mg / L (Ce) once equilibrium is reached. For this, biparametric equations such as Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer-Emmet-Teller, Sips and Toth are used. This allows to select the adsorbent material, with greater performance in relation to the economic cost of manufacturing. Likewise, it allows to determine the necessary amount of the selected adsorbent to completely purify the water or only limit its concentration to the value set by the regulations of the countries where these purifications are to be carried out.
En una realización preferida, y para el caso de los sistemas de filtros en columna, el método implementado en computador de selección de materiales absorbentes gestiona información sobre algunas de las variables que controlan el diseño de las columnas de filtrado, como por ejemplo selección del material con mayor rendimiento, cantidad de adsorbente y relación adsorbente/arena del lecho poroso en función de la concentración de contaminante, el caudal y el volumen total de agua a depurar, y por último diámetro y altura de la columna. Para la modelización matemática de los sistemas de depuración de filtros en columna se utilizan modelos de adsorción en columna tipo Thomas, Yoon-Nelson, Adams- Bohart (BDST), Wang y Wolborska-Pustelnik.  In a preferred embodiment, and in the case of column filter systems, the method implemented in computer of selection of absorbent materials manages information about some of the variables that control the design of the filtering columns, such as material selection with higher yield, amount of adsorbent and adsorbent / sand ratio of the porous bed depending on the concentration of pollutant, the flow rate and the total volume of water to be purified, and finally the diameter and height of the column. For the mathematical modeling of column filter purification systems, column adsorption models such as Thomas, Yoon-Nelson, Adams-Bohart (BDST), Wang and Wolborska-Pustelnik are used.
Para poder realizar todas las funciones descritas, el método implementado en computador de selección de materiales absorbentes comprende el acceso mediante medios informáticos a una base de datos actualizable relativa al tipo de arcilla, de contaminante y de agua, equilibrio de adsorción y coste económico de síntesis de los distintos adsorbentes. El esquema del funcionamiento del programa informático se describe en la figura 6.  In order to perform all the described functions, the method implemented in computer of selection of absorbent materials includes access by computer means to an updateable database related to the type of clay, pollutant and water, adsorption balance and economic cost of synthesis of the different adsorbents. The scheme of the operation of the computer program is described in Figure 6.
De forma más detallada: La etapa de elección del sistema de adsorción permite al usuario del método implementado en computador de selección de materiales absorbentes elegir el sistema de adsorción oportuno, particularmente elegir entre sistema de filtros en columna y sistema estacionario. In more detail: The step of choosing the adsorption system allows the user of the method implemented in the computer of selection of absorbent materials to choose the appropriate adsorption system, particularly choosing between a column filter system and a stationary system.
La etapa de identificación del problema permite al usuario definir o identificar el tipo de contaminante, su concentración inicial o de entrada, su concentración final o de salida deseada, el tipo de agua a depurar o tratar, y el volumen y caudal de dicha agua a depurar o tratar.  The problem identification stage allows the user to define or identify the type of pollutant, its initial or incoming concentration, its desired final or exit concentration, the type of water to be treated or treated, and the volume and flow of said water to Debug or treat.
En el caso de que el agua a depurar o tratar contenga más de un contaminante para el que se desee aplicar el método implementado en computador de selección de materiales absorbentes, dicha etapa de identificación del problema, así como las subsiguientes etapas, deberá ser repetida o realizada para cada uno de dichos contaminantes.  In the event that the water to be treated or treated contains more than one contaminant for which it is desired to apply the method implemented in computer of selection of absorbent materials, said step of identification of the problem, as well as the subsequent stages, must be repeated or performed for each of these pollutants.
Para el caso de que el sistema de adsorción seleccionado sea el sistema de filtros en columna:  In the case that the selected adsorption system is the column filter system:
o Una vez realizada la etapa de identificación del problema, a realizar para cada contaminante para el que se desee aplicar el método implementado en computador de selección de materiales absorbentes, se procede a modelizar el resultado esperado, en función de los parámetros y variables definidos en la etapa de identificación del problema, de la utilización de cada material absorbente disponible en base a los datos experimentales, y/o, en su caso, teóricos, disponibles en relación tanto a cada material absorbente disponible como a cada contaminante, dichos datos experimentales, y/o, en su caso, teóricos, almacenados en una base de datos. Los modelos matermáticos implementados son modelos de adsorción en columna tales como tipo Thomas, Yoon-Nelson, Adams-Bohart (BDST), Wang y Wolborska- Pustelnik.  o Once the problem identification stage has been completed, to be carried out for each contaminant for which the method implemented in the computer for the selection of absorbent materials is applied, the expected result is modeled, based on the parameters and variables defined in the step of identifying the problem, of the use of each available absorbent material based on the experimental data, and / or, where appropriate, theoretical, available in relation to each available absorbent material as well as each contaminant, said experimental data, and / or, where appropriate, theorists, stored in a database. The maternal models implemented are column adsorption models such as Thomas, Yoon-Nelson, Adams-Bohart (BDST), Wang and Wolborska-Pustelnik.
