WO2011105141A1 - Organic electroluminescent component and method of manufacturing same - Google Patents

Organic electroluminescent component and method of manufacturing same Download PDF

Info

Publication number
WO2011105141A1
WO2011105141A1 PCT/JP2011/051079 JP2011051079W WO2011105141A1 WO 2011105141 A1 WO2011105141 A1 WO 2011105141A1 JP 2011051079 W JP2011051079 W JP 2011051079W WO 2011105141 A1 WO2011105141 A1 WO 2011105141A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
layer
flexible
silver
Prior art date
Application number
PCT/JP2011/051079
Other languages
French (fr)
Japanese (ja)
Inventor
雄史 小野
邦雅 檜山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012501703A priority Critical patent/JP5960047B2/en
Publication of WO2011105141A1 publication Critical patent/WO2011105141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers

Definitions

  • the present invention relates to an organic electroluminescence device and a method for producing the same, and more specifically, a flexible organic electroluminescence device having high luminous efficiency, long life, excellent storage stability at high temperature, and excellent driving stability during bending, and It relates to the manufacturing method.
  • EL devices electroluminescent devices
  • inorganic electroluminescent elements hereinafter referred to as “inorganic EL elements”
  • organic electroluminescent elements hereinafter referred to as “organic EL elements”
  • the inorganic EL element generally applies a high electric field to the light emitting portion, accelerates electrons in the high electric field to collide with the light emission center, thereby exciting the light emission center to emit light.
  • the organic EL element injects electrons and holes from the electron injection electrode and the hole injection electrode, respectively, into the light emitting layer, and combines the injected electrons and holes in the light emitting layer.
  • Light is emitted when the organic material returns to the ground state from the excited state in the excited state, and there is an advantage that it can be driven at a lower voltage than the inorganic EL element. Taking advantage of the fact that it emits light on its surface, it is expected as a thin display and lighting application. In particular, development of flexible organic EL elements suitable for mass production is expected.
  • Organic EL elements are weak against moisture and oxygen and are generally sealed for the purpose of preventing them from moisture and oxygen. Sealing is classified into casing type sealing (can sealing) and close contact type sealing (solid sealing), but solid sealing is preferable from the viewpoint of thinning. Moreover, when producing a flexible organic EL element, since sealing is also required for the sealing member, solid sealing is preferable.
  • Solid sealing is gaining sufficient sealing performance due to technological advances.
  • can sealing makes it easy to put a desiccant
  • solid sealing makes it difficult.
  • the actual situation is that the influence of moisture is greater than that in can sealing.
  • the difference in sealing performance becomes large during high temperature storage or high temperature high humidity storage.
  • the reflectivity of the reflective electrode is better.
  • a light extraction member such as a light diffusion sheet or a microlens sheet
  • the reflectance of the reflective electrode is high, it is effective for improving the light emission efficiency.
  • a common reflective electrode is aluminum.
  • Silver is an example of a higher reflectivity material than aluminum, but silver is known to be largely affected by deterioration factors such as water, oxygen, or heat and lack stability. In particular, ion migration may occur due to moisture, and silver may diffuse into the organic layer, resulting in a short circuit. Therefore, an organic EL element using silver instead of aluminum is required to have a high level of sealing performance.
  • Patent Document 1 describes that when an active metal such as moisture or oxygen is used as an electrode material, a cap layer that protects the metal is laminated. However, when a flexible substrate is used, driving when bending is performed. It was found that the stability was low.
  • the present invention has been made in view of the above problems, and its purpose is to provide a flexible organic electroluminescence device having high luminous efficiency, long life, excellent high-temperature storage stability, and excellent driving stability during bending. Is to provide.
  • organic electroluminescence element having a first electrode, an organic compound layer including at least one light emitting layer made of an organic compound, a second electrode, and a flexible sealing member in this order on a flexible support substrate, An organic electroluminescence element having a heat conductive layer and a sealing adhesive in this order between two electrodes and the flexible sealing member and sealed tightly, wherein the second electrode is made of silver or silver
  • organic electroluminescence element characterized by being a silver alloy having a main component.
  • the organic electroluminescent element which has a 1st electrode, the organic compound layer which contains at least 1 light emitting layer which consists of an organic compound, a 2nd electrode, and the flexible sealing member in this order on a flexible support substrate.
  • the organic electroluminescence device is disposed between the second electrode and the flexible sealing member in this order, and a heat conductive layer and a sealing adhesive are arranged in this order, and the sealing adhesive is used for tightly sealing.
  • the said 2nd electrode is silver or the silver alloy which has silver as a main component, The manufacturing method of the organic electroluminescent element characterized by the above-mentioned.
  • FIG. 1 A cross-sectional schematic diagram showing a configuration of an organic electroluminescence element having a first electrode, an organic compound layer, a second electrode, a heat conductive layer, a sealing adhesive, and a flexible sealing member in this order on a flexible support substrate.
  • FIG. 1 A cross-sectional schematic diagram showing a configuration of an organic electroluminescence element having a first electrode, an organic compound layer, a second electrode, a heat conductive layer, a sealing adhesive, and a flexible sealing member in this order on a flexible support substrate.
  • the present inventors have made a second electrode.
  • a heat conductive layer and a sealing adhesive between the flexible sealing member and the flexible sealing member it is possible to improve luminous efficiency using silver or silver alloy electrodes while satisfying high temperature storage stability and driving stability.
  • the inventors have found out that the present invention can be achieved.
  • a heat conductive layer having a high thermal conductivity is laminated on the second electrode, and heat dissipation is promoted, so that the temperature rise of the organic EL element is alleviated and silver diffusion is suppressed. Further, the diffusion of silver is suppressed by the heat conduction layer mitigating the influence of the residual moisture of the sealing adhesive. Furthermore, it has been found that the driving stability at the time of bending is improved by adopting this configuration.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL device of the present invention.
  • the organic EL device of the present invention includes a first electrode 2, an organic compound layer 3 including at least one light emitting layer made of an organic compound, a second electrode 4, a heat conductive layer 5, a sealing, on a flexible support substrate 1. Adhesive 6 and flexible sealing member 7 in this order.
  • the flexible support substrate according to the present invention is not particularly limited as long as it has flexibility, and it may be transparent or opaque.
  • the opaque flexible support substrate examples include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.
  • the substrate When extracting light from the flexible support substrate side, the substrate is preferably transparent.
  • the transparent substrate preferably used include flexible thin film glass and transparent resin film.
  • a particularly preferred substrate is a resin film.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, cycloolefin resin such as Arton (manufactured by JSR) or
  • an inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film.
  • Water vapor permeability 25 ⁇ 0.5 ° C., measured by a method according to JIS K 7129-1992
  • the relative humidity (90 ⁇ 2)% RH) is a barrier film of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and further measured by a method according to JIS K 7126-1987.
  • the oxygen permeability is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 ⁇ 10 ⁇
  • a high barrier film of 3 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film formed on the surface of the resin film may be any material that has a function of suppressing intrusion of water or oxygen that causes panel deterioration. Silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • first electrode an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material capable of forming a transparent conductive film such as IDIXO (In 2 O 3 —ZnO) may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (100 ⁇ m As described above, a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the sheet resistance as the first electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • Organic compound layer in the present invention has a configuration in which functional layers made of various organic compounds, such as a hole injection / transport layer / light emitting layer / electron injection / transport layer, are laminated as necessary. Most simply, it has a structure consisting only of a light emitting layer.
  • Examples of organic compound materials used for the hole injection / transport layer include phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like.
  • a polymer material such as a conductive polymer is used.
  • Examples of the light emitting material or host compound used for the light emitting layer include carbazole-based materials such as 4,4′-dicarbazolylbiphenyl and 1,3-dicarbazolylbenzene, (di) azacarbazoles, Examples thereof include low molecular materials typified by pyrene-based materials such as 1,3,5-tripyrenylbenzene, and polymer materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like. Among these, a low molecular weight material having a molecular weight of 10,000 or less is preferably used as the light emitting material or the host compound.
  • the light emitting layer may contain about 0.1 to 20% by mass of a dopant compound.
  • the dopant compound include known fluorescent dyes such as perylene derivatives and pyrene derivatives, and phosphorescent dyes such as tris ( Complex compounds such as ortho-metalated iridium complexes represented by 2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. Can be mentioned.
  • Electrode injection / transport layer Examples of the electron injecting / transporting layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinato) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • each functional layer As the organic compound material used for these light emitting layers and each functional layer, a material having a polymerization reactive group such as a vinyl group in the molecule is used, and a cross-linked / polymerized film is formed after film formation to form each functional layer. May be.
  • an injection layer may be formed between the electrode and the organic layer in order to reduce the drive voltage and improve the light emission luminance as necessary.
  • the injection layer includes a hole injection layer (anode buffer layer) and a cathode buffer layer (electron injection layer).
  • phthalocyanine buffer layer typified by copper phthalocyanine
  • oxide buffer layer typified by vanadium oxide
  • amorphous carbon buffer layer typified by vanadium oxide
  • polyaniline (emeraldine) polythiophene, etc.
  • examples thereof include a polymer buffer layer using molecules.
  • the cathode buffer layer is a metal buffer layer typified by strontium, aluminum, calcium or magnesium, an alkali metal compound buffer layer typified by lithium fluoride, or an alkaline earth metal typified by magnesium fluoride. Examples thereof include a compound buffer layer and an oxide buffer layer typified by aluminum oxide.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 to 5 nm, depending on the material.
  • the injection layer may be a single layer or a plurality of layers.
  • the injection layer adjacent to the second electrode is preferably a metal buffer layer, more preferably calcium or magnesium, and still more preferably calcium.
  • each functional layer may be formed by a vacuum method, a dry method such as a sputtering method, or may be formed by a wet method such as a coating method or a printing method.
  • the second electrode in the present invention is silver or a silver alloy containing silver as a main component, preferably silver or a silver alloy having a silver content of 90 atomic percent or more, and a silver content of 95 atomic percent or more. More preferably, it is an alloy.
  • the second electrode can be formed by a method such as vapor deposition or sputtering.
  • the heat conductive layer in the present invention is a layer having a heat conductivity larger than that of the sealing adhesive, preferably the heat conductivity is 1 W / (m ⁇ K) or more, more preferably 10 W / ( m ⁇ K) or more, more preferably 100 W / (m ⁇ K) or more.
  • the thermal conductivity of the heat conductive layer in the present invention is preferably 100 W / (m ⁇ K) or more higher than the heat conductivity of the sealing adhesive.
  • the material used for the heat conductive layer according to the present invention is a material containing a metal such as metal, metal oxide, or metal oxide, but is preferably a metal such as aluminum, copper, or gold, more preferably Aluminum.
  • the thickness of the heat conductive layer according to the present invention is 20 nm to 50 ⁇ m, preferably 50 nm to 1 ⁇ m, more preferably 100 nm to 500 nm.
  • the heat conductive layer according to the present invention may be a single layer or a multilayer structure of two or more layers.
  • the second electrode can be formed by a method such as vapor deposition or sputtering.
  • thermosetting adhesive an ultraviolet curable resin, or the like
  • a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
  • the water content of the sealing adhesive according to the present invention is preferably from 0.01 to 300 ppm, more preferably from 0.01 to 200 ppm, and most preferably from 0.01 to 100 ppm.
  • the moisture content may be measured by any method.
  • a volumetric moisture meter Karl Fischer
  • an infrared moisture meter a microwave transmission moisture meter
  • a heat-dry weight method e.g., a GC / MS, IR, DSC (Differential scanning calorimeter) and TDS (temperature programmed desorption analysis).
  • a precision moisture meter AVM-3000 manufactured by Omnitech or the like, moisture can be measured from a pressure increase caused by evaporation of moisture, and moisture content of a film or solid film can be measured.
  • the water content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 1 ppm or lower and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on a flexible sealing member and dried.
  • the flexible sealing member examples include stainless steel, aluminum, magnesium alloy and other metals, polyethylene terephthalate, polycarbonate, polystyrene, nylon, polyvinyl chloride, and the like, and composites thereof, glass and the like.
  • gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride as in the case of the flexible support substrate.
  • the gas barrier layer can be formed by sputtering, vapor deposition or the like on both sides or one side of the flexible sealing member before molding the flexible sealing member, or after sealing, the gas barrier layer can be formed on the both sides or one side of the sealing member by the same method. May be formed.
  • the oxygen permeability is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 ⁇ It is preferably 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the flexible sealing member may be a film laminated with a metal foil such as aluminum.
  • a method for laminating the polymer film on one side of the metal foil a generally used laminating machine can be used.
  • the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the metal foil is formed by sputtering or vapor deposition, or is formed from a fluid electrode material such as a conductive paste
  • the polymer foil is used as a base material and the metal foil is formed on the substrate. May be.
  • the flexible sealing member for example, a 50 ⁇ m thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 ⁇ m thick) is used. Using this as a flexible sealing member, it is uniformly applied to the aluminum surface using a dispenser, a sealing adhesive is placed in advance, the resin substrate 1 and the sealing member 5 are aligned, and then both are crimped together. (0.1 to 3 MPa), tightly bonded and bonded (adhered) at a temperature of 80 to 180 ° C., and tightly sealed (solid sealed).
  • Heating or pressure bonding time varies depending on the type, amount, and area of the sealing adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and the heat curing time is 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Select within the range.
  • a heated pressure-bonding roll because pressure bonding (temporary bonding) and heating can be performed simultaneously, and internal voids can be eliminated at the same time.
  • a dispenser a coating method such as roll coating, spin coating, screen printing method, spray coating, or the like can be used depending on the material.
  • Solid sealing is a form of covering with a cured resin with no space between the flexible sealing member and the organic EL element substrate as described above.
  • Light extraction member In the present invention, it is preferable to have a light extraction member between the flexible support substrate and the second electrode or on the opposite side of the flexible support substrate from the first electrode.
  • Examples of the light extraction member used in the present invention include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface that causes total reflection or any medium may be used.
  • an organic EL device that emits light from a flexible support substrate
  • a part of the light emitted from the light emitting layer causes total reflection at the interface between the flexible support substrate and air, and light is lost.
  • the surface of the flexible support substrate is processed into a prism or lens shape, or the prism sheet, the lens sheet, and the diffusion sheet are pasted on the surface of the flexible support substrate, whereby total reflection is achieved. To improve the light extraction efficiency.
  • a flexible film flexible support substrate
  • a polyethylene naphthalate film a film made by Teijin DuPont Co., Ltd., hereinafter abbreviated as PEN
  • PEN polyethylene naphthalate film
  • an inorganic gas barrier film made of SiOx is continuously formed on a flexible film so as to have a thickness of 500 nm, and an oxygen permeability of 0.001 ml / (m 2 ⁇ day) or less, to produce a water vapor permeability of 0.001 g / (m 2 ⁇ day) or less of the gas barrier of the flexible film.
  • first electrode layer A 120 nm thick ITO (indium tin oxide) film was formed by sputtering on the prepared gas barrier flexible film, and patterned by photolithography to form a first electrode layer. The pattern was such that the light emitting area was 50 mm 2 .
  • the following light emitting layer coating solution was formed by spin coating at 2000 rpm for 30 seconds, and then dried at 120 ° C. for 30 minutes to provide a light emitting layer having a thickness of 40 nm.
  • the following electron transport layer coating solution was formed by spin coating at 2000 rpm for 30 seconds, and then dried at 120 ° C. for 30 minutes. An electron transport layer having a thickness of 35 nm was provided.
  • an electron injection layer was formed on the formed electron transport layer.
  • the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • potassium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber and laminated to a thickness of 2 nm.
  • 1 nm of calcium prepared in advance in a tantalum vapor deposition boat was laminated in a vacuum chamber to form an electron injection layer.
  • a polyethylene terephthalate (PET) film (12 ⁇ m thickness) is bonded to a flexible aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) with a thickness of 30 ⁇ m (two-component reactive type). (Urethane type adhesive)) (adhesive layer thickness 1.5 ⁇ m) was used.
  • thermosetting adhesive as a sealing adhesive was uniformly applied to the aluminum surface with a thickness of 20 ⁇ m along the adhesive surface (shiny surface) of the aluminum foil using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, it moved to a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, dried for 12 hours or longer, and adjusted the water content of the sealing adhesive to 100 ppm or lower.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
  • A Bisphenol A diglycidyl ether (DGEBA)
  • B Dicyandiamide (DICY)
  • C Epoxy adduct-based curing accelerator
  • the organic EL element 3 of the present invention was produced in the same manner except that the conditions for drying the sealing adhesive applied to the flexible sealing member were changed as follows. The drying was carried out in a nitrogen atmosphere having a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, and dried for about 4 hours, so that the moisture content of the sealing adhesive was adjusted to 200 to 300 ppm.
  • the organic EL element 4 of the present invention was produced in the same manner except that the electron injection layer was formed to be 2 nm of potassium fluoride and then formed to be 1 nm of magnesium.
  • the organic EL element 5 of the comparative example was produced in the same manner except that the second electrode was aluminum and the heat conductive layer was not provided.
  • the second electrode is a silver alloy formed by co-evaporation so that silver is 97.4 atomic%, palladium is 0.91 atomic%, and copper is 1.69 atomic%.
  • the organic EL element 7 of the comparative example was produced in the same manner except that the heat conductive layer was not provided.
  • the organic EL device was stored at 85 ° C. for 300 hours, and the rectification ratio was similarly evaluated.
  • Black spot generation rate of 1% or more and less than 5%
  • Black spot generation rate of 5% or more and less than 10%
  • X Black spot generation rate of 10% or more
  • Table 1 shows the evaluation results.
  • the organic EL element was wound around a cylinder with a radius of 5 cm, and continuously driven for 300 hours in a bent state, and the rectification ratio and black spot were compared with those before continuous driving by the above method.
  • the driving condition was set to a current value of 4000 cd / m 2 at the start of continuous driving.
  • the residual luminance was expressed as a relative value with the organic EL element 5 as 100.
  • Table 2 shows the evaluation results.
  • the organic EL of the present invention has a higher external extraction quantum efficiency than that of the comparative example, a long lifetime, excellent high-temperature storage stability, and excellent driving stability during bending.

