WO2012109912A1 - Rerouting method and point of local repair node - Google Patents

Rerouting method and point of local repair node Download PDF

Info

Publication number
WO2012109912A1
WO2012109912A1 PCT/CN2011/081175 CN2011081175W WO2012109912A1 WO 2012109912 A1 WO2012109912 A1 WO 2012109912A1 CN 2011081175 W CN2011081175 W CN 2011081175W WO 2012109912 A1 WO2012109912 A1 WO 2012109912A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
rerouting
downstream
path
tunnel
Prior art date
Application number
PCT/CN2011/081175
Other languages
French (fr)
Chinese (zh)
Inventor
付志涛
许浩
金昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012109912A1 publication Critical patent/WO2012109912A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Provided in the present invention are a rerouting method and a point of local repair (PLR) node. The method comprises: when the PLR node receives a resource reservation (RESV) message, if, on the basis of downstream node information attached to the RESV message, a preconfigured backup tunnel destination node is judged as not meeting a rerouting requirement, then searching within the downstream node information for a downstream node meeting the rerouting requirement; if an label-switched path (LSP) between the downstream node found and the PLR node is judged as not to coincide with a primary LSP, then selecting the LSP between the downstream node and the PLR node and the primary LSP to form a rerouting relationship. The method and the PLR node improve the protection relationship of cross-node protection, and ensure that switch protection goes into effect during a malfunction of two consecutive sections of the link.

