WO2011075601A1 - Visual indication of alarms on a ventilator graphical user interface - Google Patents

Visual indication of alarms on a ventilator graphical user interface Download PDF

Info

Publication number
WO2011075601A1
WO2011075601A1 PCT/US2010/060871 US2010060871W WO2011075601A1 WO 2011075601 A1 WO2011075601 A1 WO 2011075601A1 US 2010060871 W US2010060871 W US 2010060871W WO 2011075601 A1 WO2011075601 A1 WO 2011075601A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
user interface
event
parameter
graphical user
Prior art date
Application number
PCT/US2010/060871
Other languages
French (fr)
Inventor
John Skidmore
Mark Brecht
Jim Fissel
Original Assignee
Nellcor Puritan Bennett Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nellcor Puritan Bennett Llc filed Critical Nellcor Puritan Bennett Llc
Publication of WO2011075601A1 publication Critical patent/WO2011075601A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0063Compressors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/025Helium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient

Definitions

  • a ventilator is a device that mechanically helps patients breathe by replacing some or all of the muscular effort required to inflate and deflate the lungs.
  • the ventilator may be configured to generate various alarms upon detecting a change in the patient's condition, a malfunction of the ventilatory equipment, or other indication that clinician intervention may be warranted.
  • alarms generally function to alert a clinician of an abnormal or unsafe condition that may impact the patient.
  • alarms are a very important and necessary feature of any therapeutic instrument.
  • alarms may not convey enough information regarding which alarms need to be alleviated first.
  • multiple simultaneous alarms may compound this insufficiency of alarm information, costing the clinician valuable time while deciding which alarm to address first.
  • Embodiments of the present disclosure may provide one or more selection elements, each selection element indicating a summarized alarm message.
  • the summarized alarm message may include a parameter indication, an alarm event indication, and an alarm level indication.
  • the one or more summarized alarm messages are associated with ranked alarm events. The most highly ranked alarm event is displayed in a selection element at the top of a hierarchical display, with the next most highly ranked alarm event displayed below it in descending order of rank. An alarm event's ranking is determined, first by the alarm level.
  • alarm events are associated with high, medium or low alarm levels.
  • an alarm event is the only alarm event associated with a high alarm level, it will be ranked highest and displayed in the selection element at the top of the hierarchical display. However, if two alarm events are both associated with a high alarm level, a ranking determination is made by comparing the parameter priority associated with each alarm event. Each ventilatory parameter is assigned a priority level. In the case of identical alarm levels, the alarm event associated with the parameter with the highest parameter priority will be ranked higher.
  • Alarm event rankings can change over time. For example, an alarm level for a given alarm event can elevate or de-elevate, depending on the condition of the patient.
  • the hierarchical display of alarm events is rearranged to reflect the new ranking.
  • all alarm events such as an alarm event with a low ranking, may not be provided in the graphical display.
  • the rearrangement is displayed by "floating" the alarm messages either up or down the hierarchical display based on whether the ranking has increased or decreased.
  • a clinician can ascertain more information about the alarm event including, but not limited to, suggested alarm alleviation measures, detailed alarm event description, and a hyperlink to an alarm settings window.
  • a clinician can access the hyperlink to access an alarm settings window providing more information about all the alarms.
  • the graphical display may not display all currently emitting alarms.
  • the alarm settings window provides the clinician with information about all currently emitting alarms with user adjustable parameters.
  • the alarm settings window may also provide the clinician with an opportunity to adjust alarm settings for each ventilatory parameter.
  • the alarm log window provides a clinician with a temporal log of all alarm events.
  • the alarm log window records all alarm events since manual reset of the ventilator.
  • the alarm log window records all alarm events since the ventilator began monitoring a new patient.
  • FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator connected to a human patient.
  • FIG. 2 is a block-diagram illustrating an embodiment of a ventilatory system having a graphical user interface for displaying structured and informative alarms.
  • FIG. 3 is an illustration of an embodiment of a user interface for hierarchically indicating alarms on a graphical display.
  • FIG. 4 is an illustration of an embodiment of a user interface for displaying an expanded alarm tab.
  • FIG. 5 depicts an alarm setup window for display in user interface
  • FIG. 6 depicts an alarm log window for display in user interface.
  • GUIs graphical user interfaces
  • Embodiments described herein seek to optimize the informative presentation of alarms on a ventilator interface.
  • Embodiments of the present disclosure may provide one or more selection elements, each selection element indicating a ranked alarm event.
  • the ranking of an alarm event may be determined by alarm level. If two alarm events are associated with the same alarm level, the ranking of the alarm events may be determined by parameter priority.
  • Alarm event ranking is communicated by display in a hierarchical structure. When an alarm event ranking changes, the alarm event may shift up or down the hierarchical structure, depending on whether the ranking increased or decreased.
  • routine layout configuration settings may be preconfigured according to a hospital-specific, clinic- specific, physician-specific, or any other appropriate protocol.
  • layout configuration settings may be changed and edited in response to a particular patient's changing needs and/or condition.
  • FIG. 1 illustrates an embodiment of a ventilator connected to a human patient 150.
  • the ventilator includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient to the pneumatic system via an invasive patient interface (e.g., endotracheal tube).
  • a pneumatic system 102 also referred to as a pressure generating system 102
  • an invasive patient interface e.g., endotracheal tube
  • Ventilation tubing system 130 may be a two-limb (shown) or a one-limb circuit for carrying gas to and from the patient 150.
  • a fitting typically referred to as a "wye-fitting" 170, may be provided to couple the patient interface to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.
  • Pneumatic system 102 may be configured in a variety of ways.
  • system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132.
  • Compressor 106 or other source(s) of pressurized gases is coupled with inspiratory module 104 to provide a gas source for ventilatory support via inspiratory limb 132.
  • the pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc.
  • Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator (e.g., reset alarms, change ventilator settings, select operational modes, view monitored parameters, etc.).
  • Controller 110 may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices.
  • the memory 112 is computer-readable storage media that stores software that is executed by the processor 116 and which controls the operation of the ventilator.
  • the memory 112 includes one or more solid-state storage devices such as flash memory chips.
  • the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown).
  • Computer-readable storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
  • controller 110 may monitor pneumatic system 102 in order to evaluate the condition of the patient and to ensure proper functioning of the ventilator based on various parameter settings.
  • the specific parameter settings may be based on preconfigured settings applied to the controller 110, or based on input received via operator interface 120 and/or other components of the ventilator.
  • operator interface 120 includes a display 122 that is touch-sensitive, enabling the display to serve both as an input and output device.
  • FIG. 2 is a block-diagram illustrating an embodiment of a ventilatory system 200 having a graphical user interface for displaying structured and informative alarms.
  • the ventilator 202 includes a display module 204, memory 208, one or more processors 206, user interface 210, and ventilation module 212.
  • Memory 208 is defined as described above for memory 112.
  • the one or more processors 206 are defined as described above for the one or more processors 116.
  • Ventilation module 212 may oversee ventilation as delivered to a patient according to the ventilatory settings prescribed for the patient. For example, ventilation module 212 may deliver pressure and/or volume into a ventilatory circuit, and thereby into a patient's lungs, by any suitable method, either currently known or disclosed in the future.
  • the display module 204 presents various input screens and displays to a clinician, including but not limited to one or more structured alarm displays, as will be described further herein, for receiving clinician input and for displaying useful clinical data and alerts to the clinician.
  • the display module 204 is further configured to communicate with user interface 210.
  • the display module 204 may provide various windows and elements to the clinician for input and interface command operations.
  • user interface 210 may accept commands and input through display module 204 and may provide useful alarm information to the clinician through display module 204.
  • Display module 204 may further be an interactive display, whereby the clinician may both receive and communicate information to the ventilator 202, as by a touch-activated display screen.
  • user interface 210 may provide other suitable means of communication with the ventilator 202, for instance by a keyboard or other suitable interactive device.
  • Alarm display module 214 may be useful for providing comprehensive alarm information and access to alarm settings and data on a graphical user interface (GUI) of the ventilator, as may be provided by display module 204.
  • GUI graphical user interface
  • a hierarchical alarm structure may be provided in which a summarized alarm message may be initially presented and, upon clinician selection, an additional detailed alarm message may be displayed.
  • the summarized alarm message may further provide comprehensive information to the clinician in abbreviated form, for example the seriousness of an alarm message may be communicated via various icons and exclamation indicators and the priority of the alarm message vis-a-vis other alarm messages may be communicated via the relative graphical placement of the alarm message.
  • a summary and/or detailed alarm message may provide immediate access to the display and/or settings window associated with an alarm event.
  • an associated alarm settings window may be accessed from an alarm message via a hyperlink such that the clinician may reconfigure alarm conditions as necessary.
  • the alarm settings window allows a clinician to view patient information for various ventilatory parameters, even those parameters that are not currently associated with an alarm event. In this way, the clinician may access additional information regarding patient respiration.
  • the alarm display module 214 may communicate with various other components and/or modules.
  • an alarm settings module 228 may be provided.
  • Alarm settings module 228 may monitor the various settings and other input provided by a clinician to the ventilator via the user interface 210 or display module 204.
  • Alarm settings module 228 may compare and evaluate parameter settings entered by the clinician according to any suitable method or procedure. For example, alarm settings module 228 may detect when patient settings are missing or otherwise inappropriate for a particular input field. Inappropriate parameter settings may be indicated where settings entered for different parameters are inconsistent, e.g., one parameter setting indicates that the patient is a child, while another parameter setting indicates that the patient is an adult male, etc.
  • alarm settings module 228 may evaluate parameter data received from monitor module 230 against the settings associated with the monitored parameters. When alarm settings module 228 determines that the parameter data falls outside applicable settings and ranges, alarm settings module 228 may communicate with alarm display module 214, or other modules of the alarm display module 214, in order to generate an informative alarm message.
  • Alarm display module 214 may also be configured with a hierarchical display module 216.
  • the hierarchical display module 216 may be in communication with the monitor module 230 and/or alarm settings module 228 to receive an indication that an alarm event has occurred.
  • the hierarchical display module 216 may be responsible for generating a multi-level alarm message via any suitable means.
  • a first level summary alarm message may be provided as a tab, banner, dialog box, or other similar type of display.
  • a summary alarm messages may be provided along a border of the graphical user interface that is either blank or that displays minimally important information, The shape and size of the summary alarm message may also be optimized for easy viewing with minimal interference.
  • the summary alarm message may be further configured with a combination of icons and text such that the clinician may readily identify the priority of the alarm message.
  • Hierarchical display module 216 may be preconfigured with various summary messages or alarm descriptions corresponding to each general type of alarm event.
  • General summary messages may also be preconfigured to provide abbreviated information to a clinician. For example, when a pressure reading indicates that the peak pressure setting has been breached, an abbreviated summary message may be displayed: "T Ppcak-" This abbreviated summary message may provide both an indication that a high limit was breached, i.e. by the ⁇ indicator, and an abbreviated indication of the particular breached parameter, i.e. by the Pp eak notation.
  • the same general summary message may also include explanatory information regarding the particular breach, for instance: " ⁇ P pcak - High inspiratory Pressure.”
  • a summary level alarm message may be provided in any suitable position on the screen, by any suitable means, such that a general description of an alarm event and/or its gravity may be efficiently communicated to a clinician.
  • the hierarchical display module 216 may also generate a selectively accessed second level alarm message.
  • the second level alarm message may provide additional details and information regarding the alarm event and may be accessible from the first level summary alarm message.
  • Second level alarm messages may be preconfigured with a detailed alarm message or description corresponding to various types of alarm events. For example, a detailed alarm message may provide possible reasons for an alarm breach, suggested checks or procedures for mitigating the alarm, or other helpful information. Additionally, other embodiments may provide for semi-custom detailed alarm messages. For instance, portions of a detailed alarm message may be
  • variable fields may be populated with more specific information regarding a particular breach, for instance the extent that a parameter was breached, the number of breaths over which the breach occurred, whether a maximum or minimum parameter setting was breached, etc,
  • Alarm display module 214 may also be configured with a translucent display module 218.
  • Translucent display module 218 may allow for display of the summary alarm message and/or the detailed alarm message such that displayed respiratory data may be visualized behind the alarm message. This feature may be particularly useful for displaying the detailed alarm message.
  • alarm messages may be displayed in areas of the display screen that are either blank or that cause minimal distraction from the respiratory data and other graphical representations provided by the GUI.
  • respiratory data and graphs may be at least partially obscured.
  • translucent display module 218 may provide the detailed alarm message such that it is partially transparent. Thus, graphical and other data may be visible behind the detailed alarm message.
  • Alarm display module 214 may also be configured with a selective display module 220.
  • a detailed alarm message may be selectively displayed in order to offer additional information or details regarding an alarm event to a clinician.
  • the second level detailed alarm message may be activated by clicking on the first level display message, touching a portion of the message, or otherwise.
  • the first level summary alarm message may provide an arrow, or some other feature or icon for selection or activation of the detailed alarm message.
  • a general summary alarm message may expand upon selection to provide a detailed alarm message.
  • the detailed alarm message may be provided as a tab, banner, dialog box, or other similar type of display, which may extend from behind the general summary alarm message upon selection.
  • the detailed alarm message may be condensed upon selection of an arrow, or some other feature or icon, via touching, clicking, or otherwise.
  • the summary alarm message and the detailed alarm message may also be cleared from the graphical user interface.
  • Alarm display module 214 may also be configured with an icon display module 222.
  • Icon display module 222 may provide various icons and other identifiers that may communicate additional abbreviated information to a clinician, for instance regarding the alarm level.
  • An alarm level reflects the seriousness or priority of an alarm message. For instance, "! ! ! ! may be represented in a corner, or other visible area, of the general summary message and may indicate that the alarm is a "High” alarm level and, therefore, is relatively serious. Alternatively, while “ ⁇ " or "! may indicate that the alarm is a "Medium” or “Low” alarm level and is, therefore, less serious.
  • a number, letter, or other priority icon may be provided to communicate the priority of an alarm message vis-a-vis other displayed alarm messages.
  • a status icon may be provided such that the status of an alarm message may be communicated, for instance, an active status or an inactive status, a high or low status, etc. Status may also refer to the number of times during a time period that the same alarm has occurred.
  • an up-arrow e.g., " ⁇ ”
  • a down- arrow e.g., "I”
  • any number or combination of icons or other indicators may be employed to communicate additional, abbreviated information to a clinician.
  • Alarm display module 214 may also be configured with a prioritized display module 224.
  • multiple alarm events may occur at the same or similar time, In this case, it may be useful for the clinician to readily determine which alarm events are of higher priority and should be addressed more quickly.
  • the present disclosure provides for presentation of one or more pending alarms events in a vertical array, for example, that may convey an alarm event ranking and/or status. According to some embodiments, higher ranked alarm events may be presented above other alarm events. Thus, based on a graphical placement of alarm events relative to other alarm events, additional information regarding the priority or status of alarm events relative to other alarm events may be communicated to a clinician.
  • prioritized display module 224 is configured to rank an alarm event.
  • the ranking of an alarm event determines whether the alarm event will be displayed in an alarm tab and, if so, where the alarm tab displaying the alarm event will be placed in the hierarchical display structure.
  • Alarm event ranking is based on first, an alarm level and second, a parameter priority.
  • An alarm event with a "High” alarm level will be assigned a higher ranking than an alarm event with a "Medium” or “Low” alarm level. If two alarm events have the same alarm level, ranking will be based on a predetermined parameter priority.
  • Each ventilator parameter is assigned a priority. The assignment of parameter occurring may be done by a clinician during ventilator setup. A parameter priority may also be assigned automatically according to a hospital protocol. When two alarm events have the same alarm level, the alarm event with the higher parameter priority will be assigned the higher ranking.
  • Alarm display module 214 may also be configured with a hyperlink module 226.
  • Hyperlink module 226 may be configured to provide access from the various hierarchical alarm messages to various settings and display screens associated with an identified alarm event. For example, an icon or other link indicator may be provided in either the summary alarm message and/or the detailed alarm message that may be activated or otherwise selected. Upon selection, the icon may provide direct access, via a hyperlink or otherwise, to associated settings or display screens corresponding to a particular alarm event.
  • the clinician may reset the alarm following clinician intervention or may reconfigure alarm settings as appropriate.
  • the clinician may view additional information and respiratory data regarding the alarm event.
  • Hyperlink module 226 may further provide access to any useful display screen, settings screen, or other graphical user interface available on the ventilator that is associated with a particular alarm event.
  • Monitor module 230 may operate to monitor the physical condition of the patient in conjunction with the proper operation of the ventilator 202.
  • the monitor module 230 may communicate with display module 204, user interface 210, alarm display module 214, or other suitable modules or processors of the ventilator 202.
  • monitor module 230 may communicate with alarm display module 214 and/or display module 204 such that information regarding alarm events may be displayed to the clinician.
  • Monitor module 230 may further utilize one or more sensors to detect changes in various physiological or mechanical parameters. Indeed, any sensory or derivative technique for monitoring the physical condition of the patient or the mechanical operation of the ventilator may be employed in accordance with embodiments described herein,
  • FIG. 3 is an illustration of an embodiment of a user interface 300 for
  • User interface may be accessed via any suitable means, for example via a main ventilatory user interface on display module. As illustrated, user interface may provide one or more windows for display and one or more elements for selection and/or input. Windows may include one or more elements and, additionally, may provide graphical displays, instructions, or other useful information to the clinician. Elements may be displayed as buttons, tabs, icons, toggles, or any other suitable visual access element, etc., including any suitable element for input selection or control.
  • User interface 300 may include various icons for controlling the ventilator.
  • Some exemplary control icons include a setup icon 306, a tools icon 308, a log icon 310, an alarm adjustment icon 312, an oxygen concentration icon 314, and a help icon 316. While each of these icons controls ventilatory function, only the setup icon 306 and log icon 310 will be discussed in detail below in relation to indicating alarms on a ventilator display.
  • a user interface 300 that includes one or more hierarchically structured alarm tabs 302A-D.
  • the alarm tabs 302A-D are selectable elements that provide a summarized alarm message.
  • the alarm tabs 302A-D are stacked one on top of another in a hierarchical structure on the right side of user interface 300.
  • the alarm tabs can be located on any side of user interface 300 and can be arranged in any hierarchical structure as contemplated within the scope of the present disclosure.
  • user interface 300 displays four alarm tabs 302A-D.
  • the user interface 300 may display any number of alarm tabs.
  • Each of the four alarm tabs 302A-D provides an alarm message that summarizes an alarm event 304A-D.
  • An alarm event corresponds to a change in a ventilatory parameter that causes the controller 110 monitoring the parameter to issue an alarm.
  • alarm tab 302 A provides an alarm message that summarizes an alarm event 304A related to the Peak Pressure parameter as indicated by the
  • Pp eak on the alarm tab 302A.
  • the alarm event 304A that caused the alarm was an increase in Peak Pressure.
  • This alarm event 304A is indicated on alarm tab 302A in two different manners. First, an upwards arrow next to the "Pp eak " abbreviation signifies that Peak Pressure has increased.
  • Each of the four alarm tabs 302A-D summarizes an alarm message that corresponds to an alarm event 304A-D that is different from the alarm event
  • alarm tab 302A corresponds to a "High Inspiratory Pressure” alarm event 304A.
  • Alarm tab 302B corresponds to "Low Exhaled Minute Volume” 304B.
  • Each alarm tab 302A-D also displays the alarm level associated with the alarm event 304A-D in the summarized alarm message.
  • the alarm levels are indicated by one or more exclamation points on the alarm tab.
  • user interface 300 displays three different alarm levels each indicated by different numbers of exclamation points.
  • a "High” alarm level is indicated by three exclamation points ("! ! !).
  • a "Medium” alarm level is indicated by two exclamation points ("! !).
  • a “Low” alarm level is indicated by one exclamation point ("!).
  • multiple methods of indicating alarm level can be simultaneously employed by user interface 300. For example, user interface might also color tabs differently based on alarm level.
  • an alarm tab with an alarm level of "High” is colored red, while alarm tabs with alarm levels of either “Medium” or “Low” are colored yellow.
  • any symbol, color, or other method of alarm level indication can be used alone or in combination to indicate an alarm level.
  • Alarm tabs 302A-D are stacked on top of one another in a hierarchical structure based on the ranking of the alarm event 304A-D displayed by the alarm tab 302A-D,
  • the ranking is derived from alarm level and parameter priority level.
  • the alarm tab at the top of the stack as exemplified by alarm tab 302A, is said to display the highest ranked alarm event.
  • the alarm tab 302B below the alarm tab 302A displaying the highest ranked alarm event is said to display the second highest ranked alarm event.
  • the alarm tab 302C below the alarm tab 302B displaying the second highest ranked alarm event is said to display the third highest ranked alarm event.
  • the alarm tab 302D below the alarm tab 302C displaying the third highest ranked alarm event is said to display the fourth highest ranked alarm event.
  • the ranking is derived from, first, the alarm level and second, if two alarm events have the same alarm level, ftom parameter priority level.
  • An alarm event indicating an alarm level of "High” will be ranked higher than an alarm event indicating an alarm level of "Medium” which will be ranked higher than an alarm event indicating an alarm level of "Low.”
  • alarm event 304A is associated with an alarm level of "High.”
  • alarm event 304A is ranked higher than alarm events 302C and 302D that indicate alarm events with alarm levels of "Medium” and “Low” respectively.
  • alarm levels are parameter specific. In other words, measurements that cross a certain threshold for a first parameter may trigger a "Low” alarm level while measurements that cross the same threshold for a second parameter may trigger a "Medium” or "High” alarm level.
  • a ventilator monitors a multitude of ventiltatory parameters. Each parameter is assigned a priority.
  • the parameter priority level may be assigned by a clinician or based on uniform protocol at ventilator setup.
  • the priority level associated with a parameter is stored by the ventilator in storage 114 or RAM 112 of the controller 110. In one embodiment, the parameter priority level can be changed by utilizing setup icon 306.
  • alarm event 304A is ranked higher than alarm event 304B because parameter "Pp eak " is assigned a higher priority than parameter "VE TOT-" As such, alarm event 304A is displayed in alarm tab 302A and alarm event 304B is displayed in alarm tab 304B.
  • An alarm level associated with an alarm event can increase or decrease over time. For example, a patient's condition may improve, causing the alarm level to either decrease or disappear entirely. This is known as alarm level de-elevation. Alternatively, a patient's condition may worsen, causing the alarm level to increase. This is known as alarm level elevation.
  • a clinician or other ventilatory user is notified of the change by a warning symbol superimposed on setup icon 306 and/or log icon 310.
  • the warning symbol is a yellow triangle, as exemplified in user interface 300.
  • any symbol, word, sound, or other notification method may be used to notify the clinician that an alarm event has changed. It should be noted that a change in an alarm event may or may not be displayed on alarm tabs 302A-D depending on whether the alarm event is ranked high enough for display, The ventilator removes the warning symbol from an icon when clinician selects that icon.
  • Selection of setup icon 306 causes user interface 300 to display alarm setup window 500.
  • Alarm setup window 500 will be discussed in detail with regard to FIG. 5 below.
  • Selection of log icon 310 causes user interface 300 to display alarm log window 600. Alarm log window 600 will be discussed in detail with regard to FIG. 6 below.
  • the change may trigger an increase or decrease in that alarm events ranking as well as the ranking of other alarm events. Changes to the ranking of alarm events necessitates that the alarm events be reordered in the user interface. As will be appreciated, reordering alarm events may cause the user interface 300 to display a previously undisplayed alarm event in an alarm tab or remove from display an alarm event previously displayed in an alarm tab.
  • the alarm tabs displaying the alarm events slide up and down passed one another to reflect the reordered alarm events.
  • the ventilator may detect an elevation in alarm level for alarm event 304D "High End Expiratory Pressure” from “Low” to “Medium.”
  • the elevated alarm level results in two alarm events 304C and 304D with "Medium” alarm levels.
  • the system compares the parameter priority of "%LEAK” to the parameter priority for "PEEP.” In one embodiment, "PEEP” has a higher parameter priority than "%LEAK,” As a result, the ranking of alarm event 304D associated with "PEEP” changes from fourth highest ranked to the third highest ranked.
  • the ranking of the alarm event 304C associated with "%LEAK" changes from third highest ranked to the fourth highest ranked.
  • Reordering of the alarm events 304C and 304D is visualized in user interface 300 by sliding the reordered alarm tabs 302D and 302C up and down, respectively, to occupy the new ranking position.
  • Alarm tab 302D displaying alarm event 304D slides up to occupy the location of alarm tab 302C.
  • alarm tab 302C displaying alarm event 304C slides down to occupy the location of alarm tab 302D.
  • alarm tab 302D slides straight up while alarm tab 302C may partially retract, or partially fade, while sliding by alarm tab 302D.
  • the alarm tabs 302 A-D on user interface 300 now properly reflect the rankings of alarm events 304A-D.
  • alarm tabs 302A-D may be displayed by default in a minimized state.
  • the minimized state of the alarm tab 302A-D still conveys information such as alarm event 304A-D, parameter, alarm level and ranking while not occupying too much space on the user interface.
  • Alarm tabs may 302A-D also include an arrow 318A-D indicating that the minimized alarm tab can be expanded. Making a selection, such as by clicking, anywhere in alarm tab 312A-D will cause the selected alarm tab to expand. Expanding an alarm tab will be discussed in detail with reference to FIG. 4.
  • FIG. 4 is an illustration of an embodiment of a user interface 400 for displaying an expanded alarm tab.
  • FIG. 4 illustrates a user interface 400 that includes an expanded alarm tab 402.
  • the expanded alarm tab 402 is accessed by making a selection anywhere in alarm tab 302A.
  • the maximization arrow 318A is flipped in the opposite direction to indicate that
  • maximization arrow is now a minimization arrow 410.
  • the clinician may make a selection anywhere in expanded alarm tab 402 and the expanded alarm tab 402 is minimized back to alarm tab 302A.
  • the minimization arrow 410 is converted back into maximization arrow 318A.
  • User interface 400 illustrates single expanded alarm tab 402. However, as will be appreciated by one skilled in the art, any number of alarm tabs
  • 302A-D may be expanded or minimized at any given time for display in user interface 400.
  • certain alarm tabs associated with very high priority alarm events may be automatically expanded upon detection of the alarm event.
  • the very high priority alarm events may be indicated by a clinician or may be industry standards. Upon initial detection of the high priority alarm event, the alarm tab will expand immediately. The clinician can then choose to minimize the expanded alarm tabs by the any of the minimization methods as discussed above.
  • This behavior of automatically expanding alarm tabs associated with very high priority alarm events has the added advantage of maximizing the visibility of the alarm. Because the expanded alarm tab may overlap other items on screen and thus interrupt on screen activity, the behavior, in one embodiment, may only be used on alarms that require immediate intervention. This may include alarm events associated with activity outside of the ventilatory parameters such as circuit disconnect, occlusion, etc.
  • expanded alarm tab 402 provides clinician with more detailed information about the alarm event, In one embodiment, expanded alarm tab 402 provides clinician with an explanation 404 as to why an alarm event is associated with a particular alarm level. For example, expanded alarm tab 402 may provide an explanation 404 for the "High" alarm level associated with alarm event
  • Expanded alarm tab 402 may also provide clinician with possible solutions 406 that may de-elevate the alarm level associated with an alarm event 304A. For example, expanded alarm tab 402 may provide possible solutions 406 to increased Peak Pressure, suggesting "Check Patient, Circuit, and ET Tube.” These possible solutions 406 provide clinician with suggestions that may alleviate the problem and, as a result, de- elevate the alarm level associated with an alarm event,
  • Expanded alarm tab 402 may also provide the clinician with a hyperlink 408 to alarm setup window 500.
  • the hyperlink 408 allows a clinician to "jump" to the alarm setup window 500 for that alarm without having to navigate to it through the setup icon 306.
  • FIG. 5 depicts an alarm setup window 500 for display in user interface 300.
  • alarm setup window 500 may be accessed by selecting the hyperlink 408 in the expanded alarm tab 402. By selecting the hyperlink 408, a clinician is able to "jump" to the meter for the parameter associated with the selected alarm event.
  • the alarm setup window 500 can also be accessed by selecting the setup icon 306 and navigating to the alarm setup window 500. As depicted by alarm setup window 500, alarm tabs 302A-D may still be visible when alarm setup window 500 is displayed.
  • Alarm setup window 500 displays a meter for each ventilatory parameter associated. It will be appreciated that only those alarms with user-adjustable parameters, i.e. those alarms associated with ventilatory parameters, may be associated with a meter in alarm setup window 500. Some alarms issued by the ventilator are not user- adjustable alarm such as an alarm indicating apnea, procedure error, or circuit disconnect. As discussed above, a ventilator monitors a multitude of ventilatory parameters. As such, alarm setup window 500 may display meters for parameters that are not visible on alarm tabs 302A-D in user interfere 300.
  • Parameters may not be visible on alarm tabs 302A-D because either the parameter is not associated with an alarm event or, if the parameter is associated with an alarm event, the alarm event is not ranked high enough to be displayed in alarm tabs 302A-D. In either event, alarm setup window 500 allows a clinician to view a meter for each ventilatory parameter, whether that parameter is displayed in alarm tabs 302A-D or not.
  • Alarm setup window 500 displays five meters 504A-E, each meter associated with a different parameter. As discussed above, ventilator may monitor more or less than five parameters. Additional meters for parameters not currently displayed in alarm setup window 500 can be accessed using scroll bar 506.
  • Scroll bar 506 includes multiple symbols, each symbol representing one parameter. In one embodiment, the symbols on the scroll bar 506 are bells. However, any symbol can be used within the scope of the present disclosure.
  • Parameters associated with alarm events are further depicted on scroll bar 506 by superimposing an alarm event symbol onto the parameter symbol. As illustrated by scroll bar 506, the bells representing the parameter may be superimposed with a yellow triangle representing that the parameter is associated with an alarm event.
  • the yellow triangle may include the number of exclamation points associated with the alarm level of the alarm event for that parameter.
  • a parameter with an alarm event of alarm level medium might be represented in scroll bar 506 as a bell with a yellow triangle superimposed onto in it, the yellow triangle including two exclamation points.
  • any method of representing alarm events, alarm levels, or parameters on a scroll bar 506, is contemplated within the scope of the present disclosure including differing colors, symbols, and graphical effects.
  • Scroll bar 506 may also include scroll bar window 508, Scroll bar window 508 encases the parameter symbols representing the parameters with meters currently displayed in alarm setup window 500.
  • alarm setup window 500 displays five meters 504A-E so scroll bar window encases five parameter symbols, 506A-E, representing the five meters.
  • the Pp eak parameter meter 504A is displayed in the left most position of alarm setup window 500.
  • the Pp e a k parameter meter 504A is, therefore, represented by symbol 506A in the left most position of scroll bar 506.
  • the symbol 506A in the left most position of scroll bar 506 indicates that it represents a parameter associated with "High" level alarm event. This description matches the Pp eak parameter which is associated with an "High" level alarm event, as indicated by alarm tab 302A.
  • Scroll bar window 508 can be shifted to the left or right on scroll bar 506 to display meters associated with different parameters. For example, a clinician may access scroll arrows 516 to shift scroll bar window 508 one position to the right on scroll bar 506. Such a shift would cause alarm setup window 500 to display parameters associated with symbols 506B-506F.
  • the scroll bar window 508 can be shifted in either direction until the end of the scroll bar 506 is reached.
  • Clinician can also access a meter for a parameter by directly selecting its symbol from scroll bar 506. For example, if clinician was interested in the "Medium" level alarm event associated with symbol 5061, the clinician could directly click on symbol 5061 and alarm setup window 500 would display five meters, one being the parameter associated with symbol 5061.
  • scroll bar 506 illuminates to inform a clinician of the shift
  • Each meter 504A-E displays ranges and measurements associated with a particular parameter.
  • the big numbers 510A-I indicate either an upper or lower limit of a safe range for a given parameter
  • the safe range is the range in which parameter measurements for a patient indicate that the patient is not in danger.
  • the P peak parameter has a safe range with an upper limit 510A of 40 cmH20 and a lower limit 510B of 14cmH20.
  • the ⁇ parameter on the other hand, has a safe range with an upper limit 510C of 40 1/min but does not have any lower limit. As a result, only one limit is displayed in association with the f ⁇ parameter meter 504B.
  • the upper and lower limit for each meter 504A-E can be adjusted. For example a clinician can select the upper limit 510D and drag it up or down. When upper limit 510D is released at a new value, the big numbers inside upper limit 510D will change to reflect the new value. If an upper limit 510A, C, D, F, or H is dragged to the top of the meter, the upper limit may disappear, or read "OFF". Likewise, if a lower limit 510B, E, G, or I is dragged to the bottom of the meter the lower limit may disappear, or read "OFF". An upper limit 510A, C, D, F, or H can only be dragged as low as the lower limit for that meter. Likewise, a lower limit 51 OB, E, G, or I can only be dragged as high as the upper limit for that meter. In another embodiment, a meter may be associated with an alarm that has a factory preset limit and cannot be turned off.
  • the numbers 512A-D represent the current measurement for a given parameter.
  • the current measurement for the Pp cak parameter is 40 cmH20.
  • the current measurement 512A-D is displayed as a line through a white box 514A-D in the meter 504A-D for the parameter.
  • the white box 514A-D represents the measurements of the parameter for a given period.
  • the period is a period of time, such as two minutes, and the white box represents the measurements for the parameter for the last two minutes.
  • the period is a period of breaths, such as 200 breaths, and the white box represents the measurements for the parameter for the last 200 breaths, As will be appreciated by one skilled in the art any sort of period can be used to define the bounds of the white box.
  • alarm setup window 500 some meters may not display any measurements.
  • a meter may not display any measurement because the alarm for the parameter associated with the meter may only be required under certain breath modes or breath types.
  • the meter for the parameter VTE SPONT does not display any measurements. This is because the current breath mode does not require VTE SPONT measurements.
  • the alarm setup window 500 will automatically switch and begin displaying measurements for the VTE SPONT parameter when the current breath mode changes.
  • Alarm setup window 500 may also include one or more controls for alarm volume. As illustrated in alarm setup window 500, alarm volume may be controlled by a volume adjust scrollbar 518. By sliding volume adjust scrollbar 518 either left or right, clinician can control the volume of an emitted alarm. Volume adjust scrollbar 518 may also display the current alarm value as a numerical value. As displayed by alarm setup window 500, the alarm volume may be based on a scale from one to ten. As will be appreciated by one skilled in the art, any scale or other manner of conveying alarm value may be used as contemplated within the scope of the present disclosure,
  • Alarm setup window 500 also includes a transparency button 522 and a pin-up button 524.
  • the alarm setup window 500 may be viewed simultaneously with other data displayed on user interface 300, or other user interface.
  • the pin-up button 524 is accessed, the alarm setup window 500 may remain open unless and until a clinician desires to close the alarm setup window 500 by accessing the "Close" button 520. Otherwise, the alarm setup window 500 may close automatically after some period of inactivity.
  • the alarm setup window 500 will close, and the changes to the alarm limits will be implemented, when an "Accept" button (not depicted) is accessed.
  • the alarm setup window 500 is pinned and the "Accept" button (not depicted) is accessed, the changes will be implemented, but the alarm setup window 500 will not be closed.
  • FIG. 6 depicts an alarm log window 600 for display in user interface 300.
  • selection of log icon 310 causes user interface 300 to display alarm log window 600. This selection is indicated by the bold box surrounding log icon 602. As will be appreciated, any manner of indicating selection may be used.
  • Alarm log window 600 provides a temporal log of alarm events.
  • the alarm log records all alarm events emitted since the last manual reset of the mechanical ventilator.
  • the alarm log records all alarm events emitted since the ventilator began monitoring a new patient.
  • a variety of information categories related to alarm events may be provided by alarm log window 600.
  • alarm log window 600 may provide information categories regarding the time 604, event 606, priority 608, alarm 610, and analysis 612. These categories may be arranged as columns in a table. In other embodiments, some or different information categories associated with alarm events may be provided by alarm log window 600.
  • Alarm log window 600 may provide a time 604 information category indicating the time at which an alarm event occurred.
  • the alarm events are arranged hierarchically from the most recent event to the least recent event.
  • the time 604 information category may be accompanied by a flip arrow 614. By accessing the flip arrow 614, a clinician may flip the order the alarm log hierarchy such that the alarm events are displayed from the least recent event to the most recent event.
  • Alarm log window 600 may also provide an event 606 information category indicating a type of alarm event.
  • a manual reset alarm event may indicate that an alarm was manually reset by the operator pressing an alarm reset button on the ventilator.
  • An augmented alarm event may indicate that an alarm has been escalated in priority.
  • a detected alarm event may indicate that an alarm was first detected at that point in time.
  • Alarm log window 600 may also provide a priority 608 information category indicating an alarm level associated with an alarm event. As discussed above, an alarm event may be associated with an alarm level that reflects the severity of the alarm event. Exemplary alarm levels include high, medium, and low.
  • Alarm log window 600 may also provide an alarm 610 information categoiy indicating a change in a parameter measurement associated with an alarm event.
  • parameter names may be represented by parameter abbreviations.
  • Peak Pressure may be represented by the abbreviation "Ppeak "
  • the parameter abbreviation may be accompanied by a symbol indicating the change in the parameter measurement.
  • the parameter abbreviation is accompanied by either an upward pointing arrow or a downward pointing arrow.
  • the "Pp eak " parameter may be accompanied by an upward pointing arrow indicating that the Peak Pressure has increased.
  • Alarm log window 600 may also provide an analysis 612 information category indicating more detailed information about the cause of the alarm event.
  • the alarm 612 information category may provide the measurement that triggered the alarm event. For example, if the ventilator measures the last 4 or more breaths of the patient as greater than or equal to the set limit, the ventilator may trigger an increased Peak Pressure alarm event with a high alarm level.
  • Alarm log window 600 may also include a scroll bar 622. By accessing the scroll bar 622, a clinician can display different alarm events in the alarm log window 600. In one embodiment, when the scroll bar 622 is accessed it is illuminated to indicate to the clinician that the alarm events displayed in the alarm log window 600 have changed.
  • Alarm log window 600 may also include a transparency button 616 and a pin-up button 618.
  • the transparency button 616 When the transparency button 616 is accessed, the alarm log window 600 may be viewed simultaneously with other data displayed on user interface 300, or other user interface.
  • the pin-up button 618 When the pin-up button 618 is accessed, the alarm log window 600 may remain open unless and until a clinician desires to close the alarm log window 600 by accessing the "Close" button 620. Otherwise, the alarm log window 600 may close automatically after some period of inactivity.
  • the alarm log window 600 When the alarm log window 600 is pinned, the changes will be implemented, but the alarm log window 600 will not be closed.

