WO2014061591A1 - Electrically conductive sheet, and touch panel - Google Patents

Electrically conductive sheet, and touch panel Download PDF

Info

Publication number
WO2014061591A1
WO2014061591A1 PCT/JP2013/077772 JP2013077772W WO2014061591A1 WO 2014061591 A1 WO2014061591 A1 WO 2014061591A1 JP 2013077772 W JP2013077772 W JP 2013077772W WO 2014061591 A1 WO2014061591 A1 WO 2014061591A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive sheet
layer
lattices
lattice
Prior art date
Application number
PCT/JP2013/077772
Other languages
French (fr)
Japanese (ja)
Inventor
博重 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014061591A1 publication Critical patent/WO2014061591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a conductive sheet and a touch panel.
  • a touch panel is arrange
  • a capacitance method or the like is known as a position detection method for a touch panel.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • Patent Documents 1-4 a plurality of first electrodes configured by a grid of fine metal wires and arranged in parallel in one direction and a plurality of first electrodes configured by a grid of metal fine wires and arranged in parallel in a direction orthogonal to the first electrode.
  • a touch panel including a conductive sheet including a plurality of second electrodes is disclosed.
  • 1st electrode and 2nd electrode which comprise the above-mentioned electrically conductive sheet contain the area
  • the conductive sheet is configured so that the grid-like fine metal wires are uniformly arranged on the entire surface in a plan view by superimposing the first electrode and the second electrode. This improves the visibility of the conductive sheet.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a conductive sheet and a touch panel having an electrode of a fine metal wire grid, and having improved visibility. To do.
  • the conductive sheet of one embodiment of the present invention includes a first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction, a transparent insulating layer, and a second direction. And a second electrode layer having a plurality of second electrodes extending in the first direction, and a conductive sheet laminated in this order, the first electrode having a branch electrode extending in the width direction, and the first electrode Is composed of a plurality of first lattices made of fine metal wires, the plurality of first lattices is composed of M ⁇ N lattice groups, the second electrode has branch electrodes extending in the width direction, and the second electrode is made of fine metal wires
  • the plurality of second lattices are composed of M ⁇ N lattice groups, and the first electrode layer and the second electrode layer include a plurality of first lattices and a plurality of second lattices. When viewed from above, the plurality of
  • the first electrode has an aperture ratio of 98 to 99.8% and 40 to 80 ⁇ / sq.
  • the second electrode has an aperture ratio of 98-99.5% and 40-80 ⁇ / sq. Surface resistivity.
  • the conductive sheet has a plurality of first grids when the first electrode layer and the second electrode layer are viewed from above so that the plurality of first grids and the plurality of second grids do not overlap. And the plurality of second lattices are adjacent to each other by four or less.
  • the proportion of the fine metal wires constituting the first lattice and the second lattice per unit area is 0.2 to 2%.
  • the first grid and the second grid each have one side of 200 to 1000 ⁇ m.
  • the first electrode and the second electrode have a width of 4 to 12 mm.
  • the first grid and the second grid each have one side of 240 to 500 ⁇ m, and the first electrode and the second electrode have a width of 5 to 7 mm.
  • the conductive sheet is 4 or less in both M and N.
  • the touch panel according to the second aspect of the present invention has the above conductive sheet.
  • the conductive sheet according to the three aspects of the present invention includes a first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction, a transparent insulating layer, and a second direction. And a second electrode layer having a plurality of second electrodes extending in the first direction, and a conductive sheet laminated in this order, wherein the first electrode has a plurality of first grids of fine metal wires
  • the second electrode has a plurality of second gratings made of fine metal wires, and a first sensing part comprising a second grating of 4 or more and 8 or less and a second sensing part comprising a second grating of 9 or more and 20 or less.
  • the first electrode layer and the second electrode layer are arranged alternately so that the plurality of first lattices and the plurality of second lattices do not overlap with each other when viewed from above.
  • One lattice and the plurality of second lattices are continuously arranged on the entire surface.
  • the conductive sheet according to the four aspects of the present invention includes a first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction, a transparent insulating layer, and a second direction. And a second electrode layer having a plurality of second electrodes extending in the first direction, and a conductive sheet laminated in this order, wherein the first electrode has a plurality of first grids of fine metal wires
  • the second electrode has a plurality of second grids made of thin metal wires, and the first sensing units and the second sensing units having an area 1.5 times larger than the first sensing unit are alternately arranged.
  • the first electrode layer and the second electrode layer are configured such that the plurality of first lattices and the plurality of second lattices do not overlap with each other and when viewed from the top surface,
  • the second lattice is continuously arranged on the entire surface.
  • the first grid and the second grid have the same shape.
  • a sensing unit composed of two or more first grids of the first electrode surrounds the second sensing unit of the second electrode.
  • the second sensing portion has an area of 7 mm 2 or less.
  • visibility can be improved in a conductive sheet and a touch panel having electrodes formed of a metal thin wire grid.
  • FIG. 1 is a schematic plan view of a conductive sheet.
  • FIG. 2 is a schematic cross-sectional view of a conductive sheet.
  • FIG. 3 is a plan view of a conductive sheet composed of a diamond pattern.
  • FIG. 4 is a schematic plan view of the first electrode layer.
  • FIG. 5 is a schematic plan view of the second electrode layer.
  • FIG. 6 is a schematic plan view of a conductive sheet in which a first electrode layer and a second electrode layer are overlaid.
  • FIG. 7 is a partially enlarged view of the conductive sheet.
  • FIG. 8 is a partially enlarged view of the conductive sheet.
  • FIG. 9A is a plan view showing an overlapping state of the first electrode and the second electrode.
  • FIG. 9B is a plan view showing an overlapping state of the first electrode and the second electrode.
  • FIG. 9C is a plan view showing an overlapping state of the first electrode and the second electrode.
  • FIG. 10 is an exploded perspective view showing the configuration
  • FIG. 1 is a schematic plan view of a conductive sheet 1 for a touch panel
  • FIG. 2 is a schematic cross-sectional view of the conductive sheet 1.
  • the conductive sheet 1 extends in a first direction (X direction), has a first electrode layer 10 having a plurality of first electrodes 12 arranged in a second direction (Y direction) intersecting the first direction, a transparent insulating layer 30, And a second electrode layer 40 having a plurality of second electrodes 42 extending in the second direction (Y direction) and arranged in the first direction (X direction).
  • Each first electrode 12 is electrically connected to the first electrode terminal 14 at one end thereof. Further, each first electrode terminal 14 is electrically connected to the conductive first wiring 16. Each second electrode 42 is electrically connected to the second electrode terminal 44 at one end thereof. Each second electrode terminal 44 is electrically connected to the conductive second wiring 46.
  • the first electrode 12 and the second electrode 42 are each composed of a grid of fine metal wires.
  • the conductive sheet 1 includes a transparent insulating layer 30 having a first main surface and a second main surface, a first electrode layer 10 disposed on the first main surface of the transparent insulating layer 30, and a transparent insulating layer 30. And a second electrode layer 40 disposed on the second main surface.
  • the first electrode 12 and the second electrode 42 are formed with the transparent insulating layer 30 interposed therebetween, but the first electrode 12 and the second electrode 42 are not provided at positions facing each other.
  • the first electrode 12 and the second electrode 42 are formed of a first main surface and a second main surface of the transparent insulating layer 30 so that the entire surface can be seen as a uniform electrode. Is formed.
  • the inventor has intensively studied the problem that the electrode is visually recognized due to a slight difference in the amount of reflected light that is generated when light hits the conductive sheet having the above-described configuration.
  • FIG. 3 is a schematic plan view of a conductive sheet 101 composed of a general so-called diamond pattern.
  • the conductive sheet 101 includes a first electrode 112 and a second electrode 142.
  • the first electrode 112 is composed of a plurality of fine metal grids 126
  • the second electrode 142 is composed of a plurality of fine metal grids 156.
  • the first electrode 112 is displayed thicker than the second electrode 142.
  • the first electrode 112 has two lattice groups 132 including a plurality of 8 ⁇ 8 lattices 126.
  • the second electrode 142 includes two lattice groups 162 including a plurality of 8 ⁇ 8 lattices 156.
  • each of the lattice group 132 and the lattice group 162 includes a plurality of 8 ⁇ 8 lattices 126 and 156, and the lattice group 132 and the lattice group 162 have a relatively large area. It has been found that even if the difference in reflectance between the grating group 132 and the grating group 162 is small, the electrode is easily visible even if the difference in the amount of reflected light is small when the area is large.
  • the first electrode and the second electrode are subdivided as much as possible to reduce the area of the lattice group, and the first electrode and the second electrode are branched so as to extend in the width direction.
  • the present invention was invented.
  • FIG. 4 is a schematic plan view of the first electrode layer 10 showing an example of the present embodiment.
  • the first electrode layer 10 includes a plurality of first electrodes 12 extending in a first direction (X direction) and arranged in a second direction (Y direction) intersecting the first direction.
  • the first electrode 12 is composed of a plurality of first grids 26 of fine metal wires.
  • lattice 26 is comprised by enclosing a metal fine wire in the state mutually connected,
  • region is formed in the 1st grating
  • an opening region is formed by four sides.
  • the first electrode 12 extends in the first direction when viewed as a whole. Looking at each first grid 26 constituting the first electrode 12, the first grid 26-1 extends continuously from the first grid 26-1 so as to spread in the width direction of the first electrode 12 along the third direction. Further, starting from the first lattice 26-1, the first grid 26-1 extends continuously in the width direction of the first electrode 12 along the fourth direction. In other words, the first electrode 12 has branch electrodes extending in the third direction and the fourth direction starting from the first lattice 26-1. By having the branch electrode, the sensing area can be widened.
  • the first grid 26 is continuous means that the two first grids 26 are adjacently arranged sharing one side. However, when the two first gratings 26 are arranged with only the corners without sharing the sides, the first gratings 26 are not in a continuous state.
  • the first grid 26 continuous along the third direction is conducted by a thin metal wire and extends in the first direction.
  • the first grid 26 continuous along the fourth direction is conducted by the fine metal wires and extends in the first direction.
  • the first grating 26 extending so as to continuously spread in the third direction then extends continuously toward the first grating 26-2 along the fourth direction.
  • the first grating 26 extending so as to continuously spread in the fourth direction then extends continuously toward the first grating 26-2 along the third direction.
  • the repeating pattern of the 1st electrode 12 enclosed with the circle mark is comprised.
  • one repeating pattern has a hexagonal shape, and three repeating patterns extend in the first direction.
  • Adjacent repeating patterns are electrically connected by the first grating 26-2 and the first grating 26-3, and by the first grating 26-4 and the first grating 26-5. However, the corners of the first grating 26-2 and the first grating 26-3 are connected to each other, and the corners of the first grating 26-4 and the first grating 26-5 are connected to each other. This does not correspond to the continuous first lattice 26.
  • the first electrode 12 is composed of a lattice group of a plurality of M ⁇ N first lattices 26.
  • the lattice group composed of a plurality of M ⁇ N first lattices 26 means a state in which a plurality of first lattices 26 sharing a side are arranged in a matrix of M ⁇ N.
  • the plurality of first lattices 26 are arranged so that M and N are integers and M + N ⁇ 9. This is to prevent the area of the lattice group from becoming too large when the plurality of first lattices 26 are arranged in M ⁇ N. Visibility can be improved by setting the grid group of the first grid 12 of the first electrode 12 to M + N ⁇ 9. Further, both M and N are preferably 4 or less.
  • M + N 9 and satisfies M + N ⁇ 9.
  • M ⁇ N 7 ⁇ 2 and the lattice group includes 14 first lattices 26. Visibility can be improved because the area of the lattice group does not become too large.
  • the first grating 26 is arranged so that when the first grating 26 continues seven or more in the third direction, it does not continue three or more in the fourth direction. That is, the first lattice 26 is not arranged in a matrix of 7 ⁇ 3 or more and restricts the lattice group from occupying a large area. It is important to satisfy M + N ⁇ 9.
  • the direction in which the first electrode 12 extends and the direction in which the first electrode 12 extends are defined as the first direction and the second direction, respectively, and the direction in which the continuous first lattice 26 extends is defined as the third direction and the fourth direction.
  • the direction in which the continuous first lattice 26 extends is not limited to the third direction and the fourth direction, and many directions such as a fifth direction can be adopted.
  • the first direction and the third direction, the second direction and the fourth direction may be the same, or each may have a certain inclination angle.
  • the first direction and the third direction, and the second direction and the fourth direction have a constant inclination angle.
  • the first direction and the second direction indicate the vertical and horizontal directions of the screen display in which the conductive sheet 1 is used, but are not particularly specified here. It is preferable that the direction of the continuous first lattice 26 and the direction of the first electrode 12 have an angle at which moiré is unlikely to occur. The direction of the first electrode 12 substantially coincides with the vertical and horizontal directions of the screen, but may not be completely the same.
  • the fine metal wire constituting the first electrode 12 has a line width of 30 ⁇ m or less, and the fine metal wire is made of a metal material such as gold, silver or copper, or a conductive material such as a metal oxide.
  • the line width of the fine metal wire it is 30 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, more preferably 7 ⁇ m or less, and preferably 0.5 ⁇ m or more, preferably 1 ⁇ m or more.
  • the first electrode 12 includes a plurality of first lattices 26 made of intersecting fine metal wires.
  • the first lattice 26 includes an opening region surrounded by fine metal wires.
  • the first grating 26 preferably has one side of 200 to 1000 ⁇ m. More preferably, the first grating 26 has one side of 240 to 500 ⁇ m. By setting it as this range, it is excellent in light transmittance and it is hard to visually recognize a thin line.
  • the first electrode 12 has a width W1 of 4 to 12 mm or less, preferably a width W1 of 5 to 7 mm. By setting this range, the electrode width can be adapted to finger touch.
  • the effects of low resistance and improved visibility can be achieved.
  • the first electrode 12 preferably has an aperture ratio of 98 to 99.8% from the viewpoint of visible light transmittance.
  • the aperture ratio corresponds to the ratio of the area of the translucent portion not occupied by the fine metal wires of the first electrode 12 in the predetermined region to the entire area. In other words, it corresponds to the ratio of the fine metal wire per unit area subtracted from 1, expressed as a percentage. Therefore, the ratio of the fine metal wires per unit area is 0.2 to 2%.
  • the surface resistivity of the first electrode 12 is 10 to 120 ⁇ / sq. , Especially 40-80 ⁇ / sq.
  • the range is as follows.
  • the surface resistivity can be obtained with a surface resistivity meter of MCP-T610 manufactured by Mitsubishi Chemical Corporation. At the time of measurement, a full-face mesh sample (without a cut portion or the like) having the same line width, lattice size, and aperture ratio as that of the electrode is prepared and measured.
  • the first lattice 26 has a rectangular shape.
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous.
  • the shape of each side may be a sine curve.
  • FIG. 5 is a schematic plan view of the second electrode layer 40 showing an example of the present embodiment.
  • the second electrode layer 40 includes a plurality of second electrodes 42 extending in the second direction (Y direction) and arranged in a first direction (X direction) intersecting the second direction.
  • the second electrode 42 is composed of a plurality of second grids 56 of fine metal wires.
  • lattice 56 is comprised by enclosing a metal fine wire in the state mutually connected,
  • region is formed in the 2nd grating
  • an opening region is formed by four sides.
  • the second electrode 42 extends in the second direction as a whole.
  • the second grating 56 constitutes a plurality of grating groups arranged in a matrix continuously in the third direction and the fourth direction.
  • the second electrode 42 includes a lattice group having a small area indicated by a circled area A and a lattice group having a large area indicated by a circled area B. Small lattice areas and large lattice groups are alternately arranged along the second direction.
  • the lattice group having a small area and the lattice group having a large area are electrically connected by a thin metal wire.
  • a lattice group having a small area constitutes a first sensing unit
  • a lattice group having a large area constitutes a second sensing unit.
  • the first sensing unit is M + N ⁇ 9, and is composed of a lattice group of seven second lattices 56.
  • the second grating 56 when the second grating 56 is continuous seven or more in the third direction, the second grating 56 is arranged so as not to be continuous five or more in the fourth direction. That is, the second lattice 56 is not arranged in a matrix of 7 ⁇ 3 or more and restricts the lattice group from occupying a large area. It is important to satisfy M + N ⁇ 9.
  • the second sensing unit is M + N ⁇ 9, and is composed of a lattice group of 14 second lattices 56.
  • the second sensing unit preferably has an area of 1.5 times or more that of the first sensing unit. Further, the area of the second sensing part is preferably 7 mm 2 or less. The area can be obtained by (area of second grating 56) ⁇ (number of second gratings 56).
  • the second electrode 42 includes two branch electrodes extending in the first direction from the first sensing unit. By having the branch electrode, the sensing area can be widened.
  • the branch electrode is provided in the first sensing unit that is repeatedly arranged.
  • the same thing as the first electrode 12 can be applied to the line width and material of the fine metal wire constituting the second electrode 42.
  • the length of one side constituting the second grating 56 is 200 to 1000 ⁇ m, preferably 240 to 500 ⁇ m, like the first grating 26.
  • the second electrode 42 has a width W2 of 4 to 12 mm, preferably a width W2 of 5 to 7 mm or less. Similarly to the first electrode 12, it is preferable that one side of the second grating 56 is 240 to 500 ⁇ m and the width of the second electrode 42 is 5 to 7 mm.
  • the aperture ratio of the second electrode 42 is in the range of 98 to 99.8%.
  • the proportion of the second electrode 42 per unit area of the fine metal wire is 0.2 to 2%.
  • the surface resistivity of the second electrode 42 is 40 to 80 ⁇ / sq. Range.
  • the second grid 56 has a rectangular shape, but is not limited thereto, and can have the same shape as the first grid 26.
  • FIG. 6 is a plan view of the conductive sheet 1 in which the first electrode layer 10 and the second electrode layer 40 are disposed to face each other.
  • the first electrode 12 and the second electrode 42 are disposed so as to be orthogonal to each other, and constitute the conductive sheet 1.
  • the first electrode layer 10 and the second electrode layer 40 are arranged to face each other, but the first electrode 12 and the second electrode 42 are not opposed to each other. It arrange
  • the second electrode 42 is indicated by a thicker line than the first electrode 12 so that the first electrode 12 and the second electrode 42 can be easily recognized.
  • first electrode layer 10 and the second electrode layer 40 By arranging the first electrode layer 10 and the second electrode layer 40 to face each other, as shown in FIG. 6, a plurality of first gratings 26 and a plurality of second gratings 56 are continuously arranged on the entire surface. .
  • the arrangement of the plurality of first gratings 26 and the plurality of second gratings 56 continuously on the entire surface means a state in which the first grating 26 and the second grating 56 are continuous at a glance. Since the first grid 26 is formed on the first electrode layer 10 and the second grid 56 is formed on the second electrode layer 40, the first grid 26 and the second grid 56 are not physically connected. .
  • the first electrode layer 10 and the second electrode layer 40 may be continuous at first glance. Also. At first glance, the metal lines of the first grating 26 and the metal lines of the second grating 56 are not exactly linearly continuous, but it looks like that to the human naked eye, and the magnifying lens It also includes a state where there is a disconnection part or the line is slightly shifted when viewed through.
  • FIG. 7 is a partially enlarged view of the conductive sheet 1 shown in FIG.
  • the first electrode 12 and the second electrode 42 are disposed so as not to overlap each other when viewed from above.
  • the area C includes four first gratings 26-1 to 26-4 that constitute a part of the first electrode 12.
  • the first gratings 26-1 to 26-4 are arranged adjacent to the metal thin wires or the second gratings 56-1 to 56-2 constituting the second electrode 42 in the area C.
  • the first grating 26 and the second grating 56 are arranged adjacent to each other with four or less.
  • the capacitance Cm can be reduced.
  • the capacitance Cm decreases, the ratio ⁇ Cm / Cm of the capacitance ⁇ Cm that changes when touched with a finger increases, and the presence / absence of the finger is easily detected.
  • the first electrode 12 has a hexagonal repeating pattern in order to increase the sensing area, and the second electrode 42 Includes a branch electrode extending in the width direction of the second electrode 42.
  • FIG. 8 is a partially enlarged view of the conductive sheet 1 shown in FIG. Unlike the conductive sheet of FIG. 7, the conductive sheet of FIG. 8 has a dummy pattern.
  • FIG. 6 when viewed from the top, there is a gap between the first electrode 12 and the second electrode 42 where no fine metal wire is formed. In this gap, since it does not reflect even if it hits, it is recognized as a pattern and affects visibility.
  • dummy patterns 29 and 59 are formed by metal fine wires in the gap between the first electrode 12 and the second electrode 42.
  • the dummy pattern 29 is formed on the first electrode layer 10
  • the dummy pattern 59 is formed on the second electrode layer 40. Since the dummy patterns 29 and 59 are formed in the gap between the first electrode 12 and the second electrode 42, they may be formed on either the first electrode layer 10 or the second electrode layer 40. As long as the first electrode 12, the second electrode 42, and the dummy patterns 29 and 59 are viewed from the top, the first grating 26 and the second grating 56 may be in a continuous state at a glance.
  • FIGS. 9A to 9C the phenomenon of FIGS. 9A to 9C occurs.
  • FIG. 9A the first electrode 12 and the second electrode 42 are not displaced and match as designed.
  • FIG. 9B the first electrode 12 and the second electrode 42 are not arranged in a straight line.
  • FIG. 9C the first electrode 12 and the second electrode 42 are partially overlapped, and a gap (discontinuity) is partially generated. A portion where the first electrode 12 and the second electrode 42 overlap is a factor that deteriorates visibility because the fine metal wire looks thick.
  • the touch panel 100 includes a sensor body 102 and a control circuit (not shown) (configured by an IC (Integrated Circuit) circuit or the like).
  • the sensor body 102 includes the conductive sheet 1 and a protective layer 106 laminated thereon.
  • the conductive sheet 1 and the protective layer 106 are arranged on a display panel 110 in a display device 108 such as a liquid crystal display.
  • the first electrode layer 10 may be formed by forming a metal silver part (metal thin wire) and a light transmissive part (opening region) in the exposed part and the unexposed part, respectively.
  • a photoresist film on the copper foil formed on the first main surface of the transparent transparent insulating layer 30 is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched.
  • the first electrode layer 10 may be formed.
  • the first electrode layer 10 may be formed by printing a paste containing metal fine particles on the first main surface of the transparent transparent insulating layer 30 and performing metal plating on the paste.
  • the first electrode layer 10 may be printed on the first main surface of the transparent transparent insulating layer 30 by screen printing or gravure printing. Alternatively, the first electrode layer 10 may be formed on the first main surface of the transparent transparent insulating layer 30 by inkjet.
  • the second electrode layer 40 can be formed on the second main surface of the transparent insulating layer 30 by the same manufacturing method of the first electrode layer 10.
  • the exposed portion and the unexposed portion are respectively subjected to a metal portion and a light transmissive property.
  • the first electrode layer 10 and the second electrode layer 40 may be formed by forming a portion.
  • a conductive metal may be supported on the metal part by further performing physical development and / or plating treatment on the metal part. More specific contents are disclosed in JP2003-213437, JP2006-64923, JP2006-58797, JP2006-135271, and the like.
  • the first electrode surface 10 and the second electrode layer 40 having a desired pattern are obtained by adopting a method in which the first main surface is first exposed and then the second main surface is exposed. It may not be possible.
  • the following production method can be preferably employed.
  • the photosensitive silver halide emulsion layer formed on both surfaces of the transparent insulating layer 30 is collectively exposed to form the first electrode layer 10 on one main surface of the transparent insulating layer 30.
  • the second electrode layer 40 is formed on the other main surface.
  • the photosensitive material includes a transparent insulating layer 30, a photosensitive silver halide emulsion layer (hereinafter referred to as a first photosensitive layer) formed on the first main surface of the transparent insulating layer 30, and the other main layer of the transparent insulating layer 30. And a photosensitive silver halide emulsion layer (hereinafter referred to as a second photosensitive layer) formed on the surface.
  • a photosensitive silver halide emulsion layer hereinafter referred to as a second photosensitive layer
  • the photosensitive material is exposed.
  • the first photosensitive layer is irradiated with light toward the transparent insulating layer 30 to expose the first photosensitive layer along the first exposure pattern
  • the second photosensitive layer is exposed.
  • a second exposure process is performed in which light is irradiated toward the transparent insulating layer 30 to expose the second photosensitive layer along the second exposure pattern (double-sided simultaneous exposure).
  • the first photosensitive layer is irradiated with the first light (parallel light) through the first photomask
  • the second photosensitive layer is irradiated with the second light (parallel light).
  • the first light is obtained by converting the light emitted from the first light source into parallel light by the first collimator lens in the middle
  • the second light is obtained by converting the light emitted from the second light source in the middle of the first light. It is obtained by being converted into parallel light by a two-collimator lens.
  • the case where two light sources (the first light source and the second light source) are used is shown, but the light emitted from one light source is divided through the optical system, and the first light and the second light are divided.
  • the first photosensitive layer and the second photosensitive layer may be irradiated as light.
  • the exposed photosensitive material is developed to produce a conductive sheet 1 for a touch panel.
  • the conductive sheet 1 for a touch panel includes a transparent insulating layer 30, the first electrode layer 10 along the first exposure pattern formed on the first main surface of the transparent insulating layer 30, and the other main electrode of the transparent insulating layer 30. And a second electrode layer 40 along the second exposure pattern formed on the surface.
  • the preferable numerical range should be determined unambiguously. However, the exposure time and the development time are adjusted so that the development rate becomes 100%.
  • the first exposure process includes, for example, arranging a first photomask on the first photosensitive layer in close contact with the first light source arranged opposite to the first photomask.
  • the first photosensitive layer is exposed by irradiating the first light toward one photomask.
  • the first photomask is composed of a glass substrate formed of transparent soda glass and a mask pattern (first exposure pattern) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive layer along the first exposure pattern formed on the first photomask. A gap of about 2 to 10 ⁇ m may be provided between the first photosensitive layer and the first photomask.
  • a second photomask is disposed in close contact with the second photosensitive layer, and the second light source disposed opposite to the second photomask is secondly directed toward the second photomask.
  • the second photosensitive layer is exposed by irradiating light.
  • the second photomask is composed of a glass substrate made of transparent soda glass and a mask pattern (second exposure pattern) formed on the glass substrate. Therefore, the second exposure process exposes a portion of the second photosensitive layer along the second exposure pattern formed on the second photomask. In this case, a gap of about 2 to 10 ⁇ m may be provided between the second photosensitive layer and the second photomask.
  • the emission timing of the first light from the first light source and the emission timing of the second light from the second light source may be simultaneous or different.
  • the first photosensitive layer and the second photosensitive layer can be exposed simultaneously by one exposure process, and the processing time can be shortened.
  • the first light from the first light source that has reached the first photosensitive layer is scattered by the silver halide grains in the first photosensitive layer, passes through the transparent insulating layer 30 as scattered light, and a part thereof is the first light. Reach up to 2 photosensitive layers. Then, the boundary portion between the second photosensitive layer and the transparent insulating layer 30 is exposed over a wide range, and a latent image is formed. For this reason, in the second photosensitive layer, exposure with the second light from the second light source and exposure with the first light from the first light source are performed, and when the conductive sheet 1 for touch panel is formed in the subsequent development processing.
  • a thin conductive layer by the first light from the first light source is formed between the conductive patterns, and a desired pattern (along the second exposure pattern) Pattern) cannot be obtained.
  • the silver halide itself absorbs light and can limit light transmission to the back side.
  • the thickness of the first photosensitive layer and the second photosensitive layer can be set to 1 ⁇ m or more and 4 ⁇ m or less.
  • the upper limit is preferably 2.5 ⁇ m.
  • the coated silver amount of the first photosensitive layer and the second photosensitive layer was regulated to 5 to 20 g / m 2 .
  • the first light from the first light source reaching the first photosensitive layer is set and defined by setting the thickness of the first photosensitive layer and the second photosensitive layer, the coating silver amount, and the volume ratio of silver / binder. Does not reach the second photosensitive layer.
  • the second light from the second light source that has reached the second photosensitive layer does not reach the first photosensitive layer.
  • the first photosensitive layer and the second photosensitive layer that have both conductivity and suitability for double-sided exposure.
  • the same pattern or different patterns can be arbitrarily formed on both surfaces of the transparent insulating layer 30 by the exposure process on one transparent insulating layer 30, thereby easily forming the electrodes of the touch panel.
  • the touch panel can be made thinner (low profile).
  • the manufacturing method of the conductive sheet 1 according to the present embodiment includes the following three forms depending on the photosensitive material and the form of development processing.
  • a photosensitive silver halide black-and-white photosensitive material that does not contain physical development nuclei and an image-receiving sheet having a non-photosensitive layer that contains physical development nuclei are overlapped and transferred to develop a non-photosensitive image-receiving sheet. Form formed on top.
  • the above aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material.
  • the resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
  • the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion.
  • a characteristic film is formed.
  • This is also an integrated black-and-white development type. Although the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
  • the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, whereby a light transmitting conductive film or the like is formed on the image receiving sheet.
  • a conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
  • either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material).
  • Transparent insulating layer 30 examples include a plastic film, a plastic plate, and a glass plate.
  • the raw material for the plastic film and plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), polystyrene, ethylene vinyl acetate (EVA) / cyclo Polyolefins such as olefin polymer (COP) / cycloolefin polymer (COC); vinyl resins; others, polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), and the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene
  • EVA ethylene vinyl acetate
  • COP olefin polymer
  • COC olefin polymer
  • vinyl resins others, polycarbonate (PC), polyamide, poly
  • the silver salt emulsion layer to be the first electrode layer 10 and the second electrode layer 40 of the conductive sheet 1 contains additives such as a solvent and a dye in addition to the silver salt and the binder.
  • Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
  • Silver coating amount of silver salt emulsion layer is preferably 1 ⁇ 30g / m 2 in terms of silver, more preferably 1 ⁇ 25g / m 2, more preferably 5 ⁇ 20g / m 2 .
  • binder used in this embodiment examples include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • acid polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
  • the content of the binder contained in the silver salt emulsion layer is not particularly limited, and can be appropriately determined as long as dispersibility and adhesion can be exhibited.
  • the binder content in the silver salt emulsion layer is preferably 1 ⁇ 4 or more, more preferably 1 ⁇ 2 or more in terms of the silver / binder volume ratio.
  • the silver / binder volume ratio is preferably 100/1 or less, more preferably 50/1 or less, further preferably 10/1 or less, and particularly preferably 6/1 or less.
  • the silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1.
  • the silver / binder volume ratio is converted from the amount of silver halide / binder amount (weight ratio) of the raw material to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain
  • the solvent used for forming the silver salt emulsion layer is not particularly limited.
  • water organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl sulfoxide, etc. Sulphoxides such as, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
  • the content of the solvent used in the silver salt emulsion layer of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of silver salt and binder contained in the silver salt emulsion layer, and 50 to 80%. It is preferably in the range of mass%.
  • the various additives used in the present embodiment are not particularly limited, and known ones can be preferably used.
  • a protective layer (not shown) may be provided on the silver salt emulsion layer.
  • the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer, and is formed on a silver salt emulsion layer having photosensitivity in order to exhibit an effect of preventing scratches and improving mechanical properties. It is formed.
  • the thickness is preferably 0.5 ⁇ m or less.
  • the coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected.
  • An undercoat layer for example, can be provided below the silver salt emulsion layer.
  • the case where the first electrode layer 10 and the second electrode layer 40 are applied by a printing method is included, but the first electrode layer 10 and the second electrode layer 40 are formed by exposure and development, etc., except for the printing method.
  • exposure is performed on a photosensitive material having a silver salt-containing layer provided on the transparent insulating layer 30 or a photosensitive material coated with a photopolymer for photolithography.
  • the exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
  • a method through a glass mask or a pattern exposure method by laser drawing is preferable.
  • development processing is further performed.
  • the development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like.
  • the development process in the present embodiment can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part.
  • a fixing process technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the light-sensitive material that has been subjected to development and fixing processing is preferably subjected to a film hardening process, a water washing process, and a stabilization process.
  • the mass of the metallic silver contained in the exposed part after the development treatment is preferably 50% by mass or more, and 80% by mass or more, based on the mass of silver contained in the exposed part before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
  • the gradation after the development processing in the present embodiment is not particularly limited, but is preferably more than 4.0.
  • the conductivity of the conductive metal portion can be increased while keeping the light transmissive property of the light transmissive portion high.
  • means for setting the gradation to 4.0 or higher include the aforementioned doping of rhodium ions and iridium ions.
  • the conductive sheet is obtained through the above steps, but the surface resistivity of the obtained conductive sheet is 40-80 ⁇ / sq. The following is preferred.
  • the conductive sheet after the development treatment may be further subjected to a calendar treatment, and can be adjusted to a desired surface resistivity by the calendar treatment.
  • Hardening after development It is preferable to perform a film hardening process by immersing the film in a hardener after the silver salt emulsion layer is developed.
  • the hardener include dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane, and inorganic compounds such as boric acid and chromium alum / potassium alum. No. 141279 can be mentioned.
  • the conductive metal particles may be supported on the metallic silver portion by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion by combining physical development and plating treatment. May be.
  • the thing which performed the physical development and / or the plating process to the metal silver part is called "conductive metal part".
  • Oxidation treatment it is preferable to subject the metallic silver portion after the development treatment and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment.
  • oxidation treatment for example, when a metal is slightly deposited on the light transmissive portion, the metal can be removed and the light transmissive portion can be made almost 100% transparent.
  • the “light transmissive part” in the present embodiment means a part having translucency other than the first electrode layer 10 and the second electrode layer 40 in the conductive sheet 1.
  • the transmittance in the light transmissive portion is 90% or more, preferably the transmittance indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the transparent insulating layer 30. Is 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
  • the film thickness of the transparent insulating layer 30 in the conductive sheet 1 according to the present embodiment is preferably 5 to 350 ⁇ m, and more preferably 30 to 150 ⁇ m. If it is in the range of 5 to 350 ⁇ m, a desired visible light transmittance can be obtained, and handling is easy.
  • the thickness of the metallic silver portion provided on the transparent insulating layer 30 can be appropriately determined according to the coating thickness of the silver salt-containing layer coating applied on the transparent insulating layer 30.
  • the thickness of the metallic silver part can be selected from 1.0 ⁇ 10 ⁇ 5 to 0.2 mm, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and 0.01 to 9 ⁇ m. More preferably, the thickness is 0.05 to 5 ⁇ m.
  • a metal silver part is pattern shape.
  • the metallic silver part may be a single layer or a multilayer structure of two or more layers. When the metallic silver portion is patterned and has a multilayer structure of two or more layers, different color sensitivities can be imparted so as to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, a different pattern can be formed in each layer.
  • the thickness of the conductive metal part is preferably as the thickness of the touch panel is thinner because the viewing angle of the display panel is wider, and a thin film is also required for improving the visibility. From such a viewpoint, the thickness of the layer made of the conductive metal supported on the conductive metal portion is desirably less than 9 ⁇ m, less than 5 ⁇ m, less than 3 ⁇ m, and 0.1 ⁇ m or more.
  • the thickness of the layer made of conductive metal particles is formed by controlling the coating thickness of the silver salt-containing layer described above to form a metallic silver portion having a desired thickness, and further by physical development and / or plating treatment. Therefore, even the conductive sheet 1 having a thickness of less than 5 ⁇ m, preferably less than 3 ⁇ m can be easily formed.
  • the conductive sheet and the touch panel according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. Further, it can be used in appropriate combination with the techniques disclosed in JP2011-113149, JP2011-129501, JP2011-129112, JP2011-134311, JP2011-175628, and the like.
  • K 3 Rh 2 Br 9 and K 2 IrCl 6 were added so as to have a concentration of 10 ⁇ 7 (mol / mol silver), and silver bromide grains were doped with Rh ions and Ir ions. .
  • the coating amount of silver was 10 g / m 2. It apply
  • a 30 cm wide PET support was applied for 20 m in a width of 25 cm, and both ends were cut off by 3 cm so as to leave a central portion of the coating, and a roll-shaped silver halide photosensitive material was obtained.
  • Exposure With respect to the exposure pattern, a plurality of photomasks having different numbers of lattices, aperture ratios, line widths, and the like were prepared, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source via these photomasks.
  • ⁇ Tests 1 to 12> Using multiple photomasks, changing the conditions of the lattice group size (M ⁇ N), aperture ratio, surface resistivity, metal wire occupancy, electrode width, and length of one side of the lattice Thus, conductive sheets of Tests 1 to 12 were produced. For Tests 1 to 12, visibility was evaluated. The evaluation of visibility was judged by visual observation, and A was given when the lattice group was almost invisible, B was given when the lattice group was slightly visible but C was given when the lattice group was clearly visible. Table 1 shows the conditions and evaluation results of tests 1 to 12.
  • Tests 1 to 10 satisfying M + N ⁇ 9 obtained an evaluation of B or more for visibility.
  • the evaluation of A was made especially when the length of one side of the lattice was 500 ⁇ m or less.
  • tests 11 and 12 with M + N> 9 were C evaluations even when the length of one side of the grating was 500 ⁇ m.
  • SYMBOLS 1 Conductive sheet, 10 ... 1st electrode layer, 12 ... 1st electrode, 14 ... 1st electrode terminal, 16 ... 1st wiring, 26 ... 1st grating