Description

一种重路由的方法和本地修复点节点  A method of rerouting and a local repair point node
技术领域 Technical field
本发明涉及数据网络通讯领域, 尤其涉及一种重路由的方法和本地修复 点节点。  The present invention relates to the field of data network communication, and in particular, to a method for rerouting and a local repair point node.
背景技术 Background technique
流量工程的快速重路由( Traffic Engineering-Fast Re-Route,简称 TE-FRR ) 技术是一种当局部链路或节点失效进行本地修复的本地保护技术。 在 RFC4090中定义了链路保护和节点保护两种本地保护类型, 同时也定义了在 形成保护过程中的两种特殊的节点类型: 本地修复点( Point Local Repair, 简 称 PLR )节点和汇聚点 (Merge Point, 简称 MP )节点。  Traffic Engineering-Fast Re-Route (TE-FRR) technology is a local protection technology that performs local repair when local links or nodes fail. Two types of local protection, link protection and node protection, are defined in RFC4090. Two special node types in the protection process are also defined: Point Local Repair (PLR) nodes and convergence points ( Merge Point, referred to as MP) node.
图 1为 TE-FRR的节点保护拓朴图。 如图 1所示, 该拓朴图包括: 节点 Rl、 R2、 R3 ( R1作为 PLR节点, R3作为 MP节点) , 链路: L12、 L23、 LI 3 , 其中, 主隧道路径(Primary lsp )为 R1-R2-R3 , 备份隧道路径(Backup lsp )为 R1-R3 , 当链路 L12失效时, 将路径切换至 L13 , 形成节点保护。  Figure 1 shows the node protection topology of TE-FRR. As shown in FIG. 1, the topology diagram includes: nodes R1, R2, and R3 (R1 is a PLR node, and R3 is an MP node), and links are: L12, L23, and LI3, wherein the primary tunnel path (Primary lsp) is R1-R2-R3, the backup tunnel path (Backup lsp) is R1-R3. When the link L12 fails, the path is switched to L13 to form node protection.
图 2为 TE-FRR的链路保护拓朴图。 如图 2所示, 该拓朴图包括: 节点 Rl、 R2、 R3 ( R2作为 PLR节点, R3作为 MP节点) , 链路: L12、 L23、 L32, 其中, 主隧道路径(Primary lsp )为 R1-R2-R3 , 备份隧道路径(Backup lsp )为 R2-R3 , 当链路 L23失效时, 将路径切换至 L32, 形成链路保护。 切 换过后, 在 MP 节点处理从备份隧道入接口上送的 PATH (路径) 消息、 PATH-TEAR (路径拆除)消息等上游发送的协议报文, 对于原隧道的协议报 文不进行处理。  Figure 2 shows the link protection topology of TE-FRR. As shown in FIG. 2, the topology map includes: nodes R1, R2, and R3 (R2 as a PLR node and R3 as an MP node), links: L12, L23, and L32, wherein the primary tunnel path (Primary lsp) is R1. -R2-R3, the backup tunnel path (Backup lsp) is R2-R3. When link L23 fails, the path is switched to L32 to form link protection. After the switchover, the MP node processes the protocol packets sent by the upstream, such as the PATH (Path) message and the PATH-TEAR (Path Removal) message sent from the backup tunnel. The protocol packets of the original tunnel are not processed.
在实际工程部署中, 具有 TE-FRR属性的隧道, 除了尾节点, 其它每个 节点都是潜在的 PLR节点。如图 3所示,形成一个交叉节点保护,其中, Primary ls 为 R1-R2-R3-R4, Backup ls l为 R1-R3 (经过链路 L13 ) Backup lsp2为 R2-R4 (经过链路 L24 )。节点 R1和 R2都作为了 PLR节点,备份隧道 Backup lspl保护 R2节点, 而备份隧道 Backup lsp2保护 R3节点。 在形成这种保护的情况下, 由于链路 L23发生故障, 这个时候作为 PLR 节点的 R2发生节点保护切换, 主隧道路径的上游 PATH信令通过 L24到达 R4节点 ( MP节点) 。 R4也通过 L24往上游刷新 RESV (资源预留 )信令。 R3节点得不到刷新, 过段时间 R3的主隧道路径协议状态会老化, 待老化之 后, 如果这个时候链路 L12也发生故障, 作为 PLR节点的 R1也会发生节点 保护切换, 这个时候 R1希望的是 R3成为 MP节点, 但是这个时候 R3上的 隧道状态信息已经老化, 不能成为 MP节点, 会导致切换不成功, 走隧道的 业务会中断。 发明内容 In actual engineering deployment, a tunnel with TE-FRR attributes, except for the tail node, each of the other nodes is a potential PLR node. As shown in Figure 3, a cross-node protection is formed, where Primary ls is R1-R2-R3-R4, Backup ls l is R1-R3 (via link L13) Backup lsp2 is R2-R4 (via link L24) . Both nodes R1 and R2 act as PLR nodes, backup tunnel lspl protects R2 nodes, and backup tunnel Backup lsp2 protects R3 nodes. In the case of such protection, due to the failure of the link L23, node protection switching occurs as R2 of the PLR node at this time, and the upstream PATH signaling of the primary tunnel path reaches the R4 node (MP node) through L24. R4 also refreshes RESV (Resource Reservation) signaling upstream through L24. The R3 node is not refreshed. The status of the primary tunnel path protocol of the R3 is aging. After the aging, if the link L12 also fails, the node protection switching occurs as the R1 of the PLR node. The R3 becomes an MP node. However, the tunnel status information on the R3 is aged and cannot become an MP node. As a result, the switch is unsuccessful and the service of the tunnel is interrupted. Summary of the invention
本发明要解决的技术问题是提供一种重路由的方法和本地修复点节点, 以改善交叉节点保护的保护关系, 保证连续的两段链路故障, 切换保护能够 生效。  The technical problem to be solved by the present invention is to provide a rerouting method and a local repair point node, so as to improve the protection relationship of the cross node protection and ensure continuous two-stage link failure, and the handover protection can take effect.
