WO2015102145A1 - Polarization-sensitive full-field optical coherence tomography system, and control system and control method thereof - Google Patents

Polarization-sensitive full-field optical coherence tomography system, and control system and control method thereof Download PDF

Info

Publication number
WO2015102145A1
WO2015102145A1 PCT/KR2014/000762 KR2014000762W WO2015102145A1 WO 2015102145 A1 WO2015102145 A1 WO 2015102145A1 KR 2014000762 W KR2014000762 W KR 2014000762W WO 2015102145 A1 WO2015102145 A1 WO 2015102145A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization
sample
camera
reference side
Prior art date
Application number
PCT/KR2014/000762
Other languages
French (fr)
Korean (ko)
Inventor
이병하
엄태중
박관섭
최우준
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2015102145A1 publication Critical patent/WO2015102145A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02011Interferometers characterised by controlling or generating intrinsic radiation properties using temporal polarization variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the present invention relates to a full-field optical coherence tomography, a control system and a control method thereof. More specifically, the present invention relates to a polarization-sensitive global optical tomography device capable of detecting the birefringence of an object under test together with the shape of the object under test.
  • OCT optical coherence tomography
  • a full-field optical coherence tomography system has an advantage that a cross-sectional image of a sample as well as an image of a longitudinal section of a sample can be obtained at high resolution.
  • FOCT full-field optical coherence tomography system
  • C-scanning depth scanning
  • polarization sensitive full-field optical coherence tomography for example, G. Moneron, A-C. Boccara, A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058-2060 (2007).
  • the polarization sensitive global optical tomography device is practically never commercialized due to various problems as follows.
  • the polarization sensitive global optical tomography device separates beams to obtain two orthogonal polarization component values from the light reflected from the sample and reference ends, and uses two CCD cameras to capture each separated light. do.
  • the pixel-to-pixel matching of the image obtained from each camera is distorted, so that an error occurs in the image and it is difficult to construct a practically applicable system.
  • the pixel response rate of the camera must be corrected every time the object to be measured is measured.
  • a process of accurately matching the optical paths separated by polarization components through optical alignment is required.
  • a polarization sensitive global optical tomography device Due to such a problem, a polarization sensitive global optical tomography device has not been introduced yet, and the present invention proposes a polarization sensitive global optical tomography device, a control system, and a control method thereof, which solves the above problems by improving such a problem.
  • the present invention is proposed to solve the above problems, and proposes a polarization sensitive global optical tomography device which can acquire birefringence information of a sample stably, accurately and conveniently, and can be commercialized.
  • a polarization sensitive global optical tomography device comprising: a light source unit for irradiating light; A beam splitter which separates the light irradiated from the light source unit and irradiates the sample side and the reference side, and receives the light reflected from the sample side and the reference side; An imaging unit which acquires an image of interference light reflected from the beam splitter; A linear polarizer for linearly polarizing light of the light source unit; A quarter-wave plate which makes the linearly polarized light that has passed through the linear polarizer into elliptical polarization and provides it to the sample side and the reference side; And a selective polarization transmitting device provided in the imaging unit to pass the horizontal component and the vertical component of polarized light by time selection, wherein the imaging unit is provided with a single camera. According to the present invention, there is no need for optical alignment, pixel matching, and camera response rate correction, and the optical tomography device can be used more conveniently. In addition, it is
  • the major axis of the quarter wave plate provided on the sample side is inclined 45 degrees with the optical axis of the linearly polarized light
  • the major axis of the quarter wave plate provided on the reference side is 22.5 degrees with the optical axis of the linear polarization.
  • the selective polarization transmission device includes a polarization switch in which the polarization state is changed by the external force, and a linear flat polarizer to which the light passing through the polarization switch is incident.
  • a ferroelectric liquid crystal may be used for the polarization switch. According to this, there is an advantage that the response to the polarization switch is further improved.
  • the camera photographs eight times when the selective polarization transmitting device operates one cycle. According to the present invention, there is an advantage that the birefringence information can be obtained completely.
  • a control system of a polarized civilian global optical tomography device comprising: a control device to which at least an arithmetic function, a communication function, and a storage function can be given; A phase modulator controlled by the controller and providing a phase modulated interference signal; A selective polarization transmitting device controlled by the control device and configured to rotate the optical axis of the elliptical polarization provided as interference light so that the vertical component or the horizontal component of the polarization is selectively passed; And a camera controlled by the control device and photographing the light passing through the selective polarization transmitting device, wherein the control device comprises a half cycle of the polarization switch during one period of the phase modulator. do.
  • the control apparatus by controlling an optical tomographic apparatus, it can drive completely, meeting timing.
  • the camera may perform four shots during one period of the phase modulator. In this way, the timing of shooting can be precisely adjusted.
  • a method of controlling a polarization sensitive global optical tomography device comprising: obtaining interference light in which reflected light from a sample side and a reference side interfere with each other; Imaging the vertical component and the horizontal component of the interference light in time; And adding the vertical components and the horizontal components to provide single image information, and comparing the single image information to obtain birefringence.
  • This method eliminates the need for optical alignment, pixel matching, and camera response rate correction, making it easier to use optical tomographic devices.
  • the birefringence information may be obtained by dividing the single image information of a horizontal component and the single image information of a vertical component and taking a square root and an arc tangent. According to the present invention, birefringence information can be obtained conveniently.
  • the inconvenience of mismatching between pixel matching of an image, the inconvenience of correcting pixel response rate of a camera, and the inconvenience of strict alignment of light alignment can be eliminated, and the unit cost of the product can be significantly lowered, and the size of the system is You can get the advantage of shrinking.
  • FIG. 1 is a block diagram of a polarization sensitive global optical tomography device according to an embodiment.
  • FIGS. 2 and 3 are views illustrating the operation of the selective polarization transmitting device
  • Figure 2 is a case where the vertical component of the elliptical polarization passes
  • Figure 3 is a view showing a case where the horizontal component of the elliptical polarization passes.
  • FIG. 4 illustrates a control system of a polarization sensitive global optical tomographic device.
  • FIG. 5 is a timing diagram of a phase modulator, a polarization switch, and a camera provided in FIG. 4;
  • FIG. 6 is a flowchart for explaining a method of controlling a polarization sensitive global optical tomography device
  • FIG. 1 is a block diagram of a polarization sensitive global optical tomography device according to an embodiment.
  • the light source unit includes a light source 2 exemplified by a halogen illuminator, a lens array 3 for focusing and aligning light, and a linear polarizer 4 for linearly polarizing light.
  • the light source unit irradiates linearly polarized light through the configuration as described above.
  • the linearly polarized light is incident on the beam splitter 1, and then separated and incident on the sample side and the reference side, respectively.
  • a quarter wave plate 5 On the sample side, a quarter wave plate 5, an objective lens 6, and a stage 7 are provided. Therefore, the light transmitted to the sample side is circularly polarized and irradiated to the sample placed on the stage 7 through the objective lens 6. The light reflected by the sample is elliptically polarized and passes through the quarter wave plate 5 again to the beam splitter 1.
  • the quarter wave plate 5 may have an orientation of 45 degrees with the main axis of the quarter wave plate 5 so that the circularly polarized light may be circularly polarized when irradiated toward the sample side. According to this configuration, the circularly polarized light is irradiated onto the sample, and the circularly polarized light is elliptically polarized according to the degree of birefringence of the sample and then reflected. Therefore, the light reflected from the sample may include not only the image information of the sample but also the birefringence information of the sample.
  • the stage 7 may move in various directions including up and down. Therefore, the sample placed on it also moves up and down, and the measurement depth of a sample can be adjusted.
  • a quarter wave plate 8 On the reference side, a quarter wave plate 8, an objective lens 9, and a reflecting mirror 10 are provided. Therefore, the light transmitted to the reference side is transmitted to the reflection mirror 10 through the objective lens 9, and the light reflected by the reflection mirror is transmitted to the beam splitter 1 again.
  • the quarter wave plate may have an orientation of 22.5 degrees with respect to the main axis of polarization. According to this configuration, the light reflected by the reflecting mirror 10 and re-incident to the beam splitter 1 may be light of linear polarization.
  • the imaging unit includes a polarization switch 11 for adjusting a polarization state of light, a linear polarizer 12, and a camera 13.
  • the polarization switch 11 may be exemplified by a liquid crystal, and preferably, a ferroelectric liquid crystal (FLC) having good reactivity may be used.
  • the optical axis of the polarization switch may be changed by 45 degrees depending on the electric field applied from the outside. Therefore, the optical axis of the elliptical polarization incident from the beam splitter 1 to the polarization switch 11 may be changed, and then only the polarization component selected by the linear polarizer 12 passes through and enters the camera 13. Done.
  • the polarization switch 11 and the linear polarizer 12 may be referred to as a selective polarization transmission device.
  • Another kind of polarizer may be used for the selective polarization transmitting device.
  • the camera 13 may be, for example, a CCD camera.
  • the controller 14 controls each component so as to obtain respective image information.
  • a single camera is used to select and pass elliptical polarization for imaging. Therefore, there is no inconvenience in correcting pixel matching between pixels or pixel response rate of an image generated when using different cameras.
  • the light system is provided as one, there is no inconvenience to strictly match the light alignment.
  • there is no need to use a plurality of cameras reaching tens of thousands of won there is an advantage of lowering the unit cost of the product, there is an advantage that the size of the product is reduced.
  • the selective polarization transmitting device will be described in more detail.
  • FIG. 2 and 3 are views illustrating the operation of the selective polarization transmitting device, FIG. 2 shows a case where the vertical component of the elliptical polarization passes and FIG. 3 shows a case where the horizontal component of the elliptical polarization passes.
  • the drawings are for explaining the concept, the size, shape and aspect may be exaggerated for the convenience of understanding.
  • the elliptical polarization a incident from the beam splitter 1 passes through the polarization switch 11 so that vertical components are vertically aligned.
  • the elliptical polarization b in which the vertical components are vertically aligned passes through the linear polarizer 12 so that the vertical component c of the elliptical polarization aligned with the optical axis of the linear polarizer 12 passes. Therefore, the light incident on the camera 13 becomes a vertical component of the elliptical polarization.
  • the elliptical polarization a incident from the beam splitter 1 passes through the polarization switch 11 so that horizontal components are aligned vertically.
  • the elliptical polarization b with the horizontal component aligned vertically passes through the linear polarizer 12 so that the horizontal component c of the elliptical polarization aligned with the optical axis of the linear polarizer 12 passes. Therefore, light incident on the camera 13 becomes a horizontal component of the elliptical polarization.
  • FIGS. 2 and 3 may be a case where the direction of the electric field applied to the polarization switch 11 is reversed, for example ⁇ 5V may be applied.
  • the reference side includes a phase modulator 10, and the interference signal phase modulated by the phase modulator 10.
  • a piezolctric transducer PZT
  • the phase modulator 10 may be used as the phase modulator 10.
  • the phase modulated interference signal is provided by the phase modulator 10
  • the interference fringe may be shifted while the shape of the sample is maintained.
  • a tomographic image can be obtained.
  • phase modulation may occur four times, and may be performed by obtaining four images. However, more information is needed to obtain the birefringence information of the sample.
  • the above process may be performed by the controller 14 for processing the image obtained from the camera 13. After image information and birefringence information for any one layer of the sample are obtained, the stage 7 can be moved to obtain image information and birefringence information for different depths and positions of the sample.
  • FIG. 4 is a view showing a control system of a polarization sensitive global optical tomography device for this purpose.
  • a control device 14 to which a calculation function, a communication function, and a storage function can be given at least, a phase modulator 10 controlled by the control device 14, and a polarization switch 11 And a camera 13 are included.
  • the phase modulator 10 is a device for providing a phase-modulated interference signal.
  • the phase modulator 10 changes the optical path of the reference side, and consequently shifts the interference fringe.
  • the polarization switch is a device provided in the imaging unit, and rotates the optical axis of the elliptical polarization so that the vertical component or the horizontal component of the polarization selectively passes through the linear polarizer.
  • the camera is an apparatus provided in the imaging unit to acquire an image.
  • the phase modulator When the phase modulator is operated at 5 Hz, the polarization switch is operated at 2.5 Hz, and the camera is operated at 20 Hz. Therefore, when the polarization switch is operated for one period, the phase modulator is operated in two periods, and the camera takes eight shots.
  • FIG. 5 is a timing diagram of a phase modulator, a polarization switch, and a camera provided in FIG. 4.
  • One period of the phase modulator PZT corresponds to a half period of the polarization switch FLC, and the camera CCD may perform four photographs during one period of the phase modulator PZT.
  • the camera CCD may perform four photographs during one period of the phase modulator PZT.
  • two images having different polarization states are required for a single position of a sample. Therefore, in order to obtain image information and birefringence information for a single position of the sample, eight shots will be required and one cycle of the polarization switch will take time.
  • the electric field of the polarization switch is controlled in the positive direction to pass the vertical component of the polarization
  • the electric field of the polarization switch is controlled in the negative direction. It can pass the horizontal component of the polarization.
  • one image for the vertical component and one image for the horizontal component can be obtained. And, by comparing one image of the vertical component and one image of the horizontal component, birefringent information of the sample can be obtained.
  • FIG. 6 is a flowchart illustrating a method of controlling a polarization sensitive global optical tomography device according to an embodiment.
  • interfering light in which reflected light from the sample side and the reference side interferes with each other is obtained (S1).
  • the reflected light from the sample side and the reference side is polarized.
  • the vertical component and the horizontal component of the interference light are separated in time and imaged (S2).
  • the selective polarization transmitting device may be used to separate the vertical component and the horizontal component of the interference light in time.
  • the selective polarization transmitting device may use a polarization switch and a linear polarizer.
  • the vertical component and the horizontal component may be combined with each other and provided as single image information.
  • the birefringence report may be obtained by comparing each single image provided as a vertical component and a horizontal component (S3).
  • the image information of the sample not only the image information of the sample but also the birefringence information of the sample can be obtained, and the user can conveniently obtain reliable information even in obtaining the birefringence information.
  • the birefringence information of the sample can be known accurately without going through a complicated process.
  • the birefringence inspection and the directionality of the cover glass used in the digital device are applied to the polarization-sensitive global optical tomography device according to the embodiment by applying an appropriate change in terms of mechanical, controllable, methodological or additional device.
  • Eggplants may be used in a variety of equipment, such as tests for biological tissues, such as cancer cells, stress tests, such as films that are directional when stress is given.
  • the unit cost of the product can be significantly lowered, and the size of the system is reduced. . Therefore, it can be applied to various devices that need to grasp the image information about the depth of the object along with the birefringence of the object. For example, it may be used in a variety of equipment, such as birefringence test of the cover glass of the camera, test for cancer tissue having a direction, stress test such as a film that has a direction when stress is given.