Abstract

This disclosure describes systems and methods for displaying alarms to a clinician in a ventilatory system. Specifically, embodiments described herein seek to optimize the informative presentation of alarms on a ventilator interface. Embodiments of the present disclosure may provide one or more selection elements, each selection element indicating a ranked alarm event. The ranking of an alarm event may be determined by alarm level. If two alarm events are associated with the same alarm level, the ranking of the alarm events may be determined by parameter priority. Alarm event ranking is communicated by display in a hierarchical structure. When an alarm event ranking changes, the alarm event may shift up or down the hierarchical structure, depending on whether the ranking increased or decreased.

Description

VISUAL INDICATION OF ALARMS ON A VENTILATOR
GRAPHICAL USER INTERFACE
Introduction
A ventilator is a device that mechanically helps patients breathe by replacing some or all of the muscular effort required to inflate and deflate the lungs. During ventilation, the ventilator may be configured to generate various alarms upon detecting a change in the patient's condition, a malfunction of the ventilatory equipment, or other indication that clinician intervention may be warranted. Thus, alarms generally function to alert a clinician of an abnormal or unsafe condition that may impact the patient. In this sense, alarms are a very important and necessary feature of any therapeutic instrument. However, alarms may not convey enough information regarding which alarms need to be alleviated first. In addition, multiple simultaneous alarms may compound this insufficiency of alarm information, costing the clinician valuable time while deciding which alarm to address first.
Visual Indication of Alarms on a Ventilator Graphical User Interface
The disclosure describes improved systems and methods for displaying alarms to a clinician in a ventilatory system. Specifically, embodiments described herein seek to optimize the informative presentation of alarms on a ventilator interface. Embodiments of the present disclosure may provide one or more selection elements, each selection element indicating a summarized alarm message. The summarized alarm message may include a parameter indication, an alarm event indication, and an alarm level indication. The one or more summarized alarm messages are associated with ranked alarm events. The most highly ranked alarm event is displayed in a selection element at the top of a hierarchical display, with the next most highly ranked alarm event displayed below it in descending order of rank. An alarm event's ranking is determined, first by the alarm level. In some embodiments, alarm events are associated with high, medium or low alarm levels. If an alarm event is the only alarm event associated with a high alarm level, it will be ranked highest and displayed in the selection element at the top of the hierarchical display. However, if two alarm events are both associated with a high alarm level, a ranking determination is made by comparing the parameter priority associated with each alarm event. Each ventilatory parameter is assigned a priority level. In the case of identical alarm levels, the alarm event associated with the parameter with the highest parameter priority will be ranked higher.
Alarm event rankings can change over time. For example, an alarm level for a given alarm event can elevate or de-elevate, depending on the condition of the patient. When an alarm event's ranking changes, the hierarchical display of alarm events is rearranged to reflect the new ranking. As will be appreciated, all alarm events, such as an alarm event with a low ranking, may not be provided in the graphical display. As a result, if an alarm event's ranking drops enough, it may disappear from the graphical display completely and a new alarm event may replace it. In some embodiments, the rearrangement is displayed by "floating" the alarm messages either up or down the hierarchical display based on whether the ranking has increased or decreased.
Other embodiments of the present disclosure provide for an expanded alarm message. Upon accessing a selection element in the hierarchical display, a clinician can ascertain more information about the alarm event including, but not limited to, suggested alarm alleviation measures, detailed alarm event description, and a hyperlink to an alarm settings window. In one embodiment, a clinician can access the hyperlink to access an alarm settings window providing more information about all the alarms. As discussed above, the graphical display may not display all currently emitting alarms. The alarm settings window provides the clinician with information about all currently emitting alarms with user adjustable parameters. The alarm settings window may also provide the clinician with an opportunity to adjust alarm settings for each ventilatory parameter.
Other embodiments of the present disclosure provide for an alarm log window. The alarm log window provides a clinician with a temporal log of all alarm events. In one embodiment, the alarm log window records all alarm events since manual reset of the ventilator. In another embodiment, the alarm log window records all alarm events since the ventilator began monitoring a new patient.
These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
Brief Description of the Drawings
The following drawing figures, which from a part of this application, are illustrative of described technology and are not meant to limit the scope of the invention as claimed in any manner, which scope shall be based on the claims appended hereto.
FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator connected to a human patient.
FIG. 2 is a block-diagram illustrating an embodiment of a ventilatory system having a graphical user interface for displaying structured and informative alarms.
FIG. 3 is an illustration of an embodiment of a user interface for hierarchically indicating alarms on a graphical display.
FIG. 4 is an illustration of an embodiment of a user interface for displaying an expanded alarm tab.
FIG. 5 depicts an alarm setup window for display in user interface,
FIG. 6 depicts an alarm log window for display in user interface.
Detailed Description
Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques for use in a mechanical ventilator system. The reader will understand that the technology described in the context of a ventilator system could be adapted for use with other therapeutic equipment having user interfaces, including graphical user interfaces (GUIs), for prompt startup of a therapeutic treatment.
This disclosure describes systems and methods for displaying alarms to a clinician in a ventilatory system. Specifically, embodiments described herein seek to optimize the informative presentation of alarms on a ventilator interface. Embodiments of the present disclosure may provide one or more selection elements, each selection element indicating a ranked alarm event. The ranking of an alarm event may be determined by alarm level. If two alarm events are associated with the same alarm level, the ranking of the alarm events may be determined by parameter priority. Alarm event ranking is communicated by display in a hierarchical structure. When an alarm event ranking changes, the alarm event may shift up or down the hierarchical structure, depending on whether the ranking increased or decreased.
As such, the present disclosure provides an institution or clinician with optimal control over routine ventilatory settings. Specifically, routine layout configuration settings may be preconfigured according to a hospital-specific, clinic- specific, physician-specific, or any other appropriate protocol. Moreover, layout configuration settings may be changed and edited in response to a particular patient's changing needs and/or condition.
FIG. 1 illustrates an embodiment of a ventilator connected to a human patient 150. The ventilator includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient to the pneumatic system via an invasive patient interface (e.g., endotracheal tube).
Ventilation tubing system 130 may be a two-limb (shown) or a one-limb circuit for carrying gas to and from the patient 150. In a two-limb embodiment as shown, a fitting, typically referred to as a "wye-fitting" 170, may be provided to couple the patient interface to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.
Pneumatic system 102 may be configured in a variety of ways. In the present example, system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132.
Compressor 106 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 104 to provide a gas source for ventilatory support via inspiratory limb 132.
The pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator (e.g., reset alarms, change ventilator settings, select operational modes, view monitored parameters, etc.).
Controller 110 may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices. The memory 112 is computer-readable storage media that stores software that is executed by the processor 116 and which controls the operation of the ventilator. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 116. Computer-readable storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
As described in more detail below, controller 110 may monitor pneumatic system 102 in order to evaluate the condition of the patient and to ensure proper functioning of the ventilator based on various parameter settings. The specific parameter settings may be based on preconfigured settings applied to the controller 110, or based on input received via operator interface 120 and/or other components of the ventilator. In the depicted example, operator interface 120 includes a display 122 that is touch-sensitive, enabling the display to serve both as an input and output device.
FIG. 2 is a block-diagram illustrating an embodiment of a ventilatory system 200 having a graphical user interface for displaying structured and informative alarms.
The ventilator 202 includes a display module 204, memory 208, one or more processors 206, user interface 210, and ventilation module 212. Memory 208 is defined as described above for memory 112. Similarly, the one or more processors 206 are defined as described above for the one or more processors 116. Ventilation module 212 may oversee ventilation as delivered to a patient according to the ventilatory settings prescribed for the patient. For example, ventilation module 212 may deliver pressure and/or volume into a ventilatory circuit, and thereby into a patient's lungs, by any suitable method, either currently known or disclosed in the future. The display module 204 presents various input screens and displays to a clinician, including but not limited to one or more structured alarm displays, as will be described further herein, for receiving clinician input and for displaying useful clinical data and alerts to the clinician. The display module 204 is further configured to communicate with user interface 210. The display module 204 may provide various windows and elements to the clinician for input and interface command operations. Additionally, user interface 210 may accept commands and input through display module 204 and may provide useful alarm information to the clinician through display module 204. Display module 204 may further be an interactive display, whereby the clinician may both receive and communicate information to the ventilator 202, as by a touch-activated display screen. Alternatively, user interface 210 may provide other suitable means of communication with the ventilator 202, for instance by a keyboard or other suitable interactive device.
Alarm display module 214 may be useful for providing comprehensive alarm information and access to alarm settings and data on a graphical user interface (GUI) of the ventilator, as may be provided by display module 204. Specifically, a hierarchical alarm structure may be provided in which a summarized alarm message may be initially presented and, upon clinician selection, an additional detailed alarm message may be displayed. The summarized alarm message may further provide comprehensive information to the clinician in abbreviated form, for example the seriousness of an alarm message may be communicated via various icons and exclamation indicators and the priority of the alarm message vis-a-vis other alarm messages may be communicated via the relative graphical placement of the alarm message.
Additionally, a summary and/or detailed alarm message may provide immediate access to the display and/or settings window associated with an alarm event. For example, an associated alarm settings window may be accessed from an alarm message via a hyperlink such that the clinician may reconfigure alarm conditions as necessary. The alarm settings window allows a clinician to view patient information for various ventilatory parameters, even those parameters that are not currently associated with an alarm event. In this way, the clinician may access additional information regarding patient respiration.
In order to accomplish the various aspects of the hierarchical informative alarm display, the alarm display module 214 may communicate with various other components and/or modules. For instance, an alarm settings module 228 may be provided. Alarm settings module 228 may monitor the various settings and other input provided by a clinician to the ventilator via the user interface 210 or display module 204. Alarm settings module 228 may compare and evaluate parameter settings entered by the clinician according to any suitable method or procedure. For example, alarm settings module 228 may detect when patient settings are missing or otherwise inappropriate for a particular input field. Inappropriate parameter settings may be indicated where settings entered for different parameters are inconsistent, e.g., one parameter setting indicates that the patient is a child, while another parameter setting indicates that the patient is an adult male, etc. In addition, alarm settings module 228 may evaluate parameter data received from monitor module 230 against the settings associated with the monitored parameters. When alarm settings module 228 determines that the parameter data falls outside applicable settings and ranges, alarm settings module 228 may communicate with alarm display module 214, or other modules of the alarm display module 214, in order to generate an informative alarm message.
Alarm display module 214 may also be configured with a hierarchical display module 216. The hierarchical display module 216 may be in communication with the monitor module 230 and/or alarm settings module 228 to receive an indication that an alarm event has occurred. The hierarchical display module 216 may be responsible for generating a multi-level alarm message via any suitable means. For example, a first level summary alarm message may be provided as a tab, banner, dialog box, or other similar type of display. Further, a summary alarm messages may be provided along a border of the graphical user interface that is either blank or that displays minimally important information, The shape and size of the summary alarm message may also be optimized for easy viewing with minimal interference. The summary alarm message may be further configured with a combination of icons and text such that the clinician may readily identify the priority of the alarm message.
Hierarchical display module 216 may be preconfigured with various summary messages or alarm descriptions corresponding to each general type of alarm event. General summary messages may also be preconfigured to provide abbreviated information to a clinician. For example, when a pressure reading indicates that the peak pressure setting has been breached, an abbreviated summary message may be displayed: "T Ppcak-" This abbreviated summary message may provide both an indication that a high limit was breached, i.e. by the† indicator, and an abbreviated indication of the particular breached parameter, i.e. by the Ppeak notation. The same general summary message may also include explanatory information regarding the particular breach, for instance: "† Ppcak - High inspiratory Pressure." In general, a summary level alarm message may be provided in any suitable position on the screen, by any suitable means, such that a general description of an alarm event and/or its gravity may be efficiently communicated to a clinician.
The hierarchical display module 216 may also generate a selectively accessed second level alarm message. The second level alarm message may provide additional details and information regarding the alarm event and may be accessible from the first level summary alarm message. Second level alarm messages may be preconfigured with a detailed alarm message or description corresponding to various types of alarm events. For example, a detailed alarm message may provide possible reasons for an alarm breach, suggested checks or procedures for mitigating the alarm, or other helpful information. Additionally, other embodiments may provide for semi-custom detailed alarm messages. For instance, portions of a detailed alarm message may be
preconfigured for similar types of alarm events, while other portions may provide variable fields that may be populated with more specific information regarding a particular breach, for instance the extent that a parameter was breached, the number of breaths over which the breach occurred, whether a maximum or minimum parameter setting was breached, etc,
Alarm display module 214 may also be configured with a translucent display module 218. Translucent display module 218 may allow for display of the summary alarm message and/or the detailed alarm message such that displayed respiratory data may be visualized behind the alarm message. This feature may be particularly useful for displaying the detailed alarm message. As described previously, alarm messages may be displayed in areas of the display screen that are either blank or that cause minimal distraction from the respiratory data and other graphical representations provided by the GUI. However, upon selective expansion of a detailed alarm message, respiratory data and graphs may be at least partially obscured. As a result, translucent display module 218 may provide the detailed alarm message such that it is partially transparent. Thus, graphical and other data may be visible behind the detailed alarm message.
Alarm display module 214 may also be configured with a selective display module 220. As discussed above, a detailed alarm message may be selectively displayed in order to offer additional information or details regarding an alarm event to a clinician. According to some embodiments, the second level detailed alarm message may be activated by clicking on the first level display message, touching a portion of the message, or otherwise. Additionally or alternatively, the first level summary alarm message may provide an arrow, or some other feature or icon for selection or activation of the detailed alarm message. Thus, a general summary alarm message may expand upon selection to provide a detailed alarm message. The detailed alarm message may be provided as a tab, banner, dialog box, or other similar type of display, which may extend from behind the general summary alarm message upon selection. In addition, according to some embodiments, the detailed alarm message may be condensed upon selection of an arrow, or some other feature or icon, via touching, clicking, or otherwise. Upon clearing or otherwise resetting an alarm following an alarm event, the summary alarm message and the detailed alarm message may also be cleared from the graphical user interface.
Alarm display module 214 may also be configured with an icon display module 222. Icon display module 222 may provide various icons and other identifiers that may communicate additional abbreviated information to a clinician, for instance regarding the alarm level. An alarm level reflects the seriousness or priority of an alarm message. For instance, "! ! !" may be represented in a corner, or other visible area, of the general summary message and may indicate that the alarm is a "High" alarm level and, therefore, is relatively serious. Alternatively, while "Π" or "!" may indicate that the alarm is a "Medium" or "Low" alarm level and is, therefore, less serious. In other embodiments, a number, letter, or other priority icon may be provided to communicate the priority of an alarm message vis-a-vis other displayed alarm messages. In still other embodiments, a status icon may be provided such that the status of an alarm message may be communicated, for instance, an active status or an inactive status, a high or low status, etc. Status may also refer to the number of times during a time period that the same alarm has occurred. In still other embodiments, an up-arrow, e.g., "†," or a down- arrow, e.g., "I," may be provided to communicate whether a high or low limit was breached, respectively. Indeed, any number or combination of icons or other indicators may be employed to communicate additional, abbreviated information to a clinician.
Alarm display module 214 may also be configured with a prioritized display module 224. As noted above, multiple alarm events may occur at the same or similar time, In this case, it may be useful for the clinician to readily determine which alarm events are of higher priority and should be addressed more quickly. The present disclosure provides for presentation of one or more pending alarms events in a vertical array, for example, that may convey an alarm event ranking and/or status. According to some embodiments, higher ranked alarm events may be presented above other alarm events. Thus, based on a graphical placement of alarm events relative to other alarm events, additional information regarding the priority or status of alarm events relative to other alarm events may be communicated to a clinician.
As will be discussed in further detail below, prioritized display module 224 is configured to rank an alarm event. The ranking of an alarm event determines whether the alarm event will be displayed in an alarm tab and, if so, where the alarm tab displaying the alarm event will be placed in the hierarchical display structure. Alarm event ranking is based on first, an alarm level and second, a parameter priority. An alarm event with a "High" alarm level will be assigned a higher ranking than an alarm event with a "Medium" or "Low" alarm level. If two alarm events have the same alarm level, ranking will be based on a predetermined parameter priority. Each ventilator parameter is assigned a priority. The assignment of parameter occurring may be done by a clinician during ventilator setup. A parameter priority may also be assigned automatically according to a hospital protocol. When two alarm events have the same alarm level, the alarm event with the higher parameter priority will be assigned the higher ranking.
Alarm display module 214 may also be configured with a hyperlink module 226. Hyperlink module 226 may be configured to provide access from the various hierarchical alarm messages to various settings and display screens associated with an identified alarm event. For example, an icon or other link indicator may be provided in either the summary alarm message and/or the detailed alarm message that may be activated or otherwise selected. Upon selection, the icon may provide direct access, via a hyperlink or otherwise, to associated settings or display screens corresponding to a particular alarm event. When access to a settings screen is provided, the clinician may reset the alarm following clinician intervention or may reconfigure alarm settings as appropriate. When access to a display screen is provided, the clinician may view additional information and respiratory data regarding the alarm event. Hyperlink module 226 may further provide access to any useful display screen, settings screen, or other graphical user interface available on the ventilator that is associated with a particular alarm event.
Monitor module 230 may operate to monitor the physical condition of the patient in conjunction with the proper operation of the ventilator 202. The monitor module 230 may communicate with display module 204, user interface 210, alarm display module 214, or other suitable modules or processors of the ventilator 202. Specifically, monitor module 230 may communicate with alarm display module 214 and/or display module 204 such that information regarding alarm events may be displayed to the clinician. Monitor module 230 may further utilize one or more sensors to detect changes in various physiological or mechanical parameters. Indeed, any sensory or derivative technique for monitoring the physical condition of the patient or the mechanical operation of the ventilator may be employed in accordance with embodiments described herein,
FIG. 3 is an illustration of an embodiment of a user interface 300 for
hierarchically indicating alarms on a graphical display.
User interface may be accessed via any suitable means, for example via a main ventilatory user interface on display module. As illustrated, user interface may provide one or more windows for display and one or more elements for selection and/or input. Windows may include one or more elements and, additionally, may provide graphical displays, instructions, or other useful information to the clinician. Elements may be displayed as buttons, tabs, icons, toggles, or any other suitable visual access element, etc., including any suitable element for input selection or control.
User interface 300 may include various icons for controlling the ventilator.
These icons are selectable elements wherein selection results in display of a new window. Some exemplary control icons include a setup icon 306, a tools icon 308, a log icon 310, an alarm adjustment icon 312, an oxygen concentration icon 314, and a help icon 316. While each of these icons controls ventilatory function, only the setup icon 306 and log icon 310 will be discussed in detail below in relation to indicating alarms on a ventilator display.
According to one embodiment, as illustrated in FIG. 3, a user interface 300 is provided that includes one or more hierarchically structured alarm tabs 302A-D. The alarm tabs 302A-D are selectable elements that provide a summarized alarm message. As depicted in user interface 300, the alarm tabs 302A-D are stacked one on top of another in a hierarchical structure on the right side of user interface 300. As will be appreciated by one skilled in the art, the alarm tabs can be located on any side of user interface 300 and can be arranged in any hierarchical structure as contemplated within the scope of the present disclosure. Furthermore, user interface 300 displays four alarm tabs 302A-D. As will also be appreciated by one skilled in the art, the user interface 300 may display any number of alarm tabs. Each of the four alarm tabs 302A-D provides an alarm message that summarizes an alarm event 304A-D. An alarm event corresponds to a change in a ventilatory parameter that causes the controller 110 monitoring the parameter to issue an alarm. For example, alarm tab 302 A provides an alarm message that summarizes an alarm event 304A related to the Peak Pressure parameter as indicated by the
abbreviation "Ppeak" on the alarm tab 302A. As also indicated on alarm tab 302A, the alarm event 304A that caused the alarm was an increase in Peak Pressure. This alarm event 304A is indicated on alarm tab 302A in two different manners. First, an upwards arrow next to the "Ppeak" abbreviation signifies that Peak Pressure has increased.
Second, the words "High Inspiratory Pressure" are also displayed on alarm tab 302 A to signify the alarm event 304 A. As will be appreciated by one skilled in the art, any number of methods of indicating an alarm event on an alarm tab is contemplated as within the scope of the present disclosure.
Each of the four alarm tabs 302A-D summarizes an alarm message that corresponds to an alarm event 304A-D that is different from the alarm event
corresponding to another alarm tab 302A-D. As discussed above, alarm tab 302A corresponds to a "High Inspiratory Pressure" alarm event 304A. Alarm tab 302B, on the other hand, corresponds to "Low Exhaled Minute Volume" 304B.
Each alarm tab 302A-D also displays the alarm level associated with the alarm event 304A-D in the summarized alarm message. In one embodiment, the alarm levels are indicated by one or more exclamation points on the alarm tab. For example, user interface 300 displays three different alarm levels each indicated by different numbers of exclamation points. A "High" alarm level is indicated by three exclamation points ("! ! !"). A "Medium" alarm level is indicated by two exclamation points ("! !"). A "Low" alarm level is indicated by one exclamation point ("!"). Furthermore, multiple methods of indicating alarm level can be simultaneously employed by user interface 300. For example, user interface might also color tabs differently based on alarm level. In one embodiment, an alarm tab with an alarm level of "High" is colored red, while alarm tabs with alarm levels of either "Medium" or "Low" are colored yellow. As can be appreciated by one skilled in the art, any symbol, color, or other method of alarm level indication can be used alone or in combination to indicate an alarm level.
Alarm tabs 302A-D are stacked on top of one another in a hierarchical structure based on the ranking of the alarm event 304A-D displayed by the alarm tab 302A-D, The ranking is derived from alarm level and parameter priority level. For the purpose of this disclosure, the alarm tab at the top of the stack, as exemplified by alarm tab 302A, is said to display the highest ranked alarm event. The alarm tab 302B below the alarm tab 302A displaying the highest ranked alarm event is said to display the second highest ranked alarm event. The alarm tab 302C below the alarm tab 302B displaying the second highest ranked alarm event is said to display the third highest ranked alarm event. The alarm tab 302D below the alarm tab 302C displaying the third highest ranked alarm event is said to display the fourth highest ranked alarm event.
The ranking is derived from, first, the alarm level and second, if two alarm events have the same alarm level, ftom parameter priority level. An alarm event indicating an alarm level of "High" will be ranked higher than an alarm event indicating an alarm level of "Medium" which will be ranked higher than an alarm event indicating an alarm level of "Low." As illustrated by user interface 300, alarm event 304A is associated with an alarm level of "High." As a result, alarm event 304A is ranked higher than alarm events 302C and 302D that indicate alarm events with alarm levels of "Medium" and "Low" respectively. As will be discussed in greater detail below, alarm levels are parameter specific. In other words, measurements that cross a certain threshold for a first parameter may trigger a "Low" alarm level while measurements that cross the same threshold for a second parameter may trigger a "Medium" or "High" alarm level.
If two alarm tabs indicate alarm events with the same alarm level, the ranking of each alarm event is then derived from parameter priority level. A ventilator monitors a multitude of ventiltatory parameters. Each parameter is assigned a priority. The parameter priority level may be assigned by a clinician or based on uniform protocol at ventilator setup. The priority level associated with a parameter is stored by the ventilator in storage 114 or RAM 112 of the controller 110. In one embodiment, the parameter priority level can be changed by utilizing setup icon 306.
As illustrated in user interface 300, when two alarm events 302A and 302B have the same alarm level ("High"), one alarm event 302A is still ranked higher than the other alarm event 302B. In the case of exemplary user interface 300, alarm event 304A is ranked higher than alarm event 304B because parameter "Ppeak" is assigned a higher priority than parameter "VE TOT-" As such, alarm event 304A is displayed in alarm tab 302A and alarm event 304B is displayed in alarm tab 304B.
An alarm level associated with an alarm event can increase or decrease over time. For example, a patient's condition may improve, causing the alarm level to either decrease or disappear entirely. This is known as alarm level de-elevation. Alternatively, a patient's condition may worsen, causing the alarm level to increase. This is known as alarm level elevation. When the ventilatory system detects a de-elevation or elevation of an alarm event, a clinician or other ventilatory user is notified of the change by a warning symbol superimposed on setup icon 306 and/or log icon 310. In one
embodiment, the warning symbol is a yellow triangle, as exemplified in user interface 300. As will be appreciated by one skilled in the art, any symbol, word, sound, or other notification method may be used to notify the clinician that an alarm event has changed. It should be noted that a change in an alarm event may or may not be displayed on alarm tabs 302A-D depending on whether the alarm event is ranked high enough for display, The ventilator removes the warning symbol from an icon when clinician selects that icon. Selection of setup icon 306 causes user interface 300 to display alarm setup window 500. Alarm setup window 500 will be discussed in detail with regard to FIG. 5 below. Selection of log icon 310 causes user interface 300 to display alarm log window 600. Alarm log window 600 will be discussed in detail with regard to FIG. 6 below.
When an alarm level associated with an alarm event elevates to de-elevates, the change may trigger an increase or decrease in that alarm events ranking as well as the ranking of other alarm events. Changes to the ranking of alarm events necessitates that the alarm events be reordered in the user interface. As will be appreciated, reordering alarm events may cause the user interface 300 to display a previously undisplayed alarm event in an alarm tab or remove from display an alarm event previously displayed in an alarm tab.
As alarm events 304A-D are reordered in the hierarchical structure, the alarm tabs displaying the alarm events slide up and down passed one another to reflect the reordered alarm events. For example, the ventilator may detect an elevation in alarm level for alarm event 304D "High End Expiratory Pressure" from "Low" to "Medium." The elevated alarm level results in two alarm events 304C and 304D with "Medium" alarm levels. To determine the ranking of each alarm event, the system compares the parameter priority of "%LEAK" to the parameter priority for "PEEP." In one embodiment, "PEEP" has a higher parameter priority than "%LEAK," As a result, the ranking of alarm event 304D associated with "PEEP" changes from fourth highest ranked to the third highest ranked. In a similar vein, the ranking of the alarm event 304C associated with "%LEAK" changes from third highest ranked to the fourth highest ranked. Reordering of the alarm events 304C and 304D is visualized in user interface 300 by sliding the reordered alarm tabs 302D and 302C up and down, respectively, to occupy the new ranking position. Alarm tab 302D displaying alarm event 304D slides up to occupy the location of alarm tab 302C. Likewise, alarm tab 302C displaying alarm event 304C slides down to occupy the location of alarm tab 302D. In one embodiment, alarm tab 302D slides straight up while alarm tab 302C may partially retract, or partially fade, while sliding by alarm tab 302D. The alarm tabs 302 A-D on user interface 300 now properly reflect the rankings of alarm events 304A-D.
As illustrated in user interface 300, alarm tabs 302A-D may be displayed by default in a minimized state. The minimized state of the alarm tab 302A-D still conveys information such as alarm event 304A-D, parameter, alarm level and ranking while not occupying too much space on the user interface. Alarm tabs may 302A-D also include an arrow 318A-D indicating that the minimized alarm tab can be expanded. Making a selection, such as by clicking, anywhere in alarm tab 312A-D will cause the selected alarm tab to expand. Expanding an alarm tab will be discussed in detail with reference to FIG. 4.
FIG. 4 is an illustration of an embodiment of a user interface 400 for displaying an expanded alarm tab.
With reference to like numerals from FIG. 3, FIG. 4 illustrates a user interface 400 that includes an expanded alarm tab 402. The expanded alarm tab 402 is accessed by making a selection anywhere in alarm tab 302A. Upon making the selection, the maximization arrow 318A is flipped in the opposite direction to indicate that
maximization arrow is now a minimization arrow 410. When a clinician wants to deflate the expanded alarm tab 402, the clinician may make a selection anywhere in expanded alarm tab 402 and the expanded alarm tab 402 is minimized back to alarm tab 302A. Upon minimization, the minimization arrow 410 is converted back into maximization arrow 318A. User interface 400 illustrates single expanded alarm tab 402. However, as will be appreciated by one skilled in the art, any number of alarm tabs
302A-D may be expanded or minimized at any given time for display in user interface 400.
In another embodiment, certain alarm tabs associated with very high priority alarm events may be automatically expanded upon detection of the alarm event. The very high priority alarm events may be indicated by a clinician or may be industry standards. Upon initial detection of the high priority alarm event, the alarm tab will expand immediately. The clinician can then choose to minimize the expanded alarm tabs by the any of the minimization methods as discussed above. This behavior of automatically expanding alarm tabs associated with very high priority alarm events has the added advantage of maximizing the visibility of the alarm. Because the expanded alarm tab may overlap other items on screen and thus interrupt on screen activity, the behavior, in one embodiment, may only be used on alarms that require immediate intervention. This may include alarm events associated with activity outside of the ventilatory parameters such as circuit disconnect, occlusion, etc.
As is illustrated in user interface 400, expanded alarm tab 402 provides clinician with more detailed information about the alarm event, In one embodiment, expanded alarm tab 402 provides clinician with an explanation 404 as to why an alarm event is associated with a particular alarm level. For example, expanded alarm tab 402 may provide an explanation 404 for the "High" alarm level associated with alarm event
302A, stating that "Last 4 Or More Breaths >= Set Limit." This explanation 404 provides the clinician with a reason why the alarm level for the alarm event 304 A is set to "High."
Expanded alarm tab 402 may also provide clinician with possible solutions 406 that may de-elevate the alarm level associated with an alarm event 304A. For example, expanded alarm tab 402 may provide possible solutions 406 to increased Peak Pressure, suggesting "Check Patient, Circuit, and ET Tube." These possible solutions 406 provide clinician with suggestions that may alleviate the problem and, as a result, de- elevate the alarm level associated with an alarm event,
Expanded alarm tab 402 may also provide the clinician with a hyperlink 408 to alarm setup window 500. The hyperlink 408 allows a clinician to "jump" to the alarm setup window 500 for that alarm without having to navigate to it through the setup icon 306.
FIG. 5 depicts an alarm setup window 500 for display in user interface 300. As discussed above, alarm setup window 500 may be accessed by selecting the hyperlink 408 in the expanded alarm tab 402. By selecting the hyperlink 408, a clinician is able to "jump" to the meter for the parameter associated with the selected alarm event. The alarm setup window 500 can also be accessed by selecting the setup icon 306 and navigating to the alarm setup window 500. As depicted by alarm setup window 500, alarm tabs 302A-D may still be visible when alarm setup window 500 is displayed.
Alarm setup window 500 displays a meter for each ventilatory parameter associated. It will be appreciated that only those alarms with user-adjustable parameters, i.e. those alarms associated with ventilatory parameters, may be associated with a meter in alarm setup window 500. Some alarms issued by the ventilator are not user- adjustable alarm such as an alarm indicating apnea, procedure error, or circuit disconnect. As discussed above, a ventilator monitors a multitude of ventilatory parameters. As such, alarm setup window 500 may display meters for parameters that are not visible on alarm tabs 302A-D in user interfere 300. Parameters may not be visible on alarm tabs 302A-D because either the parameter is not associated with an alarm event or, if the parameter is associated with an alarm event, the alarm event is not ranked high enough to be displayed in alarm tabs 302A-D. In either event, alarm setup window 500 allows a clinician to view a meter for each ventilatory parameter, whether that parameter is displayed in alarm tabs 302A-D or not.
Alarm setup window 500 displays five meters 504A-E, each meter associated with a different parameter. As discussed above, ventilator may monitor more or less than five parameters. Additional meters for parameters not currently displayed in alarm setup window 500 can be accessed using scroll bar 506. Scroll bar 506 includes multiple symbols, each symbol representing one parameter. In one embodiment, the symbols on the scroll bar 506 are bells. However, any symbol can be used within the scope of the present disclosure. Parameters associated with alarm events are further depicted on scroll bar 506 by superimposing an alarm event symbol onto the parameter symbol. As illustrated by scroll bar 506, the bells representing the parameter may be superimposed with a yellow triangle representing that the parameter is associated with an alarm event. Furthermore, the yellow triangle may include the number of exclamation points associated with the alarm level of the alarm event for that parameter. For example, a parameter with an alarm event of alarm level medium might be represented in scroll bar 506 as a bell with a yellow triangle superimposed onto in it, the yellow triangle including two exclamation points. Again, any method of representing alarm events, alarm levels, or parameters on a scroll bar 506, is contemplated within the scope of the present disclosure including differing colors, symbols, and graphical effects.
Scroll bar 506 may also include scroll bar window 508, Scroll bar window 508 encases the parameter symbols representing the parameters with meters currently displayed in alarm setup window 500. In one embodiment, alarm setup window 500 displays five meters 504A-E so scroll bar window encases five parameter symbols, 506A-E, representing the five meters. For example, the Ppeak parameter meter 504A is displayed in the left most position of alarm setup window 500. The Ppeak parameter meter 504A is, therefore, represented by symbol 506A in the left most position of scroll bar 506. The symbol 506A in the left most position of scroll bar 506 indicates that it represents a parameter associated with "High" level alarm event. This description matches the Ppeak parameter which is associated with an "High" level alarm event, as indicated by alarm tab 302A.
Scroll bar window 508 can be shifted to the left or right on scroll bar 506 to display meters associated with different parameters. For example, a clinician may access scroll arrows 516 to shift scroll bar window 508 one position to the right on scroll bar 506. Such a shift would cause alarm setup window 500 to display parameters associated with symbols 506B-506F. The scroll bar window 508 can be shifted in either direction until the end of the scroll bar 506 is reached. Clinician can also access a meter for a parameter by directly selecting its symbol from scroll bar 506. For example, if clinician was interested in the "Medium" level alarm event associated with symbol 5061, the clinician could directly click on symbol 5061 and alarm setup window 500 would display five meters, one being the parameter associated with symbol 5061. In one embodiment, whenever the scroll bar 506 is accessed, whether by shifting the scroll bar window 508 using scroll bar arrows 516 or by clicking a symbol on scroll bar 506, scroll bar 506 illuminates to inform a clinician of the shift,
Each meter 504A-E displays ranges and measurements associated with a particular parameter. The big numbers 510A-I indicate either an upper or lower limit of a safe range for a given parameter, The safe range is the range in which parameter measurements for a patient indicate that the patient is not in danger. For example, the Ppeak parameter has a safe range with an upper limit 510A of 40 cmH20 and a lower limit 510B of 14cmH20. The ίτοτ parameter, on the other hand, has a safe range with an upper limit 510C of 40 1/min but does not have any lower limit. As a result, only one limit is displayed in association with the fτοτ parameter meter 504B.
The upper and lower limit for each meter 504A-E can be adjusted. For example a clinician can select the upper limit 510D and drag it up or down. When upper limit 510D is released at a new value, the big numbers inside upper limit 510D will change to reflect the new value. If an upper limit 510A, C, D, F, or H is dragged to the top of the meter, the upper limit may disappear, or read "OFF". Likewise, if a lower limit 510B, E, G, or I is dragged to the bottom of the meter the lower limit may disappear, or read "OFF". An upper limit 510A, C, D, F, or H can only be dragged as low as the lower limit for that meter. Likewise, a lower limit 51 OB, E, G, or I can only be dragged as high as the upper limit for that meter. In another embodiment, a meter may be associated with an alarm that has a factory preset limit and cannot be turned off.
The numbers 512A-D represent the current measurement for a given parameter. For example, the current measurement for the Ppcak parameter is 40 cmH20. The current measurement 512A-D is displayed as a line through a white box 514A-D in the meter 504A-D for the parameter. The white box 514A-D represents the measurements of the parameter for a given period. In one embodiment, the period is a period of time, such as two minutes, and the white box represents the measurements for the parameter for the last two minutes. In another embodiment, the period is a period of breaths, such as 200 breaths, and the white box represents the measurements for the parameter for the last 200 breaths, As will be appreciated by one skilled in the art any sort of period can be used to define the bounds of the white box.
As is illustrated in alarm setup window 500, some meters may not display any measurements. In one embodiment, a meter may not display any measurement because the alarm for the parameter associated with the meter may only be required under certain breath modes or breath types. For example, in alarm setup window 500, the meter for the parameter VTE SPONT does not display any measurements. This is because the current breath mode does not require VTE SPONT measurements. In one embodiment, the alarm setup window 500 will automatically switch and begin displaying measurements for the VTE SPONT parameter when the current breath mode changes.
Alarm setup window 500 may also include one or more controls for alarm volume. As illustrated in alarm setup window 500, alarm volume may be controlled by a volume adjust scrollbar 518. By sliding volume adjust scrollbar 518 either left or right, clinician can control the volume of an emitted alarm. Volume adjust scrollbar 518 may also display the current alarm value as a numerical value. As displayed by alarm setup window 500, the alarm volume may be based on a scale from one to ten. As will be appreciated by one skilled in the art, any scale or other manner of conveying alarm value may be used as contemplated within the scope of the present disclosure,
Alarm setup window 500 also includes a transparency button 522 and a pin-up button 524. When the transparency button 522 is accessed, the alarm setup window 500 may be viewed simultaneously with other data displayed on user interface 300, or other user interface. When the pin-up button 524 is accessed, the alarm setup window 500 may remain open unless and until a clinician desires to close the alarm setup window 500 by accessing the "Close" button 520. Otherwise, the alarm setup window 500 may close automatically after some period of inactivity. In another embodiment, the alarm setup window 500 will close, and the changes to the alarm limits will be implemented, when an "Accept" button (not depicted) is accessed. When the alarm setup window 500 is pinned and the "Accept" button (not depicted) is accessed, the changes will be implemented, but the alarm setup window 500 will not be closed.
FIG. 6 depicts an alarm log window 600 for display in user interface 300. As discussed above, selection of log icon 310 causes user interface 300 to display alarm log window 600. This selection is indicated by the bold box surrounding log icon 602. As will be appreciated, any manner of indicating selection may be used.
Alarm log window 600 provides a temporal log of alarm events. In one embodiment, the alarm log records all alarm events emitted since the last manual reset of the mechanical ventilator. In another embodiment, the alarm log records all alarm events emitted since the ventilator began monitoring a new patient. A variety of information categories related to alarm events may be provided by alarm log window 600. For example, alarm log window 600 may provide information categories regarding the time 604, event 606, priority 608, alarm 610, and analysis 612. These categories may be arranged as columns in a table. In other embodiments, some or different information categories associated with alarm events may be provided by alarm log window 600.
Alarm log window 600 may provide a time 604 information category indicating the time at which an alarm event occurred. In one embodiment, the alarm events are arranged hierarchically from the most recent event to the least recent event. The time 604 information category may be accompanied by a flip arrow 614. By accessing the flip arrow 614, a clinician may flip the order the alarm log hierarchy such that the alarm events are displayed from the least recent event to the most recent event.
Alarm log window 600 may also provide an event 606 information category indicating a type of alarm event. In one embodiment, there are three types of alarm events: manual reset, augmented, and detected. However, it will be appreciated that there may be any number of alarm events. A manual reset alarm event may indicate that an alarm was manually reset by the operator pressing an alarm reset button on the ventilator. An augmented alarm event may indicate that an alarm has been escalated in priority. A detected alarm event may indicate that an alarm was first detected at that point in time. Alarm log window 600 may also provide a priority 608 information category indicating an alarm level associated with an alarm event. As discussed above, an alarm event may be associated with an alarm level that reflects the severity of the alarm event. Exemplary alarm levels include high, medium, and low.
Alarm log window 600 may also provide an alarm 610 information categoiy indicating a change in a parameter measurement associated with an alarm event. As discussed above, parameter names may be represented by parameter abbreviations. For example, Peak Pressure may be represented by the abbreviation "Ppeak " The parameter abbreviation may be accompanied by a symbol indicating the change in the parameter measurement. In one embodiment, the parameter abbreviation is accompanied by either an upward pointing arrow or a downward pointing arrow. For example, the "Ppeak" parameter may be accompanied by an upward pointing arrow indicating that the Peak Pressure has increased.
Alarm log window 600 may also provide an analysis 612 information category indicating more detailed information about the cause of the alarm event. The alarm 612 information category may provide the measurement that triggered the alarm event. For example, if the ventilator measures the last 4 or more breaths of the patient as greater than or equal to the set limit, the ventilator may trigger an increased Peak Pressure alarm event with a high alarm level.
Alarm log window 600 may also include a scroll bar 622. By accessing the scroll bar 622, a clinician can display different alarm events in the alarm log window 600. In one embodiment, when the scroll bar 622 is accessed it is illuminated to indicate to the clinician that the alarm events displayed in the alarm log window 600 have changed.
Alarm log window 600 may also include a transparency button 616 and a pin-up button 618. When the transparency button 616 is accessed, the alarm log window 600 may be viewed simultaneously with other data displayed on user interface 300, or other user interface. When the pin-up button 618 is accessed, the alarm log window 600 may remain open unless and until a clinician desires to close the alarm log window 600 by accessing the "Close" button 620. Otherwise, the alarm log window 600 may close automatically after some period of inactivity. When the alarm log window 600 is pinned, the changes will be implemented, but the alarm log window 600 will not be closed. It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications at either the client or server level. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternative embodiments having fewer than or more than all of the features herein described are possible.
While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims

Claims What is claimed is:
1. A user interface for hierarchically indicating one or more alarm messages corresponding to an alarm event, the ventilator configured with a computer having a user interface including a graphical user interface for accepting commands and for displaying information, the user interface comprising:
at least one window associated with the user interface; and
one or more elements within the at least one window comprising one or more of: a first selection element for indicating a first alarm event, the first alarm event having an first alarm level; and
a second selection element for indicating a second alarm event, the second alarm event having a second alarm level.
2. The graphical user interface of claim 1, wherein the first selection element and the second selection element are provided along the border of the graphical user interface.
3. The graphical user interface of claim 1, wherein the first alarm event is associated with a first ventilatory parameter and the second alarm event is associated with a second ventilatory parameter.
4. The graphical user interface of claim 1 , wherein the first alarm level is ranked higher than the second alarm level.
5. The graphical user interface of claim 4, wherein the second ventilatory parameter is assigned is a higher priority than the first ventilatory parameter.
6. The graphical user interface of claim 5, wherein the ventilator receives an indication that the second alarm level has increased such that the second alarm level equals the first alarm level.
7. The graphical user interface of claim 6, wherein the priority of the second ventilatory parameter is compared to the priority of the first ventilatory parameter.
8. The graphical user interface of claim 7, wherein a determination is made that the second alarm event is now higher ranked than the first alarm event.
9. The graphical user interface of claim 8, wherein the second selection element is rearranged and displayed above the first selection element, indicating that the ranking of the second alarm event is higher than the ranking of the first alarm event.
10. The graphical user interface of claim 1, wherein the first selection element and the second selection element includes information summarizing an alarm message, the information comprising: an alarm level, a parameter indication, an alarm event.
11. The graphical user interface of claim 10, wherein the parameter indication is a parameter abbreviation.
12. The graphical user interface of claim 10, wherein the alarm level is indicated by an icon.
13. The graphical user interface of claim 1, wherein, upon accessing the first selection event, the alarm message is expanded.
14. The graphical user interface of claim 13, wherein the expanded alarm message includes a hyperlink.
15. The graphical user interface of claim 13, wherein the expanded alarm message provides one or more suggested alarm alleviation measures.
16. A computer-readable storage medium having instructions that when executed provide a graphical user interface for displaying one or more informative alarm messages corresponding to an alarm event, the graphical user interface comprising: at least one window associated with the user interface; and one or more elements within the at least one window comprising one or more of: a first selection element for indicating a first alarm event, the first alarm event having an first alarm level; and
a second selection element for indicating a second alarm event, the second alarm event having a second alarm level.
17. The computer-readable storage medium of claim 16, wherein the first alarm event is associated with a first ventilatory parameter and the second alarm event is associated with a second ventilatory parameter,
18. The computer-readable storage medium of claim 16, wherein the first alarm level is ranked higher than the second alarm level.
19. The computer-readable storage medium of claim 18, wherein the first selection element is displayed above the second selection element to indicate that the first alarm level is ranked higher than the second alarm level.
20. The computer-readable storage medium of claim 16, wherein the first selection element and the second selection element includes information summarizing an alarm message, the information comprising: an alarm level, a parameter indication, an alarm event,
PCT/US2010/060871 2009-12-18 2010-12-16 Visual indication of alarms on a ventilator graphical user interface WO2011075601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28791409P 2009-12-18 2009-12-18
US61/287,914 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011075601A1 true WO2011075601A1 (en) 2011-06-23

Family

ID=43629249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/060871 WO2011075601A1 (en) 2009-12-18 2010-12-16 Visual indication of alarms on a ventilator graphical user interface

Country Status (2)

Country Link
US (3) US8499252B2 (en)
WO (1) WO2011075601A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777493B1 (en) 2013-03-14 2020-02-26 Integra LifeSciences Corporation Methods, systems, and devices for monitoring and displaying medical parameters for a patient
CN111712860A (en) * 2018-02-21 2020-09-25 帝人制药株式会社 Server, monitoring system, terminal, monitoring device and method for monitoring oxygen concentration device
EP4079353A4 (en) * 2019-12-16 2022-12-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ventilation information display method and apparatus for medical ventilation device, and medical device

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
AU2007318331B2 (en) 2006-11-06 2012-04-05 Fisher & Paykel Healthcare Limited Integrated humidifier chamber and lid
US10207069B2 (en) 2008-03-31 2019-02-19 Covidien Lp System and method for determining ventilator leakage during stable periods within a breath
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
US8792949B2 (en) 2008-03-31 2014-07-29 Covidien Lp Reducing nuisance alarms
US8746248B2 (en) * 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US8826907B2 (en) 2008-06-06 2014-09-09 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
US20100071696A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8424521B2 (en) * 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US8789529B2 (en) * 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434481B2 (en) 2009-12-03 2013-05-07 Covidien Lp Ventilator respiratory gas accumulator with dip tube
US8335992B2 (en) * 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US8719712B2 (en) * 2010-10-19 2014-05-06 Welch Allyn, Inc. Adaptive display for patient monitoring
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8595639B2 (en) * 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US9038633B2 (en) 2011-03-02 2015-05-26 Covidien Lp Ventilator-initiated prompt regarding high delivered tidal volume
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US20130032149A1 (en) * 2011-08-04 2013-02-07 General Electric Company Method and system for visualizing mechanical ventilation information
US9155853B2 (en) * 2011-08-31 2015-10-13 General Electric Company Systems and methods of adjusting ventilator modes and settings visually via a touchscreen
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US10426913B2 (en) 2011-11-07 2019-10-01 Mallinckrodt Hospital Products IP Limited Apparatus and method for monitoring nitric oxide delivery
CA2854776C (en) * 2011-11-07 2020-08-18 Ino Therapeutics Llc Apparatus and method for monitoring nitric oxide delivery
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US10076621B2 (en) 2012-03-12 2018-09-18 General Electric Company Method and system for displaying information on life support systems
US9707363B2 (en) 2012-03-29 2017-07-18 Sonarmed Inc. System and method for use of acoustic reflectometry information in ventilation devices
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
US9427505B2 (en) * 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
US20130317852A1 (en) * 2012-05-22 2013-11-28 Geneva Healthcare, LLC Medical device information portal
BR112014030783B1 (en) * 2012-06-20 2021-02-17 Maquet Critical Care Ab breathing apparatus that has a display with a user-selectable background and an internal display control method
EP2864859A1 (en) * 2012-06-20 2015-04-29 Maquet Critical Care AB Breathing apparatus system, method and computer-readable medium
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US11477068B2 (en) * 2012-09-27 2022-10-18 Kaseya Limited Data network notification bar user interface
US9323736B2 (en) 2012-10-05 2016-04-26 Successfactors, Inc. Natural language metric condition alerts generation
US20140100901A1 (en) * 2012-10-05 2014-04-10 Successfactors, Inc. Natural language metric condition alerts user interfaces
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US9158766B2 (en) * 2012-11-29 2015-10-13 Oracle International Corporation Multi-touch interface for visual analytics
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9767668B2 (en) * 2013-03-14 2017-09-19 International Business Machines Corporation Automatic adjustment of metric alert trigger thresholds
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
USD774057S1 (en) * 2013-06-17 2016-12-13 Covidien Lp Display screen with a graphical user interface for compliance monitoring
US10064583B2 (en) 2013-08-07 2018-09-04 Covidien Lp Detection of expiratory airflow limitation in ventilated patient
US10709856B2 (en) 2013-08-29 2020-07-14 Loewenstein Medical Technology S.A. Operating and information system for a breathing apparatus
EP3043853A2 (en) * 2013-09-11 2016-07-20 Advanced Inhalation Therapies (AIT) Ltd. System for nitric oxide inhalation
WO2015047241A1 (en) * 2013-09-25 2015-04-02 Schneider Electric Buildings Llc Alarm displaying method and apparatus
GB2519512B (en) * 2013-10-11 2015-09-23 Rocket Medical Plc Pleural manometry catheter
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
CN214158213U (en) * 2013-10-21 2021-09-10 费雪派克医疗保健有限公司 Breathing auxiliary equipment
US20150149940A1 (en) * 2013-11-27 2015-05-28 General Electric Company Medical Test Result Presentation
ES2742446T3 (en) * 2013-12-05 2020-02-14 Mermaid Care As Intelligent medical monitoring of a patient
WO2015171787A1 (en) 2014-05-07 2015-11-12 Nearhood Rachel Marie Management of implantable cardiac device interrogation data and reports
US20160259513A1 (en) * 2014-05-30 2016-09-08 Mitsubishi Electric Corporation Alarm-position display apparatus and alarm-position display method
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
SG11201704250TA (en) 2014-12-22 2017-07-28 Smith & Nephew Negative pressure wound therapy apparatus and methods
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
WO2016126859A1 (en) * 2015-02-03 2016-08-11 Texas Tech University System Graphical user interface system for interactive, hierarchical, multi-panel comprehension of multi-format data
WO2016140980A1 (en) 2015-03-02 2016-09-09 Covidien Lp Medical ventilator, method for replacing an oxygen sensor on a medical ventilator, and medical ventilator assembly
US11247015B2 (en) 2015-03-24 2022-02-15 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
US10245406B2 (en) 2015-03-24 2019-04-02 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
CN107530517B (en) 2015-03-26 2020-10-23 索纳尔梅德公司 Improved acoustic guidance and monitoring system
US20160292373A1 (en) * 2015-04-06 2016-10-06 Preventice, Inc. Adaptive user interface based on health monitoring event
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
US11324886B2 (en) * 2015-06-12 2022-05-10 Carefusion 303, Inc. Medical device with automated modality switching
EP3359217A4 (en) 2015-10-07 2019-06-12 Maquet Cardiopulmonary GmbH User interface
US20170106144A1 (en) * 2015-10-19 2017-04-20 Medtronic Minimed, Inc. Medical devices and related event pattern presentation methods
US11666702B2 (en) 2015-10-19 2023-06-06 Medtronic Minimed, Inc. Medical devices and related event pattern treatment recommendation methods
US11501867B2 (en) 2015-10-19 2022-11-15 Medtronic Minimed, Inc. Medical devices and related event pattern presentation methods
US20170364660A1 (en) * 2015-10-19 2017-12-21 Medtronic Minimed, Inc. Medical devices and related event pattern treatment recommendation methods
US10482741B2 (en) * 2016-04-01 2019-11-19 Daniel J. Horon Multi-frame display for a fire protection and security monitoring system
US10765822B2 (en) 2016-04-18 2020-09-08 Covidien Lp Endotracheal tube extubation detection
WO2017210353A1 (en) 2016-05-31 2017-12-07 Sonarmed Inc. Acoustic reflectometry device in catheters
US10773049B2 (en) 2016-06-21 2020-09-15 Ventec Life Systems, Inc. Cough-assist systems with humidifier bypass
EP3661437B1 (en) 2017-08-04 2023-09-27 Covidien LP Acoustic guided suction systems for endotracheal tubes
CN110049799B (en) 2017-11-14 2022-04-26 柯惠有限合伙公司 Method and system for driving pressure spontaneous ventilation
CA3100163A1 (en) 2018-05-13 2019-11-21 Samir Saleh AHMAD Portable medical ventilator system using portable oxygen concentrators
EP3627298A1 (en) * 2018-09-21 2020-03-25 Kistler Holding AG Method of measuring a physical measurement variable and measuring system for carrying out the method
US11559651B2 (en) * 2018-10-31 2023-01-24 Dynasthetics, Llc Apparatus and method for oxygen delivery to a patient during manual ventilation
AU2021338777A1 (en) * 2020-09-11 2023-05-04 Ventis Medical, Inc. System and methods of administering a status check to a medical device
CN115944820A (en) * 2023-03-15 2023-04-11 广州蓝仕威克医疗科技有限公司 Control method and device for accurately quantifying respirator parameters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041267A1 (en) * 1997-03-14 1998-09-24 Nellcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US20090054743A1 (en) * 2005-03-02 2009-02-26 Donald-Bane Stewart Trending Display of Patient Wellness

