WO2014181925A1 - Electrolyte composition with excellent high-temperature stability and performance and electrochemical element including same - Google Patents

Electrolyte composition with excellent high-temperature stability and performance and electrochemical element including same Download PDF

Info

Publication number
WO2014181925A1
WO2014181925A1 PCT/KR2013/006738 KR2013006738W WO2014181925A1 WO 2014181925 A1 WO2014181925 A1 WO 2014181925A1 KR 2013006738 W KR2013006738 W KR 2013006738W WO 2014181925 A1 WO2014181925 A1 WO 2014181925A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
weight
electrolyte composition
pullulan
battery
Prior art date
Application number
PCT/KR2013/006738
Other languages
French (fr)
Korean (ko)
Inventor
송현곤
김영수
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Publication of WO2014181925A1 publication Critical patent/WO2014181925A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Electrolyte composition having excellent high temperature stability and performance and electrochemical device including same Field of the Invention provides high temperature stability and performance for use in electrochemical device fields such as lithium secondary batteries, capacitors, solar cells, and energy storage devices.
  • the present invention relates to an excellent electrolyte composition, and more particularly, to an electrolyte composition exhibiting excellent life characteristics in phase silver and silver, and improving the safety of electrochemical devices by suppressing gas generation due to decomposition of electrolyte at high temperatures. . Background
  • a lithium secondary battery may be classified into a lithium ion battery containing a liquid electrolyte as it is, a lithium ion polymer battery containing an electrolyte in a gel-like form, and a lithium polymer battery of a solid electrolyte, depending on the form of the electrolyte.
  • Lithium ion battery containing liquid electrolyte has a risk of leakage of electrolyte when manufactured in pouch form, and may ignite / explode when exposed to high temperature and / or high pressure. In addition, even if a large current flows within a short time due to overcharging, external short circuit, nail penetration, local crush, etc., there is a risk of fire / explosion while the battery is heated by IR heating.
  • the capacity of the lithium ion polymer battery which has the advantage that it is low in the possibility of leakage of electrolyte solution, is high, and it is possible to make ultra thin and lightweight the shape of a battery, etc. is increasing.
  • a lithium ion polymer battery in which the electrolyte is contained in a gel-like form has a high current discharge due to the high viscosity of the electrolyte, which impedes the migration of lithium silver, resulting in high lithium ion mobility and high resistance in the battery.
  • An object of the present invention is to provide an electrolyte composition which exhibits excellent life characteristics at phase silver and high temperature, and can suppress the generation of gas due to electrolyte decomposition in silver and thereby improve the safety of an electrochemical device.
  • Still another object of the present invention is to provide an electrochemical device including the electrolyte composition.
  • electrolyte solution composition comprising:
  • the pullulan-based polymer resin is a polymer, an oligomer or a mixture thereof containing one or more repeating units represented by the following general formula (1):
  • Each R is independently H or (CH ⁇ CN,
  • 1 is an integer of 1-10.
  • the present invention provides an electrochemical device comprising the electrolyte composition.
  • 1 is a graph showing the discharge capacity of the battery according to the charge and discharge cycle.
  • the electrolyte composition according to the present invention comprises (i) a solvent; (ii) lithium salts; And (Hi) an electrolyte solution composition containing 0.1 to 5 wt% of a pullulan polymer resin based on the total weight of the electrolyte composition, wherein the pullulan polymer resin is represented by Formula 1 below. It is characterized in that the electrolyte composition, characterized in that the polymer, oligomer or a mixture thereof containing at least one repeating unit.
  • Each R is independently H or (CH iCN,
  • the pullulan-based polymer resin may have a weight average molecular weight of 1,000 to 10, 000, 000.
  • the solvent is not particularly limited as long as it is an organic solvent used as a non-aqueous solvent of a conventional lithium secondary battery.
  • carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate, vinylene carbonate , Lactones such as Y-butyrolactone, dimethicethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, ethers of 1,4-dioxane, sulfolane and 3-methylsulfuran Sulfolanes, dioxolanes such as 1,3-dioxolane, ketones such as 4-methyl-2-pentanone, nitriles such as acetonitrile, pyridiononitrile, valeronitrile, benzonitrile, 1,2 Halogenated tower hydrogens such as dichloroethane, other methyl formate,
  • the lithium salt is a material that is readily soluble in the non-aqueous solvent, such as LiCl, LiBr, Lil, LiC10 4 , LiBF 4, LiBioCho, LiPF 6, LiCF 3 S0 3, LiCF 3 C0 2, LiAsF 6l LiSbF 6, L iA ! Cl 4l CH 3 S0 3 Li, CF 3 S0 3 Li, (CF 3 S0 2 ) 2 NLi, chloroborane lithium, lower aliphatic carbonate, lithium tetraphenylborate, imide or combinations thereof can be used have.
  • the non-aqueous solvent such as LiCl, LiBr, Lil, LiC10 4 , LiBF 4, LiBioCho, LiPF 6, LiCF 3 S0 3, LiCF 3 C0 2, LiAsF 6l LiSbF 6, L iA ! Cl 4l CH 3 S0 3 Li, CF 3 S0 3 Li, (CF 3 S0 2 ) 2 NLi, chloroborane lithium, lower
  • Cyanobanunggi of the pullulan-based polymers included in the electrolyte composition of the present invention facilitates the smooth movement of lithium ions at the interface with the electrode, and the hydroxyl (-0H) bandunger is a strong hydrogen bond.
  • the electrolyte from being denatured or generated gas has the advantage of achieving excellent battery performance and safety at the same time.
  • the pullulan-based polymer resin may include 1 to 5% by weight based on the total weight of the electrolyte composition, and also 0.1 to 4% by weight, 0.1 to 3% by weight, 0.1 to 2.5 based on the total weight of the electrolyte composition
  • the content of the pullulan-based polymer resin is less than 0.1 weight 3 ⁇ 4, it is not preferable because it does not exert effects such as promoting the movement of lithium ions or preventing electrolyte degeneration, and the content of the pullulan-based polymer resin is more than 5% by weight. In this case, the viscosity of the electrolyte becomes too high and the ion conductivity of the electrolyte drops sharply, which is not preferable because the output characteristics of the battery deteriorate when used in the battery.
  • the electrolyte composition of the present invention may have a lithium ion transfer constant (transference numbe r) of 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more.
  • the reason why the electrolyte composition of the present invention has a high lithium ion transfer constant value is due to the interaction between the pullulan-based polymer resin and lithium ions and anions included in the electrolyte composition.