Abstract

A polarization-sensitive full-field optical coherence tomography system according to the present invention may include: a light source unit for emitting light; a beam splitter that separates the light emitted from the light source unit, emits the light to a sample side and a reference side, and enables the light that has been reflected from the reference side and the sample side to be incident; an imaging unit for acquiring the image of an interference light reflected from the beam splitter; a linear polarizer for linearly polarizing the light of the light source unit; a quarter-wave plate for converting the linearly polarized light passed through the linear polarizer into an elliptically polarized light and then for providing the converted light to the sample side and the reference side; and a selected polarized light transmission device for, provided in the imaging unit, temporally selecting and passing a horizontal component and a vertical component of the polarized light, wherein the imaging unit has a single camera. The present invention can achieve advantages of eliminating an inconvenience of matching error alignment between image pixels, an inconvenience of pixel response rate correction of a camera, and an inconvenience of a strict adjustment of optical alignment, and significantly reducing the unit price of a product and reducing the size of a system.

Description

편광 민감 전역 광단층 장치 및 그 제어시스템 및 제어방법Polarization sensitive global optical tomography device and its control system and control method
본 발명은 전역 광단층 장치(full-field optical coherence tomography) 및 그 제어시스템 및 제어방법에 관한 것이다. 더 상세하게는, 피검사 물체의 형상과 함께 피검사 물체의 복굴절성을 알아낼 수 있는 편광 민감 전역 광단층 장치에 관한 것이다. The present invention relates to a full-field optical coherence tomography, a control system and a control method thereof. More specifically, the present invention relates to a polarization-sensitive global optical tomography device capable of detecting the birefringence of an object under test together with the shape of the object under test.
광단층 영상촬영(Optical Coherence Tomography, 이하 OCT라고 한다)은, 비파괴적이고 비침습적으로 샘플의 소정 깊이의 이미지를 획득하는 기술로서, 주로 생체 샘플에 대하여 서브 마이크론(submicron) 해상도로 그 내부 구조를 촬영하기 위해 사용되고 있다. Optical coherence tomography (OCT) is a non-destructive and non-invasive technique for acquiring an image of a predetermined depth of a sample, and mainly photographing its internal structure at submicron resolution with respect to a biological sample. It is used to
근래에는, OCT는 의학적 진단, 보석류의 감별 등으로 광범위하게 그 활용범위가 증대되고 있다. 이중에서, 전역 광단층 장치(FFOCT: Full-Field Optical Coherence Tomography System)는 샘플에 대한 종단면의 이미지 뿐 아니라 샘플의 횡단면 이미지도 고해상도로 획득할 수 있는 점이 장점이다. 또한, 2차원 센서 배열을 사용하는 경우에는 1차원으로서 깊이방향의 스캐닝(depth scanning,C-scanning)만이 요구되는 장점이 있다. 이러한 전역 광단층 영상기기에 의해서, 고속의 2차원 이미지를 상대적으로 적은 기계적 에러를 달성할 수 있다. 상기 FFOCT중에서 편광 민감 정보를 얻을 수 있는 장비도 제안되고 있는데, 이를 편광 민감 전역 광단층 장치(Polarization sensitive full-field optical coherence tomography system)라고 하고, 일 예로서 G. Moneron, A-C. Boccara, A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058-2060 (2007)를 예로 들 수 있다. In recent years, the scope of use of OCT has been widely increased due to medical diagnosis and the identification of jewelry. Among them, a full-field optical coherence tomography system (FFOCT) has an advantage that a cross-sectional image of a sample as well as an image of a longitudinal section of a sample can be obtained at high resolution. In addition, in the case of using a two-dimensional sensor arrangement, there is an advantage that only depth scanning (C-scanning) is required as one dimension. By such a global optical tomography imaging apparatus, relatively high mechanical error can be achieved with a high speed two-dimensional image. Equipment for obtaining polarization sensitivity information among the FFOCT has also been proposed, which is called a polarization sensitive full-field optical coherence tomography system, for example, G. Moneron, A-C. Boccara, A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32, 2058-2060 (2007).
상기 편광 민감 전역 광단층 장치는, 현실적으로 이하와 같은 다양한 문제로 인하여 실제로 제품화되는 사례는 없다. 예를 들어, 상기 편광 민감 전역 광단층 장치는 샘플단과 레퍼런스단에서 반사된 광에서 두 직교하는 편광성분값을 얻기 위하여 빔을 분리하고, 각각의 분리된 광을 촬영하기 위하여 두 대의 CCD카메라를 사용한다. 그러나, 두 대의 CCD카메라를 사용하는 경우에는, 각각의 카메라로부터 얻어지는 이미지의 픽셀 간 메칭이 틀어져서 이미지에서 에러가 발생하여 실제 적용가능한 시스템을 구성하는 것은 불가능할 정도로 어렵다. 또한, 피검사물체를 측정할 때마다 카메라의 픽셀응답율을 보정해야 하는 불편함이 있다. 또한, 편광성분별로 분리되어 있는 광로를 광정렬을 통하여 정확히 맞추는 과정이 요구되는 불편함이 있다.The polarization sensitive global optical tomography device is practically never commercialized due to various problems as follows. For example, the polarization sensitive global optical tomography device separates beams to obtain two orthogonal polarization component values from the light reflected from the sample and reference ends, and uses two CCD cameras to capture each separated light. do. However, in the case of using two CCD cameras, the pixel-to-pixel matching of the image obtained from each camera is distorted, so that an error occurs in the image and it is difficult to construct a practically applicable system. In addition, there is an inconvenience in that the pixel response rate of the camera must be corrected every time the object to be measured is measured. In addition, there is an inconvenience in that a process of accurately matching the optical paths separated by polarization components through optical alignment is required.
이와 같은 문제점으로 인하여 편광 민감 전역 광단층 장치는 아직 소개된 바가 없고, 본 발명은 이러한 문제점을 개선하여 상기되는 문제점을 해소하는 편광 민감 전역 광단층 장치 및 그 제어시스템 및 제어방법을 제안한다. Due to such a problem, a polarization sensitive global optical tomography device has not been introduced yet, and the present invention proposes a polarization sensitive global optical tomography device, a control system, and a control method thereof, which solves the above problems by improving such a problem.
본 발명은 상기되는 문제를 해결하기 위하여 제안되는 것으로서, 샘플의 복굴절정보를 안정되고 정확하고 편리하게 획득할 수 있고, 현실적으로 제품화할 수 있는 편광 민감 전역 광단층 장치를 제안한다. The present invention is proposed to solve the above problems, and proposes a polarization sensitive global optical tomography device which can acquire birefringence information of a sample stably, accurately and conveniently, and can be commercialized.