Abstract

Provided are an electrically conductive sheet with improved visibility, and a touch panel. In an electrically conductive sheet (1), a first electrode layer (10) having a plurality of columns of first electrodes (12), a transparent insulation layer (30), and a second electrode layer (40) having a plurality of columns of second electrodes (42) are stacked in that order. The first electrodes (12) include a plurality of first lattices (26), the plurality of first lattices (26) including M × N lattice groups. The second electrodes (42) include a plurality of second lattices (56), the plurality of second lattices (56) including M × N lattice groups. The first electrode layer (10) and the second electrode layer (40) are disposed such that the plurality of first lattices (26) and the plurality of second lattices (56) do not overlap each other, and such that, when viewed from above, the plurality of first lattices (26) and the plurality of second lattices (56) are continuous on an entire surface. M and N are integers such that M + N ≤ 9.

Description

導電シート及びタッチパネルConductive sheet and touch panel
 本発明は、導電シート及びタッチパネルに関する。 The present invention relates to a conductive sheet and a touch panel.
 近年、携帯端末やコンピューターの入力装置として、タッチパネルが多く利用されている。タッチパネルは、ディスプレイの表面に配置され、指等の接触された位置を検出し、入力操作を行う。タッチパネルにおける位置検出方法として静電容量方式等が知られている。 In recent years, many touch panels have been used as input devices for mobile terminals and computers. A touch panel is arrange | positioned on the surface of a display, detects the contact position, such as a finger | toe, and performs input operation. A capacitance method or the like is known as a position detection method for a touch panel.
 例えば静電容量方式のタッチパネルでは、視認性の観点から、透明電極パターンの材料としてITO(酸化インジウムスズ)が用いられている。しかしながら、ITOが高い配線抵抗を有し、充分な透明性を有していないことから、金属細線を用いた透明電極パターンをタッチパネルに使用することが検討されている。 For example, in a capacitive touch panel, ITO (indium tin oxide) is used as a material for the transparent electrode pattern from the viewpoint of visibility. However, since ITO has a high wiring resistance and does not have sufficient transparency, use of a transparent electrode pattern using a thin metal wire for a touch panel has been studied.
 例えば、特許文献1-4は、金属細線による格子で構成され一方向に並列に配置された複数の第1電極と、金属細線による格子で構成され第1電極と直交する方向に並列に配置された複数の第2電極と、を備える導電シートを含むタッチパネルを開示する。 For example, in Patent Documents 1-4, a plurality of first electrodes configured by a grid of fine metal wires and arranged in parallel in one direction and a plurality of first electrodes configured by a grid of metal fine wires and arranged in parallel in a direction orthogonal to the first electrode. A touch panel including a conductive sheet including a plurality of second electrodes is disclosed.
国際公開第2010/013679号パンフレットInternational Publication No. 2010/013679 Pamphlet 国際公開第2011/062301号パンフレットInternational Publication No. 2011-0662301 Pamphlet 特開2011-237839号公報JP 2011-237839 A 特表2012-508937号公報Special table 2012-508937 gazette
 上述の導電シートを構成する第1電極、及び第2電極は、金属細線の格子が配置されている領域と、金属細線の格子が配置されていない領域とを含んでいる。そして、第1電極と第2電極とを重ね合わせることにより、平面視において格子状の金属細線が全面に均一の配置となるように導電シートは構成されている。これにより導電シートの視認性の改善を図っている。 1st electrode and 2nd electrode which comprise the above-mentioned electrically conductive sheet contain the area | region where the metal fine wire grid | lattice is arrange | positioned, and the area | region where the metal fine wire grid | lattice is not arrange | positioned. The conductive sheet is configured so that the grid-like fine metal wires are uniformly arranged on the entire surface in a plan view by superimposing the first electrode and the second electrode. This improves the visibility of the conductive sheet.
 この導電シートに光が当たった場合、第1電極及び第2電極を構成する金属細線の格子の領域で光が反射される。しかしながら、第1電極と第2電極とで微妙に光の反射率が異なるため、僅かな反射光量の差で電極が視認される問題があった。 When light hits this conductive sheet, the light is reflected in the area of the fine metal wire lattice constituting the first electrode and the second electrode. However, since the reflectance of light is slightly different between the first electrode and the second electrode, there is a problem that the electrode is visually recognized with a slight difference in the amount of reflected light.
 本発明はこのような課題を考慮してなされたものであり、金属細線の格子の電極を有する導電シート及びタッチパネルであって、視認性が改善された導電シート及びタッチパネルを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a conductive sheet and a touch panel having an electrode of a fine metal wire grid, and having improved visibility. To do.
 本発明の一態様の導電シートは、第一方向に延び、前記第一方向と交差する第二方向に並ぶ複数の第一電極を有する第一電極層と、透明絶縁層と、第二方向に延び第一方向に並ぶ複数の第二電極を有する第二電極層と、がこの順で積層された導電シートであって、第一電極は幅方向に広がる分岐電極を有し、かつ第一電極は金属細線による複数の第一格子で構成され、複数の第一格子はM×Nの格子群で構成され、第二電極は幅方向に広がる分岐電極を有し、かつ第二電極は金属細線による複数の第二格子で構成され、複数の第二格子はM×Nの格子群で構成され、第一電極層と第二電極層とは、複数の第一格子と複数の第二格子とが重なり合わないように、且つ上面から見たとき、前記複数の第一格子と前記複数の第二格子とが全面に連続して配置され、M,Nは整数でM+N≦9である。 The conductive sheet of one embodiment of the present invention includes a first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction, a transparent insulating layer, and a second direction. And a second electrode layer having a plurality of second electrodes extending in the first direction, and a conductive sheet laminated in this order, the first electrode having a branch electrode extending in the width direction, and the first electrode Is composed of a plurality of first lattices made of fine metal wires, the plurality of first lattices is composed of M × N lattice groups, the second electrode has branch electrodes extending in the width direction, and the second electrode is made of fine metal wires The plurality of second lattices are composed of M × N lattice groups, and the first electrode layer and the second electrode layer include a plurality of first lattices and a plurality of second lattices. When viewed from above, the plurality of first lattices and the plurality of second lattices are continuous over the entire surface. M and N are integers and M + N ≦ 9.
 好ましくは、導電シートは、第一電極は98~99.8%の開口率と、40~80Ω/sq.の表面抵抗率を有し、第二電極は98~99.5%の開口率と、40~80Ω/sq.の表面抵抗率を有する。 Preferably, in the conductive sheet, the first electrode has an aperture ratio of 98 to 99.8% and 40 to 80Ω / sq. The second electrode has an aperture ratio of 98-99.5% and 40-80 Ω / sq. Surface resistivity.
 好ましくは、導電シートは、第一電極層と第二電極層とは、複数の第一格子と複数の第二格子とが重なり合わないように、且つ上面から見たとき、複数の第一格子と複数の第二格子とはそれぞれ4個以下で隣接配置される。 Preferably, the conductive sheet has a plurality of first grids when the first electrode layer and the second electrode layer are viewed from above so that the plurality of first grids and the plurality of second grids do not overlap. And the plurality of second lattices are adjacent to each other by four or less.
 好ましくは、導電シートは、第一格子及び第二格子を構成する各金属細線の単位面積当たりに占める割合は0.2~2%である。 Preferably, in the conductive sheet, the proportion of the fine metal wires constituting the first lattice and the second lattice per unit area is 0.2 to 2%.
 好ましくは、導電シートは、第一格子及び第二格子は、それぞれ200~1000μmの一辺を有する。 Preferably, in the conductive sheet, the first grid and the second grid each have one side of 200 to 1000 μm.
 好ましくは、導電シートは、第一電極及び第二電極は、4~12mmの幅を有する。 Preferably, in the conductive sheet, the first electrode and the second electrode have a width of 4 to 12 mm.
 好ましくは、導電シートは、第一格子及び第二格子は、それぞれ240~500μmの一辺を有し、前記第一電極及び前記第二電極は、5~7mmの幅を有する。 Preferably, in the conductive sheet, the first grid and the second grid each have one side of 240 to 500 μm, and the first electrode and the second electrode have a width of 5 to 7 mm.
 好ましくは、導電シートは、M,N共に4以下である。 Preferably, the conductive sheet is 4 or less in both M and N.
 本発明の二態様のタッチパネルは、上記の導電シートを有する。 The touch panel according to the second aspect of the present invention has the above conductive sheet.
 本発明の三態様の導電シートは、第一方向に延び、前記第一方向と交差する第二方向に並ぶ複数の第一電極を有する第一電極層と、透明絶縁層と、第二方向に延び第一方向に並ぶ複数の第二電極を有する第二電極層と、がこの順で積層された導電シートであって、第一電極は、金属細線による複数の第一格子を有して構成され、第二電極は、金属細線による複数の第二格子を有し、4以上8以下の第二格子からなる第一感知部と9以上20以下の第二格子からなる第二感知部とが交互に配置されて構成され、第一電極層と第二電極層とは、複数の第一格子と複数の第二格子とが重なり合わないように、且つ上面から見たとき、前記複数の第一格子と前記複数の第二格子とが全面に連続して配置される。 The conductive sheet according to the three aspects of the present invention includes a first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction, a transparent insulating layer, and a second direction. And a second electrode layer having a plurality of second electrodes extending in the first direction, and a conductive sheet laminated in this order, wherein the first electrode has a plurality of first grids of fine metal wires The second electrode has a plurality of second gratings made of fine metal wires, and a first sensing part comprising a second grating of 4 or more and 8 or less and a second sensing part comprising a second grating of 9 or more and 20 or less. The first electrode layer and the second electrode layer are arranged alternately so that the plurality of first lattices and the plurality of second lattices do not overlap with each other when viewed from above. One lattice and the plurality of second lattices are continuously arranged on the entire surface.
 本発明の四態様の導電シートは、第一方向に延び、前記第一方向と交差する第二方向に並ぶ複数の第一電極を有する第一電極層と、透明絶縁層と、第二方向に延び第一方向に並ぶ複数の第二電極を有する第二電極層と、がこの順で積層された導電シートであって、第一電極は、金属細線による複数の第一格子を有して構成され、第二電極は、金属細線による複数の第二格子を有し、第一感知部と該第一感知部の1.5倍以上の面積を有する第二感知部とが交互に配置されて構成され、第一電極層と第二電極層とは、複数の第一格子と前記複数の第二格子とが重なり合わないように、且つ上面から見たとき、複数の第一格子と複数の第二格子とが全面に連続して配置される。 The conductive sheet according to the four aspects of the present invention includes a first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction, a transparent insulating layer, and a second direction. And a second electrode layer having a plurality of second electrodes extending in the first direction, and a conductive sheet laminated in this order, wherein the first electrode has a plurality of first grids of fine metal wires The second electrode has a plurality of second grids made of thin metal wires, and the first sensing units and the second sensing units having an area 1.5 times larger than the first sensing unit are alternately arranged. The first electrode layer and the second electrode layer are configured such that the plurality of first lattices and the plurality of second lattices do not overlap with each other and when viewed from the top surface, The second lattice is continuously arranged on the entire surface.
 好ましくは、導電シートは、第一格子と第二格子が同じ形状である。 Preferably, in the conductive sheet, the first grid and the second grid have the same shape.
 好ましくは、導電シートは、第一電極の2以上の第一格子からなる感知部が第二電極の第二感知部を囲んでいる。 Preferably, in the conductive sheet, a sensing unit composed of two or more first grids of the first electrode surrounds the second sensing unit of the second electrode.
 好ましくは、導電シートは、第二感知部が7mm以下の面積を有する。 Preferably, in the conductive sheet, the second sensing portion has an area of 7 mm 2 or less.
 本発明によれば、金属細線の格子で構成された電極を有する導電シート及びタッチパネルにおいて、視認性を改善することができる。 According to the present invention, visibility can be improved in a conductive sheet and a touch panel having electrodes formed of a metal thin wire grid.
図1は、導電シートの概略平面図である。FIG. 1 is a schematic plan view of a conductive sheet. 図2は、導電シートの概略断面図である。FIG. 2 is a schematic cross-sectional view of a conductive sheet. 図3は、ダイヤモンドパターンで構成された導電シートの平面図である。FIG. 3 is a plan view of a conductive sheet composed of a diamond pattern. 図4は、第一電極層の概略平面図である。FIG. 4 is a schematic plan view of the first electrode layer. 図5は、第二電極層の概略平面図である。FIG. 5 is a schematic plan view of the second electrode layer. 図6は、第一電極層と第二電極層とを重ねた導電シートの概略平面図である。FIG. 6 is a schematic plan view of a conductive sheet in which a first electrode layer and a second electrode layer are overlaid. 図7は、導電シートの部分拡大図である。FIG. 7 is a partially enlarged view of the conductive sheet. 図8は、導電シートの部分拡大図である。FIG. 8 is a partially enlarged view of the conductive sheet. 図9Aは、第一電極と第二電極との重なり状態を示す平面図である。FIG. 9A is a plan view showing an overlapping state of the first electrode and the second electrode. 図9Bは、第一電極と第二電極との重なり状態を示す平面図である。FIG. 9B is a plan view showing an overlapping state of the first electrode and the second electrode. 図9Cは、第一電極と第二電極との重なり状態を示す平面図である。FIG. 9C is a plan view showing an overlapping state of the first electrode and the second electrode. 図10は、タッチパネルの構成を示す分解斜視図である。FIG. 10 is an exploded perspective view showing the configuration of the touch panel.
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱することなく、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention will be described by the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments than the present embodiment are utilized. be able to. Accordingly, all modifications within the scope of the present invention are included in the claims. In the present specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 図1は、タッチパネル用の導電シート1の概略平面図であり、図2は、導電シート1の概略断面図である。導電シート1は、第一方向(X方向)に延び、第一方向と交差する第二方向(Y方向)に並ぶ複数の第一電極12を有する第一電極層10と、透明絶縁層30と、第二方向(Y方向)に延び第一方向(X方向)に並ぶ複数の第二電極42を有する第二電極層40とを備える。 FIG. 1 is a schematic plan view of a conductive sheet 1 for a touch panel, and FIG. 2 is a schematic cross-sectional view of the conductive sheet 1. The conductive sheet 1 extends in a first direction (X direction), has a first electrode layer 10 having a plurality of first electrodes 12 arranged in a second direction (Y direction) intersecting the first direction, a transparent insulating layer 30, And a second electrode layer 40 having a plurality of second electrodes 42 extending in the second direction (Y direction) and arranged in the first direction (X direction).
 各第一電極12は、その一端において、第一電極端子14と電気的に接続される。さらに、各第一電極端子14は導電性の第一配線16と電気的に接続される。各第二電極42は、その一端において、第二電極端子44と電気的に接続される。各第二電極端子44は導電性の第二配線46と電気的に接続される。第一電極12及び第二電極42は、それぞれ金属細線の格子で構成されている。 Each first electrode 12 is electrically connected to the first electrode terminal 14 at one end thereof. Further, each first electrode terminal 14 is electrically connected to the conductive first wiring 16. Each second electrode 42 is electrically connected to the second electrode terminal 44 at one end thereof. Each second electrode terminal 44 is electrically connected to the conductive second wiring 46. The first electrode 12 and the second electrode 42 are each composed of a grid of fine metal wires.
 導電シート1は、第1の主面と第2の主面とを有する透明絶縁層30と、透明絶縁層30の第1の主面に配置された第一電極層10と、透明絶縁層30の第2の主面に配置された第二電極層40と、を有する。図2に示すように、第一電極12と第二電極42とは透明絶縁層30を挟んで形成されるが、第一電極12と第二電極42とは対向する位置に設けられていない。一方、導電シート1を上面視した場合には、全面に均一な電極と見えるように第一電極12と第二電極42とは透明絶縁層30の第1の主面と第2の主面とに形成されている。 The conductive sheet 1 includes a transparent insulating layer 30 having a first main surface and a second main surface, a first electrode layer 10 disposed on the first main surface of the transparent insulating layer 30, and a transparent insulating layer 30. And a second electrode layer 40 disposed on the second main surface. As shown in FIG. 2, the first electrode 12 and the second electrode 42 are formed with the transparent insulating layer 30 interposed therebetween, but the first electrode 12 and the second electrode 42 are not provided at positions facing each other. On the other hand, when the conductive sheet 1 is viewed from the top, the first electrode 12 and the second electrode 42 are formed of a first main surface and a second main surface of the transparent insulating layer 30 so that the entire surface can be seen as a uniform electrode. Is formed.
 本発明者は、上述の構成の導電シートに光が当たった際に生じる、僅かな反射光量の差で電極が視認される問題について鋭意検討した。 The inventor has intensively studied the problem that the electrode is visually recognized due to a slight difference in the amount of reflected light that is generated when light hits the conductive sheet having the above-described configuration.
 図3は、一般的な、いわゆるダイヤモンドパターンで構成される導電シート101の概略平面図である。導電シート101は第一電極112と第二電極142とを備えている。第一電極112は複数の金属細線の格子126で構成され、第二電極142は複数の金属細線の格子156で構成されている。第一電極112と第二電極142とを明確にするため、第一電極112を第二電極142より太く表示している。第一電極112は、8×8の複数の格子126からなる2つの格子群132を有している。同様に、第二電極142も8×8の複数の格子156からなる2つの格子群162を有している。 FIG. 3 is a schematic plan view of a conductive sheet 101 composed of a general so-called diamond pattern. The conductive sheet 101 includes a first electrode 112 and a second electrode 142. The first electrode 112 is composed of a plurality of fine metal grids 126, and the second electrode 142 is composed of a plurality of fine metal grids 156. In order to clarify the first electrode 112 and the second electrode 142, the first electrode 112 is displayed thicker than the second electrode 142. The first electrode 112 has two lattice groups 132 including a plurality of 8 × 8 lattices 126. Similarly, the second electrode 142 includes two lattice groups 162 including a plurality of 8 × 8 lattices 156.
 導電シート101に光が当たると、格子群132及び格子群162の領域で光が反射される。格子群132及び格子群162は、いずれも8×8の複数の格子126,156で構成され、格子群132及び格子群162は比較的大きな面積を有している。格子群132と格子群162とで、反射率の差が小さいとしても、面積が大きいと僅かな反射光量の差であっても電極が視認されやすいことを見出した。 When light hits the conductive sheet 101, the light is reflected in the region of the lattice group 132 and the lattice group 162. Each of the lattice group 132 and the lattice group 162 includes a plurality of 8 × 8 lattices 126 and 156, and the lattice group 132 and the lattice group 162 have a relatively large area. It has been found that even if the difference in reflectance between the grating group 132 and the grating group 162 is small, the electrode is easily visible even if the difference in the amount of reflected light is small when the area is large.