Abstract

Disclosed is a flexible organic electroluminescent component with high luminous efficiency, long life and high-temperature storage stability as well as excellent operational stability when folded. The organic electroluminescent component is comprised of a first electrode, an organic compound layer containing at least one layer of light-emitting layer composed of organic compounds, a second electrode, and a flexible sealing member, disposed above a flexible supporting substrate in that order. The organic electroluminescent component is adhesively sealed and possesses a thermally conductive layer and a sealing adhesive disposed in that order between the second electrode and the flexible sealing member. The second electrode is silver or a silver alloy where silver is the principal constituent.

Description

有機エレクトロルミネッセンス素子及びその製造方法Organic electroluminescence device and method for manufacturing the same
 本発明は、有機エレクトロルミネッセンス素子及びその製造方法に関し、詳しくは、発光効率が高く、長寿命で、高温保存性に優れ、かつ折り曲げ時の駆動安定性に優れる可撓性の有機エレクトロルミネッセンス素子及びその製造方法に関する。 The present invention relates to an organic electroluminescence device and a method for producing the same, and more specifically, a flexible organic electroluminescence device having high luminous efficiency, long life, excellent storage stability at high temperature, and excellent driving stability during bending, and It relates to the manufacturing method.
 消費電力が少なく、容積が小さい面発光素子のニーズが高まり、このような面発光素子の一つとしてエレクトロルミネッセンス素子(以下、「EL素子」と略す。)が注目されている。そして、このようなEL素子は使用する材料によって無機エレクトロルミネッセンス素子(以下、「無機EL素子」)と有機エレクトロルミネッセンス素子(以下、「有機EL素子」)とに大別される。 Demand for surface light emitting devices with low power consumption and small volume has increased, and electroluminescent devices (hereinafter abbreviated as “EL devices”) are attracting attention as one of such surface light emitting devices. Such EL elements are roughly classified into inorganic electroluminescent elements (hereinafter referred to as “inorganic EL elements”) and organic electroluminescent elements (hereinafter referred to as “organic EL elements”) depending on the materials used.
 ここで、無機EL素子は一般に発光部に高電界を作用させ、電子をこの高電界中で加速して発光中心に衝突させ、これにより発光中心を励起させて発光させるようになっている。一方、有機EL素子は電子注入電極とホール注入電極とからそれぞれ電子とホールとを発光層内に注入し、このように注入された電子とホールとを発光層内で結合させて、有機材料を励起状態にし、この有機材料が励起状態から基底状態に戻るときに発光するようになっており、無機EL素子に比べて、低い電圧で駆動できるという利点がある。面で発光するという利点を活かして、薄型のディスプレイや照明用途として期待されている。特に、大量生産に適している可撓性の有機EL素子への展開が期待されている。 Here, the inorganic EL element generally applies a high electric field to the light emitting portion, accelerates electrons in the high electric field to collide with the light emission center, thereby exciting the light emission center to emit light. On the other hand, the organic EL element injects electrons and holes from the electron injection electrode and the hole injection electrode, respectively, into the light emitting layer, and combines the injected electrons and holes in the light emitting layer. Light is emitted when the organic material returns to the ground state from the excited state in the excited state, and there is an advantage that it can be driven at a lower voltage than the inorganic EL element. Taking advantage of the fact that it emits light on its surface, it is expected as a thin display and lighting application. In particular, development of flexible organic EL elements suitable for mass production is expected.
 有機EL素子は、水分・酸素に弱く、水分・酸素等から防ぐ目的で封止が一般的に行われている。封止にはケーシングタイプの封止(缶封止)と密着タイプの封止(固体封止)に分けられるが、薄型化の観点から固体封止が好ましい。また、可撓性有機EL素子を作製する場合は、封止部材にも可撓性が求められるため固体封止が好ましい。 Organic EL elements are weak against moisture and oxygen and are generally sealed for the purpose of preventing them from moisture and oxygen. Sealing is classified into casing type sealing (can sealing) and close contact type sealing (solid sealing), but solid sealing is preferable from the viewpoint of thinning. Moreover, when producing a flexible organic EL element, since sealing is also required for the sealing member, solid sealing is preferable.
 固体封止は技術の進歩により、十分な封止性能が得られつつある。しかし、缶封止が乾燥剤を入れるのが容易なのに対し、固体封止では困難である。さらに、固体封止では封止接着剤の持込水分があるため、缶封止と比較し水分の影響が大きくなるのが実情である。特に、高温保存時または高温高湿保存時に封止性能の差は大きくなる。 固体 Solid sealing is gaining sufficient sealing performance due to technological advances. However, while can sealing makes it easy to put a desiccant, solid sealing makes it difficult. Furthermore, in the case of solid sealing, since there is moisture brought in by the sealing adhesive, the actual situation is that the influence of moisture is greater than that in can sealing. In particular, the difference in sealing performance becomes large during high temperature storage or high temperature high humidity storage.
 有機ELパネルの高効率化のためには、反射電極の反射率は高い方がよい。特に光拡散シートやマイクロレンズシート等の光取出し部材を用いる場合に、反射電極の反射率が高いと発光効率の向上に有効である。一般的な反射電極としてアルミニウムが挙げられる。アルミニウムより高い反射率材料として銀が挙げられるが、銀は水や酸素または熱等の劣化因子による影響が大きく安定性に欠けることが知られている。特に水分によりイオンマイグレーションが起こり、銀が有機層中に拡散しデバイスがショートすることがある。従って、アルミニウムに代えて銀を用いた有機EL素子では、高いレベルでの封止性能が求められる。銀の安定化として、他の金属と合金を形成し安定化させる方法が知られている。しかし、アルミニウムより高反射率とするためには銀を90原子%以上とする必要があり、その範囲においてはアルミニウムよりも水・酸素による劣化が大きい。 In order to increase the efficiency of the organic EL panel, the reflectivity of the reflective electrode is better. In particular, when a light extraction member such as a light diffusion sheet or a microlens sheet is used, if the reflectance of the reflective electrode is high, it is effective for improving the light emission efficiency. A common reflective electrode is aluminum. Silver is an example of a higher reflectivity material than aluminum, but silver is known to be largely affected by deterioration factors such as water, oxygen, or heat and lack stability. In particular, ion migration may occur due to moisture, and silver may diffuse into the organic layer, resulting in a short circuit. Therefore, an organic EL element using silver instead of aluminum is required to have a high level of sealing performance. As stabilization of silver, a method of forming an alloy with another metal and stabilizing it is known. However, in order to obtain a higher reflectance than aluminum, it is necessary to make silver 90 atomic% or more. In that range, deterioration due to water and oxygen is larger than aluminum.
 発光効率が高く、かつ可撓性の有機EL素子を作製する場合、高反射率陰極と固体封止を組み合わせることが好ましい。しかし、銀または銀を主体とする銀合金を反射電極とした有機EL素子を固体封止する場合、封止接着剤の残留水分の影響でデバイスがショートしたり、ダークスポットが生じたりする等の問題があった。さらに、銀または銀主体の銀合金は熱伝導率が高いのに対し、固体封止に用いる接着剤は熱伝導率が極めて低く、駆動により有機EL素子から発生する熱が放出されにくい。そのため有機EL素子温度が上昇し、銀のイオンマイグレーションが加速される問題が生じた。また、銀を反射電極として用いた可撓性の有機EL素子では、折り曲げ時の駆動安定性が低いことが判明した。 When producing a flexible organic EL device with high luminous efficiency, it is preferable to combine a high reflectance cathode and solid sealing. However, when organic EL elements using silver or a silver alloy mainly composed of silver as a reflective electrode are solid-sealed, the device may be short-circuited or dark spots may be generated due to the residual moisture of the sealing adhesive. There was a problem. In addition, silver or silver-based silver alloys have high thermal conductivity, whereas adhesives used for solid sealing have extremely low thermal conductivity, and heat generated from the organic EL element is not easily released by driving. As a result, the temperature of the organic EL element rises, causing a problem that silver ion migration is accelerated. Further, it has been found that a flexible organic EL element using silver as a reflective electrode has low driving stability during bending.
 特許文献1には、電極材料として水分や酸素等に活性な金属を用いる場合には、それを保護するキャップ層を積層する記載があるが、可撓性基板を用いた場合、折り曲げ時の駆動安定性が低いことが判明した。 Patent Document 1 describes that when an active metal such as moisture or oxygen is used as an electrode material, a cap layer that protects the metal is laminated. However, when a flexible substrate is used, driving when bending is performed. It was found that the stability was low.
特開平10-261491号公報JP-A-10-261491
 本発明は、上記課題に鑑みなされたものであり、その目的は、発光効率が高く、長寿命で、高温保存性に優れ、かつ折り曲げ時の駆動安定性に優れる可撓性の有機エレクトロルミネッセンス素子を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide a flexible organic electroluminescence device having high luminous efficiency, long life, excellent high-temperature storage stability, and excellent driving stability during bending. Is to provide.
 本発明の上記課題は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.可撓性支持基板上に、第1電極、有機化合物からなる発光層を少なくとも1層含む有機化合物層、第2電極、及び可撓性封止部材をこの順に有する有機エレクトロルミネッセンス素子において、前記第2電極と前記可撓性封止部材の間に、熱伝導層及び封止用接着剤をこの順に有し密着封止された有機エレクトロルミネッセンス素子であって、前記第2電極が銀または銀を主成分とする銀合金であることを特徴とする有機エレクトロルミネッセンス素子。 1. In the organic electroluminescence element having a first electrode, an organic compound layer including at least one light emitting layer made of an organic compound, a second electrode, and a flexible sealing member in this order on a flexible support substrate, An organic electroluminescence element having a heat conductive layer and a sealing adhesive in this order between two electrodes and the flexible sealing member and sealed tightly, wherein the second electrode is made of silver or silver An organic electroluminescence element characterized by being a silver alloy having a main component.
 2.前記可撓性支持基板と前記第2電極の間、または前記可撓性支持基板に対し第1電極とは反対側に、光取出し部材を有することを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence according to 1, wherein a light extraction member is provided between the flexible support substrate and the second electrode or on the opposite side of the flexible support substrate from the first electrode. element.
 3.前記封止用接着剤の含水率が0.01~300ppmであることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device as described in 1 or 2 above, wherein the sealing adhesive has a water content of 0.01 to 300 ppm.
 4.前記熱伝導層が金属からなることを特徴とする前記1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 4. 4. The organic electroluminescence device according to any one of 1 to 3, wherein the heat conductive layer is made of a metal.
