WO2013176156A1 - Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same - Google Patents

Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same Download PDF

Info

Publication number
WO2013176156A1
WO2013176156A1 PCT/JP2013/064149 JP2013064149W WO2013176156A1 WO 2013176156 A1 WO2013176156 A1 WO 2013176156A1 JP 2013064149 W JP2013064149 W JP 2013064149W WO 2013176156 A1 WO2013176156 A1 WO 2013176156A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
group
organic material
general formula
compound
Prior art date
Application number
PCT/JP2013/064149
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺伸博
北澤大輔
山本修平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013529459A priority Critical patent/JPWO2013176156A1/en
Publication of WO2013176156A1 publication Critical patent/WO2013176156A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an electron donating organic material, a material for a photovoltaic device using the same, and a photovoltaic device using the material.
  • Solar cells are attracting attention as an effective solution to the increasing energy problem as an environmentally friendly electric energy source.
  • inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductors are used as semiconductor materials for photovoltaic elements of solar cells.
  • solar cells manufactured using inorganic semiconductors have not been widely used in general households because of high costs. The high cost factor is mainly in the process of manufacturing a semiconductor thin film under vacuum and high temperature. Therefore, organic solar cells using organic semiconductors and organic dyes such as conjugated polymers and organic crystals are being studied as semiconductor materials expected to simplify the manufacturing process.
  • an organic solar cell using a conjugated polymer or the like has the biggest problem that the photoelectric conversion efficiency is lower than that of a conventional solar cell using an inorganic semiconductor, and has not yet been put into practical use.
  • the photoelectric conversion efficiency of organic solar cells using conventional conjugated polymers is mainly due to the low solar absorption efficiency and the excitons that are difficult to separate the electrons and holes generated by sunlight. This is because a state is formed and a trap for trapping carriers (electrons and holes) is easily formed, so that the generated carriers are easily trapped in the trap and the mobility of carriers is low.
  • Conventional photoelectric conversion elements using organic semiconductors are Schottky type, electron accepting organic materials (n-type organic semiconductors) and electron donating properties, which join an electron donating organic material (p-type organic semiconductor) and a metal having a low work function. It can be classified into a heterojunction type in which an organic material (p-type organic semiconductor) is joined. In these elements, only the organic layer (about several molecular layers) at the junction contributes to the photocurrent generation, so that the photoelectric conversion efficiency is low, and its improvement is a problem.
  • a bulk heterojunction in which an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor) are mixed to increase the bonding surface contributing to photoelectric conversion There is a type (for example, see Non-Patent Document 1).
  • the conjugated polymer used as the electron donating organic material (p-type organic semiconductor), a fullerene or fullerene derivative, such as other C 60 of the conductive polymer having the semiconductor characteristics of the n-type as the electron accepting organic material The used photoelectric conversion material is reported (for example, refer nonpatent literature 2).
  • Narrow bandgap electron-donating organic material combining the above-described electron-withdrawing group with a thienopyrrole dione skeleton and the electron-donating group with an oligothiophene skeleton, a cyclopentadithiophene skeleton, or a benzodithiophene skeleton
  • Patent Document 1 Non-Patent Document
  • the solubility in an organic solvent necessary for coating the power generation layer is poor, and in order to improve the solubility, an alkyl side chain is introduced on the nitrogen of the thienopyrrole dione skeleton.
  • an excessive alkyl group having no carrier transporting ability would reduce the carrier mobility of the electron donating organic material.
  • Examples of the alkyl group on the nitrogen include a straight chain structure such as a butyl group, a hexyl group, an octyl group, and a dodecyl group (Patent Document 1, Non-Patent Documents 5 to 13), a 2-ethylhexyl group, a 3,7-dimethylhexyl group, A branched chain structure such as 2-butyloctyl group (Patent Document 1, Non-Patent Documents 6, 8 to 10, 14) is used.
  • a relatively short alkyl group such as a butyl group cannot secure sufficient solubility in an organic solvent, and the compatibility with an electron accepting material typified by fullerene also decreases, so that sufficient photoelectric conversion efficiency can be obtained. (Non-patent document 9).
  • the highest occupied molecular orbital (HOMO) level becomes shallow, and the open voltage of the solar cell characteristics decreases.
  • An object of the present invention is to provide a photovoltaic device having high photoelectric conversion efficiency, and to provide an electron-donating organic material satisfying all of solubility in an organic solvent, high carrier mobility, and deep HOMO.
  • the present invention relates to an electron donating organic material containing a thienopyrrole dione structural unit in which an aryl group or a heteroaryl group is introduced on the nitrogen represented by the general formula (1), and a photovoltaic device using the same. is there.
  • R 1 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • a photovoltaic device with high photoelectric conversion efficiency can be provided.
  • the electron donating organic material of the present invention includes a structural unit represented by the general formula (1).
  • R 1 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • the aryl group or heteroaryl group introduced onto the nitrogen of this thienopyrrole dione skeleton makes it possible to partially destroy the planarity of the conjugated polymer, so that both solubility in organic solvents and high carrier mobility can be achieved. It will be possible.
  • the partial planarity of the conjugated polymer is partially broken by the twist between the aryl group or heteroaryl group introduced on the nitrogen of the conjugated polymer main chain skeleton and the thienopyrrole dione skeleton. This means that the planarity of the whole conjugated polymer is slightly lowered while maintaining the pi-conjugated plane of the case.
  • an electron-withdrawing group on the aryl group or heteroaryl group on nitrogen it is considered possible to deepen the HOMO level of the conjugated polymer (this may be called deep HOMO). .
  • the aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, an anthryl group, a terphenyl group, a pyrenyl group, a fluorenyl group, and a perylenyl group.
  • an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, an anthryl group, a terphenyl group, a pyrenyl group, a fluorenyl group, and a perylenyl group.
  • a phenyl group having a small molecular size is particularly preferably used.
  • the heteroaryl group includes, for example, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolinyl group, isoquinolyl group, quinoxalyl group, acridinyl group, indolyl group.
  • a heteroaromatic cyclic group having an atom other than carbon such as a group, a carbazolyl group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzodithiophene group, a silole group, a benzosilole group, and a dibenzosilole group;
  • the number of carbon atoms in the heteroaryl group is preferably 2 or more and 8 or less in order to maintain carrier mobility.
  • the carbon number of the heteroaryl group represents the number of carbon atoms contained in the aromatic ring, and even if a non-aromatic carbon is included as a substituent, it is not included in the carbon number of the heteroaryl group.
  • Examples of the substituent of the aryl group or heteroaryl group when the aryl group or heteroaryl group has a substituent include an alkyl group (R 1S1 ), an alkoxy group (R 1S2 ), and a halogen (R 1S3 ).
  • R 1S1 alkyl group
  • R 1S2 alkoxy group
  • R 1S3 halogen
  • halogen is not a group, but in the present invention, it is treated as one type of group (hereinafter, the same applies to substituents on other structural formulas).
  • the position of the substituent is preferably in the ortho position or the meta position, and since an appropriate twist can be generated in the phenyl group and the main chain structure, an excessive alkyl side chain is introduced.
  • the solubility of the conjugated polymer can be improved.
  • the alkyl group (R 1S1 ) is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, or a dodecyl group.
  • the saturated aliphatic hydrocarbon group may be linear, branched, or cyclic, and may be unsubstituted or substituted. Examples of the substituent when substituted include an alkoxy group and halogen.
  • the number of carbon atoms of the alkyl group (R 1S1 ) is preferably 6 or less in order to maintain sufficient carrier mobility of the electron donating organic material.
  • carbon contained in the substituent in the alkyl group is not included in the number of carbon atoms of the alkyl group (R 1S1 ).
  • fluorine is particularly preferably used to deepen the HOMO level of the conjugated polymer.
  • the alkoxy group (R 1S2 ) is a group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group, and the alkoxy group (R 1S2 )
  • the aliphatic hydrocarbon group may be unsubstituted or may have a substituent.
  • the substituent in the case of having a substituent include the above aryl group, the above heteroaryl group, and halogen.
  • the preferable carbon number range of the alkoxy group (R 1S2 ) is preferably 6 or less as in the case of the alkyl group (R 1S1 ). In this case as well, the carbon number contained in the substituent of the aliphatic hydrocarbon group is not included in the number of carbon atoms of the alkoxy group (R 1S2 ).
  • the halogen (R 1S3 ) that can be applied to the present invention is any one of fluorine, chlorine, bromine, and iodine.
  • fluorine is particularly preferably used because it can deepen the HOMO level of the electron-donating organic material by being introduced as a substituent of the aryl group or heteroaryl group.
  • the electron donating organic material including the structure represented by the general formula (1) is preferably composed of the structure represented by the general formula (2).
  • X represents a divalent linking group capable of maintaining a conjugated structure.
  • N represents the degree of polymerization and represents a range of 2 to 1,000.
  • n is preferably less than 100.
  • the degree of polymerization can be determined by dividing the weight average molecular weight by the molecular weight (calculated value) of the repeating unit. The weight average molecular weight can be determined by measuring using GPC (gel permeation chromatography) and converting to a polystyrene standard sample.
  • X is a divalent linking group capable of maintaining a conjugated structure.
  • the divalent linking group capable of maintaining a conjugated structure is a linking group that itself has a conjugated structure, and the conjugated structures on both sides of two bonding sites can be continued through the linking group.
  • Preferred examples of the linking group X include thiophene derivatives such as oligothiophene, benzodithiophene, and cyclopentadithiophene.
  • the band gap can be narrowed and high carrier mobility can be maintained.
  • the benzodithiophene or cyclopentadithiophene represented by 3) is more preferably used.
  • R 2 to R 5 may be the same or different and each represents an optionally substituted alkyl group, alkoxy group, aryl group, or heteroaryl group.
  • the alkyl group, alkoxy group, aryl group, and heteroaryl group are as described above except for the preferred carbon number range.
  • R 2 to R 5 are particularly preferably an alkyl group or alkoxy group having 12 or less carbon atoms.
  • n is preferably in the range of 2 or more and 1,000 or less for the same reason as in the case of the general formula (2).
  • the electron-donating organic material containing the structural unit represented by the general formula (1) is, for example, the polymerization method described in Non-Patent Document 5 or the polymerization method described in Non-Patent Document 8. Obtainable.
  • the electron donating organic material containing the structural unit represented by the general formula (1) of the present invention is a material exhibiting p-type semiconductor characteristics, and is used as a photovoltaic element material in an organic semiconductor layer in a photovoltaic element.
  • the electron donating organic material containing the structural unit represented by the general formula (1) of the present invention may be used as a material for a photovoltaic device comprising (i-1) alone, or (i-2) It may be used as a photovoltaic device material in combination with other electron-donating organic materials, or (ii) used as a photovoltaic device material in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics. Also good.
  • an electron-accepting organic material (the embodiment (ii)) because higher photoelectric conversion efficiency can be obtained.
  • other electron donating organic materials in the embodiment (i-2) may be used in combination.
  • the specific aspect of the organic-semiconductor layer and photovoltaic element using these materials for photovoltaic elements is mentioned later.
  • the electron donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with another electron donating organic material (the embodiment (i-2))
  • examples of other electron-donating organic materials that can be used in combination include polythiophene polymers, benzothiadiazole-thiophene derivatives, benzothiadiazole-thiophene copolymers, poly-p-phenylene vinylene polymers, poly- Conjugated polymers such as p-phenylene polymer, polyfluorene polymer, polypyrrole polymer, polyaniline polymer, polyacetylene polymer, polythienylene vinylene polymer, H 2 phthalocyanine (H 2 Pc ), Phthalocyanine derivatives such as copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc), porphyrin Derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl
  • the electron-donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the mode (ii) above) ),
  • NTCDA 1,4,5,8-naphthalenetetracarboxylic dianhydride
  • NTCDA 3,4,9,10-perylenetetracarboxylic dianhydride
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,10-perylenetetracarboxylic bisbenzimidazole
  • PTCBI 3,4,9,
  • fullerene compounds are preferably used because of their high charge separation speed and electron transfer speed.
  • C 70 derivatives such as the above PC 70 BM are more preferable because they are excellent in light absorption characteristics and can obtain higher photoelectric conversion efficiency.
  • the content ratio (weight fraction) of the electron-donating organic material and the electron-accepting organic material is not particularly limited, but the weight fraction of the electron-donating organic material: electron-accepting organic material is 1:99 to 99. Is preferably in the range of 1:90, more preferably in the range of 10:90 to 90:10, and still more preferably in the range of 20:80 to 60:40.
  • the electron-donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the mode (ii) above)
  • the preferred form of the organic semiconductor layer in the organic semiconductor layer will be described later.
  • the mixing method in the case of adopting the form used by mixing, but after adding it to the solvent at a desired ratio, one or more methods such as heating, stirring and ultrasonic irradiation are combined. And a method of dissolving in a solvent.
  • Electron-donating organic material in the case of a mixed form The weight fraction of the electron-accepting organic material is as described above, and in the case of a form in which the electron-donating organic material and the electron-accepting organic material are stacked. (Including the case of a laminated structure of two or more layers) means the content ratio of the electron donating organic material and the electron accepting organic material in the entire laminated layer.
  • the electron-donating organic material and / or the electron-accepting organic material preferably has a small amount of impurities that can trap carriers, and the electron-donating organic material It is preferable to remove as much as possible in the production process of the electron-accepting organic material.
  • the electron-donating organic material containing the structural unit represented by the general formula (1) and the purification method for removing impurities from the electron-accepting organic material are not particularly limited.
  • a crystal method, a sublimation method, a reprecipitation method, a Soxhlet extraction method, a molecular weight fractionation method by GPC, a filtration method, an ion exchange method, a chelate method and the like can be used.
  • a column chromatography method, a recrystallization method, and a sublimation method are preferably used for purification of a low molecular weight organic material.
  • reprecipitation method, Soxhlet extraction method, molecular weight fractionation method by GPC is preferably used when removing low molecular weight components, and reprecipitation method or the like when removing metal components.
  • a chelate method or an ion exchange method is preferably used. A plurality of these methods may be combined.
  • FIG. 1 is a schematic view showing an example of the photovoltaic element of the present invention.
  • reference numeral 1 is a substrate
  • reference numeral 2 is a positive electrode
  • reference numeral 3 is an organic semiconductor layer containing the photovoltaic element material of the present invention
  • reference numeral 4 is a negative electrode.
  • the organic semiconductor layer 3 contains the photovoltaic element material of the present invention. That is, the electron-donating organic material containing the structural unit represented by the general formula (1) is included.
  • the electron donating organic material containing the structural unit represented by the general formula (1) is used in combination with an electron accepting organic material exhibiting n-type semiconductor characteristics (the embodiment (ii)), these There are modes in which organic materials are mixed and used, but it is preferable to adopt a mode in which they are used in combination. That is, a bulk heterojunction photovoltaic device that can increase the bonding surface between an electron-donating organic material and an electron-accepting organic material that contribute to photoelectric conversion efficiency by mixing an electron-donating organic material and an electron-accepting organic material Is preferable.
  • the electron-donating organic material containing the structural unit represented by the general formula (1) and the electron-accepting organic material are phase-separated in a nanometer size.
  • the domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less.
  • the electron-donating organic material containing the structural unit represented by the general formula (1) is used in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the embodiment (ii))
  • the layer containing the electron-donating organic material exhibiting p-type semiconductor characteristics is on the positive electrode side, and the electron-accepting property exhibiting n-type semiconductor characteristics
  • the layer containing an organic material is preferably on the negative electrode side. An example of the photovoltaic element in such a case is shown in FIG.
  • Reference numeral 5 denotes a layer containing an electron donating organic material containing the structural unit represented by the general formula (1)
  • reference numeral 6 denotes a layer containing an electron accepting organic material.
  • the organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm.
  • the layer containing the electron-donating organic material of the present invention preferably has a thickness of 1 nm to 400 nm, more preferably 15 nm to 150 nm.
  • the positive electrode 2 or the negative electrode 4 has light transmittance.
  • the light transmittance of the electrode is not particularly limited as long as incident light reaches the organic semiconductor layer 3 and an electromotive force is generated.
  • the electrode represents a positive electrode or a negative electrode.
  • the light transmittance in the present invention is a value obtained by [transmitted light intensity (W / m 2 ) / incident light intensity (W / m 2 )] ⁇ 100 (%).
  • the thickness of the electrode may be in a range having light transmittance and conductivity, and is preferably 20 nm to 300 nm although it varies depending on the electrode material.