 その結果、第一電極及び第二電極をできるだけ細分化してその格子群の面積を小さくし、さらに、第一電極及び第二電極を、幅方向に広がるように分岐させた分岐電極を構成するようにすることで、僅かな反射光量の違いが人の目に視認されにくくなることを見出し、本発明を発明するに至った。 As a result, the first electrode and the second electrode are subdivided as much as possible to reduce the area of the lattice group, and the first electrode and the second electrode are branched so as to extend in the width direction. As a result, it was found that a slight difference in the amount of reflected light is less visible to the human eye, and the present invention was invented.
 図4は、本実施形態の一例を示す第一電極層10の概略平面図である。第一電極層10は第一方向(X方向)に延び、第一方向と交差する第二方向(Y方向)に並ぶ複数の第一電極12を有している。第一電極12は金属細線の複数の第一格子26で構成されている。第一格子26は、金属細線同士を互いに導通する状態で囲むことで構成され、第一格子26には開口領域が形成されている。本実施の形態の第一格子26は4つの辺により開口領域が形成されている。 FIG. 4 is a schematic plan view of the first electrode layer 10 showing an example of the present embodiment. The first electrode layer 10 includes a plurality of first electrodes 12 extending in a first direction (X direction) and arranged in a second direction (Y direction) intersecting the first direction. The first electrode 12 is composed of a plurality of first grids 26 of fine metal wires. The 1st grating | lattice 26 is comprised by enclosing a metal fine wire in the state mutually connected, The opening area | region is formed in the 1st grating | lattice 26. FIG. In the first grating 26 of the present embodiment, an opening region is formed by four sides.
 第一電極12を全体として見れば第一方向に延びている。第一電極12を構成する各第一格子26を見れば、第一格子26-1を起点に、第三方向に沿って第一電極12の幅方向に広がるように連続して延びている。また、第一格子26-1を起点に、第四方向に沿って第一電極12の幅方向に広がるように連続して延びている。つまり、第一電極12は、第一格子26-1を起点に第三方向および第四方に沿って延びる分岐電極を有していることとなる。分岐電極を有することでセンシングできるエリアは広くすることができる。 The first electrode 12 extends in the first direction when viewed as a whole. Looking at each first grid 26 constituting the first electrode 12, the first grid 26-1 extends continuously from the first grid 26-1 so as to spread in the width direction of the first electrode 12 along the third direction. Further, starting from the first lattice 26-1, the first grid 26-1 extends continuously in the width direction of the first electrode 12 along the fourth direction. In other words, the first electrode 12 has branch electrodes extending in the third direction and the fourth direction starting from the first lattice 26-1. By having the branch electrode, the sensing area can be widened.
 第一格子26が連続するとは、2つの第一格子26が一つの辺を共有して隣接配置されている状態を意味する。但し、辺は共有せず角だけで2つの第一格子26が配置されている場合、第一格子26が連続する状態ではない。 The first grid 26 is continuous means that the two first grids 26 are adjacently arranged sharing one side. However, when the two first gratings 26 are arranged with only the corners without sharing the sides, the first gratings 26 are not in a continuous state.
 第三方向に沿って連続する第一格子26は、金属細線により導通され第1の方向に延びる。同様に第四方向に沿って連続する第一格子26は、金属細線により導通され第1の方向に延びる。 The first grid 26 continuous along the third direction is conducted by a thin metal wire and extends in the first direction. Similarly, the first grid 26 continuous along the fourth direction is conducted by the fine metal wires and extends in the first direction.
 第三方向の連続して広がるように延びた第一格子26は、次に第四方向に沿って、第一格子26-2向かって連続して延びる。また、第四方向の連続して広がるように延びた第一格子26は、次に第三方向に沿って、第一格子26-2向かって連続して延びる。これにより、丸印で囲んだ第一電極12の繰り返しパターンが構成される。本実施形態では一つの繰り返しパターンは6角形の形状を有しており、3つ繰り返しパターンが第一方向に延びている。 The first grating 26 extending so as to continuously spread in the third direction then extends continuously toward the first grating 26-2 along the fourth direction. In addition, the first grating 26 extending so as to continuously spread in the fourth direction then extends continuously toward the first grating 26-2 along the third direction. Thereby, the repeating pattern of the 1st electrode 12 enclosed with the circle mark is comprised. In this embodiment, one repeating pattern has a hexagonal shape, and three repeating patterns extend in the first direction.
 隣接する繰り返しパターンは、第一格子26-2と第一格子26-3とするにより、また、第一格子26-4と第一格子26-5とにより電気的に接続される。但し、第一格子26-2と第一格子26-3とは角同士が接続しており、また、第一格子26-4と第一格子26-5とは角同士が接続しているので、連続する第一格子26には該当しない。 Adjacent repeating patterns are electrically connected by the first grating 26-2 and the first grating 26-3, and by the first grating 26-4 and the first grating 26-5. However, the corners of the first grating 26-2 and the first grating 26-3 are connected to each other, and the corners of the first grating 26-4 and the first grating 26-5 are connected to each other. This does not correspond to the continuous first lattice 26.
 第一電極12は、図4に示すように、M×Nの複数の第一格子26による格子群で構成されている。ここで、M×Nの複数の第一格子26で構成される格子群とは、辺を共有する複数の第一格子26が行列状にM×Nで配置されている状態を意味する。このとき、M,Nは整数でM+N≦9となるよう、複数の第一格子26は配列される。複数の第一格子26がM×Nで配置されている場合において、格子群の面積が大きくなりすぎるのを防止する趣旨である。第一電極12の第一格子26による格子群をM+N≦9とすることにより、視認性を改善することができる。さらに、M,N共に4以下であることが好ましい。 As shown in FIG. 4, the first electrode 12 is composed of a lattice group of a plurality of M × N first lattices 26. Here, the lattice group composed of a plurality of M × N first lattices 26 means a state in which a plurality of first lattices 26 sharing a side are arranged in a matrix of M × N. At this time, the plurality of first lattices 26 are arranged so that M and N are integers and M + N ≦ 9. This is to prevent the area of the lattice group from becoming too large when the plurality of first lattices 26 are arranged in M × N. Visibility can be improved by setting the grid group of the first grid 12 of the first electrode 12 to M + N ≦ 9. Further, both M and N are preferably 4 or less.
 M,Nについて、例えばM=7、N=2の場合、M+N=9であり、M+N≦9を満たす。M×N=7×2となり、格子群は14個の第一格子26を含む。格子群の面積が大きくなりすぎないので視認性を改善することができる。 For M and N, for example, when M = 7 and N = 2, M + N = 9 and satisfies M + N ≦ 9. M × N = 7 × 2 and the lattice group includes 14 first lattices 26. Visibility can be improved because the area of the lattice group does not become too large.
 一方、M=5、N=5の場合、M+N=10であり、M+N≦9を満たさない。第一格子26で構成される格子群は全体として大きな面積を有するため、視認性の観点から好ましくない。 On the other hand, when M = 5 and N = 5, M + N = 10 and M + N ≦ 9 is not satisfied. Since the lattice group constituted by the first lattice 26 has a large area as a whole, it is not preferable from the viewpoint of visibility.
 図4においては、第三方向に沿って第一格子26がM×N=1×5で連続して格子群を形成する。また、第四方向に沿って、第一格子26がM×N=1×5で連続して格子群を形成する。図4においては、これらが最大面積を持つ格子群となる。図4の格子群はM+N≦9を満たすので、視認性を改善することができる。第一電極12は細長の形状を有しているので、M×N=2×7が好ましく、M×N=2×5がより好ましく、M×N=1×5がさらに好ましい。 In FIG. 4, along the third direction, the first lattice 26 continuously forms a lattice group with M × N = 1 × 5. Further, along the fourth direction, the first lattice 26 continuously forms a lattice group with M × N = 1 × 5. In FIG. 4, these are the lattice groups having the maximum area. Since the lattice group in FIG. 4 satisfies M + N ≦ 9, visibility can be improved. Since the first electrode 12 has an elongated shape, M × N = 2 × 7 is preferable, M × N = 2 × 5 is more preferable, and M × N = 1 × 5 is more preferable.
 また、別に観点から、第一電極12において、第一格子26が第三方向に対して7以上連続する場合に第四方向に3以上連続することがないよう第一格子26を配置する。つまり、第一格子26が7×3以上の行列状に配置されず、格子群が大きな面積を占めるのを規制するものである。M+N≦9を満たすことが重要となる。 Further, from another viewpoint, in the first electrode 12, the first grating 26 is arranged so that when the first grating 26 continues seven or more in the third direction, it does not continue three or more in the fourth direction. That is, the first lattice 26 is not arranged in a matrix of 7 × 3 or more and restricts the lattice group from occupying a large area. It is important to satisfy M + N ≦ 9.
 なお、方向に関して、第一電極12延びる方向と並ぶ方向とをそれぞれ第一方向と第二方向とし、連続する第一格子26の延びる方向を第三方向と第四方向とした。連続する第一格子26の延びる方向は第三方向と第四方向とに限定されず、第五方向等多くの方向を採りえることができる。 In addition, regarding the direction, the direction in which the first electrode 12 extends and the direction in which the first electrode 12 extends are defined as the first direction and the second direction, respectively, and the direction in which the continuous first lattice 26 extends is defined as the third direction and the fourth direction. The direction in which the continuous first lattice 26 extends is not limited to the third direction and the fourth direction, and many directions such as a fifth direction can be adopted.
 第一方向と第三方向、第二方向と第四方向とはそれぞれ同じであってもよいしそれぞれ一定の傾斜角度があってもよい。本実施の形態の図4では第一方向と第三方向、第二方向と第四方向とは一定の傾斜角度を有している。 The first direction and the third direction, the second direction and the fourth direction may be the same, or each may have a certain inclination angle. In FIG. 4 of the present embodiment, the first direction and the third direction, and the second direction and the fourth direction have a constant inclination angle.
 一般的に第一方向と第二方向は、導電シート1が使用される画面表示の縦と横の方向を指すがここでは特に特定しない。連続する第一格子26の方向と第一電極12の方向とに、モアレを起こしにくい角度を持たせることが好ましい。第一電極12の方向は画面の縦横方向に大略一致するが完全に同じでなくてもよい。 Generally, the first direction and the second direction indicate the vertical and horizontal directions of the screen display in which the conductive sheet 1 is used, but are not particularly specified here. It is preferable that the direction of the continuous first lattice 26 and the direction of the first electrode 12 have an angle at which moiré is unlikely to occur. The direction of the first electrode 12 substantially coincides with the vertical and horizontal directions of the screen, but may not be completely the same.
 第一電極12を構成する金属細線は30μm以下の線幅を有し、金属細線は金、銀、銅などの金属材料や金属酸化物等の導電材料で構成される。 The fine metal wire constituting the first electrode 12 has a line width of 30 μm or less, and the fine metal wire is made of a metal material such as gold, silver or copper, or a conductive material such as a metal oxide.
 金属細線の線幅に関して、30μm以下、好ましくは15μm以下、より好ましくは10μm以下、より好ましくは9μm以下、より好ましくは7μm以下であり、0.5μm以上、好ましくは1μm以上であることが望ましい。 Regarding the line width of the fine metal wire, it is 30 μm or less, preferably 15 μm or less, more preferably 10 μm or less, more preferably 9 μm or less, more preferably 7 μm or less, and preferably 0.5 μm or more, preferably 1 μm or more.
 第一電極12は交差する金属細線で構成される複数の第一格子26を含んでいる。第一格子26は金属細線で囲まれる開口領域を含んでいる。第一格子26は200~1000μmの一辺を有するのが好ましい。第一格子26は240~500μmの一辺を有することがさらに好ましい。この範囲とすることにより光透過率に優れ細線を視認しがたくすることができる。 The first electrode 12 includes a plurality of first lattices 26 made of intersecting fine metal wires. The first lattice 26 includes an opening region surrounded by fine metal wires. The first grating 26 preferably has one side of 200 to 1000 μm. More preferably, the first grating 26 has one side of 240 to 500 μm. By setting it as this range, it is excellent in light transmittance and it is hard to visually recognize a thin line.
 第一電極12は4~12mm以下の幅W1の範囲であり、好ましくは5~7mmの幅W1の範囲である。この範囲とすることにより指タッチに適合した電極幅にすることができる。 The first electrode 12 has a width W1 of 4 to 12 mm or less, preferably a width W1 of 5 to 7 mm. By setting this range, the electrode width can be adapted to finger touch.
 特に、第一格子26の一辺を240~500μmとし、第一電極12の幅を5~7mmとすることで、低抵抗と視認性改良という効果を奏することができる。 In particular, when one side of the first grating 26 is 240 to 500 μm and the width of the first electrode 12 is 5 to 7 mm, the effects of low resistance and improved visibility can be achieved.
 第一電極12は可視光透過率の点から98~99.8%の開口率であることが好ましい。開口率とは、所定領域において第一電極12の金属細線に占められていない透光性部分の面積の全体に占める割合に相当する。つまり、金属細線の単位面積当たりに占める割合を1から引いたものに相当し、百分率で表したものである。したがって、金属細線の単位面積当たりに占める割合は、は0.2~2%となる。 The first electrode 12 preferably has an aperture ratio of 98 to 99.8% from the viewpoint of visible light transmittance. The aperture ratio corresponds to the ratio of the area of the translucent portion not occupied by the fine metal wires of the first electrode 12 in the predetermined region to the entire area. In other words, it corresponds to the ratio of the fine metal wire per unit area subtracted from 1, expressed as a percentage. Therefore, the ratio of the fine metal wires per unit area is 0.2 to 2%.
 第一電極12の表面抵抗率は10~120Ω/sq.、特に40~80Ω/sq.以下の範囲である。開口率と表面抵抗率とはトレードオフの関係がある。本実施の形態の導電シート1が適用される例えば電子ペーパ向けのディスプレイの場合、第一格子26を大きくして開口率を上げることを優先させ、パソコンモニターやタブレットPC向けのディスプレイの場合、表面抵抗率を下げることを優先させる。したがって、適用されるディスプレイを考慮して、開口率と表面抵抗率とが決定される。 The surface resistivity of the first electrode 12 is 10 to 120 Ω / sq. , Especially 40-80 Ω / sq. The range is as follows. There is a trade-off relationship between the aperture ratio and the surface resistivity. For example, in the case of a display for electronic paper to which the conductive sheet 1 of the present embodiment is applied, priority is given to increasing the first lattice 26 to increase the aperture ratio, and in the case of a display for a personal computer monitor or tablet PC, the surface Prioritize lowering resistivity. Therefore, the aperture ratio and the surface resistivity are determined in consideration of the applied display.
 表面抵抗率は、三菱化学株式会社製MCP-T610の表面抵抗率計で求めることができる。なお、測定の際には、電極と同じ線幅、格子の大きさ、開口率の約10cm×10cmの全面メッシュサンプル(切断部などのないもの)を作製して測定する。 The surface resistivity can be obtained with a surface resistivity meter of MCP-T610 manufactured by Mitsubishi Chemical Corporation. At the time of measurement, a full-face mesh sample (without a cut portion or the like) having the same line width, lattice size, and aperture ratio as that of the electrode is prepared and measured.
 上述の導電シート1では、第一格子26は矩形の形状を有している。但し、その他、多角形状としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。 In the conductive sheet 1 described above, the first lattice 26 has a rectangular shape. However, other polygonal shapes may be used. Further, the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape. In the case of an arc shape, for example, two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes. The shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
 図5は本実施形態の一例を示す第二電極層40の概略平面図である。第二電極層40は第二方向(Y方向)に延び、第二方向と交差する第一方向(X方向)に並ぶ複数の第二電極42を有している。第二電極42は金属細線の複数の第二格子56で構成されている。第二格子56は、金属細線同士を互いに導通する状態で囲むことで構成され、第二格子56には開口領域が形成されている。本実施の形態の第二格子56は4つの辺により開口領域が形成されている。 FIG. 5 is a schematic plan view of the second electrode layer 40 showing an example of the present embodiment. The second electrode layer 40 includes a plurality of second electrodes 42 extending in the second direction (Y direction) and arranged in a first direction (X direction) intersecting the second direction. The second electrode 42 is composed of a plurality of second grids 56 of fine metal wires. The 2nd grating | lattice 56 is comprised by enclosing a metal fine wire in the state mutually connected, The opening area | region is formed in the 2nd grating | lattice 56. FIG. In the second grating 56 of the present embodiment, an opening region is formed by four sides.
 第二電極42を全体として見れば第二方向に延びている。図5においては、第二格子56が第三方向と第四方向に連続して行列状に配置された複数の格子群を構成している。具体的には、第二電極42は、丸印で囲んだ区域Aに示される面積の小さい格子群と、丸印で囲んだ区域Bに示される面積の大きな格子群とを含んでいる。面積の小さい格子群と面積の大きな格子群とが第二方向に沿って交互に配置されている。面積の小さい格子群と面積の大きな格子群とは金属細線により電気的に接続されている。面積の小さい格子群は第一感知部を構成し、面積の大きな格子群は第二感知部を構成する。 The second electrode 42 extends in the second direction as a whole. In FIG. 5, the second grating 56 constitutes a plurality of grating groups arranged in a matrix continuously in the third direction and the fourth direction. Specifically, the second electrode 42 includes a lattice group having a small area indicated by a circled area A and a lattice group having a large area indicated by a circled area B. Small lattice areas and large lattice groups are alternately arranged along the second direction. The lattice group having a small area and the lattice group having a large area are electrically connected by a thin metal wire. A lattice group having a small area constitutes a first sensing unit, and a lattice group having a large area constitutes a second sensing unit.
 第一感知部は、M+N≦9であり、7個の第二格子56による格子群で構成されている。本実施の形態における第一感知部は、M×N=2×2の第二格子56で構成される格子群を含んでいる。第一感知部は、4以上8以下の数の第二格子56から構成されることが好ましい。 The first sensing unit is M + N ≦ 9, and is composed of a lattice group of seven second lattices 56. The first sensing unit in the present embodiment includes a lattice group composed of the second lattice 56 of M × N = 2 × 2. It is preferable that the first sensing unit is configured by a number of second gratings 56 that is 4 or more and 8 or less.
 また、別に観点から、第二電極42において、第二格子56が第三方向に対して7以上連続する場合に第四方向に5以上連続することがないよう第二格子56を配置する。つまり、第二格子56が7×3以上の行列状に配置されず、格子群が大きな面積を占めるのを規制するものである。M+N≦9を満たすことが重要となる。 Further, from another viewpoint, in the second electrode 42, when the second grating 56 is continuous seven or more in the third direction, the second grating 56 is arranged so as not to be continuous five or more in the fourth direction. That is, the second lattice 56 is not arranged in a matrix of 7 × 3 or more and restricts the lattice group from occupying a large area. It is important to satisfy M + N ≦ 9.
 第二感知部は、M+N≦9であり、14個の第二格子56による格子群で構成されている。本実施の形態における第二感知部は、M×N=3×3の第二格子56で構成される格子群を含んでいる。第二感知部は、9以上20以下の第二格子56から構成されることが好ましい。 The second sensing unit is M + N ≦ 9, and is composed of a lattice group of 14 second lattices 56. The second sensing unit in the present embodiment includes a lattice group composed of the second lattice 56 of M × N = 3 × 3. It is preferable that the second sensing unit is composed of 9 or more and 20 or less second gratings 56.
 第二感知部と第一感知部との大きさに関して、第二感知部は第一感知部の1.5倍以上面積を持つのが好ましい。また、第二感知部の面積は7mm以下であることが好ましい。面積は(第二格子56の面積)×(第二格子56の数)で求めることができる。 Regarding the size of the second sensing unit and the first sensing unit, the second sensing unit preferably has an area of 1.5 times or more that of the first sensing unit. Further, the area of the second sensing part is preferably 7 mm 2 or less. The area can be obtained by (area of second grating 56) × (number of second gratings 56).
