WO2013019041A2 - Method for manufacturing solid electrolyte thin film and manufacturing device thereof - Google Patents

Method for manufacturing solid electrolyte thin film and manufacturing device thereof Download PDF

Info

Publication number
WO2013019041A2
WO2013019041A2 PCT/KR2012/006044 KR2012006044W WO2013019041A2 WO 2013019041 A2 WO2013019041 A2 WO 2013019041A2 KR 2012006044 W KR2012006044 W KR 2012006044W WO 2013019041 A2 WO2013019041 A2 WO 2013019041A2
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
solid electrolyte
precursor gas
electrolyte thin
film manufacturing
Prior art date
Application number
PCT/KR2012/006044
Other languages
French (fr)
Korean (ko)
Other versions
WO2013019041A3 (en
WO2013019041A9 (en
Inventor
박호영
진상완
Original Assignee
지에스칼텍스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스(주) filed Critical 지에스칼텍스(주)
Publication of WO2013019041A2 publication Critical patent/WO2013019041A2/en
Publication of WO2013019041A9 publication Critical patent/WO2013019041A9/en
Publication of WO2013019041A3 publication Critical patent/WO2013019041A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and apparatus for manufacturing a solid electrolyte thin film.
  • the organic metal chemical vapor deposition method improves the film formation speed, significantly reduces the damage of the thin film, and conformal deposition.
  • the present invention relates to a solid electrolyte thin film manufacturing method and apparatus that can be usefully used.
  • Small batteries are the key components to enable widespread use of ultra-small electronic devices.
  • lithium secondary batteries have high energy density per weight and volume, and are commercially available while rapidly replacing existing Ni-MH and Ni-Cd batteries. It is adopted as a power source for most portable electronic devices.
  • lithium secondary batteries are bulk batteries composed of two electrodes made of an active material in a powder form and a liquid electrolyte, and are not suitable for microelectronic devices because they are manufactured in the form of independent battery packs.
  • various additives and liquid electrolytes reduce the capacity of the battery, reduce the charge and discharge life, and act as a factor causing environmental problems.
  • a solid-state thin-film lithium secondary micro battery (hereinafter, referred to as 'thin film battery') manufactured by forming a thin film using a thin film deposition process such as sputtering and thermal evaporation of battery components of the negative electrode, the positive electrode, and the electrolyte is studied.
  • a thin film deposition process such as sputtering and thermal evaporation of battery components of the negative electrode, the positive electrode, and the electrolyte
  • the thin film battery is composed of a positive electrode, a solid electrolyte, and a negative electrode, and is manufactured by sequentially forming all of the battery components of the solid phase.
  • solid electrolytes have to satisfy all of characteristics such as high ion conductivity, electrochemically stable potential window, and low electric conductivity, and thus, active researches are being made.
  • a solid electrolyte for thin film batteries that is currently attracting the most attention is LiPON published by Bates et al. (US Pat. No. 5,338,625: John B. Bates et al., Thin film battery and method for making same).
  • the U.S. Patent No. 5,338,625 discloses that LiPON solid electrolyte is formed by high frequency sputtering of a Li 3 PO 4 target in a nitrogen atmosphere, and the LiPON solid electrolyte is 2 ( ⁇ 1) ⁇ 10 ⁇ 6 S / cm at room temperature. It has been reported to have high ionic conductivity and, in particular, to form a very stable interface with a positive electrode or a negative electrode, thereby satisfying most of the conditions that a solid electrolyte for a thin film battery should have since the cell deteriorates very little during operation.
  • the film formation rate is slower (about 20 nm / min) under the nitrogen atmosphere used as the reaction gas during sputtering, it takes a very long time to reach the target thickness of 2 ⁇ m, thus producing a new thin film that can improve the efficiency of the process.
  • the film formation rate is slower (about 20 nm / min) under the nitrogen atmosphere used as the reaction gas during sputtering, it takes a very long time to reach the target thickness of 2 ⁇ m, thus producing a new thin film that can improve the efficiency of the process.
  • the film formation rate is slower (about 20 nm / min) under the nitrogen atmosphere used as the reaction gas during sputtering, it takes a very long time to reach the target thickness of 2 ⁇ m, thus producing a new thin film that can improve the efficiency of the process.
  • the present invention provides a method for manufacturing a solid electrolyte thin film which can be applied to a thin film battery having a trench structure by improving the deposition rate, minimizing damage to the substrate and the underlying film, and conformal deposition by the organometallic chemical vapor deposition method.
  • the solid electrolyte thin film manufacturing apparatus for achieving the above object is a reaction unit having a reaction space that accommodates the substrate; A first supply unit supplying a lithium precursor gas gas to the reaction space; A second supply unit supplying phosphorus or boron precursor gas gas to the reaction space; A third supply unit supplying a nitrogen precursor gas gas to the reaction space; An energy generator for imparting energy for decomposing the precursor gases; And it characterized in that it comprises a heating unit for heating the substrate.
  • the method and apparatus for manufacturing a solid electrolyte thin film of the present invention not only the film formation speed is greatly improved, but the speed can be freely adjusted, and the damage of the substrate and the underlying film is reduced.
  • the present invention can be applied to a thin film battery having a trench structure having a large surface area.
  • FIG. 1 is a schematic diagram of a manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a manufacturing apparatus according to an embodiment of the present invention.
  • 3 is a graph showing the deposition rate of the LiPON thin film according to the substrate heating temperature according to an embodiment of the present invention.
  • FIG. 5 is an SEM photograph of a LiPON thin film prepared according to an embodiment of the present invention.
  • Solid electrolyte thin film manufacturing method inserting the substrate in the reaction space as shown in Figure 1 (S110); Imparting energy and heating the reaction space (S120); Injecting a lithium precursor gas, a phosphorus or boron precursor gas, and a nitrogen precursor gas into the reaction space (S130); And forming a solid electrolyte thin film on the substrate by reacting the precursor gases with each other (S140).
  • the substrate is inserted into the reaction space (S110).
  • the reaction space refers to a space in which metal organic chemical vapor deposition (MOCVD) is performed, and includes a space in which a substrate to be deposited is deposited.
  • MOCVD metal organic chemical vapor deposition
  • the substrate is not limited as long as it can be used in a thin film battery, and a plurality of substrates may be inserted to increase process efficiency.
  • each precursor gas may be decomposed, reacted, and deposited on the substrate.
  • the means for imparting the energy is not particularly limited, but heat, a catalyst, and light are preferably used.
  • a high frequency coil may be wound around the reaction space or a lamp heater may be mounted.
  • each precursor gas is decomposed by heat, and reacts to be deposited on the substrate.
  • each precursor gas may be allowed to pass through a tungsten wire.
  • the tungsten wire serves as a catalyst, the reaction temperature is preferably about 1800 ⁇ 2000 °C.
  • Each precursor gas that has passed through the high temperature tungsten wire can be decomposed and reacted with each other to be deposited on the substrate.
  • a laser or UV may be irradiated to a reaction region adjacent to the substrate to be deposited.
  • the precursor gases are decomposed by the light energy and react with each other to be deposited on the substrate. It is preferable to adjust irradiation intensity and time suitably according to film-forming speed, internal conditions of reaction space, etc.
  • the substrate may be heated to facilitate deposition, and the heating temperature may be appropriately adjusted according to the type of substrate and the deposition rate.
  • lithium precursor gas, phosphorus or boron precursor gas, and nitrogen precursor gas are injected into the reaction space (S130).
  • LiPON or LiBON which is especially excellent in ion conductivity.
  • precursor gases of lithium, phosphorus, boron or nitrogen must be injected into the reactants.
  • the lithium precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, but in particular Li (C 11 H 19 O 2 ) (Lithium dipivaloylmethanate, also referred to as Li (DPM)) is preferred.
  • the Li (C 11 H 19 O 2 ) is a solid state at room temperature, giving a temperature of about 160 ⁇ 250 °C to use a vaporized one.
  • the phosphorus precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, in particular, PO (OCH 3 ) 3 (trimethyl phosphate) or PO (OC 2 H 5 ) 3 (triethyl phosphate) is preferred Do.
  • the boron precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, in particular, it is preferable that it is B (OCH 3 ) 3 (boron trimethoxide) or B (OC 2 H 5 ) 3 (boron triethoxide). Do.
  • the PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 , B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 is a liquid at room temperature, giving a temperature of about 30 to 100 ° C. Use the old one.
  • the nitrogen precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, it is particularly preferable that the NH 3 gas.
  • the energy applying means for N 2 decomposition is not limited to plasma, and there is no need to use hydrogen separately for efficient removal of organic matter such as carbon. There is this.
  • the reaction space is preferably in a vacuum state.
  • reaction formula When reacting the precursor gases in the reaction space, the reaction formula is as follows.
  • LiPON or LiBON solid electrolyte is deposited on the substrate to form a thin film.
  • the process is repeated until a solid electrolyte thin film of a desired thickness is formed.
  • Solid electrolyte thin film manufacturing apparatus comprises a reaction unit 100 having a reaction space in which the substrate is accommodated; A first supply unit 210 supplying a lithium precursor gas to the reaction space; A second supply unit 220 supplying phosphorus or boron precursor gas to the reaction space; A third supply unit 230 supplying a nitrogen precursor gas to the reaction space; An energy generator 300 for imparting energy for decomposing the precursor gases; And it characterized in that it comprises a heating unit 400 for heating the substrate.
  • the reaction unit 100 provides a space in which the organometallic chemical vapor deposition process of the present invention is performed.
  • the susceptor 110 on which the deposition target substrate S is mounted may be provided in the reaction part 100.
  • a plurality of substrates S may be mounted on the susceptor 110.
  • the plurality of substrates S may be seated along the edge of the circular susceptor 110.
  • the susceptor 110 may be integrally formed with the susceptor support 115 supporting the susceptor 110.
  • the susceptor support 115 may be designed to be movable or rotating movement. Accordingly, the substrate S mounted on the susceptor may be moved or rotated to increase the deposition efficiency.
  • the first supply unit 210 supplies the lithium precursor gas injected toward the substrate S seated on the susceptor 110 in the reaction unit 100.
  • the lithium precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, as described in the preparation method, in particular Li (C 11 H 19 O 2 ) (lithium dipivaloylmethanate, Li (DPM) Also referred to as).
  • a bubbler may be installed in the first supply part to inject Li (C 11 H 19 O 2 ), which is solid at room temperature, into the reaction space.
  • the temperature of the bubbler is preferably set in the range of 160 ⁇ 250 °C so that the lithium precursor Li (C 11 H 19 O 2 ) is sufficient to vaporize.
  • the carrier gas used to inject Li (C 11 H 19 O 2 ) into the reaction space is an inert gas, and argon is preferable.
  • the second supply unit 220 supplies the phosphorus or boron precursor gas injected toward the substrate S seated on the susceptor 110 in the reaction unit 100.
  • the phosphorus precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, as described in the preparation method, in particular PO (OCH 3 ) 3 (trimethyl phosphate) or PO (OC 2 H 5 ) 3 (triethyl phosphate) is preferred.
  • the boron precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, as described in the preparation method, in particular B (OCH 3 ) 3 (boron trimethoxide) or B (OC 2 H 5 ) 3 (boron triethoxide) is preferred.
  • PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 , B (OCH 3 ) 3 , and B (OC 2 H 5 ) 3 which are liquid at room temperature, may be injected into the reaction space.
  • the supply unit may be a bubbler.
  • the temperature of the bubbler is 30 ⁇ 100 °C so that the phosphorus or boron precursor PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 , B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 is sufficient to vaporize It is preferable to set in the range of.
  • the carrier gas used when injected into the reaction space is an inert gas, and argon is preferable.
  • the third supply unit 230 supplies a nitrogen precursor gas injected toward the substrate S seated on the susceptor 110 in the reaction unit 100.
  • the nitrogen precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, as described in the preparation method, but is preferably NH 3 gas. In general, since the N 2 gas used in the sputtering method is not used, the deposition rate can be increased.
  • Each precursor gas supplied by the first supply unit 210, the second supply unit 220, and the third supply unit 230 reacts with each other in the reaction unit 100, as described in the manufacturing method.
  • the solid electrolyte thin film is formed on the substrate S.
  • the energy generator 300 may be reactive by applying energy to each precursor gas supplied from the first supply unit 210, the second supply unit 220, and the third supply unit 230.
  • the energy generating unit 300 shown in FIG. 2 is schematically illustrated for the purpose of clearly showing that the present invention is a configuration of the present invention, and can be installed by adjusting the position in an appropriate form according to the following energy imparting means.
  • the means for applying energy to the precursor gas is not particularly limited, but heat, a catalyst, and light are preferably used.
  • the energy generator 300 may include a high frequency coil or a lamp heater.
  • the energy generator 300 may include a tungsten wire.
  • the energy generator 300 may include a laser or UV irradiation.
  • the heating unit 400 functions to heat the substrate S to facilitate deposition.
  • the heating unit 400 may be installed inside or outside the susceptor 110 on which the substrate S is seated.
  • the heating temperature can be appropriately adjusted according to the type of substrate, the film formation rate, the conditions inside the reaction space and the like.
  • a valve for controlling the injection amount of each precursor gas may be used for organometallic chemical vapor deposition. Since it will be obvious to those skilled in the art, the description thereof will be omitted.
  • the film formation speed is greatly improved, and the damage degree to the substrate and the underlying film is remarkably reduced, so that a highly reliable thin film battery can be efficiently produced.
  • the present invention can be applied to fabrication of a thin film battery having a trench structure.
  • Li (DPM) lithium dipivaloylmethanate
  • TEP triethyl phosphate
  • NH 3 a nitrogen precursor gas
  • the deposition rate of the LiPON thin film according to the substrate heating temperature is shown in the graph of FIG. 3.
  • the heating temperature of the substrate should be at least 500 ° C or higher.
  • FIG. 4 is an XRD graph of a LiPON thin film manufactured according to an embodiment of the present invention
  • FIG. 5 is a SEM photograph of a LiPON thin film manufactured according to an embodiment of the present invention.
  • the LiPON thin film prepared according to the embodiment of the present invention was confirmed to be an amorphous amorphous structure.
  • the FTIR spectrum was analyzed to confirm the bonding structure of the LiPON thin film according to the heating temperature of the substrate.
  • 6 is an FTIR spectrum of LiPON prepared according to an embodiment of the present invention.
  • the peak generated near the wavelength of 1180cm -1 appears to be due to the adduct.
  • the heating temperature of the substrate is set to 550 ° C or higher, no peak was observed. Therefore, when increasing the reaction temperature to 550 °C or more, it was determined that the LiPON thin film is more preferably formed.
  • the peaks (a) to (f) identified in FIG. 7 are Li, (b), (c) is P, (e) is N, and (f) is the presence of O elements.
  • the thin film prepared according to the embodiment of the present invention was LiPON.
  • peak means a single bond structure of NP3
  • peak means a double bond and a single bond structure of NP2, TEP, NH 3 used in the present invention successfully reacted As a result, it was confirmed that nitrogen was bound to phosphorus, and it was also confirmed that it could function as a solid electrolyte by exhibiting ionic conductivity.