 5.前記第2電極の銀含有量が90原子パーセント以上であることを特徴とする前記1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 5. 5. The organic electroluminescence device according to any one of 1 to 4, wherein the silver content of the second electrode is 90 atomic percent or more.
 6.可撓性支持基板上に、第1電極、有機化合物からなる発光層を少なくとも1層含む有機化合物層、第2電極、及び可撓性封止部材をこの順に有する有機エレクトロルミネッセンス素子の製造方法において、前記第2電極と前記可撓性封止部材の間に、熱伝導層及び封止用接着剤をこの順に配置し、封止用接着剤を用いて密着封止する有機エレクトロルミネッセンス素子の製造方法であって、前記第2電極が銀または銀を主成分とする銀合金であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。 6. In the manufacturing method of the organic electroluminescent element which has a 1st electrode, the organic compound layer which contains at least 1 light emitting layer which consists of an organic compound, a 2nd electrode, and the flexible sealing member in this order on a flexible support substrate. The organic electroluminescence device is disposed between the second electrode and the flexible sealing member in this order, and a heat conductive layer and a sealing adhesive are arranged in this order, and the sealing adhesive is used for tightly sealing. It is a method, Comprising: The said 2nd electrode is silver or the silver alloy which has silver as a main component, The manufacturing method of the organic electroluminescent element characterized by the above-mentioned.
 7.前記封止用接着剤の含水率が300ppm以下まで乾燥することを特徴とする前記6に記載の有機エレクトロルミネッセンス素子の製造方法。 7. 7. The method for producing an organic electroluminescent element according to 6 above, wherein the moisture content of the sealing adhesive is dried to 300 ppm or less.
 本発明により、発光効率が高く、長寿命で、高温保存性に優れ、かつ折り曲げ時の駆動安定性に優れる可撓性の有機エレクトロルミネッセンス素子を提供することができた。 According to the present invention, it was possible to provide a flexible organic electroluminescence device having high luminous efficiency, long life, excellent high-temperature storage stability, and excellent driving stability during bending.
可撓性支持基板上に、第1電極、有機化合物層、第2電極、熱伝導層、封止用接着剤及び可撓性封止部材をこの順に有する有機エレクトロルミネッセンス素子の構成を示す断面模式図である。A cross-sectional schematic diagram showing a configuration of an organic electroluminescence element having a first electrode, an organic compound layer, a second electrode, a heat conductive layer, a sealing adhesive, and a flexible sealing member in this order on a flexible support substrate. FIG.
 本発明者らは、可撓性の有機EL素子において、高温保存性・駆動安定性を満足しながら、銀または銀合金電極を用いた発光効率の向上について鋭意検討を行った結果、第2電極と可撓性封止部材の間に熱伝導層及び封止用接着剤を設けることにより、高温保存性・駆動安定性を満足しながら、銀または銀合金電極を用いた発光効率の向上が実現できることを見出し、本発明に至った。 As a result of intensive studies on improving luminous efficiency using a silver or silver alloy electrode while satisfying high-temperature storage stability and driving stability in the flexible organic EL element, the present inventors have made a second electrode. By providing a heat conductive layer and a sealing adhesive between the flexible sealing member and the flexible sealing member, it is possible to improve luminous efficiency using silver or silver alloy electrodes while satisfying high temperature storage stability and driving stability As a result, the inventors have found out that the present invention can be achieved.
 本構成では、熱伝導度の大きい熱伝導層を第2電極に積層し、放熱が促進されることにより有機EL素子の温度上昇が緩和され、銀の拡散が抑制される。また熱伝導層が封止接着剤の残留水分の影響を緩和することにより、銀の拡散が抑制される。さらに、本構成とすることで、折り曲げ時の駆動安定性が向上することを見出した。 In this configuration, a heat conductive layer having a high thermal conductivity is laminated on the second electrode, and heat dissipation is promoted, so that the temperature rise of the organic EL element is alleviated and silver diffusion is suppressed. Further, the diffusion of silver is suppressed by the heat conduction layer mitigating the influence of the residual moisture of the sealing adhesive. Furthermore, it has been found that the driving stability at the time of bending is improved by adopting this configuration.
 以下、本発明を実施するための形態について詳細について説明する。 Hereinafter, the details of the mode for carrying out the present invention will be described.
 《有機エレクトロルミネッセンス素子の構成》
 図1は、本発明の有機EL素子の構成を示す断面模式図である。本発明の有機EL素子は、可撓性支持基板1上に、第1電極2、有機化合物からなる発光層を少なくとも1層含む有機化合物層3、第2電極4、熱伝導層5、封止用接着剤6及び可撓性封止部材7をこの順に有する。
<< Structure of organic electroluminescence element >>
FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL device of the present invention. The organic EL device of the present invention includes a first electrode 2, an organic compound layer 3 including at least one light emitting layer made of an organic compound, a second electrode 4, a heat conductive layer 5, a sealing, on a flexible support substrate 1. Adhesive 6 and flexible sealing member 7 in this order.
 好ましい構成の具体例を以下に示すが、本発明はこれらに限定されない。 Specific examples of preferred configurations are shown below, but the present invention is not limited thereto.
 (i)可撓性支持基板/第1電極/発光層/電子輸送層/第2電極/熱伝導層/封止用接着剤/可撓性封止部材
 (ii)可撓性支持基板/第1電極/正孔輸送層/発光層/電子輸送層/第2電極/熱伝導層/封止用接着剤/可撓性封止部材
 (iii)可撓性支持基板/第1電極/正孔輸送層/発光層/正孔阻止層/電子輸送層/第2電極/熱伝導層/封止用接着剤/可撓性封止部材
 (iv)可撓性支持基板/第1電極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/第2電極/熱伝導層/封止用接着剤/可撓性封止部材
 (v)可撓性支持基板/第1電極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/第2電極/熱伝導層/封止用接着剤/可撓性封止部材。
(I) Flexible support substrate / first electrode / light emitting layer / electron transport layer / second electrode / thermal conductive layer / sealing adhesive / flexible sealing member (ii) flexible support substrate / first 1 electrode / hole transport layer / light emitting layer / electron transport layer / second electrode / thermal conductive layer / sealing adhesive / flexible sealing member (iii) flexible support substrate / first electrode / hole Transport layer / light emitting layer / hole blocking layer / electron transport layer / second electrode / thermal conductive layer / sealing adhesive / flexible sealing member (iv) flexible support substrate / first electrode / hole Transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / second electrode / thermal conductive layer / sealing adhesive / flexible sealing member (v) flexible support substrate / first Electrode / anode buffer layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / second electrode / heat conducting layer / adhesive for sealing / flexible sealing member.
 〔可撓性支持基板〕
 本発明に係る可撓性支持基板としては、可撓性を有していればガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。
[Flexible support substrate]
The flexible support substrate according to the present invention is not particularly limited as long as it has flexibility, and it may be transparent or opaque.
 不透明な可撓性支持基板としては、例えば、アルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque flexible support substrate include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.
 可撓性支持基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、可撓性を有する薄膜ガラス、透明樹脂フィルムを挙げることができる。特に好ましい基板は樹脂フィルムである。 When extracting light from the flexible support substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include flexible thin film glass and transparent resin film. A particularly preferred substrate is a resin film.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルまたはポリアリレート類、アートン(JSR社製)またはアペル(三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, cycloolefin resin such as Arton (manufactured by JSR) or Appel (manufactured by Mitsui Chemicals), etc. .
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のバリア性フィルムであることが好ましく、さらにはJIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of both may be formed. Water vapor permeability (25 ± 0.5 ° C., measured by a method according to JIS K 7129-1992) It is preferable that the relative humidity (90 ± 2)% RH) is a barrier film of 1 × 10 −3 g / (m 2 · 24 h) or less, and further measured by a method according to JIS K 7126-1987. The oxygen permeability is 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × 10 A high barrier film of 3 g / (m 2 · 24 h) or less is preferable.
 高バリア性フィルムとするために、樹脂フィルム表面に形成されるバリア膜を形成する材料としては、水分や酸素等パネルの劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 In order to obtain a high barrier film, the material for forming the barrier film formed on the surface of the resin film may be any material that has a function of suppressing intrusion of water or oxygen that causes panel deterioration. Silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 (バリア膜の形成方法)
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
(Method for forming barrier film)
The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 〔第1電極〕
 本発明における第1電極(陽極)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等、非晶質で透明導電膜を作製可能な材料を用いてもよい。
[First electrode]
As the first electrode (anode) in the present invention, an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material capable of forming a transparent conductive film such as IDIXO (In 2 O 3 —ZnO) may be used.
 第1電極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、またはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。または、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。 For the first electrode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (100 μm As described above, a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used.
 この第1電極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また第1電極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 When taking out light emission from the first electrode, it is desirable to make the transmittance larger than 10%, and the sheet resistance as the first electrode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
 〔有機化合物層〕
 本発明における有機化合物層としては、例えば、正孔注入・輸送層/発光層/電子注入・輸送層等、各種の有機化合物からなる機能層が必要に応じ積層された構成を持つ。最も単純には、発光層のみからなる構造を有する。
[Organic compound layer]
The organic compound layer in the present invention has a configuration in which functional layers made of various organic compounds, such as a hole injection / transport layer / light emitting layer / electron injection / transport layer, are laminated as necessary. Most simply, it has a structure consisting only of a light emitting layer.
 (正孔注入・輸送層)
 正孔注入・輸送層に用いられる有機化合物材料としては、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)等に代表される導電性高分子等の高分子材料が用いられる。
(Hole injection / transport layer)