  • the pullulan-based polymer resin and the anion PF are relatively strongly bonded to each other. Due to the high activation energy required for copper, the movement is slow.
  • Li + has a relatively weak bond, so the movement energy is low and the movement is fast. This relative fastness is represented by the high ion transfer constant of lithium ions.
  • the electrolyte composition of the present invention may further include an electrolyte additive other than the pullulan-based polymer resin,
  • the electrolyte additive may be a polymer, an oligomer or a mixture thereof containing one or more repeating units represented by the following Formula 2.
  • X, Y and Z are each independently H, 0H or (CH 2 ) n CN,
  • Each R ′ is independently H or (C3 ⁇ 4) 0 CN,
  • n is an integer of 0-10
  • n and 0 are each independently an integer of 1-10.
  • the electrolyte composition of the present invention is 3
  • the electrolyte composition further comprising the electrolyte solution additive for a long time at 10 to 30 ° C, preferably 15 to 25 ° C, is less than the temperature causing the gelation. In some cases, gelation of the electrolyte composition may be induced.
  • the gelation refers to the change of the electrolyte composition from the liquid state to the gel state through the interaction between the electrolyte additive itself or the electrolyte additive and the solvent.
  • the electrolyte additive is a polymer, an oligomer, or a mixture thereof including at least one repeating unit represented by Chemical Formula 1
  • the electrolyte composition of the present invention may be a liquid through interaction between the electrolyte additive itself or the electrolyte additive and a solvent.
  • the electrolyte composition of the present invention further comprising the electrolyte additive may have a high ion conductivity even after gelation, even though it is in a gel state.
  • the amount of the electrolyte additive added is based on the total amount of the electrolyte composition.
  • the electrolyte composition of the present invention described above may be used in an electrochemical device including a positive electrode and a negative electrode.
  • the electrochemical device includes all the elements for electrochemical reaction, for example, may be any kind of primary, secondary battery, fuel cell, solar cell, capacitor or energy storage device, lithium secondary battery It may be a capacitor or a solar cell, preferably a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
  • the electrolyte composition of the present invention is injected in a liquid state into an electrode structure composed of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • an electrode structure composed of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode, the negative electrode, and the separator constituting the electrode structure all those conventionally used in manufacturing a lithium secondary battery may be used.
  • the positive electrode is prepared by coating a mixture of a positive electrode active material, a conductive material and a binder on a current collector and then drying it.
  • the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material, and is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • natural or artificial alum Abyss Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp block and summer black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride, aluminum and nickel powders
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 weight 3 ⁇ 4 based on the total weight of the mixture including the positive electrode active material, for example, polyvinyl fluoride Leadene, polyvinyl alcohol, carboxymethyl salose (CMC), starch, hydroxypropylcellose, regenerated cellrose, polyvinylpyridone, tetrafluoroethylene polyethylene, polypropylene, ethylene- Propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like can be used.
  • polyvinyl fluoride Leadene polyvinyl alcohol, carboxymethyl salose (CMC), starch, hydroxypropylcellose, regenerated cellrose, polyvinylpyridone, tetrafluoroethylene polyethylene, polypropy
  • the negative electrode is manufactured by coating and drying the negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon, nickel, titanium on the surface of copper or stainless steel , Surface treated with silver or the like, aluminum-cadmium alloy or the like can be used.
  • Carbon such as a decoated softened carbon and an inferior carbon
  • Sn x Mei-xMe ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Group 1, Group 2, Group 3 elements, halogen; 0 ⁇ x ⁇ l metal composite oxides such as l ⁇ y ⁇ 3; 1 ⁇ ⁇ 8)
  • Lithium metal Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, Sn0 2) PbO, Pb0 2, Pb 2 0 3, Pb 3 0 4, Sb 2 0 3l Sb 2 0 4, Sb 2 0 5, GeO, Ge0 2, Bi 2 0 3, Bi 2 0 4, and Oxides such as Bi 2 O 5
  • Conductive polymers such as polyacetylene; Li-Co-Ni system material etc. are mentioned.
  • the separator is interposed between the cathode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10, the thickness is generally 5 to 300 i / m.
  • separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene, etc. may be used.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may have a cylindrical, square, pouch or coin type using a can. In addition, it may be a cable type lithium secondary battery having a structure such as a linear wire.
  • Example Example 1 Preparation of Electrolyte
  • R (CH 2 ) 2 CN and a weight average molecular weight of 300,000
  • the positive electrode was prepared by coating, drying, and pressing on both sides of the aluminum foil, respectively.
  • a negative electrode mixture slurry was prepared by adding 97.5 weight 3 ⁇ 4 of natural graphite, 1.5 weight% of SBR (Styrene-Butadiene Rubber, binder) and 1 weight 3 ⁇ 4 of CMCC CarboxyMethyl Cellulose (thickener and binder) as a negative electrode active material to water as a solvent.
  • the negative electrode was prepared by coating, drying and pressing on both sides of the copper foil.
  • a lithium secondary battery was manufactured in the same manner as in Example 2, except that the electrolyte prepared in Comparative Example 1 was injected as the electrolyte.
  • Experimental Example 1 Evaluation of Life Characteristics
  • Example 2 The cells prepared in Example 2 and Comparative Example 2 were placed in a chamber at 23 ° C., and then charged to a 740 mA current in the range of 3 to 4.2 V in a constant current / constant voltage (CC / CV) mode using a charge / discharger. Charge / discharge was carried out continuously 300 cycles (shown in Figure 1).
  • Example 2 In order to evaluate the high temperature stability of the battery, the battery prepared in Example 2 and Comparative Example 2 was charged to 4.2 V and placed in a high temperature chamber at 80 ° C. for 3 days, and the thickness change of the battery was observed at 10 minute intervals. 2 is shown.
  • Example 2 As can be seen in Figure 2, the battery of Example 2 containing the electrolytic solution according to the present invention was confirmed that the increase in thickness is less than the battery of Comparative Example 2.