Abstract

The present invention relates to a method for manufacturing a solid electrolyte thin film and a manufacturing device thereof which has an improved film forming rate, remarkably reduces damage to a thin film, enables conformal deposition by using an organic chemical vapor deposition method, and can even be used in a thin film cell having a trench structure.

Description

고체전해질 박막 제조방법 및 제조장치Solid electrolyte thin film manufacturing method and apparatus
본 발명은 고체전해질 박막 제조방법 및 제조장치에 관한 것으로서, 유기금속 화학 기상 증착법에 의함으로써 성막속도가 향상되고, 박막의 손상이 현저히 감소하며, 등각(conformal) 증착이 가능하여 트렌치 구조의 박막전지에도 유용하게 활용할 수 있는, 고체전해질 박막 제조방법 및 제조장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for manufacturing a solid electrolyte thin film. The organic metal chemical vapor deposition method improves the film formation speed, significantly reduces the damage of the thin film, and conformal deposition. The present invention relates to a solid electrolyte thin film manufacturing method and apparatus that can be usefully used.
최근 반도체 기술의 급속한 발전으로 각종 전자기기들의 고집적화 및 초소형화가 급진전되고 있다.Recently, with the rapid development of semiconductor technology, high integration and miniaturization of various electronic devices are rapidly progressing.
소형 전지는 초소형 전자기기의 광범위한 보급을 가능케하는 핵심부품으로, 특히 리튬 이차 전지는 중량·부피당 높은 에너지 밀도를 갖는 전지로서, 기존의 Ni-MH, Ni-Cd 전지를 급속도로 대체하면서 상용화되어 있는 대부분의 휴대 전자 기기의 전원으로 채용되고 있다.Small batteries are the key components to enable widespread use of ultra-small electronic devices. In particular, lithium secondary batteries have high energy density per weight and volume, and are commercially available while rapidly replacing existing Ni-MH and Ni-Cd batteries. It is adopted as a power source for most portable electronic devices.
그러나, 현재 사용되고 있는 리튬 이차 전지는 분말 형태의 활물질로 이루어진 두 개의 전극과 액상의 전해질로 이루어지는 벌크형 전지로서, 독립된 전지 팩의 형태로 제조되고 있기 때문에, 초소형 전자기기에는 적합하지 않다. 또한 각종 첨가물과 액체 전해질은 전지의 용량을 감소시키고, 충방전 수명의 저하를 초래하며, 환경문제를 야기하는 요인으로 작용한다.However, currently used lithium secondary batteries are bulk batteries composed of two electrodes made of an active material in a powder form and a liquid electrolyte, and are not suitable for microelectronic devices because they are manufactured in the form of independent battery packs. In addition, various additives and liquid electrolytes reduce the capacity of the battery, reduce the charge and discharge life, and act as a factor causing environmental problems.
상기한 문제를 해결하기 위해 음극, 양극 및 전해질의 전지 구성 요소들을 스퍼터링, 열증착 등 박막 증착 공정을 이용하여 박막의 형태로 제조한 고상 박막형 리튬 이차 마이크로 전지(이하 '박막전지')가 연구되고 있다.In order to solve the above problems, a solid-state thin-film lithium secondary micro battery (hereinafter, referred to as 'thin film battery') manufactured by forming a thin film using a thin film deposition process such as sputtering and thermal evaporation of battery components of the negative electrode, the positive electrode, and the electrolyte is studied. have.
이러한 박막 전지는 양극, 고체전해질 및 음극으로 구성되며, 전고상의 상기 전지 구성 요소들을 순차적으로 성막하여 제조한다.The thin film battery is composed of a positive electrode, a solid electrolyte, and a negative electrode, and is manufactured by sequentially forming all of the battery components of the solid phase.
이 중 고체전해질은 높은 이온전도도, 전기화학적으로 안정한 전위창, 낮은 전기전도도 등의 특성을 모두 만족시켜야 하기 때문에, 활발한 연구가 이루어지고 있다.Among these, solid electrolytes have to satisfy all of characteristics such as high ion conductivity, electrochemically stable potential window, and low electric conductivity, and thus, active researches are being made.
현재 가장 크게 주목을 받고 있는 박막 전지용 고체전해질은 Bates 등이 발표한 LiPON이다(미국특허 5,338,625호: John B. Bates et al., Thin film battery and method for making same). A solid electrolyte for thin film batteries that is currently attracting the most attention is LiPON published by Bates et al. (US Pat. No. 5,338,625: John B. Bates et al., Thin film battery and method for making same).
상기 미국특허 5,338,625호에는 Li3PO4 타겟을 질소 분위기에서 고주파 스퍼터링함으로써 LiPON 고체전해질을 형성한다는 내용이 개시되어 있는데, 이러한 LiPON 고체전해질은 상온에서 2(±1)×10-6S/cm의 높은 이온전도도를 나타내었으며, 특히 양극 또는 음극과 매우 안정한 계면을 형성함으로써, 작동 중 전지의 열화가 매우 적기 때문에 박막 전지용 고체 전해질이 가져야 할 대부분의 조건을 충족하는 것으로 보고되었다.The U.S. Patent No. 5,338,625 discloses that LiPON solid electrolyte is formed by high frequency sputtering of a Li 3 PO 4 target in a nitrogen atmosphere, and the LiPON solid electrolyte is 2 (± 1) × 10 −6 S / cm at room temperature. It has been reported to have high ionic conductivity and, in particular, to form a very stable interface with a positive electrode or a negative electrode, thereby satisfying most of the conditions that a solid electrolyte for a thin film battery should have since the cell deteriorates very little during operation.
이외에도 상기한 요건들을 만족하는 새로운 고체전해질을 개발하려는 연구가 활발히 이루어지고 있으나, 고체전해질의 성막 방법으로는 여전히 고주파 스퍼터링법이 이용되고 있다.In addition, studies have been actively conducted to develop new solid electrolytes satisfying the above requirements. However, high frequency sputtering is still used as a method of forming a solid electrolyte.
그런데, 고주파 스퍼터링법에 의하여 성막하는 경우에는, 기판 및 하지막에 많은 손상을 줄 뿐만 아니라, 성막 속도가 매우 느리다는 문제점이 있다. By the way, in the case of film formation by a high frequency sputtering method, there is a problem that not only the substrate and the underlying film are damaged much but also the film formation speed is very slow.
특히 스퍼터링시 반응가스로 이용되는 질소분위기 하에서는 더욱 성막 속도가 느리기 때문에(약 20nm/min), 목표두께인 2μm에 도달하기 위해서는 매우 많은 시간이 소요되므로, 공정의 효율을 도모할 수 있는 새로운 박막 제조방법 및 장치가 필요한 실정이었다.In particular, since the film formation rate is slower (about 20 nm / min) under the nitrogen atmosphere used as the reaction gas during sputtering, it takes a very long time to reach the target thickness of 2 μm, thus producing a new thin film that can improve the efficiency of the process. There is a need for a method and apparatus.
본 발명은 유기금속 화학 기상 증착법에 의함으로써 성막 속도가 향상되고, 기판 및 하지막의 손상도 최소화하며, 등각 증착이 가능하여 트렌치 구조의 박막전지에도 적용할 수 있는, 고체전해질 박막 제조방법을 제공하는 것을 목적으로 한다.The present invention provides a method for manufacturing a solid electrolyte thin film which can be applied to a thin film battery having a trench structure by improving the deposition rate, minimizing damage to the substrate and the underlying film, and conformal deposition by the organometallic chemical vapor deposition method. For the purpose of
또한, 본 발명은 상기한 제조방법을 구현하도록 하는 장치를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide an apparatus for implementing the above-described manufacturing method.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 고체전해질 박막 제조방법은 반응공간 내에 기판을 인서트하는 단계; 상기 반응공간 내에 에너지를 부여하고 기판을 가열하는 단계; 상기 반응공간 내에 리튬 전구체 가스 가스, 인 또는 보론 전구체 가스 가스, 질소 전구체 가스 가스를 주입하는 단계; 및 상기 전구체 가스 가스들을 서로 반응시켜 상기 기판상에 고체전해질 박막을 형성하는 단계를 포함하는 것을 특징으로 한다.Solid electrolyte thin film manufacturing method according to an embodiment of the present invention for achieving the above object comprises the steps of inserting a substrate in the reaction space; Applying energy to the reaction space and heating the substrate; Injecting lithium precursor gas gas, phosphorus or boron precursor gas gas, and nitrogen precursor gas gas into the reaction space; And reacting the precursor gas gases with each other to form a solid electrolyte thin film on the substrate.
