WO2011068258A1 - Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby - Google Patents

Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby Download PDF

Info

Publication number
WO2011068258A1
WO2011068258A1 PCT/KR2009/007155 KR2009007155W WO2011068258A1 WO 2011068258 A1 WO2011068258 A1 WO 2011068258A1 KR 2009007155 W KR2009007155 W KR 2009007155W WO 2011068258 A1 WO2011068258 A1 WO 2011068258A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve
time
piston
engine
value
Prior art date
Application number
PCT/KR2009/007155
Other languages
French (fr)
Korean (ko)
Inventor
이길용
Original Assignee
주식회사 엔진텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔진텍 filed Critical 주식회사 엔진텍
Priority to PCT/KR2009/007155 priority Critical patent/WO2011068258A1/en
Publication of WO2011068258A1 publication Critical patent/WO2011068258A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals

Definitions

  • Prepiston engine control method using predictive curve and prepiston engine controlled by it
  • the present invention relates to a control method of a pre-piston engine, and more particularly, to a control method of a pre-piston engine using a predictive curve for predicting a driving pattern of the pre-piston and a pre-piston engine controlled by the pre-piston engine. It is about.
  • the free-pistion engine is a straight-stroke reciprocating engine, a two-stroke, one-cycle engine, with no crank mechanism.
  • the prepiston engine is connected in a straight line through one shaft (moving shaft), and can be connected to an energy converter such as a hydraulic pump or a generator to generate energy.
  • the prepiston engine has a high piston speed, which allows the mixer to be compressed at a high pressure to realize a high compression ratio. Also, since there is no cramp mechanism, power conversion loss is small and the engine efficiency can be overcome recently. It is attracting much attention.
  • the pre-piston engine is difficult to control due to the variable stroke, and because of the characteristics of the pre-piston engine, the inertia cannot be used, so if the control fails at least once, the engine stops.
  • Johansen et al Proposed a method of controlling the prepiston engine by predicting the movement pattern of the pre-piston by the sine curve (Free Piston Diesel Engine Timing and Control. Control Electronic Cam. ⁇ and Crankshaft, Johansen et al, IEEE Trans. Control
  • the present invention has been made to solve the above problems, the first problem to be solved by the present invention is to provide a control method of the pre-piston engine using a predictive curve obtained by converting the standardized curve will be.
  • the second problem to be solved by the present invention is to provide a pre-piston engine controlled by the control method of the pre-piston engine described above.
  • the present invention to achieve the first object,
  • the normalization curve is preferably an ideal movement pattern of the pre-piston.
  • the prediction curve may be determined by the following equation.
  • x f (t) is a standardized curve function representing the pre-piston position X at time t
  • n x is a position conversion coefficient that is the ratio of the calculated position value to the measured position value
  • n t is the measurement time Time conversion factor which is a ratio of the calculated time value to a value
  • the specific point includes the top dead center of the pre-piston
  • the position conversion coefficient is the ratio of the calculated position value to the measurement position value at the top dead center
  • the time conversion coefficient is the measurement time value at the top dead center It is preferable that it is the ratio of said calculation time value with respect to.
  • the specific point includes the first augmentation point of the pre-piston
  • the position conversion coefficient is a ratio of the position value of the calculated data to the position value of the measurement data at the top dead center
  • the time conversion coefficient is It is preferable that it is a ratio of the time value of the said calculation data with respect to the time value of the said measurement data in a 1st center point.
  • the specific point includes the bottom dead center of the prepiron, the position conversion coefficient is a ratio of the position value of the calculated data to the position value of the measurement data at the bottom dead center, and the time conversion coefficient is the bottom dead center. Is a ratio of the time value of the calculated data to the time value of the measured data.
  • the specific point may also include a second center point of the prepiston, and the position conversion coefficient may correspond to the position value of the measurement data at the bottom dead center.
  • the time conversion coefficient is a ratio of the time value of the calculated data to the time value of the measured data at the second center point.