Para el caso de que el sistema de adsorción seleccionado sea el sistema estacionario:  In the case that the adsorption system selected is the stationary system:
o Una vez realizada la etapa de identificación del problema, a realizar para cada contaminante para el que se desee aplicar el método implementado en computador de selección de materiales absorbentes, se procede a modelizar el resultado esperado, en función de los parámetros y variables definidos en la etapa de identificación del problema, de la utilización de cada material absorbente disponible en base a los datos experimentales, y/o, en su caso, teóricos, disponibles en relación tanto a cada material absorbente disponible como a cada contaminante, dichos datos experimentales, y/o, en su caso, teóricos, almacenados en una base de datos. La modelización se basa en el modelado matemático por isotermas de adsorción que relacionan la cantidad de contaminante absorbido por el material frente a la cantidad de contaminante que permanece sin retener una vez alcanzado el equilibrio, empleándose para ello ecuaciones biparamétricas tales como tipo Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer- Emmet-Teller, Sips y Toth. o Once the problem identification stage has been completed, to be carried out for each contaminant for which the method is to be applied implemented in computer of selection of absorbent materials, we proceed to model the expected result, based on the parameters and variables defined in the problem identification stage, of the use of each available absorbent material based on experimental data, and / or, where appropriate, theoretical, available in relation to each available absorbent material as well as to each contaminant, said experimental data, and / or, where appropriate, theoretical, stored in a database. The modeling is based on the mathematical modeling by adsorption isotherms that relate the amount of contaminant absorbed by the material to the amount of contaminant that remains without retaining once equilibrium is reached, using biparametric equations such as Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer- Emmet-Teller, Sips and Toth.
El resultado de las diferentes modelizaciones y ajustes gráficos es analizado estadísticamente, particularmente mediante la prueba estadística chi2, generándose un listado de los distintos materiales absorbentes disponibles indicativo de la eficiencia de cada material absorbente en relación al problema identificado y al sistema de adsorción elegido. Dicho listado puede contener también indicación de la concentración, o particularmente de la cantidad (en función de los parámetros definidos en la etapa de identificación del problema), de material absorbente a emplear para depurar o tratar el agua definida en la etapa de identificación del problema y obtener, en función del resto de parámetros y variables definidos en dicha etapa de identificación del problema, la concentración final o de salida deseada del contaminante para el que se desee aplicar el método implementado en computador de selección de materiales absorbentes. Adicionalmente, el listado de materiales absorbentes puede contener a su vez indicación del coste económico asociado a la cantidad de cada material absorbente disponible, de forma que el listado puede ser indicativo de la razón eficiencia / coste de los materiales absorbentes disponibles. El método implementado en computador de selección de materiales absorbentes puede permitir, en relación a la información referida a costes económicos, la definición y/o actualización de los parámetros y variables determinantes de dichos costes económicos, tales como precio de adquisición o de obtención del material absorbente (incluyendo material base o de partida y, en su caso, reactivos), coste económico asociado a su transporte, coste de la electricidad asociada a su obtención y/o utilización, etc. En base a lo anterior, la etapa de evaluación y decisión proporciona indicación de la eficiencia en relación a todos los materiales absorbentes disponibles, particularmente del material absorbente más eficiente y, en su caso, indicación de la concentración o cantidad necesaria de dicho material absorbente, y, en su caso, de la altura del lecho a emplear (en función de la cantidad de material absorbente), así como, en su caso, indicación de la relación eficiencia / coste. The result of the different modeling and graphic adjustments is statistically analyzed, particularly by means of the chi2 statistical test, generating a list of the different absorbent materials available indicative of the efficiency of each absorbent material in relation to the problem identified and the adsorption system chosen. Said list may also contain indication of the concentration, or particularly of the amount (depending on the parameters defined in the problem identification stage), of absorbent material to be used to purify or treat the water defined in the problem identification stage. and obtain, depending on the rest of the parameters and variables defined in said problem identification stage, the desired final or exit concentration of the contaminant for which it is desired to apply the method implemented in computer of selection of absorbent materials. Additionally, the list of absorbent materials may in turn contain an indication of the economic cost associated with the amount of each available absorbent material, so that the list may be indicative of the efficiency / cost ratio of the available absorbent materials. The method implemented in computer of selection of absorbent materials can allow, in relation to the information related to economic costs, the definition and / or update of the parameters and variables determinants of said economic costs, such as the acquisition or acquisition price of the absorbent material (including base or starting material and, where appropriate, reagents), economic cost associated with its transportation, electricity cost associated with its acquisition and / or use, etc. Based on the foregoing, the evaluation and decision stage provides an indication of the efficiency in relation to all available absorbent materials, particularly the most efficient absorbent material and, where appropriate, an indication of the concentration or necessary amount of said absorbent material, and, where appropriate, the height of the bed to be used (depending on the amount of absorbent material), as well as, where appropriate, indication of the efficiency / cost ratio.