한편, 상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 고체전해질 박막 제조장치는 기판이 수용되는 반응공간을 구비하는 반응부; 상기 반응공간에 리튬 전구체 가스 가스를 공급하는 제 1공급부; 상기 반응공간에 인 또는 보론 전구체 가스 가스를 공급하는 제 2공급부; 상기 반응공간에 질소 전구체 가스 가스를 공급하는 제 3공급부; 상기 전구체 가스들을 분해하기 위한 에너지를 부여하는 에너지 발생부; 및 상기 기판을 가열하는 가열부를 포함하는 것을 특징으로 한다.On the other hand, the solid electrolyte thin film manufacturing apparatus according to an embodiment of the present invention for achieving the above object is a reaction unit having a reaction space that accommodates the substrate; A first supply unit supplying a lithium precursor gas gas to the reaction space; A second supply unit supplying phosphorus or boron precursor gas gas to the reaction space; A third supply unit supplying a nitrogen precursor gas gas to the reaction space; An energy generator for imparting energy for decomposing the precursor gases; And it characterized in that it comprises a heating unit for heating the substrate.
본 발명의 고체전해질 박막 제조방법 및 장치에 의하면 성막 속도가 매우 향상될 뿐만 아니라 속도를 자유롭게 조절할 수 있고, 기판 및 하지막의 손상이 감소된다는 우수한 효과가 있다.According to the method and apparatus for manufacturing a solid electrolyte thin film of the present invention, not only the film formation speed is greatly improved, but the speed can be freely adjusted, and the damage of the substrate and the underlying film is reduced.
또한, 등각 증착이 가능하여, 표면적을 넓힌 트렌치 구조의 박막전지에도 적용할 수 있다는 효과가 있다.In addition, conformal deposition is possible, and thus, the present invention can be applied to a thin film battery having a trench structure having a large surface area.
도 1은 본 발명의 실시예에 의한 제조방법의 모식도이다.1 is a schematic diagram of a manufacturing method according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 의한 제조장치의 모식도이다. 2 is a schematic view of a manufacturing apparatus according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 의한 기판 가열 온도에 따른 LiPON 박막의 성막 속도를 나타낸 그래프이다.3 is a graph showing the deposition rate of the LiPON thin film according to the substrate heating temperature according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 의하여 제조된 LiPON 박막의 XRD 그래프이다. 4 is an XRD graph of a LiPON thin film prepared according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 의하여 제조된 LiPON 박막의 SEM 사진이다.5 is an SEM photograph of a LiPON thin film prepared according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 의하여 제조된 LiPON의 FTIR 스펙트럼이다.6 is an FTIR spectrum of LiPON prepared according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 의하여 제조된 LiPON 박막의 XPS 분석결과이다.7 is an XPS analysis result of the LiPON thin film prepared according to the embodiment of the present invention.
도 8은 본 발명의 실시예에 의하여 제조된 LiPON 박막의, 포스페이트 구조 내에 산소와 치환되어 인과 결합된 질소의 결합상태의 확인을 위한 XPS 분석결과이다.8 is an XPS analysis result for confirming the bonding state of nitrogen substituted with phosphorus in the phosphate structure of the LiPON thin film prepared according to the embodiment of the present invention.
기타 실시예들의 구체적인 사항들은 이하의 상세한 설명 및 도면에 포함되어 있다.Specific details of other embodiments are included in the following detailed description and drawings.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 후술되어 있는 실시예들 및 도면을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이어서, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and / or features of the present invention and methods of achieving them will be apparent with reference to the embodiments and drawings described below. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, so that the invention is defined only by the scope of the claims.
이하에서는 본 발명에 따른 고체전해질 박막 제조방법 및 제조장치에 대하여 상세히 설명하기로 한다.Hereinafter, a method and apparatus for manufacturing a solid electrolyte thin film according to the present invention will be described in detail.
고체전해질 박막 제조방법Solid electrolyte thin film manufacturing method
본 발명의 일 실시예에 따른 고체전해질 박막 제조방법은, 도 1에 나타낸 바와 같이 반응공간 내에 기판을 인서트하는 단계(S110); 상기 반응공간 내에 에너지를 부여하고 가열하는 단계(S120); 상기 반응공간 내에 리튬 전구체 가스, 인 또는 보론 전구체 가스, 질소 전구체 가스를 주입하는 단계(S130); 및 상기 전구체 가스들을 서로 반응시켜 상기 기판상에 고체전해질 박막을 형성하는 단계(S140)를 포함하는 것을 특징으로 한다.Solid electrolyte thin film manufacturing method according to an embodiment of the present invention, inserting the substrate in the reaction space as shown in Figure 1 (S110); Imparting energy and heating the reaction space (S120); Injecting a lithium precursor gas, a phosphorus or boron precursor gas, and a nitrogen precursor gas into the reaction space (S130); And forming a solid electrolyte thin film on the substrate by reacting the precursor gases with each other (S140).
먼저, 반응공간 내에 기판을 인서트한다(S110). First, the substrate is inserted into the reaction space (S110).
상기 반응공간은 유기금속 화학 기상 증착(MOCVD; Metal Organic Chemical Vapor Deposition)이 이루어지는 공간을 의미하는 것으로, 증착 대상 기판이 안착되는 공간을 포함한다. The reaction space refers to a space in which metal organic chemical vapor deposition (MOCVD) is performed, and includes a space in which a substrate to be deposited is deposited.
상기 기판은 박막전지에 사용될 수 있는 것이라면 제한이 없으며, 공정 효율을 높이기 위하여 복수의 기판을 인서트할 수도 있다.The substrate is not limited as long as it can be used in a thin film battery, and a plurality of substrates may be inserted to increase process efficiency.
다음으로, 상기 반응공간 내에 에너지를 부여하고 기판을 가열한다(S120).Next, energy is applied to the reaction space and the substrate is heated (S120).
상기 반응공간 내에 에너지를 부여함으로써 각 전구체 가스가 분해되고, 반응하여 상기 기판에 증착될 수 있다.By applying energy in the reaction space, each precursor gas may be decomposed, reacted, and deposited on the substrate.
상기 에너지를 부여하는 수단에는 특별히 제한이 없으나, 열, 촉매, 빛을 이용함이 바람직하다.The means for imparting the energy is not particularly limited, but heat, a catalyst, and light are preferably used.
열을 이용하여 에너지를 부여하기 위해, 반응공간 외부에 고주파 코일을 감아주거나 램프 히터를 장착할 수 있다. 이 경우 열에 의하여 각 전구체 가스가 분해되고, 반응하여 기판에 증착될 수 있게 된다. In order to apply energy using heat, a high frequency coil may be wound around the reaction space or a lamp heater may be mounted. In this case, each precursor gas is decomposed by heat, and reacts to be deposited on the substrate.
한편, 촉매를 이용하여 에너지를 부여하기 위해, 각 전구체 가스가 텅스텐 와이어를 통과하도록 할 수 있다. 이 때 텅스텐 와이어는 촉매 역할을 하는 것으로, 반응 온도는 약 1800~2000℃인 것이 바람직하다. 높은 온도의 텅스텐 와이어를 통과한 각 전구체 가스는 분해되고 서로 반응하여 기판에 증착될 수 있게 된다.On the other hand, in order to impart energy using a catalyst, each precursor gas may be allowed to pass through a tungsten wire. At this time, the tungsten wire serves as a catalyst, the reaction temperature is preferably about 1800 ~ 2000 ℃. Each precursor gas that has passed through the high temperature tungsten wire can be decomposed and reacted with each other to be deposited on the substrate.