  • the other electrode is not necessarily light-transmitting as long as it has conductivity, and the thickness is not particularly limited.
  • the electrode material it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode.
  • An electrode using a conductive material having a large work function is a positive electrode.
  • Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium, tin and molybdenum, and composite metal oxides (indium tin oxide (ITO)). Indium zinc oxide (IZO) and the like are preferably used.
  • the conductive material used for the positive electrode 2 is preferably one that is in ohmic contact with the organic semiconductor layer 3. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode 2 is in ohmic contact with the hole transport layer.
  • An electrode using a conductive material with a low work function is a negative electrode, but as the conductive material with a low work function, alkali metal or alkaline earth metal, specifically lithium, magnesium, calcium, etc. are used. . Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride into the interface between the negative electrode 4 and the electron transport layer.
  • the conductive material used for the negative electrode 4 is preferably one that is in ohmic contact with the organic semiconductor layer 3.
  • the substrate 1 is a substrate on which an electrode material and an organic semiconductor layer can be laminated according to the type and application of the photoelectric conversion material, for example, inorganic materials such as alkali-free glass and quartz glass, polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene A film or plate produced by an arbitrary method from an organic material such as sulfide, polyparaxylene, epoxy resin or fluorine resin can be used. In the case where light is incident from the substrate side, it is preferable that each substrate described above has a light transmittance of about 80%.
  • a hole transport layer may be provided between the positive electrode 2 and the organic semiconductor layer 3.
  • the material for forming the hole transport layer include conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.) ), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used.
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polystyrene sulfonate
  • the thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  • an electron transport layer may be provided between the organic semiconductor layer 3 and the negative electrode 4.
  • the material for forming the electron transport layer is not particularly limited, but the above-described electron-accepting organic materials (NTCDA, PTCDA, PTCDI-C8H, oxazole derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, Organic materials exhibiting n-type semiconductor properties such as CNT and CN-PPV are preferably used.
  • the thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  • the photovoltaic element of the present invention may form a series junction by laminating two or more organic semiconductor layers via one or more intermediate electrodes.
  • a laminated structure of substrate / positive electrode / first organic semiconductor layer / intermediate electrode / second organic semiconductor layer / negative electrode can be given.
  • Such a configuration is sometimes called a tandem configuration.
  • the open circuit voltage can be improved.
  • the hole transport layer described above may be provided between the positive electrode and the first organic semiconductor layer and between the intermediate electrode and the second organic semiconductor layer, and between the first organic semiconductor layer and the intermediate electrode.
  • the above-described electron transport layer may be provided between the second organic semiconductor layer and the negative electrode.
  • At least one of the organic semiconductor layers contains the photovoltaic device material of the present invention, and the other layers are represented by the general formula (1) in order not to reduce the short-circuit current. It is preferable to include an electron-donating organic material having a different band gap from the electron-donating organic material containing a structural unit. Examples of the electron-donating organic material used in such a case include the above-described polythiophene polymer, benzothiadiazole-thiophene derivative, benzothiadiazole-thiophene copolymer, poly-p-phenylene vinylene polymer, poly-p.
  • -Conjugated polymers such as phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, phthalocyanine derivatives, porphyrin derivatives, triaryls
  • Low molecular organic compounds such as amine derivatives, carbazole derivatives, oligothiophene derivatives and the like can be mentioned.
  • the material for the intermediate electrode used here is preferably a material having high conductivity, for example, the above-mentioned metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum, and transparent Metal oxides such as indium, tin, and molybdenum, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals, and laminates of the above metals , Polyethylenedioxythiophene (PEDOT), and those obtained by adding polystyrene sulfonate (PSS) to PEDOT.
  • the intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.
  • a transparent electrode such as ITO (corresponding to a positive electrode in this case) is formed on the substrate by sputtering or the like.
  • a solution is prepared by dissolving an electron-donating organic material containing the structural unit represented by the general formula (1) and, if necessary, a material for a photoelectric conversion element containing an electron-accepting organic material in a solvent. To form an organic semiconductor layer.
  • the solvent used at this time is preferably an organic solvent, for example, methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, tetrahydrofuran, dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene, Examples include chlorobenzene, chloronaphthalene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and ⁇ -butyrolactone. Two or more of these may be used.
  • organic solvent for example, methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, tetrahydrofuran, dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene
  • the organic semiconductor layer is formed by mixing the electron-donating organic material containing the structural unit represented by the general formula (1) and the electron-accepting organic material, the structural unit represented by the general formula (1) is included.
  • An electron-donating organic material and an electron-accepting organic material are added to a solvent in a desired ratio, dissolved by using a method such as heating, stirring, and ultrasonic irradiation to form a solution, which is applied onto a transparent electrode.
  • a method such as heating, stirring, and ultrasonic irradiation to form a solution, which is applied onto a transparent electrode.
  • the photoelectric conversion efficiency of the photovoltaic element can be improved by using a mixture of two or more solvents.
  • a structure in which an electron-donating organic material and an electron-accepting material are phase-separated at a nanometer size is preferable for improving the conversion efficiency, and such a phase-separated structure can be formed by a solvent.
  • an optimal combination type can be selected depending on the types of the electron donating organic material and the electron accepting organic material to be used.
  • chloroform and chlorobenzene are mentioned as preferred solvents to be combined among the above.
  • an organic semiconductor layer is formed by stacking an electron donating organic material and an electron accepting organic material containing the structural unit represented by the general formula (1), for example, a solution of an electron donating organic material is applied. After forming a layer having an electron-donating organic material, a solution of the electron-accepting organic material is applied to form a layer.
  • the electron-donating organic material and the electron-accepting organic material are low molecular weight substances having a molecular weight of about 1000 or less, it is possible to form a layer using a vapor deposition method.
  • the formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control.
  • the electron donating organic material containing the structural unit represented by the general formula (1) and the electron accepting organic material have a concentration of 1 to 20 g / l (in the general formula (1)).
  • the electron donating organic material and the electron accepting organic material having the structure represented by the general formula (1) with respect to the volume of the solution containing the electron donating organic material, the electron accepting organic material and the solvent having the structure represented by Weight) is preferable, and by setting this concentration, a homogeneous organic semiconductor layer having a thickness of 5 to 200 nm can be easily obtained.
  • the formed organic semiconductor layer may be annealed under reduced pressure or under an inert atmosphere (in a nitrogen or argon atmosphere).
  • a preferable temperature for the annealing treatment is 40 ° C to 300 ° C, more preferably 50 ° C to 200 ° C. Further, by performing the annealing process that applies heat, the effective area where the stacked layers permeate and contact each other at the interface increases, and the short-circuit current can be increased. This annealing treatment may be performed after the formation of the negative electrode.
  • a metal electrode such as Al (corresponding to a negative electrode in this case) is formed on the organic semiconductor layer by vacuum deposition or sputtering.
  • the metal electrode is vacuum-deposited using a low molecular organic material for the electron transport layer, it is preferable that the metal electrode is continuously formed while maintaining the vacuum.
  • a desired p-type organic semiconductor material such as PEDOT
  • PEDOT p-type organic semiconductor material
  • the solvent is removed using a vacuum thermostat or a hot plate to form a hole transport layer.
  • a vacuum vapor deposition method using a vacuum vapor deposition machine.
  • a desired n-type organic semiconductor material such as fullerene derivatives
  • an n-type inorganic semiconductor material such as titanium oxide gel
  • the solvent is removed using a vacuum thermostat or a hot plate to form an electron transport layer.
  • a vacuum deposition method using a vacuum deposition machine.
  • the photovoltaic element of the present invention can be applied to various photoelectric conversion devices using a photoelectric conversion function, an optical rectification function, and the like.
  • photovoltaic cells such as solar cells
  • electronic devices such as optical sensors, optical switches, phototransistors
  • optical recording materials such as optical memories
  • ITO indium tin oxide
  • PEDOT polyethylene dioxythiophene
  • PSS polystyrene sulfonate
  • PC 70 BM phenyl C71 butyric acid methyl ester
  • Eg band gap HOMO: highest occupied molecular orbital
  • Isc short circuit current density
  • Voc open circuit voltage
  • FF fill Factor ⁇ : Photoelectric conversion efficiency
  • an FT-NMR apparatus JEOL JNM-EX270 manufactured by JEOL Ltd.
  • the average molecular weight (number average molecular weight, weight average molecular weight) was calculated by an absolute calibration curve method using a polystyrene standard sample using a GPC apparatus (manufactured by TOSOH Co., Ltd., which was fed with chloroform, high-speed GPC apparatus HLC-8320GPC). .
  • the band gap (Eg) was calculated from the light absorption edge wavelength by the following equation. The light absorption edge wavelength was measured using a U-3010 type spectrophotometer manufactured by Hitachi, Ltd.
  • Synthesis example 1 Compound A-1 was synthesized by the method shown in Formula 1.
  • the compound of formula 1 (1-g) was synthesized with reference to the method described in Advanced Functional Materials, 2011, Vol. 21, pp. 718-728.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-1 (84 mg).
  • the weight average molecular weight was 29,800, the number average molecular weight was 14,200, and the degree of polymerization n was 43.
  • the light absorption edge wavelength was 680 nm, the band gap (Eg) was 1.82 eV, and the highest occupied molecular orbital (HOMO) level was ⁇ 5.34 eV.
  • Synthesis example 2 Compound A-2 was synthesized by the method shown in Formula 2.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-2 (79 mg).
  • the weight average molecular weight was 42,800, the number average molecular weight was 21,200, and the degree of polymerization n was 61.
  • the light absorption edge wavelength was 680 nm, the band gap (Eg) was 1.82 eV, and the highest occupied molecular orbital (HOMO) level was ⁇ 5.41 eV.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-3 (80 mg).
  • the weight average molecular weight was 34,100, the number average molecular weight was 12,200, and the degree of polymerization n was 46.
  • the light absorption edge wavelength was 672 nm, the band gap (Eg) was 1.85 eV, and the highest occupied molecular orbital (HOMO) level was ⁇ 5.46 eV.
  • Synthesis example 4 Compound A-4 was synthesized by the method shown in Formula 4. The compound (4-d) described in Formula 4 was synthesized with reference to the method described in Macromolecules 2007, 40, 1981-1986.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), then a silica gel column (free solution: chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-4 (68 mg).
  • the weight average molecular weight was 32,000, the number average molecular weight was 12,200, and the degree of polymerization n was 50.
  • the light absorption edge wavelength was 739 nm, the band gap (Eg) was 1.68 eV, and the highest occupied molecular orbital (HOMO) level was ⁇ 5.49 eV.
  • Synthesis example 5 Compound B-1 was synthesized by the method shown in Formula 5.
  • the compound (5-a) described in Formula 5 was synthesized with reference to the method described in Advanced Functional Materials, 2011, Vol. 21, pp. 71-728.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound B-1 (79 mg).
  • the weight average molecular weight was 65,000, the number average molecular weight was 26,100, and the degree of polymerization n was 91.
  • the light absorption edge wavelength was 670 nm, the band gap (Eg) was 1.85 eV, and the highest occupied molecular orbital (HOMO) level was -5.23 eV.
  • a toluene / dimethylformamide solution (50 ml / 10 ml) of 1.18 g (2.0 mmol) of the above compound (6-a) and 2.2 g (6.0 mmol) of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) ) 100 mg of dichlorobis (triphenylphosphine) palladium catalyst (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and refluxed for 8 hours under nitrogen. The reaction solution was cooled to room temperature, 50 ml of water was added, and the organic layer was washed twice with water and then with saturated brine.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound B-2 (72 mg).
  • the weight average molecular weight was 45,300, the number average molecular weight was 22,000, and the degree of polymerization n was 44.
  • the light absorption edge wavelength was 658 nm, the band gap (Eg) was 1.88 eV, and the highest occupied molecular orbital (HOMO) level was ⁇ 5.35 eV.
  • the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure.
  • the obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound B-3 (50 mg).
  • the weight average molecular weight was 19,400, the number average molecular weight was 11,000, and the degree of polymerization n was 29.
  • the light absorption edge wavelength was 752 nm, the band gap (Eg) was 1.65 eV, and the highest occupied molecular orbital (HOMO) level was ⁇ 5.28 eV.
  • Example 1 The above A-1 (1 mg) and PC 70 BM (4 mg, manufactured by Solenne) were added to a sample bottle containing 0.25 ml of chlorobenzene, and an ultrasonic cleaner (US-2 manufactured by Inoue Seieido Co., Ltd.) Name), and output 120W) for 30 minutes to obtain a solution A.
  • an ultrasonic cleaner US-2 manufactured by Inoue Seieido Co., Ltd.
  • a glass substrate on which a 120-nm thick ITO transparent conductive layer serving as a positive electrode was deposited by sputtering was cut into 38 mm ⁇ 46 mm, and then ITO was patterned into a 38 mm ⁇ 13 mm rectangular shape by photolithography.
  • the obtained substrate was subjected to ultrasonic cleaning for 10 minutes with an alkali cleaning solution (“Semico Clean” EL56 (trade name), manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water.
  • an alkali cleaning solution (“Semico Clean” EL56 (trade name), manufactured by Furuuchi Chemical Co., Ltd.
  • a PEDOT: PSS aqueous solution (0.8% by weight of PEDOT, 0.5% by weight of PPS) serving as a hole transport layer was formed on the substrate to a thickness of 60 nm by spin coating. did.
  • the above solution A was dropped onto the PEDOT: PSS layer, and an organic semiconductor layer having a thickness of 100 nm was formed by spin coating.
  • the substrate on which the organic semiconductor layer is formed and the cathode mask are placed in a vacuum vapor deposition apparatus, and the vacuum in the apparatus is exhausted again until the vacuum level becomes 1 ⁇ 10 ⁇ 3 Pa or less, and the negative electrode is formed by resistance heating.
  • the aluminum layer to be formed was deposited so as to have a thickness of 80 nm and an area intersecting with the stripe-like ITO layer was 5 mm ⁇ 5 mm.
  • a photovoltaic element having a power generation layer area of 5 mm ⁇ 5 mm was produced.
  • a photovoltaic device having an area where the stripe-shaped ITO layer intersects with the aluminum layer was 5 mm ⁇ 5 mm was produced.
  • the positive and negative electrodes of the photovoltaic device thus fabricated were connected to a picoammeter / voltage source 4140B manufactured by Hewlett-Packard Co., and simulated sunlight (from Yamashita Denso Co., Ltd., simplified) from the ITO layer side in the atmosphere.
  • the short-circuit current density (value of the current density when the applied voltage is 0 V) is 6.45 A / cm 2
  • the open circuit voltage value of the applied voltage when the current density is 0
  • the fill factor (FF) was 0.60
  • the photoelectric conversion efficiency calculated from these values was 3.75%.
  • the fill factor and photoelectric conversion efficiency were calculated by the following equations.
  • Example 2 A photovoltaic device was prepared in the same manner as in Example 1 except that A-2 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 7.83 mA / cm 2 , the open-circuit voltage was 0.98 V, and the fill factor (FF) was 0.54. The photoelectric conversion efficiency calculated from these values was 4.14%. .
  • Example 3 A photovoltaic device was prepared in the same manner as in Example 1 except that A-3 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 7.23 mA / cm 2 , the open-circuit voltage was 0.98 V, the fill factor (FF) was 0.50, and the photoelectric conversion efficiency calculated from these values was 3.54%. .
  • Example 4 A photovoltaic device was produced in the same manner as in Example 1 except that A-4 was used instead of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 7.68 mA / cm 2 , the open-circuit voltage was 0.94 V, the fill factor (FF) was 0.46, and the photoelectric conversion efficiency calculated from these values was 3.32%. .
  • Comparative Example 1 A photovoltaic device was prepared in the same manner as in Example 1 except that B-1 was used instead of A-1, and current-voltage characteristics were measured.
  • the short-circuit current density at this time was 6.10 mA / cm 2
  • the open-circuit voltage was 0.96 V
  • the fill factor (FF) was 0.45.
  • the photoelectric conversion efficiency calculated from these values was 2.64%. .
  • Comparative Example 2 A photovoltaic device was produced in the same manner as in Example 1 except that B-2 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 2.45 mA / cm 2 , the open-circuit voltage was 0.76 V, the fill factor (FF) was 0.56, and the photoelectric conversion efficiency calculated from these values was 1.04%. .
  • Comparative Example 3 A photovoltaic device was produced in the same manner as in Example 1 except that B-3 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 5.43 mA / cm 2 , the open-circuit voltage was 0.80 V, the fill factor (FF) was 0.41, and the photoelectric conversion efficiency calculated from these values was 1.78%. .
  • Substrate 2 Positive electrode 3: Organic semiconductor layer 4: Negative electrode 5: Layer having an electron-donating organic material 6: Layer having an electron-accepting organic material

Abstract

The purpose of the present invention is to provide a photovoltaic power element with high photoelectric conversion efficiency. Provided are an electron-donating organic material that comprises a structural unit represented by general formula (1) and a photovoltaic power element using the material. [Chemical formula 1] (In general formula (1), R1 represents a substitutable aryl group or a substitutable heteroaryl group.)