본 발명에 따른 편광 민감 전역 광단층 장치는, 광을 조사하는 광원부; 상기 광원부로부터 조사된 광을 분리하여 샘플측과 레퍼런스측으로 조사하고, 상기 샘플측과 상기 레퍼런스측에서 반사되어 온 광이 입사하는 빔스플리터; 상기 빔스플리터로부터 반사된 간섭광의 이미지를 획득하는 이미징부; 상기 광원부의 광을 선형편광시키는 선형편광자; 상기 선형편광자를 통과한 선편광을 타원편광으로 만들어, 상기 샘플측과 상기 레퍼런스측에 제공하는 사분의일파장판; 및 상기 이미징부에 제공되어, 편광의 수평성분과 수직성분을 시간 선택하여 통과시키는 선택편광투과장치가 포함되고, 상기 이미징부에는 단일의 카메라가 제공되는 것을 특징으로 한다. 본 발명에 따르면 광정렬, 픽셀일치, 카메라응답률보정의 필요가 없어지고 더 편리하게 광단층 장치를 사용할 수 있다. 또한, 상기되는 불편함 또는 제품화가 불가능한 사정을 극복할 수 있다. According to the present invention, there is provided a polarization sensitive global optical tomography device comprising: a light source unit for irradiating light; A beam splitter which separates the light irradiated from the light source unit and irradiates the sample side and the reference side, and receives the light reflected from the sample side and the reference side; An imaging unit which acquires an image of interference light reflected from the beam splitter; A linear polarizer for linearly polarizing light of the light source unit; A quarter-wave plate which makes the linearly polarized light that has passed through the linear polarizer into elliptical polarization and provides it to the sample side and the reference side; And a selective polarization transmitting device provided in the imaging unit to pass the horizontal component and the vertical component of polarized light by time selection, wherein the imaging unit is provided with a single camera. According to the present invention, there is no need for optical alignment, pixel matching, and camera response rate correction, and the optical tomography device can be used more conveniently. In addition, it is possible to overcome the above-mentioned inconvenience or impossible circumstances to commercialize.
상기 광단층 장치에 있어서, 상기 샘플측에 제공되는 사분의일파장판의 주축은 상기 선편광의 광축과 45도 기울어지고, 상기 레퍼런스측에 제공되는 사분의일파장판의 주축은 상기 선편광의 광축과 22.5도 기울어지는 것을 특징으로 하고, 상기 선택편광투과장치에는, 외력에 의해서 편광상태가 가변되는 편광스위치와, 상기 편광스위치를 통과한 광이 입사하는 선평편광자가 포함된다. 이에 따르면 편광에 대한 선택을 편리하게 조정할 수 있다. 여기서, 상기 편광스위치에는, 강유전성 액정이 사용될 수 있다. 이에 따르면 편광스위치에 대한 응답성이 한층 더 좋아지는 이점이 있다.In the optical monolayer device, the major axis of the quarter wave plate provided on the sample side is inclined 45 degrees with the optical axis of the linearly polarized light, and the major axis of the quarter wave plate provided on the reference side is 22.5 degrees with the optical axis of the linear polarization. It characterized in that the inclined, the selective polarization transmission device includes a polarization switch in which the polarization state is changed by the external force, and a linear flat polarizer to which the light passing through the polarization switch is incident. This makes it possible to conveniently adjust the selection for polarization. Here, a ferroelectric liquid crystal may be used for the polarization switch. According to this, there is an advantage that the response to the polarization switch is further improved.
상기 광단층 장치에 있어서, 상기 선택편광투과장치가 한 주기 동작할 때, 상기 카메라는 여덟번 촬영하는 것을 특징으로 한다. 본 발명에 따르면, 복굴절정보를 완전하게 획득할 수 있는 이점이 있다. In the optical tomography device, the camera photographs eight times when the selective polarization transmitting device operates one cycle. According to the present invention, there is an advantage that the birefringence information can be obtained completely.
본 발명의 다른 측면에 따른 편광 민간 전역 광단층 장치의 제어시스템에는, 연산기능, 통신기능, 및 저장기능이 적어도 부여될 수 있는 제어장치; 상기 제어장치에 의해서 제어되고, 위상변조된 간섭신호를 제공하는 위상변조기; 상기 제어장치에 의해서 제어되고, 간섭광으로 제공되는 타원편광의 광축을 회전시켜서 수직성분 또는 편광의 수평성분이 선택적으로 통과하도록 하는 선택편광투과장치; 및 상기 제어장치에 의해서 제어되고, 상기 선택편광투과장치를 통과한 광을 촬영하는 카메라가 포함되고, 상기 제어장치는, 상기 위상변조기의 한 주기 동안, 상기 편광스위치는 반주기가 진행하는 것을 특징으로 한다. 상기 제어장치에 따르면 광단층 장치를 제어함으로써, 타이밍을 맞추면서 완전하게 구동시킬 수 있다. 여기서, 상기 카메라는 상기 위상변조기의 한 주기 동안 네 번의 촬영을 수행할 수 있다. 이로써 촬영의 타이밍이 정확하게 맞추어질 수 있다. According to another aspect of the present invention, there is provided a control system of a polarized civilian global optical tomography device, comprising: a control device to which at least an arithmetic function, a communication function, and a storage function can be given; A phase modulator controlled by the controller and providing a phase modulated interference signal; A selective polarization transmitting device controlled by the control device and configured to rotate the optical axis of the elliptical polarization provided as interference light so that the vertical component or the horizontal component of the polarization is selectively passed; And a camera controlled by the control device and photographing the light passing through the selective polarization transmitting device, wherein the control device comprises a half cycle of the polarization switch during one period of the phase modulator. do. According to the said control apparatus, by controlling an optical tomographic apparatus, it can drive completely, meeting timing. Here, the camera may perform four shots during one period of the phase modulator. In this way, the timing of shooting can be precisely adjusted.
본 발명의 또 다른 측면에 따른 편광 민감 전역 광단층 장치의 제어방법에는, 샘플측과 레퍼런스측으로부터의 반사광이 서로 간섭하는 간섭광을 획득하는 것; 상기 간섭광의 수직성분과 수평성분을 시간적으로 분리하여 이미지화 하는 것; 및 상기 수직성분과 상기 수평성분을 각각 합하여 단일 이미지정보로 제공하고, 각각의 상기 단일 이미지정보를 비교하여 복굴절 성보를 획득하는 것이 포함되는 것을 특징으로 한다. 본 방법에 따르면 광정렬, 픽셀일치, 카메라응답률보정의 필요가 없어지고 더 편리하게 광단층 장치를 사용할 수 있다. 또한, 상기되는 불편함 또는 제품화가 불가능한 사정을 극복할 수 있다. According to another aspect of the present invention, there is provided a method of controlling a polarization sensitive global optical tomography device, comprising: obtaining interference light in which reflected light from a sample side and a reference side interfere with each other; Imaging the vertical component and the horizontal component of the interference light in time; And adding the vertical components and the horizontal components to provide single image information, and comparing the single image information to obtain birefringence. This method eliminates the need for optical alignment, pixel matching, and camera response rate correction, making it easier to use optical tomographic devices. In addition, it is possible to overcome the above-mentioned inconvenience or impossible circumstances to commercialize.
상기 방법에 있어서, 상기 복굴절정보는, 수평성분의 상기 단일 이미지정보와 수직성분의 상기 단일 이미지정보를 나누고 제곱근과 아크 탄젠트를 취하여 획득될 수 있다. 본 발명에 따르면 복굴절정보를 편리하게 얻을 수 있다. In the above method, the birefringence information may be obtained by dividing the single image information of a horizontal component and the single image information of a vertical component and taking a square root and an arc tangent. According to the present invention, birefringence information can be obtained conveniently.
본 발명에 따르면, 이미지의 픽셀 간 메칭에러정렬의 불편함, 카메라의 픽셀응답율 보정의 불편함, 및 광정렬의 엄격맞춤의 불편함을 없애고, 제품의 단가를 현저히 낮출 수 있고, 시스템의 크기가 줄어드는 장점을 얻을 수 있다. According to the present invention, the inconvenience of mismatching between pixel matching of an image, the inconvenience of correcting pixel response rate of a camera, and the inconvenience of strict alignment of light alignment can be eliminated, and the unit cost of the product can be significantly lowered, and the size of the system is You can get the advantage of shrinking.
도 1은 실시예에 따른 편광 민감 전역 광단층 장치의 구성도. 1 is a block diagram of a polarization sensitive global optical tomography device according to an embodiment.
도 2와 도 3은 선택편광투과장치의 작용을 설명하는 도면으로서, 도 2는 타원편광의 수직성분이 통과하는 경우이고 도 3은 타원편광의 수평성분이 통과하는 경우를 보이는 도면.2 and 3 are views illustrating the operation of the selective polarization transmitting device, Figure 2 is a case where the vertical component of the elliptical polarization passes, and Figure 3 is a view showing a case where the horizontal component of the elliptical polarization passes.
도 4는 편광 민감 전역 광단층 장치의 제어시스템을 나타내는 도면.4 illustrates a control system of a polarization sensitive global optical tomographic device.
도 5는 도 4에 제공되는 위상변조기와 편광스위치와 카메라의 타이밍도.5 is a timing diagram of a phase modulator, a polarization switch, and a camera provided in FIG. 4;