한편, 빛을 이용하여 에너지를 부여하기 위해, 증착 대상 기판에 인접한 반응영역에 레이저나 UV를 조사할 수 있다. 이 경우 광 에너지에 의하여 각 전구체 가스가 분해되고 서로 반응하여 기판에 증착될 수 있게 된다. 조사강도나 시간은 성막 속도, 반응 공간의 내부 조건 등에 따라 적절히 조절하는 것이 바람직하다. 또한, 증착이 용이하도록 기판을 가열해줄 수 있는데, 가열온도는 기판의 종류, 성막 속도에 따라 적절하게 조절할 수 있다.On the other hand, in order to impart energy by using light, a laser or UV may be irradiated to a reaction region adjacent to the substrate to be deposited. In this case, the precursor gases are decomposed by the light energy and react with each other to be deposited on the substrate. It is preferable to adjust irradiation intensity and time suitably according to film-forming speed, internal conditions of reaction space, etc. In addition, the substrate may be heated to facilitate deposition, and the heating temperature may be appropriately adjusted according to the type of substrate and the deposition rate.
다음으로, 상기 반응공간 내에 리튬 전구체 가스, 인 또는 보론 전구체 가스, 질소 전구체 가스를 주입한다(S130).Next, lithium precursor gas, phosphorus or boron precursor gas, and nitrogen precursor gas are injected into the reaction space (S130).
본 발명의 고체전해질 박막의 재료로는 특별히 제한이 없지만, 이온전도도가 특히 우수한 LiPON 또는 LiBON인 것이 바람직하다. 이를 위해서는 리튬, 인 또는 보론, 질소의 전구체 가스를 반응물로 주입하여야 한다.Although there is no restriction | limiting in particular as a material of the solid electrolyte thin film of this invention, It is preferable that it is LiPON or LiBON which is especially excellent in ion conductivity. To this end, precursor gases of lithium, phosphorus, boron or nitrogen must be injected into the reactants.
상기 리튬 전구체 가스는 본 발명의 유기금속 화학 기상 증착법에 적용할 수 있는 것이라면 제한이 없으나, 특히 Li(C11H19O2) (lithium dipivaloylmethanate, Li(DPM)이라고도 한다)인 것이 바람직하다. 상기 Li(C11H19O2)은 상온에서 고체상태인바, 약 160~250℃정도의 온도를 주어 기화된 것을 사용한다.The lithium precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, but in particular Li (C 11 H 19 O 2 ) (Lithium dipivaloylmethanate, also referred to as Li (DPM)) is preferred. The Li (C 11 H 19 O 2 ) is a solid state at room temperature, giving a temperature of about 160 ~ 250 ℃ to use a vaporized one.
상기 인 전구체 가스는 본 발명의 유기금속 화학 기상 증착법에 적용할 수 있는 것이라면 제한이 없으나, 특히 PO(OCH3)3 (trimethyl phosphate) 또는 PO(OC2H5)3 (triethyl phosphate)인 것이 바람직하다.The phosphorus precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, in particular, PO (OCH 3 ) 3 (trimethyl phosphate) or PO (OC 2 H 5 ) 3 (triethyl phosphate) is preferred Do.
상기 보론 전구체 가스는 본 발명의 유기금속 화학 기상 증착에 적용할 수 있는 것이라면 제한이 없으나, 특히 B(OCH3)3 (boron trimethoxide) 또는 B(OC2H5)3 (boron triethoxide)인 것이 바람직하다.The boron precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, in particular, it is preferable that it is B (OCH 3 ) 3 (boron trimethoxide) or B (OC 2 H 5 ) 3 (boron triethoxide). Do.
상기 PO(OCH3)3, PO(OC2H5)3, B(OCH3)3, B(OC2H5)3는 상온에서 액체상태인바, 약 30~100℃정도의 온도를 주어 기화된 것을 사용한다.The PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 , B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 is a liquid at room temperature, giving a temperature of about 30 to 100 ° C. Use the old one.
상기 질소 전구체 가스는 본 발명의 유기금속 화학 기상 증착에 적용할 수 있는 것이라면 제한이 없으나, 특히 NH3 가스인 것이 바람직하다. 일반적으로 스퍼터링 공법에 의할 때 사용되는 N2 가스를 사용하지 않기 때문에 N2 분해를 위한 에너지 인가 수단이 플라즈마에 국한되지 않으며, 카본과 같은 유기물의 효율적 제거를 위하여 수소를 별도로 사용하지 않아도 된다는 장점이 있다. The nitrogen precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, it is particularly preferable that the NH 3 gas. In general, since the N 2 gas used in the sputtering method is not used, the energy applying means for N 2 decomposition is not limited to plasma, and there is no need to use hydrogen separately for efficient removal of organic matter such as carbon. There is this.
이 때, 반응공간 내부는 진공상태인 것이 바람직하다. At this time, the reaction space is preferably in a vacuum state.
다음으로, 상기 각 전구체 가스들을 서로 반응시켜 상기 기판상에 고체전해질 박막을 형성한다(S140).Next, the precursor gases are reacted with each other to form a solid electrolyte thin film on the substrate (S140).
상기 전구체 가스들을 반응공간 내에서 반응시키는 경우, 반응식은 다음과 같다.When reacting the precursor gases in the reaction space, the reaction formula is as follows.
고체전해질 : LiPON인 경우Solid electrolyte: LiPON
[반응식 1] Scheme 1
3Li(DPM) + PO(OC2H5)3 + 0.46NH3 = Li3PO3.3N0.46 +3DPM +0.7H2O + 3C2H4 + 1.5H2 3Li (DPM) + PO (OC 2 H 5 ) 3 + 0.46 NH 3 = Li 3 PO 3.3 N 0.46 + 3DPM + 0.7H 2 O + 3C 2 H 4 + 1.5H 2
[반응식 2]Scheme 2
3Li(DPM) + PO(OCH3)3 + 0.46NH3 = Li3PO3.3N0.46 +3DPM +0.7H2O + 1.5C2H4 + 1.5H2 3Li (DPM) + PO (OCH 3 ) 3 + 0.46 NH 3 = Li 3 PO 3.3 N 0.46 + 3DPM + 0.7H 2 O + 1.5C 2 H 4 + 1.5H 2
고체전해질 : LiBON인 경우Solid electrolyte: LiBON
[반응식 3]Scheme 3
3Li(DPM) + B(OC2H5)3 + 0.3NH3 = Li3BO2.55N0.3 +3DPM +0.45H2O + 3C2H4 + 1.5H2 3Li (DPM) + B (OC 2 H 5 ) 3 + 0.3 NH 3 = Li 3 BO 2.55 N 0.3 + 3DPM + 0.45H 2 O + 3C 2 H 4 + 1.5H 2
[반응식 4]Scheme 4
3Li(DPM) + B(OCH3)3 + 0.3NH3 = Li3BO2.55N0.3 +3DPM +0.45H2O + 1.5C2H4 + 1.5H2 3Li (DPM) + B (OCH 3 ) 3 + 0.3 NH 3 = Li 3 BO 2.55 N 0.3 + 3DPM + 0.45H 2 O + 1.5C 2 H 4 + 1.5H 2
상기와 같은 반응에 의하여, 기판에 LiPON 또는 LiBON 고체전해질이 증착됨으로써 박막을 형성하게 된다.By the above reaction, LiPON or LiBON solid electrolyte is deposited on the substrate to form a thin film.
원하는 두께의 고체전해질 박막이 형성될 때까지 상기 공정을 반복하여 실시한다.The process is repeated until a solid electrolyte thin film of a desired thickness is formed.
고체전해질 박막 제조장치Solid electrolyte thin film manufacturing apparatus
본 발명의 일 실시예에 따른 고체전해질 박막 제조장치는 기판이 수용되는 반응공간을 구비하는 반응부(100); 상기 반응공간에 리튬 전구체 가스를 공급하는 제 1공급부(210); 상기 반응공간에 인 또는 보론 전구체 가스를 공급하는 제 2공급부(220); 상기 반응공간에 질소 전구체 가스를 공급하는 제 3공급부(230); 상기 전구체 가스들을 분해하기 위한 에너지를 부여하는 에너지 발생부(300); 및 상기 기판을 가열하는 가열부(400)를 포함하는 것을 특징으로 한다.Solid electrolyte thin film manufacturing apparatus according to an embodiment of the present invention comprises a reaction unit 100 having a reaction space in which the substrate is accommodated; A first supply unit 210 supplying a lithium precursor gas to the reaction space; A second supply unit 220 supplying phosphorus or boron precursor gas to the reaction space; A third supply unit 230 supplying a nitrogen precursor gas to the reaction space; An energy generator 300 for imparting energy for decomposing the precursor gases; And it characterized in that it comprises a heating unit 400 for heating the substrate.
반응부(100)는 본 발명의 유기금속 화학 기상 증착 공정이 수행되는 공간을 제공한다. 이러한 반응부(100) 내부에는 증착 대상 기판(S)이 안착되는 서셉터(110)가 구비될 수 있다.The reaction unit 100 provides a space in which the organometallic chemical vapor deposition process of the present invention is performed. The susceptor 110 on which the deposition target substrate S is mounted may be provided in the reaction part 100.
상기 서셉터(110)에는 복수의 기판(S)이 안착될 수 있는데, 예를 들면 원형의 서셉터(110)에 가장 자리 둘레를 따라 복수의 기판(S)이 안착되도록 할 수 있다. A plurality of substrates S may be mounted on the susceptor 110. For example, the plurality of substrates S may be seated along the edge of the circular susceptor 110.
서셉터(110)는 서셉터(110)를 지지하는 서셉터 지지부(115)와 일체로 형성될 수 있다. 이러한 서셉터 지지부(115)는 상하이동 또는 회전운동이 가능하도록 설계 될 수 있다. 이에 따라서 서셉터에 안착된 기판(S)은 상하이동 또는 회전이 가능하여 증착 효율을 높일 수 있게 된다.The susceptor 110 may be integrally formed with the susceptor support 115 supporting the susceptor 110. The susceptor support 115 may be designed to be movable or rotating movement. Accordingly, the substrate S mounted on the susceptor may be moved or rotated to increase the deposition efficiency.
제 1공급부(210)는 반응부(100) 내 서셉터(110)에 안착된 기판(S)을 향하여 분사되는 리튬 전구체 가스를 공급한다. The first supply unit 210 supplies the lithium precursor gas injected toward the substrate S seated on the susceptor 110 in the reaction unit 100.