Description

電子供与性有機材料、それを用いた光起電力素子用材料および光起電力素子Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
 本発明は、電子供与性有機材料、それを用いた光起電力素子用材料およびこれを用いた光起電力素子に関する。 The present invention relates to an electron donating organic material, a material for a photovoltaic device using the same, and a photovoltaic device using the material.
 太陽電池は環境に優しい電気エネルギー源として、現在深刻さを増すエネルギー問題に対して有力な解決策として注目されている。現在、太陽電池の光起電力素子の半導体素材としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機物が使用されている。しかし、無機半導体を用いて製造される太陽電池はコストが高いために、一般家庭に広く普及するには至っていない。コスト高の要因は主として、真空かつ高温下で半導体薄膜を製造するプロセスにある。そこで、製造プロセスの簡略化が期待される半導体素材として、共役系重合体や有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。 Solar cells are attracting attention as an effective solution to the increasing energy problem as an environmentally friendly electric energy source. Currently, inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductors are used as semiconductor materials for photovoltaic elements of solar cells. However, solar cells manufactured using inorganic semiconductors have not been widely used in general households because of high costs. The high cost factor is mainly in the process of manufacturing a semiconductor thin film under vacuum and high temperature. Therefore, organic solar cells using organic semiconductors and organic dyes such as conjugated polymers and organic crystals are being studied as semiconductor materials expected to simplify the manufacturing process.
 しかし、共役系重合体などを用いた有機太陽電池は、従来の無機半導体を用いた太陽電池と比べて光電変換効率が低いことが最大の課題であり、まだ実用化には至っていない。従来の共役系重合体を用いた有機太陽電池の光電変換効率が低いのは、主として、太陽光の吸収効率が低いことや、太陽光によって生成された電子と正孔が分離しにくいエキシトンという束縛状態が形成されることと、キャリア(電子、正孔)を捕獲するトラップが形成されやすいため生成したキャリアがトラップに捕獲されやすく、キャリアの移動度が低いことなどによる。 However, an organic solar cell using a conjugated polymer or the like has the biggest problem that the photoelectric conversion efficiency is lower than that of a conventional solar cell using an inorganic semiconductor, and has not yet been put into practical use. The photoelectric conversion efficiency of organic solar cells using conventional conjugated polymers is mainly due to the low solar absorption efficiency and the excitons that are difficult to separate the electrons and holes generated by sunlight. This is because a state is formed and a trap for trapping carriers (electrons and holes) is easily formed, so that the generated carriers are easily trapped in the trap and the mobility of carriers is low.
 これまでの有機半導体による光電変換素子は、電子供与性有機材料(p型有機半導体)と仕事関数の小さい金属を接合させるショットキー型、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を接合させるヘテロ接合型などに分類できる。これらの素子は、接合部の有機層(数分子層程度)のみが光電流生成に寄与するため光電変換効率が低く、その向上が課題となっている。 Conventional photoelectric conversion elements using organic semiconductors are Schottky type, electron accepting organic materials (n-type organic semiconductors) and electron donating properties, which join an electron donating organic material (p-type organic semiconductor) and a metal having a low work function. It can be classified into a heterojunction type in which an organic material (p-type organic semiconductor) is joined. In these elements, only the organic layer (about several molecular layers) at the junction contributes to the photocurrent generation, so that the photoelectric conversion efficiency is low, and its improvement is a problem.
 光電変換効率向上の一つの方法として、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を混合し、光電変換に寄与する接合面を増加させたバルクヘテロ接合型(例えば、非特許文献1参照)がある。なかでも、電子供与性有機材料(p型有機半導体)として共役系重合体を用い、電子受容性有機材料としてn型の半導体特性をもつ導電性高分子のほかC60などのフラーレンやフラーレン誘導体を用いた光電変換材料が報告されている(例えば、非特許文献2参照)。 As a method for improving photoelectric conversion efficiency, a bulk heterojunction in which an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor) are mixed to increase the bonding surface contributing to photoelectric conversion There is a type (for example, see Non-Patent Document 1). Among them, the conjugated polymer used as the electron donating organic material (p-type organic semiconductor), a fullerene or fullerene derivative, such as other C 60 of the conductive polymer having the semiconductor characteristics of the n-type as the electron accepting organic material The used photoelectric conversion material is reported (for example, refer nonpatent literature 2).
 太陽光スペクトルの広い範囲にわたる放射エネルギーを効率よく吸収し、光電変換効率を向上させるために、主鎖骨格に電子供与性基と電子吸引性基を導入することでバンドギャップを狭めた電子供与性有機材料が報告されている(例えば、非特許文献3、4参照)。この電子吸引性基としてイミド基を有するチエノピロール-4,6-ジオン(Thienopyrrole-4,6-dion)骨格やチエノイソインドール-5,7-ジオン(Thienoisoindole-5,7-dione)骨格を用い、電子供与性基としてオリゴチオフェン骨格やシクロペンタジチオフェン骨格、ベンゾジチオフェン骨格を組み合わせた狭バンドギャップ電子供与性有機材料が報告されている(特許文献1、非特許文献4~16参照)。 In order to efficiently absorb radiant energy over a wide range of the solar spectrum and improve photoelectric conversion efficiency, electron donating properties with a narrow band gap by introducing electron donating groups and electron withdrawing groups into the main chain skeleton Organic materials have been reported (for example, see Non-Patent Documents 3 and 4). As this electron-withdrawing group, a thienopyrrole-4,6-dione skeleton having an imide group or a thienoisoindole-5,7-dione skeleton is used, Narrow band gap electron-donating organic materials in which an oligothiophene skeleton, a cyclopentadithiophene skeleton, or a benzodithiophene skeleton is combined as an electron-donating group have been reported (see Patent Document 1 and Non-Patent Documents 4 to 16).
WO2011/063534WO2011 / 063534
 上述の電子吸引性基としてチエノピロールジオン骨格、電子供与性基としてオリゴチオフェン骨格やシクロペンタジチオフェン骨格、ベンゾジチオフェン骨格を組み合わせた狭バンドギャップ電子供与性有機材料(特許文献1、非特許文献5~15)では、発電層の塗布に必要となる有機溶媒に対する溶解性が乏しく、この溶解性を向上させるために、チエノピロールジオン骨格の窒素上にアルキル側鎖を導入している。しかしながら、キャリア輸送能のない過剰なアルキル基の導入は電子供与性有機材料のキャリア移動度を低下させてしまうと考えた。 Narrow bandgap electron-donating organic material combining the above-described electron-withdrawing group with a thienopyrrole dione skeleton and the electron-donating group with an oligothiophene skeleton, a cyclopentadithiophene skeleton, or a benzodithiophene skeleton (Patent Document 1, Non-Patent Document) In 5 to 15), the solubility in an organic solvent necessary for coating the power generation layer is poor, and in order to improve the solubility, an alkyl side chain is introduced on the nitrogen of the thienopyrrole dione skeleton. However, it was thought that the introduction of an excessive alkyl group having no carrier transporting ability would reduce the carrier mobility of the electron donating organic material.
 窒素上のアルキル基としてはブチル基、ヘキシル基、オクチル基、ドデシル基などの直鎖構造(特許文献1、非特許文献5~13)や、2-エチルヘキシル基、3,7-ジメチルヘキシル基、2-ブチルオクチル基などの分岐鎖構造(特許文献1、非特許文献6、8~10、14)が用いられている。なお、ブチル基などの比較的短いアルキル基では有機溶媒に対する十分な溶解性が確保できず、フラーレンに代表される電子受容性材料との相溶性も低下するため、十分な光電変換効率が得られていない(非特許文献9)。 Examples of the alkyl group on the nitrogen include a straight chain structure such as a butyl group, a hexyl group, an octyl group, and a dodecyl group (Patent Document 1, Non-Patent Documents 5 to 13), a 2-ethylhexyl group, a 3,7-dimethylhexyl group, A branched chain structure such as 2-butyloctyl group (Patent Document 1, Non-Patent Documents 6, 8 to 10, 14) is used. A relatively short alkyl group such as a butyl group cannot secure sufficient solubility in an organic solvent, and the compatibility with an electron accepting material typified by fullerene also decreases, so that sufficient photoelectric conversion efficiency can be obtained. (Non-patent document 9).
 さらに、従来のアルキル基をチエノピロールジオン骨格に導入した狭バンドギャップ電子供与性有機材料では最高被占分子軌道(HOMO)準位が浅くなり、太陽電池特性の開放電圧が低下してしまう。 Furthermore, in a narrow bandgap electron donating organic material in which a conventional alkyl group is introduced into the thienopyrrole dione skeleton, the highest occupied molecular orbital (HOMO) level becomes shallow, and the open voltage of the solar cell characteristics decreases.
 すなわち、従来の窒素上にアルキル側鎖を導入したチエノピロールジオン骨格を有する電子供与性有機材料を用いた光起電力素子では、有機溶媒に対する溶解性、高キャリア移動度および深HOMO化の何れかが不十分であり、光電変換効率が低いものしか得られなかった。本発明は光電変換効率の高い光起電力素子を提供することを目的とし、有機溶媒に対する溶解性、高キャリア移動度および深HOMO化を全て満たす電子供与性有機材料を提供するものである。 That is, in a conventional photovoltaic device using an electron-donating organic material having a thienopyrrole dione skeleton in which an alkyl side chain is introduced on nitrogen, any of solubility in an organic solvent, high carrier mobility, and deep HOMO Was insufficient, and only those with low photoelectric conversion efficiency were obtained. An object of the present invention is to provide a photovoltaic device having high photoelectric conversion efficiency, and to provide an electron-donating organic material satisfying all of solubility in an organic solvent, high carrier mobility, and deep HOMO.
 チエノピロールジオン骨格上の置換基について様々な構造を検討した結果、有機溶媒に対する溶解性、高キャリア移動度および深HOMO化をいずれも満たすためには、窒素上にアリール基やヘテロアリール基を導入すればよいことを見出した。 As a result of examining various structures of substituents on the thienopyrrole dione skeleton, aryl and heteroaryl groups were introduced on nitrogen in order to satisfy the solubility in organic solvents, high carrier mobility, and deep HOMO formation. I found out that I should do.
 すなわち本発明は、一般式(1)で表される窒素上にアリール基やヘテロアリール基が導入されたチエノピロールジオン構造単位を含む電子供与性有機材料、およびこれを用いた光起電力素子である。 That is, the present invention relates to an electron donating organic material containing a thienopyrrole dione structural unit in which an aryl group or a heteroaryl group is introduced on the nitrogen represented by the general formula (1), and a photovoltaic device using the same. is there.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (一般式(1)中、Rは置換されていてもよいアリール基または置換されていてもよいヘテロアリール基を表す。) (In the general formula (1), R 1 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.)
本発明によれば、光電変換効率の高い光起電力素子を提供することができる。 According to the present invention, a photovoltaic device with high photoelectric conversion efficiency can be provided.
本発明の光起電力素子の一態様を示した模式図。The schematic diagram which showed the one aspect | mode of the photovoltaic device of this invention. 本発明の光起電力素子の別の態様を示した模式図。The schematic diagram which showed another aspect of the photovoltaic element of this invention.
 本発明の電子供与性有機材料は一般式(1)で表される構造単位を含む。 The electron donating organic material of the present invention includes a structural unit represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (上記一般式(1)中、Rは置換されていてもよいアリール基または置換されていてもよいヘテロアリール基を表す。)
 このチエノピロールジオン骨格の窒素上に導入したアリール基またはヘテロアリール基によって、共役重合体の平面性を部分的に崩すことができるようになり、有機溶媒に対する溶解性と高いキャリア移動度を両立させることが可能となると考えられる。ここで共役重合体の平面性を部分的に崩すとは、共役重合体の主鎖骨格とチエノピロールジオン骨格の窒素上に導入されたアリール基またはヘテロアリール基との間のねじれによって、主鎖骨格のパイ共役平面が保たれたまま、共役重合体全体における平面性が少し低下するという意味である。さらに、窒素上のアリール基またはヘテロアリール基上に電子吸引性基を配置させることにより、共役重合体のHOMO準位を深めること(これを深HOMO化という場合もある)が可能となると考えられる。
(In the general formula (1), R 1 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.)
The aryl group or heteroaryl group introduced onto the nitrogen of this thienopyrrole dione skeleton makes it possible to partially destroy the planarity of the conjugated polymer, so that both solubility in organic solvents and high carrier mobility can be achieved. It will be possible. Here, the partial planarity of the conjugated polymer is partially broken by the twist between the aryl group or heteroaryl group introduced on the nitrogen of the conjugated polymer main chain skeleton and the thienopyrrole dione skeleton. This means that the planarity of the whole conjugated polymer is slightly lowered while maintaining the pi-conjugated plane of the case. Furthermore, by arranging an electron-withdrawing group on the aryl group or heteroaryl group on nitrogen, it is considered possible to deepen the HOMO level of the conjugated polymer (this may be called deep HOMO). .
 ここでアリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、ターフェニル基、ピレニル基、フルオレニル基、ペリレニル基などの芳香族炭化水素基を示す。電子供与性有機材料の高いキャリア移動度を保つためには、分子サイズの小さなフェニル基が特に好ましく用いられる。 Here, the aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, an anthryl group, a terphenyl group, a pyrenyl group, a fluorenyl group, and a perylenyl group. In order to maintain the high carrier mobility of the electron donating organic material, a phenyl group having a small molecular size is particularly preferably used.
 また、ヘテロアリール基とは、例えば、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリニル基、イソキノリル基、キノキサリル基、アクリジニル基、インドリル基、カルバゾリル基、ベンゾフラン基、ジベンゾフラン基、ベンゾチオフェン基、ジベンゾチオフェン基、ベンゾジチオフェン基、シロール基、ベンゾシロール基、ジベンゾシロール基などの炭素以外の原子を有する複素芳香族環基を示す。ヘテロアリール基の炭素数は、キャリア移動度を保つために2以上8以下が好ましい。ここでヘテロアリール基の炭素数とは芳香環に含まれる炭素数を表すものとし、置換基として非芳香族炭素を含んでいてもヘテロアリール基の炭素数には含めないものとする。 The heteroaryl group includes, for example, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolinyl group, isoquinolyl group, quinoxalyl group, acridinyl group, indolyl group. A heteroaromatic cyclic group having an atom other than carbon, such as a group, a carbazolyl group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzodithiophene group, a silole group, a benzosilole group, and a dibenzosilole group; The number of carbon atoms in the heteroaryl group is preferably 2 or more and 8 or less in order to maintain carrier mobility. Here, the carbon number of the heteroaryl group represents the number of carbon atoms contained in the aromatic ring, and even if a non-aromatic carbon is included as a substituent, it is not included in the carbon number of the heteroaryl group.
 アリール基またはヘテロアリール基が置換基を有する場合のアリール基またはヘテロアリール基の置換基としては、アルキル基(R1S1)やアルコキシ基(R1S2)、ハロゲン(R1S3)が挙げられる。なお、ハロゲンは基ではないが、本発明ではでは基の1種として取り扱うこととする(以降、他の構造式上の置換基においても同様とする)。また、アリール基としてフェニル基を用いた場合、置換基の位置はオルト位またはメタ位が好ましく、フェニル基と主鎖構造に適度なねじれを生じさせることができるので、過剰なアルキル側鎖を導入することなく共役重合体の溶解性を向上させることができる。 Examples of the substituent of the aryl group or heteroaryl group when the aryl group or heteroaryl group has a substituent include an alkyl group (R 1S1 ), an alkoxy group (R 1S2 ), and a halogen (R 1S3 ). Note that halogen is not a group, but in the present invention, it is treated as one type of group (hereinafter, the same applies to substituents on other structural formulas). In addition, when a phenyl group is used as the aryl group, the position of the substituent is preferably in the ortho position or the meta position, and since an appropriate twist can be generated in the phenyl group and the main chain structure, an excessive alkyl side chain is introduced. Thus, the solubility of the conjugated polymer can be improved.
 ここでアルキル基(R1S1)とは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基のような飽和脂肪族炭化水素基であり、直鎖状であっても分岐状であっても環状であってもよく、無置換でも置換されていてもかまわない。置換される場合の置換基の例としては、アルコキシ基、ハロゲンが挙げられる。アルキル基(R1S1)の炭素数は、電子供与性有機材料の十分なキャリア移動度を保つためには6以下であることが好ましい。ここで、アルキル基(R1S1)の炭素数にはアルキル基における置換基に含まれる炭素は数に含めない。アルキル基(R1S1)の置換基としては、共役重合体のHOMO準位を深めるためにフッ素が特に好ましく用いられる。 Here, the alkyl group (R 1S1 ) is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, or a dodecyl group. The saturated aliphatic hydrocarbon group may be linear, branched, or cyclic, and may be unsubstituted or substituted. Examples of the substituent when substituted include an alkoxy group and halogen. The number of carbon atoms of the alkyl group (R 1S1 ) is preferably 6 or less in order to maintain sufficient carrier mobility of the electron donating organic material. Here, carbon contained in the substituent in the alkyl group is not included in the number of carbon atoms of the alkyl group (R 1S1 ). As the substituent for the alkyl group (R 1S1 ), fluorine is particularly preferably used to deepen the HOMO level of the conjugated polymer.
 また、アルコキシ基(R1S2)とは、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した基を示し、アルコキシ基(R1S2)における脂肪族炭化水素基は無置換でも置換基を有していてもかまわない。置換基を有する場合の置換基としては、上記アリール基や上記ヘテロアリール基、ハロゲンが挙げられる。アルコキシ基(R1S2)の好ましい炭素数の範囲は、上述のアルキル基(R1S1)の場合と同様、6以下であることが好ましい。なお、この場合もアルコキシ基(R1S2)の炭素数には脂肪族炭化水素基の置換基に含まれる炭素は数に含めない。 In addition, the alkoxy group (R 1S2 ) is a group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group, and the alkoxy group (R 1S2 ) The aliphatic hydrocarbon group may be unsubstituted or may have a substituent. Examples of the substituent in the case of having a substituent include the above aryl group, the above heteroaryl group, and halogen. The preferable carbon number range of the alkoxy group (R 1S2 ) is preferably 6 or less as in the case of the alkyl group (R 1S1 ). In this case as well, the carbon number contained in the substituent of the aliphatic hydrocarbon group is not included in the number of carbon atoms of the alkoxy group (R 1S2 ).
 また、本発明に適応し得るハロゲン(R1S3)は、フッ素、塩素、臭素、ヨウ素のいずれかである。これらの中でもフッ素はアリール基またはヘテロアリール基の置換基として導入することで電子供与性有機材料のHOMO準位を深めることができるため、特に好ましく用いられる。 The halogen (R 1S3 ) that can be applied to the present invention is any one of fluorine, chlorine, bromine, and iodine. Among these, fluorine is particularly preferably used because it can deepen the HOMO level of the electron-donating organic material by being introduced as a substituent of the aryl group or heteroaryl group.
 上記一般式(1)で表される構造を含む電子供与性有機材料は一般式(2)で表される構造からなるものが好ましい。 The electron donating organic material including the structure represented by the general formula (1) is preferably composed of the structure represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (上記一般式(2)中、Xは共役構造を保つことができる2価の連結基を表す。nは重合度を示し、2以上1,000以下の範囲を表す。)
 nを2以上1,000以下とすることにより、電子供与性有機材料のキャリア移動度を高め、また前述のバルクヘテロ接合薄膜において有効なキャリアパスを形成させることができるために、光電変換効率を高めることができる。合成上の容易さからnは100未満であることが好ましい。重合度は重量平均分子量を繰り返しユニットの分子量(計算値)で除して求めることができる。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定し、ポリスチレンの標準試料に換算して求めることができる。
(In the general formula (2), X represents a divalent linking group capable of maintaining a conjugated structure. N represents the degree of polymerization and represents a range of 2 to 1,000.)
By setting n to 2 or more and 1,000 or less, the carrier mobility of the electron-donating organic material can be increased, and an effective carrier path can be formed in the aforementioned bulk heterojunction thin film, so that the photoelectric conversion efficiency is increased. be able to. For ease of synthesis, n is preferably less than 100. The degree of polymerization can be determined by dividing the weight average molecular weight by the molecular weight (calculated value) of the repeating unit. The weight average molecular weight can be determined by measuring using GPC (gel permeation chromatography) and converting to a polystyrene standard sample.