为了解决上述技术问题, 本发明提供了一种重路由的方法, 包括: 本地修复点节点接收到资源预留(RESV )消息后, 若根据所述 RESV消 息携带的下游节点信息判断预置的备份隧道目的地节点不满足重路由条件, 则从所述下游节点信息中查找满足所述重路由条件的下游节点, 若判断查找 到的下游节点与本节点之间的隧道路径与主隧道路径不重合, 则选择该下游 节点与本节点之间的隧道路径与主隧道路径形成重路由关系。 优选地, 上述方法还具有下面特点: 所述本地修复点节点判断预置的备 份隧道目的地节点不满足重路由条件的步骤之前, 还包括:  In order to solve the above technical problem, the present invention provides a method for rerouting, including: after receiving a resource reservation (RESV) message, the local repair point node determines a preset backup according to the information of the downstream node carried in the RESV message. If the tunnel destination node does not satisfy the rerouting condition, the downstream node information is searched for the downstream node that meets the rerouting condition, and if the tunnel path between the found downstream node and the local node does not coincide with the primary tunnel path, Then, the tunnel path between the downstream node and the local node is selected to form a rerouting relationship with the primary tunnel path. Preferably, the foregoing method further has the following features: before the step of determining, by the local repair point node, that the preset backup tunnel destination node does not satisfy the rerouting condition, the method further includes:
所述本地修复点节点判断下游路径发生切换。  The local repair point node determines that the downstream path is switched.
优选地, 上述方法还具有下面特点: 所述本地修复点节点判断预置的备 份隧道目的地节点不满足重路由条件的步骤之后, 还包括:  Preferably, the foregoing method further has the following features: after the step of determining, by the local repair point node, that the preset backup tunnel destination node does not satisfy the rerouting condition, the method further includes:
所述本地修复点节点解除原有的重路由关系。  The local repair point node releases the original rerouting relationship.
优选地, 上述方法还具有下面特点: 所述重路由条件为:  Preferably, the foregoing method further has the following features: the rerouting condition is:
下游节点为所述本地修复点节点的下一跳路由器或下下一跳路由器。 优选地, 上述方法还具有下面特点: 所述 RESV消息携带的下游节点信 息通过下面方式实现的: The downstream node is the next hop router or the next next hop router of the local repair point node. Preferably, the foregoing method further has the following features: the downstream node information carried by the RESV message The information is achieved by:
所述 RESV消息携带记录路由对象信息, 所述记录路由对象信息至少包 括下游节点的接口信息。  The RESV message carries record routing object information, and the record routing object information includes at least interface information of the downstream node.
为了解决上述问题, 本发明还提供一种本地修复点节点, 包括: 第一判断模块,设置为接收到资源预留(RESV )消息后,根据所述 RESV 消息携带的下游节点信息判断预置的备份隧道目的地节点是否满足重路由条 件;  In order to solve the above problem, the present invention further provides a local repair point node, including: a first determining module, configured to: after receiving a resource reservation (RESV) message, determine a preset according to the downstream node information carried by the RESV message Whether the backup tunnel destination node meets the rerouting condition;
查找模块,设置为在所述第一判断模块判断不满足重路由条件的情况下, 从所述下游节点信息中查找满足重路由条件的下游节点;  a locating module, configured to: after the first determining module determines that the rerouting condition is not met, search for, from the downstream node information, a downstream node that meets a rerouting condition;
第二判断模块, 设置为在所述查找模块查找到满足所述重路由条件的下 游节点的情况下, 判断查找到的下游节点与本节点之间的隧道路径与主隧道 路径是否重合;  a second judging module, configured to determine, when the search module finds a downstream node that satisfies the rerouting condition, whether the tunnel path between the found downstream node and the local node is coincident with the main tunnel path;
选择模块, 设置为在所述第二判断模块判断不重合的情况下, 选择该下 游节点与本节点之间的隧道路径与主隧道路径形成重路由关系。 优选地, 上述本地修复点节点还具有下面特点: 还包括:  The selection module is configured to select a tunnel path between the downstream node and the local node to form a rerouting relationship with the primary tunnel path if the second determination module determines that the second determination module does not overlap. Preferably, the foregoing local repair point node further has the following features:
第三判断模块, 设置为在接收到所述 RESV消息后, 根据所述 RESV消 息携带的下游节点信息判断下游路径是否发生切换;  The third determining module is configured to: after receiving the RESV message, determine, according to the information of the downstream node that is carried by the RESV message, whether the downstream path is switched;
所述第一判断模块是在所述第三判断模块判断下游路径发生切换的情况 下, 判断所述预置的备份隧道目的地节点是否满足重路由条件的。  The first determining module determines whether the preset backup tunnel destination node satisfies the rerouting condition if the third determining module determines that the downstream path is switched.
优选地, 上述本地修复点节点还具有下面特点: 还包括:  Preferably, the foregoing local repair point node further has the following features:
解除模块, 设置为在所述第一判断模块判断所述预置的备份隧道目的地 节点不满足所述重路由条件的情况下, 解除原有的重路由关系。  And releasing the module, configured to cancel the original rerouting relationship if the first determining module determines that the preset backup tunnel destination node does not satisfy the rerouting condition.
优选地, 上述本地修复点节点还具有下面特点: 所述重路由条件为: 下 游节点为所述本地修复点节点的下一跳路由器或下下一跳路由器。  Preferably, the local repair point node further has the following features: The rerouting condition is: the downstream node is a next hop router or a next next hop router of the local repair point node.