 第二電極42は、第一感知部から第一方向に延びる2つの分岐電極を備えている。分岐電極を有することでセンシングできるエリアを広くすることができる。分岐電極は、繰り返し配置される第一感知部に設けられている。 The second electrode 42 includes two branch electrodes extending in the first direction from the first sensing unit. By having the branch electrode, the sensing area can be widened. The branch electrode is provided in the first sensing unit that is repeatedly arranged.
 第二電極42を構成する金属細線の線幅と材料に関して、第一電極12と同じものを適用することができる。第二格子56を構成する一辺の長さは、第一格子26と同様に、200~1000μm、好ましくは、240~500μmである。 The same thing as the first electrode 12 can be applied to the line width and material of the fine metal wire constituting the second electrode 42. The length of one side constituting the second grating 56 is 200 to 1000 μm, preferably 240 to 500 μm, like the first grating 26.
 第二電極42は4~12mmの幅W2の範囲であり、好ましくは5~7mm以下の幅W2の範囲である。第一電極12と同様に、第二格子56の一辺を240~500μmとし、第二電極42の幅を5~7mmとすることが好ましい。 The second electrode 42 has a width W2 of 4 to 12 mm, preferably a width W2 of 5 to 7 mm or less. Similarly to the first electrode 12, it is preferable that one side of the second grating 56 is 240 to 500 μm and the width of the second electrode 42 is 5 to 7 mm.
 第二電極42の開口率は98~99.8%の範囲であり。第二電極42の金属細線の単位面積当たりに占める割合は、は0.2~2%となる。また、第二電極42の表面抵抗率は40~80Ω/sq.の範囲である。上述の導電シート1では、第二格子56は矩形の形状を有しているが、これに限定されず、第一格子26と同様の形状を有することができる。 The aperture ratio of the second electrode 42 is in the range of 98 to 99.8%. The proportion of the second electrode 42 per unit area of the fine metal wire is 0.2 to 2%. The surface resistivity of the second electrode 42 is 40 to 80Ω / sq. Range. In the above-described conductive sheet 1, the second grid 56 has a rectangular shape, but is not limited thereto, and can have the same shape as the first grid 26.
 図6は、第一電極層10と第二電極層40とを対向配置させた導電シート1の平面図である。第一電極12と第二電極42とは直交するように配置され、導電シート1を構成する。 FIG. 6 is a plan view of the conductive sheet 1 in which the first electrode layer 10 and the second electrode layer 40 are disposed to face each other. The first electrode 12 and the second electrode 42 are disposed so as to be orthogonal to each other, and constitute the conductive sheet 1.
 第一電極層10と第二電極層40とを対向配置されるが、第一電極12と第二電極42とは向き合わない位置、平面視で第一電極12の第一格子26と第二電極42の第二格子56とは重なり合わないよう配置される。つまり、第一電極層10の第一電極12が形成されている領域と第二電極層40の第二電極42が形成されていない領域とが重なり合い、第一電極層10の第一電極12が形成されていない領域と、第二電極層40の第二電極42が形成されている領域とが重なり合う。図6では、第一電極12と第二電極42とを認識しやすいように、第二電極42を第一電極12よりも太い線で表示している。 The first electrode layer 10 and the second electrode layer 40 are arranged to face each other, but the first electrode 12 and the second electrode 42 are not opposed to each other. It arrange | positions so that it may not overlap with the 2nd grating | lattice 56 of 42. FIG. That is, the region where the first electrode 12 of the first electrode layer 10 is formed overlaps the region where the second electrode 42 of the second electrode layer 40 is not formed, and the first electrode 12 of the first electrode layer 10 is The region where the second electrode 42 of the second electrode layer 40 is formed overlaps the region where it is not formed. In FIG. 6, the second electrode 42 is indicated by a thicker line than the first electrode 12 so that the first electrode 12 and the second electrode 42 can be easily recognized.
 第一電極層10と第二電極層40とを対向配置されることで、図6に示すように、複数の第一格子26と複数の第二格子56とが全面に連続して配置される。複数の第一格子26と複数の第二格子56とが全面に連続して配置とは、第一格子26と第二格子56とが一見して連続している状態を意味する。第一格子26は第一電極層10に形成され、第二格子56は第二電極層40に形成されているので、第一格子26と第二格子56とは物理的には接続されていない。第一電極層10と第二電極層40を重ねて透視した際に、一見して連続している状態であれば良い。また。一見すると連続している状態には、第一格子26の金属細線と第二格子56の金属細線とが正確に直線状に連続していないが、人間の裸眼にはそのように見え、拡大レンズを通して見ると断線部があったり線が少しずれていたりする状態をも含むものである。 By arranging the first electrode layer 10 and the second electrode layer 40 to face each other, as shown in FIG. 6, a plurality of first gratings 26 and a plurality of second gratings 56 are continuously arranged on the entire surface. . The arrangement of the plurality of first gratings 26 and the plurality of second gratings 56 continuously on the entire surface means a state in which the first grating 26 and the second grating 56 are continuous at a glance. Since the first grid 26 is formed on the first electrode layer 10 and the second grid 56 is formed on the second electrode layer 40, the first grid 26 and the second grid 56 are not physically connected. . When the first electrode layer 10 and the second electrode layer 40 are overlapped and seen through, the first electrode layer 10 and the second electrode layer 40 may be continuous at first glance. Also. At first glance, the metal lines of the first grating 26 and the metal lines of the second grating 56 are not exactly linearly continuous, but it looks like that to the human naked eye, and the magnifying lens It also includes a state where there is a disconnection part or the line is slightly shifted when viewed through.
 図7は、図6に示す導電シート1の部分拡大図である。上面視において第一電極12と第二電極42とは重なり合わないように配置されている。上面視において、区域Cには、第一電極12の一部を構成する4つの第一格子26-1~26-4が含まれている。第一格子26-1~26-4は、区域Cにおいて第二電極42を構成する金属細線又は第二格子56-1~56-2と隣接配置されている。本実施の形態では第一格子26と第二格子56とはそれぞれ4個以下で隣接配置されている。 FIG. 7 is a partially enlarged view of the conductive sheet 1 shown in FIG. The first electrode 12 and the second electrode 42 are disposed so as not to overlap each other when viewed from above. In the top view, the area C includes four first gratings 26-1 to 26-4 that constitute a part of the first electrode 12. The first gratings 26-1 to 26-4 are arranged adjacent to the metal thin wires or the second gratings 56-1 to 56-2 constituting the second electrode 42 in the area C. In the present embodiment, the first grating 26 and the second grating 56 are arranged adjacent to each other with four or less.
 このように第一格子26と第二格子56と配置することにより、静電容量Cmを小さくすることができる。静電容量Cmが小さくなると指で触れた際に変化する静電容量ΔCmの割合ΔCm/Cmは大きくなり、指の有りなしの検出が容易となる。第一格子26と第二格子56が重なる部分を小さくした場合であっても、センシングエリアを大きくするため、第一電極12は繰り返しパターンが6角形の形状を有しており、第二電極42は第二電極42の幅方向に広がる分岐電極を備えている。 Thus, by disposing the first grid 26 and the second grid 56, the capacitance Cm can be reduced. When the capacitance Cm decreases, the ratio ΔCm / Cm of the capacitance ΔCm that changes when touched with a finger increases, and the presence / absence of the finger is easily detected. Even when the overlapping portion of the first grating 26 and the second grating 56 is reduced, the first electrode 12 has a hexagonal repeating pattern in order to increase the sensing area, and the second electrode 42 Includes a branch electrode extending in the width direction of the second electrode 42.
 図8は、図6に示す導電シート1の部分拡大図である。図8の導電シートは、図7の導電シートと異なり、ダミーパターンを備えている。図6では、上面視したとき、第一電極12と第二電極42との間に、金属細線の形成されない隙間が存在する。この隙間では光が当たっても反射しないため、パターンとして認識され、視認性に影響を与える。 FIG. 8 is a partially enlarged view of the conductive sheet 1 shown in FIG. Unlike the conductive sheet of FIG. 7, the conductive sheet of FIG. 8 has a dummy pattern. In FIG. 6, when viewed from the top, there is a gap between the first electrode 12 and the second electrode 42 where no fine metal wire is formed. In this gap, since it does not reflect even if it hits, it is recognized as a pattern and affects visibility.
 そこで、図8では、第一電極12と第二電極42との隙間に金属細線によりダミーパターン29,59を形成している。ダミーパターン29は、第一電極層10に形成され、ダミーパターン59は第二電極層40に形成される。ダミーパターン29,59は、第一電極12と第二電極42との隙間に形成されるので、第一電極層10及び第二電極層40のいずれに形成してもよい。上面視において、第一電極12と、第二電極42と、ダミーパターン29,59とにより、第一格子26と第二格子56とが一見して連続する状態であれば良い。 Therefore, in FIG. 8, dummy patterns 29 and 59 are formed by metal fine wires in the gap between the first electrode 12 and the second electrode 42. The dummy pattern 29 is formed on the first electrode layer 10, and the dummy pattern 59 is formed on the second electrode layer 40. Since the dummy patterns 29 and 59 are formed in the gap between the first electrode 12 and the second electrode 42, they may be formed on either the first electrode layer 10 or the second electrode layer 40. As long as the first electrode 12, the second electrode 42, and the dummy patterns 29 and 59 are viewed from the top, the first grating 26 and the second grating 56 may be in a continuous state at a glance.
 第一電極層10と第二電極層40と対向配置させた際、工程誤差により第一格子26及び第二格子56との間で金属細線の位置に関してずれが生じる場合がある。そのために設計上は第一電極層10と第二電極層40とを重ねると全体が均一間隔、均一形状の連続する格子が形成される。しかしながら、図9A~図9Cの現象が発生する。図9Aでは第一電極12と第二電極42とにずれがなく、設計どおりに一致している。図9Bでは、第一電極12と第二電極42とは一直線状に配列されていない。一方で、裸眼では認識されない。図9Cでは、第一電極12と第二電極42とは一部において重なりと、一部において隙間(途切れ)が生じている。第一電極12と第二電極42とが重なり部分は、金属細線が太く見えるため視認性を悪化させる要因となる。 When the first electrode layer 10 and the second electrode layer 40 are arranged to face each other, there may be a shift in the position of the fine metal wire between the first grating 26 and the second grating 56 due to a process error. Therefore, by design, when the first electrode layer 10 and the second electrode layer 40 are overlapped, a continuous lattice having a uniform interval and a uniform shape as a whole is formed. However, the phenomenon of FIGS. 9A to 9C occurs. In FIG. 9A, the first electrode 12 and the second electrode 42 are not displaced and match as designed. In FIG. 9B, the first electrode 12 and the second electrode 42 are not arranged in a straight line. On the other hand, it is not recognized with the naked eye. In FIG. 9C, the first electrode 12 and the second electrode 42 are partially overlapped, and a gap (discontinuity) is partially generated. A portion where the first electrode 12 and the second electrode 42 overlap is a factor that deteriorates visibility because the fine metal wire looks thick.
 上述のような状況においては、以下のようにすることが有効である。第1に図9Bのようにズレが発生するように設計する、第二に金属細線を短めに設計し、第一電極12と第二電極42とが重ならないようにすることが重要となる。 In the above situation, the following is effective. First, it is important to design such that the deviation occurs as shown in FIG. 9B, and secondly, to design the metal fine wire to be short, so that the first electrode 12 and the second electrode 42 do not overlap.
 次に、上述の導電シート1を用いたタッチパネル100について図10を参照しながら説明する。タッチパネル100は、センサ本体102と図示しない制御回路(IC(Integrated Circuit)回路等で構成)とを有する。センサ本体102は、導電シート1と、その上に積層された保護層106とを有する。導電シート1及び保護層106は、例えば液晶ディスプレイ等の表示装置108における表示パネル110上に配置されるようになっている。 Next, a touch panel 100 using the above-described conductive sheet 1 will be described with reference to FIG. The touch panel 100 includes a sensor body 102 and a control circuit (not shown) (configured by an IC (Integrated Circuit) circuit or the like). The sensor body 102 includes the conductive sheet 1 and a protective layer 106 laminated thereon. The conductive sheet 1 and the protective layer 106 are arranged on a display panel 110 in a display device 108 such as a liquid crystal display.
 次に、導電シート1の製造方法について説明する。 Next, a method for manufacturing the conductive sheet 1 will be described.
 導電シート1を製造する場合は、例えば透明の透明絶縁層30の第1の主面上に感光性ハロゲン化銀塩を含有する乳剤層を有する感光材料を露光し、現像処理を施すことによって、露光部及び未露光部にそれぞれ金属銀部(金属細線)及び光透過性部(開口領域)を形成することにより第一電極層10を形成してもよい。なお、さらに金属銀部に物理現像及び/又はめっき処理を施すことによって金属銀部に導電性金属を担持させるようにしてもよい。 When the conductive sheet 1 is produced, for example, by exposing a photosensitive material having an emulsion layer containing a photosensitive silver halide salt on the first main surface of the transparent transparent insulating layer 30, and performing a development process, The first electrode layer 10 may be formed by forming a metal silver part (metal thin wire) and a light transmissive part (opening region) in the exposed part and the unexposed part, respectively. In addition, you may make it carry | support a conductive metal to a metal silver part by giving a physical development and / or a plating process to a metal silver part further.
 あるいは、透明の透明絶縁層30の第1の主面上に形成された銅箔上のフォトレジスト膜を露光、現像処理してレジストパターンを形成し、レジストパターンから露出する銅箔をエッチングすることによって、第一電極層10を形成するようにしてもよい。 Alternatively, a photoresist film on the copper foil formed on the first main surface of the transparent transparent insulating layer 30 is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched. Thus, the first electrode layer 10 may be formed.
 あるいは、透明の透明絶縁層30の第1の主面上に金属微粒子を含むペーストを印刷し、ペーストに金属めっきを行うことによって、第一電極層10を形成するようにしてもよい。 Alternatively, the first electrode layer 10 may be formed by printing a paste containing metal fine particles on the first main surface of the transparent transparent insulating layer 30 and performing metal plating on the paste.
 透明の透明絶縁層30の第1の主面上に、第一電極層10をスクリーン印刷版又はグラビア印刷版によって印刷形成するようにしてもよい。あるいは、透明の透明絶縁層30の第1の主面上に、第一電極層10をインクジェットにより形成するようにしてもよい。 The first electrode layer 10 may be printed on the first main surface of the transparent transparent insulating layer 30 by screen printing or gravure printing. Alternatively, the first electrode layer 10 may be formed on the first main surface of the transparent transparent insulating layer 30 by inkjet.
 第二電極層40について、第一電極層10の同様の製造方法で透明絶縁層30の第2の主面上に第二電極層40を形成することができる。 Regarding the second electrode layer 40, the second electrode layer 40 can be formed on the second main surface of the transparent insulating layer 30 by the same manufacturing method of the first electrode layer 10.
 透明の透明絶縁層30上にめっき前処理材を用いて感光性被めっき層を形成し露光、現像処理した後にめっき処理を施すことにより、露光部及び未露光部にそれぞれ金属部及び光透過性部を形成して第一電極層10及び第二電極層40を形成するようにしてもよい。なお、さらに金属部に物理現像及び/又はめっき処理を施すことによって金属部に導電性金属を担持させるようにしてもよい。なお、より具体的な内容は、特開2003-213437、特開2006-64923、特開2006-58797、特開2006-135271などに開示されている。 By forming a photosensitive layer to be plated on the transparent transparent insulating layer 30 using a pretreatment material for plating, exposing and developing, and then performing plating treatment, the exposed portion and the unexposed portion are respectively subjected to a metal portion and a light transmissive property. The first electrode layer 10 and the second electrode layer 40 may be formed by forming a portion. Further, a conductive metal may be supported on the metal part by further performing physical development and / or plating treatment on the metal part. More specific contents are disclosed in JP2003-213437, JP2006-64923, JP2006-58797, JP2006-135271, and the like.
 図2に示すように、透明絶縁層30の第1の主面に第一電極層10を形成し、透明絶縁層30の第2の主面に第二電極層40を形成する場合、通常の製法に則って、最初に第1の主面を露光し、その後に、第2の主面を露光する方法を採用すると、所望のパターンを有する第一電極層10及び第二電極層40を得ることができない場合がある。 As shown in FIG. 2, when the first electrode layer 10 is formed on the first main surface of the transparent insulating layer 30 and the second electrode layer 40 is formed on the second main surface of the transparent insulating layer 30, In accordance with the manufacturing method, the first electrode surface 10 and the second electrode layer 40 having a desired pattern are obtained by adopting a method in which the first main surface is first exposed and then the second main surface is exposed. It may not be possible.
 そこで、以下に示す製造方法を好ましく採用することができる。 Therefore, the following production method can be preferably employed.
 すなわち、透明絶縁層30の両面に形成された感光性ハロゲン化銀乳剤層に対して一括露光を行って、透明絶縁層30の一主面に第一電極層10を形成し、透明絶縁層30の他主面に第二電極層40を形成する。 That is, the photosensitive silver halide emulsion layer formed on both surfaces of the transparent insulating layer 30 is collectively exposed to form the first electrode layer 10 on one main surface of the transparent insulating layer 30. The second electrode layer 40 is formed on the other main surface.
 この製造方法の具体例を説明する。 A specific example of this manufacturing method will be described.
 最初に、長尺の感光材料を作製する。感光材料は、透明絶縁層30と、透明絶縁層30の第1の主面に形成された感光性ハロゲン化銀乳剤層(以下、第1感光層という)と、透明絶縁層30の他方の主面に形成された感光性ハロゲン化銀乳剤層(以下、第2感光層という)とを有する。 First, make a long photosensitive material. The photosensitive material includes a transparent insulating layer 30, a photosensitive silver halide emulsion layer (hereinafter referred to as a first photosensitive layer) formed on the first main surface of the transparent insulating layer 30, and the other main layer of the transparent insulating layer 30. And a photosensitive silver halide emulsion layer (hereinafter referred to as a second photosensitive layer) formed on the surface.
 次に、感光材料を露光する。この露光処理では、第1感光層に対し、透明絶縁層30に向かって光を照射して第1感光層を第1露光パターンに沿って露光する第1露光処理と、第2感光層に対し、透明絶縁層30に向かって光を照射して第2感光層を第2露光パターンに沿って露光する第2露光処理とが行われる(両面同時露光)。 Next, the photosensitive material is exposed. In this exposure process, the first photosensitive layer is irradiated with light toward the transparent insulating layer 30 to expose the first photosensitive layer along the first exposure pattern, and the second photosensitive layer is exposed. Then, a second exposure process is performed in which light is irradiated toward the transparent insulating layer 30 to expose the second photosensitive layer along the second exposure pattern (double-sided simultaneous exposure).
 例えば、長尺の感光材料を一方向に搬送しながら、第1感光層に第1光(平行光)を第1フォトマスクを介して照射すると共に、第2感光層に第2光(平行光)を第2フォトマスクを介して照射する。第1光は、第1光源から出射された光を途中の第1コリメータレンズにて平行光に変換されることにより得られ、第2光は、第2光源から出射された光を途中の第2コリメータレンズにて平行光に変換されることにより得られる。 For example, while conveying a long photosensitive material in one direction, the first photosensitive layer is irradiated with the first light (parallel light) through the first photomask, and the second photosensitive layer is irradiated with the second light (parallel light). ) Through the second photomask. The first light is obtained by converting the light emitted from the first light source into parallel light by the first collimator lens in the middle, and the second light is obtained by converting the light emitted from the second light source in the middle of the first light. It is obtained by being converted into parallel light by a two-collimator lens.