 また上記一般式(2)中、Xは共役構造を保つことができる2価の連結基である。ここで共役構造を保つことができる2価の連結基とは、それ自身が共役構造を有し2個所の結合個所の両側の共役構造が、当該連結基を介して連続し得る連結基であることを言う。かかる連結基Xとして好ましくは、オリゴチオフェン、ベンゾジチオフェン、シクロペンタジチオフェンなどのチオフェン誘導体があげられ、中でも、バンドギャップを狭め、かつ高いキャリア移動度を保つことができるために下記一般式(3)で表されるベンゾジチオフェンまたはシクロペンタジチオフェンがより好ましく用いられる。 In the general formula (2), X is a divalent linking group capable of maintaining a conjugated structure. Here, the divalent linking group capable of maintaining a conjugated structure is a linking group that itself has a conjugated structure, and the conjugated structures on both sides of two bonding sites can be continued through the linking group. Say that. Preferred examples of the linking group X include thiophene derivatives such as oligothiophene, benzodithiophene, and cyclopentadithiophene. Among these, the band gap can be narrowed and high carrier mobility can be maintained. The benzodithiophene or cyclopentadithiophene represented by 3) is more preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (一般式(3)中、R~Rは同じでも異なっていてもよく、置換されていてもよいアルキル基、アルコキシ基、アリール基、またはヘテロアリール基を表す。)
 アルキル基、アルコキシ基、アリール基、ヘテロアリール基については好ましい炭素数の範囲以外は前述のとおりである。共役重合体のキャリア移動度を保つためにはR~Rは炭素数が12以下のアルキル基またはアルコキシ基が特に好ましく用いられる。
(In general formula (3), R 2 to R 5 may be the same or different and each represents an optionally substituted alkyl group, alkoxy group, aryl group, or heteroaryl group.)
The alkyl group, alkoxy group, aryl group, and heteroaryl group are as described above except for the preferred carbon number range. In order to maintain the carrier mobility of the conjugated polymer, R 2 to R 5 are particularly preferably an alkyl group or alkoxy group having 12 or less carbon atoms.
 上記一般式(1)で表される構造を含む電子供与性有機材料として、具体的には下記のような構造が挙げられる。以下の構造式中のnは、上記一般式(2)の場合と同様の理由から2以上1,000以下の範囲が好ましい。 Specific examples of the electron donating organic material including the structure represented by the general formula (1) include the following structures. In the following structural formula, n is preferably in the range of 2 or more and 1,000 or less for the same reason as in the case of the general formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 なお、一般式(1)で表される構造単位を含む電子供与性有機材料は、たとえば前記非特許文献5に記載されている重合方法や、前記非特許文献8に記載されている重合方法で得ることができる。 The electron-donating organic material containing the structural unit represented by the general formula (1) is, for example, the polymerization method described in Non-Patent Document 5 or the polymerization method described in Non-Patent Document 8. Obtainable.
 本発明の一般式(1)で表される構造単位を含む電子供与性有機材料は、p型半導体特性を示す材料であり、光起電力素子用材料として、光起電力素子における有機半導体層に好ましく用いられる。本発明の一般式(1)で表される構造単位を含む電子供与性有機材料は、(i-1)それのみからなる光起電力素子用材料として用いてもよいし、(i-2)他の電子供与性有機材料と併用して光起電力素子用材料として用いてもよいし、(ii)n型半導体特性を示す電子受容性有機材料と組み合わせて光起電力素子用材料として用いてもよい。中でも、より高い光電変換効率を得られることから電子受容性有機材料と組み合わせること(前記(ii)の態様)が好ましい。なお前記(ii)の態様において、(i-2)の態様における他の電子供与性有機材料を併用しても差し支えない。なお、これらの光起電力素子用材料を用いた有機半導体層および光起電力素子の具体的な態様については後述する。 The electron donating organic material containing the structural unit represented by the general formula (1) of the present invention is a material exhibiting p-type semiconductor characteristics, and is used as a photovoltaic element material in an organic semiconductor layer in a photovoltaic element. Preferably used. The electron donating organic material containing the structural unit represented by the general formula (1) of the present invention may be used as a material for a photovoltaic device comprising (i-1) alone, or (i-2) It may be used as a photovoltaic device material in combination with other electron-donating organic materials, or (ii) used as a photovoltaic device material in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics. Also good. Among them, it is preferable to combine with an electron-accepting organic material (the embodiment (ii)) because higher photoelectric conversion efficiency can be obtained. In the embodiment (ii), other electron donating organic materials in the embodiment (i-2) may be used in combination. In addition, the specific aspect of the organic-semiconductor layer and photovoltaic element using these materials for photovoltaic elements is mentioned later.
 一般式(1)で表される構造単位を含む電子供与性有機材料を他の電子供与性有機材料と併用して光起電力素子用材料として用いる場合(前記(i-2)の態様)において併用することのできる他の電子供与性有機材料としては、例えば、ポリチオフェン系重合体、ベンゾチアジアゾール-チオフェン系誘導体、ベンゾチアジアゾール-チオフェン系共重合体、ポリ-p-フェニレンビニレン系重合体、ポリ-p-フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン(TPD)、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン(NPD)等のトリアリールアミン誘導体、4,4’-ジ(カルバゾール-9-イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられる。 In the case where the electron donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with another electron donating organic material (the embodiment (i-2)) Examples of other electron-donating organic materials that can be used in combination include polythiophene polymers, benzothiadiazole-thiophene derivatives, benzothiadiazole-thiophene copolymers, poly-p-phenylene vinylene polymers, poly- Conjugated polymers such as p-phenylene polymer, polyfluorene polymer, polypyrrole polymer, polyaniline polymer, polyacetylene polymer, polythienylene vinylene polymer, H 2 phthalocyanine (H 2 Pc ), Phthalocyanine derivatives such as copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc), porphyrin Derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N ′ -Triarylamine derivatives such as diphenyl-4,4'-diphenyl-1,1'-diamine (NPD), carbazole derivatives such as 4,4'-di (carbazol-9-yl) biphenyl (CBP), oligothiophene Examples thereof include low molecular organic compounds such as derivatives (terthiophene, quarterthiophene, sexithiophene, octithiophene, etc.).
 一般式(1)で表される構造単位を含む電子供与性有機材料に、n型半導体特性を示す電子受容性有機材料と組み合わせて光起電力素子用材料として用いる場合(前記(ii)の態様)において、組み合わせることのできる電子受容性有機材料としては、例えば、1,4,5,8-ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10-ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)等のオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物(C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)、[5,6]-フェニル C61 ブチリックアシッドメチルエステル([5,6]-PCBM)、[6,6]-フェニル C61 ブチリックアシッドヘキシルエステル([6,6]-PCBH)、[6,6]-フェニル C61 ブチリックアシッドドデシルエステル([6,6]-PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)など)、カーボンナノチューブ(CNT)、ポリ-p-フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN-PPV)などが挙げられる。中でも、フラーレン化合物は電荷分離速度と電子移動速度が速いため、好ましく用いられる。フラーレン化合物の中でも、C70誘導体(上記PC70BMなど)は光吸収特性に優れ、より高い光電変換効率を得られるために、より好ましい。 When the electron-donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the mode (ii) above) ), For example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (NTCDA) PTCDA), 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- ( 4-Biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), oxazole derivatives such as 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND), 3- (4-biphenylyl) -4-phenyl-5- (4-t -Butylphenyl) -1,2,4-triazole (TAZ) and other triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds (C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 and the like, [6,6] -phenyl C61 butyric acid methyl ester ([6,6] -PCBM), [5,6] -phenyl C61 butyric acid methyl ester ( [5,6] -PCBM), [6,6] -phenyl C61 butyric acid hexyl ester ([6,6] -PCBH), [6 ] - phenyl C61 butyric acid dodecyl ester ([6,6] -PCBD), phenyl C71 butyric acid methyl ester (PC 70 BM), phenyl C85 butyric acid methyl ester (PC 84 BM)), carbon nanotubes ( CNT), a derivative in which a cyano group is introduced into a poly-p-phenylene vinylene polymer (CN-PPV), and the like. Among these, fullerene compounds are preferably used because of their high charge separation speed and electron transfer speed. Among fullerene compounds, C 70 derivatives (such as the above PC 70 BM) are more preferable because they are excellent in light absorption characteristics and can obtain higher photoelectric conversion efficiency.
 一般式(1)で表される構造単位を含む電子供与性有機材料に、n型半導体特性を示す電子受容性有機材料と組み合わせて光起電力素子用材料として用いる場合(前記(ii)の態様)において、電子供与性有機材料と電子受容性有機材料の含有比率(重量分率)は特に限定されないが、電子供与性有機材料:電子受容性有機材料の重量分率が、1:99~99:1の範囲であることが好ましく、より好ましくは10:90~90:10の範囲であり、さらに好ましくは20:80~60:40の範囲である。 When the electron-donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the mode (ii) above) ), The content ratio (weight fraction) of the electron-donating organic material and the electron-accepting organic material is not particularly limited, but the weight fraction of the electron-donating organic material: electron-accepting organic material is 1:99 to 99. Is preferably in the range of 1:90, more preferably in the range of 10:90 to 90:10, and still more preferably in the range of 20:80 to 60:40.
 一般式(1)で表される構造単位を含む電子供与性有機材料に、n型半導体特性を示す電子受容性有機材料と組み合わせて光起電力素子用材料として用いる場合(前記(ii)の態様)の有機半導体層における好ましい形態については後述するが、電子供与性有機材料と電子受容性有機材料が混合して用いられる形態と積層して用いられる形態がある。混合して用いられる形態を採る場合の混合方法としては特に限定されるものではないが、所望の比率で溶媒に添加した後、加熱、撹拌、超音波照射などの方法を1種または複数種組み合わせて溶媒中に溶解させる方法が挙げられる。混合して用いられる形態の場合における電子供与性有機材料:電子受容性有機材料の重量分率は上述の通りであり、電子供与性有機材料と電子受容性有機材料を積層して用いる形態の場合(二層以上の積層構造である場合を含む)は、積層された層全体における電子供与性有機材料と電子受容性有機材料の含有比率を意味する。 When the electron-donating organic material containing the structural unit represented by the general formula (1) is used as a material for a photovoltaic device in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the mode (ii) above) The preferred form of the organic semiconductor layer in the organic semiconductor layer will be described later. There is no particular limitation on the mixing method in the case of adopting the form used by mixing, but after adding it to the solvent at a desired ratio, one or more methods such as heating, stirring and ultrasonic irradiation are combined. And a method of dissolving in a solvent. Electron-donating organic material in the case of a mixed form: The weight fraction of the electron-accepting organic material is as described above, and in the case of a form in which the electron-donating organic material and the electron-accepting organic material are stacked. (Including the case of a laminated structure of two or more layers) means the content ratio of the electron donating organic material and the electron accepting organic material in the entire laminated layer.
 光電変換効率をより向上させるためには、電子供与性有機材料および/または電子受容性有機材料はキャリアのトラップとなるような不純物の含有量が微量であればあるほど好ましく、電子供与性有機材料および/または電子受容性有機材料の製造工程において極力除去することが好ましい。本発明では、前述の一般式(1)で表される構造単位を含む電子供与性有機材料や、電子受容性有機材料の不純物を除去する精製方法は特に限定されないが、カラムクロマトグラフィー法、再結晶法、昇華法、再沈殿法、ソックスレー抽出法、GPCによる分子量分画法、濾過法、イオン交換法、キレート法等を用いることができる。一般的に低分子有機材料の精製にはカラムクロマトグラフィー法、再結晶法、昇華法が好ましく用いられる。他方、高分子量体の精製には、低分子量成分を除去する場合には再沈殿法やソクスレー抽出法、GPCによる分子量分画法が好ましく用いられ、金属成分を除去する場合には再沈殿法やキレート法、イオン交換法が好ましく用いられる。これらの方法のうち、複数を組み合わせてもよい。 In order to further improve the photoelectric conversion efficiency, the electron-donating organic material and / or the electron-accepting organic material preferably has a small amount of impurities that can trap carriers, and the electron-donating organic material It is preferable to remove as much as possible in the production process of the electron-accepting organic material. In the present invention, the electron-donating organic material containing the structural unit represented by the general formula (1) and the purification method for removing impurities from the electron-accepting organic material are not particularly limited. A crystal method, a sublimation method, a reprecipitation method, a Soxhlet extraction method, a molecular weight fractionation method by GPC, a filtration method, an ion exchange method, a chelate method and the like can be used. In general, a column chromatography method, a recrystallization method, and a sublimation method are preferably used for purification of a low molecular weight organic material. On the other hand, for purification of high molecular weight compounds, reprecipitation method, Soxhlet extraction method, molecular weight fractionation method by GPC is preferably used when removing low molecular weight components, and reprecipitation method or the like when removing metal components. A chelate method or an ion exchange method is preferably used. A plurality of these methods may be combined.
 次に、本発明の光起電力素子について説明する。本発明の光起電力素子は、少なくとも正極と負極を有し、これらの間に本発明の光起電力素子用材料を含む有機半導体層を有する。図1は本発明の光起電力素子の一例を示す模式図である。図1において符号1は基板、符号2は正極、符号3は本発明の光起電力素子用材料を含む有機半導体層、符号4は負極である。 Next, the photovoltaic element of the present invention will be described. The photovoltaic element of the present invention has at least a positive electrode and a negative electrode, and an organic semiconductor layer containing the material for a photovoltaic element of the present invention between them. FIG. 1 is a schematic view showing an example of the photovoltaic element of the present invention. In FIG. 1, reference numeral 1 is a substrate, reference numeral 2 is a positive electrode, reference numeral 3 is an organic semiconductor layer containing the photovoltaic element material of the present invention, and reference numeral 4 is a negative electrode.
 有機半導体層3は本発明の光起電力素子用材料を含む。すなわち、一般式(1)で表される構造単位を含む電子供与性有機材料を含む。ここで、一般式(1)で表される構造単位を含む電子供与性有機材料に、n型半導体特性を示す電子受容性有機材料と組み合わせて用いる場合(前記(ii)の態様)、これらの有機材料は混合して用いる態様と積層して用いる態様があるが、混合して用いる態様を採ることが好ましい。すなわち、電子供与性有機材料と電子受容性有機材料とを混合することにより、光電変換効率に寄与する電子供与性有機材料と電子受容性有機材料の接合面が増加できるバルクヘテロ接合型光起電力素子となることからが好ましい。このバルクヘテロ接合型の有機発電層においては、一般式(1)で表される構造単位を含む電子供与性有機材料と電子受容性有機材料がナノメートルのサイズで相分離していることが好ましい。この相分離構造のドメインサイズは特に限定されるものではないが、通常1nm以上50nm以下である。 The organic semiconductor layer 3 contains the photovoltaic element material of the present invention. That is, the electron-donating organic material containing the structural unit represented by the general formula (1) is included. Here, when the electron donating organic material containing the structural unit represented by the general formula (1) is used in combination with an electron accepting organic material exhibiting n-type semiconductor characteristics (the embodiment (ii)), these There are modes in which organic materials are mixed and used, but it is preferable to adopt a mode in which they are used in combination. That is, a bulk heterojunction photovoltaic device that can increase the bonding surface between an electron-donating organic material and an electron-accepting organic material that contribute to photoelectric conversion efficiency by mixing an electron-donating organic material and an electron-accepting organic material Is preferable. In this bulk heterojunction organic power generation layer, it is preferable that the electron-donating organic material containing the structural unit represented by the general formula (1) and the electron-accepting organic material are phase-separated in a nanometer size. The domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less.
 また、一般式(1)で表される構造単位を含む電子供与性有機材料に、n型半導体特性を示す電子受容性有機材料と組み合わせて用いる場合(前記(ii)の態様)のもう一つの対応である電子供与性有機材料と電子受容性有機材料とが積層されている場合は、p型半導体特性を示す電子供与性有機材料を含む層が正極側、n型半導体特性を示す電子受容性有機材料を含む層が負極側であることが好ましい。かかる場合の光起電力素子の一例を図2に示す。符号5は一般式(1)で表される構造単位を含む電子供与性有機材料を含む層、符号6は電子受容性有機材料を含む層である。有機半導体層は5nm~500nmの厚さが好ましく、より好ましくは30nm~300nmである。積層されている場合は、本発明の電子供与性有機材料を含む層は上記厚さのうち1nm~400nmの厚さを有していることが好ましく、より好ましくは15nm~150nmである。 In addition, in the case where the electron-donating organic material containing the structural unit represented by the general formula (1) is used in combination with an electron-accepting organic material exhibiting n-type semiconductor characteristics (the embodiment (ii)), When the corresponding electron-donating organic material and electron-accepting organic material are laminated, the layer containing the electron-donating organic material exhibiting p-type semiconductor characteristics is on the positive electrode side, and the electron-accepting property exhibiting n-type semiconductor characteristics The layer containing an organic material is preferably on the negative electrode side. An example of the photovoltaic element in such a case is shown in FIG. Reference numeral 5 denotes a layer containing an electron donating organic material containing the structural unit represented by the general formula (1), and reference numeral 6 denotes a layer containing an electron accepting organic material. The organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm. When stacked, the layer containing the electron-donating organic material of the present invention preferably has a thickness of 1 nm to 400 nm, more preferably 15 nm to 150 nm.
 本発明の光起電力素子においては、正極2もしくは負極4のいずれかに光透過性を有することが好ましい。電極の光透過性は、有機半導体層3に入射光が到達して起電力が発生する程度であれば、特に限定されるものではない。ここで、電極とは正極または負極を表す。また、本発明における光透過性は、[透過光強度(W/m)/入射光強度(W/m)]×100(%)で求められる値である。電極の厚さは光透過性と導電性とを有する範囲であればよく、電極素材によって異なるが20nm~300nmが好ましい。なお、もう一方の電極は導電性があれば必ずしも光透過性は必要ではなく、厚さも特に限定されない。 In the photovoltaic device of the present invention, it is preferable that either the positive electrode 2 or the negative electrode 4 has light transmittance. The light transmittance of the electrode is not particularly limited as long as incident light reaches the organic semiconductor layer 3 and an electromotive force is generated. Here, the electrode represents a positive electrode or a negative electrode. The light transmittance in the present invention is a value obtained by [transmitted light intensity (W / m 2 ) / incident light intensity (W / m 2 )] × 100 (%). The thickness of the electrode may be in a range having light transmittance and conductivity, and is preferably 20 nm to 300 nm although it varies depending on the electrode material. The other electrode is not necessarily light-transmitting as long as it has conductivity, and the thickness is not particularly limited.