여기에서 상기 리튬 전구체 가스는 상기 제조방법에서 설명한 바와 같이, 본 발명의 유기금속 화학 기상 증착법에 적용할 수 있는 것이라면 제한이 없으나, 특히 Li(C11H19O2) (lithium dipivaloylmethanate, Li(DPM)이라고도 한다)인 것이 바람직하다. Herein, the lithium precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, as described in the preparation method, in particular Li (C 11 H 19 O 2 ) (lithium dipivaloylmethanate, Li (DPM) Also referred to as).
도시되지는 않았지만, 상온에서 고체상태인 Li(C11H19O2)을 반응공간 내로 주입하기 위하여 제 1공급부에는 버블러가 설치될 수 있다. 상기 버블러의 온도는 리튬 전구체 Li(C11H19O2)가 기화되는데 충분하도록 160~250℃의 범위로 설정하는 것이 바람직하다. Li(C11H19O2)을 반응공간 내로 주입할 때 사용되는 운반기체는 불활성 가스로서, 아르곤 등이 바람직하다.Although not shown, a bubbler may be installed in the first supply part to inject Li (C 11 H 19 O 2 ), which is solid at room temperature, into the reaction space. The temperature of the bubbler is preferably set in the range of 160 ~ 250 ℃ so that the lithium precursor Li (C 11 H 19 O 2 ) is sufficient to vaporize. The carrier gas used to inject Li (C 11 H 19 O 2 ) into the reaction space is an inert gas, and argon is preferable.
제 2공급부(220)는 반응부(100) 내 서셉터(110)에 안착된 기판(S)을 향하여 분사되는 인 또는 보론 전구체 가스를 공급한다. The second supply unit 220 supplies the phosphorus or boron precursor gas injected toward the substrate S seated on the susceptor 110 in the reaction unit 100.
상기 인 전구체 가스는 상기 제조방법에서 설명한 바와 같이, 본 발명의 유기금속 화학 기상 증착법에 적용할 수 있는 것이라면 제한이 없으나, 특히 PO(OCH3)3 (trimethyl phosphate) 또는 PO(OC2H5)3 (triethyl phosphate)인 것이 바람직하다.The phosphorus precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition method of the present invention, as described in the preparation method, in particular PO (OCH 3 ) 3 (trimethyl phosphate) or PO (OC 2 H 5 ) 3 (triethyl phosphate) is preferred.
상기 보론 전구체 가스는 상기 제조방법에서 설명한 바와 같이, 본 발명의 유기금속 화학 기상 증착에 적용할 수 있는 것이라면 제한이 없으나, 특히 B(OCH3)3 (boron trimethoxide) 또는 B(OC2H5)3 (boron triethoxide)인 것이 바람직하다.The boron precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, as described in the preparation method, in particular B (OCH 3 ) 3 (boron trimethoxide) or B (OC 2 H 5 ) 3 (boron triethoxide) is preferred.
역시 도시되지는 않았지만, 상온에서 액체상태인 PO(OCH3)3, PO(OC2H5)3, B(OCH3)3, B(OC2H5)3 를 반응공간 내로 주입하기 위하여 제 2공급부에는 버블러가 설치될 수 있다. 상기 버블러의 온도는 인 또는 보론 전구체 PO(OCH3)3, PO(OC2H5)3, B(OCH3)3, B(OC2H5)3 가 기화되는데 충분하도록 30~100℃의 범위로 설정하는 것이 바람직하다. 마찬가지로 반응공간 내 주입될 때 사용되는 운반기체는 불활성 가스로서, 아르곤 등이 바람직하다.Although not shown, PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 , B (OCH 3 ) 3 , and B (OC 2 H 5 ) 3 , which are liquid at room temperature, may be injected into the reaction space. The supply unit may be a bubbler. The temperature of the bubbler is 30 ~ 100 ℃ so that the phosphorus or boron precursor PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 , B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 is sufficient to vaporize It is preferable to set in the range of. Similarly, the carrier gas used when injected into the reaction space is an inert gas, and argon is preferable.
제 3공급부(230)는 반응부(100) 내 서셉터(110)에 안착된 기판(S)을 향하여 분사되는 질소 전구체 가스를 공급한다.The third supply unit 230 supplies a nitrogen precursor gas injected toward the substrate S seated on the susceptor 110 in the reaction unit 100.
상기 질소 전구체 가스는 상기 제조방법에서 설명한 바와 같이, 본 발명의 유기금속 화학 기상 증착에 적용할 수 있는 것이라면 제한이 없으나, 특히 NH3 가스인 것이 바람직하다. 일반적으로 스퍼터링 공법에 의할 때 사용되는 N2 가스를 사용하지 않기 때문에 성막속도를 빠르게 할 수 있다. The nitrogen precursor gas is not limited as long as it can be applied to the organometallic chemical vapor deposition of the present invention, as described in the preparation method, but is preferably NH 3 gas. In general, since the N 2 gas used in the sputtering method is not used, the deposition rate can be increased.
상기 제 1공급부(210), 제 2공급부(220) 및 제 3공급부(230)에 의하여 공급되는 각각의 전구체 가스들은 반응부(100)에서 서로 반응하여, 상기 제조방법에서 설명한 바와 같이 LiPON 또는 LiBON 고체전해질 박막을 기판(S)상에 형성하게 된다.Each precursor gas supplied by the first supply unit 210, the second supply unit 220, and the third supply unit 230 reacts with each other in the reaction unit 100, as described in the manufacturing method. The solid electrolyte thin film is formed on the substrate S.
에너지 발생부(300)는 상기한 제 1공급부(210), 제 2공급부(220) 및 제 3공급부(230)에서 공급되는 각각의 전구체 가스에 에너지를 부여함으로써 반응성을 갖도록 한다.The energy generator 300 may be reactive by applying energy to each precursor gas supplied from the first supply unit 210, the second supply unit 220, and the third supply unit 230.
도 2에 도시한 에너지 발생부(300)는 본 발명의 구성임을 명확하게 보이기 위한 목적으로 모식화하여 도시한 것으로, 하기의 에너지 부여 수단에 따라 적절한 형태로 위치를 조절하여 설치 가능하다.The energy generating unit 300 shown in FIG. 2 is schematically illustrated for the purpose of clearly showing that the present invention is a configuration of the present invention, and can be installed by adjusting the position in an appropriate form according to the following energy imparting means.
전구체 가스에 에너지를 부여하는 수단에는 특별히 제한이 없으나, 열, 촉매, 빛을 이용함이 바람직하다.The means for applying energy to the precursor gas is not particularly limited, but heat, a catalyst, and light are preferably used.
전구체 가스에 에너지를 부여하는 수단이 열인 경우, 에너지 발생부(300)는 고주파 코일 또는 램프 히터를 구비할 수 있다. When the means for applying energy to the precursor gas is heat, the energy generator 300 may include a high frequency coil or a lamp heater.
또한, 전구체 가스에 에너지를 부여하는 수단이 촉매인 경우, 에너지 발생부(300)는 텅스텐 와이어를 구비할 수 있다. In addition, when the means for applying energy to the precursor gas is a catalyst, the energy generator 300 may include a tungsten wire.
또한, 전구체 가스에 에너지를 부여하는 수단이 빛인 경우, 에너지 발생부(300)는 레이저 또는 UV 조사부를 구비할 수 있다. In addition, when the means for applying energy to the precursor gas is light, the energy generator 300 may include a laser or UV irradiation.
각각의 에너지 부여 원리는 상기 제조방법에서 설명한 바와 같은바, 여기에서는 생략하기로 한다.Each energy applying principle is as described in the above manufacturing method, which will be omitted here.
가열부(400)는 증착이 용이하도록 기판(S)을 가열하는 기능을 한다. 가열부(400)는 기판(S)이 안착된 서셉터(110)의 내부 또는 외부에 설치될 수 있다. 가열온도는 기판의 종류, 성막 속도, 반응 공간 내부 조건 등에 따라 적절하게 조절할 수 있다.The heating unit 400 functions to heat the substrate S to facilitate deposition. The heating unit 400 may be installed inside or outside the susceptor 110 on which the substrate S is seated. The heating temperature can be appropriately adjusted according to the type of substrate, the film formation rate, the conditions inside the reaction space and the like.
각 전구체 가스의 주입량을 조절하는 밸브, 반응 부산물과 잔류된 금속원료를 외부로 배출하는 관로, 로터리 펌프 등, 본 발명의 제조장치에 도시하지 않은 여타의 구성요소는 유기금속 화학 기상 증착과 관련한 장비를 다루는 당업자에게는 자명한 사항이므로 생략하기로 한다.Other components not shown in the manufacturing apparatus of the present invention, such as a valve for controlling the injection amount of each precursor gas, a pipeline for discharging reaction by-products and residual metal raw materials, and a rotary pump, may be used for organometallic chemical vapor deposition. Since it will be obvious to those skilled in the art, the description thereof will be omitted.