El método implementado en computador de selección de materiales absorbentes objeto de la invención puede ser implementado en un sistema informático, dicho sistema informático comprendiendo para dicha implementación (a) un módulo de configuración, (b) un módulo de procesamiento, (c) un módulo de almacenamiento, y (d) un modulo decisor. Particularmente dicho sistema informático se caracteriza por que: The method implemented in computer of selection of absorbent materials object of the invention can be implemented in a computer system, said computer system comprising for said implementation (a) a configuration module, (b) a processing module, (c) a module of storage, and (d) a decision module. Particularly said computer system is characterized by:
(a) el módulo de configuración es responsable de la ejecución de las etapas de elección del sistema de adsorción y de identificación del problema así como, en su caso, de permitir la definición y/o actualización de los parámetros y variables determinantes los costes económicos asociados a las cantidades a emplear de los distintos materiales absorbentes disponibles, particularmente de los costes económicos asociados a la cantidad a emplear del material absorbente que permitiría que el proceso de adsorción fuese el más eficiente;  (a) the configuration module is responsible for the execution of the stages of choosing the adsorption system and identifying the problem as well as, where appropriate, allowing the definition and / or updating of the parameters and variables that determine the economic costs associated to the quantities to be used of the different absorbent materials available, particularly of the economic costs associated to the quantity to be used of the absorbent material that would allow the adsorption process to be the most efficient;
(b) el módulo de procesamiento es responsable de la ejecución de la etapa de modelización y procesamiento de datos;  (b) the processing module is responsible for the execution of the modeling and data processing stage;
(c) el módulo de almacenamiento comprende una base de datos a la que se accede mediante medios informáticos y comprende datos experimentales, y/o, en su caso, teóricos, disponibles en relación tanto a cada material absorbente disponible como a cada contaminante; y  (c) the storage module comprises a database that is accessed by computer means and comprises experimental, and / or, where appropriate, theoretical data, available in relation to each available absorbent material as well as each contaminant; Y
(d) el módulo decisor es responsable de la ejecuación de la etapa de evaluación y decisión. A continuación se describen algunos ejemplos de utilización de una realización preferida del método implementado en computador de selección de materiales absorbentes. (d) the decision module is responsible for the execution of the evaluation and decision stage. Some examples of the use of a preferred embodiment of the method implemented in the computer for the selection of absorbent materials are described below.
Para un sistema estacionario For a stationary system
Caso 1 : Dada una concentración inicial de As (III) de 30 ppb, se desea una concentración de salida de 10 ppb (límite máximo establecido por la normativa estatal) en un sistema estacionario. Case 1: Given an initial As (III) concentration of 30 ppb, an output concentration of 10 ppb (maximum limit established by state regulations) in a stationary system is desired.
El método implementado en computador de selección de materiales absorbentes ajusta los datos implementados previamente en la base de datos a las distintas isotermas y determina cuál de ellas presenta menor chi2 para cada arcilla estudiada y la cantidad necesaria de éstas:  The method implemented in computer of selection of absorbent materials adjusts the data previously implemented in the database to the different isotherms and determines which of them has less chi2 for each clay studied and the necessary amount of these:
Figure imgf000018_0001
Figure imgf000018_0001
Incorporando el coste económico de los distintos adsorbentes, el software selecciona el que resulta más eficiente, en este caso FeSML-Mont, y la cantidad necesaria sería de 0.066 g/1. Experimentalmente puede comprobarse que para una cantidad de arcilla de 0.06 g/1 y partiendo de 30 ppb de contaminante, la concentración final obtenida mediante un sistema estacionario resulta ser de 10.146 ppb, quedando así validado el software. Caso 2: Para reducir una contaminación de Ni(II) de 100 ppb a 20 ppb, se necesitarían 0.028 g/1 de arcilla FeOSML-Mont. Caso 3: Para una contaminación de Pb(II), de 100 ppb a 10 ppb, se necesitarían 0.0166 g/1 de arcilla FeSML-Mont. Incorporating the economic cost of the different adsorbents, the software selects the one that is most efficient, in this case FeSML-Mont, and the necessary amount would be 0.066 g / 1. Experimentally it can be verified that for a quantity of clay of 0.06 g / 1 and starting from 30 ppb of contaminant, the final concentration obtained by means of a stationary system turns out to be 10,146 ppb, thus validating the software. Case 2: To reduce a Ni (II) contamination from 100 ppb to 20 ppb, 0.028 g / 1 of FeOSML-Mont clay would be needed. Case 3: For a contamination of Pb (II), from 100 ppb to 10 ppb, 0.0166 g / 1 of FeSML-Mont clay would be needed.
Caso 4: Para una contaminación de Cd(II), de 65 ppb a 5 ppb, se necesitarían 0.0302 g/1 de arcilla FeSML-Mont. Case 4: For a contamination of Cd (II), from 65 ppb to 5 ppb, 0.0302 g / 1 of FeSML-Mont clay would be needed.
Caso 5: Para una contaminación de Cr(III), de 80 ppb a 50 ppb, se necesitarían 0.0018 g/1 de Saponita. Para un sistema de filtro en columna Case 5: For a contamination of Cr (III), from 80 ppb to 50 ppb, 0.0018 g / 1 of Saponite would be needed. For a column filter system
Caso 6: Para tratar un caudal de 30 L/min de 50 ppb de Cu(II) y obtener un volumen tratado de 2000 L con 2 ppb de Cu(II), se requerirá un lecho con una proporción 1000:1 de arena: arcilla FeSML-Mont, íntimamente mezcladas, con una altura total de 1.75 m, correspondiente a una o a varias columnas de 22 cm de diámetro. Case 6: To treat a flow rate of 30 L / min of 50 ppb of Cu (II) and obtain a treated volume of 2000 L with 2 ppb of Cu (II), a bed with a 1000: 1 ratio of sand will be required: FeSML-Mont clay, intimately mixed, with a total height of 1.75 m, corresponding to one or several columns of 22 cm in diameter.