Family Cites Families (871)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577984A (en) 1967-03-27 1971-05-11 Donti Research Dev Mfg Spirometer
US3659590A (en) 1969-10-13 1972-05-02 Jones Medical Instr Co Respiration testing system
US3871371A (en) 1972-12-11 1975-03-18 Puritan Bennett Corp Respiration supply and control
US3961624A (en) 1972-12-11 1976-06-08 Puritan-Bennett Corporation Method of determining lung pressure of a patient using a positive pressure breathing system
US3940742A (en) 1973-08-06 1976-02-24 Medical Monitor Systems, Inc. Data acquisition, storage and display system
US4053951A (en) 1973-08-06 1977-10-11 Amsco/Medical Electronics, Inc. Data acquisition, storage and display system
CH568756A5 (en) 1973-09-07 1975-11-14 Hoffmann La Roche
US3977394A (en) 1975-02-07 1976-08-31 Jones Medical Instrument Company Computerized pulmonary analyzer
JPS523911Y2 (en) 1975-03-20 1977-01-27
JPS51114156A (en) 1975-03-31 1976-10-07 Toshiba Corp Device for detecting the amount of ventilation
US3991304A (en) 1975-05-19 1976-11-09 Hillsman Dean Respiratory biofeedback and performance evaluation system
US3996928A (en) 1975-05-28 1976-12-14 Marx Alvin J Patient vital-signs automated measuring apparatus
US4034743A (en) 1975-10-24 1977-07-12 Airco, Inc. Automated pulmonary function testing apparatus
US4323064A (en) 1976-10-26 1982-04-06 Puritan-Bennett Corporation Volume ventilator
US4112931A (en) 1977-01-05 1978-09-12 Cavitron Corporation Tidal volume display
GB1596298A (en) 1977-04-07 1981-08-26 Morgan Ltd P K Method of and apparatus for detecting or measuring changes in the cross-sectional area of a non-magnetic object
US4187842A (en) 1977-12-06 1980-02-12 N.A.D., Inc. Pressure monitor for breathing system
US4215409A (en) 1978-03-13 1980-07-29 Mckesson Company Flow control system for anesthesia apparatus
US4241739A (en) 1978-11-13 1980-12-30 C. R. Bard, Inc. Volume calculator for incentive spirometer
US4258718A (en) 1979-04-16 1981-03-31 Goldman Michael D Measuring respiratory air volume
DE2926747C2 (en) 1979-07-03 1982-05-19 Drägerwerk AG, 2400 Lübeck Ventilation system with a ventilator controlled by patient values
US4296756A (en) 1979-07-26 1981-10-27 Cyber Diagnostics, Inc. Remote pulmonary function tester
IT1131177B (en) 1980-05-14 1986-06-18 Consiglio Nazionale Ricerche PROGRAMMABLE BAND COMPARATOR, MULTI-CHANNEL, FOR CARDIOSURGICAL UNITS
FR2483785A1 (en) 1980-06-10 1981-12-11 Air Liquide AUTOMATIC VENTILATION CORRECTION RESPIRATOR
US4440177A (en) 1980-07-03 1984-04-03 Medical Graphics Corporation Respiratory analyzer system
JPS5948106B2 (en) 1980-08-27 1984-11-24 株式会社東芝 respiratory monitoring device
US4407295A (en) 1980-10-16 1983-10-04 Dna Medical, Inc. Miniature physiological monitor with interchangeable sensors
US4401116A (en) 1980-12-04 1983-08-30 Bear Medical Systems, Inc. Gas flow rate control device for medical ventilator
US4391283A (en) 1981-03-24 1983-07-05 Whitman Medical Corporation Incentive spirometer
US4736750A (en) 1981-04-24 1988-04-12 Valdespino Joseph M Apparatus for testing pulmonary functions
US4463764A (en) 1981-09-29 1984-08-07 Medical Graphics Corporation Cardiopulmonary exercise system
FR2517961A1 (en) 1981-12-11 1983-06-17 Synthelabo Biomedical METHOD AND DEVICE FOR CONTROLLING ARTIFICIAL RESPIRATION
US4550726A (en) 1982-07-15 1985-11-05 Mcewen James A Method and apparatus for detection of breathing gas interruptions
US4654029A (en) 1982-12-13 1987-03-31 Howmedica, Inc. Electronic drainage system
DE3401384A1 (en) 1984-01-17 1985-07-25 Drägerwerk AG, 2400 Lübeck DEVICE FOR THE SUPPLY OF VENTILATION GAS IN THE CLOSED BREATHING CIRCUIT OF A MEDICAL VENTILATOR
US4495944A (en) 1983-02-07 1985-01-29 Trutek Research, Inc. Inhalation therapy apparatus
US4813409A (en) 1985-09-27 1989-03-21 Aaron Ismach Ventilator system having improved means for assisting and controlling a patient's breathing
US4637385A (en) 1986-01-13 1987-01-20 Tibor Rusz Pulmonary ventilator controller
US5150291A (en) 1986-03-31 1992-09-22 Puritan-Bennett Corporation Respiratory ventilation apparatus
US4752089A (en) 1987-01-29 1988-06-21 Puritan-Bennett Corporation Connector means providing fluid-tight but relatively rotatable joint
US4790327A (en) 1987-07-27 1988-12-13 George Despotis Endotracheal intubation device
US4852582A (en) 1987-09-11 1989-08-01 Pell Donald M Method and kit for measuring the effectiveness of bronchodilators
US4867152A (en) 1987-10-09 1989-09-19 The Boc Group, Inc. Respiratory therapy apparatus with selective display of parameter set points
US4878175A (en) 1987-11-03 1989-10-31 Emtek Health Care Systems Method for generating patient-specific flowsheets by adding/deleting parameters
US4796639A (en) 1987-11-05 1989-01-10 Medical Graphics Corporation Pulmonary diagnostic system
US4921642A (en) 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
US5003985A (en) 1987-12-18 1991-04-02 Nippon Colin Co., Ltd. End tidal respiratory monitor
US4876903A (en) 1988-01-11 1989-10-31 Budinger William D Method and apparatus for determination and display of critical gas supply information
US5058601A (en) 1988-02-10 1991-10-22 Sherwood Medical Company Pulmonary function tester
US4898174A (en) 1988-05-03 1990-02-06 Life Support Products, Inc. Automatic ventilator
US4917108A (en) 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US5021046A (en) 1988-08-10 1991-06-04 Utah Medical Products, Inc. Medical pressure sensing and display system
US4984158A (en) 1988-10-14 1991-01-08 Hillsman Dean Metered dose inhaler biofeedback training and evaluation system
US5072737A (en) 1989-04-12 1991-12-17 Puritan-Bennett Corporation Method and apparatus for metabolic monitoring
US5325861A (en) 1989-04-12 1994-07-05 Puritan-Bennett Corporation Method and apparatus for measuring a parameter of a gas in isolation from gas pressure fluctuations
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US4954799A (en) 1989-06-02 1990-09-04 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
GB8913085D0 (en) 1989-06-07 1989-07-26 Whitwam James G Improvements in or relating to medical ventilators
US5299568A (en) 1989-06-22 1994-04-05 Puritan-Bennett Corporation Method for controlling mixing and delivery of respiratory gas
US4990894A (en) 1989-11-01 1991-02-05 Hudson Respiratory Care Inc. Ventilator monitor and alarm apparatus
US5137026A (en) 1990-01-04 1992-08-11 Glaxo Australia Pty., Ltd. Personal spirometer
US5253362A (en) 1990-01-29 1993-10-12 Emtek Health Care Systems, Inc. Method for storing, retrieving, and indicating a plurality of annotations in a data cell
US5448996A (en) 1990-02-02 1995-09-12 Lifesigns, Inc. Patient monitor sheets
US5020527A (en) 1990-02-20 1991-06-04 Texax-Glynn Corporation Inhaler device with counter/timer means
EP0778003A3 (en) 1990-03-09 1998-09-30 Matsushita Electric Industrial Co., Ltd. Presence detecting apparatus
US5161525A (en) 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
US5390666A (en) 1990-05-11 1995-02-21 Puritan-Bennett Corporation System and method for flow triggering of breath supported ventilation
US5237987A (en) 1990-06-07 1993-08-24 Infrasonics, Inc. Human lung ventilator system
US5407174A (en) 1990-08-31 1995-04-18 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
US5057822A (en) 1990-09-07 1991-10-15 Puritan-Bennett Corporation Medical gas alarm system
WO1992004865A1 (en) 1990-09-19 1992-04-02 The University Of Melbourne Arterial co2 monitor and closed loop controller
DE4033292A1 (en) 1990-10-19 1992-04-23 Uwatec Ag Mobile respirator monitor with pressure gauge - has transmitter with control for spacing of transmission signals, and identification signal generator
JPH0653176B2 (en) 1990-11-30 1994-07-20 史朗 鈴木 humidifier
US5246010A (en) 1990-12-11 1993-09-21 Biotrine Corporation Method and apparatus for exhalation analysis
US5279549A (en) 1991-01-04 1994-01-18 Sherwood Medical Company Closed ventilation and suction catheter system
GB9104201D0 (en) 1991-02-28 1991-04-17 Kraemer Richard Medical device
US5404871A (en) 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
DE69430303T2 (en) 1991-03-05 2002-11-28 Aradigm Corp METHOD AND DEVICE FOR CORRECTING A ZERO SIGNAL OF A PRESSURE SENSOR FOR A FLOW METER
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
DE69123954T2 (en) 1991-03-07 1997-04-30 Hamamatsu Photonics Kk Arrangement for measuring the oxygen content in the tissue
US5365922A (en) 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
US5231981A (en) 1991-03-20 1993-08-03 N.A.D., Inc. Display panel with pistol grip for use with anesthesia apparatus
GB9108370D0 (en) 1991-04-18 1991-06-05 Clement Clarke Int Measurement apparatus
US5486286A (en) 1991-04-19 1996-01-23 Althin Medical, Inc. Apparatus for performing a self-test of kidney dialysis membrane
US5242455A (en) 1991-05-03 1993-09-07 University Of Pittsburgh Imaging fixation and localization system
US5542415A (en) 1991-05-07 1996-08-06 Infrasonics, Inc. Apparatus and process for controlling the ventilation of the lungs of a patient
FI921924A (en) 1991-05-08 1992-11-09 Nellcor Inc PORTABEL COLDIOXIDE MONITOR
US5261397A (en) 1991-05-10 1993-11-16 The Children's Hospital Of Philadelphia Methods and apparatus for measuring infant lung function and providing respiratory system therapy
US5235973A (en) 1991-05-15 1993-08-17 Gary Levinson Tracheal tube cuff inflation control and monitoring system
US5203343A (en) 1991-06-14 1993-04-20 Board Of Regents, The University Of Texas System Method and apparatus for controlling sleep disorder breathing
US5261415A (en) 1991-07-12 1993-11-16 Ciba Corning Diagnostics Corp. CO2 mainstream capnography sensor
US5224487A (en) 1991-07-22 1993-07-06 Healthscan Products, Inc. Portable peak flow meter
US5303698A (en) 1991-08-27 1994-04-19 The Boc Group, Inc. Medical ventilator
US6123075A (en) 1991-10-15 2000-09-26 Mallinckrodt, Inc. Resuscitator regulator with carbon dioxide detector
US5442940A (en) 1991-10-24 1995-08-22 Hewlett-Packard Company Apparatus and method for evaluating the fetal condition
US5167506A (en) 1991-10-24 1992-12-01 Minnesota Mining And Manufacturing Company Inhalation device training system
US5303699A (en) 1991-11-18 1994-04-19 Intermed Equipamento Medico Hospitalar Ltda. Infant ventilator with exhalation valves
US5363842A (en) 1991-12-20 1994-11-15 Circadian, Inc. Intelligent inhaler providing feedback to both patient and medical professional
US5277195A (en) 1992-02-03 1994-01-11 Dura Pharmaceuticals, Inc. Portable spirometer
US5271389A (en) 1992-02-12 1993-12-21 Puritan-Bennett Corporation Ventilator control system that generates, measures, compares, and corrects flow rates
US5355893A (en) 1992-04-06 1994-10-18 Mick Peter R Vital signs monitor
US5385142A (en) 1992-04-17 1995-01-31 Infrasonics, Inc. Apnea-responsive ventilator system and method
US5333606A (en) 1992-04-24 1994-08-02 Sherwood Medical Company Method for using a respirator accessory access port and adaptor therefore
US5279304A (en) 1992-04-30 1994-01-18 Robert K. Einhorn Nasal volume meter
US5645048A (en) 1992-05-06 1997-07-08 The Kendall Company Patient ventilating apparatus with modular components
FR2692152B1 (en) 1992-06-15 1997-06-27 Pierre Medical Sa BREATHING AID, PARTICULARLY FOR TREATING SLEEP APNEA.
US5293875A (en) 1992-06-16 1994-03-15 Natus Medical Incorporated In-vivo measurement of end-tidal carbon monoxide concentration apparatus and methods
FR2692650B1 (en) 1992-06-19 1994-08-19 Taema Fluid distribution monitoring system to a user station.
FR2693910B1 (en) 1992-07-23 1994-08-26 Taema Equipment and methods for delivering doses of at least one gas to the respiratory tract of a user.
SE501585C2 (en) 1992-08-11 1995-03-20 Swedish Sophisticated Export I Device for fixing objects such as measuring means, sensor, probe, tube or the like in the mouth, nose or other opening of a human or other individual
EP0661947B1 (en) 1992-08-19 2002-05-22 Lawrence A. Lynn Apparatus for the diagnosis of sleep apnea
US7081095B2 (en) 2001-05-17 2006-07-25 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US7758503B2 (en) 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
GB9219102D0 (en) 1992-09-09 1992-10-21 Fairfax Andrew J Flowmeters
FR2695830B1 (en) 1992-09-18 1994-12-30 Pierre Medical Sa Breathing aid device.
US5339807A (en) 1992-09-22 1994-08-23 Puritan-Bennett Corporation Exhalation valve stabilizing apparatus
US5333106A (en) 1992-10-09 1994-07-26 Circadian, Inc. Apparatus and visual display method for training in the power use of aerosol pharmaceutical inhalers
US5357946A (en) 1992-10-19 1994-10-25 Sherwood Medical Company Ventilator manifold with accessory access port and adaptors therefore
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5590648A (en) 1992-11-30 1997-01-07 Tremont Medical Personal health care system
US5517983A (en) 1992-12-09 1996-05-21 Puritan Bennett Corporation Compliance meter for respiratory therapy
DE69315969T2 (en) 1992-12-15 1998-07-30 Sun Microsystems Inc Presentation of information in a display system with transparent windows
US5368019A (en) 1992-12-16 1994-11-29 Puritan-Bennett Corporation System and method for operating a respirator compressor system under low voltage conditions
CA2109017A1 (en) 1992-12-16 1994-06-17 Donald M. Smith Method and apparatus for the intermittent delivery of oxygen therapy to a person
JP2924924B2 (en) 1992-12-18 1999-07-26 シェリング・コーポレーション Inhaler for powdered drugs
US5899203A (en) 1992-12-24 1999-05-04 Defares; Peter Bernard Interactive respiratory regulator
NL9202256A (en) 1992-12-24 1994-07-18 Peter Bernard Defares Interactive breathing regulator.
US5438980A (en) 1993-01-12 1995-08-08 Puritan-Bennett Corporation Inhalation/exhalation respiratory phase detection circuit
US6012450A (en) 1993-01-29 2000-01-11 Aradigm Corporation Intrapulmonary delivery of hematopoietic drug
US5443075A (en) 1993-03-01 1995-08-22 Puritan-Bennett Corporation Flow measuring apparatus
US5813399A (en) 1993-03-16 1998-09-29 Puritan Bennett Corporation System and method for closed loop airway pressure control during the inspiratory cycle of a breath in a patient ventilator using the exhalation valve as a microcomputer-controlled relief valve
US5375592A (en) 1993-04-08 1994-12-27 Kirk; Gilbert M. Carbon dioxide detector and shield
US5373851A (en) 1993-04-19 1994-12-20 Brunswick Biomedical Corporation Specialized peak flow meter
US5501231A (en) 1993-06-02 1996-03-26 Kaish; Norman Patient operated system for testing and recording a biological condition of the patient
US5651264A (en) 1993-06-29 1997-07-29 Siemens Electric Limited Flexible process controller
US5383470A (en) 1993-09-20 1995-01-24 Steve Novak Portable spirometer
DE4332401A1 (en) 1993-09-23 1995-03-30 Uwatec Ag Device and method for monitoring a dive
US6208324B1 (en) * 1993-10-18 2001-03-27 Verizon Laboratories Inc. Event/switch matrix window
US5518002A (en) 1993-10-22 1996-05-21 Medtrac Technologies, Inc. Portable electronic spirometric device
US5351522A (en) 1993-11-02 1994-10-04 Aequitron Medical, Inc. Gas sensor
DE4422710C1 (en) 1994-06-29 1995-09-14 Boehringer Ingelheim Kg Inhaler with storage container for aerosol
US6390088B1 (en) 1993-12-13 2002-05-21 Boehringer Ingelheim Kg Aerosol inhaler
US5548702A (en) 1993-12-23 1996-08-20 International Business Machines Corporation Scrolling a target window during a drag and drop operation
US5401135A (en) 1994-01-14 1995-03-28 Crow River Industries Foldable platform wheelchair lift with safety barrier
SE501560C2 (en) 1994-02-14 1995-03-13 Siemens Elema Ab Ventilator for regulating flow of air to and air pressure in lung - has pressure gauge for determining pressure of air in lung and volume determining device for determining volume of air supplied to lung
US5591130A (en) 1994-02-22 1997-01-07 Wolfe Troy Medical, Inc. Esophageal intubation detector with indicator
US5487731A (en) 1994-02-22 1996-01-30 Wolfe Tory Medical, Inc. Esophageal intubation detector with indicator
US5582167A (en) 1994-03-02 1996-12-10 Thomas Jefferson University Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure
US5456264A (en) 1994-03-31 1995-10-10 Universite Laval Accuracy of breath-by-breath analysis of flow volume loop in identifying flow-limited breathing cycles in patients
US5507291A (en) 1994-04-05 1996-04-16 Stirbl; Robert C. Method and an associated apparatus for remotely determining information as to person's emotional state
SE503175C2 (en) 1994-05-06 1996-04-15 Siemens Elema Ab Safety systems for anesthesia equipment with at least two anesthetic carburetors
US5704366A (en) 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5564414A (en) 1994-05-26 1996-10-15 Walker; William F. Pressurized and metered medication dose counter on removable sleeve
JPH0824337A (en) 1994-07-11 1996-01-30 Masaaki Inoue High frequency respirator
US5564432A (en) 1994-07-13 1996-10-15 Thomson; Ronald A. Biodegradable air tube and spirometer employing same
US5606976A (en) 1994-07-26 1997-03-04 Trustees Of The University Of Pennsylvania Method and apparatus for unifying the ventilation/perfusion and pressure/flow models
US5571142A (en) 1994-08-30 1996-11-05 The Ohio State University Research Foundation Non-invasive monitoring and treatment of subjects in cardiac arrest using ECG parameters predictive of outcome
US5683424A (en) 1994-08-30 1997-11-04 The Ohio State University Research Foundation Non-invasive monitoring and treatment of subjects in cardiac arrest using ECG parameters predictive of outcome
US5524615A (en) 1994-09-08 1996-06-11 Puritan-Bennett Corporation Ventilator airway fluid collection system
US6866040B1 (en) 1994-09-12 2005-03-15 Nellcor Puritan Bennett France Developpement Pressure-controlled breathing aid
US5632270A (en) 1994-09-12 1997-05-27 Puritan-Bennett Corporation Method and apparatus for control of lung ventilator exhalation circuit
US5596984A (en) 1994-09-12 1997-01-28 Puritan-Bennett Corporation Lung ventilator safety circuit
US5531221A (en) 1994-09-12 1996-07-02 Puritan Bennett Corporation Double and single acting piston ventilators
FR2724322A1 (en) 1994-09-12 1996-03-15 Pierre Medical Sa PRESSURE CONTROLLED BREATHING AID
US5794986A (en) 1994-09-15 1998-08-18 Infrasonics, Inc. Semi-disposable ventilator breathing circuit tubing with releasable coupling
US5520071A (en) 1994-09-30 1996-05-28 Crow River Industries, Incorporated Steering wheel control attachment apparatus
DE4436014C2 (en) 1994-10-08 2002-06-20 Uvo Hoelscher Medical device with a dosing device
US5495848A (en) 1994-11-25 1996-03-05 Nellcar Puritan Bennett Monitoring system for delivery of therapeutic gas
US5672041A (en) 1994-12-22 1997-09-30 Crow River Industries, Inc. Collapsible, powered platform for lifting wheelchair
DE19500529C5 (en) 1995-01-11 2007-11-22 Dräger Medical AG & Co. KG Control unit for a ventilator
US5632281A (en) 1995-02-06 1997-05-27 Rayburn; Daniel B. Non-invasive estimation of arterial blood gases
US5800361A (en) 1995-02-06 1998-09-01 Ntc Technology Inc. Non-invasive estimation of arterial blood gases
CA2187288A1 (en) 1995-02-08 1996-08-15 Edwin B. Merrick Gas mixing apparatus for a ventilator
CA2187287A1 (en) 1995-02-09 1996-08-15 John S. Power Piston based ventilator
US5565888A (en) 1995-02-17 1996-10-15 International Business Machines Corporation Method and apparatus for improving visibility and selectability of icons
US5642735A (en) 1995-03-16 1997-07-01 Kolbly; Kenneth D. Temperature sensing device for medical patients with releasable housing
JP3390802B2 (en) 1995-03-28 2003-03-31 日本光電工業株式会社 Respiration monitor
US6415792B1 (en) 1995-04-11 2002-07-09 Schoolman Scientific Corporation Anesthesia machine with head worn display
US5730140A (en) 1995-04-28 1998-03-24 Fitch; William Tecumseh S. Sonification system using synthesized realistic body sounds modified by other medically-important variables for physiological monitoring
US5553620A (en) 1995-05-02 1996-09-10 Acuson Corporation Interactive goal-directed ultrasound measurement system
US5809997A (en) 1995-05-18 1998-09-22 Medtrac Technologies, Inc. Electronic medication chronolog device
SE510296C2 (en) 1995-05-22 1999-05-10 Jerker Delsing Methods and devices for measuring flow
US5611335A (en) 1995-06-06 1997-03-18 Makhoul; Imad R. High-frequency fan ventilator
WO1996040337A1 (en) 1995-06-07 1996-12-19 Nellcor Puritan Bennett Incorporated Pressure control for constant minute volume
US6390977B1 (en) 1995-06-07 2002-05-21 Alliance Pharmaceutical Corp. System and methods for measuring oxygenation parameters
US5634461A (en) 1995-06-07 1997-06-03 Alliance Pharmaceutical Corp. System for measuring blood oxygen levels
FI102511B1 (en) 1995-06-26 1998-12-31 Instrumentarium Oy Concentration measurement of respiratory air
SE9502543D0 (en) 1995-07-10 1995-07-10 Lachmann Burkhardt Artificial ventilation system
US5544674A (en) 1995-07-14 1996-08-13 Infrasonics, Inc. Gas mixing apparatus for respirator
US5513631A (en) 1995-07-21 1996-05-07 Infrasonics, Inc. Triggering of patient ventilator responsive to a precursor signal
US5706801A (en) 1995-07-28 1998-01-13 Caire Inc. Sensing and communications system for use with oxygen delivery apparatus
IL114964A (en) 1995-08-16 2000-10-31 Versamed Medical Systems Ltd Computer controlled portable ventilator
US5758652A (en) 1995-10-19 1998-06-02 Nikolic; Serjan D. System and method to measure the condition of a patients heart
US5743267A (en) 1995-10-19 1998-04-28 Telecom Medical, Inc. System and method to monitor the heart of a patient
US5783821A (en) 1995-11-02 1998-07-21 Costello, Jr.; Leo F. Pulse oximeter testing
US5676132A (en) 1995-12-05 1997-10-14 Pulmonary Interface, Inc. Pulmonary interface system
US5931160A (en) 1995-12-08 1999-08-03 Cardiopulmonary Corporation Ventilator control system and method
US6158432A (en) 1995-12-08 2000-12-12 Cardiopulmonary Corporation Ventilator control system and method
US6463930B2 (en) 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US6035233A (en) 1995-12-11 2000-03-07 Intermedics Inc. Implantable medical device responsive to heart rate variability analysis
US5697959A (en) 1996-01-11 1997-12-16 Pacesetter, Inc. Method and system for analyzing and displaying complex pacing event records
US6148814A (en) 1996-02-08 2000-11-21 Ihc Health Services, Inc Method and system for patient monitoring and respiratory assistance control through mechanical ventilation by the use of deterministic protocols
IL125758A (en) 1996-02-15 2003-07-06 Biosense Inc Medical probes with field transducers
US5676129A (en) 1996-03-14 1997-10-14 Oneida Research Services, Inc. Dosage counter for metered dose inhaler (MDI) systems using a miniature pressure sensor
FR2746656B1 (en) 1996-03-26 1999-05-28 System Assistance Medical PRESSURE SENSOR NEBULIZER
US5669379A (en) 1996-03-29 1997-09-23 Ohmeda Inc. Waveform display for medical ventilator
US5762480A (en) 1996-04-16 1998-06-09 Adahan; Carmeli Reciprocating machine
SE9601611D0 (en) 1996-04-26 1996-04-26 Siemens Elema Ab Method for controlling a fan and a fan
US5839430A (en) 1996-04-26 1998-11-24 Cama; Joseph Combination inhaler and peak flow rate meter
US5692497A (en) 1996-05-16 1997-12-02 Children's Medical Center Corporation Microprocessor-controlled ventilator system and methods
US6725447B1 (en) 1996-05-31 2004-04-20 Nellcor Puritan Bennett Incorporated System and method for graphic creation of a medical logical module in the arden syntax file format
US5975081A (en) 1996-06-21 1999-11-02 Northrop Grumman Corporation Self-contained transportable life support system
SE9602913D0 (en) 1996-08-02 1996-08-02 Siemens Elema Ab Fan system and method of operating a fan system
US5752506A (en) 1996-08-21 1998-05-19 Bunnell Incorporated Ventilator system
SI0926997T1 (en) 1996-09-17 2005-08-31 Biosense Webster Inc Position confirmation with learn and test functions
US5778874A (en) 1996-10-02 1998-07-14 Thomas Jefferson University Anesthesia machine output monitor
US6168568B1 (en) 1996-10-04 2001-01-02 Karmel Medical Acoustic Technologies Ltd. Phonopneumograph system
US5865174A (en) 1996-10-29 1999-02-02 The Scott Fetzer Company Supplemental oxygen delivery apparatus and method
DE19648935B4 (en) 1996-11-26 2008-05-15 IMEDOS Intelligente Optische Systeme der Medizin- und Messtechnik GmbH Device and method for the examination of vessels
US5921920A (en) 1996-12-12 1999-07-13 The Trustees Of The University Of Pennsylvania Intensive care information graphical display
US5884622A (en) 1996-12-20 1999-03-23 University Of Manitoba Automatic determination of passive elastic and resistive properties of the respiratory system during assisted mechanical ventilation
AU5405798A (en) 1996-12-30 1998-07-31 Imd Soft Ltd. Medical information system
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US20060155207A1 (en) 1997-01-27 2006-07-13 Lynn Lawrence A System and method for detection of incomplete reciprocation
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US5957861A (en) 1997-01-31 1999-09-28 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6712762B1 (en) 1997-02-28 2004-03-30 Ors Diagnostic, Llc Personal computer card for collection of real-time biological data
US5827179A (en) 1997-02-28 1998-10-27 Qrs Diagnostic, Llc Personal computer card for collection for real-time biological data
US6159147A (en) 1997-02-28 2000-12-12 Qrs Diagnostics, Llc Personal computer card for collection of real-time biological data
US6224553B1 (en) 1997-03-10 2001-05-01 Robin Medical, Inc. Method and apparatus for the assessment and display of variability in mechanical activity of the heart, and enhancement of ultrasound contrast imaging by variability analysis