도 6은 편광 민감 전역 광단층 장치의 제어방법을 설명하는 흐름도. 6 is a flowchart for explaining a method of controlling a polarization sensitive global optical tomography device;
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나, 본 발명의 사상은 이하의 실시예에 제한되지 아니하고 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 제안할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다. Hereinafter, with reference to the drawings will be described in detail a specific embodiment of the present invention. However, the spirit of the present invention is not limited to the following embodiments, and those skilled in the art who understand the spirit of the present invention can easily add, change, delete, and add other embodiments that fall within the scope of the same spirit. It may be proposed, but this is also included within the scope of the present invention.
도 1은 실시예에 따른 편광 민감 전역 광단층 장치의 구성도이다. 1 is a block diagram of a polarization sensitive global optical tomography device according to an embodiment.
도 1을 참조하면, 광을 조사하는 광원부와, 광원부로부터 조사된 광을 분리하고 반사되어 온 광이 입사하는 빔스플리터(1), 상기 빔스플리터(1)를 광경로 상의 중심으로 하여 분리되는 샘플측 및 레퍼런스측과, 상기 빔스플리터(1)로부터 반사된 간섭광을 획득하는 이미징부와, 상기 구성요소들을 제어하는 제어장치(14)가 포함된다. Referring to FIG. 1, a light splitter (1) for irradiating light, a beam splitter (1) for separating light emitted from the light source unit, and the reflected light is incident, and a sample for splitting the beam splitter (1) as a center on an optical path A side and reference side, an imaging unit for obtaining the interference light reflected from the beam splitter 1, and a control unit 14 for controlling the components.
상기 광원부에는, 할로겐 발광기(halogen illuminator)로 예시할 수 있는 광원(2)과, 광을 집속 및 정렬시키는 렌즈어레이(3)와, 광을 선형편광시키는 선형 편광자(4)가 포함된다. 상기 광원부는 상기되는 바와 같은 구성을 통하여 선편광을 조사한다. 상기 선편광은 빔스플리터(1)로 입사된 다음에, 분리되어 샘플측과 레퍼런스측으로 각각 입사한다.The light source unit includes a light source 2 exemplified by a halogen illuminator, a lens array 3 for focusing and aligning light, and a linear polarizer 4 for linearly polarizing light. The light source unit irradiates linearly polarized light through the configuration as described above. The linearly polarized light is incident on the beam splitter 1, and then separated and incident on the sample side and the reference side, respectively.
상기 샘플측에는, 사분의일파장판(5)과 대물렌즈(6)와 스테이지(7)가 제공된다. 따라서, 샘플측으로 전달된 광은 원편광되어 대물렌즈(6)를 통해 스테이지(7)에 놓인 샘플에 조사된다. 상기 샘플에 의해 반사된 광은 타원편광되어 다시 사분의일파장판(5)을 통과하고 다시 빔스플리터(1)로 전달된다.On the sample side, a quarter wave plate 5, an objective lens 6, and a stage 7 are provided. Therefore, the light transmitted to the sample side is circularly polarized and irradiated to the sample placed on the stage 7 through the objective lens 6. The light reflected by the sample is elliptically polarized and passes through the quarter wave plate 5 again to the beam splitter 1.
상기 사분의일파장판(5)은 샘플측으로 조사될 때 원편광이 될 수 있도록 선편광의 광축은 상기 사분의일파장판(5)의 주축과 45도의 방위를 가질 수 있다. 이와 같은 구성에 따르면, 원편광된 빛이 샘플에 조사되고, 상기 원편광 빛은 샘플의 복굴절 정도에 따라서 타원편광된 다음에 반사된다. 따라서, 샘플에서 반사된 빛에는 샘플의 이미지 정보만이 아니고 샘플의 복굴절 정보도 포함될 수 있다. The quarter wave plate 5 may have an orientation of 45 degrees with the main axis of the quarter wave plate 5 so that the circularly polarized light may be circularly polarized when irradiated toward the sample side. According to this configuration, the circularly polarized light is irradiated onto the sample, and the circularly polarized light is elliptically polarized according to the degree of birefringence of the sample and then reflected. Therefore, the light reflected from the sample may include not only the image information of the sample but also the birefringence information of the sample.
상기 스테이지(7)는 상하를 포함하는 다양한 방향으로 움직일 수 있다. 따라서, 그 위에 놓인 샘플도 상하로 움직이고, 샘플의 측정 깊이를 조정할 수 있다. The stage 7 may move in various directions including up and down. Therefore, the sample placed on it also moves up and down, and the measurement depth of a sample can be adjusted.
상기 레퍼런스측에는, 사분의일파장판(8)과 대물렌즈(9)와 반사미러(10)가 제공된다. 따라서, 레퍼런스측으로 전달된 광은 대물렌즈(9)를 통해 반사미러(RM: Reflection Mirror)(10)에 전달되며, 반사미러에 의해 반사된 광은 다시 빔스플리터(1)로 전달된다. 이때 상기 사분의일파장판은 편광의 주축과 22.5도의 방위를 가질 수 있다. 이와 같은 구성에 따르면, 반사미러(10)에서 의해서 반사되어 상기 빔스플리터(1)로 재입사되는 빛은 선편광의 빛이 될 수 있다. On the reference side, a quarter wave plate 8, an objective lens 9, and a reflecting mirror 10 are provided. Therefore, the light transmitted to the reference side is transmitted to the reflection mirror 10 through the objective lens 9, and the light reflected by the reflection mirror is transmitted to the beam splitter 1 again. In this case, the quarter wave plate may have an orientation of 22.5 degrees with respect to the main axis of polarization. According to this configuration, the light reflected by the reflecting mirror 10 and re-incident to the beam splitter 1 may be light of linear polarization.
상기 이미징부에는, 광의 편광상태를 조절하는 편광스위치(11)와, 선형편광자(12)와, 카메라(13)가 포함된다. 상기 편광스위치(11)는 액정으로 예시할 수 있고, 바람직하게는 반응성이 좋은 강유전성 액정(FLC: ferroelectric liquid crystal)을 사용할 수 있다. 상기 편광스위치는 외부에서 인가되는 전기장에 따라서 광축이 45도 변경될 수 있다. 따라서, 상기 빔스플리터(1)로부터 상기 편광스위치(11)로 입사되는 타원편광의 광축이 변경될 수 있고, 이후에는 상기 선형편광자(12)에 의해서 선택된 편광성분만 통과하여 카메라(13)로 입사하게 된다. 따라서, 상기 편광스위치(11)와 상기 선형편광자(12)는 선택편광투과장치라고 할 수 있다. 상기 선택편광투과장치에는 다른 종류의 편광기기가 사용될 수도 있다. 상기 카메라(13)는 CCD 카메라를 예로 들 수 있다. 또한, 상기 제어장치(14)에서는 각각의 이미지 정보를 얻을 수 있도록 각 부품을 제어한다. The imaging unit includes a polarization switch 11 for adjusting a polarization state of light, a linear polarizer 12, and a camera 13. The polarization switch 11 may be exemplified by a liquid crystal, and preferably, a ferroelectric liquid crystal (FLC) having good reactivity may be used. The optical axis of the polarization switch may be changed by 45 degrees depending on the electric field applied from the outside. Therefore, the optical axis of the elliptical polarization incident from the beam splitter 1 to the polarization switch 11 may be changed, and then only the polarization component selected by the linear polarizer 12 passes through and enters the camera 13. Done. Therefore, the polarization switch 11 and the linear polarizer 12 may be referred to as a selective polarization transmission device. Another kind of polarizer may be used for the selective polarization transmitting device. The camera 13 may be, for example, a CCD camera. In addition, the controller 14 controls each component so as to obtain respective image information.
설명되는 바와 같이, 실시예에서는 단일의 카메라를 이용하여, 타원편광을 선택하여 통과시켜 촬영한다. 따라서, 서로 다른 카메라를 이용하는 경우에 발생하는 이미지의 픽셀 간 메칭에러 또는 카메라의 픽셀응답율을 보정의 불편함이 없다. 또한, 광계통은 하나로 마련되므로 광정렬을 엄격하게 맞추어야 하는 불편함이 없다. 아울러, 수천만원에 이르는 카메라를 복수개 사용할 필요가 없으므로 제품의 단가를 낮출 수 있는 장점이 있고, 제품의 크기가 작아지는 이점이 있다.As will be explained, in the embodiment, a single camera is used to select and pass elliptical polarization for imaging. Therefore, there is no inconvenience in correcting pixel matching between pixels or pixel response rate of an image generated when using different cameras. In addition, since the light system is provided as one, there is no inconvenience to strictly match the light alignment. In addition, since there is no need to use a plurality of cameras reaching tens of thousands of won, there is an advantage of lowering the unit cost of the product, there is an advantage that the size of the product is reduced.