Caso 7: Se requerirá un lecho con una proporción 1000: 1 de arena: arcilla FeSML-Sap de 1.7 m de altura total y 21 cm de diámetro para tratar 15 L/min de 100 ppb de Cu(II) y obtener un volumen tratado de 10000 L con 10 ppb de Cu(II). Case 7: A bed with a 1000: 1 sand ratio will be required: FeSML-Sap clay of 1.7 m total height and 21 cm in diameter to treat 15 L / min of 100 ppb of Cu (II) and obtain a treated volume 10000 L with 10 ppb of Cu (II).
Referencias References
• Carmody, O., Frost, R., Kokot, Y. Xi, S. (2007) Adsorption of hydrocarbons on organoclays-implications for oil spill remediation, J. Colloid Clay Sci. 30, 17-24. • Carmody, O., Frost, R., Kokot, Y. Xi, S. (2007) Adsorption of hydrocarbons on organoclays-implications for oil spill remediation, J. Colloid Clay Sci. 30, 17-24.
· Nishijima, W., Akama, T., Shoto, E., Okada, M., (1997). Effects of adsorbed substances on bioactivity of attached bacteria on granular activated carbón. Water Sci. Technol. 35, 203-208. · Nishijima, W., Akama, T., Shoto, E., Okada, M., (1997). Effects of adsorbed substances on bioactivity of attached bacteria on granular activated carbon. Water Sci. Technol. 35, 203-208.
Oliveira Pereira, K.R., Hanna, O.A., Vianna, M.M.G.R., Pinto, C.A., Rorigues, M.G.F., Valenzuela-Diaz, F.R. (2005) Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons, Mater. Res. 8 77-80. Oliveira Pereira, KR, Hanna, OA, Vianna, MMGR, Pinto, CA, Rorigues, MGF, Valenzuela-Diaz, FR (2005) Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons, Mater. Res. 8 77-80.
Pelekani, C; Snoeyink, V.L. (1999) Competitive adsorption in natural water: Role of activated carbón pore size. Water Res. 33, 1209-1219. Sayed, S.A. EL Sayed, A.S. EL Kareish, S.M., Zayed, A.M., (2003) Treatment of liquid oil spill by untreated and treated aswanly clay from Egypt, J. Appl. Sci. Environ. Manage. 7, 25-35. Pelekani, C; Snoeyink, VL (1999) Competitive adsorption in natural water: Role of activated carbon pore size. Water Res. 33, 1209-1219. Sayed, SA EL Sayed, AS EL Kareish, SM, Zayed, AM, (2003) Treatment of liquid oil spill by untreated and treated aswanly clay from Egypt, J. Appl. Sci. Environ. Manage 7, 25-35.
Scholz, M., Martin, R., (1997). Ecological equilibrium on biological active carbón. Water Res. 31, 2959-2968.  Scholz, M., Martin, R., (1997). Ecological equilibrium on biological active carbon. Water Res. 31, 2959-2968.
Simson, D.R. (2008) Biofílm processes in biologically active carbón water purification. Review Water Res. 42, 2839-2848  Simson, D.R. (2008) Biofilm processes in biologically active carbon water purification. Review Water Res. 42, 2839-2848
Sumner, M.E., Miller, W.P., (1996). Catión exchange capacity and exchange coefficients. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3— Chemical Methods. SSSA, Madison, WI, pp. 1201-1229.  Sumner, M.E., Miller, W.P., (1996). Cation exchange capacity and exchange coefficients. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3— Chemical Methods. SSSA, Madison, WI, pp. 1201-1229.
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I: Solids. J. Am. Chem. Soc. 38: 2221-2295.  Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I: Solids. J. Am. Chem. Soc. 38: 2221-2295.
Freundlich, H. (1906). Über die adsorption in Lósungen. Z. Phys. Chem. 57: 385-470. Dubinin, M., Radushkevich, L. (1947). Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt, 1 :875.  Freundlich, H. (1906). Über die adsorption in Lósungen. Z. Phys. Chem. 57: 385-470. Dubinin, M., Radushkevich, L. (1947). Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt, 1: 875.
Tempkin, M.I., Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12: 327-356.  Tempkin, M.I., Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12: 327-356.
Brunauer, S., Emmett, P.H., Teller, E. (1938). Adsorption of gases in ultimolecular layers. J Am Chem Soc, 60:309-319.  Brunauer, S., Emmett, P.H., Teller, E. (1938). Adsorption of gases in ultimolecular layers. J Am Chem Soc, 60: 309-319.
Sips, R. (1948). Combined form of Langmuir and Freundlich equations. J Chem Phys, 16: 490-495.  Sips, R. (1948). Combined form of Langmuir and Freundlich equations. J Chem Phys, 16: 490-495.
Toth, J. (1971). State equations of the solid-gas interface layers. Acta Chim Hung, 69: 31 1-328.  Toth, J. (1971). State equations of the solid-gas interface layers. Chim Hung Act, 69: 31 1-328.