전술한 본 발명의 고체전해질 박막 제조방법 및 그 제조장치에 의하면 성막속도가 매우 향상되며, 기판 및 하지막에 대한 손상도가 현저히 감소하는바, 신뢰도 높은 박막전지를 효율적으로 제조할 수 있다. 또한, 등각 증착이 가능하므로, 트렌치 구조의 박막전지의 제조에 적용할 수 있다.According to the method of manufacturing a solid electrolyte thin film and the manufacturing apparatus of the present invention described above, the film formation speed is greatly improved, and the damage degree to the substrate and the underlying film is remarkably reduced, so that a highly reliable thin film battery can be efficiently produced. In addition, since conformal vapor deposition is possible, the present invention can be applied to fabrication of a thin film battery having a trench structure.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1.One. LiPON 박막의 제조Fabrication of LiPON Thin Films
상기한 본 발명의 제조장치를 이용하여 리튬 전구체 가스로서 Li(DPM)( lithium dipivaloylmethanate), 인 전구체 가스로서 TEP(triethyl phosphate), 질소 전구체 가스로서 NH3를 주입하고, 제조장치를 가동시켜, 일정 온도 범위 내로 가열된 기판 상에 LiPON 박막을 형성하였다.Using the above-described manufacturing apparatus of the present invention, Li (DPM) (lithium dipivaloylmethanate) as a lithium precursor gas, TEP (triethyl phosphate) as a phosphorus precursor gas, NH 3 as a nitrogen precursor gas are injected, and a manufacturing apparatus is operated to A LiPON thin film was formed on the substrate heated within the temperature range.
이 때, 조건은 하기의 표 1과 같았다.At this time, the conditions were as Table 1 below.
표 1
파라미터 조건
공정 압력(Torr)베이스 압력(mTorr) 1010
Li(DPM) 버블러온도(℃)N2 가스 주입속도 (sccm) 22050
TEP 버블러온도(℃)N2 가스 주입속도 (sccm) 7010
기판 가열온도(℃) 475~575
증착 시간(hr) 1
Table 1
parameter Condition
Process Pressure (Torr) Base Pressure (mTorr) 1010
Li (DPM) Bubbler Temperature (℃) N 2 Gas Injection Rate (sccm) 22050
TEP Bubbler Temperature (℃) N 2 Gas Injection Rate (sccm) 7010
Substrate heating temperature (℃) 475-575
Deposition time (hr) One
2.2. 결과result
(1) 증착속도 (1) deposition rate
기판 가열 온도에 따른 LiPON 박막의 성막 속도를 도 3의 그래프로 나타내었다.The deposition rate of the LiPON thin film according to the substrate heating temperature is shown in the graph of FIG. 3.
도 3의 결과에서 알 수 있듯, 본 발명의 제조방법에 있어서 기판의 가열온도에 비례하여 성막 속도도 증가한다는 사실을 확인할 수 있었다. As can be seen from the results of Figure 3, it was confirmed that the deposition rate also increases in proportion to the heating temperature of the substrate in the manufacturing method of the present invention.
또한, 성막이 잘 형성되기 위해서는 전구체의 분해 및 반응이 일어나기 충분한 에너지가 필요하며, 기판의 가열온도가 최소한 500℃ 이상이어야 한다는 사실을 확인할 수 있었다.In addition, in order to form the film well, it was confirmed that sufficient energy is required to cause decomposition and reaction of the precursor, and the heating temperature of the substrate should be at least 500 ° C or higher.
(2) 모폴로지(2) morphology
본 발명의 실시예에 의하여 제조된 LiPON 박막의 결정구조를 확인하기 위하여 XRD 및 SEM 사진을 분석하였다. 도 4는 본 발명의 실시예에 의하여 제조된 LiPON 박막의 XRD 그래프이고, 도 5는 본 발명의 실시예에 의하여 제조된 LiPON 박막의 SEM 사진이다.XRD and SEM images were analyzed to confirm the crystal structure of the LiPON thin film prepared according to the embodiment of the present invention. 4 is an XRD graph of a LiPON thin film manufactured according to an embodiment of the present invention, and FIG. 5 is a SEM photograph of a LiPON thin film manufactured according to an embodiment of the present invention.
도 4, 5에서 확인할 수 있듯, 본 발명의 실시예에 의하여 제조된 LiPON 박막은 비정질의 무정형 구조임을 확인할 수 있었다.As can be seen in Figures 4 and 5, the LiPON thin film prepared according to the embodiment of the present invention was confirmed to be an amorphous amorphous structure.
(3) 본딩 구조의 확인(3) Confirmation of bonding structure
기판의 가열온도에 따른 LiPON 박막의 본딩 구조를 확인하기 위하여 FTIR 스펙트럼을 분석하였다. 도 6은 본 발명의 실시예에 의하여 제조된 LiPON의 FTIR 스펙트럼이다.The FTIR spectrum was analyzed to confirm the bonding structure of the LiPON thin film according to the heating temperature of the substrate. 6 is an FTIR spectrum of LiPON prepared according to an embodiment of the present invention.
도 6에서 확인할 수 있듯, 파장 1150cm-1, 1050 cm-1, 930 cm-1 에서 각각 P=O, PO3, P-O-P/P-N=P 본딩 구조의 피크가 관찰되었다. As can be seen in FIG. 6, peaks of P = O, PO 3 , and POP / PN = P bonding structures were observed at wavelengths of 1150 cm −1 , 1050 cm −1 , and 930 cm −1 , respectively.
또한 파장 1180cm-1 부근에서 생긴 피크는 부가생성물에 따른 것으로 보이는데, 기판의 가열온도를 550℃ 이상으로 하여 준 경우 피크가 관찰되지 않았다. 따라서 반응온도를 550℃ 이상으로 높여주는 경우, LiPON 박막이 더 바람직하게 성막될 것으로 판단되었다.In addition, the peak generated near the wavelength of 1180cm -1 appears to be due to the adduct. When the heating temperature of the substrate is set to 550 ° C or higher, no peak was observed. Therefore, when increasing the reaction temperature to 550 ℃ or more, it was determined that the LiPON thin film is more preferably formed.
(4) 구성원소의 확인(4) Confirmation of member
본 발명의 실시예에 의하여 제조된 LiPON 박막이 Li, P, O, N의 구성원소를 모두 빠짐없이 구비하여 제대로 형성된 것인지 확인하기 위하여 XPS 분석을 실시하고, 그 그래프를 도 7에 나타내었다.XPS analysis was performed to confirm that the LiPON thin film prepared according to the embodiment of the present invention was formed properly by including all the elements of Li, P, O, and N, and the graph is shown in FIG. 7.
도 7에서 확인되는 피크 (a)~(f)를 차례로 살펴보면, 피크 (a)는 Li, (b), (c)는 P, (e)는 N, (f)는 O 원소의 존재를 확인하여 주는 것으로서, 본 발명에 실시예에 의하여 제조된 박막이 LiPON임을 확인할 수 있었다.Looking at the peaks (a) to (f) identified in FIG. 7 in turn, the peaks (a) are Li, (b), (c) is P, (e) is N, and (f) is the presence of O elements. As a result, it could be confirmed that the thin film prepared according to the embodiment of the present invention was LiPON.
(5) 질소 결합여부의 확인(5) Confirmation of nitrogen binding
본 발명의 실시예에 의하여 제조된 LiPON 박막에 있어서, 이온전도도를 결정하는, 인에 대한 질소의 결합여부의 확인을 위하여 XPS 분석을 실시하고, 이의 결과를 도 8에 나타내었다.In the LiPON thin film prepared according to the embodiment of the present invention, XPS analysis was carried out to confirm the binding of nitrogen to phosphorus, which determines the ion conductivity, and the results thereof are shown in FIG. 8.
도 8에서 확인할 수 있듯, (a) 피크는 NP3의 단일결합 구조를, (b) 피크는 NP2의 이중결합 및 단일결합 구조를 의미하는 바, 본 발명에서 사용된 TEP, NH3가 성공적으로 반응하여 인에 대하여 질소가 결합하였다는 사실을 확인할 수 있었고, 아울러 이온전도도를 나타내어 고체전해질로서 기능할 수 있음을 확인할 수 있었다.As can be seen in Figure 8, (a) peak means a single bond structure of NP3, (b) peak means a double bond and a single bond structure of NP2, TEP, NH 3 used in the present invention successfully reacted As a result, it was confirmed that nitrogen was bound to phosphorus, and it was also confirmed that it could function as a solid electrolyte by exhibiting ionic conductivity.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구의 범위뿐만 아니라, 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.While specific embodiments of the present invention have been described so far, various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the scope of the following claims, but also by those equivalent to the scope of the claims.
이상과 같이 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.As described above, although the present invention has been described by way of limited embodiments, the present invention is not limited to the above-described embodiments, which can be variously modified and modified by those skilled in the art to which the present invention pertains. It is possible. Accordingly, the spirit of the present invention should be understood only by the claims set forth below, and all equivalent or equivalent modifications thereof will belong to the scope of the present invention.