Examples of organic compound materials used for the hole injection / transport layer include phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like. A polymer material such as a conductive polymer is used.
 (発光層)
 また、発光層に用いられる発光材料またはホスト化合物としては、例えば、4,4′-ジカルバゾリルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系材料、(ジ)アザカルバゾール類、1,3,5-トリピレニルベンゼン等のピレン系材料に代表される低分子材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類等に代表される高分子材料等が挙げられる。これらのうちで、発光材料またはホスト化合物としては、分子量10000以下の低分子系材料が好ましく用いられる。
(Light emitting layer)
Examples of the light emitting material or host compound used for the light emitting layer include carbazole-based materials such as 4,4′-dicarbazolylbiphenyl and 1,3-dicarbazolylbenzene, (di) azacarbazoles, Examples thereof include low molecular materials typified by pyrene-based materials such as 1,3,5-tripyrenylbenzene, and polymer materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like. Among these, a low molecular weight material having a molecular weight of 10,000 or less is preferably used as the light emitting material or the host compound.
 また、発光層には0.1~20質量%程度のドーパント化合物が含まれてもよく、ドーパント化合物としては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2-フェニルピリジン)イリジウム、ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4-ジフルオロフェニルピリジン)(ピコリナート)イリジウム等に代表されるオルトメタル化イリジウム錯体等の錯体化合物が挙げられる。 The light emitting layer may contain about 0.1 to 20% by mass of a dopant compound. Examples of the dopant compound include known fluorescent dyes such as perylene derivatives and pyrene derivatives, and phosphorescent dyes such as tris ( Complex compounds such as ortho-metalated iridium complexes represented by 2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. Can be mentioned.
 (電子注入・輸送層)
 電子注入・輸送層材料としては、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛等の金属錯体化合物、または以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。
(Electron injection / transport layer)
Examples of the electron injecting / transporting layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinato) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1 -Phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) 1,3,4-oxadiazole, 2,5-bis ( 1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1 , 3,4-thiadiazole, 1,4-bis [2- (5-phenyl) Asiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1,3,4 -Triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like.
 これら発光層、また各機能層に用いられる有機化合物材料として、分子中にビニル基等の重合反応性基を有する材料を用い、製膜後に架橋・重合膜を形成させて各機能層を形成してもよい。 As the organic compound material used for these light emitting layers and each functional layer, a material having a polymerization reactive group such as a vinyl group in the molecule is used, and a cross-linked / polymerized film is formed after film formation to form each functional layer. May be.
 また、必要に応じて駆動電圧低下や発光輝度向上のために電極と有機層間に注入層を形成してもよい。注入層としては、正孔注入層(陽極バッファー層)と陰極バッファー層(電子注入層)がある。 In addition, an injection layer may be formed between the electrode and the organic layer in order to reduce the drive voltage and improve the light emission luminance as necessary. The injection layer includes a hole injection layer (anode buffer layer) and a cathode buffer layer (electron injection layer).
 (陽極バッファー層(正孔注入層))
 陽極バッファー層(正孔注入層)としては、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
(Anode buffer layer (hole injection layer))
As the anode buffer layer (hole injection layer), phthalocyanine buffer layer typified by copper phthalocyanine, oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polyaniline (emeraldine), polythiophene, etc. Examples thereof include a polymer buffer layer using molecules.
 (陰極バッファー層(電子注入層))
 陰極バッファー層(電子注入層)にはストロンチウムやアルミニウムやカルシウムやマグネシウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1~5nmの範囲が好ましい。注入層は1層でも複数層でもよい。
(Cathode buffer layer (electron injection layer))
The cathode buffer layer (electron injection layer) is a metal buffer layer typified by strontium, aluminum, calcium or magnesium, an alkali metal compound buffer layer typified by lithium fluoride, or an alkaline earth metal typified by magnesium fluoride. Examples thereof include a compound buffer layer and an oxide buffer layer typified by aluminum oxide. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 to 5 nm, depending on the material. The injection layer may be a single layer or a plurality of layers.
 本発明の有機EL素子においては、第2電極に隣接する注入層として、好ましくは金属バッファー層であり、より好ましくはカルシウムやマグネシウムであり、さらにより好ましいのはカルシウムである。 In the organic EL device of the present invention, the injection layer adjacent to the second electrode is preferably a metal buffer layer, more preferably calcium or magnesium, and still more preferably calcium.
 本発明の有機EL素子においては、各機能層は、真空蒸着法、またスパッタ法等の乾式法により形成されてもよく、また塗布、印刷法等の湿式法で成膜されてもよい。 In the organic EL device of the present invention, each functional layer may be formed by a vacuum method, a dry method such as a sputtering method, or may be formed by a wet method such as a coating method or a printing method.
 〔第2電極〕
 本発明における第2電極は、銀または銀を主成分とする銀合金であり、銀または銀含有量が90原子パーセント以上の銀合金であることが好ましく、銀含有量が95原子パーセント以上の銀合金であることがより好ましい。第2電極は、蒸着やスパッタリング等の方法により形成することが可能である。
[Second electrode]
The second electrode in the present invention is silver or a silver alloy containing silver as a main component, preferably silver or a silver alloy having a silver content of 90 atomic percent or more, and a silver content of 95 atomic percent or more. More preferably, it is an alloy. The second electrode can be formed by a method such as vapor deposition or sputtering.
 〔熱伝導層〕
 本発明における熱伝導層とは、熱伝導率が封止用接着剤の熱伝導率よりも大きい層であり、好ましくは熱伝導率は1W/(m・K)以上、より好ましくは10W/(m・K)以上、より好ましくは、100W/(m・K)以上である。本発明における熱伝導層の熱伝導率は、封止用接着剤の熱伝導率より100W/(m・K)以上高いことが好ましい。
(Thermal conduction layer)
The heat conductive layer in the present invention is a layer having a heat conductivity larger than that of the sealing adhesive, preferably the heat conductivity is 1 W / (m · K) or more, more preferably 10 W / ( m · K) or more, more preferably 100 W / (m · K) or more. The thermal conductivity of the heat conductive layer in the present invention is preferably 100 W / (m · K) or more higher than the heat conductivity of the sealing adhesive.
 本発明に係わる熱伝導層に用いられる材料は、例えば金属や金属酸化物または金属酸化物等の金属を含有する材料であるが、好ましくはアルミニウム・銅・金等の金属であり、より好ましくはアルミニウムである。 The material used for the heat conductive layer according to the present invention is a material containing a metal such as metal, metal oxide, or metal oxide, but is preferably a metal such as aluminum, copper, or gold, more preferably Aluminum.
 本発明に係わる熱伝導層の厚みは20nm~50μmであり、好ましくは50nm~1μm、より好ましくは100nm~500nmである。 The thickness of the heat conductive layer according to the present invention is 20 nm to 50 μm, preferably 50 nm to 1 μm, more preferably 100 nm to 500 nm.
 本発明に係わる熱伝導層は1層でもよく、2層以上の多層構造であってもよい。第2電極は、蒸着やスパッタリング等の方法により形成することが可能である。 The heat conductive layer according to the present invention may be a single layer or a multilayer structure of two or more layers. The second electrode can be formed by a method such as vapor deposition or sputtering.
 〔封止用接着剤〕
 本発明に係わる封止用接着剤には、熱硬化接着剤や紫外線硬化樹脂等を用いることができるが、好ましくはエポキシ系樹脂、アクリル系樹脂、シリコーン樹脂等熱硬化接着剤、より好ましくは耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂である。
[Sealant for sealing]
As the sealing adhesive according to the present invention, a thermosetting adhesive, an ultraviolet curable resin, or the like can be used, but preferably a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
 本発明に係わる封止用接着剤の含水率は0.01~300ppmであることが好ましく、0.01~200ppmであることがより好ましく、0.01~100ppmであることが最も好ましい。 The water content of the sealing adhesive according to the present invention is preferably from 0.01 to 300 ppm, more preferably from 0.01 to 200 ppm, and most preferably from 0.01 to 100 ppm.
 含水率は、いかなる方法により測定しても構わないが、例えば容量法水分計(カールフィッシャ-)、赤外水分計、マイクロ波透過型水分計、加熱乾燥重量法、GC/MS、IR、DSC(示差走査熱量計)、TDS(昇温脱離分析)が挙げられる。また、精密水分計AVM-3000型(オムニテック社製)等を用い、水分の蒸発によっておこる圧力上昇から水分を測定でき、フィルムまた固形フィルム等の水分率の測定を行うことができる。 The moisture content may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, GC / MS, IR, DSC (Differential scanning calorimeter) and TDS (temperature programmed desorption analysis). Further, using a precision moisture meter AVM-3000 (manufactured by Omnitech) or the like, moisture can be measured from a pressure increase caused by evaporation of moisture, and moisture content of a film or solid film can be measured.
 本発明おいて、封止用接着剤の含水率は、例えば、露点温度が-80℃以下、酸素濃度1ppm以下の窒素雰囲気下に置き時間を変化させることで調整することができる。また、100Pa以下の真空状態で置き時間を変化させて乾燥させることもできる。また、封止用接着材は接着剤のみで乾燥させることもできるが、可撓性封止部材へ予め配置し乾燥させることもできる。 In the present invention, the water content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of −80 ° C. or lower and an oxygen concentration of 1 ppm or lower and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on a flexible sealing member and dried.
 〔可撓性封止部材〕
 可撓性封止部材としては、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、及びこれらの複合物、ガラス等が挙げられ、必要に応じて、特に樹脂フィルムの場合には、可撓性支持基板と同様、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。ガスバリア層は、可撓性封止部材成形前に可撓性封止部材の両面または片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面または片面に同様な方法で形成してもよい。これについても、酸素透過度が1×10-3ml/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。
[Flexible sealing member]
Examples of the flexible sealing member include stainless steel, aluminum, magnesium alloy and other metals, polyethylene terephthalate, polycarbonate, polystyrene, nylon, polyvinyl chloride, and the like, and composites thereof, glass and the like. In particular, in the case of a resin film, it is possible to use a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride as in the case of the flexible support substrate. The gas barrier layer can be formed by sputtering, vapor deposition or the like on both sides or one side of the flexible sealing member before molding the flexible sealing member, or after sealing, the gas barrier layer can be formed on the both sides or one side of the sealing member by the same method. May be formed. Also in this case, the oxygen permeability is 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × It is preferably 10 −3 g / (m 2 · 24 h) or less.