상기 선택편광투과장치에 대하여 더 상세하게 설명한다. The selective polarization transmitting device will be described in more detail.
도 2와 도 3은 선택편광투과장치의 작용을 설명하는 도면으로서, 도 2는 타원편광의 수직성분이 통과하는 경우이고 도 3은 타원편광의 수평성분이 통과하는 경우를 보이고 있다. 다만, 상기 도면은 개념을 설명하기 위한 것으로서, 크기, 형태, 및 양상은 이해의 편의를 위하여 과장되어 표현될 수 있다. 2 and 3 are views illustrating the operation of the selective polarization transmitting device, FIG. 2 shows a case where the vertical component of the elliptical polarization passes and FIG. 3 shows a case where the horizontal component of the elliptical polarization passes. However, the drawings are for explaining the concept, the size, shape and aspect may be exaggerated for the convenience of understanding.
도 2를 참조하면, 상기 빔스플리터(1)로부터 입사되는 타원편광(a)은 편광스위치(11)를 통과하여 수직성분이 상하로 정렬된다. 수직성분이 상하로 정렬된 타원편광(b)은 선형편광자(12)를 통과하면 선형편광자(12)의 광축과 정렬되는, 타원편광의 수직성분(c)이 통과한다. 따라서, 카메라(13)에 입사되는 광은 타원편광의 수직성분이 된다. Referring to FIG. 2, the elliptical polarization a incident from the beam splitter 1 passes through the polarization switch 11 so that vertical components are vertically aligned. The elliptical polarization b in which the vertical components are vertically aligned passes through the linear polarizer 12 so that the vertical component c of the elliptical polarization aligned with the optical axis of the linear polarizer 12 passes. Therefore, the light incident on the camera 13 becomes a vertical component of the elliptical polarization.
도 3을 참조하면, 상기 빔스플리터(1)로부터 입사되는 타원편광(a)은 편광스위치(11)를 통과하여 수평성분이 상하로 정렬된다. 수평성분이 상하로 정렬된 타원편광(b)은 선형편광자(12)를 통과하면 선형편광자(12)의 광축과 정렬되는, 타원편광의 수평성분(c)이 통과한다. 따라서, 카메라(13)에 입사되는 광은 타원편광의 수평성분이 된다. Referring to FIG. 3, the elliptical polarization a incident from the beam splitter 1 passes through the polarization switch 11 so that horizontal components are aligned vertically. The elliptical polarization b with the horizontal component aligned vertically passes through the linear polarizer 12 so that the horizontal component c of the elliptical polarization aligned with the optical axis of the linear polarizer 12 passes. Therefore, light incident on the camera 13 becomes a horizontal component of the elliptical polarization.
한편, 도 2와 도 3의 상태는 편광스위치(11)에 인가되는 전기장의 방향이 반대로 되는 경우를 예로 들 수 있고, 각각 ±5V가 인가될 수 있다. On the other hand, the state of FIGS. 2 and 3 may be a case where the direction of the electric field applied to the polarization switch 11 is reversed, for example ± 5V may be applied.
다시 도 1을 참조하면, 상기 샘플측과 상기 레퍼런스측으로부터 입사된 광은 서로 간섭을 일으키게 되고, 상기 레퍼런스측에는 위상변조기(10)가 구비되는데, 상기 위상변조기(10)에 의해서 위상변조된 간섭신호를 제공하게 된다. 상기 위상변조기(10)로는 PZT(Piezoelctric Transducer)가 사용될 수 있다. 구체적으로는, 상기 위상변조기(10)에 의해서 위상변조된 간섭신호가 제공되면, 샘플의 형태가 유지되는 중에 간섭무늬가 쉬프트될 수 있고, 쉬프트되는 때마다 이미지를 획득하여 이를 이미지 처리하면 샘플의 단층이미지를 획득할 수 있다. 이때 복굴적정보를 얻지 않는 단순한 단층 이미지만을 획득하고자 할 때에는 위상변조는 네번 일어나고, 네장의 이미지를 얻으면 수행될 수 있다. 그러나, 샘플의 복굴절정보를 얻기 위해서는 더 많은 정보가 필요하게 된다. Referring back to FIG. 1, the light incident from the sample side and the reference side interferes with each other, and the reference side includes a phase modulator 10, and the interference signal phase modulated by the phase modulator 10. Will be provided. A piezolctric transducer (PZT) may be used as the phase modulator 10. Specifically, when the phase modulated interference signal is provided by the phase modulator 10, the interference fringe may be shifted while the shape of the sample is maintained. A tomographic image can be obtained. In this case, in order to acquire only a single tomographic image having no birefringent information, phase modulation may occur four times, and may be performed by obtaining four images. However, more information is needed to obtain the birefringence information of the sample.
복굴절정보를 얻을 수 있는, 실시예에 따른 편광 민감 전역 광단층 장치의 동작방법을 간단히 설명한다. 샘플의 단층 이미지 정보과 샘플의 복굴절정보를 얻기 위해서는, 타원편광의 수직성분이 포함되는 4장의 쉬프트된 이미지와, 타원편광의 수평성분이 포함되는 4장의 쉬프트된 이미지가 필요하다. 각각의 편광성분에 대한 4장의 쉬프트된 이미지를 더하면, 수직성분에 대한 한 장의 이미지와 수평성분에 대한 한 장의 이미지를 획득할 수 있다. 그리고, 수직성분에 대한 한 장의 이미지와 수평성분에 대한 한 장의 이미지를 비교하는 것에 의해서 샘플의 복굴적 정보를 획득할 수 있다. 구체적으로는 수평성분이미지와 수직성분이미지를 나누고 제곱근과 아크탄젠트를 취함으로써 위상지연의 결과를 획득할 수 있게 된다. An operation method of the polarization sensitive global optical tomographic device according to the embodiment, in which birefringence information can be obtained, will be briefly described. To obtain the tomographic image information of the sample and the birefringence information of the sample, four shifted images including the vertical component of the elliptical polarization and four shifted images including the horizontal component of the elliptical polarization are required. By adding four shifted images for each polarization component, one image for the vertical component and one image for the horizontal component can be obtained. The birefringent information of the sample can be obtained by comparing one image for the vertical component and one image for the horizontal component. Specifically, the result of phase delay can be obtained by dividing the horizontal component image and the vertical component image and taking the square root and arc tangent.
상기 과정은 카메라(13)로부터 획득된 이미지를 처리하는 제어장치(14)에서 수행될 수 있다. 샘플의 어느 한 단층에 대한 이미지정보 및 복굴절정보가 얻어진 다음에는, 스테이지(7)를 이동하여 샘플의 다른 깊이 및 위치에 대한 이미지정보 및 복굴절정보를 획득할 수 있다. The above process may be performed by the controller 14 for processing the image obtained from the camera 13. After image information and birefringence information for any one layer of the sample are obtained, the stage 7 can be moved to obtain image information and birefringence information for different depths and positions of the sample.
상기되는 바와 같은 복굴절정보와 이미지정보를 얻기 위해서는 위상변조기(10)와, 편광스위치(11)와, 카메라(13)의 스위칭동작을 제어하여야 한다. 도 4는 이를 위한 편광 민감 전역 광단층 장치의 제어시스템을 나타내는 도면이다. In order to obtain the birefringence information and the image information as described above, the switching operation of the phase modulator 10, the polarization switch 11, and the camera 13 must be controlled. 4 is a view showing a control system of a polarization sensitive global optical tomography device for this purpose.
도 4를 참조하면, 연산기능, 통신기능, 및 저장기능이 적어도 부여될 수 있는 제어장치(14)와, 상기 제어장치(14)에 의해서 제어되는 위상변조기(10)와, 편광스위치(11)와, 카메라(13)가 포함된다. 상기 위상변조기(10)는 위상변조된 간섭신호를 제공하는 기기로서, 레퍼런스측의 광경로를 변화시켜 결과적으로는 간섭무늬가 쉬프트 되도록 한다. 상기 편광스위치는 상기 이미징부에 제공되는 기기로서, 타원편광의 광축을 회전시켜서 수직성분 또는 편광의 수평성분이 선형편광자를 통하여 선택적으로 통과하도록 한다. 상기 카메라는 이미징부에 마련되어 이미지를 획득하는 장치이다. Referring to FIG. 4, a control device 14 to which a calculation function, a communication function, and a storage function can be given at least, a phase modulator 10 controlled by the control device 14, and a polarization switch 11 And a camera 13 are included. The phase modulator 10 is a device for providing a phase-modulated interference signal. The phase modulator 10 changes the optical path of the reference side, and consequently shifts the interference fringe. The polarization switch is a device provided in the imaging unit, and rotates the optical axis of the elliptical polarization so that the vertical component or the horizontal component of the polarization selectively passes through the linear polarizer. The camera is an apparatus provided in the imaging unit to acquire an image.