 上記の説明では、2つの光源(第1光源及び第2光源)を使用した場合を示しているが、1つの光源から出射した光を光学系を介して分割して、第1光及び第2光として第1感光層及び第2感光層に照射してもよい。 In the above description, the case where two light sources (the first light source and the second light source) are used is shown, but the light emitted from one light source is divided through the optical system, and the first light and the second light are divided. The first photosensitive layer and the second photosensitive layer may be irradiated as light.
 次いで、露光後の感光材料を現像処理することで、タッチパネル用の導電シート1が作製される。タッチパネル用の導電シート1は、透明絶縁層30と、透明絶縁層30の第1の主面に形成された第1露光パターンに沿った第一電極層10と、透明絶縁層30の他方の主面に形成された第2露光パターンに沿った第二電極層40とを有する。なお、第1感光層及び第2感光層の露光時間及び現像時間は、第1光源及び第2光源の種類や現像液の種類等で様々に変化するため、好ましい数値範囲は一概に決定することができないが、現像率が100%となる露光時間及び現像時間に調整されている。 Next, the exposed photosensitive material is developed to produce a conductive sheet 1 for a touch panel. The conductive sheet 1 for a touch panel includes a transparent insulating layer 30, the first electrode layer 10 along the first exposure pattern formed on the first main surface of the transparent insulating layer 30, and the other main electrode of the transparent insulating layer 30. And a second electrode layer 40 along the second exposure pattern formed on the surface. In addition, since the exposure time and development time of the first photosensitive layer and the second photosensitive layer vary depending on the types of the first light source and the second light source, the type of the developer, and the like, the preferable numerical range should be determined unambiguously. However, the exposure time and the development time are adjusted so that the development rate becomes 100%.
 そして、本実施の形態の製造方法では、第1露光処理は、第1感光層上に第1フォトマスクを例えば密着配置し、該第1フォトマスクに対向して配置された第1光源から第1フォトマスクに向かって第1光を照射することで、第1感光層を露光する。第1フォトマスクは、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第1露光パターン)とで構成されている。したがって、この第1露光処理によって、第1感光層のうち、第1フォトマスクに形成された第1露光パターンに沿った部分が露光される。第1感光層と第1フォトマスクとの間に2~10μm程度の隙間を設けてもよい。 In the manufacturing method according to the present embodiment, the first exposure process includes, for example, arranging a first photomask on the first photosensitive layer in close contact with the first light source arranged opposite to the first photomask. The first photosensitive layer is exposed by irradiating the first light toward one photomask. The first photomask is composed of a glass substrate formed of transparent soda glass and a mask pattern (first exposure pattern) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive layer along the first exposure pattern formed on the first photomask. A gap of about 2 to 10 μm may be provided between the first photosensitive layer and the first photomask.
 同様に、第2露光処理は、第2感光層上に第2フォトマスクを例えば密着配置し、該第2フォトマスクに対向して配置された第2光源から第2フォトマスクに向かって第2光を照射することで、第2感光層を露光する。第2フォトマスクは、第1フォトマスクと同様に、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第2露光パターン)とで構成されている。したがって、この第2露光処理によって、第2感光層のうち、第2フォトマスクに形成された第2露光パターンに沿った部分が露光される。この場合、第2感光層と第2フォトマスクとの間に2~10μm程度の隙間を設けてもよい。 Similarly, in the second exposure process, for example, a second photomask is disposed in close contact with the second photosensitive layer, and the second light source disposed opposite to the second photomask is secondly directed toward the second photomask. The second photosensitive layer is exposed by irradiating light. Similar to the first photomask, the second photomask is composed of a glass substrate made of transparent soda glass and a mask pattern (second exposure pattern) formed on the glass substrate. Therefore, the second exposure process exposes a portion of the second photosensitive layer along the second exposure pattern formed on the second photomask. In this case, a gap of about 2 to 10 μm may be provided between the second photosensitive layer and the second photomask.
 第1露光処理及び第2露光処理は、第1光源からの第1光の出射タイミングと、第2光源からの第2光の出射タイミングを同時にしてもよいし、異ならせてもよい。同時であれば、1度の露光処理で、第1感光層及び第2感光層を同時に露光することができ、処理時間の短縮化を図ることができる。ところで、第1感光層及び第2感光層が共に分光増感されていない場合、感光材料に対して両側から露光すると、片側からの露光がもう片側(裏側)の画像形成に影響を及ぼすこととなる。 In the first exposure process and the second exposure process, the emission timing of the first light from the first light source and the emission timing of the second light from the second light source may be simultaneous or different. At the same time, the first photosensitive layer and the second photosensitive layer can be exposed simultaneously by one exposure process, and the processing time can be shortened. By the way, when both the first photosensitive layer and the second photosensitive layer are not spectrally sensitized, when the photosensitive material is exposed from both sides, the exposure from one side affects the image formation on the other side (back side). Become.
 すなわち、第1感光層に到達した第1光源からの第1光は、第1感光層中のハロゲン化銀粒子にて散乱し、散乱光として透明絶縁層30を透過し、その一部が第2感光層にまで達する。そうすると、第2感光層と透明絶縁層30との境界部分が広い範囲にわたって露光され、潜像が形成される。そのため、第2感光層では、第2光源からの第2光による露光と第1光源からの第1光による露光が行われてしまい、その後の現像処理にてタッチパネル用導電シート1とした場合に、第2露光パターンによる導電パターン(第二電極層40)に加えて、導電パターン間に第1光源からの第1光による薄い導電層が形成されてしまい、所望のパターン(第2露光パターン沿ったパターン)を得ることができない。これは、第1感光層においても同様である。 That is, the first light from the first light source that has reached the first photosensitive layer is scattered by the silver halide grains in the first photosensitive layer, passes through the transparent insulating layer 30 as scattered light, and a part thereof is the first light. Reach up to 2 photosensitive layers. Then, the boundary portion between the second photosensitive layer and the transparent insulating layer 30 is exposed over a wide range, and a latent image is formed. For this reason, in the second photosensitive layer, exposure with the second light from the second light source and exposure with the first light from the first light source are performed, and when the conductive sheet 1 for touch panel is formed in the subsequent development processing. In addition to the conductive pattern (second electrode layer 40) by the second exposure pattern, a thin conductive layer by the first light from the first light source is formed between the conductive patterns, and a desired pattern (along the second exposure pattern) Pattern) cannot be obtained. The same applies to the first photosensitive layer.
 これを回避するため、鋭意検討した結果、第1感光層及び第2感光層の厚みを特定の範囲に設定したり、第1感光層及び第2感光層の塗布銀量を規定することで、ハロゲン化銀自身が光を吸収し、裏面へ光透過を制限できることが判明した。第1感光層及び第2感光層の厚みを1μm以上、4μm以下に設定することができる。上限値は好ましくは2.5μmである。また、第1感光層及び第2感光層の塗布銀量を5~20g/mに規定した。 In order to avoid this, as a result of earnest studies, by setting the thickness of the first photosensitive layer and the second photosensitive layer to a specific range, or by specifying the coating silver amount of the first photosensitive layer and the second photosensitive layer, It has been found that the silver halide itself absorbs light and can limit light transmission to the back side. The thickness of the first photosensitive layer and the second photosensitive layer can be set to 1 μm or more and 4 μm or less. The upper limit is preferably 2.5 μm. Further, the coated silver amount of the first photosensitive layer and the second photosensitive layer was regulated to 5 to 20 g / m 2 .
 上述した両面密着の露光方式では、シート表面に付着した塵埃等で露光阻害による画像欠陥が問題となる。塵埃付着防止として、シートに導電性物質を塗布することが知られているが、金属酸化物等は処理後も残存し、最終製品の透明性を損ない、また、導電性高分子は保存性等に問題がある。そこで、鋭意検討した結果、バインダーを減量したハロゲン化銀により帯電防止に必要な導電性が得られることがわかり、第1感光層及び第2感光層の銀/バインダーの体積比を規定した。すなわち、第1感光層及び第2感光層の銀/バインダー体積比は1/1以上であり、好ましくは、2/1以上である。 In the above-described double-sided contact exposure method, image defects due to exposure inhibition due to dust adhering to the sheet surface becomes a problem. It is known to apply a conductive material to the sheet as a dust prevention, but metal oxides remain after processing, impairing the transparency of the final product, and conductive polymers are storable. There is a problem. As a result of intensive studies, it was found that the silver halide with a reduced amount of binder provided the necessary conductivity for antistatic, and the silver / binder volume ratio of the first photosensitive layer and the second photosensitive layer was defined. That is, the silver / binder volume ratio of the first photosensitive layer and the second photosensitive layer is 1/1 or more, and preferably 2/1 or more.
 上述のように、第1感光層及び第2感光層の厚み、塗布銀量、銀/バインダーの体積比を設定、規定することで、第1感光層に到達した第1光源からの第1光は、第2感光層まで達しなくなる。同様に、第2感光層に到達した第2光源からの第2光は、第1感光層まで達しなくなる。その結果、その後の現像処理にて導電シート1とした場合に、透明絶縁層30の第1の主面には第1露光パターンによる第一電極層10のみが形成され、透明絶縁層30の第2の主面には第2露光パターンによる第二電極層40のみが形成されることとなり、所望のパターンを得ることができる。 As described above, the first light from the first light source reaching the first photosensitive layer is set and defined by setting the thickness of the first photosensitive layer and the second photosensitive layer, the coating silver amount, and the volume ratio of silver / binder. Does not reach the second photosensitive layer. Similarly, the second light from the second light source that has reached the second photosensitive layer does not reach the first photosensitive layer. As a result, when the conductive sheet 1 is formed in the subsequent development processing, only the first electrode layer 10 based on the first exposure pattern is formed on the first main surface of the transparent insulating layer 30, and the first of the transparent insulating layer 30 Only the second electrode layer 40 based on the second exposure pattern is formed on the main surface of 2, and a desired pattern can be obtained.
 このように、上述の両面一括露光を用いた製造方法においては、導電性と両面露光の適性を両立させた第1感光層及び第2感光層を得ることができる。また、1つの透明絶縁層30への露光処理によって、透明絶縁層30の両面に同一パターンや異なったパターンを任意に形成することができ、これにより、タッチパネルの電極を容易に形成することができると共に、タッチパネルの薄型化(低背化)を図ることができる。 Thus, in the manufacturing method using the above-described double-sided batch exposure, it is possible to obtain the first photosensitive layer and the second photosensitive layer that have both conductivity and suitability for double-sided exposure. In addition, the same pattern or different patterns can be arbitrarily formed on both surfaces of the transparent insulating layer 30 by the exposure process on one transparent insulating layer 30, thereby easily forming the electrodes of the touch panel. At the same time, the touch panel can be made thinner (low profile).
 次に、本実施の形態に係る導電シート1において、特に好ましい態様であるハロゲン化銀写真感光材料を用いる方法を中心にして述べる。 Next, in the conductive sheet 1 according to the present embodiment, a method using a silver halide photographic light-sensitive material that is a particularly preferable aspect will be mainly described.
 本実施の形態に係る導電シート1の製造方法は、感光材料と現像処理の形態によって、次の3通りの形態が含まれる。 The manufacturing method of the conductive sheet 1 according to the present embodiment includes the following three forms depending on the photosensitive material and the form of development processing.
 (1) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料を化学現像又は熱現像して金属銀部を該感光材料上に形成させる態様。 (1) A mode in which a photosensitive silver halide black-and-white photosensitive material not containing physical development nuclei is chemically developed or thermally developed to form a metallic silver portion on the photosensitive material.
 (2) 物理現像核をハロゲン化銀乳剤層中に含む感光性ハロゲン化銀黒白感光材料を溶解物理現像して金属銀部を該感光材料上に形成させる態様。 (2) A mode in which a photosensitive silver halide black-and-white photosensitive material containing physical development nuclei in a silver halide emulsion layer is dissolved and physically developed to form a metallic silver portion on the photosensitive material.
 (3) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料と、物理現像核を含む非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀部を非感光性受像シート上に形成させる態様。 (3) A photosensitive silver halide black-and-white photosensitive material that does not contain physical development nuclei and an image-receiving sheet having a non-photosensitive layer that contains physical development nuclei are overlapped and transferred to develop a non-photosensitive image-receiving sheet. Form formed on top.
 上記(1)の態様は、一体型黒白現像タイプであり、感光材料上に光透過性導電膜等の透光性導電性膜が形成される。得られる現像銀は化学現像銀又は熱現像銀であり、高比表面のフィラメントである点で後続するめっき又は物理現像過程で活性が高い。 The above aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material. The resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
 上記(2)の態様は、露光部では、物理現像核近縁のハロゲン化銀粒子が溶解されて現像核上に沈積することによって感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。これも一体型黒白現像タイプである。現像作用が、物理現像核上への析出であるので高活性であるが、現像銀は比表面の小さい球形である。 In the above aspect (2), the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion. A characteristic film is formed. This is also an integrated black-and-white development type. Although the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
 上記(3)の態様は、未露光部においてハロゲン化銀粒子が溶解されて拡散して受像シート上の現像核上に沈積することによって受像シート上に光透過性導電性膜等の透光性導電性膜が形成される。いわゆるセパレートタイプであって、受像シートを感光材料から剥離して用いる態様である。 In the above aspect (3), the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, whereby a light transmitting conductive film or the like is formed on the image receiving sheet. A conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
 いずれの態様もネガ型現像処理及び反転現像処理のいずれの現像を選択することもできる(拡散転写方式の場合は、感光材料としてオートポジ型感光材料を用いることによってネガ型現像処理が可能となる)。 In either embodiment, either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material). .
 ここで、本実施の形態に係る導電シート1の構成について、以下に詳細に説明する。 Here, the configuration of the conductive sheet 1 according to the present embodiment will be described in detail below.
 [透明絶縁層30]
 透明絶縁層30としては、プラスチックフィルム、プラスチック板、ガラス板等を挙げることができる。上記プラスチックフィルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、エチレンビニルアセテート(EVA)/シクロオレフィンポリマー(COP)/シクロオレフィンポリマー(COC)等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)等を用いることができる。特に、光透過性や加工性等の観点から、ポリエチレンテレフタレート(PET)が好ましい。
[Transparent insulating layer 30]
Examples of the transparent insulating layer 30 include a plastic film, a plastic plate, and a glass plate. Examples of the raw material for the plastic film and plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), polystyrene, ethylene vinyl acetate (EVA) / cyclo Polyolefins such as olefin polymer (COP) / cycloolefin polymer (COC); vinyl resins; others, polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), and the like can be used. In particular, polyethylene terephthalate (PET) is preferable from the viewpoints of light transmittance and processability.
 [銀塩乳剤層]
 導電シート1の第一電極層10及び第二電極層40となる銀塩乳剤層は、銀塩とバインダーの他、溶媒や染料等の添加剤を含有する。
[Silver salt emulsion layer]
The silver salt emulsion layer to be the first electrode layer 10 and the second electrode layer 40 of the conductive sheet 1 contains additives such as a solvent and a dye in addition to the silver salt and the binder.
 本実施の形態に用いられる銀塩としては、ハロゲン化銀等の無機銀塩及び酢酸銀等の有機銀塩が挙げられる。本実施の形態においては、光センサーとしての特性に優れるハロゲン化銀を用いることが好ましい。 Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
 銀塩乳剤層の塗布銀量(銀塩の塗布量)は、銀に換算して1~30g/mが好ましく、1~25g/mがより好ましく、5~20g/mがさらに好ましい。この塗布銀量を上記範囲とすることで、タッチパネル用導電シート1とした場合に所望の表面抵抗率を得ることができる。 Silver coating amount of silver salt emulsion layer (coating amount of silver salt) is preferably 1 ~ 30g / m 2 in terms of silver, more preferably 1 ~ 25g / m 2, more preferably 5 ~ 20g / m 2 . By setting the amount of coated silver within the above range, a desired surface resistivity can be obtained when the conductive sheet 1 for a touch panel is used.
 本実施の形態に用いられるバインダーとしては、例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。これらは、官能基のイオン性によって中性、陰イオン性、陽イオン性の性質を有する。 Examples of the binder used in this embodiment include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl. Examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
 銀塩乳剤層中に含有されるバインダーの含有量は、特に限定されず、分散性と密着性を発揮し得る範囲で適宜決定することができる。銀塩乳剤層中のバインダーの含有量は、銀/バインダー体積比で1/4以上が好ましく、1/2以上がより好ましい。銀/バインダー体積比は、100/1以下が好ましく、50/1以下がより好ましく、10/1以下がさらに好ましく、6/1以下が特に好ましい。また、銀/バインダー体積比は1/1~4/1であることがさらに好ましい。1/1~3/1であることが最も好ましい。銀塩乳剤層中の銀/バインダー体積比をこの範囲にすることで、塗布銀量を調整した場合でも抵抗値のばらつきを抑制し、均一な表面抵抗率を有するタッチパネル用導電シートを得ることができる。なお、銀/バインダー体積比は、原料のハロゲン化銀量/バインダー量(重量比)を銀量/バインダー量(重量比)に変換し、さらに、銀量/バインダー量(重量比)を銀量/バインダー量(体積比)に変換することで求めることができる。 The content of the binder contained in the silver salt emulsion layer is not particularly limited, and can be appropriately determined as long as dispersibility and adhesion can be exhibited. The binder content in the silver salt emulsion layer is preferably ¼ or more, more preferably ½ or more in terms of the silver / binder volume ratio. The silver / binder volume ratio is preferably 100/1 or less, more preferably 50/1 or less, further preferably 10/1 or less, and particularly preferably 6/1 or less. The silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1. By setting the silver / binder volume ratio in the silver salt emulsion layer within this range, it is possible to obtain a conductive sheet for a touch panel having a uniform surface resistivity by suppressing variation in resistance value even when the amount of coated silver is adjusted. it can. The silver / binder volume ratio is converted from the amount of silver halide / binder amount (weight ratio) of the raw material to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain | require by converting into binder amount (volume ratio).
 <溶媒>
 銀塩乳剤層の形成に用いられる溶媒は、特に限定されるものではないが、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、及びこれらの混合溶媒を挙げることができる。
<Solvent>
The solvent used for forming the silver salt emulsion layer is not particularly limited. For example, water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl sulfoxide, etc. Sulphoxides such as, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