 可撓性封止部材としては、アルミニウム等の金属箔をラミネートしたフィルム等でもよい。金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法及び共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。 The flexible sealing member may be a film laminated with a metal foil such as aluminum. As a method for laminating the polymer film on one side of the metal foil, a generally used laminating machine can be used. As the adhesive, polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
 また、金属箔をスパッタや蒸着等で形成したり、導電性ペースト等の流動性電極材料から形成したりする場合は、逆にポリマーフィルムを基材としてこれに金属箔を成膜する方法で作製してもよい。 If the metal foil is formed by sputtering or vapor deposition, or is formed from a fluid electrode material such as a conductive paste, the polymer foil is used as a base material and the metal foil is formed on the substrate. May be.
 〔封止〕
 密着封止(固体封止)を行う場合、可撓性封止部材としては、例えば、50μm厚のPET(ポリエチレンテレフタレート)にアルミ箔(30μm厚)をラミネートしたものを用いる。これを可撓性封止部材として、アルミニウム面にディスペンサを使用して均一に塗布し封止用接着剤を予め配置しておき、樹脂基板1と封止部材5を位置合わせ後、両者を圧着して(0.1~3MPa)、温度80~180℃で密着・接合(接着)して、密着封止(固体封止)する。
[Sealing]
When close sealing (solid sealing) is performed, as the flexible sealing member, for example, a 50 μm thick PET (polyethylene terephthalate) laminated with an aluminum foil (30 μm thick) is used. Using this as a flexible sealing member, it is uniformly applied to the aluminum surface using a dispenser, a sealing adhesive is placed in advance, the resin substrate 1 and the sealing member 5 are aligned, and then both are crimped together. (0.1 to 3 MPa), tightly bonded and bonded (adhered) at a temperature of 80 to 180 ° C., and tightly sealed (solid sealed).
 封止用接着剤の種類また量、そして面積等によって加熱また圧着時間は変わるが0.1~3MPaの圧力で仮接着、また80~180℃の温度で、熱硬化時間は5秒~10分間の範囲で選べばよい。 Heating or pressure bonding time varies depending on the type, amount, and area of the sealing adhesive, but temporary bonding is performed at a pressure of 0.1 to 3 MPa, and the heat curing time is 5 seconds to 10 minutes at a temperature of 80 to 180 ° C. Select within the range.
 加熱した圧着ロールを用いると圧着(仮接着)と加熱が同時にでき、かつ内部の空隙も同時に排除でき好ましい。 It is preferable to use a heated pressure-bonding roll because pressure bonding (temporary bonding) and heating can be performed simultaneously, and internal voids can be eliminated at the same time.
 また、接着層の形成方法としては、材料に応じて、ディスペンサを用いたり、ロールコート、スピンコート、スクリーン印刷法、スプレーコート等のコーティング法、印刷法を用いたりすることができる。 Also, as a method for forming the adhesive layer, a dispenser, a coating method such as roll coating, spin coating, screen printing method, spray coating, or the like can be used depending on the material.
 固体封止は、以上のように可撓性封止部材と有機EL素子基板との間に空間がなく硬化した樹脂で覆う形態である。 Solid sealing is a form of covering with a cured resin with no space between the flexible sealing member and the organic EL element substrate as described above.
 〔光取出し部材〕
 本発明において、可撓性支持基板と第2電極の間、または可撓性支持基板に対し第1電極とは反対側に、光取出し部材を有することが好ましい。
(Light extraction member)
In the present invention, it is preferable to have a light extraction member between the flexible support substrate and the second electrode or on the opposite side of the flexible support substrate from the first electrode.
 本発明に用いられる光取出し部材としては、プリズムシートやレンズシート及び拡散シートが挙げられる。また、全反射を起こす界面またはいずれかの媒質中に導入される回折格子や拡散構造等が挙げられる。 Examples of the light extraction member used in the present invention include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface that causes total reflection or any medium may be used.
 通常、可撓性支持基板から光を放射するような有機EL素子においては、発光層から放射された光の一部が可撓性支持基板と空気との界面において全反射を起こし、光を損失するという問題が発生する。この問題を解決するために、可撓性支持基板の表面にプリズムやレンズ状の加工を施す、もしくは可撓性支持基板の表面にプリズムシートやレンズシート及び拡散シートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。 Normally, in an organic EL device that emits light from a flexible support substrate, a part of the light emitted from the light emitting layer causes total reflection at the interface between the flexible support substrate and air, and light is lost. Problem occurs. In order to solve this problem, the surface of the flexible support substrate is processed into a prism or lens shape, or the prism sheet, the lens sheet, and the diffusion sheet are pasted on the surface of the flexible support substrate, whereby total reflection is achieved. To improve the light extraction efficiency.
 また、光取り出し効率を高めるためには、全反射を起こす界面またはいずれかの媒質中に、回折格子を導入する方法や拡散構造を導入する方法が知られている。 In order to increase the light extraction efficiency, a method of introducing a diffraction grating or a method of introducing a diffusion structure in an interface or any medium that causes total reflection is known.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例
 《有機EL素子の作製》
 〔有機EL素子1の作製〕
 〈ガスバリア性の可撓性フィルムの作製〉
 可撓性フィルム(可撓性支持基板)として、ポリエチレンナフタレートフィルム(帝人デュポン社製フィルム、以下、PENと略記する)の第1電極を形成する側の全面に、特開2004-68143号公報記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリア膜を厚さ500nmとなるように形成し、酸素透過度0.001ml/(m・day)以下、水蒸気透過度0.001g/(m・day)以下のガスバリア性の可撓性フィルムを作製した。
Example << Preparation of organic EL element >>
[Production of Organic EL Element 1]
<Production of gas barrier flexible film>
As a flexible film (flexible support substrate), a polyethylene naphthalate film (a film made by Teijin DuPont Co., Ltd., hereinafter abbreviated as PEN) is formed on the entire surface on the side where the first electrode is formed. Using an atmospheric pressure plasma discharge treatment apparatus having the structure described above, an inorganic gas barrier film made of SiOx is continuously formed on a flexible film so as to have a thickness of 500 nm, and an oxygen permeability of 0.001 ml / (m 2 · day) or less, to produce a water vapor permeability of 0.001 g / (m 2 · day) or less of the gas barrier of the flexible film.
 〈第1電極層の形成〉
 準備したガスバリア性の可撓性フィルム上に、厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mmになるようなパターンとした。
<Formation of first electrode layer>
A 120 nm thick ITO (indium tin oxide) film was formed by sputtering on the prepared gas barrier flexible film, and patterned by photolithography to form a first electrode layer. The pattern was such that the light emitting area was 50 mm 2 .
 〈正孔注入輸送層の形成〉
 パターニング後のITO基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、130℃にて1時間乾燥し、膜厚30nmの正孔注入輸送層を設けた。
<Formation of hole injection transport layer>
The ITO substrate after patterning was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. On this substrate, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water was spin-coated at 3000 rpm for 30 seconds. After forming into a film by the method, it was dried at 130 ° C. for 1 hour to provide a hole injection transport layer having a thickness of 30 nm.
 〈発光層の形成〉
 正孔注入輸送層を形成したガスバリア性の可撓性フィルムを、窒素雰囲気下、JIS B9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。グローブボックス中にて、以下に示す発光層用塗布液を2000rpm、30秒でスピンコート法により製膜した後、120℃にて30分乾燥し、膜厚40nmの発光層を設けた。
<Formation of light emitting layer>
A gas barrier flexible film having a hole injecting and transporting layer formed under a nitrogen atmosphere in accordance with JIS B9920, with a measured cleanliness of class 100, a dew point temperature of −80 ° C. or lower, and an oxygen concentration of 0.8 ppm. Moved to the glove box. In the glove box, the following light emitting layer coating solution was formed by spin coating at 2000 rpm for 30 seconds, and then dried at 120 ° C. for 30 minutes to provide a light emitting layer having a thickness of 40 nm.
 (発光層形成用塗布液の調製)
 ホスト化合物のH-A 1.0gと、ドーパント化合物のD-A 100mg、D-B 0.2mg、D-C 0.2mgを100gのトルエンに溶解し、発光層用塗布液を調製した。
(Preparation of light emitting layer forming coating solution)
The host compound HA 1.0 g and the dopant compounds DA 100 mg, DB 0.2 mg, and DC 0.2 mg were dissolved in 100 g of toluene to prepare a light emitting layer coating solution.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 〈電子輸送層の形成〉
 次に、発光層を形成したガスバリア性の可撓性フィルムに、以下に示す電子輸送層用塗布液を2000rpm、30秒でスピンコート法により製膜した後、120℃にて30分乾燥し、膜厚35nmの電子輸送層を設けた。
<Formation of electron transport layer>
Next, on the gas barrier flexible film on which the light emitting layer was formed, the following electron transport layer coating solution was formed by spin coating at 2000 rpm for 30 seconds, and then dried at 120 ° C. for 30 minutes. An electron transport layer having a thickness of 35 nm was provided.
 (電子輸送層用塗布液の調製)
 電子輸送層はE-Aを2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.75質量%溶液とし電子輸送層用塗布液とした。
(Preparation of coating solution for electron transport layer)
For the electron transport layer, EA was dissolved in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.75% by mass solution as a coating solution for the electron transport layer.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 〈電子注入層の形成〉
 次に、形成された電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化カリウムを加熱し、厚さ2nm積層した。引き続き、あらかじめ真空チャンバーにタンタル製蒸着ボートに用意しておいたカルシウムを1nm積層し、電子注入層を形成した。
<Formation of electron injection layer>
Next, an electron injection layer was formed on the formed electron transport layer. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 × 10 −4 Pa. In advance, potassium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber and laminated to a thickness of 2 nm. Subsequently, 1 nm of calcium prepared in advance in a tantalum vapor deposition boat was laminated in a vacuum chamber to form an electron injection layer.
 〈第2電極の形成〉
 引き続き、第1電極の上の取り出し電極になる部分を除き、形成された電子注入層の上に5×10-4Paの真空下にて第2電極形成材料として銀を使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
<Formation of second electrode>
Subsequently, using the silver as the second electrode forming material under a vacuum of 5 × 10 −4 Pa on the formed electron injection layer except for the portion that becomes the extraction electrode on the first electrode, A mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
 〈熱伝導層の形成〉
 次に、形成された第2電極の上に5×10-4Paの真空下にて熱伝導層材料としてアルミニウムを使用し、第2電極と同一のマスクパターン成膜し、厚さ200nmの熱伝導層を積層した。
<Formation of heat conduction layer>
Next, aluminum is used as the heat conductive layer material under a vacuum of 5 × 10 −4 Pa on the formed second electrode, and the same mask pattern as that of the second electrode is formed. A conductive layer was laminated.