상기 위상변조기가 5Hz로 동작되는 경우에, 상기 편광스위치는 2.5Hz로 동작하도록 하고, 상기 카메라는 20Hz로 동작하도록 한다. 따라서, 상기 편광스위치가 한 주기 동안 동작할 때, 상기 위상변조기는 두 주기로 동작하고, 상기 카메라는 8번의 촬영을 하게 된다. When the phase modulator is operated at 5 Hz, the polarization switch is operated at 2.5 Hz, and the camera is operated at 20 Hz. Therefore, when the polarization switch is operated for one period, the phase modulator is operated in two periods, and the camera takes eight shots.
도 5는 도 4에 제공되는 위상변조기와 편광스위치와 카메라의 타이밍도를 나타낸다.5 is a timing diagram of a phase modulator, a polarization switch, and a camera provided in FIG. 4.
도 5를 참조하여, 편광 민감 전역 광단층 장치의 제어시스템의 동작을 설명한다. 상기 위상변조기(PZT)의 한 주기는 편광스위치(FLC)의 반주기에 해당하고, 위상변조기(PZT)의 한 주기동안 카메라(CCD)는 네 번의 촬영을 수행할 수 있다. 그리고, 복굴절 정보를 얻기 위해서는 샘플의 단일 위치에 대하여 편광상태가 서로 다른 두 개의 이미지가 필요하다. 그러므로, 샘플의 단일 위치에 대한 이미지정보와 복굴절정보를 얻기 위해서는 8번의 촬영이 필요하고 편광스위치의 한 주기의 시간이 소요될 것이다. Referring to Fig. 5, the operation of the control system of the polarization sensitive global optical tomographic device will be described. One period of the phase modulator PZT corresponds to a half period of the polarization switch FLC, and the camera CCD may perform four photographs during one period of the phase modulator PZT. In order to obtain birefringence information, two images having different polarization states are required for a single position of a sample. Therefore, in order to obtain image information and birefringence information for a single position of the sample, eight shots will be required and one cycle of the polarization switch will take time.
다시 설명하면, 위상변조기의 어느 한 주기 동안은 편광스위치의 전기장을 양의 방향으로 제어하여 편광의 수직성분을 통과시키고, 위상변조기의 다른 한 주기 동안은 편광스위치의 전기장을 음의 방향으로 제어하여 편광의 수평성분을 통과시킬 수 있는 것이다. In other words, during one period of the phase modulator, the electric field of the polarization switch is controlled in the positive direction to pass the vertical component of the polarization, and during the other period of the phase modulator, the electric field of the polarization switch is controlled in the negative direction. It can pass the horizontal component of the polarization.
상기되는 과정을 통하여 획득된 각각의 편광성분에 대한 4장의 쉬프트된 이미지를 더하면, 수직성분에 대한 한 장의 이미지와 수평성분에 대한 한 장의 이미지를 획득할 수 있다. 그리고, 수직성분에 대한 한 장의 이미지와 수평성분에 대한 한 장의 이미지를 비교하면, 샘플의 복굴적 정보를 얻을 수 있게 된다. By adding four shifted images for each polarization component obtained through the above process, one image for the vertical component and one image for the horizontal component can be obtained. And, by comparing one image of the vertical component and one image of the horizontal component, birefringent information of the sample can be obtained.
도 6은 실시예에 따른 편광 민감 전역 광단층 장치의 제어방법을 설명하는 흐름도이다. 6 is a flowchart illustrating a method of controlling a polarization sensitive global optical tomography device according to an embodiment.
도 6을 참조하면, 샘플측과 레퍼런스측으로부터의 반사광이 서로 간섭하는 간섭광을 획득한다(S1). 이때 샘플측과 레퍼런스측으로부터의 반사광은 편광되어 있다. 상기 간섭광의 수직성분과 수평성분을 시간적으로 분리하여 이미지화 한다(S2). 상기 간섭광의 수직성분과 수평성분을 시간적으로 분리하기 위하여 선택편광투과장치가 사용될 수 있다. 상기 선택편광투과장치는 편광스위치와 선형편광자가 이용될 수 있다. Referring to FIG. 6, interfering light in which reflected light from the sample side and the reference side interferes with each other is obtained (S1). At this time, the reflected light from the sample side and the reference side is polarized. The vertical component and the horizontal component of the interference light are separated in time and imaged (S2). The selective polarization transmitting device may be used to separate the vertical component and the horizontal component of the interference light in time. The selective polarization transmitting device may use a polarization switch and a linear polarizer.
상기 수직성분과 상기 수평성분은 각각이 합하여져 단일의 이미지정보로 제공될 수 있다. 수직성분과 수평성분으로 제공되는 각각의 단일 이미지를 비교하여 복굴절 성보를 획득할 수 있다(S3). The vertical component and the horizontal component may be combined with each other and provided as single image information. The birefringence report may be obtained by comparing each single image provided as a vertical component and a horizontal component (S3).
어느 단층의 이미지가 획득되고 난 다음에는, 샘플의 검사가 종료되었는지를 파악하여(S4), 촬영이 필요한 샘플이 남은 경우에는 샘플을 이동시켜 다시금 간섭광을 획득하는 등의 일련이 과정을 수행한다. 샘플의 검사가 종료한 경우에는 3차원 분석을 수행한다(S5). After the image of a tomography has been acquired, it is determined whether the inspection of the sample has ended (S4), and if a sample to be photographed is left, a series of processes such as moving the sample and acquiring interference light again is performed. . When the inspection of the sample is finished, three-dimensional analysis is performed (S5).
본 발명에 따르면, 샘플의 이미지 정보만이 아니라 샘플의 복굴절 정보를 알아낼 수 있고, 복굴절정보의 획득에 있어서도 사용자가 편리하게 신뢰성있는 정보를 획득할 수 있다. 또한, 복잡한 과정을 거치지 않고 정확하게 샘플의 복굴절정보를 알 수 있다. According to the present invention, not only the image information of the sample but also the birefringence information of the sample can be obtained, and the user can conveniently obtain reliable information even in obtaining the birefringence information. In addition, the birefringence information of the sample can be known accurately without going through a complicated process.
따라서, 상기 실시예에 따른 편광 민감 전역 광단층 장치에, 기구적이거나 제어적이거나 방법적이거나 부가장치의 면에 있어서 적절한 변화를 가함으로써, 디지털 디바이스에 사용되는 커버글래스의 복굴절성 검사, 방향성을 가지는 암세포 등과 같은 생체조직에 대한 검사, 스트레스가 주어질 때 방향성을 가지게 되는 필름 등의 스트레스 검사 등과 같은 다양한 장비에 사용될 수 있을 것이다.Therefore, the birefringence inspection and the directionality of the cover glass used in the digital device are applied to the polarization-sensitive global optical tomography device according to the embodiment by applying an appropriate change in terms of mechanical, controllable, methodological or additional device. Eggplants may be used in a variety of equipment, such as tests for biological tissues, such as cancer cells, stress tests, such as films that are directional when stress is given.
본 발명에 따르면, 이미지의 픽셀 간 메칭에러발생, 카메라의 픽셀응답율을 보정의 불편함, 및 광정렬의 엄격맞춤의 불편함을 없애고, 제품의 단가를 현저히 낮출 수 있고, 시스템의 크기가 줄어들게 된다. 따라서 물체의 복굴절성과 함께 물체의 깊이에 대한 이미지 정보를 파악해야 하는 다양한 기기에 실제로 적용될 수 있을 것이다. 예를 들어 카메라의 커버글래스의 복굴절성 검사, 방향을 가지는 암조직에 대한 검사, 스트레스가 주어질 때 방향성을 가지게 되는 필름 등의 스트레스 검사 등과 같은 다양한 장비에 사용될 수 있을 것이다. According to the present invention, eliminating the inconvenience of correcting the pixel-to-pixel matching of the image, the inconvenience of correcting the pixel response rate of the camera, and the strict alignment of the light alignment, the unit cost of the product can be significantly lowered, and the size of the system is reduced. . Therefore, it can be applied to various devices that need to grasp the image information about the depth of the object along with the birefringence of the object. For example, it may be used in a variety of equipment, such as birefringence test of the cover glass of the camera, test for cancer tissue having a direction, stress test such as a film that has a direction when stress is given.