Claims (16)

  1. 반응공간 내에 기판을 인서트하는 단계;Inserting a substrate into the reaction space;
    상기 반응공간 내에 에너지를 부여하고 기판을 가열하는 단계;Applying energy to the reaction space and heating the substrate;
    상기 반응공간 내에 리튬 전구체 가스, 인 또는 보론 전구체 가스, 질소 전구체 가스를 주입하는 단계; 및Injecting a lithium precursor gas, a phosphorus or boron precursor gas, and a nitrogen precursor gas into the reaction space; And
    상기 전구체 가스들을 서로 반응시켜 상기 기판상에 고체전해질 박막을 형성하는 단계를 포함하는 고체전해질 박막 제조방법.Reacting the precursor gases with each other to form a solid electrolyte thin film on the substrate.
  2. 제 1항에 있어서,The method of claim 1,
    상기 리튬 전구체 가스는 Li(C11H19O2)인 것을 특징으로 하는 고체전해질 박막 제조방법.The lithium precursor gas is Li (C 11 H 19 O 2 ) characterized in that the solid electrolyte thin film manufacturing method.
  3. 제 1항에 있어서,The method of claim 1,
    상기 인 전구체 가스는 PO(OCH3)3, PO(OC2H5)3 중 선택된 1종 이상인 것을 특징으로 하는 고체전해질 박막 제조방법.The phosphorus precursor gas is a solid electrolyte thin film manufacturing method, characterized in that at least one selected from PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 .
  4. 제 1항에 있어서,The method of claim 1,
    상기 보론 전구체 가스는 B(OCH3)3, B(OC2H5)3 중 선택된 1종 이상인 것을 특징으로 하는 고체전해질 박막 제조방법.The boron precursor gas is a solid electrolyte thin film manufacturing method, characterized in that at least one selected from B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 .
  5. 제 1항에 있어서,The method of claim 1,
    상기 질소 전구체 가스는 NH3인 것을 특징으로 하는 고체전해질 박막 제조방법.The nitrogen precursor gas is NH 3 characterized in that the solid electrolyte thin film manufacturing method.
  6. 제 1항에 있어서,The method of claim 1,
    상기 에너지 부여는 고주파 코일 또는 램프 히터를 통해 열을 가하는 것에 의함을 특징으로 하는 고체전해질 박막 제조방법.The energy supply is a solid electrolyte thin film manufacturing method, characterized in that by applying heat through a high frequency coil or lamp heater.
  7. 제 1항에 있어서,The method of claim 1,
    상기 에너지 부여는 텅스텐 와이어 촉매에 의함을 특징으로 하는 고체전해질 박막 제조방법.The energy provision is a solid electrolyte thin film manufacturing method, characterized in that by the tungsten wire catalyst.
  8. 제 1항에 있어서,The method of claim 1,
    상기 에너지 부여는 레이저 또는 UV를 조사하는 것에 의함을 특징으로 하는 고체전해질 박막 제조방법.The energy provision is a solid electrolyte thin film manufacturing method, characterized in that by irradiation with laser or UV.
  9. 기판이 수용되는 반응공간을 구비하는 반응부;A reaction unit having a reaction space in which the substrate is accommodated;
    상기 반응공간에 리튬 전구체 가스를 공급하는 제 1공급부;A first supply unit supplying a lithium precursor gas to the reaction space;
    상기 반응공간에 인 또는 보론 전구체 가스를 공급하는 제 2공급부;A second supply unit supplying phosphorus or boron precursor gas to the reaction space;
    상기 반응공간에 질소 전구체 가스를 공급하는 제 3공급부; A third supply unit supplying a nitrogen precursor gas to the reaction space;
    상기 전구체 가스들을 분해하기 위한 에너지를 부여하는 에너지 발생부; 및An energy generator for imparting energy for decomposing the precursor gases; And
    상기 기판을 가열하는 가열부를 포함하는 고체전해질 박막 제조장치.Solid electrolyte thin film manufacturing apparatus comprising a heating unit for heating the substrate.
  10. 제 9항에 있어서,The method of claim 9,
    상기 리튬 전구체 가스는 Li(C11H19O2)인 것을 특징으로 하는 고체전해질 박막 제조장치.The lithium precursor gas is Li (C 11 H 19 O 2 ) characterized in that the solid electrolyte thin film manufacturing apparatus.
  11. 제 9항에 있어서,The method of claim 9,
    상기 인 전구체 가스는 PO(OCH3)3, PO(OC2H5)3 중 선택된 1종 이상인 것을 특징으로 하는 고체전해질 박막 제조장치.The phosphorus precursor gas is a solid electrolyte thin film manufacturing apparatus, characterized in that at least one selected from PO (OCH 3 ) 3 , PO (OC 2 H 5 ) 3 .
  12. 제 9항에 있어서,The method of claim 9,
    상기 보론 전구체 가스는 B(OCH3)3, B(OC2H5)3 중 선택된 1종 이상인 것을 특징으로 하는 고체전해질 박막 제조장치.The boron precursor gas is a solid electrolyte thin film manufacturing apparatus, characterized in that at least one selected from B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 .
  13. 제 9항에 있어서,The method of claim 9,
    상기 질소 전구체 가스는 NH3인 것을 특징으로 하는 고체전해질 박막 제조장치.The nitrogen precursor gas is NH 3 characterized in that the solid electrolyte thin film manufacturing apparatus.
  14. 제 9항에 있어서,The method of claim 9,
    상기 에너지 발생부는 고주파 코일 또는 램프 히터를 구비하는 것을 특징으로 하는 고체전해질 박막 제조장치.The energy generating unit is a solid electrolyte thin film manufacturing apparatus comprising a high frequency coil or a lamp heater.
  15. 제 9항에 있어서,The method of claim 9,
    상기 에너지 발생부는 텅스텐 와이어를 구비하는 것을 특징으로 하는 고체전해질 박막 제조장치.The energy generating unit is a solid electrolyte thin film manufacturing apparatus comprising a tungsten wire.
  16. 제 9항에 있어서,The method of claim 9,
    상기 에너지 발생부는 레이저 또는 UV 조사부를 구비하는 것을 특징으로 하는 고체전해질 박막 제조장치.The energy generating unit is a solid electrolyte thin film manufacturing apparatus comprising a laser or UV irradiation unit.
PCT/KR2012/006044 2011-07-29 2012-07-27 Method for manufacturing solid electrolyte thin film and manufacturing device thereof WO2013019041A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110075780A KR20130013876A (en) 2011-07-29 2011-07-29 Method of deposition solid electrolyte film and apparatus for the same
KR10-2011-0075780 2011-07-29