 (裁断)
 熱伝導層まで形成したガスバリア性の可撓性フィルムを、再び窒素雰囲気に移動し、ガスバリア性の可撓性フィルムを規定の大きさに裁断した。
(Cutting)
The gas barrier flexible film formed up to the heat conductive layer was moved again to the nitrogen atmosphere, and the gas barrier flexible film was cut into a prescribed size.
 (封止)
 引き続き、市販のロールラミネート装置を用いて可撓性封止部材を接着し、本発明の有機EL素子1を製作した。
(Sealing)
Then, the flexible sealing member was adhere | attached using the commercially available roll laminating apparatus, and the organic EL element 1 of this invention was manufactured.
 なお、可撓性封止部材として、可撓性の厚み30μmのアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いてラミネートした(接着剤層の厚み1.5μm)ものを用いた。 As a flexible sealing member, a polyethylene terephthalate (PET) film (12 μm thickness) is bonded to a flexible aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) with a thickness of 30 μm (two-component reactive type). (Urethane type adhesive)) (adhesive layer thickness 1.5 μm) was used.
 アルミニウム面に封止用接着剤として、熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。さらに露点温度が-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動し、12時間以上乾燥させ、封止用接着剤の含水率を100ppm以下となるように調整した。 A thermosetting adhesive as a sealing adhesive was uniformly applied to the aluminum surface with a thickness of 20 μm along the adhesive surface (shiny surface) of the aluminum foil using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, it moved to a nitrogen atmosphere with a dew point temperature of −80 ° C. or lower and an oxygen concentration of 0.8 ppm, dried for 12 hours or longer, and adjusted the water content of the sealing adhesive to 100 ppm or lower.
 熱硬化接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。 As the thermosetting adhesive, an epoxy adhesive mixed with the following (A) to (C) was used.
 (A) ビスフェノールAジグリシジルエーテル(DGEBA)
 (B) ジシアンジアミド(DICY)
 (C) エポキシアダクト系硬化促進剤
 しかる後、図1のような層構成になるよう、熱伝導層まで形成したガスバリア性の可撓性フィルムと、封止用接着剤を塗布した可撓性封止部材を密着・配置して、圧着ロールを用いて、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
(A) Bisphenol A diglycidyl ether (DGEBA)
(B) Dicyandiamide (DICY)
(C) Epoxy adduct-based curing accelerator After that, a flexible film formed by applying a gas barrier flexible film formed up to the heat conductive layer and a sealing adhesive so as to have a layer structure as shown in FIG. The stop member was closely adhered and arranged, and was closely sealed using a pressure roll at a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min.
 〈有機EL素子2の作製〉
 有機EL素子1の作製において、第2電極を、銀が97.4原子%、パラジウムが0.91原子%、銅が1.69原子%となるように共蒸着することにより形成した銀合金とした以外は同様にして、本発明の有機EL素子2を作製した。
<Preparation of organic EL element 2>
In the production of the organic EL element 1, a silver alloy formed by co-evaporating the second electrode so that silver is 97.4 atomic%, palladium is 0.91 atomic%, and copper is 1.69 atomic%; Except that, the organic EL element 2 of the present invention was produced in the same manner.
 〈有機EL素子3の作製〉
 有機EL素子2の作製において、可撓性封止部材へ塗布した封止用接着剤を乾燥する条件を下記のように変更した以外は同様にして、本発明の有機EL素子3を作製した。なお、乾燥は露点温度が-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動し、約4時間乾燥させ、封止用接着剤の含水率を200~300ppmになるように調整した。
<Preparation of organic EL element 3>
In the production of the organic EL element 2, the organic EL element 3 of the present invention was produced in the same manner except that the conditions for drying the sealing adhesive applied to the flexible sealing member were changed as follows. The drying was carried out in a nitrogen atmosphere having a dew point temperature of −80 ° C. or lower and an oxygen concentration of 0.8 ppm, and dried for about 4 hours, so that the moisture content of the sealing adhesive was adjusted to 200 to 300 ppm.
 〈有機EL素子4の作製〉
 有機EL素子2の作製において、電子注入層をフッ化カリウム2nmとなるように形成した後、マグネシウム1nmとなるように形成した以外は同様にして、本発明の有機EL素子4を作製した。
<Preparation of organic EL element 4>
In the production of the organic EL element 2, the organic EL element 4 of the present invention was produced in the same manner except that the electron injection layer was formed to be 2 nm of potassium fluoride and then formed to be 1 nm of magnesium.
 〈有機EL素子5の作製〉
 有機EL素子1の作製において、第2電極をアルミニウムとし、熱伝導層を設けなかった以外は同様にして、比較例の有機EL素子5を作製した。
<Preparation of organic EL element 5>
In the production of the organic EL element 1, the organic EL element 5 of the comparative example was produced in the same manner except that the second electrode was aluminum and the heat conductive layer was not provided.
 〈有機EL素子6の作製〉
 有機EL素子1の作製において、熱伝導層を設けなかった以外は同様にして、比較例の有機EL素子6を作製した。
<Preparation of organic EL element 6>
In the production of the organic EL element 1, the organic EL element 6 of the comparative example was produced in the same manner except that the heat conductive layer was not provided.
 〈有機EL素子7の作製〉
 有機EL素子1の作製において、第2電極を、銀が97.4原子%、パラジウムが0.91原子%、銅が1.69原子%となるように共蒸着することにより形成した銀合金とし、熱伝導層を設けなかった以外は同様にして、比較例の有機EL素子7を作製した。
<Preparation of organic EL element 7>
In the production of the organic EL element 1, the second electrode is a silver alloy formed by co-evaporation so that silver is 97.4 atomic%, palladium is 0.91 atomic%, and copper is 1.69 atomic%. The organic EL element 7 of the comparative example was produced in the same manner except that the heat conductive layer was not provided.
 《有機EL素子の評価》
 作製した有機EL素子について、下記評価を行った。
<< Evaluation of organic EL elements >>
The following evaluation was performed about the produced organic EL element.
 〈外部取り出し量子効率〉
 有機EL素子の光取出し面に、粘着層を介して(株)きもと製光拡散フィルム(MTN-W1)を貼付した有機EL素子に対し、2.5mA/cmの定電流を流したときの外部取り出し量子効率(%)を測定した。なお、測定には分光放射輝度計CS-2000(コニカミノルタセンシング製)を用い、全方位の輝度を測定し、外部取出し量子効率を計算した。外部取出し量子効率は有機EL素子5を100とする相対値で表した。
<External extraction quantum efficiency>
When a constant current of 2.5 mA / cm 2 is applied to the organic EL element in which the light diffusion film (MTN-W1) manufactured by Kimoto Co., Ltd. is pasted on the light extraction surface of the organic EL element via an adhesive layer External extraction quantum efficiency (%) was measured. For the measurement, a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing) was used, the luminance in all directions was measured, and the external extraction quantum efficiency was calculated. The external extraction quantum efficiency was expressed as a relative value with the organic EL element 5 as 100.
 (整流比)
 有機EL素子に+3.5Vの電圧を印加した際の電流値を測定した。引き続き、-3.5Vの電圧を印加した際の電流値を測定した。+3.5V時の電流値を-3.5V時の電流値で割り整流比を算出し、下記基準で評価した。
(Rectification ratio)
The current value when a voltage of +3.5 V was applied to the organic EL element was measured. Subsequently, the current value when a voltage of −3.5 V was applied was measured. The rectification ratio was calculated by dividing the current value at + 3.5V by the current value at -3.5V, and evaluated according to the following criteria.
 ◎:整流比1000以上(安定に駆動しているレベル)
 ○:発生率500以上1000未満(わずかに劣位だが、実技上問題のないレベル)
 △:発生率100以上500未満(劣位、実技上問題のあるレベル)
 ×:発生率100未満(非常に劣位、実技上問題のあるレベル)
 次に、高温保存性の一つの指標として、有機EL素子を85℃に300時間保管した後、同様に整流比を評価した。
A: Rectification ratio of 1000 or more (level at which driving is stable)
○: Incidence rate of 500 or more and less than 1000 (slightly inferior but at a level where there is no practical problem)
Δ: Incidence rate of 100 or more and less than 500 (inferior level with practical problems)
×: Incidence rate less than 100 (very inferior, practically problematic level)
Next, as one index of high-temperature storage stability, the organic EL device was stored at 85 ° C. for 300 hours, and the rectification ratio was similarly evaluated.
 (黒点)
 有機EL素子に4Vの電圧を印加し発光させ、マイクロスコープ(株式会社モリテックス製MS-804、レンズMP-ZE25-200)で有機EL素子の撮影を行った。撮影画像を目視で観察し黒点の状況を調べた。発光面を100分割し、黒点の発生した数から黒点の発生割合を算出し、下記基準で評価した。
(Spot)
A voltage of 4 V was applied to the organic EL element to emit light, and the organic EL element was photographed with a microscope (MS-804 manufactured by Moritex Co., Ltd., lens MP-ZE25-200). The photographed image was visually observed to check the situation of black spots. The light emitting surface was divided into 100, and the black spot generation ratio was calculated from the number of black spots generated and evaluated according to the following criteria.
 ◎:黒点発生率0%(黒点が全く発生しない)
 ○:黒点発生率1%以上5%未満
 △:黒点発生率5%以上10%未満
 ×:黒点発生率10%以上
 次に、高温保存性の一つの指標として、有機EL素子を85℃に300時間保管した後、同様に黒点を評価した。
A: Black spot generation rate 0% (no black spots are generated)
○: Black spot generation rate of 1% or more and less than 5% Δ: Black spot generation rate of 5% or more and less than 10% X: Black spot generation rate of 10% or more After storage for hours, the sunspots were evaluated in the same manner.
 評価の結果を表1に示す。 Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 〈連続駆動安定性の評価方法〉
 有機EL素子を半径5cmの円柱に巻きつけ、折り曲げた状態で300時間連続駆動し、整流比及び黒点について上記方法で、連続駆動前と比較を行った。駆動条件は連続駆動開始時に4000cd/mとなる電流値とした。また、残存輝度は有機EL素子5を100とする相対値で表した。
<Evaluation method for continuous drive stability>
The organic EL element was wound around a cylinder with a radius of 5 cm, and continuously driven for 300 hours in a bent state, and the rectification ratio and black spot were compared with those before continuous driving by the above method. The driving condition was set to a current value of 4000 cd / m 2 at the start of continuous driving. The residual luminance was expressed as a relative value with the organic EL element 5 as 100.
 評価の結果を表2に示す。 Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1、2より、本発明の有機ELは、比較例に較べ外部取り出し量子効率が高く、長寿命で、高温保存性に優れ、かつ折り曲げ時の駆動安定性に優れることが分かる。 From Tables 1 and 2, it can be seen that the organic EL of the present invention has a higher external extraction quantum efficiency than that of the comparative example, a long lifetime, excellent high-temperature storage stability, and excellent driving stability during bending.
 1 可撓性支持基板
 2 第1電極
 3 有機化合物層
 4 第2電極
 5 熱伝導層
 6 封止用接着剤
 7 可撓性封止部材
DESCRIPTION OF SYMBOLS 1 Flexible support substrate 2 1st electrode 3 Organic compound layer 4 2nd electrode 5 Heat conductive layer 6 Adhesive for sealing 7 Flexible sealing member