Thomas, H.C. (1944). Heterogeneous ion Exchange in a flowing system. J. Am. Chem. Soc. 66: 1664-1666.  Thomas, H.C. (1944). Heterogeneous ion Exchange in a flowing system. J. Am. Chem. Soc. 66: 1664-1666.
Yoon, Y.H., Nelson, J.H. (1984). Application of gas adsorption kinetics. Part I: A theorical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J. 45: 509- 516.  Yoon, Y.H., Nelson, J.H. (1984). Application of gas adsorption kinetics. Part I: A theorical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J. 45: 509-516.
Bohart, G.S., Adams, E.Q. (1920). Behavior of charcoal towards chlorine. J. Chem. Soc. 42: 523-529.  Bohart, G.S., Adams, E.Q. (1920). Behavior of charcoal towards chlorine. J. Chem. Soc. 42: 523-529.
Wang, Y.H., Lin, S.H., Juang, R.S. (2003). Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater, 102: 291-302. Wolborska, A. (1989). Adsorption on activated carbón of p-nitrophenol from aqueous solution. Water Res, 23: 85-91. Wang, YH, Lin, SH, Juang, RS (2003). Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater, 102: 291-302. Wolborska, A. (1989). Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res, 23: 85-91.
Wolborska, A. (1989). Determination of mass transfer coefficient adsorption in a fixed bed. Inz Chem Procesowa, 4: 545-556.  Wolborska, A. (1989). Determination of mass transfer coefficient adsorption in a fixed bed. Inz Chem Procesowa, 4: 545-556.
Wolborska, A., Pustelnik, P. (1996). A simplified method for determination of the break- through time of an adsorbent layer. Water Res, 30: 2643-2650.  Wolborska, A., Pustelnik, P. (1996). A simplified method for determination of the break- through time of an adsorbent layer. Water Res, 30: 2643-2650.

Claims

Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas que comprende (1) una etapa de elección del sistema de adsorción; (2) una etapa de identificación del problema en la que se definen parámetros y variables caracterizadores del problema; (3) una etapa de modelización y procesamiento de datos en función tanto de los parámetros y variables definidos en la etapa de identificación del problema, como de los datos experimentales, y/o, en su caso, teóricos, disponibles en relación tanto a cada material absorbente disponible como a cada contaminante; y (4) una etapa de evaluación y decisión que proporciona información de la eficiencia de cada uno de ellos, particularmente indicando cuál sería el material absorbente que permitiría que el proceso de adsorción fuese el más eficiente. Method implemented in computer for the selection of absorbent materials for purification or treatment of water comprising (1) a step of choosing the adsorption system; (2) a stage of identification of the problem in which parameters and variables characterizing the problem are defined; (3) a modeling and data processing stage based on both the parameters and variables defined in the problem identification stage, as well as the experimental data, and / or, where appropriate, theoretical, available in relation to each absorbent material available as per each contaminant; and (4) an evaluation and decision stage that provides information on the efficiency of each of them, particularly indicating which would be the absorbent material that would allow the adsorption process to be the most efficient.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según la reivindicación anterior caracterizado por que la etapa de elección del sistema de absorción permite elegir entre sistema de filtros en columna y sistema estacionario. Method implemented in computer for the selection of absorbent materials for purification or water treatment according to the preceding claim, characterized in that the step of choosing the absorption system allows choosing between a column filter system and a stationary system.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según cualquiera de las reivindicaciones anteriores caracterizado por que los parámetros y variables que se definen en la etapa de de identificación del problema comprenden el tipo de contaminante, su concentración inicial o de entrada, su concentración final o de salida deseada, el tipo de agua a depurar o tratar, y el volumen y caudal de dicha agua a depurar o tratar. Method implemented in computer of selection of absorbent materials for purification or water treatment according to any of the previous claims characterized in that the parameters and variables that are defined in the stage of identification of the problem comprise the type of pollutant, its initial concentration or input, its desired final or exit concentration, the type of water to be purified or treated, and the volume and flow of said water to be purified or treated.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según cualquiera de las reivindicaciones anteriores caracterizado por que la etapa de modelización y procesamiento de datos comprende la modelización del resultado esperado, en función de los parámetros y variables definidos en la etapa de identificación del problema, de la utilización de cada material absorbente disponible en base a los datos experimentales, y/o, en su caso, teóricos, disponibles en relación tanto a cada material absorbente disponible como a cada contaminante, dichos datos experimentales, y/o, en su caso, teóricos, almacenados en una base de datos. Method implemented in computer of selection of absorbent materials for purification or water treatment according to any of the preceding claims characterized in that the modeling and data processing stage comprises the modeling of the expected result, depending on the parameters and variables defined in the stage of identification of the problem, of the use of each absorbent material available based on experimental data, and / or, where appropriate, theoretical, available in relation to each available absorbent material as well as to each contaminant, said experimental data, and / or, where appropriate, theoretical, stored in a database.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según la reivindicación anterior 4 caracterizado por que los modelos matermáticos implementados durante la etapa de modelización y procesamiento de datos son modelos de adsorción en columna tales como tipo Thomas, Yoon-Nelson, Adams-Bohart (BDST), Wang y Wolborska-Pustelnik. Method implemented in computer for the selection of absorbent materials for purification or water treatment according to claim 4, characterized in that the mathematical models implemented during the modeling and data processing stage are column adsorption models such as Thomas, Yoon-Nelson type , Adams-Bohart (BDST), Wang and Wolborska-Pustelnik.