Abstract

An electrolyte composition according to the present invention includes: (i) a solvent; (ii) a lithium salt; and (iii) 0.1 to 5% by weight of a pullulan series polymeric resin based on the total weight of the electrolyte composition, characterized in that the pullulan series polymeric resin is a polymer, oligomer or a mixture thereof containing at least one repeat unit represented by formula 1. The electrolyte composition according to the present invention has excellent durability at room temperature or higher temperature, and prevents generation of a gas due to the breakdown of the electrolyte at high temperature so as to improve the stability of an electrochemical element, thus effectively applied to manufacture the electrochemical element.

Description

고온안정성 및 성능이 우수한 전해액 조성물 및 이를 포함하는 전기화학소자 발명의 분야 본 발명은 리튬 이차전지 , 커패시터 (capacitor), 태양전지 및 에너지저장장 치 등의 전기화학소자 분야에 활용되는 고온안정성 및 성능이 우수한 전해액 조성 물에 관한 것으로, 상세하게는 상은 및 고은에서 우수한 수명특성을 나타내고, 고 온에서 전해액 분해에 따른 가스 발생을 억제하여 전기화학소자의 안전성을 향상시 킬 수 있는 전해질 조성물에 관한 것이다. 배경기술  Electrolyte composition having excellent high temperature stability and performance and electrochemical device including same Field of the Invention The present invention provides high temperature stability and performance for use in electrochemical device fields such as lithium secondary batteries, capacitors, solar cells, and energy storage devices. The present invention relates to an excellent electrolyte composition, and more particularly, to an electrolyte composition exhibiting excellent life characteristics in phase silver and silver, and improving the safety of electrochemical devices by suppressing gas generation due to decomposition of electrolyte at high temperatures. . Background
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급증하고 있고, 그러한 이차전지 중 고에너 밀도와 높은 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해져 최근 널리 사용되고 있다. As the technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is increasing rapidly. Among them, many studies have been conducted on lithium secondary batteries having high energy density and high discharge voltage.
리튬 이차전지는 전해액의 형태에 따라, 액체인 전해액을 그대로 포함하고 있는 리튬이온 전지와, 전해액이 겔과 같은 형태로 포함되어 있는 리튬이온 폴리머 전지, 및 고체 전해질의 리튬 폴리머 전지로 분류되기도 한다.  A lithium secondary battery may be classified into a lithium ion battery containing a liquid electrolyte as it is, a lithium ion polymer battery containing an electrolyte in a gel-like form, and a lithium polymer battery of a solid electrolyte, depending on the form of the electrolyte.
액체상태의 전해액을 포함하고 있는 리튬이온 전지는 파우치 (Pouch) 형태로 제작될 경우 전해액 누액 (leak)의 위험성이 있고, 고온 및 /또는 고압 조건에서 노 출되었을 때 발화 /폭발할 위험성이 있으며, 또한 과충전, 외부단락, 침상 (nail) 관 통, 국부적 손상 (local crush) 등에 의해 짧은 시간 내에 큰 전류가 흐르게 될 경 우에도, IR 발열에 의해 전지가 가열되면서 발화 /폭발의 위험성이 있다.  Lithium ion battery containing liquid electrolyte has a risk of leakage of electrolyte when manufactured in pouch form, and may ignite / explode when exposed to high temperature and / or high pressure. In addition, even if a large current flows within a short time due to overcharging, external short circuit, nail penetration, local crush, etc., there is a risk of fire / explosion while the battery is heated by IR heating.
전지의 온도가 상승하면 전해액과 전극 사이의 반응이 촉진되며, 그 결과 반웅열이 발생하여 전지의 은도는 상승하게 되고, 이는 다시 전해액과 전극 사이의 반웅을 가속화시킨다. 이에 따라, 전지의 온도가 급격히 상승하게 되고, 이는 다 시 전해액과 전극 사이의 반웅을 가속화시킨다. 이러한 악순환에 의해, 전지의 온 도가 급격히 상승하는 열폭주 현상이 일어나게 되고 온도가 일정 이상까지 상승하 면 전지의 발화가 일어날 수 있다. 또한 전해액과 전극 사이의 반웅 결과, 가스 가 발생하여 전지 내압이 상승하게 되며, 일정 압력 이상에서 리튬 이차전지는 폭 발하게 된다. 이와 같은 발화 /폭발의 위험성은 리튬 이차전지가 가지고 있는 가장 치명적인 단점이라 할 수 있다. When the temperature of the battery rises, the reaction between the electrolyte and the electrode is accelerated, and as a result, reaction heat is generated, thereby increasing the silver content of the battery, which in turn accelerates the reaction between the electrolyte and the electrode. As a result, the temperature of the battery rises rapidly, which in turn accelerates the reaction between the electrolyte and the electrode. This vicious cycle turns the battery on A thermal runaway phenomenon occurs when the temperature rises sharply, and when the temperature rises to a certain level or more, the battery may ignite. In addition, as a result of reaction between the electrolyte and the electrode, gas is generated and the internal pressure of the battery increases, and the lithium secondary battery explodes above a certain pressure. The risk of ignition / explosion can be said to be the most fatal drawback of lithium secondary batteries.
따라서 , 전해액의 누액 가능성이 낮아 안전성이 높고, 전지의 형상을 초박 화 및 경량화하는 것이 가능하다는 등의 장점을 가지는 리튬이온 폴리머 전지의 사 용량이 증가하고 있다. 그러나, 전해액이 겔과 같은 형태로 포함되어 있는 리튬이 온 폴리머 전지는, 전해액의 점도가 높기 때문에 리튬 이은의 이동을 방해하여 리 튬 이온의 이동도가 낮은 관계로 전지 내부의 저항이 높아 대전류 방전에는 불리하 고, 리튬이온 전지에 비해 체적 에너지 밀도가 떨어지며, 제조공정이 비교적 복잡 하여 제조단가가 높다는 단점을 가지고 있다.  Therefore, the capacity of the lithium ion polymer battery which has the advantage that it is low in the possibility of leakage of electrolyte solution, is high, and it is possible to make ultra thin and lightweight the shape of a battery, etc. is increasing. However, a lithium ion polymer battery in which the electrolyte is contained in a gel-like form has a high current discharge due to the high viscosity of the electrolyte, which impedes the migration of lithium silver, resulting in high lithium ion mobility and high resistance in the battery. It is disadvantageous, and has a disadvantage in that the volume energy density is lower than that of a lithium ion battery, and the manufacturing process is relatively complicated, resulting in a high manufacturing cost.
따라서, 상온 및 고온에서 우수한 수명 특성을 나타내면서도 고온에서 전 해액 분해에 따른 가스 발생을 제어하여 우수한 전지성능 및 안전성을 구현할 수 있는 전해액 조성물의 개발이 필요하게 되었다. 발명의 요약 본 발명의 목적은 상은 및 고온에서 우수한 수명특성을 나타내고, 고은에서 전해액 분해에 따른 가스 발생을 억제하여 전기화학소자의 안전성을 향상시킬 수 있는 전해액 조성물을 제공하는데 있다.  Accordingly, there is a need for the development of an electrolyte composition that can provide excellent battery performance and safety by controlling gas generation due to electrolyte decomposition at high temperature while exhibiting excellent life characteristics at room temperature and high temperature. SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolyte composition which exhibits excellent life characteristics at phase silver and high temperature, and can suppress the generation of gas due to electrolyte decomposition in silver and thereby improve the safety of an electrochemical device.