Claims (9)

  1. 광을 조사하는 광원부; A light source unit for irradiating light;
    상기 광원부로부터 조사된 광을 분리하여 샘플측과 레퍼런스측으로 조사하고, 상기 샘플측과 상기 레퍼런스측에서 반사되어 온 광이 입사하는 빔스플리터;A beam splitter which separates the light irradiated from the light source unit and irradiates the sample side and the reference side, and receives the light reflected from the sample side and the reference side;
    상기 빔스플리터로부터 반사된 간섭광의 이미지를 획득하는 이미징부;An imaging unit which acquires an image of interference light reflected from the beam splitter;
    상기 광원부의 광을 선형편광시키는 선형편광자;A linear polarizer for linearly polarizing light of the light source unit;
    상기 선형편광자를 통과한 선편광을 타원편광으로 만들어, 상기 샘플측과 상기 레퍼런스측에 제공하는 사분의일파장판; 및A quarter-wave plate which makes the linearly polarized light that has passed through the linear polarizer into elliptical polarization and provides it to the sample side and the reference side; And
    상기 이미징부에 제공되어, 편광의 수평성분과 수직성분을 시간 선택하여 통과시키는 선택편광투과장치가 포함되고, A selective polarization transmitting device provided in the imaging unit and configured to pass a horizontal component and a vertical component of polarized light by time,
    상기 이미징부에는 단일의 카메라가 제공되는 편광 민감 전역 광단층 장치. The imaging unit is provided with a single camera polarization sensitive global optical tomography device.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 샘플측에 제공되는 사분의일파장판의 주축은 상기 선편광의 광축과 45도 기울어지고, 상기 레퍼런스측에 제공되는 사분의일파장판의 주축은 상기 선편광의 광축과 22.5도 기울어지는 편광 민감 전역 광단층 장치.The main axis of the quarter-wave plate provided on the sample side is inclined 45 degrees with the optical axis of the linearly polarized light, and the main axis of the quarter-wave plate provided on the reference side is inclined 22.5 degrees with the optical axis of the linearly polarized light. Device.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 선택편광투과장치에는, 외부에서 가하여지는 힘에 의해서 편광상태가 가변되는 편광스위치와, 상기 편광스위치를 통과한 광이 입사하는 선평편광자가 포함되는 편광 민감 전역 광단층 장치. The selective polarization transmitting device includes a polarization switch whose polarization state is changed by a force applied from the outside, and a linear flat polarizer to which light passing through the polarization switch is incident.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 편광스위치에는, 강유전성 액정이 사용되는 편광 민감 전역 광단층 장치. A polarization sensitive global optical tomography device wherein ferroelectric liquid crystal is used for the polarization switch.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 선택편광투과장치가 한 주기 동작할 때, 상기 카메라는 여덟번 촬영하는 편광 민감 전역 광단층 장치. And the camera photographs eight times when the selective polarization transmitting device operates one cycle.
  6. 연산기능, 통신기능, 및 저장기능이 적어도 부여될 수 있는 제어장치;A control device to which at least a calculation function, a communication function, and a storage function can be given;
    상기 제어장치에 의해서 제어되고, 위상변조된 간섭신호를 제공하는 위상변조기;A phase modulator controlled by the controller and providing a phase modulated interference signal;
    상기 제어장치에 의해서 제어되고, 간섭광으로 제공되는 타원편광의 광축을 회전시켜서 수직성분 또는 편광의 수평성분이 선택적으로 통과하도록 하는 선택편광투과장치; 및A selective polarization transmitting device controlled by the control device and configured to rotate the optical axis of the elliptical polarization provided as interference light so that the vertical component or the horizontal component of the polarization is selectively passed; And
    상기 제어장치에 의해서 제어되고, 상기 선택편광투과장치를 통과한 광을 촬영하는 카메라가 포함되고,A camera which is controlled by the control device and which photographs the light passing through the selective polarizing light transmission device,
    상기 제어장치는, 상기 위상변조기의 한 주기 동안, 상기 편광스위치는 반주기가 진행하는 편광 민간 전역 광단층 장치의 제어시스템. Wherein said control device is one period of said phase modulator, said polarization switch is a half cycle of a polarizing civilian global optical tomographic device.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 카메라는 상기 위상변조기의 한 주기 동안 네 번의 촬영을 수행하는 편광 민간 전역 광단층 장치의 제어시스템. And the camera performs four shots during one cycle of the phase modulator.
  8. 샘플측과 레퍼런스측으로부터의 반사광이 서로 간섭하는 간섭광을 획득하는 것;Obtaining interfering light in which reflected light from the sample side and the reference side interferes with each other;
    상기 간섭광의 수직성분과 수평성분을 시간적으로 분리하여 이미지화 하는 것; 및Imaging the vertical component and the horizontal component of the interference light in time; And
    상기 수직성분과 상기 수평성분을 각각 합하여 단일 이미지정보로 제공하고, 각각의 상기 단일 이미지정보를 비교하여 복굴절 성보를 획득하는 것이 포함되는 편광 민감 전역 광단층 장치의 제어방법. And combining the vertical components and the horizontal components to provide single image information, and comparing the single image information to obtain birefringence information.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 복굴절정보는, 수평성분의 상기 단일 이미지정보와 수직성분의 상기 단일 이미지정보를 나누고 제곱근과 아크 탄젠트를 취하여 획득되는 편광 민감 전역 광단층 장치의 제어방법. And the birefringence information is obtained by dividing the single image information of a horizontal component and the single image information of a vertical component and taking a square root and an arc tangent.
PCT/KR2014/000762 2013-12-30 2014-01-27 Polarization-sensitive full-field optical coherence tomography system, and control system and control method thereof WO2015102145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0167612 2013-12-30
KR1020130167612A KR101538044B1 (en) 2013-12-30 2013-12-30 Polarization sensitive full-field optical coherence tomography system and controlling apparatus and method therefor