 電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズ、モリブデンなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極2に用いられる導電性素材は、有機半導体層3とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極2に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。 As the electrode material, it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. An electrode using a conductive material having a large work function is a positive electrode. Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium, tin and molybdenum, and composite metal oxides (indium tin oxide (ITO)). Indium zinc oxide (IZO) and the like are preferably used. Here, the conductive material used for the positive electrode 2 is preferably one that is in ohmic contact with the organic semiconductor layer 3. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode 2 is in ohmic contact with the hole transport layer.
 仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムなどが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極4と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物を導入することで、取り出し電流を向上させることも可能である。ここで、負極4に用いられる導電性素材は、有機半導体層3とオーミック接合するものであることが好ましい。 An electrode using a conductive material with a low work function is a negative electrode, but as the conductive material with a low work function, alkali metal or alkaline earth metal, specifically lithium, magnesium, calcium, etc. are used. . Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride into the interface between the negative electrode 4 and the electron transport layer. Here, the conductive material used for the negative electrode 4 is preferably one that is in ohmic contact with the organic semiconductor layer 3.
 基板1は、光電変換材料の種類や用途に応じて、電極材料や有機半導体層が積層できる基板、例えば、無アルカリガラス、石英ガラス等の無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂等の有機材料から任意の方法によって作製されたフィルムや板が使用可能である。また基板側から光を入射させて用いる場合は、上記に示した各基板に80%程度の光透過性を持たせておくことが好ましい。 The substrate 1 is a substrate on which an electrode material and an organic semiconductor layer can be laminated according to the type and application of the photoelectric conversion material, for example, inorganic materials such as alkali-free glass and quartz glass, polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene A film or plate produced by an arbitrary method from an organic material such as sulfide, polyparaxylene, epoxy resin or fluorine resin can be used. In the case where light is incident from the substrate side, it is preferable that each substrate described above has a light transmittance of about 80%.
 本発明では、正極2と有機半導体層3の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ-p-フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nmから600nmの厚さが好ましく、より好ましくは30nmから200nmである。 In the present invention, a hole transport layer may be provided between the positive electrode 2 and the organic semiconductor layer 3. Examples of the material for forming the hole transport layer include conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.) ), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
 また、本発明の光起電力素子は、有機半導体層3と負極4の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、上述の電子受容性有機材料(NTCDA、PTCDA、PTCDI-C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、CNT、CN-PPVなど)のようにn型半導体特性を示す有機材料が好ましく用いられる。電子輸送層は5nm~600nmの厚さが好ましく、より好ましくは30nm~200nmである。 In the photovoltaic device of the present invention, an electron transport layer may be provided between the organic semiconductor layer 3 and the negative electrode 4. The material for forming the electron transport layer is not particularly limited, but the above-described electron-accepting organic materials (NTCDA, PTCDA, PTCDI-C8H, oxazole derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, Organic materials exhibiting n-type semiconductor properties such as CNT and CN-PPV are preferably used. The thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
 また、本発明の光起電力素子は、1つ以上の中間電極を介して2層以上の有機半導体層を積層して直列接合を形成してもよい。例えば、基板/正極/第1の有機半導体層/中間電極/第2の有機半導体層/負極という積層構成を挙げることができる。このような構成をタンデム構成と呼ぶこともある。このようにタンデム構成とすることにより、開放電圧を向上させることができる。なお、正極と第1の有機半導体層の間、および、中間電極と第2の有機半導体層の間に上述の正孔輸送層を設けてもよく、第1の有機半導体層と中間電極の間、および、第2の有機半導体層と負極の間に上述の電子輸送層を設けてもよい。 Further, the photovoltaic element of the present invention may form a series junction by laminating two or more organic semiconductor layers via one or more intermediate electrodes. For example, a laminated structure of substrate / positive electrode / first organic semiconductor layer / intermediate electrode / second organic semiconductor layer / negative electrode can be given. Such a configuration is sometimes called a tandem configuration. By adopting the tandem configuration in this way, the open circuit voltage can be improved. Note that the hole transport layer described above may be provided between the positive electrode and the first organic semiconductor layer and between the intermediate electrode and the second organic semiconductor layer, and between the first organic semiconductor layer and the intermediate electrode. The above-described electron transport layer may be provided between the second organic semiconductor layer and the negative electrode.
 このようなタンデム構成の場合、有機半導体層の少なくとも1層が本発明の光起電力素子用材料を含み、他の層には、短絡電流を低下させないために、一般式(1)で表される構造単位を含む電子供与性有機材料とはバンドギャップの異なる電子供与性有機材料を含むことが好ましい。かかる場合に用いられる電子供与性有機材料としては、例えば上述のポリチオフェン系重合体、ベンゾチアジアゾール-チオフェン系誘導体、ベンゾチアジアゾール-チオフェン系共重合体、ポリ-p-フェニレンビニレン系重合体、ポリ-p-フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、フタロシアニン誘導体、ポルフィリン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、オリゴチオフェン誘導体等の低分子有機化合物が挙げられる。 In such a tandem configuration, at least one of the organic semiconductor layers contains the photovoltaic device material of the present invention, and the other layers are represented by the general formula (1) in order not to reduce the short-circuit current. It is preferable to include an electron-donating organic material having a different band gap from the electron-donating organic material containing a structural unit. Examples of the electron-donating organic material used in such a case include the above-described polythiophene polymer, benzothiadiazole-thiophene derivative, benzothiadiazole-thiophene copolymer, poly-p-phenylene vinylene polymer, poly-p. -Conjugated polymers such as phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, phthalocyanine derivatives, porphyrin derivatives, triaryls Low molecular organic compounds such as amine derivatives, carbazole derivatives, oligothiophene derivatives and the like can be mentioned.
 また、ここで用いられる中間電極用の素材としては高い導電性を有するものが好ましく、例えば上述の金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属や、透明性を有するインジウム、スズ、モリブデンなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)、上記の金属からなる合金や上記の金属の積層体、ポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたもの、などが挙げられる。中間電極は光透過性を有することが好ましいが、光透過性が低い金属のような素材でも膜厚を薄くすることで充分な光透過性を確保できる場合が多い。 In addition, the material for the intermediate electrode used here is preferably a material having high conductivity, for example, the above-mentioned metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum, and transparent Metal oxides such as indium, tin, and molybdenum, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals, and laminates of the above metals , Polyethylenedioxythiophene (PEDOT), and those obtained by adding polystyrene sulfonate (PSS) to PEDOT. The intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.
 次に、本発明の光起電力素子の製造方法について例を挙げて説明する。基板上にITOなどの透明電極(この場合正極に相当)をスパッタリング法などにより形成する。次に、一般式(1)で表される構造単位を含む電子供与性有機材料、および必要により電子受容性有機材料を含む光電変換素子用材料を溶媒に溶解させて溶液を作り、透明電極上に塗布し有機半導体層を形成する。 Next, a method for manufacturing the photovoltaic element of the present invention will be described with an example. A transparent electrode such as ITO (corresponding to a positive electrode in this case) is formed on the substrate by sputtering or the like. Next, a solution is prepared by dissolving an electron-donating organic material containing the structural unit represented by the general formula (1) and, if necessary, a material for a photoelectric conversion element containing an electron-accepting organic material in a solvent. To form an organic semiconductor layer.
 このとき用いられる溶媒は有機溶媒が好ましく、例えば、メタノール、エタノール、ブタノール、トルエン、キシレン、o-クロロフェノール、アセトン、酢酸エチル、エチレングリコール、テトラヒドロフラン、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、γ-ブチロラクトンなどが挙げられる。これらを2種以上用いてもよい。 The solvent used at this time is preferably an organic solvent, for example, methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, tetrahydrofuran, dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene, Examples include chlorobenzene, chloronaphthalene, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and γ-butyrolactone. Two or more of these may be used.
 一般式(1)で表される構造単位を含む電子供与性有機材料および電子受容性有機材料を混合して有機半導体層を形成する場合は、一般式(1)で表される構造単位を含む電子供与性有機材料と電子受容性有機材料を所望の比率で溶媒に添加し、加熱、撹拌、超音波照射などの方法を用いて溶解させ溶液を作り、透明電極上に塗布する。この場合、2種以上の溶媒を混合して用いることで光起電力素子の光電変換効率を向上させることもできる。これは、前述したように電子供与性有機材料と電子受容性材料がナノメートルのサイズで相分離した構造が変換効率の向上に好ましく、溶媒によってこのような相分離構造を形成することができるためである。かかる場合に組み合わせる溶媒は、用いる電子供与性有機材料と電子受容性有機材料の種類によって最適な組み合わせの種類を選択することができる。一般式(1)で表される構造単位を含む電子供与性有機材料を用いる場合、組み合わせる好ましい溶媒として上述の中でもクロロホルムとクロロベンゼンが挙げられる。この場合、各溶媒の混合体積比率は、クロロホルム:クロロベンゼン=5:95~95:5の範囲であることが好ましく、さらに好ましくはクロロホルム:クロロベンゼン=10:90~90:10の範囲である。 When the organic semiconductor layer is formed by mixing the electron-donating organic material containing the structural unit represented by the general formula (1) and the electron-accepting organic material, the structural unit represented by the general formula (1) is included. An electron-donating organic material and an electron-accepting organic material are added to a solvent in a desired ratio, dissolved by using a method such as heating, stirring, and ultrasonic irradiation to form a solution, which is applied onto a transparent electrode. In this case, the photoelectric conversion efficiency of the photovoltaic element can be improved by using a mixture of two or more solvents. This is because, as described above, a structure in which an electron-donating organic material and an electron-accepting material are phase-separated at a nanometer size is preferable for improving the conversion efficiency, and such a phase-separated structure can be formed by a solvent. It is. As the solvent to be combined in such a case, an optimal combination type can be selected depending on the types of the electron donating organic material and the electron accepting organic material to be used. When using the electron donating organic material containing the structural unit represented by the general formula (1), chloroform and chlorobenzene are mentioned as preferred solvents to be combined among the above. In this case, the mixing volume ratio of each solvent is preferably in the range of chloroform: chlorobenzene = 5: 95 to 95: 5, and more preferably in the range of chloroform: chlorobenzene = 10: 90 to 90:10.
 また、一般式(1)で表される構造単位を含む電子供与性有機材料および電子受容性有機材料を積層して有機半導体層を形成する場合は、例えば電子供与性有機材料の溶液を塗布して電子供与性有機材料を有する層を形成した後に、電子受容性有機材料の溶液を塗布して層を形成する。ここで、電子供与性有機材料および電子受容性有機材料は、分子量が1000以下程度の低分子量体である場合には、蒸着法を用いて層を形成することも可能である。 When an organic semiconductor layer is formed by stacking an electron donating organic material and an electron accepting organic material containing the structural unit represented by the general formula (1), for example, a solution of an electron donating organic material is applied. After forming a layer having an electron-donating organic material, a solution of the electron-accepting organic material is applied to form a layer. Here, when the electron-donating organic material and the electron-accepting organic material are low molecular weight substances having a molecular weight of about 1000 or less, it is possible to form a layer using a vapor deposition method.
 有機半導体層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法など何れの方法を用いてもよく、膜厚制御や配向制御など、得ようとする有機半導体層特性に応じて形成方法を選択すればよい。例えばスピンコート塗布を行う場合には、一般式(1)で表される構造単位を含む電子供与性有機材料、および電子受容性有機材料が1~20g/lの濃度(一般式(1)で表される構造を有する電子供与性有機材料と電子受容性有機材料と溶媒を含む溶液の体積に対する、一般式(1)で表される構造を有する電子供与性有機材料と電子受容性有機材料の重量)であることが好ましく、この濃度にすることで厚さ5~200nmの均質な有機半導体層を容易に得ることができる。 For organic semiconductor layer formation, spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, dip pulling method, ink jet method, spray method, vacuum deposition method, etc. This method may be used, and the formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control. For example, when spin coating is performed, the electron donating organic material containing the structural unit represented by the general formula (1) and the electron accepting organic material have a concentration of 1 to 20 g / l (in the general formula (1)). The electron donating organic material and the electron accepting organic material having the structure represented by the general formula (1) with respect to the volume of the solution containing the electron donating organic material, the electron accepting organic material and the solvent having the structure represented by Weight) is preferable, and by setting this concentration, a homogeneous organic semiconductor layer having a thickness of 5 to 200 nm can be easily obtained.
 形成した有機半導体層に対して、溶媒を除去するために、減圧下または不活性雰囲気下(窒素やアルゴン雰囲気下)などでアニーリング処理を行ってもよい。アニーリング処理の好ましい温度は40℃~300℃、より好ましくは50℃~200℃である。また、熱をかけるアニーリング処理を行うことで、積層した層が界面で互いに浸透して接触する実行面積が増加し、短絡電流を増大させることができる。このアニーリング処理は、負極の形成後に行ってもよい。 In order to remove the solvent, the formed organic semiconductor layer may be annealed under reduced pressure or under an inert atmosphere (in a nitrogen or argon atmosphere). A preferable temperature for the annealing treatment is 40 ° C to 300 ° C, more preferably 50 ° C to 200 ° C. Further, by performing the annealing process that applies heat, the effective area where the stacked layers permeate and contact each other at the interface increases, and the short-circuit current can be increased. This annealing treatment may be performed after the formation of the negative electrode.
 次に、有機半導体層上にAlなどの金属電極(この場合負極に相当)を真空蒸着法やスパッタ法により形成する。金属電極は、電子輸送層に低分子有機材料を用いて真空蒸着した場合は、引き続き、真空を保持したまま続けて形成することが好ましい。 Next, a metal electrode such as Al (corresponding to a negative electrode in this case) is formed on the organic semiconductor layer by vacuum deposition or sputtering. When the metal electrode is vacuum-deposited using a low molecular organic material for the electron transport layer, it is preferable that the metal electrode is continuously formed while maintaining the vacuum.
 正極と有機半導体層の間に正孔輸送層を設ける場合には、所望のp型有機半導体材料(PEDOTなど)を正極上にスピンコート法、バーコーティング法、ブレードによるキャスト法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、正孔輸送層を形成する。フタロシアニン誘導体やポルフィリン誘導体などの低分子有機材料を使用する場合には、真空蒸着機を用いた真空蒸着法を適用することも可能である。 When a hole transport layer is provided between the positive electrode and the organic semiconductor layer, a desired p-type organic semiconductor material (such as PEDOT) is applied on the positive electrode by spin coating, bar coating, blade casting, or the like. Then, the solvent is removed using a vacuum thermostat or a hot plate to form a hole transport layer. In the case of using a low molecular organic material such as a phthalocyanine derivative or a porphyrin derivative, it is also possible to apply a vacuum vapor deposition method using a vacuum vapor deposition machine.
 有機半導体層と負極の間に電子輸送層を設ける場合には、所望のn型有機半導体材料(フラーレン誘導体など)n型無機半導体材料(酸化チタンゲルなど)を有機半導体層上にスピンコート法、バーコーティング法、ブレードによるキャスト法、スプレー法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、電子輸送層を形成する。フェナントロリン誘導体やC60などの低分子有機材料を使用する場合には、真空蒸着機を用いた真空蒸着法を適用することも可能である。 When an electron transport layer is provided between the organic semiconductor layer and the negative electrode, a desired n-type organic semiconductor material (such as fullerene derivatives) or an n-type inorganic semiconductor material (such as titanium oxide gel) is spin-coated on the organic semiconductor layer. After coating by a coating method, a casting method using a blade, a spray method, or the like, the solvent is removed using a vacuum thermostat or a hot plate to form an electron transport layer. When using a low molecular organic material such as a phenanthroline derivative or C 60, it is also possible to apply a vacuum deposition method using a vacuum deposition machine.
 本発明の光起電力素子は、光電変換機能、光整流機能などを利用した種々の光電変換デバイスへの応用が可能である。例えば光電池(太陽電池など)、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などに有用である。 The photovoltaic element of the present invention can be applied to various photoelectric conversion devices using a photoelectric conversion function, an optical rectification function, and the like. For example, it is useful for photovoltaic cells (such as solar cells), electronic devices (such as optical sensors, optical switches, phototransistors), optical recording materials (such as optical memories), and the like.
 以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。また実施例等で用いた化合物のうち、略語を使用しているものについて、以下に示す。
ITO:インジウム錫酸化物
PEDOT:ポリエチレンジオキシチオフェン
PSS:ポリスチレンスルホネート
PC70BM:フェニル C71 ブチリックアシッドメチルエステル
Eg:バンドギャップ
HOMO:最高被占分子軌道
Isc:短絡電流密度
Voc:開放電圧
FF:フィルファクター
η:光電変換効率
 なお、H-NMR測定にはFT-NMR装置((株)日本電子製JEOL JNM-EX270)を用いた。
Hereinafter, the present invention will be described more specifically based on examples. In addition, this invention is not limited to the following Example. Of the compounds used in the examples and the like, those using abbreviations are shown below.
ITO: indium tin oxide PEDOT: polyethylene dioxythiophene PSS: polystyrene sulfonate PC 70 BM: phenyl C71 butyric acid methyl ester Eg: band gap HOMO: highest occupied molecular orbital Isc: short circuit current density Voc: open circuit voltage FF: fill Factor η: Photoelectric conversion efficiency For the 1 H-NMR measurement, an FT-NMR apparatus (JEOL JNM-EX270 manufactured by JEOL Ltd.) was used.
 また、平均分子量(数平均分子量、重量平均分子量)はGPC装置(クロロホルムを送液したTOSOH社製、高速GPC装置HLC-8320GPC)を用い、ポリスチレンの標準試料を用いた絶対検量線法によって算出した。重合度nは以下の式で算出した。
重合度n=[(重量平均分子量)/(繰り返しユニットの分子量(計算値))]
 また、バンドギャップ(Eg)は下式により、光吸収端波長から算出した。なお、光吸収端波長は、ガラス上に約60nmの厚さにクロロホルムを溶媒に用いてスピンコート法により形成した薄膜について、日立製作所(株)製のU-3010型分光光度計を用いて測定した薄膜の紫外可視吸収スペクトル(測定波長範囲:300~900nm)から得た。
Eg(eV)=1240/薄膜の光吸収端波長(nm)