US5791339A (en) 1997-03-13 1998-08-11 Nellcor Puritan Bennettt Incorprated Spring piloted safety valve with jet venturi bias
US5826575A (en) 1997-03-13 1998-10-27 Nellcor Puritan Bennett, Incorporated Exhalation condensate collection system for a patient ventilator
US5771884A (en) 1997-03-14 1998-06-30 Nellcor Puritan Bennett Incorporated Magnetic exhalation valve with compensation for temperature and patient airway pressure induced changes to the magnetic field
US5881717A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated System and method for adjustable disconnection sensitivity for disconnection and occlusion detection in a patient ventilator
US5865168A (en) 1997-03-14 1999-02-02 Nellcor Puritan Bennett Incorporated System and method for transient response and accuracy enhancement for sensors with known transfer characteristics
US6026323A (en) 1997-03-20 2000-02-15 Polartechnics Limited Tissue diagnostic system
US5794612A (en) 1997-04-02 1998-08-18 Aeromax Technologies, Inc. MDI device with ultrasound sensor to detect aerosol dispensing
US6055506A (en) 1997-04-25 2000-04-25 Unitron Medical Communications, Inc. Outpatient care data system
US6125846A (en) 1997-05-16 2000-10-03 Datex-Ohmeda, Inc. Purge system for nitric oxide administration apparatus
US6273088B1 (en) 1997-06-13 2001-08-14 Sierra Biotechnology Company Lc Ventilator biofeedback for weaning and assistance
US5979440A (en) 1997-06-16 1999-11-09 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
CA2619893C (en) 1997-06-17 2011-11-15 Fisher & Paykel Healthcare Limited Respiratory humidification system
US5829441A (en) 1997-06-24 1998-11-03 Nellcor Puritan Bennett Customizable dental device for snoring and sleep apnea treatment
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US5924418A (en) 1997-07-18 1999-07-20 Lewis; John E. Rebreather system with depth dependent flow control and optimal PO2 de
AU8660398A (en) 1997-07-22 1999-02-16 Addis E. Mayfield Apparatus and method for language translation between patient and caregiv er, andfor communication with speech deficient patients
US6073110A (en) 1997-07-22 2000-06-06 Siemens Building Technologies, Inc. Activity based equipment scheduling method and system
US6325785B1 (en) 1997-08-14 2001-12-04 Sherwood Services Ag Sputum trap manifold with nested caps
US6135106A (en) 1997-08-22 2000-10-24 Nellcor Puritan-Bennett, Inc. CPAP pressure and flow transducer
JP2001516623A (en) 1997-09-19 2001-10-02 レスピロニックス・インコーポレイテッド Medical respirator
US6123073A (en) 1997-10-01 2000-09-26 Nellcor Puritan Bennett Switch overlay in a piston ventilator
US6436053B1 (en) 1997-10-01 2002-08-20 Boston Medical Technologies, Inc. Method and apparatus for enhancing patient compliance during inspiration measurements
US6106481A (en) 1997-10-01 2000-08-22 Boston Medical Technologies, Inc. Method and apparatus for enhancing patient compliance during inspiration measurements
US6099481A (en) 1997-11-03 2000-08-08 Ntc Technology, Inc. Respiratory profile parameter determination method and apparatus
US6192876B1 (en) 1997-12-12 2001-02-27 Astra Aktiebolag Inhalation apparatus and method
US5937854A (en) 1998-01-06 1999-08-17 Sensormedics Corporation Ventilator pressure optimization method and apparatus
US6743172B1 (en) 1998-01-14 2004-06-01 Alliance Pharmaceutical Corp. System and method for displaying medical process diagrams
US20050139213A1 (en) 1998-01-14 2005-06-30 Blike George T. Physiological object displays
US6860266B2 (en) 2000-11-03 2005-03-01 Dartmouth-Hitchcock Clinic Physiological object displays
US6076523A (en) 1998-01-15 2000-06-20 Nellcor Puritan Bennett Oxygen blending in a piston ventilator
US5918597A (en) 1998-01-15 1999-07-06 Nellcor Puritan Bennett Peep control in a piston ventilator
US6118847A (en) 1998-01-15 2000-09-12 Siemens Medical Systems, Inc. System and method for gated radiotherapy based on physiological inputs
WO1999039637A1 (en) 1998-02-05 1999-08-12 Mault James R Metabolic calorimeter employing respiratory gas analysis
US6370419B2 (en) 1998-02-20 2002-04-09 University Of Florida Method and apparatus for triggering an event at a desired point in the breathing cycle
US6544192B2 (en) 1998-02-25 2003-04-08 Respironics, Inc. Patient monitor and method of using same
US6017315A (en) 1998-02-25 2000-01-25 Respironics, Inc. Patient monitor and method of using same
US7222054B2 (en) 1998-03-03 2007-05-22 Card Guard Scientific Survival Ltd. Personal ambulatory wireless health monitor
US6421650B1 (en) 1998-03-04 2002-07-16 Goetech Llc Medication monitoring system and apparatus
DE69927139T2 (en) 1998-03-05 2006-06-14 Zivena Inc pulmonary dosing
US6321748B1 (en) 1998-03-10 2001-11-27 Nellcor Puritan Bennett Closed loop control in a piston ventilator
US6142150A (en) 1998-03-24 2000-11-07 Nellcor Puritan-Bennett Compliance compensation in volume control ventilator
US6547728B1 (en) 1998-03-31 2003-04-15 Georges Marc Cornuejols Device for measuring organism condition
SE9801175D0 (en) 1998-04-03 1998-04-03 Innotek Ab Method and apparatus for optimizing mechanical ventilation based on simulation of the ventilation process after studying the physiology of the respiratory organs
SE9801427D0 (en) 1998-04-23 1998-04-23 Siemens Elema Ab Method for determining at least one parameter and a breathing apparatus
US6171264B1 (en) 1998-05-15 2001-01-09 Biosys Ab Medical measuring system
US6283923B1 (en) 1998-05-28 2001-09-04 The Trustees Of Columbia University In The City Of New York System and method for remotely monitoring asthma severity
US6186956B1 (en) 1998-05-28 2001-02-13 University Of South Carolina Method and system for continuously monitoring cardiac output
US6511426B1 (en) 1998-06-02 2003-01-28 Acuson Corporation Medical diagnostic ultrasound system and method for versatile processing
EP1082056B1 (en) 1998-06-03 2007-11-14 Scott Laboratories, Inc. Apparatus for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
US7565905B2 (en) 1998-06-03 2009-07-28 Scott Laboratories, Inc. Apparatuses and methods for automatically assessing and monitoring a patient's responsiveness
US6047860A (en) 1998-06-12 2000-04-11 Sanders Technology, Inc. Container system for pressurized fluids
US6199550B1 (en) 1998-08-14 2001-03-13 Bioasyst, L.L.C. Integrated physiologic sensor system
SE9802827D0 (en) 1998-08-25 1998-08-25 Siemens Elema Ab ventilator
USRE38533E1 (en) 1998-09-11 2004-06-15 Life Corporation Portable emergency oxygen and automatic external defibrillator (AED) therapy system
US20030062045A1 (en) 1998-09-18 2003-04-03 Respironics, Inc. Medical ventilator
US6155257A (en) 1998-10-07 2000-12-05 Cprx Llc Cardiopulmonary resuscitation ventilator and methods
US6213955B1 (en) 1998-10-08 2001-04-10 Sleep Solutions, Inc. Apparatus and method for breath monitoring
US6262728B1 (en) 1998-11-03 2001-07-17 Agilent Technologies, Inc. System and method for annotating a graphical user interface display in a computer-based system
US6597946B2 (en) 1998-11-09 2003-07-22 Transpharma Ltd. Electronic card for transdermal drug delivery and analyte extraction
US6166544A (en) 1998-11-25 2000-12-26 General Electric Company MR imaging system with interactive image contrast control
US6603494B1 (en) 1998-11-25 2003-08-05 Ge Medical Systems Global Technology Company, Llc Multiple modality interface for imaging systems including remote services over a network
US6356282B2 (en) * 1998-12-04 2002-03-12 Sun Microsystems, Inc. Alarm manager system for distributed network management system
US6279574B1 (en) 1998-12-04 2001-08-28 Bunnell, Incorporated Variable flow and pressure ventilation system
JP3653660B2 (en) 1999-01-11 2005-06-02 富士通株式会社 Network management method and network management system
US6162183A (en) 1999-02-02 2000-12-19 J&J Engineering Respiration feedback monitor system
US6220245B1 (en) 1999-02-03 2001-04-24 Mallinckrodt Inc. Ventilator compressor system having improved dehumidification apparatus
EP1156846A1 (en) 1999-02-03 2001-11-28 University Of Florida Method and apparatus for nullifying the imposed work of breathing
US6390091B1 (en) 1999-02-03 2002-05-21 University Of Florida Method and apparatus for controlling a medical ventilator
US7008380B1 (en) 1999-02-03 2006-03-07 Stephen Edward Rees Automatic lung parameter estimator
FR2789594A1 (en) 1999-05-21 2000-08-18 Nellcor Puritan Bennett France APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS
FR2789592A1 (en) 1999-02-12 2000-08-18 Mallinckrodt Dev France APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS
US9116544B2 (en) 2008-03-26 2015-08-25 Pierre Bonnat Method and system for interfacing with an electronic device via respiratory and/or tactual input
FR2789593B1 (en) 1999-05-21 2008-08-22 Mallinckrodt Dev France APPARATUS FOR SUPPLYING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND METHODS OF CONTROLLING THE SAME
EP1155339A1 (en) 1999-02-23 2001-11-21 Medi-Physics, Inc. Portable system for monitoring the polarization level of a hyperpolarized gas during transport
WO2003045493A2 (en) 2001-11-29 2003-06-05 Impulse Dynamics Nv Sensing of pancreatic electrical activity
US6223744B1 (en) 1999-03-16 2001-05-01 Multi-Vet Ltd. Wearable aerosol delivery apparatus
US6273444B1 (en) 1999-03-31 2001-08-14 Mallinckrodt Inc. Apparatus for coupling wheelchairs to ventilator carts
US6367475B1 (en) 1999-04-02 2002-04-09 Korr Medical Technologies, Inc. Respiratory flow meter and methods of use
ATE414552T1 (en) 1999-04-07 2008-12-15 Event Medical Ltd VENTILATOR
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6454708B1 (en) 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6190326B1 (en) 1999-04-23 2001-02-20 Medtrac Technologies, Inc. Method and apparatus for obtaining patient respiratory data
US6287264B1 (en) 1999-04-23 2001-09-11 The Trustees Of Tufts College System for measuring respiratory function
US6202642B1 (en) 1999-04-23 2001-03-20 Medtrac Technologies, Inc. Electronic monitoring medication apparatus and method
US6370217B1 (en) 1999-05-07 2002-04-09 General Electric Company Volumetric computed tomography system for cardiac imaging
IL130371A (en) 1999-06-08 2004-06-01 Oridion Medical Ltd Capnography waveform interpreter
SE522908C2 (en) 1999-05-10 2004-03-16 Aneo Ab Arrangements for granting a living being an anesthetic condition
WO2000069339A1 (en) 1999-05-13 2000-11-23 Colin Dunlop Motion monitoring apparatus
US6515683B1 (en) 1999-06-22 2003-02-04 Siemens Energy And Automation Autoconfiguring graphic interface for controllers having dynamic database structures
ATE483490T1 (en) 1999-06-30 2010-10-15 Univ Florida MONITORING SYSTEM FOR FAN
US20070000494A1 (en) 1999-06-30 2007-01-04 Banner Michael J Ventilator monitor system and method of using same
US6340348B1 (en) 1999-07-02 2002-01-22 Acuson Corporation Contrast agent imaging with destruction pulses in diagnostic medical ultrasound
US6301497B1 (en) 1999-07-12 2001-10-09 Ge Medical Systems Global Technology Company, Llc Method and apparatus for magnetic resonance imaging intersecting slices
US6221011B1 (en) 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2314517A1 (en) 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6899684B2 (en) 1999-08-02 2005-05-31 Healthetech, Inc. Method of respiratory gas analysis using a metabolic calorimeter
US6468222B1 (en) 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
US20070122911A1 (en) * 1999-09-23 2007-05-31 Eastman Chemical Company Systems, Methods and Computer Program Products for Preparing, Documenting and Reporting Chemical Process Hazard Analyses
EP1217942A1 (en) 1999-09-24 2002-07-03 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6440082B1 (en) 1999-09-30 2002-08-27 Medtronic Physio-Control Manufacturing Corp. Method and apparatus for using heart sounds to determine the presence of a pulse
US6557554B1 (en) 1999-10-29 2003-05-06 Suzuki Motor Corporation High-frequency oscillation artificial respiration apparatus
JP2003513692A (en) 1999-11-09 2003-04-15 コルテックス ビオフェジーク ゲーエムベーハー Mobile working spirometry system
US7059324B2 (en) 1999-11-24 2006-06-13 Smiths Medical Asd, Inc. Positive expiratory pressure device with bypass
US6776159B2 (en) 1999-11-24 2004-08-17 Dhd Healthcare Corporation Positive expiratory pressure device with bypass
AU1949501A (en) 1999-12-07 2001-06-18 University Of Utah Research Foundation Method and apparatus for monitoring dynamic systems using n-dimensional representations of critical functions
US7654966B2 (en) 1999-12-07 2010-02-02 University Of Utah Research Foundation Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representatives of critical functions
US7693697B2 (en) 1999-12-07 2010-04-06 University Of Utah Research Foundation Anesthesia drug monitor
US7413546B2 (en) 1999-12-07 2008-08-19 Univeristy Of Utah Research Foundation Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representations of critical functions
US6976958B2 (en) 2000-12-15 2005-12-20 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
GB9929745D0 (en) 1999-12-17 2000-02-09 Secr Defence Determining the efficiency of respirators and protective clothing and other improvements
SE9904643D0 (en) 1999-12-17 1999-12-17 Siemens Elema Ab Method for assessing pulmonary stress and a breathing apparatus
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
GB0003839D0 (en) 2000-02-19 2000-04-05 Glaxo Group Ltd Housing for an inhaler
US6540689B1 (en) 2000-02-22 2003-04-01 Ntc Technology, Inc. Methods for accurately, substantially noninvasively determining pulmonary capillary blood flow, cardiac output, and mixed venous carbon dioxide content
US6553992B1 (en) 2000-03-03 2003-04-29 Resmed Ltd. Adjustment of ventilator pressure-time profile to balance comfort and effectiveness
US6644312B2 (en) 2000-03-07 2003-11-11 Resmed Limited Determining suitable ventilator settings for patients with alveolar hypoventilation during sleep
US6630176B2 (en) 2000-03-07 2003-10-07 Mount Sinai School Of Medicine Of New York University Herbal remedies for treating allergies and asthma
US6459933B1 (en) 2000-03-09 2002-10-01 Cprx Llc Remote control arrhythmia analyzer and defibrillator
US20060150982A1 (en) 2003-08-05 2006-07-13 Wood Thomas J Nasal ventilation interface and system
DE10013093B4 (en) 2000-03-17 2005-12-22 Inamed Gmbh Device for the controlled inhalation of therapeutic aerosols
US20010056358A1 (en) 2000-03-24 2001-12-27 Bridge Medical, Inc., Method and apparatus for providing medication administration warnings
US6560165B1 (en) * 2000-03-28 2003-05-06 Diane K. Barker Medical information appliance
WO2001083014A2 (en) 2000-04-26 2001-11-08 The University Of Manitoba Method and apparatus for determining respiratory system resistance during assisted ventilation
EP1278456A2 (en) 2000-05-05 2003-01-29 Hill-Rom Services, Inc. Patient point of care computer system
US6355002B1 (en) 2000-05-22 2002-03-12 Comedica Technologies Incorporated Lung inflection point monitor apparatus and method
US6738079B1 (en) 2000-06-02 2004-05-18 Sun Microsystems, Inc. Graphical user interface layout customizer
US6599252B2 (en) 2000-06-02 2003-07-29 Respironics, Inc. Method and apparatus for anatomical deadspace measurement
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US7261690B2 (en) 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
ES2260245T3 (en) 2000-06-23 2006-11-01 Bodymedia, Inc. SYSTEM TO CONTROL HEALTH, WELFARE AND EXERCISE.
US6707476B1 (en) 2000-07-05 2004-03-16 Ge Medical Systems Information Technologies, Inc. Automatic layout selection for information monitoring system
US6349724B1 (en) 2000-07-05 2002-02-26 Compumedics Sleep Pty. Ltd. Dual-pressure blower for positive air pressure device
WO2002005740A2 (en) 2000-07-14 2002-01-24 Hill-Rom Services, Inc. Pulmonary therapy apparatus
US6650346B1 (en) 2000-07-20 2003-11-18 Ge Medical Technology Services, Inc. Method and apparatus for classifying equipment in asset management database
US6390092B1 (en) 2000-08-07 2002-05-21 Sensormedics Corporation Device and method for using oscillatory pressure ratio as an indicator for lung opening during high frequency oscillatory ventilation
US6439229B1 (en) 2000-08-08 2002-08-27 Newport Medical Instruments, Inc. Pressure support ventilation control system and method
US7051736B2 (en) 2000-08-17 2006-05-30 University Of Florida Endotracheal tube pressure monitoring system and method of controlling same
US6450164B1 (en) 2000-08-17 2002-09-17 Michael J. Banner Endotracheal tube pressure monitoring system and method of controlling same
US6533723B1 (en) 2000-08-25 2003-03-18 Ge Marquette Medical Systems, Inc. Multiple-link cable management apparatus
US6435175B1 (en) 2000-08-29 2002-08-20 Sensormedics Corporation Pulmonary drug delivery device
US6557553B1 (en) 2000-09-05 2003-05-06 Mallinckrodt, Inc. Adaptive inverse control of pressure based ventilation
US6858006B2 (en) 2000-09-08 2005-02-22 Wireless Medical, Inc. Cardiopulmonary monitoring
US6546930B1 (en) 2000-09-29 2003-04-15 Mallinckrodt Inc. Bi-level flow generator with manual standard leak adjustment
WO2002026112A2 (en) 2000-09-29 2002-04-04 Healthetech, Inc. Indirect calorimetry system
US6644310B1 (en) 2000-09-29 2003-11-11 Mallinckrodt Inc. Apparatus and method for providing a breathing gas employing a bi-level flow generator with an AC synchronous motor
US6744374B1 (en) 2000-10-02 2004-06-01 Bayerische Motoren Werke Aktiengesellschaft Setting device with rotating actuator and illuminated index display
US6718974B1 (en) 2000-10-06 2004-04-13 Mallinckrodt, Inc. CPAP humidifier having sliding access door
CA2425470A1 (en) 2000-10-10 2002-04-18 University Of Utah Research Foundation Method and apparatus for monitoring anesthesia drug dosages, concentrations, and effects using n-dimensional representations of critical functions
US6622726B1 (en) 2000-10-17 2003-09-23 Newport Medical Instruments, Inc. Breathing apparatus and method
US6357438B1 (en) 2000-10-19 2002-03-19 Mallinckrodt Inc. Implantable sensor for proportional assist ventilation
ATE422167T1 (en) 2000-10-19 2009-02-15 Mallinckrodt Inc VENTILATOR WITH DUAL GAS SUPPLY
GB0026646D0 (en) 2000-10-31 2000-12-13 Glaxo Group Ltd Medicament dispenser
US7165221B2 (en) * 2000-11-13 2007-01-16 Draeger Medical Systems, Inc. System and method for navigating patient medical information
EP1384136A2 (en) 2000-11-17 2004-01-28 Siemens Medical Solutions USA, Inc. A system and method for processing patient medical information acquired over a plurality of days
US7590551B2 (en) 2000-11-17 2009-09-15 Draeger Medical Systems, Inc. System and method for processing patient information
DE60122786T2 (en) 2000-11-17 2007-09-13 Draeger Medical Systems, Inc., Danvers SYSTEM AND METHOD FOR COMMENTING MEDICAL PATIENT INFORMATION
US7039878B2 (en) 2000-11-17 2006-05-02 Draeger Medical Systems, Inc. Apparatus for processing and displaying patient medical information
US6760610B2 (en) 2000-11-23 2004-07-06 Sentec Ag Sensor and method for measurement of physiological parameters
US6820614B2 (en) 2000-12-02 2004-11-23 The Bonutti 2003 Trust -A Tracheal intubination
US8147419B2 (en) 2000-12-07 2012-04-03 Baruch Shlomo Krauss Automated interpretive medical care system and methodology
US6512938B2 (en) 2000-12-12 2003-01-28 Nelson R. Claure System and method for closed loop controlled inspired oxygen concentration
US6517497B2 (en) 2000-12-13 2003-02-11 Ge Medical Systems Information Technologies, Inc. Method and apparatus for monitoring respiration using signals from a piezoelectric sensor mounted on a substrate
WO2002051307A1 (en) 2000-12-27 2002-07-04 Medic4All Inc. System and method for automatic monitoring of the health of a user
US6725077B1 (en) 2000-12-29 2004-04-20 Ge Medical Systems Global Technology Company, Llc Apparatus and method for just-in-time localization image acquisition
US6801227B2 (en) 2001-01-16 2004-10-05 Siemens Medical Solutions Health Services Inc. System and user interface supporting user navigation and concurrent application operation
US6656129B2 (en) 2001-01-18 2003-12-02 Stephen D. Diehl Flow based incentive spirometer
US7377276B2 (en) 2001-01-31 2008-05-27 United States Of America As Represented By The Secretary Of The Army Automated inhalation toxicology exposure system and method
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US6725860B2 (en) 2001-02-07 2004-04-27 DRäGER MEDIZINTECHNIK GMBH Monitoring process for metering different gaseous anesthetics
US6571796B2 (en) 2001-02-08 2003-06-03 University Of Florida Tracheal pressure ventilation respiratory system
DE10107765A1 (en) 2001-02-17 2002-08-29 Siemens Ag Process for image processing based on a computed tomography (CT) image of a lung taken using a contrast medium and CT device for carrying out such a process
US6839753B2 (en) 2001-02-23 2005-01-04 Cardiopulmonary Corporation Network monitoring systems for medical devices
US7040321B2 (en) 2001-03-30 2006-05-09 Microcuff Gmbh Method for controlling a ventilator, and system therefor
FR2823660A1 (en) 2001-04-18 2002-10-25 Pneumopartners Analysis system for respiratory sounds includes sampling and processing module producing sound parameters for comparison with database
MXPA03010059A (en) 2001-05-03 2004-12-06 Telzuit Technologies Llc Wireless medical monitoring apparatus and system.
DE10123749A1 (en) 2001-05-16 2002-12-12 Inamed Gmbh Aerosol delivery device
SE0102221D0 (en) 2001-06-19 2001-06-19 Siemens Elema Ab Method for assessing pulmonary stress and a breathing apparatus
US7246618B2 (en) 2001-06-21 2007-07-24 Nader Maher Habashi Ventilation method and control of a ventilator based on same
US6801802B2 (en) 2001-06-29 2004-10-05 Ge Medical Systems Information Technologies, Inc. System and method for selecting physiological data from a plurality of physiological data sources
US7006862B2 (en) 2001-07-17 2006-02-28 Accuimage Diagnostics Corp. Graphical user interfaces and methods for retrospectively gating a set of images
US7380210B2 (en) 2001-07-20 2008-05-27 Siemens Building Technologies, Inc. User interface with installment mode
DE60136493D1 (en) 2001-07-30 2008-12-18 Imt Medical Ag VENTILATOR
US6488629B1 (en) 2001-07-31 2002-12-03 Ge Medical Systems Global Technology Company, Llc Ultrasound image acquisition with synchronized reference image
US6834647B2 (en) 2001-08-07 2004-12-28 Datex-Ohmeda, Inc. Remote control and tactile feedback system for medical apparatus
US20030130595A1 (en) 2001-08-13 2003-07-10 Mault James R. Health improvement systems and methods
US20030130567A1 (en) 2002-01-09 2003-07-10 Mault James R. Health-related devices and methods
US6987448B2 (en) * 2001-08-20 2006-01-17 Hill-Rom Services, Inc. Medical gas alarm system
US6673018B2 (en) 2001-08-31 2004-01-06 Ge Medical Systems Global Technology Company Llc Ultrasonic monitoring system and method
US6824520B2 (en) 2001-09-21 2004-11-30 Pulmonary Data Services, Inc. Method and apparatus for tracking usage of a respiratory measurement device
SE0103182D0 (en) 2001-09-25 2001-09-25 Siemens Elema Ab Procedure for lung mechanical examination and respiratory system
US6575918B2 (en) 2001-09-27 2003-06-10 Charlotte-Mecklenburg Hospital Non-invasive device and method for the diagnosis of pulmonary vascular occlusions
US7778709B2 (en) 2001-10-01 2010-08-17 Medtronic, Inc. Method and device for using impedance measurements based on electrical energy of the heart
US20050137480A1 (en) 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
KR100624403B1 (en) 2001-10-06 2006-09-15 삼성전자주식회사 Human nervous-system-based emotion synthesizing device and method for the same
US6923079B1 (en) 2001-10-31 2005-08-02 Scott S. Snibbe Recording, transmission and/or playback of data representing an airflow
FR2832770B1 (en) 2001-11-27 2004-01-02 Mallinckrodt Dev France CENTRIFUGAL TURBINE FOR BREATHING ASSISTANCE DEVICES
AU2002351275B2 (en) 2001-12-06 2007-12-20 Carefusion 303, Inc. C02 monitored drug infusion system
US6708688B1 (en) 2001-12-11 2004-03-23 Darren Rubin Metered dosage inhaler system with variable positive pressure settings
GB0130010D0 (en) 2001-12-14 2002-02-06 Isis Innovation Combining measurements from breathing rate sensors
US6543701B1 (en) 2001-12-21 2003-04-08 Tung-Huang Ho Pocket-type ultrasonic atomizer structure
AU2003210541A1 (en) 2002-01-09 2003-07-30 Healthetech, Inc. Health improvement systems and methods
US20040073453A1 (en) 2002-01-10 2004-04-15 Nenov Valeriy I. Method and system for dispensing communication devices to provide access to patient-related information
US6996783B2 (en) 2002-01-28 2006-02-07 International Business Machines Corporation Selectively adjusting transparency of windows within a user interface using a flashlight tool
US7046254B2 (en) 2002-01-28 2006-05-16 International Business Machines Corporation Displaying transparent resource aids
US20030140928A1 (en) 2002-01-29 2003-07-31 Tuan Bui Medical treatment verification system and method
US20030141981A1 (en) 2002-01-29 2003-07-31 Tuan Bui System and method for operating medical devices
US8489427B2 (en) 2002-01-29 2013-07-16 Baxter International Inc. Wireless medical data communication system and method
US20030204419A1 (en) 2002-04-30 2003-10-30 Wilkes Gordon J. Automated messaging center system and method for use with a healthcare system
US20030204414A1 (en) 2002-04-30 2003-10-30 Wilkes Gordon J. System and method for facilitating patient care and treatment
US7698156B2 (en) 2002-01-29 2010-04-13 Baxter International Inc. System and method for identifying data streams associated with medical equipment