Claims (7)

  1.  可撓性支持基板上に、第1電極、有機化合物からなる発光層を少なくとも1層含む有機化合物層、第2電極、及び可撓性封止部材をこの順に有する有機エレクトロルミネッセンス素子において、前記第2電極と前記可撓性封止部材の間に、熱伝導層及び封止用接着剤をこの順に有し密着封止された有機エレクトロルミネッセンス素子であって、前記第2電極が銀または銀を主成分とする銀合金であることを特徴とする有機エレクトロルミネッセンス素子。 In the organic electroluminescence element having a first electrode, an organic compound layer including at least one light emitting layer made of an organic compound, a second electrode, and a flexible sealing member in this order on a flexible support substrate, An organic electroluminescence element having a heat conductive layer and a sealing adhesive in this order between two electrodes and the flexible sealing member and sealed tightly, wherein the second electrode is made of silver or silver An organic electroluminescence element characterized by being a silver alloy having a main component.
  2.  前記可撓性支持基板と前記第2電極の間、または前記可撓性支持基板に対し第1電極とは反対側に、光取出し部材を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electro luminescence device according to claim 1, further comprising a light extraction member between the flexible support substrate and the second electrode or on the opposite side of the flexible support substrate from the first electrode. Luminescence element.
  3.  前記封止用接着剤の含水率が0.01~300ppmであることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the sealing adhesive has a water content of 0.01 to 300 ppm.
  4.  前記熱伝導層が金属からなることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence element according to claim 1, wherein the heat conductive layer is made of a metal.
  5.  前記第2電極の銀含有量が90原子パーセント以上であることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 4, wherein a silver content of the second electrode is 90 atomic percent or more.
  6.  可撓性支持基板上に、第1電極、有機化合物からなる発光層を少なくとも1層含む有機化合物層、第2電極、及び可撓性封止部材をこの順に有する有機エレクトロルミネッセンス素子の製造方法において、前記第2電極と前記可撓性封止部材の間に、熱伝導層及び封止用接着剤をこの順に配置し、封止用接着剤を用いて密着封止する有機エレクトロルミネッセンス素子の製造方法であって、前記第2電極が銀または銀を主成分とする銀合金であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。 In the manufacturing method of the organic electroluminescent element which has a 1st electrode, the organic compound layer which contains at least 1 light emitting layer which consists of an organic compound, a 2nd electrode, and the flexible sealing member in this order on a flexible support substrate. The organic electroluminescence device is disposed between the second electrode and the flexible sealing member in this order, and a heat conductive layer and a sealing adhesive are arranged in this order, and the sealing adhesive is used for tightly sealing. It is a method, Comprising: The said 2nd electrode is silver or the silver alloy which has silver as a main component, The manufacturing method of the organic electroluminescent element characterized by the above-mentioned.
  7.  前記封止用接着剤の含水率が300ppm以下まで乾燥することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 6, wherein the moisture content of the sealing adhesive is dried to 300 ppm or less.
PCT/JP2011/051079 2010-02-23 2011-01-21 Organic electroluminescent component and method of manufacturing same WO2011105141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012501703A JP5960047B2 (en) 2010-02-23 2011-01-21 Organic electroluminescence device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-037261 2010-02-23
JP2010037261 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011105141A1 true WO2011105141A1 (en) 2011-09-01