 なお、電子供与性有機材料か電子受容性有機材料か(p型半導体特性かn型半導体特性か)は、前述の薄膜をFET測定やエネルギー準位測定することで特定することが出来る。
Further, the average molecular weight (number average molecular weight, weight average molecular weight) was calculated by an absolute calibration curve method using a polystyrene standard sample using a GPC apparatus (manufactured by TOSOH Co., Ltd., which was fed with chloroform, high-speed GPC apparatus HLC-8320GPC). . The degree of polymerization n was calculated by the following formula.
Degree of polymerization n = [(weight average molecular weight) / (molecular weight of repeating unit (calculated value))]
The band gap (Eg) was calculated from the light absorption edge wavelength by the following equation. The light absorption edge wavelength was measured using a U-3010 type spectrophotometer manufactured by Hitachi, Ltd. for a thin film formed on a glass by spin coating using chloroform as a solvent to a thickness of about 60 nm. It was obtained from an ultraviolet-visible absorption spectrum (measurement wavelength range: 300 to 900 nm) of the obtained thin film.
Eg (eV) = 1240 / light absorption edge wavelength of thin film (nm)
m
Note that whether the material is an electron-donating organic material or an electron-accepting organic material (p-type semiconductor characteristics or n-type semiconductor characteristics) can be specified by performing FET measurement or energy level measurement on the above-described thin film.
 合成例1
 化合物A-1を式1に示す方法で合成した。なお、式1記載の化合物(1-g)はアドバンスドファンクショナルマテリアルズ(Advanced Functional Materials)、2011年、21巻、718-728頁に記載されている方法を参考にして合成した。
Synthesis example 1
Compound A-1 was synthesized by the method shown in Formula 1. The compound of formula 1 (1-g) was synthesized with reference to the method described in Advanced Functional Materials, 2011, Vol. 21, pp. 718-728.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 チオフェンジカルボン酸(フロンティアサイエンティフィック社製)4.5g(26.1mmol)の酢酸溶液50mlに臭素25g(156mmol)をゆっくり加え室温で1時間、60度で6時間撹拌した。撹拌終了後、反応溶液に飽和チオ硫酸ナトリウム水溶液をゆっくり反応溶液の色が消失するまで加え、0度で12時間放置した。析出した固体をろ別した後、アセトン/水により再結晶することにより化合物(1-b)5.7g(収率66%)を白色固体として得た。化合物(1-b)の13C-NMRの測定結果を以下に示す。
13C-NMR(67.5MHz,DMSO-d):162.46,135.11,114.39ppm。
To 50 ml of acetic acid solution of 4.5 g (26.1 mmol) of thiophenedicarboxylic acid (manufactured by Frontier Scientific), 25 g (156 mmol) of bromine was slowly added and stirred at room temperature for 1 hour and at 60 ° C. for 6 hours. After completion of the stirring, a saturated aqueous sodium thiosulfate solution was slowly added to the reaction solution until the color of the reaction solution disappeared, and the mixture was left at 0 ° C. for 12 hours. The precipitated solid was filtered off and recrystallized from acetone / water to give 5.7 g (yield 66%) of compound (1-b) as a white solid. The measurement result of 13 C-NMR of the compound (1-b) is shown below.
13 C-NMR (67.5 MHz, DMSO-d 6 ): 162.46, 135.11, 114.39 ppm.
 上記化合物(1-b)4.9g(14.9mmol)に無水酢酸(和光純薬工業(株)製)80mlを加え、6時間加熱還流した。反応溶液を減圧留去した後、析出した固体をヘキサンで洗浄し、乾燥させることにより化合物(1-c)3.4g(収率74%)を白色固体として得た。化合物(1-c)の13C-NMRの測定結果を以下に示す。
13C-NMR(67,5MHz,CDCl):153.78,133.66,116.99ppm
 オルトトルイジン(東京化成工業(株)製)343mg(3.2mmol)のジメチルホルムアミド溶液(15ml)に上記化合物(1-c)936mg(3.0mmol)を室温で加え、70度で3時間撹拌した。反応終了後、溶媒を減圧留去し、化合物(1-e)1.3g(粗精製物)を白色固体として得た。化合物(1-e)はそのまま次の反応に用いた。化合物(1-e)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,DMSO-d):9.96(s,1H),7.40(d,J=8.4Hz,1H),7.25-7.11(m,3H),2.28(s,3H)ppm。
80 ml of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 4.9 g (14.9 mmol) of the above compound (1-b), and the mixture was heated to reflux for 6 hours. After the reaction solution was distilled off under reduced pressure, the precipitated solid was washed with hexane and dried to obtain 3.4 g (yield 74%) of compound (1-c) as a white solid. The measurement result of 13 C-NMR of the compound (1-c) is shown below.
13 C-NMR (67, 5 MHz, CDCl 3 ): 153.78, 133.66, 116.99 ppm
To a solution of orthotoluidine (manufactured by Tokyo Chemical Industry Co., Ltd.) 343 mg (3.2 mmol) in dimethylformamide (15 ml) was added 936 mg (3.0 mmol) of the above compound (1-c) at room temperature, and the mixture was stirred at 70 ° C. for 3 hours. . After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 1.3 g (crudely purified product) of compound (1-e) as a white solid. Compound (1-e) was directly used in the next reaction. The measurement result of 1 H-NMR of the compound (1-e) is shown below.
1 H-NMR (270 MHz, DMSO-d 6 ): 9.96 (s, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.25-7.11 (m, 3H), 2.28 (s, 3H) ppm.
 上記化合物(1-e)1.3gの無水酢酸溶液(20ml)に酢酸ナトリウム(和光純薬工業(株)製)800mgを加え80度で5時間撹拌した。反応溶液をメタノール(200ml)にゆっくり注ぎ、しばらく室温で撹拌した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、クロロホルム)で精製することにより化合物(1-f)960mg(収率80%)を白色固体として得た。化合物(1-f)のH-NMRおよび13C-NMRの測定結果を以下に示す。
H-NMR(270MHz,CDCl):7.4-7.3(m,3H),7.14(d,J=7.6Hz,1H),2.21(s,3H)ppm。
13C-NMR(67.5MHz,CDCl):159.09,136.65,134.32,131.1,130.33,129.5,128.2,126.8,113.95,18.01ppm。
800 mg of sodium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 1.3 g of the above compound (1-e) in acetic anhydride solution (20 ml), and the mixture was stirred at 80 ° C. for 5 hours. The reaction solution was slowly poured into methanol (200 ml), stirred for a while at room temperature, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (eluent, chloroform) gave 960 mg (yield 80%) of compound (1-f) as a white solid. The measurement results of 1 H-NMR and 13 C-NMR of the compound (1-f) are shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.4-7.3 (m, 3H), 7.14 (d, J = 7.6 Hz, 1H), 2.21 (s, 3H) ppm.
13 C-NMR (67.5 MHz, CDCl 3 ): 159.09, 136.65, 134.32, 131.1, 130.33, 129.5, 128.2, 126.8, 113.95, 18 .01 ppm.
 上記化合物(1-f)60mg(0.15mmol)および化合物(1-g)115mg(0.15mmol)をトルエン(和光純薬工業(株)製)10mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物A-1(84mg)を得た。重量平均分子量は29,800、数平均分子量は14,200、重合度nは43であった。また、光吸収端波長は680nm、バンドギャップ(Eg)は1.82eV、最高被占分子軌道(HOMO)準位は-5.34eVであった。 When 60 mg (0.15 mmol) of the compound (1-f) and 115 mg (0.15 mmol) of the compound (1-g) were dissolved in 10 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-1 (84 mg). The weight average molecular weight was 29,800, the number average molecular weight was 14,200, and the degree of polymerization n was 43. The light absorption edge wavelength was 680 nm, the band gap (Eg) was 1.82 eV, and the highest occupied molecular orbital (HOMO) level was −5.34 eV.
 合成例2
 化合物A-2を式2に示す方法で合成した。
Synthesis example 2
Compound A-2 was synthesized by the method shown in Formula 2.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 4-フルオロ-2-メチルアニリン(アルドリッチ社製)400mg(3.2mmol)のジメチルホルムアミド溶液(15ml)に上記化合物(1-c)936mg(3.0mmol)を室温で加え、70度で3時間撹拌した。反応終了後、溶媒を減圧留去し、化合物(2-b)1.3g(粗精製物)を白色固体として得た。化合物(2-b)はそのまま次の反応に用いた。化合物(2-b)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,DMSO-d):7.28(m,2H),6.95(dd,J=8.6Hzand2.7Hz,1H),2.25(s,3H)ppm。
To a solution of dimethylformamide (15 ml) in 400 mg (3.2 mmol) of 4-fluoro-2-methylaniline (manufactured by Aldrich) was added 936 mg (3.0 mmol) of the above compound (1-c) at room temperature. Stir. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 1.3 g of the compound (2-b) (crude product) as a white solid. Compound (2-b) was directly used in the next reaction. The measurement result of 1 H-NMR of the compound (2-b) is shown below.
1 H-NMR (270 MHz, DMSO-d 6 ): 7.28 (m, 2H), 6.95 (dd, J = 8.6 Hz and 2.7 Hz, 1H), 2.25 (s, 3H) ppm.
 上記化合物(2-b)1.3gの無水酢酸溶液(20ml)に酢酸ナトリウム(和光純薬工業(株)製)800mgを加え80度で5時間撹拌した。反応溶液をメタノール(200ml)にゆっくり注ぎ、しばらく室温で撹拌した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、クロロホルム)で精製することにより化合物(2-c)875mg(収率70%)を白色固体として得た。化合物(2-c)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,CDCl):7.31(m,1H),7.10(m,1H),6.90(d,J=8.6Hz,1H),2.17(s,3H)ppm。
800 mg of sodium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 1.3 g of the above compound (2-b) in acetic anhydride solution (20 ml) and stirred at 80 ° C. for 5 hours. The reaction solution was slowly poured into methanol (200 ml), stirred for a while at room temperature, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (eluent, chloroform) gave 875 mg (yield 70%) of compound (2-c) as a white solid. The measurement result of 1 H-NMR of the compound (2-c) is shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.31 (m, 1H), 7.10 (m, 1H), 6.90 (d, J = 8.6 Hz, 1H), 2.17 (s, 3H) ppm.
 上記化合物(2-c)63mg(0.15mmol)および化合物(1-g)115mg(0.15mmol)をトルエン(和光純薬工業(株)製)10mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物A-2(79mg)を得た。重量平均分子量は42,800、数平均分子量は21,200、重合度nは61であった。また、光吸収端波長は680nm、バンドギャップ(Eg)は1.82eV、最高被占分子軌道(HOMO)準位は-5.41eVであった。 When 63 mg (0.15 mmol) of the compound (2-c) and 115 mg (0.15 mmol) of the compound (1-g) were dissolved in 10 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-2 (79 mg). The weight average molecular weight was 42,800, the number average molecular weight was 21,200, and the degree of polymerization n was 61. The light absorption edge wavelength was 680 nm, the band gap (Eg) was 1.82 eV, and the highest occupied molecular orbital (HOMO) level was −5.41 eV.
 合成例3
 化合物A-3を式3に示す方法で合成した。
Synthesis example 3
Compound A-3 was synthesized by the method shown in Formula 3.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 2-アミノベンゾトリフルオリド(東京化成工業(株)製)338mg(2.1mmol)のジメチルホルムアミド溶液(10ml)に上記化合物(1-c)624mg(2.0mmol)を室温で加え、70度で3時間撹拌した。反応終了後、溶媒を減圧留去し、化合物(3-b)950mg(粗精製物)を白色固体として得た。化合物(3-b)はそのまま次の反応に用いた。 To a dimethylformamide solution (10 ml) of 338 mg (2.1 mmol) of 2-aminobenzotrifluoride (manufactured by Tokyo Chemical Industry Co., Ltd.), 624 mg (2.0 mmol) of the above compound (1-c) was added at room temperature, and 70 ° C. Stir for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 950 mg (crudely purified product) of compound (3-b) as a white solid. Compound (3-b) was directly used in the next reaction.
 上記化合物(3-b)950mgの無水酢酸溶液(10ml)に酢酸ナトリウム(和光純薬工業(株)製)500mgを加え80度で5時間撹拌した。反応溶液をメタノール(100ml)にゆっくり注ぎ、しばらく室温で撹拌した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、クロロホルム)で精製することにより化合物(3-c)592mg(収率65%)を白色固体として得た。化合物(3-c)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,CDCl):7.83(d,J=7.6Hz,1H),7.68(m,2H),7.31(d,J=7.6Hz,1H)ppm。
To 950 mg of acetic anhydride solution (10 ml) of the above compound (3-b), 500 mg of sodium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred at 80 ° C. for 5 hours. The reaction solution was slowly poured into methanol (100 ml) and stirred for a while at room temperature, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (eluent, chloroform) gave 592 mg (yield 65%) of compound (3-c) as a white solid. The measurement result of 1 H-NMR of the compound (3-c) is shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.83 (d, J = 7.6 Hz, 1H), 7.68 (m, 2H), 7.31 (d, J = 7.6 Hz, 1H) ppm .
 上記化合物(3-c)68mg(0.15mmol)および化合物(1-g)115mg(0.15mmol)をトルエン(和光純薬工業(株)製)10mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物A-3(80mg)を得た。重量平均分子量は34,100、数平均分子量は12,200、重合度nは46であった。また、光吸収端波長は672nm、バンドギャップ(Eg)は1.85eV、最高被占分子軌道(HOMO)準位は-5.46eVであった。 When 68 mg (0.15 mmol) of the compound (3-c) and 115 mg (0.15 mmol) of the compound (1-g) were dissolved in 10 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-3 (80 mg). The weight average molecular weight was 34,100, the number average molecular weight was 12,200, and the degree of polymerization n was 46. The light absorption edge wavelength was 672 nm, the band gap (Eg) was 1.85 eV, and the highest occupied molecular orbital (HOMO) level was −5.46 eV.
 合成例4
 化合物A-4を式4に示す方法で合成した。なお、式4記載の化合物(4-d)はマクロモレキュルズ(Macromolecules)2007年、40巻、1981-1986頁に記載されている方法を参考にして合成した。
Synthesis example 4
Compound A-4 was synthesized by the method shown in Formula 4. The compound (4-d) described in Formula 4 was synthesized with reference to the method described in Macromolecules 2007, 40, 1981-1986.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 4-フルオロアニリン(東京化成工業(株)製)233mg(2.1mmol)のジメチルホルムアミド溶液(10ml)に上記化合物(1-c)624mg(2.0mmol)を室温で加え、70度で3時間撹拌した。反応終了後、溶媒を減圧留去し、化合物(4-b)850mg(粗精製物)を白色固体として得た。化合物(4-b)はそのまま次の反応に用いた。 To a solution of 233 mg (2.1 mmol) of 4-fluoroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) in dimethylformamide (10 ml) is added 624 mg (2.0 mmol) of the above compound (1-c) at room temperature, and 70 ° C. for 3 hours. Stir. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 850 mg (crude product) of compound (4-b) as a white solid. Compound (4-b) was directly used in the next reaction.
 上記化合物(4-b)850mgの無水酢酸溶液(10ml)に酢酸ナトリウム(和光純薬工業(株)製)400mgを加え80度で5時間撹拌した。反応溶液をメタノール(100ml)にゆっくり注ぎ、しばらく室温で撹拌した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、クロロホルム)で精製することにより化合物(4-c)570mg(収率70%)を白色固体として得た。化合物(4-c)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,CDCl):7.35(m,1H),7.18(m,1H),1.55(s,3H)ppm。
400 mg of sodium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 850 mg of acetic anhydride solution (10 ml) of the above compound (4-b), and the mixture was stirred at 80 ° C. for 5 hours. The reaction solution was slowly poured into methanol (100 ml) and stirred for a while at room temperature, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (eluent, chloroform) gave 570 mg (yield 70%) of compound (4-c) as a white solid. The measurement result of 1 H-NMR of the compound (4-c) is shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.35 (m, 1H), 7.18 (m, 1H), 1.55 (s, 3H) ppm.
 上記化合物(4-c)61mg(0.15mmol)および化合物(4-d)109mg(0.15mmol)をトルエン(和光純薬工業(株)製)5mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液:クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物A-4(68mg)を得た。重量平均分子量は32,000、数平均分子量は12,200、重合度nは50であった。また、光吸収端波長は739nm、バンドギャップ(Eg)は1.68eV、最高被占分子軌道(HOMO)準位は-5.49eVであった。 When 61 mg (0.15 mmol) of the compound (4-c) and 109 mg (0.15 mmol) of the compound (4-d) were dissolved in 5 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), then a silica gel column (free solution: chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound A-4 (68 mg). The weight average molecular weight was 32,000, the number average molecular weight was 12,200, and the degree of polymerization n was 50. The light absorption edge wavelength was 739 nm, the band gap (Eg) was 1.68 eV, and the highest occupied molecular orbital (HOMO) level was −5.49 eV.
 合成例5
 化合物B-1を式5に示す方法で合成した。なお、式5記載の化合物(5-a)はアドバンスドファンクショナルマテリアルズ(Advanced Functional Materials)」、2011年、21巻、71-728頁に記載されている方法を参考にして合成した。
Synthesis example 5