US20030204420A1 (en) 2002-04-30 2003-10-30 Wilkes Gordon J. Healthcare database management offline backup and synchronization system and method
US20030144881A1 (en) 2002-01-29 2003-07-31 Kaivan Talachian Method and program for identifying multiple diluent solutions for use in drug delivery with a healthcare system
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US20030144882A1 (en) 2002-01-29 2003-07-31 Kaivan Talachian Method and program for providing a maximum concentration of a drug additive in a solution
US20030144878A1 (en) 2002-01-29 2003-07-31 Wilkes Gordon J. System and method for providing multiple units of measure
US20030140929A1 (en) 2002-01-29 2003-07-31 Wilkes Gordon J. Infusion therapy bar coding system and method
US20040010425A1 (en) 2002-01-29 2004-01-15 Wilkes Gordon J. System and method for integrating clinical documentation with the point of care treatment of a patient
US20030141368A1 (en) 2002-01-29 2003-07-31 Florante Pascual System and method for obtaining information from a bar code for use with a healthcare system
US20030144880A1 (en) 2002-01-29 2003-07-31 Kaivan Talachian Method and program for creating healthcare facility order types
US20040122294A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with environmental data
US7983759B2 (en) * 2002-12-18 2011-07-19 Cardiac Pacemakers, Inc. Advanced patient management for reporting multiple health-related parameters
US7438073B2 (en) 2002-03-08 2008-10-21 Kaerys S.A. Air assistance apparatus for computing the airflow provided by only means of pressure sensors
US7448383B2 (en) 2002-03-08 2008-11-11 Kaerys, S.A. Air assistance apparatus providing fast rise and fall of pressure within one patient's breath
EP1483007B1 (en) 2002-03-08 2012-06-13 Kaerys S.A. A breathing apparatus with computation of the airflow provided to the patient using only pressure sensors
JP2005535004A (en) 2002-03-27 2005-11-17 ネルコアー ピューリタン ベネット インコーポレイテッド Infrared touch frame system
US7182083B2 (en) 2002-04-03 2007-02-27 Koninklijke Philips Electronics N.V. CT integrated respiratory monitor
US7094208B2 (en) 2002-04-03 2006-08-22 Illinois Institute Of Technology Spirometer
US20030208465A1 (en) 2002-04-12 2003-11-06 Respironics, Inc. Method for managing medical information and medical information management system
US8239780B2 (en) * 2002-04-23 2012-08-07 Draeger Medical Systems, Inc. System and user interface supporting trend indicative display of patient medical parameters
US6830046B2 (en) 2002-04-29 2004-12-14 Hewlett-Packard Development Company, L.P. Metered dose inhaler
US20050055242A1 (en) 2002-04-30 2005-03-10 Bryan Bello System and method for medical data tracking, analysis and reporting for healthcare system
US20030201697A1 (en) 2002-04-30 2003-10-30 Richardson William R. Storage device for health care facility
US20040167804A1 (en) 2002-04-30 2004-08-26 Simpson Thomas L.C. Medical data communication notification and messaging system and method
US20030204416A1 (en) 2002-04-30 2003-10-30 Sayeh Radpay System and method for facilitating time-based infusion orders
US20040167465A1 (en) 2002-04-30 2004-08-26 Mihai Dan M. System and method for medical device authentication
US20040172300A1 (en) 2002-04-30 2004-09-02 Mihai Dan M. Method and system for integrating data flows
US20040172301A1 (en) 2002-04-30 2004-09-02 Mihai Dan M. Remote multi-purpose user interface for a healthcare system
US20040176667A1 (en) 2002-04-30 2004-09-09 Mihai Dan M. Method and system for medical device connectivity
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US20030222548A1 (en) 2002-05-31 2003-12-04 Richardson William R. Storage device for health care facility
US20050065817A1 (en) 2002-04-30 2005-03-24 Mihai Dan M. Separation of validated information and functions in a healthcare system
DE10221642B4 (en) 2002-05-15 2009-10-08 Siemens Ag Method and control device for controlling a tomographic image recording device
US7128578B2 (en) 2002-05-29 2006-10-31 University Of Florida Research Foundation, Inc. Interactive simulation of a pneumatic system
US20040078231A1 (en) 2002-05-31 2004-04-22 Wilkes Gordon J. System and method for facilitating and administering treatment to a patient, including clinical decision making, order workflow and integration of clinical documentation
GB2389290B (en) 2002-05-31 2005-11-23 Qinetiq Ltd Data analysis system
US7137074B1 (en) 2002-05-31 2006-11-14 Unisys Corporation System and method for displaying alarm status
SE0201854D0 (en) 2002-06-18 2002-06-18 Siemens Elema Ab Medical ventilation
US20040059604A1 (en) 2002-07-29 2004-03-25 Zaleski John R. Patient medical parameter acquisition and distribution system
US8069418B2 (en) 2002-07-31 2011-11-29 Draeger Medical Systems, Inc Medical information system and user interface supporting treatment administration
DE10234923A1 (en) 2002-07-31 2004-02-19 BSH Bosch und Siemens Hausgeräte GmbH Rotary selector switch for controlling different program sequences of electrical appliance has rotatable operating element and cooperating magnetic field sensor providing angular position codings
CN100420426C (en) 2002-08-08 2008-09-24 斯科特实验室公司 Resuscitation kit system and method and pre-use protocols for a sedation and analgesia system
CN100455255C (en) 2002-08-09 2009-01-28 因特尔丘尔有限公司 Generalized metronome for modification of biorhythmic activity
US20050288571A1 (en) 2002-08-20 2005-12-29 Welch Allyn, Inc. Mobile medical workstation
US7223965B2 (en) 2002-08-29 2007-05-29 Siemens Energy & Automation, Inc. Method, system, and device for optimizing an FTMS variable
US7891353B2 (en) 2002-08-29 2011-02-22 Resmed Paris Breathing assistance device with several secure respirator modes and associated method
US6822223B2 (en) 2002-08-29 2004-11-23 Siemens Energy & Automation, Inc. Method, system and device for performing quantitative analysis using an FTMS
WO2004019766A2 (en) 2002-08-30 2004-03-11 University Of Florida Method and apparatus for predicting work of breathing
US7294105B1 (en) 2002-09-03 2007-11-13 Cheetah Omni, Llc System and method for a wireless medical communication system
US7682312B2 (en) 2002-09-20 2010-03-23 Advanced Circulatory Systems, Inc. System for sensing, diagnosing and treating physiological conditions and methods
US7322352B2 (en) 2002-09-21 2008-01-29 Aventis Pharma Limited Inhaler
AU2002951984A0 (en) 2002-10-10 2002-10-31 Compumedics Limited Sleep quality and auto cpap awakening
MXPA05003815A (en) 2002-10-09 2005-07-13 Compumedics Ltd Method and apparatus for maintaining and monitoring sleep quality during therapeutic treatments.
MXPA05003688A (en) 2002-10-09 2005-09-30 Bodymedia Inc Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters.
US7793659B2 (en) 2002-10-11 2010-09-14 The Regents Of The University Of California Bymixer apparatus and method for fast-response, adjustable measurement of mixed gas fractions in ventilation circuits
US7089927B2 (en) 2002-10-23 2006-08-15 New York University System and method for guidance of anesthesia, analgesia and amnesia
GB0226522D0 (en) 2002-11-14 2002-12-18 Nutren Technology Ltd Improvements in and relating to breath measurement
SE0203430D0 (en) 2002-11-20 2002-11-20 Siemens Elema Ab Anesthesia apparatus
SE0203431D0 (en) 2002-11-20 2002-11-20 Siemens Elema Ab Method for assessing pulmonary stress and a breathing apparatus
US7116810B2 (en) 2002-11-27 2006-10-03 General Electric Company Method and system for airway measurement
US7252640B2 (en) 2002-12-04 2007-08-07 Cardiac Pacemakers, Inc. Detection of disordered breathing
US7187790B2 (en) 2002-12-18 2007-03-06 Ge Medical Systems Global Technology Company, Llc Data processing and feedback method and system
US7490085B2 (en) 2002-12-18 2009-02-10 Ge Medical Systems Global Technology Company, Llc Computer-assisted data processing system and method incorporating automated learning
US6951541B2 (en) 2002-12-20 2005-10-04 Koninklijke Philips Electronics, N.V. Medical imaging device with digital audio capture capability
GB2396426B (en) 2002-12-21 2005-08-24 Draeger Medical Ag Artificial respiration system
US7464339B2 (en) 2003-01-31 2008-12-09 Siemens Building Technologies, Inc. Method and device for upgrading a building control system
US6956572B2 (en) 2003-02-10 2005-10-18 Siemens Medical Solutions Health Services Corporation Patient medical parameter user interface system
US6954702B2 (en) 2003-02-21 2005-10-11 Ric Investments, Inc. Gas monitoring system and sidestream gas measurement system adapted to communicate with a mainstream gas measurement system
US7331340B2 (en) 2003-03-04 2008-02-19 Ivax Corporation Medicament dispensing device with a display indicative of the state of an internal medicament reservoir
WO2004079554A2 (en) 2003-03-05 2004-09-16 University Of Florida Managing critical care physiologic data using data synthesis technology (dst)
US7300418B2 (en) 2003-03-10 2007-11-27 Siemens Medical Solutions Health Services Corporation Healthcare system supporting multiple network connected fluid administration pumps
US7819815B2 (en) 2003-03-14 2010-10-26 Yrt Limited Synchrony between end of ventilator cycles and end of patient efforts during assisted ventilation
US8292811B2 (en) 2003-03-20 2012-10-23 Siemens Medical Solutions Usa, Inc. Advanced application framework system and method for use with a diagnostic medical ultrasound streaming application
US6733449B1 (en) 2003-03-20 2004-05-11 Siemens Medical Solutions Usa, Inc. System and method for real-time streaming of ultrasound data to a diagnostic medical ultrasound streaming application
US6932767B2 (en) 2003-03-20 2005-08-23 Siemens Medical Solutions Usa, Inc. Diagnostic medical ultrasound system having a pipes and filters architecture
US6910481B2 (en) 2003-03-28 2005-06-28 Ric Investments, Inc. Pressure support compliance monitoring system
US6947780B2 (en) 2003-03-31 2005-09-20 Dolphin Medical, Inc. Auditory alarms for physiological data monitoring
US7047092B2 (en) 2003-04-08 2006-05-16 Coraccess Systems Home automation contextual user interface
US20040150525A1 (en) 2003-04-15 2004-08-05 Wilson E. Jane Material tracking, monitoring and management systems and methods
US6828910B2 (en) 2003-04-16 2004-12-07 Ge Medical Systems Information Technologies, Inc. Apparatus for monitoring gas concentrations
WO2004095179A2 (en) 2003-04-18 2004-11-04 Medical Interactive Corporation Integrated point-of-care systems and methods
US20050004781A1 (en) * 2003-04-21 2005-01-06 National Gypsum Properties, Llc System and method for plant management
US7275540B2 (en) 2003-04-22 2007-10-02 Medi-Physics, Inc. MRI/NMR-compatible, tidal volume control and measurement systems, methods, and devices for respiratory and hyperpolarized gas delivery
US20040224293A1 (en) 2003-05-08 2004-11-11 3M Innovative Properties Company Worker specific health and safety training
US7311665B2 (en) 2003-05-19 2007-12-25 Alcohol Monitoring Systems, Inc. Bio-information sensor monitoring system and method
US7362341B2 (en) 2003-06-02 2008-04-22 Microsoft Corporation System and method for customizing the visual layout of screen display areas
US7282032B2 (en) 2003-06-03 2007-10-16 Miller Thomas P Portable respiratory diagnostic device
US7717112B2 (en) 2003-06-04 2010-05-18 Jianguo Sun Positive airway pressure therapy management module
CA2470217A1 (en) 2003-06-06 2004-12-06 Ameriflo, Inc. Lighted fluid flow indication apparatus
US7228323B2 (en) 2003-06-10 2007-06-05 Siemens Aktiengesellschaft HIS data compression
US7367955B2 (en) 2003-06-13 2008-05-06 Wisconsin Alumni Research Foundation Combined laser spirometer motion tracking system for radiotherapy
SE0301767D0 (en) 2003-06-18 2003-06-18 Siemens Elema Ab User interface for a medical ventilator
AU2003903139A0 (en) 2003-06-20 2003-07-03 Resmed Limited Breathable gas apparatus with humidifier
AU2004203173A1 (en) 2003-07-14 2005-02-03 Sunnybrook And Women's College And Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging
US20050055244A1 (en) 2003-07-18 2005-03-10 Janet Mullan Wireless medical communication system and method
FR2858236B1 (en) 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
US8156937B2 (en) 2003-08-04 2012-04-17 Carefusion 203, Inc. Portable ventilator system
CA2531926C (en) 2003-08-04 2017-09-19 Pulmonetic Systems, Inc. Portable ventilator system
US20050112013A1 (en) 2003-08-04 2005-05-26 Pulmonetic Systems, Inc. Method and apparatus for reducing noise in a roots-type blower
US7527053B2 (en) 2003-08-04 2009-05-05 Cardinal Health 203, Inc. Method and apparatus for attenuating compressor noise
US8118024B2 (en) 2003-08-04 2012-02-21 Carefusion 203, Inc. Mechanical ventilation system utilizing bias valve
WO2005016426A1 (en) 2003-08-14 2005-02-24 Teijin Pharma Limited Oxygen enrichment device and method of supporting home oxygen therapy execution using same
US20070185390A1 (en) 2003-08-19 2007-08-09 Welch Allyn, Inc. Information workflow for a medical diagnostic workstation
US6931269B2 (en) 2003-08-27 2005-08-16 Datex-Ohmeda, Inc. Multi-domain motion estimation and plethysmographic recognition using fuzzy neural-nets
US7172557B1 (en) 2003-08-29 2007-02-06 Caldyne, Inc. Spirometer, display and method
US7241269B2 (en) 2003-09-02 2007-07-10 Respiratory Management Technology Apparatus and method for delivery of an aerosol
US20070038081A1 (en) 2003-09-04 2007-02-15 Koninklijke Philips Electronics N.V. Device and method for displaying ultrasound images of a vessel
US7169112B2 (en) 2003-09-10 2007-01-30 The United States Of America As Represented By The Secretary Of The Army Non-contact respiration monitor
US7343917B2 (en) 2003-09-22 2008-03-18 Resmed Limited Clear cycle for ventilation device
US20050108057A1 (en) 2003-09-24 2005-05-19 Michal Cohen Medical device management system including a clinical system interface
US20060149589A1 (en) 2005-01-03 2006-07-06 Cerner Innovation, Inc. System and method for clinical workforce management interface
US8000978B2 (en) 2003-10-06 2011-08-16 Cerner Innovation, Inc. System and method for automatically generating evidence-based assignment of care providers to patients
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US8467876B2 (en) 2003-10-15 2013-06-18 Rmx, Llc Breathing disorder detection and therapy delivery device and method
US7496400B2 (en) 2003-10-17 2009-02-24 Ge Healthcare Finland Oy Sensor arrangement
US20050204310A1 (en) 2003-10-20 2005-09-15 Aga De Zwart Portable medical information device with dynamically configurable user interface
EP1690209A1 (en) 2003-11-12 2006-08-16 Draeger Medical Systems, Inc. A healthcare processing device and display system
JP2007521849A (en) 2003-11-12 2007-08-09 ドレーガー メディカル システムズ インコーポレイテッド Modular medical care system
WO2005050523A2 (en) 2003-11-13 2005-06-02 Draeger Medical Systems, Inc A processing device and display system
US7552731B2 (en) 2003-11-14 2009-06-30 Remcore, Inc. Remote control gas regulation system
US7220230B2 (en) 2003-12-05 2007-05-22 Edwards Lifesciences Corporation Pressure-based system and method for determining cardiac stroke volume
JP4970045B2 (en) 2003-12-05 2012-07-04 ケアフュージョン 303、インコーポレイテッド Patient self-controlled analgesia using patient monitoring system
US7452333B2 (en) 2003-12-05 2008-11-18 Edwards Lifesciences Corporation Arterial pressure-based, automatic determination of a cardiovascular parameter
US7422562B2 (en) 2003-12-05 2008-09-09 Edwards Lifesciences Real-time measurement of ventricular stroke volume variations by continuous arterial pulse contour analysis
US7100530B2 (en) 2003-12-15 2006-09-05 Trudell Medical International, Inc. Dose indicating device
US6997185B2 (en) 2003-12-17 2006-02-14 Tai-Kang Han Adjustable auxiliary apparatus of stable air conditioning for human respiratory system
KR100575153B1 (en) 2004-01-19 2006-04-28 삼성전자주식회사 Display system
US20080045844A1 (en) 2004-01-27 2008-02-21 Ronen Arbel Method and system for cardiovascular system diagnosis
US7771364B2 (en) 2004-01-27 2010-08-10 Spirocor Ltd. Method and system for cardiovascular system diagnosis
WO2005069740A2 (en) 2004-01-27 2005-08-04 Cardiometer Ltd. Method and system for cardiovascular system diagnosis
US20050171876A1 (en) 2004-02-02 2005-08-04 Patrick Golden Wireless asset management system
US7033323B2 (en) 2004-02-04 2006-04-25 Deepbreeze Ltd. Method and system for analyzing respiratory tract air flow
US7314451B2 (en) 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US20060080140A1 (en) 2004-02-09 2006-04-13 Epic Systems Corporation System and method for providing a clinical summary of patient information in various health care settings
WO2005077260A1 (en) 2004-02-12 2005-08-25 Biopeak Corporation Non-invasive method and apparatus for determining a physiological parameter
US8725244B2 (en) 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
US20070276439A1 (en) 2004-03-16 2007-11-29 Medtronic, Inc. Collecting sleep quality information via a medical device
US20050215904A1 (en) 2004-03-23 2005-09-29 Siemens Medical Solutions Usa, Inc. Ultrasound breathing waveform detection system and method
US7548833B2 (en) 2004-03-25 2009-06-16 Siemens Building Technologies, Inc. Method and apparatus for graphical display of a condition in a building system with a mobile display unit
US7512450B2 (en) 2004-03-25 2009-03-31 Siemens Building Technologies, Inc. Method and apparatus for generating a building system model
US7383148B2 (en) 2004-03-25 2008-06-03 Siemens Building Technologies, Inc. Method and apparatus for graphically displaying a building system
DE102004025200A1 (en) 2004-05-22 2005-12-22 Weinmann Geräte für Medizin GmbH & Co. KG Device for detecting the severity of a disease and method for controlling a detection device
US7512593B2 (en) 2004-06-08 2009-03-31 Siemens Energy & Automation, Inc. System for searching across a PLC network
US7308550B2 (en) 2004-06-08 2007-12-11 Siemens Energy & Automation, Inc. System for portable PLC configurations
US7310720B2 (en) 2004-06-08 2007-12-18 Siemens Energy & Automation, Inc. Method for portable PLC configurations
WO2006009830A2 (en) 2004-06-18 2006-01-26 Vivometrics Inc. Systems and methods for real-time physiological monitoring
US9492084B2 (en) 2004-06-18 2016-11-15 Adidas Ag Systems and methods for monitoring subjects in potential physiological distress
WO2006012205A2 (en) 2004-06-24 2006-02-02 Convergent Engineering, Inc. METHOD AND APPARATUS FOR NON-INVASIVE PREDICTION OF INTRINSIC POSITIVE END-EXPIRATORY PRESSURE (PEEPi) IN PATIENTS RECEIVING VENTILATOR SUPPORT
JP3839839B2 (en) 2004-06-25 2006-11-01 株式会社セブンスディメンジョンデザイン Medical image management system and medical image management method
US20060009862A1 (en) 2004-06-28 2006-01-12 Raphael Imhof Method and apparatus for accessing a building system model
JP2008507316A (en) 2004-07-23 2008-03-13 インターキュア リミティド Apparatus and method for respiratory pattern determination using a non-contact microphone
DE102004036879B3 (en) 2004-07-29 2005-07-21 Dräger Medical AG & Co. KGaA Controlling apparatus for respiration or anaesthesia using combined input and display unit, includes rotary-selector press-switch for entry of settings and acknowledgment
DE102004039711B3 (en) 2004-08-17 2006-05-11 Dräger Medical AG & Co. KG Method for automatic recording of pressure-volume curves in artificial respiration and apparatus for carrying out the method
US7387610B2 (en) 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
WO2007001342A2 (en) 2004-08-20 2007-01-04 University Of Virginia Patent Foundation Exhaled breath condensate collection and assay system and method
US20060047202A1 (en) 2004-09-02 2006-03-02 Elliott Stephen B Method and system of breathing therapy for reducing sympathetic predominance with consequent positive modification of hypertension
US7469698B1 (en) 2004-09-14 2008-12-30 Winthrop De Childers Parameter optimization in sleep apnea treatment apparatus
FR2875138B1 (en) 2004-09-15 2008-07-11 Mallinckrodt Dev France Sa CONTROL METHOD FOR A HEATING HUMIDIFIER
US7543582B2 (en) 2004-09-20 2009-06-09 Trudell Medical International Dose indicating device with display elements attached to container
US7487773B2 (en) 2004-09-24 2009-02-10 Nellcor Puritan Bennett Llc Gas flow control method in a blower based ventilation system
JP5074191B2 (en) 2004-10-06 2012-11-14 レスメド・リミテッド Non-invasive monitoring method and apparatus for respiratory parameters of sleep disordered breathing
US20060078867A1 (en) 2004-10-08 2006-04-13 Mark Penny System supporting acquisition and processing of user entered information
EP1645983A1 (en) 2004-10-08 2006-04-12 Draeger Medical Systems, Inc. Medical data acquisition system
DE102004050717B8 (en) 2004-10-19 2006-02-23 Dräger Medical AG & Co. KGaA anesthesia machine
WO2006050388A2 (en) 2004-11-02 2006-05-11 The Children's Hospital Of Philadelphia Respiratory volume/flow gating, monitoring, and spirometry system for mri
US7278579B2 (en) 2004-11-12 2007-10-09 Siemens Medical Solutions Usa, Inc. Patient information management system
US10709330B2 (en) 2004-11-15 2020-07-14 Koninklijke Philips N.V. Ambulatory medical telemetry device having an audio indicator
US20060229822A1 (en) 2004-11-23 2006-10-12 Daniel Theobald System, method, and software for automated detection of predictive events
US7428902B2 (en) 2004-12-15 2008-09-30 Newport Medical Instruments, Inc. Humidifier system for artificial respiration
US7832394B2 (en) 2004-12-22 2010-11-16 Schechter Alan M Apparatus for dispensing pressurized contents
US7836882B1 (en) 2005-01-07 2010-11-23 Vetland Medical Sales And Services Llc Electronic anesthesia delivery apparatus
US7881780B2 (en) 2005-01-18 2011-02-01 Braingate Co., Llc Biological interface system with thresholded configuration
JP5021499B2 (en) 2005-01-24 2012-09-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for configuring a control system for a plurality of devices
JP2006204742A (en) 2005-01-31 2006-08-10 Konica Minolta Sensing Inc Method and system for evaluating sleep, its operation program, pulse oxymeter, and system for supporting sleep
US20060178911A1 (en) 2005-02-10 2006-08-10 Iqbal Syed System and user interface for providing patient status and care setting information
DE102005007284B3 (en) 2005-02-17 2006-02-16 Dräger Medical AG & Co. KGaA Respiration system with maximum possible flexibility of servicing, with remote control coupled to breathing system via separate data lines for display and service data respectively,
US7438072B2 (en) 2005-03-02 2008-10-21 Izuchukwu John I Portable field anesthesia machine and control therefore
US8690771B2 (en) 2005-03-02 2014-04-08 Spacelabs Healthcare, Llc Trending display of patient wellness
EP1700614B1 (en) 2005-03-08 2013-05-08 Activaero GmbH Inhalation device
WO2006096080A1 (en) 2005-03-09 2006-09-14 Ramil Faritovich Musin Method and device microcalorimetrically measuring a tissue local metabolism speed, intracellular tissue water content, blood biochemical component concentration and a cardio-vascular system tension
US7625345B2 (en) 2005-03-14 2009-12-01 Welch Allyn, Inc. Motivational spirometry system and method
US7504954B2 (en) 2005-03-17 2009-03-17 Spaeder Jeffrey A Radio frequency identification pharmaceutical tracking system and method
JP5011275B2 (en) 2005-03-22 2012-08-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Addressing scheme for high performance wireless medical sensor networks
US20060264762A1 (en) 2005-03-28 2006-11-23 Ric Investments, Llc. PC-based physiologic monitor and system for resolving apnea episodes during sedation
WO2006109072A2 (en) 2005-04-14 2006-10-19 Hidalgo Limited Apparatus and system for monitoring
US7603170B2 (en) 2005-04-26 2009-10-13 Cardiac Pacemakers, Inc. Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance
US20060249151A1 (en) 2005-05-03 2006-11-09 China Resource Group, Inc. Ventilator with rescuer and victim guidance
US7630755B2 (en) 2005-05-04 2009-12-08 Cardiac Pacemakers Inc. Syncope logbook and method of using same
ITRM20050217A1 (en) 2005-05-06 2006-11-07 Ginevri S R L PROCEDURE FOR NASAL VENTILATION AND ITS APPARATUS, IN PARTICULAR FOR NEONATAL FLOW-SYNCHRONIZED ASSISTED VENTILATION.
US9089275B2 (en) 2005-05-11 2015-07-28 Cardiac Pacemakers, Inc. Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
ITMI20050866A1 (en) 2005-05-13 2006-11-14 Marco Ranucci MONITORING SYSTEM FOR CARDIAC SURGERY INTERVENTIONS WITH CARDIOPOLMONARY BYPASS
NZ540250A (en) 2005-05-20 2008-04-30 Nexus6 Ltd Reminder alarm for inhaler with variable and selectable ring tone alarms
US7527054B2 (en) 2005-05-24 2009-05-05 General Electric Company Apparatus and method for controlling fraction of inspired oxygen
GB0510951D0 (en) 2005-05-27 2005-07-06 Laryngeal Mask Company The Ltd Laryngeal mask airway device
US7310551B1 (en) 2005-06-02 2007-12-18 Pacesetter, Inc. Diagnostic gauge for cardiac health analysis
US7658188B2 (en) 2005-06-06 2010-02-09 Artivent Corporation Volume-adjustable manual ventilation device
US8496001B2 (en) 2005-06-08 2013-07-30 Dräger Medical GmbH Process and device for the automatic identification of breathing tubes
US8677994B2 (en) 2005-06-08 2014-03-25 Dräger Medical GmbH Multipart medical engineering system
JP2008541976A (en) 2005-06-09 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for distinguishing between clinically significant changes and artifacts in patient physiological information
WO2006138274A2 (en) 2005-06-13 2006-12-28 The University Of Vermont And State Agricultural College Breath biofeedback system and method