본 발명의 또 다른 목적은 상기 전해액 조성물을 포함하는 전기화학소자를 제공하는데 있다.  Still another object of the present invention is to provide an electrochemical device including the electrolyte composition.
상기 목적을 달성하기 위해, 본 발명은  In order to achieve the above object, the present invention
(i) 용매;  (i) a solvent;
(ii) 리튬염; 및  (ii) lithium salts; And
(iii) 전해액 조성물 총 중량을 기준으로 0.1 내지 5 중량 >의 풀루란 (pullulan)계 고분자 수지 (iii) 0.1 to 5 weight> pullulan based on total weight of electrolyte composition (pullulan) polymer resin
를 포함하는 전해액 조성물로서,  As an electrolyte solution composition comprising:
상기 풀루란계 고분자 수지가 하기 화학식 1로 표시되는 반복단위를 하나 이상 포함하는 폴리머, 을리고머 또는 이의 흔합물인 것을 특징으로 하는 전해액 조성물을 제공한다:  The pullulan-based polymer resin is a polymer, an oligomer or a mixture thereof containing one or more repeating units represented by the following general formula (1):
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
R은 각각 독립적으로 H또는 (CH^CN이고,  Each R is independently H or (CH ^ CN,
1은 1 내지 10의 정수이다.  1 is an integer of 1-10.
또한, 본 발명은 상기 전해액 조성물을 포함하는 전기화학소자를 제공한다. 도면의 간단한 설명 도 1은 충방전 사이클에 따른 전지의 방전용량을 나타낸 그래프이다.  In addition, the present invention provides an electrochemical device comprising the electrolyte composition. 1 is a graph showing the discharge capacity of the battery according to the charge and discharge cycle.
도 2는 80 °C의 고온 챔버에 방치한 전지의 시간에 따른 두께 변화를 나타 낸 그래프이다. 발명의 상세한 설명 본 발명에 따른 전해액 조성물은 (i) 용매; (ii) 리튬염; 및 (Hi) 전해액 조성물 총중량을 기준으로 0.1 내지 5 중량 %의 풀루란 (pullulan)계 고분자수지를 포함하는 전해액 조성물로서, 상기 풀루란계 고분자 수지가 하기 화학식 1로 표시 되는 반복단위를 하나 이상 포함하는 폴리머, 올리고머 또는 이의 흔합물인 것을 특징으로 하는 전해액 조성물인 것을 특징으로 한다. 2 is a graph showing the change in thickness with time of the battery left in a high temperature chamber of 80 ° C. DETAILED DESCRIPTION OF THE INVENTION The electrolyte composition according to the present invention comprises (i) a solvent; (ii) lithium salts; And (Hi) an electrolyte solution composition containing 0.1 to 5 wt% of a pullulan polymer resin based on the total weight of the electrolyte composition, wherein the pullulan polymer resin is represented by Formula 1 below. It is characterized in that the electrolyte composition, characterized in that the polymer, oligomer or a mixture thereof containing at least one repeating unit.
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1에서,  In Chemical Formula 1,
R은 각각 독립적으로 H또는 (CH iCN이고,  Each R is independently H or (CH iCN,
1은 1 내지 10의 정수이다. 상기 풀루란계 고분자 수지는 1,000 내지 10, 000, 000의 중량평균분자량을 가질 수 있다. 상기 용매로는 통상의 리튬 이차전지의 비수계 용매로 사용되는 유 기용매이면 특별히 한정되지 않으며, 예컨대 카보네이트 화합물, 락톤 화합물, 에 테르 화합물, 술포란 화합물, 디옥솔란 화합물, 케톤 화합물, 니트릴 화합물, 할로 겐화 탄화수소 화합물 등을 들 수 있다. 보다 상세하게는, 디메틸카보네이트, 메 틸에틸카보네이트, 디에틸카보네이트, 에틸렌카보네이트, 프로필렌카보네이트, 부 틸렌카보네이트, 에틸렌글리콜디메틸카보네이트, 프로필렌글리콜디메틸카보네이트, 에틸렌글리콜디에틸카보네이트, 비닐렌카보네이트 등의 카보네이트류, Y-부티로 락톤 등의 락톤류, 디메특시에탄, 테트라하이드로퓨란, 2—메틸테트라하이드로퓨란, 테트라하이드로피란, 1,4-디옥산 둥의 에테르류, 술포란, 3-메틸술포란 등의 술포 란류, 1,3-디옥솔란 등의 디옥솔란류, 4-메틸 -2-펜타논 등의 케톤류, 아세토니트릴, 피로피오니트릴, 발레로니트릴, 벤조니트릴 등의 니트릴류, 1,2-디클로로에탄 등 의 할로겐화 탑화수소류, 기타의 메틸포르메이트, 디메틸포름아미드 디에틸포름아 미드, 디메틸술폭사이드, 이미다졸륨염, 4차 암모늄염 등의 이은성 액체 등을 들 수 있다. 또한 이들은 흔합되어 사용될 수 있으며, 바람직하게는 환형 카보네이 트와선형 카보네이트를 함께 흔합하여 사용할 수 있다. 상기 리튬염은 상기 비수계 용매에 용해되기 좋은 물질로서, 예컨대 LiCl, LiBr, Lil, LiC104, LiBF4, LiBioCho, LiPF6, LiCF3S03, LiCF3C02, LiAsF6l LiSbF6, L iA!Cl4l CH3S03Li, CF3S03Li , (CF3S02)2NLi , 클로로 보란 리튬, 저급 지방족 카르본 산 리튬, 테트라페닐붕산 리튬, 이미드 또는 이들의 흔합물이 사용될 수 있다. 1 is an integer of 1-10. The pullulan-based polymer resin may have a weight average molecular weight of 1,000 to 10, 000, 000. The solvent is not particularly limited as long as it is an organic solvent used as a non-aqueous solvent of a conventional lithium secondary battery. For example, a carbonate compound, a lactone compound, an ether compound, a sulfolane compound, a dioxolane compound, a ketone compound, a nitrile compound, And halogenated hydrocarbon compounds. More specifically, carbonates, such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate, vinylene carbonate , Lactones such as Y-butyrolactone, dimethicethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, ethers of 1,4-dioxane, sulfolane and 3-methylsulfuran Sulfolanes, dioxolanes such as 1,3-dioxolane, ketones such as 4-methyl-2-pentanone, nitriles such as acetonitrile, pyridiononitrile, valeronitrile, benzonitrile, 1,2 Halogenated tower hydrogens such as dichloroethane, other methyl formate, dimethylformamide diethylformamide, dimethyl sulfoxide and imida; Salts, may be mentioned Lee Eun-sung liquid such as a quaternary ammonium salt. They may also be used in combination, preferably cyclic carbonates and linear carbonates may be used in combination. The lithium salt is a material that is readily soluble in the non-aqueous solvent, such as LiCl, LiBr, Lil, LiC10 4 , LiBF 4, LiBioCho, LiPF 6, LiCF 3 S0 3, LiCF 3 C0 2, LiAsF 6l LiSbF 6, L iA ! Cl 4l CH 3 S0 3 Li, CF 3 S0 3 Li, (CF 3 S0 2 ) 2 NLi, chloroborane lithium, lower aliphatic carbonate, lithium tetraphenylborate, imide or combinations thereof can be used have.
본 발명의 전해액 조성물에 포함된 풀루란계 고분자 추지의 시아노 반웅기 는 전극과의 계면에서의 리튬 이온이 원활하게 이동하는 것을 도와주며, 하이드록 시 (-0H) 반웅기는 강한 수소결합으로 고은에서 전해액이 변성되거나 가스가 발생되 는 것을 막아 우수한 전지 성능 및 안전성을 동시에 달성할 수 있는 장점이 있다. 상기 풀루란계 고분자 수지는 전해액 조성물의 총 중량을 기준으로 으 1 내 지 5 중량 %포함될 수 있으며, 또한 전해액 조성물의 총 중량을 기준으로 0.1 내지 4 중량 %, 0.1 내지 3 중량 %, 0.1 내지 2.5 중량 0.1 내지 2 중량 ¾, 0.2 내지 5 중량 ¾, 0.2 내지 4 증량 %, 0.2 내지 3 중량 ¾, 0.2 내지 2.5 중량 %, 0.2 내지 2 중 량%, 0.3 내지 5 중량 %, 0.3 내지 4 중량 %, 0.3 내지 3 중량 %, 0.3 내지 2.5 중량 %, 0.3 내지 2 중량 ¾, 0.4 내지 5 증량 %, 0.4 내지 4 중량 %, 0.4 내지 3 중량 %, 0.4 내지 2.5 중량 %, 0.4 내지 2 증량 %, 0.5 내지 5 중량 %, 0.5 내지 4 증량 %, 0.5 내 지 3 증량 %, 0.5 내지 2.5 중량 %, 0.5 내지 2 증량 %포함될 수 있다.  Cyanobanunggi of the pullulan-based polymers included in the electrolyte composition of the present invention facilitates the smooth movement of lithium ions at the interface with the electrode, and the hydroxyl (-0H) bandunger is a strong hydrogen bond. By preventing the electrolyte from being denatured or generated gas has the advantage of achieving excellent battery performance and safety at the same time. The pullulan-based polymer resin may include 1 to 5% by weight based on the total weight of the electrolyte composition, and also 0.1 to 4% by weight, 0.1 to 3% by weight, 0.1 to 2.5 based on the total weight of the electrolyte composition Weight 0.1 to 2 weight ¾, 0.2 to 5 weight ¾, 0.2 to 4 weight%, 0.2 to 3 weight ¾, 0.2 to 2.5 weight%, 0.2 to 2 weight%, 0.3 to 5 weight%, 0.3 to 4 weight%, 0.3-3 weight%, 0.3-2.5 weight%, 0.3-2 weight ¾, 0.4-5 weight%, 0.4-4 weight%, 0.4-3 weight%, 0.4-2.5 weight%, 0.4-2 weight%, 0.5- 5 weight%, 0.5 to 4 weight%, 0.5 to 3 weight%, 0.5 to 2.5 weight%, 0.5 to 2 weight% may be included.