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según la reivindicación anterior 4 caracterizado por que la etapa de modelización y procesamiento de datos comprende el modelado matemático por isotermas de adsorción que relacionan la cantidad de contaminante absorbido por el material frente a la cantidad de contaminante que permanece sin retener una vez alcanzado el equilibrio, empleándose para ello ecuaciones biparamétricas tales como tipo Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer-Emmet-Teller, Sips y Toth. Method implemented in computer for the selection of absorbent materials for purification or water treatment according to claim 4, characterized in that the modeling and data processing step comprises the mathematical modeling by adsorption isotherms that relate the amount of contaminant absorbed by the material in front of to the amount of contaminant that remains without retaining once equilibrium is reached, using biparameter equations such as Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Brunauer-Emmet-Teller, Sips and Toth.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según cualquiera de las reivindicaciones anteriores caracterizado por que la etapa de evaluación y decisión a nivel de los distintos materiales absorbentes disponibles comprende el análisis estadístico de los resultados de la etapa de modelización y procesamiento de datos, proporcionando información indicativa de la eficiencia de cada uno de los materiales absorbentes disponibles, particularmente indicativa de cuál es el material absorbente que permitiría que el proceso de adsorción fuese el más eficiente. Method implemented in computer of selection of absorbent materials for purification or treatment of water according to any of the previous claims characterized in that the stage of evaluation and decision at the level of the different absorbent materials available comprises the statistical analysis of the results of the modeling stage and data processing, providing information indicative of the efficiency of each of the available absorbent materials, particularly indicative of which is the absorbent material that would allow the adsorption process to be the most efficient.
Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según cualquiera de las reivindicaciones anteriores caracterizado por que la etapa de evaluación y decisión a nivel de los distintos materiales absorbentes disponibles proporciona, además, información de la concentración y/o cantidad que se emplearía de cada uno de ellos, particularmente indicando cuál sería la cantidad y/o concentración a emplear del material absorbente que permitiría que el proceso de adsorción fuese el más eficiente. Method implemented in computer of selection of absorbent materials for purification or treatment of water according to any of the previous claims characterized in that the stage of evaluation and decision at the level of the different absorbent materials available also provides information on the concentration and / or quantity which would be used for each of them, particularly indicating which would be the amount and / or concentration to be used of the absorbent material that would allow the adsorption process to be the most efficient.
9. Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según la reivindicación anterior 8 caracterizado por que la etapa de evaluación y decisión a nivel de los distintos materiales absorbentes disponibles proporciona, además, información del coste económico asociado a la cantidad que se emplearía de cada uno de ellos, particularmente indicando cuál sería el coste económico asociado a la cantidad a emplear del material absorbente que permitiría que el proceso de adsorción fuese el más eficiente. 9. A method implemented in a computer for selecting absorbent materials for purification or water treatment according to claim 8, characterized in that the evaluation and decision stage at the level of the different absorbent materials available also provides information on the economic cost associated with the amount that would be used of each of them, particularly indicating what would be the economic cost associated with the amount to be used of the absorbent material that would allow the adsorption process to be the most efficient.
10. Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según la reindicación anterior 9 caracterizado por que, para proporcionar información del coste económico asociado a la cantidad que se emplearía de cada uno de ellos, particularmente del coste económico asociado a la cantidad a emplear del material absorbente que permitiría que el proceso de adsorción fuese el más eficiente, durante la etapa de evaluación y decisión a nivel de los distintos materiales absorbentes disponibles, el método comprende la definición y/o actualización de los parámetros y variables determinantes de dichos costes económicos, tales como precio de adquisición o de obtención del material absorbente, coste económico asociado a su transporte, o coste de la electricidad asociada a su obtención y/o utilización. 10. Method implemented in computer of selection of absorbent materials for purification or treatment of water according to the previous reindication 9 characterized in that, to provide information of the economic cost associated with the amount that would be used of each of them, particularly of the associated economic cost to the quantity to be used of the absorbent material that would allow the adsorption process to be the most efficient, during the evaluation and decision stage at the level of the different absorbent materials available, the method comprises the definition and / or updating of the parameters and variables determinants of said economic costs, such as the acquisition or acquisition price of the absorbent material, economic cost associated with its transportation, or the cost of electricity associated with its acquisition and / or use.
11. Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según cualquiera de las reivindicaciones anteriores 8 a 10 caracterizado por que la etapa de evaluación y decisión a nivel de los distintos materiales absorbentes disponibles proporciona, además, información de la altura del lecho a emplear. 11. A method implemented in a computer for the selection of absorbent materials for water purification or treatment according to any of the preceding claims 8 to 10, characterized in that the evaluation and decision stage at the level of the different absorbent materials available also provides information bed height to use.