优选地, 上述本地修复点节点还具有下面特点: 所述 RESV消息携带的 下游节点信息通过下面方式实现的:  Preferably, the local repair point node has the following features: The downstream node information carried by the RESV message is implemented in the following manner:
所述 RESV消息携带记录路由对象信息, 所述记录路由对象信息至少包 括下游节点的接口信息。 The RESV message carries record routing object information, and the record routing object information is at least Includes interface information for downstream nodes.
综上, 上述一种重路由的方法和本地修复点节点, 可以改善交叉节点保 护的保护关系, 能够避免相邻两段链路先后出现故障, 引起的隧道保护失效 导致数据业务丟失, 保证连续的两段链路故障, 切换保护能够生效。 附图概述 In summary, the above-mentioned method of rerouting and the local repair point node can improve the protection relationship of the cross-node protection, and can avoid the failure of the adjacent two links, causing the loss of the data service caused by the tunnel protection failure, and ensuring continuous If the two links fail, the switch protection can take effect. BRIEF abstract
图 1是 TE-FRR节点保护的拓朴图;  Figure 1 is a topology diagram of TE-FRR node protection;
图 2是 TE-FRR链路保护的拓朴图;  Figure 2 is a topology diagram of TE-FRR link protection;
图 3是 TE-FRR交叉节点保护的拓朴图;  Figure 3 is a topology diagram of TE-FRR cross node protection;
图 4为本发明实施方式的重路由的方法的流程图;  4 is a flowchart of a method for rerouting according to an embodiment of the present invention;
图 5是本发明实施例应用的 TE-FRR交叉节点保护的拓朴图;  FIG. 5 is a topological diagram of TE-FRR cross node protection applied in an embodiment of the present invention; FIG.
图 6为本发明实施例的重路由的方法的流程图;  6 is a flowchart of a method for rerouting according to an embodiment of the present invention;
图 7为本发明实施例的 PLR节点的示意图。  FIG. 7 is a schematic diagram of a PLR node according to an embodiment of the present invention.
本发明的较佳实施方式 Preferred embodiment of the invention
文中将结合附图对本发明的实施方式进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。  Embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
为了使网络中出现交叉节点保护时, 能够避免相邻两段链路先后出现故 障, 引起的隧道保护失效导致数据业务丟失, 本发明实施方式提供了一种重 路由的方法, 如图 4所示, 包括下面步骤: In order to prevent cross-node protection in the network, the two adjacent links can be prevented from being faulty, and the tunnel protection fails to cause data loss. The embodiment of the present invention provides a rerouting method, as shown in FIG. , including the following steps:
S10、 PLR节点接收到 RESV消息后,若根据所述 RESV消息携带的下游 节点信息判断预置的备份隧道目的地节点不满足重路由条件, 则从所述下游 节点信息中查找满足所述重路由条件的下游节点 ,  S10. After receiving the RESV message, the PLR node determines, according to the downstream node information carried in the RESV message, that the preset backup tunnel destination node does not satisfy the rerouting condition, and searches for the rerouting from the downstream node information. The downstream node of the condition,
S20、 PLR节点若判断查找到的下游节点与本节点之间的隧道路径与主隧 道路径不重合, 则选择该下游节点与本节点之间的隧道路径与主隧道路径形 成重路由关系。 S20. If the PLR node determines that the discovered tunnel path between the downstream node and the local node does not coincide with the primary tunnel path, the tunnel path and the primary tunnel path shape between the downstream node and the local node are selected. Heavy routing relationship.
其中, 所述重路由条件为: 下游节点为所述本地修复点节点的下一跳路 由器或下下一跳路由器。  The rerouting condition is: the downstream node is a next hop router or a next hop router of the local repair point node.
图 5为本发明实施例应用的 TE-FRR交叉节点保护的拓朴图, 在图 5所 示的拓朴图中,主隧道具有 FRR属性,在 RESV消息中都会携带 RRO( Record Route Object, 记录路由对象)信息, 其中, RRO信息包括: 下游节点的接口 信息、 RouterlD (路由标识)信息和标签信息, 其中, 下游节点的接口信息 是必定会携带。 FIG. 5 is a topological diagram of TE-FRR cross-node protection according to an embodiment of the present invention. In the topology diagram shown in FIG. 5, the primary tunnel has an FRR attribute, and the RRO (Record Route Object) is carried in the RESV message. The routing object information, where the RRO information includes: interface information of the downstream node, Router1D (route identifier) information, and label information, where the interface information of the downstream node is necessarily carried.
PLR节点可以通过 RESV消息携带的 RRO信息检查预置的备份隧道目的 地节点是否与本节点满足 NHOP ( Next-hop Router , 下一跳路由器-和 PLR距 离一跳的路由器)或者 Ν ΗΟΡ ( Next-next-hop Router, 下下一条路由器-和 PLR距离两跳的路由器)的关系, 对于不满足的, 解除原有的 FRR关系, 选 择其他满足 NHOP或 N HOP关系的下游节点重新形成新的 FRR关系 ,使得 保护切换能够生效。  The PLR node can check whether the preset backup tunnel destination node meets the NHOP (Next-hop Router, next hop router-and PLR one-hop router) or Ν 通过 by the RRO information carried in the RESV message (Next- Next-hop Router, the relationship between the next router and the router with two hops from the PLR. If it is not satisfied, the original FRR relationship is removed, and other downstream nodes that satisfy the NHOP or N HOP relationship are selected to re-form the new FRR relationship. , so that the protection switch can take effect.