Family

ID=44506563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051079 WO2011105141A1 (en) 2010-02-23 2011-01-21 Organic electroluminescent component and method of manufacturing same

Country Status (2)

Country Link
JP (1) JP5960047B2 (en)
WO (1) WO2011105141A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073301A1 (en) * 2011-11-14 2013-05-23 コニカミノルタ株式会社 Organic electroluminescence element and planar light-emitting body
JP2015518287A (en) * 2012-05-31 2015-06-25 エルジー・ケム・リミテッド Organic light emitting device
JP2019533291A (en) * 2016-10-20 2019-11-14 武漢華星光電技術有限公司Wuhan China Star Optoelectronics Technology Co.,Ltd OLED display and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037580A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness enhancement of emissive displays
WO2002037568A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness and contrast enhancement of direct view emissive displays
JP2002145996A (en) * 2000-11-10 2002-05-22 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same
JP2005019269A (en) * 2003-06-27 2005-01-20 Three Bond Co Ltd Organic el element and resin composition for pasting together organic el element
WO2006132226A1 (en) * 2005-06-09 2006-12-14 Rohm Co., Ltd. Organic el element, organic el display device, and process for producing organic el element
JP2009070621A (en) * 2007-09-11 2009-04-02 Toshiba Matsushita Display Technology Co Ltd Display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830222B2 (en) * 2001-07-12 2011-12-07 凸版印刷株式会社 Electroluminescence element
US6936131B2 (en) * 2002-01-31 2005-08-30 3M Innovative Properties Company Encapsulation of organic electronic devices using adsorbent loaded adhesives
AU2003281446A1 (en) * 2002-07-08 2004-01-23 Dynic Corporation Hygroscopic molding
JP2004158320A (en) * 2002-11-07 2004-06-03 Toppan Printing Co Ltd Transparent conductive substrate, transparent conductive wetproof substrate, and organic electroluminescent element using it
US7205717B2 (en) * 2004-06-24 2007-04-17 Eastman Kodak Company OLED display having thermally conductive material
JP2006244846A (en) * 2005-03-03 2006-09-14 Seiko Epson Corp Light-emitting element, light-emitting device provided with the same, and electronic apparatus
JPWO2007029474A1 (en) * 2005-09-05 2009-03-19 コニカミノルタホールディングス株式会社 Method for manufacturing organic electroluminescence panel
JP2008066499A (en) * 2006-09-07 2008-03-21 Sony Corp Organic electroluminescent element and display unit
JP4939284B2 (en) * 2007-04-05 2012-05-23 財団法人山形県産業技術振興機構 Organic electroluminescent device
JP4952377B2 (en) * 2007-05-29 2012-06-13 コニカミノルタホールディングス株式会社 Method for manufacturing electroluminescence element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037580A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness enhancement of emissive displays
WO2002037568A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness and contrast enhancement of direct view emissive displays
JP2002145996A (en) * 2000-11-10 2002-05-22 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same
JP2005019269A (en) * 2003-06-27 2005-01-20 Three Bond Co Ltd Organic el element and resin composition for pasting together organic el element
WO2006132226A1 (en) * 2005-06-09 2006-12-14 Rohm Co., Ltd. Organic el element, organic el display device, and process for producing organic el element
JP2009070621A (en) * 2007-09-11 2009-04-02 Toshiba Matsushita Display Technology Co Ltd Display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073301A1 (en) * 2011-11-14 2013-05-23 コニカミノルタ株式会社 Organic electroluminescence element and planar light-emitting body
JPWO2013073301A1 (en) * 2011-11-14 2015-04-02 コニカミノルタ株式会社 Organic electroluminescence device and planar light emitter
US9627653B2 (en) 2011-11-14 2017-04-18 Konica Minolta, Inc. Organic electroluminescence element and planar light-emitting body each having light extraction sheet
JP2015518287A (en) * 2012-05-31 2015-06-25 エルジー・ケム・リミテッド Organic light emitting device
US9831457B2 (en) 2012-05-31 2017-11-28 Lg Display Co., Ltd. Organic light emitting diode
JP2019533291A (en) * 2016-10-20 2019-11-14 武漢華星光電技術有限公司Wuhan China Star Optoelectronics Technology Co.,Ltd OLED display and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2011105141A1 (en) 2013-06-20
JP5960047B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP6001595B2 (en) Organic electroluminescence device
JP5312949B2 (en) Laminated electrode for electroactive device and method for producing the same
TWI300314B (en) Electroluminescence device
WO2011114882A1 (en) Organic electroluminescent panel and production method for organic electroluminescent panel
WO2011070951A1 (en) Organic electronics panel and method of manufacturing same
WO2011001567A1 (en) Organic el light emitter, organic el lighting device, and process for production of organic el light emitter
JP2009123690A (en) Organic electronics element winding to past drying agent film after forming coated layer or after forming coupled electrode layer and its manufacturing method
WO2016009958A1 (en) Organic electroluminescent element
JP2006253055A (en) Flexible board for organic electroluminescent element, and organic electroluminescent element using it
US8022437B2 (en) Organic electroluminescence element and method for manufacturing thereof
JP2017091695A (en) Organic electroluminescent element, lighting system, surface light source, and display device
JP5960047B2 (en) Organic electroluminescence device and method for manufacturing the same
US8916406B2 (en) Organic electroluminescence device and production method thereof
JPWO2008023626A1 (en) Organic electroluminescence device and method for producing the same
JP2010067355A (en) Organic el element panel and method of manufacturing the same
JP2003031357A (en) Electroluminescent element
JP2001307871A (en) Electroluminescent element
WO2013094375A1 (en) Method for manufacturing organic light emitting element
JP2010015786A (en) Multicolor light-emitting display device
JP2007103093A (en) Organic electroluminescent element
JPWO2018198529A1 (en) Organic electroluminescence element, optical sensor and biological sensor
JP2003257615A (en) Organic el element
JP2003308970A (en) Organic el element and method of manufacturing the same
WO2011096308A1 (en) Method for producing organic electroluminescence panel
JPWO2017057023A1 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501703

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747105

Country of ref document: EP

Kind code of ref document: A1