12. Método implementado en computador de selección de materiales absorbentes para depuración o tratamiento de aguas según cualquiera de las reivindicaciones anteriores 1 a12. Method implemented in computer for the selection of absorbent materials for purification or water treatment according to any of the preceding claims 1 to
11 caracterizado por que, en el caso de que el agua a depurar o tratar contenga más de un contaminante para el que se desee aplicar el método implementado en computador de selección de materiales absorbentes, la etapa de identificación del problema, así como las subsiguientes etapas, deben ser repetidas o realizadas para cada uno de dichos contaminantes. 11 characterized in that, in the case that the water to be purified or treated contains more than one contaminant for which it is desired to apply the method implemented in a computer selection of absorbent materials, the problem identification stage, as well as the subsequent stages, must be repeated or performed for each of said contaminants.
13. Sistema informático para la selección de materiales absorbentes para depuración o tratamiento de aguas caracterizado por que implementa un método conforme a cualquiera de las reivindicaciones 1 a 12 y para ello comprende (a) un módulo de configuración, (b) un módulo de procesamiento, (c) un módulo de almacenamiento, y (d) un modulo decisor. 13. Computer system for the selection of absorbent materials for purification or water treatment characterized in that it implements a method according to any of claims 1 to 12 and for this it comprises (a) a configuration module, (b) a processing module , (c) a storage module, and (d) a decision module.
14. Sistema informático según la reivindicación anterior caracterizado por que 14. Computer system according to the preceding claim characterized in that
(e) el módulo de configuración es responsable de la ejecución de las etapas de elección del sistema de adsorción y de identificación del problema así como, en su caso, de permitir la definición y/o actualización de los parámetros y variables determinantes los costes económicos asociados a las cantidades a emplear de los distintos materiales absorbentes disponibles, particularmente de los costes económicos asociados a la cantidad a emplear del material absorbente que permitiría que el proceso de adsorción fuese el más eficiente; (e) the configuration module is responsible for the execution of the stages of choosing the adsorption system and identifying the problem as well as, where appropriate, allowing the definition and / or updating of the parameters and variables that determine the economic costs associated to the quantities to be used of the different absorbent materials available, particularly of the economic costs associated to the quantity to be used of the absorbent material that would allow the adsorption process to be the most efficient;
(f) el módulo de procesamiento es responsable de la ejecución de la etapa de modelización y procesamiento de datos; (f) the processing module is responsible for the execution of the modeling and data processing stage;
(g) el módulo de almacenamiento comprende una base de datos a la que se accede mediante medios informáticos y comprende datos experimentales, y/o, en su caso, teóricos, disponibles en relación tanto a cada material absorbente disponible como a cada contaminante; y  (g) the storage module comprises a database that is accessed by computer means and comprises experimental, and / or, where appropriate, theoretical data, available in relation to each available absorbent material as well as each contaminant; Y
(h) el módulo decisor es responsable de la ej ecuación de la etapa de evaluación y decisión.  (h) the decision module is responsible for the equation of the evaluation and decision stage.
15. Programa informático que comprende instrucciones de programa capaces de hacer que un sistema informático lleve a cabo un método conforme a cualquiera de las reivindicaciones 1 a 12. 15. Computer program comprising program instructions capable of having a computer system carry out a method according to any one of claims 1 to 12.
16. Medio de almacenamiento legible por un sistema informático que comprende instrucciones de programa capaces de hacer que un sistema informático lleve a cabo un método conforme a cualquiera de las reivindicaciones 1 a 12. 17. Señal transmisible que comprende instrucciones de programa capaces de hacer que un sistema informático lleve a cabo un método conforme a cualquiera de las reivindicaciones 1 a 12. 16. Storage medium readable by a computer system comprising program instructions capable of having a computer system carry out a method according to any of claims 1 to 12. 17. Transferable signal comprising program instructions capable of making A computer system carries out a method according to any of claims 1 to 12.
18. Procedimiento de depuración o tratamiento de aguas que comprende una etapa de selección del material absorbente a emplear en depuración o tratamiento de aguas, dicha etapa de selección comprendiendo la realización de un método implementado en computador de selección de materiales absorbentes conforme a cualquiera de las reivindicaciones 1 a 12. 19. Procedimiento de depuración o tratamiento de aguas que comprende una etapa de selección del material absorbente a emplear en depuración o tratamiento de aguas, dicha etapa de selección comprendiendo la utilización de un sistema informático para la selección de materiales absorbentes para depuración o tratamiento de aguas conforme a cualquiera de las reivindicaciones 13 a 14. 18. Method of purification or treatment of water comprising a stage of selection of the absorbent material to be used in purification or treatment of water, said stage of selection comprising the realization of a method implemented in computer of selection of absorbent materials according to any of the claims 1 to 12. 19. Method of purification or treatment of water comprising a stage of selection of the absorbent material to be used in purification or treatment of water, said step of selection comprising the use of a computer system for the selection of absorbent materials for water purification or treatment according to any of claims 13 to 14.
20. Procedimiento de depuración o tratamiento de aguas que comprende una etapa de selección del material absorbente a emplear en depuración o tratamiento de aguas, dicha etapa de selección comprendiendo la utilización de un programa informático que comprende instrucciones de programa capaces de hacer que un sistema informático lleve a cabo un método conforme a cualquiera de las reivindicaciones 1 a 12. 20. Water purification or treatment process comprising a step of selecting the absorbent material to be used in water purification or treatment, said selection step comprising the use of a computer program comprising program instructions capable of making a computer system Carry out a method according to any of claims 1 to 12.