 本実施の形態の銀塩乳剤層に用いられる溶媒の含有量は、銀塩乳剤層に含まれる銀塩、バインダー等の合計の質量に対して30~90質量%の範囲であり、50~80質量%の範囲であることが好ましい。 The content of the solvent used in the silver salt emulsion layer of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of silver salt and binder contained in the silver salt emulsion layer, and 50 to 80%. It is preferably in the range of mass%.
 <その他の添加剤>
 本実施の形態に用いられる各種添加剤に関しては、特に制限はなく、公知のものを好ましく用いることができる。
<Other additives>
The various additives used in the present embodiment are not particularly limited, and known ones can be preferably used.
 [その他の層構成]
 銀塩乳剤層の上に図示しない保護層を設けてもよい。本実施の形態において「保護層」とは、ゼラチンや高分子ポリマーといったバインダーからなる層を意味し、擦り傷防止や力学特性を改良する効果を発現するために感光性を有する銀塩乳剤層上に形成される。その厚みは0.5μm以下が好ましい。保護層の塗布方法及び形成方法は特に限定されず、公知の塗布方法及び形成方法を適宜選択することができる。また、銀塩乳剤層よりも下に、例えば下塗り層を設けることもできる。
[Other layer structure]
A protective layer (not shown) may be provided on the silver salt emulsion layer. In the present embodiment, the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer, and is formed on a silver salt emulsion layer having photosensitivity in order to exhibit an effect of preventing scratches and improving mechanical properties. It is formed. The thickness is preferably 0.5 μm or less. The coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected. An undercoat layer, for example, can be provided below the silver salt emulsion layer.
 次に、導電シート1の作製方法の各工程について説明する。 Next, each step of the method for producing the conductive sheet 1 will be described.
 [露光]
 本実施の形態では、第一電極層10及び第二電極層40を印刷方式によって施す場合を含むが、印刷方式以外は、第一電極層10及び第二電極層40を露光と現像等によって形成する。すなわち、透明絶縁層30上に設けられた銀塩含有層を有する感光材料又はフォトリソグラフィ用フォトポリマーを塗工した感光材料への露光を行う。露光は、電磁波を用いて行うことができる。電磁波としては、例えば、可視光線、紫外線等の光、X線等の放射線等が挙げられる。さらに露光には波長分布を有する光源を利用してもよく、特定の波長の光源を用いてもよい。
[exposure]
In the present embodiment, the case where the first electrode layer 10 and the second electrode layer 40 are applied by a printing method is included, but the first electrode layer 10 and the second electrode layer 40 are formed by exposure and development, etc., except for the printing method. To do. That is, exposure is performed on a photosensitive material having a silver salt-containing layer provided on the transparent insulating layer 30 or a photosensitive material coated with a photopolymer for photolithography. The exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays. Furthermore, a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
 露光方法に関しては、ガラスマスクを介した方法やレーザー描画によるパターン露光方式が好ましい。 Regarding the exposure method, a method through a glass mask or a pattern exposure method by laser drawing is preferable.
 [現像処理]
 本実施の形態では、乳剤層を露光した後、さらに現像処理が行われる。現像処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
[Development processing]
In this embodiment, after the emulsion layer is exposed, development processing is further performed. The development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like.
 本実施の形態での現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。本発明における定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。 The development process in the present embodiment can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part. For the fixing process in the present invention, a fixing process technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
 現像、定着処理を施した感光材料は、硬膜処理、水洗処理や安定化処理を施されるのが好ましい。 The light-sensitive material that has been subjected to development and fixing processing is preferably subjected to a film hardening process, a water washing process, and a stabilization process.
 現像処理後の露光部に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることがさらに好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。 The mass of the metallic silver contained in the exposed part after the development treatment is preferably 50% by mass or more, and 80% by mass or more, based on the mass of silver contained in the exposed part before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
 本実施の形態における現像処理後の階調は、特に限定されるものではないが、4.0を超えることが好ましい。現像処理後の階調が4.0を超えると、光透過性部の透光性を高く保ったまま、導電性金属部の導電性を高めることができる。階調を4.0以上にする手段としては、例えば、前述のロジウムイオン、イリジウムイオンのドープが挙げられる。 The gradation after the development processing in the present embodiment is not particularly limited, but is preferably more than 4.0. When the gradation after the development processing exceeds 4.0, the conductivity of the conductive metal portion can be increased while keeping the light transmissive property of the light transmissive portion high. Examples of means for setting the gradation to 4.0 or higher include the aforementioned doping of rhodium ions and iridium ions.
 以上の工程を経て導電シートは得られるが、得られた導電シートの表面抵抗率は40~80Ω/sq.以下が好ましい。 The conductive sheet is obtained through the above steps, but the surface resistivity of the obtained conductive sheet is 40-80 Ω / sq. The following is preferred.
 このような範囲に表面抵抗率を調整することで、面積が10cm×10cm以上の大型のタッチパネルでも位置検出を行うことができる。また、現像処理後の導電シートに対しては、さらにカレンダー処理を行ってもよく、カレンダー処理により所望の表面抵抗率に調整することができる。 By adjusting the surface resistivity within such a range, position detection can be performed even with a large touch panel having an area of 10 cm × 10 cm or more. Further, the conductive sheet after the development treatment may be further subjected to a calendar treatment, and can be adjusted to a desired surface resistivity by the calendar treatment.
 (現像処理後の硬膜処理)
 銀塩乳剤層に対して現像処理を行った後に、硬膜剤に浸漬して硬膜処理を行うことが好ましい。硬膜剤としては、例えば、グルタルアルデヒド、アジポアルデヒド、2,3-ジヒドロキシ-1,4-ジオキサン等のジアルデヒド類及びほう酸、クロム明礬/カリ明礬等の無機系化合物等の特開平2-141279号公報に記載のものを挙げることができる。
(Hardening after development)
It is preferable to perform a film hardening process by immersing the film in a hardener after the silver salt emulsion layer is developed. Examples of the hardener include dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane, and inorganic compounds such as boric acid and chromium alum / potassium alum. No. 141279 can be mentioned.
 [物理現像及びめっき処理]
 本実施の形態では、前記露光及び現像処理により形成された金属銀部の導電性を向上させる目的で、前記金属銀部に導電性金属粒子を担持させるための物理現像及び/又はめっき処理を行ってもよい。本発明では物理現像又はめっき処理のいずれか一方のみで導電性金属粒子を金属性銀部に担持させてもよく、物理現像とめっき処理とを組み合わせて導電性金属粒子を金属銀部に担持させてもよい。なお、金属銀部に物理現像及び/又はめっき処理を施したものを含めて「導電性金属部」と称する。
[Physical development and plating]
In the present embodiment, for the purpose of improving the conductivity of the metallic silver portion formed by the exposure and development processing, physical development and / or plating treatment for supporting the conductive metal particles on the metallic silver portion is performed. May be. In the present invention, the conductive metal particles may be supported on the metallic silver portion by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion by combining physical development and plating treatment. May be. In addition, the thing which performed the physical development and / or the plating process to the metal silver part is called "conductive metal part".
 [酸化処理]
 本実施の形態では、現像処理後の金属銀部、並びに、物理現像及び/又はめっき処理によって形成された導電性金属部には、酸化処理を施すことが好ましい。酸化処理を行うことにより、例えば、光透過性部に金属が僅かに沈着していた場合に、該金属を除去し、光透過性部の透過性をほぼ100%にすることができる。
[Oxidation treatment]
In the present embodiment, it is preferable to subject the metallic silver portion after the development treatment and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment. By performing the oxidation treatment, for example, when a metal is slightly deposited on the light transmissive portion, the metal can be removed and the light transmissive portion can be made almost 100% transparent.
 [光透過性部]
 本実施の形態における「光透過性部」とは、導電シート1のうち第一電極層10及び第二電極層40以外の透光性を有する部分を意味する。光透過性部における透過率は、前述のとおり、透明絶縁層30の光吸収及び反射の寄与を除いた380~780nmの波長領域における透過率の最小値で示される透過率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、さらにより好ましくは98%以上であり、最も好ましくは99%以上である。
[Light transmissive part]
The “light transmissive part” in the present embodiment means a part having translucency other than the first electrode layer 10 and the second electrode layer 40 in the conductive sheet 1. As described above, the transmittance in the light transmissive portion is 90% or more, preferably the transmittance indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the transparent insulating layer 30. Is 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
 [導電シート1]
 本実施の形態に係る導電シート1における透明絶縁層30の膜厚は5~350μmであることが好ましく、30~150μmであることがさらに好ましい。5~350μmの範囲であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
[Conductive sheet 1]
The film thickness of the transparent insulating layer 30 in the conductive sheet 1 according to the present embodiment is preferably 5 to 350 μm, and more preferably 30 to 150 μm. If it is in the range of 5 to 350 μm, a desired visible light transmittance can be obtained, and handling is easy.
 透明絶縁層30上に設けられる金属銀部の厚さは、透明絶縁層30上に塗布される銀塩含有層用塗料の塗布厚みに応じて適宜決定することができる。金属銀部の厚さは、1.0×10-5~0.2mmから選択可能であるが、30μm以下であることが好ましく、20μm以下であることがより好ましく、0.01~9μmであることがさらに好ましく、0.05~5μmであることが最も好ましい。また、金属銀部はパターン状であることが好ましい。金属銀部は1層でもよく、2層以上の重層構成であってもよい。金属銀部がパターン状であり、且つ、2層以上の重層構成である場合、異なる波長に感光できるように、異なる感色性を付与することができる。これにより、露光波長を変えて露光すると、各層において異なるパターンを形成することができる。 The thickness of the metallic silver portion provided on the transparent insulating layer 30 can be appropriately determined according to the coating thickness of the silver salt-containing layer coating applied on the transparent insulating layer 30. The thickness of the metallic silver part can be selected from 1.0 × 10 −5 to 0.2 mm, preferably 30 μm or less, more preferably 20 μm or less, and 0.01 to 9 μm. More preferably, the thickness is 0.05 to 5 μm. Moreover, it is preferable that a metal silver part is pattern shape. The metallic silver part may be a single layer or a multilayer structure of two or more layers. When the metallic silver portion is patterned and has a multilayer structure of two or more layers, different color sensitivities can be imparted so as to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, a different pattern can be formed in each layer.
 導電性金属部の厚さは、タッチパネルの用途としては、薄いほど表示パネルの視野角が広がるため好ましく、視認性の向上の点でも薄膜化が要求される。このような観点から、導電性金属部に担持された導電性金属からなる層の厚さは、9μm未満、5μm未満、3μm未満、0.1μm以上であることが望ましい。 The thickness of the conductive metal part is preferably as the thickness of the touch panel is thinner because the viewing angle of the display panel is wider, and a thin film is also required for improving the visibility. From such a viewpoint, the thickness of the layer made of the conductive metal supported on the conductive metal portion is desirably less than 9 μm, less than 5 μm, less than 3 μm, and 0.1 μm or more.
 本実施の形態では、上述した銀塩含有層の塗布厚みをコントロールすることにより所望の厚さの金属銀部を形成し、さらに物理現像及び/又はめっき処理により導電性金属粒子からなる層の厚みを自在にコントロールできるため、5μm未満、好ましくは3μm未満の厚みを有する導電シート1であっても容易に形成することができる。 In the present embodiment, the thickness of the layer made of conductive metal particles is formed by controlling the coating thickness of the silver salt-containing layer described above to form a metallic silver portion having a desired thickness, and further by physical development and / or plating treatment. Therefore, even the conductive sheet 1 having a thickness of less than 5 μm, preferably less than 3 μm can be easily formed.
 なお、本実施の形態に係る導電シートの製造方法では、めっき等の工程は必ずしも行う必要はない。本実施の形態に係る導電シート1の製造方法では銀塩乳剤層の塗布銀量、銀/バインダー体積比を調整することで所望の表面抵抗率を得ることができるからである。 In addition, in the manufacturing method of the electrically conductive sheet which concerns on this Embodiment, processes, such as plating, do not necessarily need to be performed. This is because in the method for manufacturing the conductive sheet 1 according to the present embodiment, a desired surface resistivity can be obtained by adjusting the amount of silver applied to the silver salt emulsion layer and the silver / binder volume ratio.
 本発明に係る導電シート及びタッチパネルは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採りえることはもちろんである。また、特開2011-113149、特開2011-129501、特開2011-129112、特開2011-134311、特開2011-175628などに開示の技術と適宜組み合わせて使用することができる。 The conductive sheet and the touch panel according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. Further, it can be used in appropriate combination with the techniques disclosed in JP2011-113149, JP2011-129501, JP2011-129112, JP2011-134311, JP2011-175628, and the like.
 以下に、本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention. In addition, the material, usage-amount, ratio, processing content, processing procedure, etc. which are shown in the following Examples can be changed suitably unless it deviates from the meaning of this invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
 <導電パターンの形成>
 (ハロゲン化銀感光材料)
 水媒体中のAg150gに対してゼラチン10.0gを含む、球相当径平均0.1μmの沃臭塩化銀粒子(I=0.2モル%、Br=40モル%)を含有する乳剤を調製した。
<Formation of conductive pattern>
(Silver halide photosensitive material)
An emulsion containing 10.0 g of gelatin per 150 g of Ag in an aqueous medium and containing silver iodobromochloride grains having an average equivalent sphere diameter of 0.1 μm (I = 0.2 mol%, Br = 40 mol%) was prepared. .
 また、この乳剤中にはKRhBr及びKIrClを濃度が10-7(モル/モル銀)になるように添加し、臭化銀粒子にRhイオンとIrイオンをドープした。この乳剤にNaPdClを添加し、さらに塩化金酸とチオ硫酸ナトリウムを用いて金硫黄増感を行った後、ゼラチン硬膜剤と共に、銀の塗布量が10g/mとなるように基体30(ここでは、共にポリエチレンテレフタレート(PET))上に塗布した。この際、Ag/ゼラチン体積比は2/1とした。 In this emulsion, K 3 Rh 2 Br 9 and K 2 IrCl 6 were added so as to have a concentration of 10 −7 (mol / mol silver), and silver bromide grains were doped with Rh ions and Ir ions. . After adding Na 2 PdCl 4 to this emulsion and further performing gold-sulfur sensitization using chloroauric acid and sodium thiosulfate, together with the gelatin hardener, the coating amount of silver was 10 g / m 2. It apply | coated on the base | substrate 30 (here, both polyethylene terephthalate (PET)). At this time, the volume ratio of Ag / gelatin was 2/1.
 幅30cmのPET支持体に25cmの幅で20m分塗布を行い、塗布の中央部24cmを残すように両端を3cmずつ切り落としてロール状のハロゲン化銀感光材料を得た。 A 30 cm wide PET support was applied for 20 m in a width of 25 cm, and both ends were cut off by 3 cm so as to leave a central portion of the coating, and a roll-shaped silver halide photosensitive material was obtained.
 (露光)
 露光のパターンについて、格子数、開口率、線幅等を変更させた複数のパターンのフォトマスクを準備し、それらのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(exposure)
With respect to the exposure pattern, a plurality of photomasks having different numbers of lattices, aperture ratios, line widths, and the like were prepared, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source via these photomasks.
 (現像処理)
 ・現像液1L処方
   ハイドロキノン            20 g
   亜硫酸ナトリウム           50 g
   炭酸カリウム             40 g
   エチレンジアミン・四酢酸        2 g
   臭化カリウム              3 g
   ポリエチレングリコール2000     1 g
   水酸化カリウム             4 g
   pH              10.3に調整
 ・定着液1L処方
   チオ硫酸アンモニウム液(75%)  300 ml
   亜硫酸アンモニウム・1水塩      25 g
   1,3-ジアミノプロパン・四酢酸    8 g
   酢酸                  5 g
   アンモニア水(27%)         1 g
   pH               6.2に調整
 上記処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。
(Development processing)
・ Developer 1L formulation Hydroquinone 20 g
Sodium sulfite 50 g
Potassium carbonate 40 g
Ethylenediamine tetraacetic acid 2 g
Potassium bromide 3 g
Polyethylene glycol 2000 1 g
Potassium hydroxide 4 g
Adjust pH to 10.3 ・ Prescription fixer 1L ammonium thiosulfate solution (75%) 300 ml
Ammonium sulfite monohydrate 25 g
1,3-diaminopropane tetraacetic acid 8 g
Acetic acid 5 g
Ammonia water (27%) 1 g
Adjustment to pH 6.2 Photosensitive material exposed using the above processing agent is processed using an automatic processor FG-710PTS manufactured by Fujifilm Corporation: Development 35 ° C. for 30 seconds, Fixing 34 ° C. 23 seconds, Washing water (5 L / Min) for 20 seconds.
 <試験1~12>
 複数のフォトマスクを使用し、格子群の大きさ(M×N)と、開口率と、表面抵抗率と、金属細線の占有率と、電極幅と、格子一辺の長さの条件を変化させて、試験1~12の導電シートを作製した。試験1~12について、視認性の評価を行った。視認性の評価は、目視にて判断し、格子群をほぼ視認できない場合をA、格子群を僅かだが視認できる場合をB、格子群を明らかに視認できる場合をCとした。表1は試験1~12の条件と評価結果とを示している。
<Tests 1 to 12>
Using multiple photomasks, changing the conditions of the lattice group size (M × N), aperture ratio, surface resistivity, metal wire occupancy, electrode width, and length of one side of the lattice Thus, conductive sheets of Tests 1 to 12 were produced. For Tests 1 to 12, visibility was evaluated. The evaluation of visibility was judged by visual observation, and A was given when the lattice group was almost invisible, B was given when the lattice group was slightly visible but C was given when the lattice group was clearly visible. Table 1 shows the conditions and evaluation results of tests 1 to 12.
 表1からM+N≦9を満たす試験1~10は、視認性についてB以上の評価を得た。試験1~10では、特に、格子の1辺の長さが500μm以下の場合、Aの評価であった。一方、M+N>9である試験11,12は、格子の1辺の長さが500μmであってもCの評価であった。 From Table 1, Tests 1 to 10 satisfying M + N ≦ 9 obtained an evaluation of B or more for visibility. In tests 1 to 10, the evaluation of A was made especially when the length of one side of the lattice was 500 μm or less. On the other hand, tests 11 and 12 with M + N> 9 were C evaluations even when the length of one side of the grating was 500 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…導電シート、10…第一電極層、12…第一電極、14…第1電極端子、16…第1配線、26…第一格子、29…ダミーパターン、30…透明絶縁層、40…第二電極層、42…第二電極、44…第二電極端子、46…第二配線、50…端子、54…追加の第2電極端子、56…第二格子、59…ダミーパターン DESCRIPTION OF SYMBOLS 1 ... Conductive sheet, 10 ... 1st electrode layer, 12 ... 1st electrode, 14 ... 1st electrode terminal, 16 ... 1st wiring, 26 ... 1st grating | lattice, 29 ... Dummy pattern, 30 ... Transparent insulating layer, 40 ... Second electrode layer, 42 ... second electrode, 44 ... second electrode terminal, 46 ... second wiring, 50 ... terminal, 54 ... additional second electrode terminal, 56 ... second grating, 59 ... dummy pattern