Publications (1)

Publication Number Publication Date
WO2015102145A1 true WO2015102145A1 (en) 2015-07-09

Family

ID=53493482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000762 WO2015102145A1 (en) 2013-12-30 2014-01-27 Polarization-sensitive full-field optical coherence tomography system, and control system and control method thereof

Country Status (2)

Country Link
KR (1) KR101538044B1 (en)
WO (1) WO2015102145A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045442B1 (en) * 2019-04-17 2019-11-15 한양대학교 에리카산학협력단 Ellipsometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208415B1 (en) * 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
US20070109554A1 (en) * 2005-11-14 2007-05-17 Feldchtein Felix I Polarization sensitive optical coherence device for obtaining birefringence information
US20080007734A1 (en) * 2004-10-29 2008-01-10 The General Hospital Corporation System and method for providing Jones matrix-based analysis to determine non-depolarizing polarization parameters using polarization-sensitive optical coherence tomography
US7742173B2 (en) * 2006-04-05 2010-06-22 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
KR101287289B1 (en) * 2012-01-18 2013-07-17 고려대학교 산학협력단 Dual focusing optical coherence imaging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631060B1 (en) * 2004-11-10 2006-10-04 한국과학기술원 Apparatus and method for measuring thickness and profile of transparent thin-film by white-light interferometry
KR100871270B1 (en) * 2007-01-22 2008-11-28 광주과학기술원 Method of Generating Image Information of Sample Using Optical Interferometer And Apparatus Using The Same
KR101080376B1 (en) * 2009-04-30 2011-11-04 광주과학기술원 System and method for generating image using interferometer
KR101152798B1 (en) * 2010-08-09 2012-06-14 (주)펨트론 3d measurement apparatus using dual wave digital holography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208415B1 (en) * 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
US20080007734A1 (en) * 2004-10-29 2008-01-10 The General Hospital Corporation System and method for providing Jones matrix-based analysis to determine non-depolarizing polarization parameters using polarization-sensitive optical coherence tomography
US20070109554A1 (en) * 2005-11-14 2007-05-17 Feldchtein Felix I Polarization sensitive optical coherence device for obtaining birefringence information
US7742173B2 (en) * 2006-04-05 2010-06-22 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
KR101287289B1 (en) * 2012-01-18 2013-07-17 고려대학교 산학협력단 Dual focusing optical coherence imaging system

Also Published As

Publication number Publication date
KR20150078335A (en) 2015-07-08
KR101538044B1 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
US20160057325A1 (en) Camera having light emitting device, method for imaging skin and method for detecting skin condition using the same
CN108650447B (en) Image sensor, depth data measuring head and measuring system
CN102388619B (en) Imaging device
EP3161437B1 (en) Measuring polarisation
US9215966B2 (en) 3D image shooting apparatus and endoscope
JP3747471B2 (en) Polarization direction detection type two-dimensional light reception timing detection device and surface shape measurement device using the same
KR20010081570A (en) Inspection system and method for radiation
CN102356628A (en) Image processing apparatus
JPWO2019012858A1 (en) Imaging device, image generation method, and imaging system
CN109470173B (en) Double-channel simultaneous phase shift interference microscope system
JPWO2012105157A1 (en) Stereoscopic image capturing apparatus and endoscope
US20220268632A1 (en) Reconfigurable polarization imaging system
CN115516283A (en) Polarization imaging camera
JPH05142141A (en) Thin film measuring instrument
CN108572143B (en) Full polarization measuring microscope
US10542875B2 (en) Imaging device, endoscope apparatus, and imaging method
WO2015102145A1 (en) Polarization-sensitive full-field optical coherence tomography system, and control system and control method thereof
WO2017188726A1 (en) X-ray apparatus for real-time three-dimensional view
CN112022089B (en) Imaging device and method for tumor tissue
WO2021130222A1 (en) Polarization imaging system and polarization imaging method
JPWO2016194178A1 (en) Imaging apparatus, endoscope apparatus, and imaging method
JP3365474B2 (en) Polarizing imaging device
JP2018007024A (en) Control device, imaging device, imaging control method, program, and recording medium
WO2018135676A1 (en) Single-unit detector-based polarization-sensitive optical coherent tomography imaging device
JP2002512365A (en) System for measuring luminance characteristics of an object, particularly luminance characteristics of an object having direction-dependent luminance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.10.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14876926

Country of ref document: EP

Kind code of ref document: A1