상기 풀루란계 고분자 수지의 함량이 0.1 중량 ¾에 미치지 못하면 리튬 이온 의 이동 촉진이나 전해액 변성 방지와 같은 효과를 발휘하지 못하므로 바람직하지 못하고, 상기 풀루란계 고분자 수지의 함량이 5 중량 %를 초과하면 전해액의 점도가 지나치게 높아지게 되어 전해액의 이온전도도가 급격히 하락하게 되어 전지에 사 용될 경우 전지의 출력 특성이 나빠진다는 문제점이 있어 바람직하지 못하다.  If the content of the pullulan-based polymer resin is less than 0.1 weight ¾, it is not preferable because it does not exert effects such as promoting the movement of lithium ions or preventing electrolyte degeneration, and the content of the pullulan-based polymer resin is more than 5% by weight. In this case, the viscosity of the electrolyte becomes too high and the ion conductivity of the electrolyte drops sharply, which is not preferable because the output characteristics of the battery deteriorate when used in the battery.
또한 본 발명의 전해액 조성물은 리튬 이온 전달 상수 (transference numbe r)가 0.5 이상, 바람직하게는 0.6 이상, 더욱 바람직하게는 0.7 이상일 수 있다. 본 발명의 전해액 조성물이 높은 리튬 이온 전달 상수 값을 가지는 이유는 전해액 조성물에 포함된 상기 풀루란계 고분자 수지와 리튬 이온 및 음이온간의 상 호 작용에 기인한다. 예컨대, 리튬염으로서 LiPF6를 포함하는 전해액 조성물인 경 우, 상기 풀루란계 고분자 수지와 음이온인 PF 는 상대적으로 강하게 결합하여 이 동에 필요한 활성화 에너지가 높아 그 이동이 느리고, 반면에 Li+은 결합 정도가 상대적으로 약하여 이동에 필요한 활성화 에너지가 낮아 이동이 빠르다. 이와 같 은 상대적인 빠르기가 리튬 이온의 높은 이온 전달 상수로 나타난다. In addition, the electrolyte composition of the present invention may have a lithium ion transfer constant (transference numbe r) of 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more. The reason why the electrolyte composition of the present invention has a high lithium ion transfer constant value is due to the interaction between the pullulan-based polymer resin and lithium ions and anions included in the electrolyte composition. For example, in the case of an electrolyte composition containing LiPF 6 as a lithium salt, the pullulan-based polymer resin and the anion PF are relatively strongly bonded to each other. Due to the high activation energy required for copper, the movement is slow. On the other hand, Li + has a relatively weak bond, so the movement energy is low and the movement is fast. This relative fastness is represented by the high ion transfer constant of lithium ions.
또한, 본 발명의 전해액 조성물은 상기 풀루란계 고분자 수지 이외의 전해 액 첨가제를 추가로 포함할 수 있으며 ,  In addition, the electrolyte composition of the present invention may further include an electrolyte additive other than the pullulan-based polymer resin,
상기 전해액 첨가제는 하기 화학식 2로 표시되는 반복단위를 하나 이상 포 함하는 폴리머, 올리고머 또는 이의 흔합물일 수 있다.  The electrolyte additive may be a polymer, an oligomer or a mixture thereof containing one or more repeating units represented by the following Formula 2.
Figure imgf000007_0001
Figure imgf000007_0001
상기 화학식 2에서  In Chemical Formula 2
X, Y 및 Z는 각각 독립적으로 H, 0H 또는 (CH2)nCN이고, X, Y and Z are each independently H, 0H or (CH 2 ) n CN,
R'은 각각 독립적으로 H또는 (C¾)0CN이며, Each R ′ is independently H or (C¾) 0 CN,
이때, m은 0 내지 10의 정수이며, n 및 0는 각각 독립적으로 1 내지 10의 정수이다.  At this time, m is an integer of 0-10, n and 0 are each independently an integer of 1-10.
상기 전해액 첨가제가 추가로 포함되는 경우, 본 발명의 전해액 조성물은 3 When the electrolyte additive is further included, the electrolyte composition of the present invention is 3
0 °C 이상, 바람직하게는 30 내지 80 °C, 더욱 바람직하게는 45 내지 60 °C에서 물 리적 또는 화학적 겔화 반응을 일으킬 수 있다. It may cause a physical or chemical gelling reaction at 0 ° C. or higher, preferably 30 to 80 ° C., more preferably 45 to 60 ° C.
또한, 온도는 시간의 함수에 비례하므로 상기 겔화를 일으키는 온도보다 낮 은 은도인 10 내지 30°C, 바람직하게는 15 내지 25°C에서 장시간 상기 전해액 첨가 제를 추가로 포함하는 전해액 조성물을 안정화할 경우에도 전해액 조성물의 겔화가 유도될 수 있다. In addition, since the temperature is proportional to the function of time, the electrolyte composition further comprising the electrolyte solution additive for a long time at 10 to 30 ° C, preferably 15 to 25 ° C, is less than the temperature causing the gelation. In some cases, gelation of the electrolyte composition may be induced.
상기 겔화는 전해액 첨가제 자체 또는 전해액 첨가제와 용매간 상호 작용을 통하여 전해액 조성물이 액체 상태에서 겔 상태로 변화하는 것을 말한다. 예컨대, 상기 전해액 첨가제가 상기 화학식 1로 표시되는 반복단위를 하나 이상 포함하는 폴리머, 올리고머 또는 이의 흔합물인 경우, 본 발명의 전해액 조성 물은 상기 전해액 첨가제 자체 또는 전해액 첨가제와 용매간의 상호 작용을 통하여 액체 상태에서 겔 상태로 변화할 수 있으며, 상기 겔화된 전해액 조성물에 포함된 전해액 첨가제의 시아노 (흑은 니트릴)반웅기는 전극과의 계면에서의 리튬이은이 원활하게 이동하는 것을 도와주며, 하이드록시 (-0H) 반응기는 강한 수소결합으로 겔 상태가 파괴되거나 변형되는 것을 막는다. The gelation refers to the change of the electrolyte composition from the liquid state to the gel state through the interaction between the electrolyte additive itself or the electrolyte additive and the solvent. For example, when the electrolyte additive is a polymer, an oligomer, or a mixture thereof including at least one repeating unit represented by Chemical Formula 1, the electrolyte composition of the present invention may be a liquid through interaction between the electrolyte additive itself or the electrolyte additive and a solvent. It can change from gel state to gel state, and the cyano (black nitrile) reaction of the electrolyte additive contained in the gelled electrolyte composition helps the lithium silver to move smoothly at the interface with the electrode, and hydroxy ( -0H) The reactor prevents the gel from breaking down or deforming due to strong hydrogen bonding.
따라서, 상기 전해액 첨가제를 추가로 포함하는 본 발명의 전해액 조성물은 겔 상태임에도 불구하고, 겔화 이후에도 높은 이온전도도를 가질 수 있다.  Therefore, the electrolyte composition of the present invention further comprising the electrolyte additive may have a high ion conductivity even after gelation, even though it is in a gel state.
상기 전해액 첨가제의 첨가량은 상기 전해액 조성물의 총 증량을 기준으로 The amount of the electrolyte additive added is based on the total amount of the electrolyte composition.