JP4375288B2 (en) 2005-06-23 2009-12-02 コニカミノルタビジネステクノロジーズ株式会社 User interface device, user interface device control method, and user interface device control program
US20070016441A1 (en) 2005-06-27 2007-01-18 Richard Stroup System and method for collecting, organizing, and presenting visit-oriented medical information
US20070157931A1 (en) 2005-07-11 2007-07-12 Richard Parker System and method for optimized delivery of an aerosol to the respiratory tract
US7895527B2 (en) 2005-07-15 2011-02-22 Siemens Medical Solutions Usa, Inc. Systems, user interfaces, and methods for processing medical data
DE102006012727A1 (en) 2005-07-19 2007-01-25 Weinmann Geräte für Medizin GmbH & Co. KG Breathing apparatus has operating data memory and gas source control with storage during automatic or manually controlled pausing for eating and drinking
US7958892B2 (en) 2005-07-29 2011-06-14 Resmed Limited Air delivery system
US7487774B2 (en) 2005-08-05 2009-02-10 The General Electric Company Adaptive patient trigger threshold detection
US7650181B2 (en) 2005-09-14 2010-01-19 Zoll Medical Corporation Synchronization of repetitive therapeutic interventions
US7731663B2 (en) 2005-09-16 2010-06-08 Cardiac Pacemakers, Inc. System and method for generating a trend parameter based on respiration rate distribution
US8992436B2 (en) 2005-09-16 2015-03-31 Cardiac Pacemakers, Inc. Respiration monitoring using respiration rate variability
US20070062532A1 (en) 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for identifying optimal PEEP
US7530353B2 (en) 2005-09-21 2009-05-12 The General Electric Company Apparatus and method for determining and displaying functional residual capacity data and related parameters of ventilated patients
US20070062533A1 (en) 2005-09-21 2007-03-22 Choncholas Gary J Apparatus and method for identifying FRC and PEEP characteristics
US7956719B2 (en) 2005-09-29 2011-06-07 Siemens Industry Inc. Building control system communication system timing measurement arrangement and method
US20070077200A1 (en) 2005-09-30 2007-04-05 Baker Clark R Method and system for controlled maintenance of hypoxia for therapeutic or diagnostic purposes
US20070123792A1 (en) 2005-11-17 2007-05-31 Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center System and method for determining airway obstruction
KR101458416B1 (en) 2005-11-21 2014-11-07 어시스트 메디칼 시스템즈, 인크. Medical fluid injection system
US8025052B2 (en) 2005-11-21 2011-09-27 Ric Investments, Llc System and method of monitoring respiratory events
TW200719866A (en) 2005-11-28 2007-06-01 Zen U Biotechnology Co Ltd Method of measuring blood circulation velocity by controlling breath
US20070227537A1 (en) 2005-12-02 2007-10-04 Nellcor Puritan Bennett Incorporated Systems and Methods for Facilitating Management of Respiratory Care
US7654802B2 (en) 2005-12-22 2010-02-02 Newport Medical Instruments, Inc. Reciprocating drive apparatus and method
US8532737B2 (en) 2005-12-29 2013-09-10 Miguel Angel Cervantes Real-time video based automated mobile sleep monitoring using state inference
US20070156456A1 (en) 2006-01-04 2007-07-05 Siemens Medical Solutions Health Services Corporation System for Monitoring Healthcare Related Activity In A Healthcare Enterprise
US7678063B2 (en) 2006-01-06 2010-03-16 Mayo Foundation For Medical Education And Research Motion monitor system for use with imaging systems
US7694677B2 (en) 2006-01-26 2010-04-13 Nellcor Puritan Bennett Llc Noise suppression for an assisted breathing device
US20070199566A1 (en) 2006-02-02 2007-08-30 Be Eri Eliezer Respiratory apparatus
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US8155767B2 (en) 2006-03-03 2012-04-10 Siemens Industry, Inc. Remote building control data display with automatic updates
US8460223B2 (en) 2006-03-15 2013-06-11 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
WO2007106804A2 (en) 2006-03-15 2007-09-20 Hill-Rom Services, Inc. High frequency chest wall oscillation system
US7671733B2 (en) 2006-03-17 2010-03-02 Koninklijke Philips Electronics N.V. Method and system for medical alarm monitoring, reporting and normalization
US7810497B2 (en) 2006-03-20 2010-10-12 Ric Investments, Llc Ventilatory control system
JP2007265032A (en) 2006-03-28 2007-10-11 Fujifilm Corp Information display device, information display system and information display method
US7736132B2 (en) 2006-04-03 2010-06-15 Respironics Oxytec, Inc. Compressors and methods for use
WO2007121212A2 (en) * 2006-04-11 2007-10-25 Invensys Systems, Inc. System management human-machine interface
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7912537B2 (en) 2006-04-27 2011-03-22 Medtronic, Inc. Telemetry-synchronized physiological monitoring and therapy delivery systems
US20070271122A1 (en) 2006-05-02 2007-11-22 Siemens Medical Solutions Usa, Inc. Patient Video and Audio Monitoring System
US7909033B2 (en) 2006-05-03 2011-03-22 Comedica Incorporated Breathing treatment apparatus
US8920333B2 (en) 2006-05-12 2014-12-30 Yrt Limited Method and device for generating of a signal that reflects respiratory efforts in patients on ventilatory support
US7980245B2 (en) 2006-05-12 2011-07-19 The General Electric Company Informative accessories
US20070272241A1 (en) 2006-05-12 2007-11-29 Sanborn Warren G System and Method for Scheduling Pause Maneuvers Used for Estimating Elastance and/or Resistance During Breathing
US7990251B1 (en) 2006-05-17 2011-08-02 Ford Jr Herbert Drug management systems
US20070273216A1 (en) 2006-05-24 2007-11-29 Farbarik John M Systems and Methods for Reducing Power Losses in a Medical Device
US7369757B2 (en) 2006-05-24 2008-05-06 Nellcor Puritan Bennett Incorporated Systems and methods for regulating power in a medical device
WO2008020325A2 (en) 2006-06-01 2008-02-21 Rajiv Muradia Home based healthcare system and method
US7460959B2 (en) 2006-06-02 2008-12-02 Nellcor Puritan Bennett Llc System and method for estimating oxygen concentration in a mixed gas experiencing pressure fluctuations
US20080039735A1 (en) 2006-06-06 2008-02-14 Hickerson Barry L Respiratory monitor display
ES2382449T3 (en) 2006-06-13 2012-06-08 Carefusion 303, Inc. System and method for optimizing control of PCA and PCEA systems
WO2008000299A1 (en) 2006-06-29 2008-01-03 Maquet Critical Care Ab Anaesthesia apparatus and method for operating an anaesthesia apparatus
US7652571B2 (en) 2006-07-10 2010-01-26 Scott Technologies, Inc. Graphical user interface for emergency apparatus and method for operating same
EP2041524A4 (en) 2006-07-13 2011-11-23 I Stat Corp Medical data acquisition and patient management system and method
US20080022215A1 (en) 2006-07-21 2008-01-24 Robert Lee Apparatus, system, and method for expanding and collapsing a list in a diagram environment
US7772965B2 (en) 2006-08-07 2010-08-10 Farhan Fariborz M Remote wellness monitoring system with universally accessible interface
US8322339B2 (en) 2006-09-01 2012-12-04 Nellcor Puritan Bennett Llc Method and system of detecting faults in a breathing assistance device
EP1897598A1 (en) 2006-09-06 2008-03-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO System for training optimisation
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US20080076970A1 (en) 2006-09-26 2008-03-27 Mike Foulis Fluid management measurement module
US20080072902A1 (en) 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Preset breath delivery therapies for a breathing assistance system
US20080072896A1 (en) 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Multi-Level User Interface for a Breathing Assistance System
US8902568B2 (en) 2006-09-27 2014-12-02 Covidien Lp Power supply interface system for a breathing assistance system
DE102006047668B3 (en) 2006-09-28 2008-04-24 Ing. Erich Pfeiffer Gmbh inhalator
FR2906450B3 (en) 2006-09-29 2009-04-24 Nellcor Puritan Bennett Incorp SYSTEM AND METHOD FOR DETECTING RESPIRATORY EVENTS
US8210174B2 (en) 2006-09-29 2012-07-03 Nellcor Puritan Bennett Llc Systems and methods for providing noise leveling in a breathing assistance system
US8210173B2 (en) 2006-09-29 2012-07-03 Nellcor Puritan Bennett Llc Breathing assistance system having integrated electrical conductors communicating data
FR2906474B3 (en) 2006-09-29 2009-01-09 Nellcor Puritan Bennett Incorp SYSTEM AND METHOD FOR CONTROLLING RESPIRATORY THERAPY BASED ON RESPIRATORY EVENTS
US7984714B2 (en) 2006-09-29 2011-07-26 Nellcor Puritan Bennett Llc Managing obstructive sleep apnea and/or snoring using local time released agents
US20080078390A1 (en) 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Providing predetermined groups of trending parameters for display in a breathing assistance system
US7891354B2 (en) 2006-09-29 2011-02-22 Nellcor Puritan Bennett Llc Systems and methods for providing active noise control in a breathing assistance system
DE102006047770A1 (en) 2006-10-10 2008-04-24 Dräger Medical AG & Co. KG System for controlling and monitoring therapy modules of a medical workstation
US8739035B2 (en) 2006-10-11 2014-05-27 Intel Corporation Controls and indicators with on-screen cognitive aids
US20080103368A1 (en) 2006-10-17 2008-05-01 Ari Craine Methods, devices, and computer program products for detecting syndromes
US8881724B2 (en) 2006-10-19 2014-11-11 The General Electric Company Device and method for graphical mechanical ventilator setup and control
US20080251070A1 (en) 2006-11-02 2008-10-16 Vadim Pinskiy Method and apparatus for capnography-guided intubation
US20080183057A1 (en) 2006-11-13 2008-07-31 John Taube Display, data storage and alarm features of an adaptive oxygen controller
EP2096996A2 (en) 2006-11-14 2009-09-09 Novo Nordisk A/S Adaptive hypoglycaemia alert system and method
EP2085582A1 (en) 2006-11-20 2009-08-05 Kabushiki Kaisha Toshiba Gas purifying device, gas purifying system and gas purifying method
ES2361134T1 (en) 2006-12-22 2011-06-14 Pulsion Medical Systems Ag PATIENT MONITORING DEVICE TO DETERMINE A PARAMETER THAT REPRESENTS A PATIENT INTRATORACITY VOLUME COMPARTMENT.
TWI321465B (en) 2006-12-29 2010-03-11 Ind Tech Res Inst Automatic evaluation method and system of cardio-respiratory fitness
US7885828B2 (en) 2007-01-17 2011-02-08 Siemens Aktiengesellschaft Knowledge-based ordering systeming for radiological procedures
US8020558B2 (en) 2007-01-26 2011-09-20 Cs Medical, Inc. System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
ATE504870T1 (en) 2007-02-09 2011-04-15 Siemens Ag METHOD FOR INTEGRATING NETWORK NODES
US20100095961A1 (en) 2007-03-19 2010-04-22 Carl Magnus Tornesel Method and device for manual input and haptic output of patient critical operating parameters in a breathing apparatus
US20080243016A1 (en) 2007-03-28 2008-10-02 Cardiac Pacemakers, Inc. Pulmonary Artery Pressure Signals And Methods of Using
US7559903B2 (en) 2007-03-28 2009-07-14 Tr Technologies Inc. Breathing sound analysis for detection of sleep apnea/popnea events
US20080236585A1 (en) 2007-03-29 2008-10-02 Caldyne Inc. Indicating device for a ventilator
US8695593B2 (en) 2007-03-31 2014-04-15 Fleur T. Tehrani Weaning and decision support system for mechanical ventilation
EP1978460B1 (en) 2007-04-05 2014-01-22 ResMed R&D Germany GmbH Monitoring device and method
US20080281219A1 (en) 2007-04-11 2008-11-13 Deepbreeze Ltd. Method and System for Assessing Lung Condition and Managing Mechanical Respiratory Ventilation
US20080255880A1 (en) 2007-04-16 2008-10-16 Beller Stephen E Plan-of-Care Order-Execution-Management Software System
DE102007018810A1 (en) 2007-04-20 2008-10-30 Siemens Ag Method for motion monitoring in a medical device and associated medical device
US8156439B2 (en) 2007-04-24 2012-04-10 The General Electric Company Method and apparatus for mimicking the display layout when interfacing to multiple data monitors
US20090209849A1 (en) 2007-05-02 2009-08-20 Philip Stephen Rowe Medical Device Placement and Monitoring System Utilizing Radio Frequency Identification
US8251703B2 (en) 2007-05-21 2012-08-28 Johnson County Community College Foundation, Inc. Healthcare training system and method
US20080295830A1 (en) 2007-05-30 2008-12-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Tool and method for customized inhalation
CA2726604C (en) 2007-06-01 2023-09-12 Intensive Care On-Line Network, Inc. Ventilator apparatus and system for ventilation
US20080295839A1 (en) 2007-06-01 2008-12-04 Habashi Nader M Ventilator Apparatus and System of Ventilation
JP5073371B2 (en) 2007-06-06 2012-11-14 株式会社タニタ Sleep evaluation device
US20080312954A1 (en) 2007-06-15 2008-12-18 Validus Medical Systems, Inc. System and Method for Generating and Promulgating Physician Order Entries
US8630704B2 (en) 2007-06-25 2014-01-14 Cardiac Pacemakers, Inc. Neural stimulation with respiratory rhythm management
US20090005651A1 (en) 2007-06-27 2009-01-01 Welch Allyn, Inc. Portable systems, devices and methods for displaying varied information depending on usage circumstances
DE102007037965A1 (en) 2007-08-11 2009-02-19 Diehl Ako Stiftung & Co. Kg rotary knobs
US7967780B2 (en) 2007-08-29 2011-06-28 Kimberly-Clark Worldwide, Inc. Gastro-esophageal reflux control system and pump
EP2031541A1 (en) 2007-09-03 2009-03-04 LG Electronics Inc. Facility management system and control method of facility management system
WO2009036334A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent multi-sensor device with empathic monitoring
JP2011501276A (en) 2007-10-12 2011-01-06 ペイシェンツライクミー, インコーポレイテッド Self-improvement methods using online communities to predict health-related outcomes
RU2010125146A (en) 2007-11-19 2011-12-27 Кэафьюжн 2200, Инк. (Us) RESPIRATORY THERAPY SYSTEM WITH ELECTROMECHANICAL DRIVE
US8355928B2 (en) 2007-12-05 2013-01-15 Siemens Medical Solutions Usa, Inc. Medical user interface and workflow management system
DE102008057469A1 (en) 2007-12-05 2009-09-10 Draeger Medical Systems, Inc. Method and apparatus for controlling a heat therapy device
US20090149200A1 (en) 2007-12-10 2009-06-11 Symbol Technologies, Inc. System and method for device or system location optimization
US20090171167A1 (en) 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc System And Method For Monitor Alarm Management
US20090171176A1 (en) 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US20090165795A1 (en) 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Method and apparatus for respiratory therapy
WO2009097555A2 (en) 2008-01-30 2009-08-06 Google Inc. Notification of mobile device events
US20090205663A1 (en) 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Configuring the operation of an alternating pressure ventilation mode
US20090205661A1 (en) 2008-02-20 2009-08-20 Nellcor Puritan Bennett Llc Systems and methods for extended volume range ventilation
DE102008010651B4 (en) 2008-02-22 2019-04-25 Biotronik Se & Co. Kg System and method for evaluating an impedance curve
US8121858B2 (en) 2008-03-24 2012-02-21 International Business Machines Corporation Optimizing pharmaceutical treatment plans across multiple dimensions
US8640699B2 (en) 2008-03-27 2014-02-04 Covidien Lp Breathing assistance systems with lung recruitment maneuvers
EP2363163A1 (en) 2008-03-27 2011-09-07 Nellcor Puritan Bennett LLC Device for controlled delivery of breathing gas to a patient using multiple ventilation parameters
US20090241953A1 (en) 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Ventilator with piston-cylinder and buffer volume
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US10207069B2 (en) 2008-03-31 2019-02-19 Covidien Lp System and method for determining ventilator leakage during stable periods within a breath
EP2259823A1 (en) 2008-03-31 2010-12-15 Nellcor Puritan Bennett LLC Ventilator based on a fluid equivalent of the "digital to analog voltage" concept
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US8425428B2 (en) 2008-03-31 2013-04-23 Covidien Lp Nitric oxide measurements in patients using flowfeedback
EP2106818B1 (en) 2008-03-31 2013-12-25 Nellcor Puritan Bennett Llc System for compensating for pressure drop in a breathing assistance system
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
AU2009231586A1 (en) 2008-04-03 2009-10-08 Kai Medical, Inc. Non-contact physiologic motion sensors and methods for use
US8826907B2 (en) 2008-06-06 2014-09-09 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
US20100011307A1 (en) 2008-07-08 2010-01-14 Nellcor Puritan Bennett Llc User interface for breathing assistance system
KR101556813B1 (en) 2008-07-23 2015-10-01 아트리오 메디컬, 아이엔씨. Cpr assist device for measuring compression parameters during cardiopulmonary resuscitation
US20100056852A1 (en) 2008-08-22 2010-03-04 Dymedix Corporation Stimulus escalator for a closed loop neuromodulator
EP2356407A1 (en) 2008-09-04 2011-08-17 Nellcor Puritan Bennett LLC Inverse sawtooth pressure wave train purging in medical ventilators
US7893560B2 (en) 2008-09-12 2011-02-22 Nellcor Puritan Bennett Llc Low power isolation design for a multiple sourced power bus
US8551006B2 (en) 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
US20100071695A1 (en) 2008-09-23 2010-03-25 Ron Thiessen Patient wye with flow transducer
US8342177B2 (en) 2008-09-24 2013-01-01 Covidien Lp Spill resistant humidifier for use in a breathing assistance system
EP2342605A1 (en) * 2008-09-25 2011-07-13 Siemens Industry, Inc. Manipulation of event information data in a building system for use by applications
US20100071696A1 (en) 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
CA2736540C (en) 2008-09-25 2015-11-24 Nellcor Puritan Bennett Llc Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8652064B2 (en) 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
US8585412B2 (en) 2008-09-30 2013-11-19 Covidien Lp Configurable respiratory muscle pressure generator
US8439032B2 (en) 2008-09-30 2013-05-14 Covidien Lp Wireless communications for a breathing assistance system
US8302600B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Battery management for a breathing assistance system
WO2010039884A1 (en) 2008-09-30 2010-04-08 Nellcor Puritan Bennett Llc Pneumatic tilt sensor for use with respiratory flow sensing device
JP5711661B2 (en) 2008-10-01 2015-05-07 ブリーズ・テクノロジーズ・インコーポレーテッド Ventilator with biofeedback monitoring and controls to improve patient activity and health
US8303276B2 (en) 2008-12-10 2012-11-06 Covidien Lp Pump and exhalation valve control for respirator apparatus
WO2010068569A1 (en) 2008-12-12 2010-06-17 Nellcor Puritan Bennett Llc Medical ventilator cart
USD632797S1 (en) 2008-12-12 2011-02-15 Nellcor Puritan Bennett Llc Medical cart
USD632796S1 (en) 2008-12-12 2011-02-15 Nellcor Puritan Bennett Llc Medical cart
US20100218766A1 (en) 2009-02-27 2010-09-02 Nellcor Puritan Bennett Llc Customizable mandatory/spontaneous closed loop mode selection
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US20100242961A1 (en) 2009-03-31 2010-09-30 Nellcor Puritan Bennett Llc Systems and methods for preventing water damage in a breathing assistance system
US20100298718A1 (en) 2009-04-27 2010-11-25 Jeffrey Jay Gilham Multiple Mode, Portable Patient Monitoring System
US8554714B2 (en) * 2009-05-11 2013-10-08 Honeywell International Inc. High volume alarm management system
US20100288283A1 (en) 2009-05-15 2010-11-18 Nellcor Puritan Bennett Llc Dynamic adjustment of tube compensation factor based on internal changes in breathing tube
US20100300446A1 (en) 2009-05-26 2010-12-02 Nellcor Puritan Bennett Llc Systems and methods for protecting components of a breathing assistance system
US8603003B2 (en) 2009-06-03 2013-12-10 Covidien Lp Trachea pressure determination method and device
US20100317980A1 (en) 2009-06-11 2010-12-16 Guglielmino Michael F Method and device for using a physiological parameter to express evolution
US20110009746A1 (en) 2009-07-10 2011-01-13 Tran Binh C System and methods for pulmonary edema detection with implantable acoustic devices
US8776790B2 (en) 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US20110023878A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver
US20110023880A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Multi-Breath, Low Flow Recruitment Maneuver
US20110029910A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Providing A Graphical User Interface For Delivering A Low Flow Recruitment Maneuver
US20110023881A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Generating A Pressure Volume Loop Of A Low Flow Recruitment Maneuver
US8789529B2 (en) 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
US8596270B2 (en) 2009-08-20 2013-12-03 Covidien Lp Systems and methods for controlling a ventilator
ES2952361T3 (en) * 2009-08-31 2023-10-31 Abbott Diabetes Care Inc Displays for a medical device
US20110054289A1 (en) 2009-09-01 2011-03-03 Adidas AG, World of Sports Physiologic Database And System For Population Modeling And Method of Population Modeling
WO2011029069A1 (en) 2009-09-03 2011-03-10 Human Touch, Llc Comprehensive user control system for therapeutic wellness devices
US20110098638A1 (en) 2009-10-27 2011-04-28 Medtronic Minimed, Inc. Sensor-Augmented Medication Infusion System
US9274871B2 (en) 2009-11-24 2016-03-01 Oracle International Corporation In-lane exception handling
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US20110126832A1 (en) 2009-12-01 2011-06-02 Nellcor Puritan Bennett Llc Exhalation Valve Assembly
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434481B2 (en) 2009-12-03 2013-05-07 Covidien Lp Ventilator respiratory gas accumulator with dip tube
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US20110132368A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Display Of Historical Alarm Status
USD649157S1 (en) 2009-12-04 2011-11-22 Nellcor Puritan Bennett Llc Ventilator display screen with a user interface
USD638852S1 (en) 2009-12-04 2011-05-31 Nellcor Puritan Bennett Llc Ventilator display screen with an alarm icon
US20110138323A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Visual Indication Of Alarms On A Ventilator Graphical User Interface
US8418692B2 (en) 2009-12-04 2013-04-16 Covidien Lp Ventilation system with removable primary display
US20110138311A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Display Of Respiratory Data On A Ventilator Graphical User Interface
USD618356S1 (en) 2009-12-04 2010-06-22 Nellcor Puritan Bennett Llc Tank holder
USD643535S1 (en) 2009-12-04 2011-08-16 Nellcor Puritan Bennett Llc Medical ventilator
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US20110146681A1 (en) 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
US20110146683A1 (en) 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Sensor Model
US8400290B2 (en) 2010-01-19 2013-03-19 Covidien Lp Nuisance alarm reduction method for therapeutic parameters
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US20110209702A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Proportional Solenoid Valve For Low Molecular Weight Gas Mixtures
US20110209707A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Method And Apparatus For Oxygen Reprocessing Of Expiratory Gases In Mechanical Ventilation
US9302061B2 (en) 2010-02-26 2016-04-05 Covidien Lp Event-based delay detection and control of networked systems in medical ventilation
US20110213215A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Spontaneous Breathing Trial Manager
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
US8539949B2 (en) 2010-04-27 2013-09-24 Covidien Lp Ventilation system with a two-point perspective view
US8453643B2 (en) 2010-04-27 2013-06-04 Covidien Lp Ventilation system with system status display for configuration and program information
USD645158S1 (en) 2010-04-27 2011-09-13 Nellcor Purtian Bennett LLC System status display
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
US20110271960A1 (en) 2010-05-07 2011-11-10 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt Regarding Auto-PEEP Detection During Volume Ventilation Of Triggering Patient
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US20120060841A1 (en) 2010-09-15 2012-03-15 Newport Medical Instruments, Inc. Oxygen enrichment device for ventilator
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US20120090611A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Systems And Methods For Controlling An Amount Of Oxygen In Blood Of A Ventilator Patient
US20120096381A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8595639B2 (en) 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US20120136222A1 (en) 2010-11-30 2012-05-31 Nellcor Puritan Bennett Llc Methods And Systems For Monitoring A Ventilator Patient With A Capnograph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041267A1 (en) * 1997-03-14 1998-09-24 Nellcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US20090054743A1 (en) * 2005-03-02 2009-02-26 Donald-Bane Stewart Trending Display of Patient Wellness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777493B1 (en) 2013-03-14 2020-02-26 Integra LifeSciences Corporation Methods, systems, and devices for monitoring and displaying medical parameters for a patient
CN111712860A (en) * 2018-02-21 2020-09-25 帝人制药株式会社 Server, monitoring system, terminal, monitoring device and method for monitoring oxygen concentration device
US11386765B2 (en) 2018-02-21 2022-07-12 Teijin Pharma Limited Server, monitoring system, terminal, monitoring device and method for monitoring of oxygen concentrator
EP4079353A4 (en) * 2019-12-16 2022-12-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ventilation information display method and apparatus for medical ventilation device, and medical device