Compound B-1 was synthesized by the method shown in Formula 5. The compound (5-a) described in Formula 5 was synthesized with reference to the method described in Advanced Functional Materials, 2011, Vol. 21, pp. 71-728.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記化合物(5-a)63mg(0.15mmol)および化合物(1-g)116mg(0.15mmol)をトルエン(和光純薬工業(株)製)10mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物B-1(79mg)を得た。重量平均分子量は65,000、数平均分子量は26,100、重合度nは91であった。また、光吸収端波長は670nm、バンドギャップ(Eg)は1.85eV、最高被占分子軌道(HOMO)準位は-5.23eVであった。 When 63 mg (0.15 mmol) of the compound (5-a) and 116 mg (0.15 mmol) of the compound (1-g) were dissolved in 10 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound B-1 (79 mg). The weight average molecular weight was 65,000, the number average molecular weight was 26,100, and the degree of polymerization n was 91. The light absorption edge wavelength was 670 nm, the band gap (Eg) was 1.85 eV, and the highest occupied molecular orbital (HOMO) level was -5.23 eV.
 合成例6
 化合物B-2を式6に示す方法で合成した。なお、式6記載の化合物(6-a)はアドバンスドファンクショナルマテリアルズ(Advanced Functional Materials)」、2011年、21巻、71-728頁に記載されている方法を参考にして合成した。
Synthesis Example 6
Compound B-2 was synthesized by the method shown in Formula 6. The compound (6-a) described in Formula 6 was synthesized with reference to the method described in Advanced Functional Materials, 2011, Vol. 21, pp. 71-728.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記化合物(6-a)1.18g(2.0mmol)およびトリブチル(2-チエニル)すず(東京化成工業(株)製)2.2g(6.0mmol)のトルエン/ジメチルホルムアミド溶液(50ml/10ml)にジクロロビス(トリフェニルホスフィン)パラジウム触媒(東京化成工業(株)製)100mgを加え、窒素下で8時間還流した。反応溶液を室温まで冷却した後、水50mlを加え、有機層を水で2回、次いで飽和食塩水で洗浄した。無水硫酸マグネシウムで溶媒を乾燥させた後、ろ過し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、ヘキサン:酢酸エチル=20:1)で精製することにより化合物(6-b)を黄色固体(900mg、収率75%)として得た。化合物(6-b)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,CDCl):8.02(d,J=3.4Hz,2H),7.43(d,J=3.4Hz,2H),7.12(t,J=7.3Hz,2H),3.55(d,J=7.3Hz,2H),1.89(brs,1H),1.4-1.2(m,34H),0.86(m,6H)ppm。
A toluene / dimethylformamide solution (50 ml / 10 ml) of 1.18 g (2.0 mmol) of the above compound (6-a) and 2.2 g (6.0 mmol) of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) ) 100 mg of dichlorobis (triphenylphosphine) palladium catalyst (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and refluxed for 8 hours under nitrogen. The reaction solution was cooled to room temperature, 50 ml of water was added, and the organic layer was washed twice with water and then with saturated brine. The solvent was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (eluent, hexane: ethyl acetate = 20: 1) gave compound (6-b) as a yellow solid (900 mg, yield 75%). The measurement result of 1 H-NMR of the compound (6-b) is shown below.
1 H-NMR (270 MHz, CDCl 3 ): 8.02 (d, J = 3.4 Hz, 2H), 7.43 (d, J = 3.4 Hz, 2H), 7.12 (t, J = 7 .3 Hz, 2H), 3.55 (d, J = 7.3 Hz, 2H), 1.89 (brs, 1H), 1.4-1.2 (m, 34H), 0.86 (m, 6H) ) Ppm.
 上記化合物(6-b)837mg(1.4mmol)のクロロホルム溶液(50ml)にN-ブロモスクシンイミド(東京化成工業(株)製)498mg(2.8mmol)を加え、6時間室温で撹拌した。水50mlを加えた後、有機層を水で2回、次いで飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液、ヘキサン:クロロホルム=1:1)で精製することにより化合物(6-c)を黄色固体(820mg、収率78%)として得た。化合物(6-c)のH-NMRの測定結果を以下に示す。
H-NMR(270MHz,CDCl):7.66(d,J=4.1Hz,2H),7.07(J=4.1Hz,2H),3.53(d,J=7.3Hz,2H),1.87(brs,1H),1.4-1.1(m,34H),0.86(m,6H)ppm。
To a chloroform solution (50 ml) of 837 mg (1.4 mmol) of the above compound (6-b) was added 498 mg (2.8 mmol) of N-bromosuccinimide (manufactured by Tokyo Chemical Industry Co., Ltd.), and the mixture was stirred at room temperature for 6 hours. After adding 50 ml of water, the organic layer was washed twice with water and then once with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent, hexane: chloroform = 1: 1) to obtain compound (6-c) as a yellow solid (820 mg, yield 78%). The measurement result of 1 H-NMR of the compound (6-c) is shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.66 (d, J = 4.1 Hz, 2H), 7.07 (J = 4.1 Hz, 2H), 3.53 (d, J = 7.3 Hz) , 2H), 1.87 (brs, 1H), 1.4-1.1 (m, 34H), 0.86 (m, 6H) ppm.
 上記化合物(6-c)113mg(0.15mmol)および化合物(1-g)116mg(0.15mmol)をトルエン(和光純薬工業(株)製)10mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物B-2(72mg)を得た。重量平均分子量は45,300、数平均分子量は22,000、重合度nは44であった。また、光吸収端波長は658nm、バンドギャップ(Eg)は1.88eV、最高被占分子軌道(HOMO)準位は-5.35eVであった。 When 113 mg (0.15 mmol) of the compound (6-c) and 116 mg (0.15 mmol) of the compound (1-g) were dissolved in 10 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound B-2 (72 mg). The weight average molecular weight was 45,300, the number average molecular weight was 22,000, and the degree of polymerization n was 44. The light absorption edge wavelength was 658 nm, the band gap (Eg) was 1.88 eV, and the highest occupied molecular orbital (HOMO) level was −5.35 eV.
 合成例7
 化合物B-3を式7に示す方法で合成した。
Synthesis example 7
Compound B-3 was synthesized by the method shown in Formula 7.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記化合物(5-a)63mg(0.15mmol)および化合物(4-d)109mg(0.15mmol)をトルエン(和光純薬工業(株)製)5mlに溶解させたところに、トリス(ジベンジリデンアセトン)ジパラジウム(東京化成工業(株)製)4mg、トリス(2-メチルフェニル)ホスフィン(東京化成工業(株)製)を7mg加え、窒素雰囲気下、100℃で12時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)10mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2-チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物B-3(50mg)を得た。重量平均分子量は19,400、数平均分子量は11,000、重合度nは29であった。また、光吸収端波長は752nm、バンドギャップ(Eg)は1.65eV、最高被占分子軌道(HOMO)準位は-5.28eVであった。 When 63 mg (0.15 mmol) of the compound (5-a) and 109 mg (0.15 mmol) of the compound (4-d) were dissolved in 5 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.), tris (dibenzylidene) was dissolved. Acetone) dipalladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 mg and tris (2-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) 7 mg were added, and the mixture was stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. Subsequently, 10 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Subsequently, it wash | cleaned in order of acetone and hexane using the Soxhlet extractor. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque), and then a silica gel column (free solution, chloroform), and then the solvent was distilled off under reduced pressure. The obtained solid was dissolved again in chloroform and then reprecipitated in methanol to obtain Compound B-3 (50 mg). The weight average molecular weight was 19,400, the number average molecular weight was 11,000, and the degree of polymerization n was 29. The light absorption edge wavelength was 752 nm, the band gap (Eg) was 1.65 eV, and the highest occupied molecular orbital (HOMO) level was −5.28 eV.
 実施例1
 上記A-1(1mg)とPC70BM(4mg、Solenne社製)をクロロベンゼン0.25mlの入ったサンプル瓶の中に加え、超音波洗浄機((株)井内盛栄堂製US-2(商品名)、出力120W)中で30分間超音波照射することにより溶液Aを得た。
Example 1
The above A-1 (1 mg) and PC 70 BM (4 mg, manufactured by Solenne) were added to a sample bottle containing 0.25 ml of chlorobenzene, and an ultrasonic cleaner (US-2 manufactured by Inoue Seieido Co., Ltd.) Name), and output 120W) for 30 minutes to obtain a solution A.
 スパッタリング法により正極となるITO透明導電層を120nm堆積させたガラス基板を38mm×46mmに切断した後、ITOをフォトリソグラフィー法により38mm×13mmの長方形状にパターニングした。得られた基板をアルカリ洗浄液(フルウチ化学(株)製、“セミコクリーン”EL56(商品名))で10分間超音波洗浄した後、超純水で洗浄した。 A glass substrate on which a 120-nm thick ITO transparent conductive layer serving as a positive electrode was deposited by sputtering was cut into 38 mm × 46 mm, and then ITO was patterned into a 38 mm × 13 mm rectangular shape by photolithography. The obtained substrate was subjected to ultrasonic cleaning for 10 minutes with an alkali cleaning solution (“Semico Clean” EL56 (trade name), manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water.
 この基板を30分間UV/オゾン処理した後に、基板上に正孔輸送層となるPEDOT:PSS水溶液(PEDOT0.8重量%、PPS0.5重量%)をスピンコート法により60nmの厚さに成膜した。ホットプレートにより200℃で5分間加熱乾燥した後、上記の溶液AをPEDOT:PSS層上に滴下し、スピンコート法により膜厚100nmの有機半導体層を形成した。その後、有機半導体層が形成された基板と陰極用マスクを真空蒸着装置内に設置して、装置内の真空度が1×10-3Pa以下になるまで再び排気し、抵抗加熱法によって、負極となるアルミニウム層が80nmの厚さ、ストライプ状のITO層と交差する部分の面積が5mmx5mmになるように蒸着した。以上のようにして、発電層の面積が5mmx5mmである光起電力素子を作成した。以上のように、ストライプ状のITO層とアルミニウム層が交差する部分の面積が5mm×5mmである光起電力素子を作製した。 After this substrate was UV / ozone treated for 30 minutes, a PEDOT: PSS aqueous solution (0.8% by weight of PEDOT, 0.5% by weight of PPS) serving as a hole transport layer was formed on the substrate to a thickness of 60 nm by spin coating. did. After heating and drying at 200 ° C. for 5 minutes using a hot plate, the above solution A was dropped onto the PEDOT: PSS layer, and an organic semiconductor layer having a thickness of 100 nm was formed by spin coating. Thereafter, the substrate on which the organic semiconductor layer is formed and the cathode mask are placed in a vacuum vapor deposition apparatus, and the vacuum in the apparatus is exhausted again until the vacuum level becomes 1 × 10 −3 Pa or less, and the negative electrode is formed by resistance heating. The aluminum layer to be formed was deposited so as to have a thickness of 80 nm and an area intersecting with the stripe-like ITO layer was 5 mm × 5 mm. As described above, a photovoltaic element having a power generation layer area of 5 mm × 5 mm was produced. As described above, a photovoltaic device having an area where the stripe-shaped ITO layer intersects with the aluminum layer was 5 mm × 5 mm was produced.
 このようにして作製された光起電力素子の正極と負極をヒューレット・パッカード社製ピコアンメーター/ボルテージソース4140Bに接続して、大気中でITO層側から擬似太陽光(山下電装株式会社製 簡易型ソーラシミュレータ YSS-E40、スペクトル形状:AM1.5、強度:100mW/cm)を照射し、印加電圧を-1Vから+2Vまで変化させたときの電流値を測定した。この時の短絡電流密度(印加電圧が0Vのときの電流密度の値)は6.45A/cm、開放電圧(電流密度が0になるときの印加電圧の値)は0.97V、フィルファクター(FF)は0.60であり、これらの値から算出した光電変換効率は3.75%であった。なお、フィルファクターと光電変換効率は次式により算出した。
フィルファクター=IVmax(mA・V/cm)/(短絡電流密度(mA/cm)×開放電圧(V))
(ここで、IVmaxは、印加電圧が0Vから開放電圧値の間で電流密度と印加電圧の積が最大となる点における電流密度と印加電圧の積の値である。)
光電変換効率=[(短絡電流密度(mA/cm)×開放電圧(V)×フィルファクター)/擬似太陽光強度(100mW/cm)]×100(%)
 以下の実施例と比較例におけるフィルファクターと光電変換効率も全て上式により算出した。
The positive and negative electrodes of the photovoltaic device thus fabricated were connected to a picoammeter / voltage source 4140B manufactured by Hewlett-Packard Co., and simulated sunlight (from Yamashita Denso Co., Ltd., simplified) from the ITO layer side in the atmosphere. Type solar simulator YSS-E40, spectrum shape: AM1.5, intensity: 100 mW / cm 2 ), and the current value was measured when the applied voltage was changed from −1V to + 2V. At this time, the short-circuit current density (value of the current density when the applied voltage is 0 V) is 6.45 A / cm 2 , the open circuit voltage (value of the applied voltage when the current density is 0) is 0.97 V, and the fill factor (FF) was 0.60, and the photoelectric conversion efficiency calculated from these values was 3.75%. The fill factor and photoelectric conversion efficiency were calculated by the following equations.
Fill factor = IVmax (mA · V / cm 2 ) / (Short-circuit current density (mA / cm 2 ) × Open circuit voltage (V))
(Here, IVmax is the value of the product of the current density and the applied voltage at the point where the product of the current density and the applied voltage becomes maximum when the applied voltage is between 0 V and the open circuit voltage value.)
Photoelectric conversion efficiency = [(short circuit current density (mA / cm 2 ) × open voltage (V) × fill factor) / pseudo sunlight intensity (100 mW / cm 2 )] × 100 (%)
The fill factor and photoelectric conversion efficiency in the following examples and comparative examples were all calculated by the above formula.
 実施例2
 A-1の代わりに上記A-2を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流-電圧特性を測定した。この時の短絡電流密度は7.83mA/cm、開放電圧は0.98V、フィルファクター(FF)は0.54であり、これらの値から算出した光電変換効率は4.14%であった。
Example 2
A photovoltaic device was prepared in the same manner as in Example 1 except that A-2 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 7.83 mA / cm 2 , the open-circuit voltage was 0.98 V, and the fill factor (FF) was 0.54. The photoelectric conversion efficiency calculated from these values was 4.14%. .
 実施例3
 A-1の代わりに上記A-3を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流-電圧特性を測定した。この時の短絡電流密度は7.23mA/cm、開放電圧は0.98V、フィルファクター(FF)は0.50であり、これらの値から算出した光電変換効率は3.54%であった。
Example 3
A photovoltaic device was prepared in the same manner as in Example 1 except that A-3 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 7.23 mA / cm 2 , the open-circuit voltage was 0.98 V, the fill factor (FF) was 0.50, and the photoelectric conversion efficiency calculated from these values was 3.54%. .
 実施例4
 A-1の代わりに上記A-4を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流-電圧特性を測定した。この時の短絡電流密度は7.68mA/cm、開放電圧は0.94V、フィルファクター(FF)は0.46であり、これらの値から算出した光電変換効率は3.32%であった。
Example 4
A photovoltaic device was produced in the same manner as in Example 1 except that A-4 was used instead of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 7.68 mA / cm 2 , the open-circuit voltage was 0.94 V, the fill factor (FF) was 0.46, and the photoelectric conversion efficiency calculated from these values was 3.32%. .
 比較例1
 A-1の代わりに上記B-1を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流-電圧特性を測定した。この時の短絡電流密度は6.10mA/cm、開放電圧は0.96V、フィルファクター(FF)は0.45であり、これらの値から算出した光電変換効率は2.64%であった。
Comparative Example 1
A photovoltaic device was prepared in the same manner as in Example 1 except that B-1 was used instead of A-1, and current-voltage characteristics were measured. The short-circuit current density at this time was 6.10 mA / cm 2 , the open-circuit voltage was 0.96 V, and the fill factor (FF) was 0.45. The photoelectric conversion efficiency calculated from these values was 2.64%. .
 比較例2
 A-1の代わりに上記B-2を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流-電圧特性を測定した。この時の短絡電流密度は2.45mA/cm、開放電圧は0.76V、フィルファクター(FF)は0.56であり、これらの値から算出した光電変換効率は1.04%であった。
Comparative Example 2
A photovoltaic device was produced in the same manner as in Example 1 except that B-2 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 2.45 mA / cm 2 , the open-circuit voltage was 0.76 V, the fill factor (FF) was 0.56, and the photoelectric conversion efficiency calculated from these values was 1.04%. .
 比較例3
 A-1の代わりに上記B-3を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流-電圧特性を測定した。この時の短絡電流密度は5.43mA/cm、開放電圧は0.80V、フィルファクター(FF)は0.41であり、これらの値から算出した光電変換効率は1.78%であった。
Comparative Example 3
A photovoltaic device was produced in the same manner as in Example 1 except that B-3 was used in place of A-1, and current-voltage characteristics were measured. At this time, the short-circuit current density was 5.43 mA / cm 2 , the open-circuit voltage was 0.80 V, the fill factor (FF) was 0.41, and the photoelectric conversion efficiency calculated from these values was 1.78%. .
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1から明らかなように、一般式(1)で表される構造を有する電子供与性有機材料を用いて作製した光起電力素子(実施例1~4)は、同様の条件で作製した他の光起電力素子(比較例1~3)に比べ高い光電変換効率を示した。 As is clear from Table 1, the photovoltaic devices (Examples 1 to 4) produced using the electron donating organic material having the structure represented by the general formula (1) were produced under the same conditions. The photoelectric conversion efficiency was higher than those of the photovoltaic devices (Comparative Examples 1 to 3).
1:基板
2:正極
3:有機半導体層
4:負極
5:電子供与性有機材料を有する層
6:電子受容性有機材料を有する層
 