0.01 내지 15 중량 %, 0.01 내지 10 중량 %, 0.1 내지 15 증량 %, 0.1 내지 10 중량 %, 0.1 내지 5 증량 %, 0.1 내지 4 중량 %, 0.1 내지 3 중량 ¾, 0.1 내지 2.5 중량 %, 0. 1 내지 2 중량 %, 0.2 내지 10 중량 %, 0.2 내지 5 중량 0.2 내지 4 중량 0.2 내 지 3 중량 %, 0.2 내지 2.5 중량 %, 0.2 내지 2 중량 %, 0.3 내지 10 중량 %, 0.3 내지 5 중량 %, 0.3 내지 4 중량 %, 0.3 내지 3 중량 %, 0.3 내지 2.5 중량 %, 0.3 내지 2 중량 %, 0.4 내지 10 중량 %ᅳ 0.4 내지 5 중량 ¾, 0.4 내지 4 중량 %, 0.4 내지 3 중 량%, 0.4 내지 2.5 중량 ¾, 0.4 내지 2 중량 %, 0.5 내지 10 중량 ¾>, 0.5 내지 5 중 량%, 0.5 내지 4 증량 %, 0.5 내지 3 중량 %, 0.5 내지 2.5 중량 ¾, 0.5 내지 2 중량 % 일 수 있다. 0.01 to 15% by weight, 0.01 to 10% by weight, 0.1 to 15% by weight, 0.1 to 10% by weight, 0.1 to 5% by weight, 0.1 to 4% by weight, 0.1 to 3% by weight, 0.1 to 2.5% by weight, 0. 1 to 2 weight%, 0.2 to 10 weight%, 0.2 to 5 weight 0.2 to 4 weight 0.2 to 3 weight%, 0.2 to 2.5 weight%, 0.2 to 2 weight%, 0.3 to 10 weight%, 0.3 to 5 weight% , 0.3 to 4% by weight, 0.3 to 3% by weight, 0.3 to 2.5% by weight, 0.3 to 2% by weight, 0.4 to 10% by weight ᅳ 0.4 to 5% by weight, 0.4 to 4% by weight, 0.4 to 3% by weight, 0.4 to 2.5 weight ¾, 0.4 to 2 weight%, 0.5 to 10 weight ¾>, 0.5 to 5 weight%, 0.5 to 4 weight%, 0.5 to 3 weight%, 0.5 to 2.5 weight ¾, 0.5 to 2 weight% Can be.
전술한 본 발명의 전해액 조성물은 양극 및 음극을 포함하는 전기화학소자 에 사용될 수 있다. 본 발명에서、전기화학소자는 전기 화학 반웅을 하는 모든 소 자를 포함하며, 예컨대 모든 종류의 1차, 이차전지, 연료전지, 태양전지, 커패시터 (capacitor) 또는 에너지 저장장치 등일 수 있으며, 리튬 이차전지, 커패시터 또는 태양전지일 수 있고, 바람직하게는 리튬이온 전지, 리튬이온 폴리머 전지, 또는 리튬 폴리머 전지일 수 있다.  The electrolyte composition of the present invention described above may be used in an electrochemical device including a positive electrode and a negative electrode. In the present invention, the electrochemical device includes all the elements for electrochemical reaction, for example, may be any kind of primary, secondary battery, fuel cell, solar cell, capacitor or energy storage device, lithium secondary battery It may be a capacitor or a solar cell, preferably a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
특히, 리튬 이차전지인 경우에, 본 발명의 전해액 조성물을 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 액체 상태로 주입 하여 리튬 이차전지를 제조한다. 전극 구조체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되는 것들이 모두 사용될 수 있다. In particular, in the case of a lithium secondary battery, the electrolyte composition of the present invention is injected in a liquid state into an electrode structure composed of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. To produce a lithium secondary battery. As the positive electrode, the negative electrode, and the separator constituting the electrode structure, all those conventionally used in manufacturing a lithium secondary battery may be used.
양극은 집전체상에 양극 활물질, 도전재 및 결착제의 흔합물을 도포한 후 건조하여 제조되는데, 양극 활물질로는 리튬함유 전이금속 산화물이 바람직하게 사 용될 수 있으며, 예컨대 리튬 코발트 산화물 (LiCo02), 리톱 니켈 산화물 (LiNi02) 등의 층상 화합물이나 하나 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-x0 4 (여기서, X 는 0 ~ 0.33 임), LiMn03, LiMn203, LiMn02 등의 리튬 망간 산화물; 리튬 동 산화물 (Li2Cu02); LiV308> LiFe304) V205, Cu2V207 등의 바나듐 산화물; 화학 식 LiNii-xMx02 (여기서 , M = Co, Mn, Al , Cu, Fe, Mg, B또는 Ga이고, x = 0.01 ~ 0.3 임)로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMx02 (여기서, M = Co, Νί, Fe, Cr, Zn또는 Ta이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3M08 (여기서, M = Fe, Co, Ni, Cu또는 Zn임)으로 표현되는 리륨 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이은으로 치환된 LiMn204; 디설파이드 화합물; Fe2(Mo04)3 등 을 들 수 있다. The positive electrode is prepared by coating a mixture of a positive electrode active material, a conductive material and a binder on a current collector and then drying it. A positive electrode active material may be preferably a lithium-containing transition metal oxide, for example, lithium cobalt oxide (LiCo0 2 ), A layered compound such as litop nickel oxide (LiNi0 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2 - x 0 4 (wherein X is 0 to 0.33), LiMn0 3 , LiMn 2 0 3 , LiMn0 2, and the like; Lithium copper oxide (Li 2 Cu02); LiV 3 O 8> LiFe 3 O 4) Vanadium oxides such as V 2 O 5 and Cu 2 V 2 O 7 ; Ni-site type lithium nickel oxide represented by the chemical formula LiNii- x Mx0 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x = 0.01 to 0.3; Formula LiMn 2 - x M x 0 2 , wherein M = Co, Νί, Fe, Cr, Zn or Ta, and x = 0.01 to 0.1, or Li 2 Mn 3 M0 8 , where M = Fe, Co, A lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal silver; Disulfide compounds; Fe 2 (Mo0 4 ) 3 and the like.
상기 도전재는 통상적으로 양극 활물질을 포함한 흔합물 전체 중량을 기준 으로 1 내지 50 중량 %로 첨가되고, 전지에 화학적 변화를 유발하지 않으면서 도전 성을 가진 것이라면 특별히 제한되지 않으며, 예컨대 천연 혹연이나 인조 혹연 등 의 혹연; 카본블랙 아세틸렌 블랙, 케첸 블랙, 채널블랙, 퍼네이스 블랙, 램프 블 택, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카 본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위 스키; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.  The conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material, and is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, natural or artificial alum Abyss; Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp block and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum and nickel powders; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 결착제는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 흔합물 전체 중량을 기준으로 1 내지 50 중량 ¾로 첨가되고, 예컨대 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸샐를로우즈 (CMC), 전분, 히드록시프로필셀를로우즈, 재생 셀를로우즈, 폴리비닐피를리돈, 테트라플루오로에틸렌 폴리에틸렌, 폴리프로필렌, 에틸렌- 프로필렌 -디엔 테르 폴리머 (EPDM), 술폰화 EPDM, 스티렌 부틸렌 고무 , 불소 고무 , 다양한 공중합체 등이 사용될 수 있다. The binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 weight ¾ based on the total weight of the mixture including the positive electrode active material, for example, polyvinyl fluoride Leadene, polyvinyl alcohol, carboxymethyl salose (CMC), starch, hydroxypropylcellose, regenerated cellrose, polyvinylpyridone, tetrafluoroethylene polyethylene, polypropylene, ethylene- Propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like can be used.
음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.  The negative electrode is manufactured by coating and drying the negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예컨대 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.  The negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon, nickel, titanium on the surface of copper or stainless steel , Surface treated with silver or the like, aluminum-cadmium alloy or the like can be used.