在本实施例中, 在主隧道路径未出现故障的情况下, 当 RESV消息到达 R 1时, RESV消息中的 RRO中携带的子对象有: R4的 fei4/l接口地址、 R4 的 RouterlD地址(可选 ) 、 主隧道路径在 R4上的入标签、 R3的 fei3/2接口 地址、 R3的 RouterlD地址(可选 ) 、 主隧道路径在 R3上的入标签、 R2的 fei2/l接口地址、 R2的 RouterlD地址(可选 ) 、 主隧道路径在 R2上的入标 签。 这样 R1判断预置的备份隧道目的地 R3与 R1形成 N HOP关系, 判断 Backup lspl可以与主隧道路径形成节点保护关系, 即形成 FRR关系。  In this embodiment, in the case that the primary tunnel path does not fail, when the RESV message reaches R1, the sub-objects carried in the RRO in the RESV message are: the fei4/l interface address of R4 and the RouterlD address of R4 ( Optional), the inbound label of the primary tunnel path on R4, the fei3/2 interface address of R3, the RouterlD address of R3 (optional), the incoming label of the primary tunnel path on R3, the fei2/l interface address of R2, R2 RouterlD address (optional), the inbound label of the primary tunnel path on R2. In this way, R1 determines that the preset backup tunnel destination R3 forms an N HOP relationship with R1, and determines that Backup lspl can form a node protection relationship with the primary tunnel path, that is, form an FRR relationship.
当链路 L23故障, R2发生切换, 主隧道路径的信令报文通过链路 L24 转发, R2发生切换之后,到达 R2节点的 RESV消息 RRO中携带的子对象为: R4的 fei4/l接口地址, R4的 RouterlD地址(可选 )、 主隧道路径在 R4上的 入标签。 RESV消息到达 R1时, 携带的 RRO子对象为: R4的 fei4/l接口地 址, R4的 RouterlD地址(可选 )、主隧道路径在 R4上的入标签、 R2的 fei2/l 接口地址、 R2的 RouterlD地址(可选) 、 主隧道路径在 R2上的入标签。 这时 Rl发现备份隧道目的地 R3并不在 RRO信息中, 因此判断备份隧 道的目的地 R3与 R1不满足 NHOP或 N HOP关系, 因此解除相应的 FRR 关系。 R1从新的 RESV消息中发现 R4与 R1是 NNHOP关系, 并且 R1与 R4之间的隧道与主隧道路径满足不重合的条件, 这个时候 Backup lsp3可以 与主隧道路径形成节点保护关系, 所以 Backup lsp3 与主隧道路径形成新的 FRR关系。 When the link L23 is faulty, R2 is switched, and the signaling packet of the primary tunnel path is forwarded through the link L24. After the R2 switchover, the sub-objects carried in the RESV message RRO of the R2 node are: fei4/l interface address of R4 , R4's RouterlD address (optional), and the primary tunnel path's inbound label on R4. When the RESV message arrives at R1, the RRO sub-objects carried are: fei4/l interface address of R4, RouterlD address of R4 (optional), incoming label of R2 on the primary tunnel path, fei2/l interface address of R2, R2 RouterlD address (optional), the inbound label of the primary tunnel path on R2. At this time, R1 finds that the backup tunnel destination R3 is not in the RRO information. Therefore, it is determined that the destinations R3 and R1 of the backup tunnel do not satisfy the NHOP or N HOP relationship, and thus the corresponding FRR relationship is released. R1 finds that R4 and R1 are NNHOP relations from the new RESV message, and the tunnel between R1 and R4 and the primary tunnel path satisfy the non-coincident condition. At this time, Backup lsp3 can form a node protection relationship with the primary tunnel path, so Backup lsp3 and The main tunnel path forms a new FRR relationship.
当链路 L12发生故障, R1发生切换, R2和 R3上的主隧道路径状态都会 老化删除, 主隧道路径的信令在 L14之间转发, 隧道并不会中断, 保证了业 务流量。  When link L12 fails, R1 switches, and the status of the primary tunnel path on R2 and R3 is aged and deleted. The signaling of the primary tunnel is forwarded between L14. The tunnel is not interrupted, ensuring service traffic.
下面结合图 5所示的拓朴图, 详细说明本实施方式的重路由的方法, 如 图 6所示, 包括下面步骤: (请核实下面的流程步骤是否描述准确 )  The method of rerouting according to the present embodiment will be described in detail below with reference to the topology diagram shown in FIG. 5. As shown in FIG. 6, the following steps are included: (Please verify whether the following process steps are accurate)
步骤 101、 R1接收到 RESV消息;  Step 101: R1 receives the RESV message;
步骤 102、 R1判断当前的主隧道路径是否有 FRR的关系, 若有, 则转向 步骤 103; 否则转向步骤 107;  Step 102, R1 determines whether the current primary tunnel path has an FRR relationship, if yes, then proceeds to step 103; otherwise, proceeds to step 107;
根据协议状态, 由于 RSVP是软状态协议, 每个节点都有状态信息, 每 条隧道在某个节点上形成了 FRR关系, 会在状态块中有状态标记。  According to the protocol status, since RSVP is a soft state protocol, each node has state information. Each tunnel forms an FRR relationship on a certain node, and it has a status flag in the status block.
步骤 103、 R1根据接收到的 RESV消息判断下游路径是否发生切换, 若 是, 转向步骤 105; 否则, 转向步骤 104;  Step 103, R1 determines whether the downstream path is switched according to the received RESV message, if yes, go to step 105; otherwise, go to step 104;
步骤 104、 不作处理, 旧的 FRR关系还能够保护;  Step 104: Without processing, the old FRR relationship can be protected;
步骤 105、 R1判断预置的备份隧道的目的地 R3与 R1是否满足 NHOP 或者 NNHOP关系, 若满足, 则转向步骤 104, 不作处理; 否则, 转向步骤 106;  Step 105: R1 determines whether the destination R3 and R1 of the preset backup tunnel meet the NHOP or NNHOP relationship. If yes, the process proceeds to step 104, and no processing is performed; otherwise, the process proceeds to step 106;
步骤 106、 解除原有的 FRR关系, 此时 R1中没有与主隧道路径的 FRR 关系, 转向步骤 102;  Step 106, the original FRR relationship is removed, and there is no FRR relationship with the main tunnel path in R1, and the process proceeds to step 102;