1: Substrate 2: Positive electrode 3: Organic semiconductor layer 4: Negative electrode 5: Layer having an electron-donating organic material 6: Layer having an electron-accepting organic material

Claims (5)

  1. 一般式(1)で表される構造単位を含む電子供与性有機材料。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Rは置換されていてもよいアリール基または置換されていてもよいヘテロアリール基を表す。)
    An electron-donating organic material containing a structural unit represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.)
  2. 一般式(2)で表される構造からなる請求項1記載の電子供与性有機材料。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、Xは共役構造を保てる2価の連結基を表す。nは重合度を示し、2以上1,000以下の範囲を表す。)
    2. The electron donating organic material according to claim 1, comprising a structure represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula (2), X represents a divalent linking group capable of maintaining a conjugated structure. N represents the degree of polymerization and represents a range of 2 to 1,000.)
  3. 前記一般式(2)中のXが一般式(3)で表されるシクロペンタジチオフェン構造またはベンゾジチオフェン構造を含む請求項2記載の電子供与性有機材料。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、R~Rは同じでも異なっていてもよく、置換されていてもよいアルキル基、アルコキシ基、アリール基、またはヘテロアリール基を表す。)
    The electron donating organic material according to claim 2, wherein X in the general formula (2) includes a cyclopentadithiophene structure or a benzodithiophene structure represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (3), R 2 to R 5 may be the same or different and each represents an optionally substituted alkyl group, alkoxy group, aryl group, or heteroaryl group.)
  4. 請求項1~3のいずれかに記載の電子供与性有機材料を含む光起電力素子用材料。 A photovoltaic device material comprising the electron donating organic material according to any one of claims 1 to 3.
  5. 負極と正極の間に請求項4に記載の光起電力素子用材料を含む有機半導体層を有する光起電力素子。 The photovoltaic device which has an organic-semiconductor layer containing the material for photovoltaic devices of Claim 4 between the negative electrode and the positive electrode.
PCT/JP2013/064149 2012-05-25 2013-05-22 Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same WO2013176156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013529459A JPWO2013176156A1 (en) 2012-05-25 2013-05-22 Electron donating organic material, photovoltaic device material using the same, and photovoltaic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119221 2012-05-25
JP2012119221 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013176156A1 true WO2013176156A1 (en) 2013-11-28

Family

ID=49623842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064149 WO2013176156A1 (en) 2012-05-25 2013-05-22 Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same

Country Status (3)

Country Link
JP (1) JPWO2013176156A1 (en)
TW (1) TW201406811A (en)
WO (1) WO2013176156A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031508A (en) * 2012-07-13 2014-02-20 Mitsubishi Chemicals Corp Copolymer, organic semiconductor material, organic electronic device, and solar cell module
JP2014185147A (en) * 2013-02-22 2014-10-02 Mitsubishi Chemicals Corp Imide condensed-ring compound and method of producing imide condensed-ring compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159416B (en) * 2020-10-19 2022-03-08 江苏美迪克化学品有限公司 Preparation method of 4, 6-dibromo-thienofuran-1, 3-dione
CN114103455B (en) * 2021-11-22 2023-01-24 北京金茂绿建科技有限公司 Photovoltaic module and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028827A2 (en) * 2009-09-04 2011-03-10 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
JP2011168747A (en) * 2010-02-22 2011-09-01 Kyoto Univ Conjugated polymer, and organic thin film solar cell using the same
WO2012102390A1 (en) * 2011-01-28 2012-08-02 三菱化学株式会社 Photoelectric conversion element, solar cell, and solar cell module
JP2012241017A (en) * 2011-05-13 2012-12-10 Mitsubishi Chemicals Corp Polymer, organic semiconductor material, and organic electronic device, photoelectric transducer, and solar cell module using the organic semiconductor material
WO2013047858A1 (en) * 2011-09-29 2013-04-04 住友化学株式会社 High-molecular-weight compound and organic photoelectric conversion element
JP2013065722A (en) * 2011-09-16 2013-04-11 Mitsubishi Chemicals Corp Photoelectric conversion element and solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028827A2 (en) * 2009-09-04 2011-03-10 Plextronics, Inc. Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
JP2011168747A (en) * 2010-02-22 2011-09-01 Kyoto Univ Conjugated polymer, and organic thin film solar cell using the same
WO2012102390A1 (en) * 2011-01-28 2012-08-02 三菱化学株式会社 Photoelectric conversion element, solar cell, and solar cell module
JP2012241017A (en) * 2011-05-13 2012-12-10 Mitsubishi Chemicals Corp Polymer, organic semiconductor material, and organic electronic device, photoelectric transducer, and solar cell module using the organic semiconductor material
JP2013065722A (en) * 2011-09-16 2013-04-11 Mitsubishi Chemicals Corp Photoelectric conversion element and solar cell module
WO2013047858A1 (en) * 2011-09-29 2013-04-04 住友化学株式会社 High-molecular-weight compound and organic photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031508A (en) * 2012-07-13 2014-02-20 Mitsubishi Chemicals Corp Copolymer, organic semiconductor material, organic electronic device, and solar cell module
JP2014185147A (en) * 2013-02-22 2014-10-02 Mitsubishi Chemicals Corp Imide condensed-ring compound and method of producing imide condensed-ring compound

Also Published As

Publication number Publication date
TW201406811A (en) 2014-02-16
JPWO2013176156A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
KR101548764B1 (en) Electron donating organic material, material for photovoltaic element, and photovoltaic element
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
KR101361312B1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
KR101680397B1 (en) Material for photovoltaic element, and photovoltaic element
JP5482973B1 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
JP5299023B2 (en) Material for photovoltaic element and photovoltaic element
JP5664200B2 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
JP5655267B2 (en) Quinoxaline compound, electron donating organic material using the same, photovoltaic device material and photovoltaic device
JP6610096B2 (en) Conjugated compound, electron-donating organic material using the same, photovoltaic device material and photovoltaic device
JP5900084B2 (en) Electron donating organic material, photovoltaic device material using the same, and photovoltaic device
WO2014042091A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
JP5691628B2 (en) Material for photovoltaic element and photovoltaic element
JP4983524B2 (en) Composition suitable for photovoltaic device and photovoltaic device
JP6074996B2 (en) Material for photovoltaic element and photovoltaic element
WO2013176156A1 (en) Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same
JP2008166339A (en) Material for photovoltaic element, and the photovoltaic element
JP2012241099A (en) Conjugated polymer, electron-releasing organic material employing the same, material for photovoltaic element and photovoltaic element
JP5428670B2 (en) Material for photovoltaic element and photovoltaic element
JP2009267092A (en) Material for photovoltaic device, and photovoltaic device
JP2022098456A (en) Conjugated compound, electron-donating organic material including the same, material for photovoltaic elements, and photovoltaic element
Gironda Synthesis and characterization of polythiophenes functionalized with electron poor moieties for application in organic electronics
JP2014162753A (en) Compound for photovoltaic element, material for photovoltaic element and photovoltaic element
JP2013070000A (en) Organic photoelectric conversion element and method of manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013529459

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793889

Country of ref document: EP

Kind code of ref document: A1