Claims (9)

  1.  第一方向に延び、前記第一方向と交差する第二方向に並ぶ複数の第一電極を有する第一電極層と、
     透明絶縁層と、
     前記第二方向に延び前記第一方向に並ぶ複数の第二電極を有する第二電極層と、がこの順で積層された導電シートであって、
     前記第一電極は幅方向に広がる分岐電極を有し、かつ前記第一電極は金属細線による複数の第一格子で構成され、前記複数の第一格子はM×Nの格子群で構成され、
     前記第二電極は幅方向に広がる分岐電極を有し、かつ前記第二電極は金属細線による複数の第二格子で構成され、前記複数の第二格子はM×Nの格子群で構成され、
     前記第一電極層と前記第二電極層とは、前記複数の第一格子と前記複数の第二格子とが重なり合わないように、且つ上面から見たとき、前記複数の第一格子と前記複数の第二格子とが全面に連続して配置され、M,Nは整数でM+N≦9である導電シート。
    A first electrode layer having a plurality of first electrodes extending in a first direction and arranged in a second direction intersecting the first direction;
    A transparent insulating layer;
    A second electrode layer having a plurality of second electrodes extending in the second direction and arranged in the first direction, and a conductive sheet laminated in this order,
    The first electrode has a branch electrode extending in the width direction, and the first electrode is composed of a plurality of first lattices made of fine metal wires, and the plurality of first lattices is composed of an M × N lattice group,
    The second electrode has a branch electrode extending in the width direction, and the second electrode is composed of a plurality of second lattices of fine metal wires, and the plurality of second lattices is composed of an M × N lattice group,
    When the first electrode layer and the second electrode layer are viewed from above so that the plurality of first gratings and the plurality of second gratings do not overlap, A conductive sheet in which a plurality of second lattices are continuously arranged on the entire surface, and M and N are integers and M + N ≦ 9.
  2.  前記第一電極は98~99.5%の開口率と、40~80Ω/sq.の表面抵抗率を有し、前記第二電極は98~99.8%の開口率と、40~80Ω/sq.の表面抵抗率を有する請求項1記載の導電シート。 The first electrode has an aperture ratio of 98 to 99.5% and 40 to 80Ω / sq. The second electrode has an aperture ratio of 98-99.8% and 40-80 Ω / sq. The conductive sheet according to claim 1 having a surface resistivity of
  3.  前記第一電極層と前記第二電極層とは、前記複数の第一格子と前記複数の第二格子とが重なり合わないように、且つ上面から見たとき、前記複数の第一格子と前記複数の第二格子とはそれぞれ4個以下で隣接配置される請求項1又は2記載の導電シート。 When the first electrode layer and the second electrode layer are viewed from above so that the plurality of first gratings and the plurality of second gratings do not overlap, 3. The conductive sheet according to claim 1, wherein the plurality of second lattices are adjacent to each other by four or less.
  4.  前記第一格子および前記第二格子を構成する各前記金属細線の単位面積当たりに占める割合は0.2~2%である請求項1から3のいずれか記載の導電シート。 The conductive sheet according to any one of claims 1 to 3, wherein a ratio of each of the thin metal wires constituting the first lattice and the second lattice per unit area is 0.2 to 2%.
  5.  前記第一格子および前記第二格子は、それぞれ長さが200~1000μmの一辺を有する請求項1から4のいずれか記載の導電シート。 The conductive sheet according to any one of claims 1 to 4, wherein each of the first grid and the second grid has a side of 200 to 1000 µm in length.
  6.  前記第一電極および前記第二電極は、4~12mmの幅を有する請求項1から5のいずれか記載の導電シート。 The conductive sheet according to any one of claims 1 to 5, wherein the first electrode and the second electrode have a width of 4 to 12 mm.
  7.  前記第一格子および前記第二格子は、それぞれ長さが240~500μmの一辺を有し、前記第一電極および前記第二電極は、5~7mmの幅を有する請求項5又は6記載の導電シート。 The conductive layer according to claim 5 or 6, wherein each of the first grid and the second grid has one side having a length of 240 to 500 µm, and the first electrode and the second electrode have a width of 5 to 7 mm. Sheet.
  8.  M,N共に4以下である請求項1から7のいずれか記載の導電シート。 The conductive sheet according to any one of claims 1 to 7, wherein both M and N are 4 or less.
  9.  請求項1から8のいずれか記載の導電シートを有するタッチパネル。 A touch panel having the conductive sheet according to claim 1.
PCT/JP2013/077772 2012-10-16 2013-10-11 Electrically conductive sheet, and touch panel WO2014061591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012228753A JP2014081766A (en) 2012-10-16 2012-10-16 Conductive sheet and touch panel
JP2012-228753 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014061591A1 true WO2014061591A1 (en) 2014-04-24