步骤 107、 R1从所述 RESV消息携带的信息中查找是否有与 R1的位置 关系满足 NHOP或者 NNHOP关系的节点, 若有, 则转向步骤 108; 否则, 转向步骤 109;  Step 107: R1 finds from the information carried in the RESV message whether there is a node that has a relationship with R1 that satisfies the NHOP or NNHOP relationship, and if yes, proceeds to step 108; otherwise, proceeds to step 109;
步骤 108、 R1判断本节点与步骤 107查找的节点之间的隧道是否与主隧 道路径重合, 若不重合, 则选择本节点与查找的节点之间的隧道作为备份隧 道, 与主隧道路径形成 FRR关系; 若重合, 则转向步骤 109; Step 108: R1 determines whether the tunnel between the node and the node searched in step 107 is related to the primary tunnel. If the paths are coincident, the tunnel between the node and the searched node is selected as the backup tunnel, and the FRR relationship is formed with the primary tunnel path; if they are coincident, the process proceeds to step 109;
步骤 109、 不能形成保护, 结束。  Step 109. Cannot form protection and end.
本实施方式还提供一种 PLR节点,如图 7所示, 本实施例的 PLR节点包 括: 第一判断模块、 查找模块、 第二判断模块和选择模块, 其中, The embodiment also provides a PLR node. As shown in FIG. 7, the PLR node in this embodiment includes: a first determining module, a searching module, a second determining module, and a selecting module, where
第一判断模块, 设置为接收到 RESV消息后, 根据所述 RESV消息携带 的下游节点信息判断预置的备份隧道目的地节点是否满足重路由条件;  The first determining module is configured to: after receiving the RESV message, determine, according to the downstream node information carried in the RESV message, whether the preset backup tunnel destination node satisfies the rerouting condition;
查找模块,设置为在所述第一判断模块判断不满足重路由条件的情况下, 从所述下游节点信息中查找满足重路由条件的下游节点;  a locating module, configured to: after the first determining module determines that the rerouting condition is not met, search for, from the downstream node information, a downstream node that meets a rerouting condition;
第二判断模块, 设置为在所述查找模块查找到满足所述重路由条件的下 游节点的情况下, 判断查找到的下游节点与本节点之间的隧道路径与主隧道 路径是否重合;  a second judging module, configured to determine, when the search module finds a downstream node that satisfies the rerouting condition, whether the tunnel path between the found downstream node and the local node is coincident with the main tunnel path;
选择模块, 设置为在所述第二判断模块判断不重合的情况下, 选择该下 游节点与本节点之间的隧道路径与主隧道路径形成重路由关系。  The selection module is configured to select a tunnel path between the downstream node and the local node to form a rerouting relationship with the primary tunnel path if the second determination module determines that the second determination module does not overlap.
在一优选实施例中, PLR节点还可以包括: 第三判断模块, 设置为在接 收到 RESV消息后, 根据所述 RESV消息携带的下游节点信息判断下游路径 是否发生切换。 在该实施例中, 所述第一判断模块是在所述第三判断模块判 断下游路径发生切换的情况下, 判断所述预置的备份隧道目的地节点是否满 足重路由条件的。  In a preferred embodiment, the PLR node may further include: a third determining module, configured to determine, according to the downstream node information carried in the RESV message, whether the downstream path is switched after receiving the RESV message. In this embodiment, the first determining module determines whether the preset backup tunnel destination node satisfies the rerouting condition if the third determining module determines that the downstream path is switched.
在一优选实施例中, PLR节点还可以包括: 解除模块, 设置为在所述第 一判断模块判断所述预置的备份隧道目的地节点不满足所述重路由条件的情 况下, 解除原有的重路由关系。  In a preferred embodiment, the PLR node may further include: a releasing module, configured to: after the first determining module determines that the preset backup tunnel destination node does not satisfy the rerouting condition, cancel the original Rerouting relationship.
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 One of ordinary skill in the art will appreciate that all or a portion of the above steps may be performed by a program to instruct the associated hardware, such as a read only memory, a magnetic disk, or an optical disk. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module/unit in the above embodiment can be used The form of hardware implementation can also be implemented in the form of software function modules. The invention is not limited to any specific form of combination of hardware and software.
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明实施方式作出各种相应的改变和变形, 但这些相应的改变和变形都应属 于本发明所附的权利要求的保护范围。 The above is only a preferred embodiment of the present invention, and of course, the present invention may be embodied in various other embodiments without departing from the spirit and scope of the invention. Various changes and modifications may be made without departing from the scope of the appended claims.
工业实用性 上述技术方案提供一种重路由的方法和本地修复点节点, 以改善交叉节 点保护的保护关系, 保证连续的两段链路故障, 切换保护能够生效, 能够避 免相邻两段链路先后出现故障, 引起的隧道保护失效导致数据业务丟失。 INDUSTRIAL APPLICABILITY The above technical solution provides a rerouting method and a local repair point node to improve the protection relationship of the cross node protection, ensure continuous two-stage link failure, and the switching protection can take effect, and the adjacent two links can be avoided. The failure of the tunnel protection caused by the failure of the tunnel protection resulted in the loss of data services.