상기 음극 재료로는, 예컨대 난혹연화 탄소, 혹연계 탄소 등의 탄소; SnxMei-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al , B, P, Si, 주기율표의 1 족, 2 족, 3 족 원소, 할로겐; 0<x≤l; l<y<3; 1<ζ<8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, Sn02) PbO, Pb02, Pb203, Pb304, Sb203l Sb204, Sb205, GeO, Ge02, Bi203, Bi204, 및 Bi205 등의 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni계 재료 등을 들 수 있다. As said negative electrode material, For example, Carbon, such as a decoated softened carbon and an inferior carbon; Sn x Mei-xMe ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Group 1, Group 2, Group 3 elements, halogen; 0 <x≤l metal composite oxides such as l <y <3; 1 <ζ <8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, Sn0 2) PbO, Pb0 2, Pb 2 0 3, Pb 3 0 4, Sb 2 0 3l Sb 2 0 4, Sb 2 0 5, GeO, Ge0 2, Bi 2 0 3, Bi 2 0 4, and Oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni system material etc. are mentioned.
상기 분리막으로는 음극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 이고, 두께는 일반적으로 5내지 300 i/m이다.  The separator is interposed between the cathode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally from 0.01 to 10, the thickness is generally 5 to 300 i / m.
상기 분리막으로는, 예컨대 내화학성 및 소수성의 폴리프로필렌 등의 을레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있다.  As the separator, for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene, etc. may be used.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등의 형태를 가질 수 있다. 또한, 선형의 전선과 같은 구조를 갖는 케이블형 리튬 이차전지일 수 있다.  The external shape of the lithium secondary battery of the present invention is not particularly limited, but may have a cylindrical, square, pouch or coin type using a can. In addition, it may be a cable type lithium secondary battery having a structure such as a linear wire.
이하, 본 발명을 하기 실시예 및 비교예를 들어 설명하지만, 본 발명이 이에 한정되는 것은 아니다. 실시예 실시예 1: 전해액의 제조 Hereinafter, the present invention will be described with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto. Example Example 1 Preparation of Electrolyte
환형 카보네이트로서 에틸렌 카보네이트와 선형 카보네이트로서 에틸메틸카 보네이트의 1:2(부피비)의 유기용매 흔합물에 LiPF6를 1M농도로 첨가하고, 풀루란 계 고분자 수지 (하기 화학식 1에서 R=(CH2)2CN이고, 중량평균분자량 300 ,000)를 전 해액 전체 중량을 기준으로 2 중량%가 되도특 첨가하여 전해액을 제조하였다. To a 1: 2 (volume ratio) organic solvent mixture of ethylene carbonate as a cyclic carbonate and ethyl methyl carbonate as a linear carbonate, LiPF 6 was added at a concentration of 1 M, and a pullulan-based polymer resin (R = (CH 2 ) 2 CN and a weight average molecular weight of 300,000) were added in an amount of 2 wt% based on the total weight of the electrolyte to prepare an electrolyte solution.
[화학식 1]  [Formula 1]
Figure imgf000011_0001
실시예 2: 리튬 이차전지의 제조
Figure imgf000011_0001
Example 2: Fabrication of Lithium Secondary Battery
양극 활물질로서 LiCo02 95 중량 %, Super-P (도전재) 2 중량 % 및 PVdF (바인 더) 3 중량 %를 용제인 N-메틸 -2-피를리돈 (NMP)에 첨가하여 양극 흔합물 슬러리를 제조하고, 알루미늄 호일의 양면에 각각 코팅, 건조, 및 압착하여 양극을 제조하였 다. 95% by weight of LiCo0 2 , 2 % by weight of Super-P (conductor) and 3% by weight of PVdF (binder) were added to the solvent N-methyl-2-pyridone (NMP) as a positive electrode active material. To prepare a, the positive electrode was prepared by coating, drying, and pressing on both sides of the aluminum foil, respectively.
음극 활물질로서 천연혹연 97.5 중량 ¾, SBR(Styrene-Butadiene Rubber , 바 인더) 1.5 중량 % 및 CMCCCarboxyMethyl Cellulose, 증점제 및 바인더) 1 증량 ¾>를 용제인 물에 첨가하여 음극 흔합물 슬러리를 제조한 후, 구리 호일의 양면에 코팅, 건조 및 압착하여 음극을 제조하였다.  A negative electrode mixture slurry was prepared by adding 97.5 weight ¾ of natural graphite, 1.5 weight% of SBR (Styrene-Butadiene Rubber, binder) and 1 weight ¾ of CMCC CarboxyMethyl Cellulose (thickener and binder) as a negative electrode active material to water as a solvent. The negative electrode was prepared by coating, drying and pressing on both sides of the copper foil.
분리막으로 아사히사제 NH616(제품명)을 사용하여 상기 양극과 음극을 적층 함으로써 전극조립체를 제조한 후, 상기 실시예 1에서 제조된 전해액을 주입하여 리튬 이차전지를 제조하였다. 비교예 1: 전해액의 제조  After the electrode assembly was manufactured by stacking the positive electrode and the negative electrode using NH616 (product name) manufactured by Asahi Corporation, a lithium secondary battery was prepared by injecting the electrolyte solution prepared in Example 1 above. Comparative Example 1: Preparation of Electrolyte
고분자 수지를 첨가하지 않은 것을 제외하고는, 실시예 1과 마찬가지의 방 법으로 전해액을 제조하였다. 비교예 2: 리튬 이차전지의 제조 An electrolyte solution was prepared in the same manner as in Example 1, except that the polymer resin was not added. Comparative Example 2: Fabrication of Lithium Secondary Battery
전해액으로서 비교예 1에서 제조된 전해액을 주입한 것을 제외하고는, 실시 예 2와 마찬가지의 방법으로 리튬 이차전지를 제조하였다. 실험예 1: 수명특성 평가  A lithium secondary battery was manufactured in the same manner as in Example 2, except that the electrolyte prepared in Comparative Example 1 was injected as the electrolyte. Experimental Example 1: Evaluation of Life Characteristics
실시예 2 및 비교예 2에서 제조된 전지를 23 °C의 챔버에 놓은 뒤, 충 /방전 기를 이용하여 CC/CV(constant current /constant voltage) 모드로 3 내지 4.2 V의 범위에서 740 mA 전류로 충 /방전을 연속적으로 300 사이클 (cycle) 실시하여 이를 · 도 1에 나타내었다. The cells prepared in Example 2 and Comparative Example 2 were placed in a chamber at 23 ° C., and then charged to a 740 mA current in the range of 3 to 4.2 V in a constant current / constant voltage (CC / CV) mode using a charge / discharger. Charge / discharge was carried out continuously 300 cycles (shown in Figure 1).
도 1의 그래프를 참조하면, 전해액에 풀루란계 고분자 수지를 포함하지 않 는 비교예 2의 전지에 비하여, 풀루란계 고분자 수지를 포함하는 전해액을 포함한 실시예 2의 전지가 방전 용량이 향상되는 것을 확인할 수 있었다. 실험예 2: 고온안전성 평가  Referring to the graph of FIG. 1, the discharge capacity of the battery of Example 2 including the electrolyte solution containing the pullulan polymer resin is improved as compared with the battery of Comparative Example 2 without the pullulan polymer resin in the electrolyte solution. I could confirm that. Experimental Example 2: Evaluation of High Temperature Safety
전지의 고온안정성을 평가하기 위해 실시예 2 및 비교예 2에서 제조된 전지 를 4.2 V로 충전하여 80 °C의 고온 챔버에 넣고 3일 동안 전지의 두께변화를 10 분 간격으로 관찰하여 그 결과를 도 2에 나타내었다. In order to evaluate the high temperature stability of the battery, the battery prepared in Example 2 and Comparative Example 2 was charged to 4.2 V and placed in a high temperature chamber at 80 ° C. for 3 days, and the thickness change of the battery was observed at 10 minute intervals. 2 is shown.
도 2에서 확인할 수 있는 바와 같이, 본 발명에 따른 전해액을 포함하는 실 시예 2의 전지는 비교예 2의 전지에 비하여 두께의 증가가 적음을 확인할 수 있었 다.  As can be seen in Figure 2, the battery of Example 2 containing the electrolytic solution according to the present invention was confirmed that the increase in thickness is less than the battery of Comparative Example 2.