Publications (3)

Publication Number Publication Date
WO2013019041A2 true WO2013019041A2 (en) 2013-02-07
WO2013019041A9 WO2013019041A9 (en) 2013-04-04
WO2013019041A3 WO2013019041A3 (en) 2013-05-23

Family

ID=47629786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006044 WO2013019041A2 (en) 2011-07-29 2012-07-27 Method for manufacturing solid electrolyte thin film and manufacturing device thereof

Country Status (2)

Country Link
KR (1) KR20130013876A (en)
WO (1) WO2013019041A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788927B1 (en) 2015-09-17 2017-11-16 한양대학교 에리카산학협력단 Method for manufacturing a porous thin film
KR101895290B1 (en) * 2017-01-23 2018-09-05 영남대학교 산학협력단 Conformal deposition method and device of lithium phosphate thin film electrolytes for 3D solid state batteries by MOCVD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886240B2 (en) * 2003-07-11 2005-05-03 Excellatron Solid State, Llc Apparatus for producing thin-film electrolyte
KR20110009295A (en) * 2009-07-22 2011-01-28 지에스나노텍 주식회사 Method for manufacturing bulk libon solid elecrtolyte for all-solid-state lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886240B2 (en) * 2003-07-11 2005-05-03 Excellatron Solid State, Llc Apparatus for producing thin-film electrolyte
KR20110009295A (en) * 2009-07-22 2011-01-28 지에스나노텍 주식회사 Method for manufacturing bulk libon solid elecrtolyte for all-solid-state lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAMARTINE MEDA: 'Plasma-Enhanced Metalorganic Chemical Vapor deposition of Lipon Thin Films' MRS PROCEEDINGS vol. 1313, 04 February 2011, *

Also Published As

Publication number Publication date
WO2013019041A3 (en) 2013-05-23
KR20130013876A (en) 2013-02-06
WO2013019041A9 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2019017522A1 (en) Perovskite solar battery and tandem solar battery including same
WO2010095901A2 (en) Method for forming thin film using radicals generated by plasma
WO2018131899A1 (en) Secondary battery anode comprising lithium metal layer having micropattern and protective layer thereof, and method for producing same
US20090223930A1 (en) Apparatus for etching substrate and method of etching substrate using the same
WO2016036121A1 (en) Lithium electrode, lithium secondary battery comprising same, battery module comprising lithium secondary battery, and preparation method of lithium electrode
WO2014084663A1 (en) Silicon oxide, and method for preparing same
WO2018004259A2 (en) Method for manufacturing ion-conducting membrane
WO2022037289A1 (en) Passivation contact battery and preparation method, and passivation contact structure preparation method and apparatus
US6881684B2 (en) Method of forming silicon nitride deposited film
WO2019168352A1 (en) Anode active material, preparation method therefor, and anode and lithium secondary battery, which include anode active material
WO2013019041A2 (en) Method for manufacturing solid electrolyte thin film and manufacturing device thereof
WO2021210739A1 (en) Apparatus and method for producing silicon oxides, and silicon oxide negative electrode material
WO2020040400A1 (en) Method for fabrication of quality perovskite photoactive layer thin film and perovskite solar cell comprising same
WO2012063991A1 (en) Method for manufacturing aluminum electrode using wetting process and aluminum electrode manufactured thereby
WO2021040442A2 (en) Laser-based multiple printing apparatus and method for fabricating surface-morphology-controlled large-area perovskite thin film by using same
JPH04174517A (en) Manufacture of diamond semiconductor
WO2020091234A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
JP4496401B2 (en) Plasma CVD apparatus and method for manufacturing solar cell
WO2019078691A1 (en) Lithium secondary battery having extended service life and ultra-high energy density
WO2010126274A2 (en) Cigt thin film and method for fabricating same
WO2017122842A1 (en) Solar cell comprising cigs light absorbing layer and method for manufacturing same
WO2020009313A1 (en) Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent
EP0140130B1 (en) Process and apparatus for preparing semiconductor layer
WO2019221584A2 (en) Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery
WO2023239111A1 (en) Method for forming thin film of perovskite compound and method for manufacturing solar cell using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819959

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819959

Country of ref document: EP

Kind code of ref document: A2