Claims

权 利 要 求 书 Claim
1、 一种重路由的方法, 包括:  1. A method for rerouting, comprising:
本地修复点节点接收到资源预留(RESV )消息后, 若根据所述 RESV消 息携带的下游节点信息判断预置的备份隧道目的地节点不满足重路由条件, 则从所述下游节点信息中查找满足所述重路由条件的下游节点, 若判断查找 到的下游节点与本节点之间的隧道路径与主隧道路径不重合, 则选择该下游 节点与本节点之间的隧道路径与主隧道路径形成重路由关系。  After receiving the resource reservation (RESV) message, the local repair point node determines, according to the downstream node information carried in the RESV message, that the preset backup tunnel destination node does not satisfy the rerouting condition, and searches for the downstream node information. If the downstream node that meets the rerouting condition determines that the tunnel path between the found downstream node and the local node does not coincide with the primary tunnel path, the tunnel path between the downstream node and the local node is selected to form a tunnel path with the primary tunnel path. Rerouting relationship.
2、 如权利要求 1所述的方法, 其中: 在所述本地修复点节点判断预置的 备份隧道目的地节点不满足重路由条件的步骤之前, 所述方法还包括:  2. The method of claim 1, wherein: the method further comprises: before the step of the local repair point node determining that the preset backup tunnel destination node does not satisfy the rerouting condition, the method further comprising:
所述本地修复点节点判断下游路径发生切换。  The local repair point node determines that the downstream path is switched.
3、 如权利要求 1所述的方法, 其中: 在所述本地修复点节点判断预置的 备份隧道目的地节点不满足重路由条件的步骤之后, 所述方法还包括:  The method of claim 1, wherein: after the step of the local repair point node determining that the preset backup tunnel destination node does not satisfy the rerouting condition, the method further includes:
所述本地修复点节点解除原有的重路由关系。  The local repair point node releases the original rerouting relationship.
4、 如权利要求 1-3任一项所述的方法, 其中: 所述重路由条件为: 下游节点为所述本地修复点节点的下一跳路由器或下下一跳路由器。 4. The method according to any one of claims 1-3, wherein: the rerouting condition is: the downstream node is a next hop router or a next next hop router of the local repair point node.
5、 如权利要求 1所述的方法, 其中: 所述 RESV消息携带的下游节点信 息为所述 RESV消息携带的记录路由对象信息, 所述记录路由对象信息至少 包括下游节点的接口信息。 The method of claim 1, wherein: the downstream node information carried by the RESV message is record routing object information carried by the RESV message, and the record routing object information includes at least interface information of the downstream node.
6、 一种本地修复点节点, 包括:  6. A local repair point node, including:
第一判断模块, 其设置为: 接收到资源预留(RESV )消息后, 根据所述 a first determining module, configured to: after receiving a resource reservation (RESV) message, according to the
RESV 消息携带的下游节点信息判断预置的备份隧道目的地节点是否满足重 路由条件; The downstream node information carried in the RESV message determines whether the preset backup tunnel destination node satisfies the rerouting condition;
查找模块, 其设置为: 在所述第一判断模块判断不满足重路由条件的情 况下 , 从所述下游节点信息中查找满足重路由条件的下游节点;  a locating module, configured to: search for a downstream node that satisfies a rerouting condition from the downstream node information if the first determining module determines that the rerouting condition is not met;
第二判断模块, 其设置为: 在所述查找模块查找到满足所述重路由条件 的下游节点的情况下, 判断查找到的下游节点与本节点之间的隧道路径与主 隧道路径是否重合; 以及 选择模块, 其设置为: 在所述第二判断模块判断不重合的情况下, 选择 该下游节点与本节点之间的隧道路径与主隧道路径形成重路由关系。 a second judging module, configured to: if the searching module finds a downstream node that satisfies the rerouting condition, determine whether the tunnel path between the found downstream node and the local node is coincident with the main tunnel path; as well as And a selection module, configured to: when the second judging module determines that the coincidence is not coincident, the tunnel path between the downstream node and the local node is selected to form a rerouting relationship with the main tunnel path.
7、 如权利要求 6所述的本地修复点节点, 其还包括:  7. The local repair point node of claim 6, further comprising:
第三判断模块,其设置为: 在接收到所述 RES V消息后,根据所述 RESV 消息携带的下游节点信息判断下游路径是否发生切换;  a third determining module, configured to: determine, according to the downstream node information carried in the RESV message, whether the downstream path is switched after receiving the RES V message;
所述第一判断模块是设置为: 在所述第三判断模块判断下游路径发生切 换的情况下, 判断所述预置的备份隧道目的地节点是否满足重路由条件。  The first determining module is configured to: determine, in the case that the third determining module determines that the downstream path is switched, whether the preset backup tunnel destination node satisfies the rerouting condition.
8、 如权利要求 6所述的本地修复点节点, 其还包括:  8. The local repair point node of claim 6, further comprising:
解除模块, 其设置为: 在所述第一判断模块判断所述预置的备份隧道目 的地节点不满足所述重路由条件的情况下, 解除原有的重路由关系。  And the releasing module is configured to: when the first determining module determines that the preset grounding node of the backup tunnel does not satisfy the rerouting condition, cancel the original rerouting relationship.
9、 如权利要求 6-8任一项所述的本地修复点节点, 其中: 所述重路由条 件为:  9. The local repair point node according to any one of claims 6-8, wherein: the rerouting condition is:
下游节点为所述本地修复点节点的下一跳路由器或下下一跳路由器。 The downstream node is the next hop router or the next next hop router of the local repair point node.
10、 如权利要求 6所述的本地修复点节点, 其中: 所述 RESV消息携带 的下游节点信息为所述 RESV消息携带的记录路由对象信息, 所述记录路由 对象信息至少包括下游节点的接口信息。 The local repair point node according to claim 6, wherein: the downstream node information carried by the RESV message is record routing object information carried by the RESV message, and the record routing object information includes at least interface information of a downstream node. .
PCT/CN2011/081175 2011-02-17 2011-10-24 Rerouting method and point of local repair node WO2012109912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110039874.4 2011-02-17
CN201110039874.4A CN102158397B (en) 2011-02-17 2011-02-17 A kind of method of heavy-route and a local reparation point node

Publications (1)

Publication Number Publication Date
WO2012109912A1 true WO2012109912A1 (en) 2012-08-23

Family

ID=44439594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081175 WO2012109912A1 (en) 2011-02-17 2011-10-24 Rerouting method and point of local repair node

Country Status (2)

Country Link
CN (1) CN102158397B (en)
WO (1) WO2012109912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149358A1 (en) * 2014-04-04 2015-10-08 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for establishing a repair path