Claims

특허청구의 범위 Scope of claim
1. (i) 용매;  1. (i) a solvent;
(ii) 리튬염; 및  (ii) lithium salts; And
(iii) 전해액 조성물 총 중량을 기준으로 0.1 내지 5 중량 ¾의 풀루란 (pullulan)계 고분자 수지  (iii) 0.1 to 5 weight ¾ pullulan polymer resin based on the total weight of the electrolyte composition
를 포함하는 전해액 조성물로서,  As an electrolyte solution composition comprising,
상기 풀루란계 고분자 수지가 하기 화학식 1로 표시되는 반복단위를 하나 이상 포 함하는 폴리머, 을리고머 또는 이의 흔합물인 것을 특징으로 하는 전해액 조성물:  An electrolyte solution composition, characterized in that the pullulan-based polymer resin is a polymer, an oligomer, or a mixture thereof containing at least one repeating unit represented by Formula 1 below:
Figure imgf000013_0001
Figure imgf000013_0001
상기 화학식 1에서  In Chemical Formula 1
R은 각각 독립적으로 H또는 (CH iCN이고  Each R is independently H or (CH iCN)
1은 1 내지 10의 정수이다.  1 is an integer of 1-10.
2. 제 1 항에 있어서, 상기 풀루란계 고분자 수지가 1ᅳ 000 내지 10,000,000의 중량평균분자량을 갖는 것을 특징으로 하는 전해액 조성물. 2. The electrolyte solution composition according to item 1, wherein the pullulan polymer resin has a weight average molecular weight of 1 ᅳ 000 to 10,000,000.
3. 제 1 항에 있어서, 상기 전해액 조성물이 상기 풀루란계 고분자 수지를 전 해액 조성물 총 중량을 기준으로 0.5내지 2중량 ¾의 양으로 포힘;하는 것을 특징으 로 하는 전해액 조성물. 3. The electrolyte composition according to claim 1, wherein the electrolyte composition foams the pullulan-based polymer resin in an amount of 0.5 to 2 weight ¾ based on the total weight of the electrolyte composition.
4. 제 1 항에 있어서, 상기 용매가 선형 카보네이트 화합물과.환형 카보네이트 화합물의 흔합물로 이루어진 비수계 용매인 것을 톡징으로 하는 전해액 조성물. 4. The electrolyte solution composition according to item 1, wherein the solvent is a non-aqueous solvent composed of a mixture of a linear carbonate compound and a cyclic carbonate compound.
5. 제 1 항에 있어서, 상기 전해액 조성물이. 전해액 첨가제를 추가로 포함하고, 상기 전해액 첨가제가 하기 화학식 2로 표시되는 반복단위를 하나 이상 포함하는 폴리머, 올리고머 또는 이의 흔합물인 것을 특징으로 하는 전해액 조성물: 5. The electrolytic solution composition according to item 1 above. An electrolyte solution composition further comprising an electrolyte additive, wherein the electrolyte additive is a polymer, an oligomer, or a mixture thereof including one or more repeating units represented by Formula 2 below:
[화학식 2] [Formula 2]
Figure imgf000014_0001
상기 화학식 2에서,
Figure imgf000014_0001
In Chemical Formula 2,
X, Y 및 Z는 각각 독립적으로 H, 0H 또는 (CH2)nCN이고, R'은 각각 독립적으로 H 또는 (CH2)0CN이며, 이때, m은 0 내지 10의 정수이며, n 및 0는 각각 독립적으로 1 내지 10의 정수이다. X, Y and Z are each independently H, 0H or (CH 2 ) n CN, and R 'are each independently H or (CH 2 ) 0 CN, where m is an integer from 0 to 10, n and 0 is an integer of 1-10 each independently.
6. 제 5 항에 있어서, 상기 전해액 조성물이 상기 전해액 첨가제를 전해액 조 성물 총 중량을 기준으로 0.01 내지 15 중량 % 포함하는 것을 특징으로 하는 전해액 조성물. 6. The electrolyte composition according to claim 5, wherein the electrolyte composition comprises 0.01 to 15% by weight of the electrolyte additive based on the total weight of the electrolyte composition.
7. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 전해액 조성물을 포함하는 전 기화학소자 . 7. Electrochemical device comprising the electrolytic solution composition according to any one of items 1 to 6.
8. 제 7 항에 있어서 상기 전기화학소자는 리튬 이차전지, 커패시터 또는 태양전지인 것을 특징으로 하 는 전기화학소자. 8. The method of paragraph 7, The electrochemical device is an electrochemical device, characterized in that the lithium secondary battery, a capacitor or a solar cell.
PCT/KR2013/006738 2013-05-10 2013-07-26 Electrolyte composition with excellent high-temperature stability and performance and electrochemical element including same WO2014181925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0053033 2013-05-10
KR1020130053033A KR20140133219A (en) 2013-05-10 2013-05-10 Electrolyte composition having improved high temperature stability and performance comprising additive and electrochemical device comprising the same

Publications (1)

Publication Number Publication Date
WO2014181925A1 true WO2014181925A1 (en) 2014-11-13

Family

ID=51867386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006738 WO2014181925A1 (en) 2013-05-10 2013-07-26 Electrolyte composition with excellent high-temperature stability and performance and electrochemical element including same

Country Status (2)

Country Link
KR (1) KR20140133219A (en)
WO (1) WO2014181925A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071593B1 (en) 2017-07-28 2020-02-03 주식회사 엘지화학 Composition for gel polymer electrolyte and lithium secondary battery comprising the gel polymer electrolyte formed therefrom
US10790541B2 (en) 2017-07-28 2020-09-29 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery comprising the gel polymer electrolyte formed therefrom
CN111373572B (en) * 2018-01-18 2022-11-01 株式会社Lg新能源 Separator for lithium secondary battery and lithium secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053138A1 (en) * 2002-09-16 2004-03-18 Ralph Otterstedt Overcharge protection of nonaqueous rechargeable lithium batteries by cyano-substituted thiophenes as electrolyte additives
KR20050042456A (en) * 2003-11-03 2005-05-09 주식회사 엘지화학 Separator coated with electrolyte-miscible polymer and electrochemical device using the same
KR20110087880A (en) * 2010-01-27 2011-08-03 주식회사 엘지화학 Lithium secondary battery
US20120196191A1 (en) * 2010-11-30 2012-08-02 Jong-Ho Jeon Lithium secondary battery
KR20130012492A (en) * 2011-07-25 2013-02-04 한국과학기술원 Lithium secondary cell comprising polar solvent and bi-polar plate coated with poly-dopamine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053138A1 (en) * 2002-09-16 2004-03-18 Ralph Otterstedt Overcharge protection of nonaqueous rechargeable lithium batteries by cyano-substituted thiophenes as electrolyte additives
KR20050042456A (en) * 2003-11-03 2005-05-09 주식회사 엘지화학 Separator coated with electrolyte-miscible polymer and electrochemical device using the same
KR20110087880A (en) * 2010-01-27 2011-08-03 주식회사 엘지화학 Lithium secondary battery
US20120196191A1 (en) * 2010-11-30 2012-08-02 Jong-Ho Jeon Lithium secondary battery
KR20130012492A (en) * 2011-07-25 2013-02-04 한국과학기술원 Lithium secondary cell comprising polar solvent and bi-polar plate coated with poly-dopamine

Also Published As

Publication number Publication date
KR20140133219A (en) 2014-11-19

Similar Documents

Publication Publication Date Title
KR102050836B1 (en) Electrolye for lithium secondary battery and lithium secondary battery comprising the same
US10770754B2 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
KR101811833B1 (en) Multilayer-Structured Electrode and Lithium Secondary Battery Comprising The Same
WO2014042334A1 (en) Electrolyte composition having excellent high-temperature stability and performance and electrochemical device including same
KR101595333B1 (en) Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
KR20130118812A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
US10923759B2 (en) Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same
KR101502832B1 (en) Lithium Battery Having Higher Performance
KR20150014185A (en) Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
US10217983B2 (en) Cross-linked compound particle and secondary battery including the same
KR101841113B1 (en) Cathode Active Material for Lithium Secondary Battery Which Ionized Metal Is Coated on Surface Thereof and Method for Preparation of the Same
WO2014181925A1 (en) Electrolyte composition with excellent high-temperature stability and performance and electrochemical element including same
KR101907730B1 (en) Cathode additives for lithium secondary battery and secondary battery comprising the same
KR102517991B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby
KR20130117351A (en) The electrodes for secondary battery and the secondary battery comprising the same
KR101527751B1 (en) Cathode Active Material and Lithium Secondary Battery Comprising The Same
KR101527539B1 (en) Cathode Active Material and Lithium Secondary Battery Comprising The Same
KR20150014828A (en) Cathode Mixture with Improved Safety and Secondary Battery Comprising the Same
KR101588252B1 (en) Secondary Battery Cell
KR101608635B1 (en) Anode Electrodes for Secondary Battery having High Capacity
KR102183664B1 (en) Electrolyte for lithium-secondary battery and lithium-sulfur battery comprising thereof
KR101595328B1 (en) Anode Electrodes for Secondary Battery and Lithium Secondary Battery Containing The Same
JP2010080226A (en) Nonaqueous electrolyte secondary battery
KR101495314B1 (en) Electrodes for Secondary Battery and Lithium Secondary Battery Containing The Same
KR20190003075A (en) Anode comprising porous cellulose and secondary battery having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883913

Country of ref document: EP

Kind code of ref document: A1