21. Procedimiento de depuración o tratamiento de aguas que comprende una etapa de selección del material absorbente a emplear en depuración o tratamiento de aguas, dicha etapa de selección comprendiendo la utilización de un medio de almacenamiento legible por un sistema informático que comprende instrucciones de programa capaces de hacer que un sistema informático lleve a cabo un método conforme a cualquiera de las reivindicaciones 1 a 12. 21. Water purification or treatment process comprising a step of selecting the absorbent material to be used in water purification or treatment, said selection step comprising the use of a storage medium readable by a computer system comprising program instructions capable of having a computer system carry out a method according to any one of claims 1 to 12.
22. Procedimiento de depuración o tratamiento de aguas que comprende una etapa de selección del material absorbente a emplear en depuración o tratamiento de aguas, dicha etapa de selección comprendiendo la utilización de una señal transmisible que comprende instrucciones de programa capaces de hacer que un sistema informático lleve a cabo un método conforme a cualquiera de las reivindicaciones 1 a 12. 22. Water purification or treatment process comprising a step of selecting the absorbent material to be used in water purification or treatment, said selection step comprising the use of a transmissible signal comprising program instructions capable of making a computer system Carry out a method according to any of claims 1 to 12.
PCT/ES2014/000224 2014-12-10 2014-12-23 Methods used in a computer for selecting absorbent materials for purifying water, and applications thereof WO2016092124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201401004 2014-12-10
ES201401004A ES2554278B1 (en) 2014-12-10 2014-12-10 Methods of obtaining and selecting adsorbent materials for water purification

Publications (1)

Publication Number Publication Date
WO2016092124A1 true WO2016092124A1 (en) 2016-06-16

Family

ID=54837406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000224 WO2016092124A1 (en) 2014-12-10 2014-12-23 Methods used in a computer for selecting absorbent materials for purifying water, and applications thereof

Country Status (2)

Country Link
ES (1) ES2554278B1 (en)
WO (1) WO2016092124A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109783162B (en) * 2018-12-13 2024-04-16 平安科技(深圳)有限公司 Method function management method, device, computer equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070209999A1 (en) * 2006-03-08 2007-09-13 Siemens Water Technologies Corp. Wastewater treatment system and method
US20110005284A1 (en) * 2009-07-08 2011-01-13 Conner William G Wastewater treatment system and process including irradiation of primary solids
CA2706086A1 (en) * 2010-05-31 2011-11-30 Ecovu Analytics Inc. Method and system for fluid purification and analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070209999A1 (en) * 2006-03-08 2007-09-13 Siemens Water Technologies Corp. Wastewater treatment system and method
US20110005284A1 (en) * 2009-07-08 2011-01-13 Conner William G Wastewater treatment system and process including irradiation of primary solids
CA2706086A1 (en) * 2010-05-31 2011-11-30 Ecovu Analytics Inc. Method and system for fluid purification and analysis

Also Published As

Publication number Publication date
ES2554278B1 (en) 2016-10-10
ES2554278A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
Sarma et al. Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study
Chai et al. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent
Şahan et al. Mercury (II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization
Esmaeili et al. Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies
Chen et al. Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud
Ijagbemi et al. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions
Dehghani et al. Process modeling, characterization, optimization, and mechanisms of fluoride adsorption using magnetic agro-based adsorbent
Gök et al. Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper (II) ions onto 8-hydroxy quinoline immobilized bentonite
Nur et al. Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modeling
Olgun et al. Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity
Anirudhan et al. Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay
Ghazi Mokri et al. Adsorption of CI Acid Red 97 dye from aqueous solution onto walnut shell: kinetics, thermodynamics parameters, isotherms
Wang et al. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture
Sdiri et al. Simultaneous removal of heavy metals from aqueous solution by natural limestones
Ayoob et al. Performance evaluation of alumina cement granules in removing fluoride from natural and synthetic waters
Moharami et al. Use of modified clays for removal of phosphorus from aqueous solutions
Bueno et al. Formulating low cost modified bentonite with natural binders to remove pesticides in a pilot water filter system
Selim et al. Dye removal using some surface modified silicate minerals
Zhao et al. Use of zeolites for treating natural gas co-produced waters in Wyoming, USA
Belhadri et al. Novel low-cost adsorbent based on economically modified bentonite for lead (II) removal from aqueous solutions
Allahkarami et al. Nitrate adsorption onto surface-modified red mud in batch and fixed-bed column systems: equilibrium, kinetic, and thermodynamic studies
Hamadneh et al. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm (III) and Nd (III) from aqueous solution
Ranjan et al. Removal of arsenic (III and V) from aqueous solution using stable maghemite (γ-Fe 2 O 3) loaded pumice composite
Siéwé et al. Activation of clay surface sites of Bambouto's Andosol (Cameroon) with phosphate ions: Application for copper fixation in aqueous solution
Bajda et al. Removal of lead and phosphate ions from aqueous solutions by organo-smectite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907918

Country of ref document: EP

Kind code of ref document: A1