Family

ID=50488157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077772 WO2014061591A1 (en) 2012-10-16 2013-10-11 Electrically conductive sheet, and touch panel

Country Status (3)

Country Link
JP (1) JP2014081766A (en)
TW (1) TW201428574A (en)
WO (1) WO2014061591A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559646A (en) * 2017-02-09 2018-08-15 Solomon Systech Ltd Touch Sensor
CN108984053A (en) * 2017-06-01 2018-12-11 乐金显示有限公司 Touch display unit and touch panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112328127A (en) 2014-09-12 2021-02-05 积水保力马科技株式会社 Sensor sheet and sensor panel
CN106155450B (en) * 2016-07-29 2022-10-21 厦门天马微电子有限公司 Integrated touch display panel and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239650A1 (en) * 2003-06-02 2004-12-02 Mackey Bob Lee Sensor patterns for a capacitive sensing apparatus
US20120062250A1 (en) * 2010-09-15 2012-03-15 Au Optronics Corp. Capacitive touch sensor and capacitive touch apparatus
JP2012146277A (en) * 2010-05-27 2012-08-02 Fujifilm Corp Conductive sheet and electrostatic capacity type touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239650A1 (en) * 2003-06-02 2004-12-02 Mackey Bob Lee Sensor patterns for a capacitive sensing apparatus
JP2012146277A (en) * 2010-05-27 2012-08-02 Fujifilm Corp Conductive sheet and electrostatic capacity type touch panel
US20120062250A1 (en) * 2010-09-15 2012-03-15 Au Optronics Corp. Capacitive touch sensor and capacitive touch apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559646A (en) * 2017-02-09 2018-08-15 Solomon Systech Ltd Touch Sensor
CN108984053A (en) * 2017-06-01 2018-12-11 乐金显示有限公司 Touch display unit and touch panel
CN108984053B (en) * 2017-06-01 2021-09-10 乐金显示有限公司 Touch display device and touch panel

Also Published As

Publication number Publication date
JP2014081766A (en) 2014-05-08
TW201428574A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5318998B2 (en) Conductive sheet and touch panel
JP5875484B2 (en) Conductive sheet and touch panel
US9055680B2 (en) Electroconductive sheet and touch panel
JP5638027B2 (en) Conductive sheet and capacitive touch panel
JP6728084B2 (en) Conductive film for touch panel, display device, conductive film, touch panel and sensor body
JP5345980B2 (en) Transparent conductive substrate, conductive sheet for touch panel, and touch panel
KR101641760B1 (en) Conductive sheet and touch panel
WO2012157555A1 (en) Conductive sheet and touch panel
WO2011065383A1 (en) Conductive sheet, usage method of conductive sheet and capacitive type touch panel
WO2012157557A1 (en) Conductive sheet and touch panel
JP5507343B2 (en) Touch panel and conductive sheet
JP5638459B2 (en) Touch panel and conductive sheet
JP5748647B2 (en) Conductive sheet and touch panel
JP5509186B2 (en) Touch panel and conductive sheet for touch panel
JP5850967B2 (en) Conductive sheet for touch panel and touch panel
WO2014061591A1 (en) Electrically conductive sheet, and touch panel
JP5777251B2 (en) Conductive sheet for touch panel and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847092

Country of ref document: EP

Kind code of ref document: A1