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158397B (en) * 2011-02-17 2016-06-29 中兴通讯股份有限公司 A kind of method of heavy-route and a local reparation point node
CN102281200B (en) * 2011-08-24 2014-03-12 华为技术有限公司 Method for selecting current backup route and router
CN104702501B (en) * 2013-12-05 2019-02-15 中兴通讯股份有限公司 A kind of method and device improving TE FRR protection reliability
CN104168192A (en) * 2014-08-08 2014-11-26 北京邮电大学 Rerouting method and device in fault network
CN107438026A (en) * 2016-05-27 2017-12-05 任子行网络技术股份有限公司 The failure recovery method and apparatus of inter-domain routing system
CN107786385B (en) * 2016-08-31 2020-10-09 中国电信股份有限公司 Method and device for detecting rerouting capability of Label Switched Path (LSP) tunnel of equipment
US10476811B2 (en) * 2017-03-10 2019-11-12 Juniper Networks, Inc Apparatus, system, and method for providing node protection across label-switched paths that share labels
CN109510768B (en) 2017-09-14 2021-02-12 华为技术有限公司 Method, device and system for transmitting Link State Advertisement (LSA)
CN110086712B (en) * 2019-05-13 2021-04-23 何梓菁 SR-TE tunnel-based link protection method and local repair node
CN110336743B (en) * 2019-06-27 2021-12-14 烽火通信科技股份有限公司 Merging method and system for protection tunnel
CN110177044B (en) * 2019-06-27 2021-08-24 烽火通信科技股份有限公司 Method and system for creating protection tunnel
CN114268579B (en) * 2021-12-20 2023-03-24 烽火通信科技股份有限公司 Method, device and computer storage medium for fast rerouting tunnel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008882A1 (en) * 2005-07-06 2007-01-11 Oran David R Method and apparatus for network-based admission control using path-coupled quality of service signaling
CN101431466A (en) * 2007-11-09 2009-05-13 华为技术有限公司 Fast rerouting method and label exchange router
CN101753342A (en) * 2008-12-02 2010-06-23 华为技术有限公司 Operation protection method, node and system
CN102158397A (en) * 2011-02-17 2011-08-17 中兴通讯股份有限公司 Re-route method and point local repair (PLR) node

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782762B2 (en) * 2007-09-21 2010-08-24 Alcatel Lucent RSVP-TE enhancement for MPLS-FRR bandwidth optimization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008882A1 (en) * 2005-07-06 2007-01-11 Oran David R Method and apparatus for network-based admission control using path-coupled quality of service signaling
CN101431466A (en) * 2007-11-09 2009-05-13 华为技术有限公司 Fast rerouting method and label exchange router
CN101753342A (en) * 2008-12-02 2010-06-23 华为技术有限公司 Operation protection method, node and system
CN102158397A (en) * 2011-02-17 2011-08-17 中兴通讯股份有限公司 Re-route method and point local repair (PLR) node

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149358A1 (en) * 2014-04-04 2015-10-08 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for establishing a repair path
US10075367B2 (en) 2014-04-04 2018-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for establishing a repair path
US10326692B2 (en) 2014-04-04 2019-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for establishing a repair path

Also Published As

Publication number Publication date
CN102158397B (en) 2016-06-29
CN102158397A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2012109912A1 (en) Rerouting method and point of local repair node
US9350639B2 (en) Forwarding data in a data communications network
KR100693052B1 (en) Apparatus and method of fast reroute for mpls multicast
US7697417B2 (en) Methods and devices for re-routing MPLS traffic
EP2071768B1 (en) A method for implementing the multicast fast-reroute and a node
US7983153B2 (en) Fast reroute (FRR) protection at the edge of a RFC 2547 network
US6987727B2 (en) Automatic protection switching using link-level redundancy supporting multi-protocol label switching
KR102055714B1 (en) Mpls fast re-route using ldp (ldp-frr)
JP5420547B2 (en) RSVP-TE enhancement for MPLS-FRR bandwidth optimization
US10439880B2 (en) Loop-free convergence in communication networks
CN103210626A (en) Method, apparatus and system for generating label forwarding table in ring topology
WO2006017982A1 (en) A rerouting method in the multi-protocol label switch network
WO2020186803A1 (en) Fault protection method, node, and storage medium
WO2012079375A1 (en) Method and system for link protection in a virtual private network
CN112511418A (en) Message indicating method, device, equipment and storage medium
WO2012037820A1 (en) Multi-protocol label switch system, node device and method for establishing bidirectional tunnel
US11546252B2 (en) Fast flooding topology protection
WO2013040930A1 (en) Intermediate node protection method and device for multicast label switched path
WO2016123904A1 (en) Routing convergence method, device and virtual private network system
WO2008064612A1 (en) A method and device and system for performing fast rerouting in a mpls network
US20100020679A1 (en) Core Router Capable of Securing the Output Router of an Autonomous System
US20040125745A9 (en) Two-stage reconnect system and method
WO2011147298A1 (en) Method and apparatus for resetting layer 3 virtual private network routes
WO2016101492A1 (en) Setting method and device for service forwarding table
CN110677346A (en) Method and device for realizing rapid LSP convergence in IPRAN system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858544

Country of ref document: EP

Kind code of ref document: A1