Also Published As

Publication number Publication date
US20110154241A1 (en) 2011-06-23
US8443294B2 (en) 2013-05-14
US20120030611A1 (en) 2012-02-02
US20130239038A1 (en) 2013-09-12
US8499252B2 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
US8443294B2 (en) Visual indication of alarms on a ventilator graphical user interface
US20110138323A1 (en) Visual Indication Of Alarms On A Ventilator Graphical User Interface
EP2512568B1 (en) Interactive multilevel alarm
US11287965B2 (en) Breathing apparatus and method for user interaction therewith
AU2002350108B2 (en) User interface for sedation and analgesia delivery systems and methods
US8335992B2 (en) Visual indication of settings changes on a ventilator graphical user interface
US5931160A (en) Ventilator control system and method
US8555881B2 (en) Ventilator breath display and graphic interface
US8924878B2 (en) Display and access to settings on a ventilator graphical user interface
US9411494B2 (en) Nuisance alarm reduction method for therapeutic parameters
US6158432A (en) Ventilator control system and method
US9262588B2 (en) Display of respiratory data graphs on a ventilator graphical user interface
CA1329946C (en) User interface for medication infusion system
AU2002350108A1 (en) User interface for sedation and analgesia delivery systems and methods
US20080078390A1 (en) Providing predetermined groups of trending parameters for display in a breathing assistance system
US20130032149A1 (en) Method and system for visualizing mechanical ventilation information
WO1997020592A9 (en) Ventilator control system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10798673

Country of ref document: EP

Kind code of ref document: A1