  • step (d) the ignition timing and injection timing of the prepiston engine may be controlled using the prediction curve.
  • the position of the prepistone may be represented by a displacement or an angle.
  • a pre-piston engine comprising a combustion cylinder, a prepistron disposed to reciprocate in the combustion cylinder along a movable shaft, an ignition plug installed in the combustion cylinder, and an injector for supplying fuel into the combustion cylinder.
  • An engine control unit controlling an ignition timing of the spark plug and an injection timing of the injector
  • the engine control unit provides a pre-piston engine, characterized in that the control algorithm including a control method of the pre-piston engine using the above-described prediction curve.
  • the control method of the pre-piston engine according to the present invention uses a predictive curve obtained by converting a predetermined standardized curve based on measurement data measured by a pre-piston engine in actual operation, so that the motion is very similar to the actual motion pattern of the pre-piston. Predict patterns.
  • the ignition timing and injection timing of the prepiston engine can be determined using the predicted motion pattern, the prepiston engine can be controlled more accurately, thereby maximizing the control performance and stability of the prepiston engine. .
  • 1 is a schematic structural diagram of a general prepiron engine.
  • 2 is a diagram illustrating a movement pattern of the pre-piston.
  • FIG. 3 is a graph showing the pressure-volume diagram of an Otto cycle.
  • FIG. 4 is a flowchart illustrating a control method of a prepiston engine according to an embodiment of the present invention.
  • 5 is a graph showing the prediction curve of the B section obtained using the measurement curve and the normalization curve of the A section.
  • FIG. 6 is a graph showing a prediction curve of a section C obtained by using the measurement curve and the normalization curve of the section B.
  • FIG. 7 is a diagram illustrating a process of controlling a prepiston engine according to a prediction curve according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a pre-piston engine according to an embodiment of the present invention. [Form for implementation of invention]
  • 1 is a schematic structural diagram of a general prepiston engine.
  • B is the diameter of the bore
  • A is the cross-sectional area of the bore
  • TDC and BDC are the top dead center and the bottom dead center of the pre-piston, respectively
  • P L is the pressure of the left cylinder
  • P R is the pressure of the right cylinder
  • s stroke ( stroke
  • x is the displacement of the prepiston
  • x s is the half stroke
  • Equation 1 The equation of motion of the prepistone having the structure as shown in FIG. 1 is as follows. [Equation 1] Where F f is the frictional force, F ffl is the load absorbing power, and one cycle It can be assumed that the frictional force and the load absorbing force occur within the same.
  • Equation 1 The solution of the differential equation represented by Equation 1 may be used as a standardized curve representing an ideal motion pattern of the prepiston.
  • FIG. 2 is a diagram illustrating a movement pattern of the prepiston to explain the concept of the prepiston control method according to an embodiment of the present invention.
  • Prediction curves in each section can be obtained by coordinate transformation of the above-described standardization curve, and the coordinate transformation method can be performed in angle units or ratio units in the same way as in a reciprocating engine.
  • the center point is a point that is the geometric center of the top dead center and the bottom dead center, means a point where the pre-piston displacement is 0, in this specification, the first center point is the center point that passes when the pre-piston moves from the top dead center to the bottom dead center.
  • the second center point refers to the center point that passes when the prepiston moves from the bottom dead center to the top dead center.
  • FIG. 3 is a graph showing the pressure-volume diagram of an Otto cycle.
  • the Otto cycle shown in FIG. 3 shows the pressure-volume relationship of the left cylinder in the prepiston engine shown in FIG. 1, and the pressure-volume diagram of the right cylinder may be displayed symmetrically.
  • the processes from 1 to 2 are compression strokes
  • the processes from 2 to 3 are explosion strokes
  • the processes from 3 to 4 are expansion strokes
  • the process from 1 'to 1 It is an inertial expansion stroke.
  • the right cylinder goes through the reverse stroke of the above process.
  • the governing equation for the compression stroke from 1 'to 2 is
  • Pc is the pressure in the compression stroke from 1 'to 2
  • Vc is the volume at this time
  • n is the specific heat ratio.
  • Equation 2 When ⁇ ⁇ and V r are determined in Equation 2, Vc is determined by the displacement of the piston, and thus Pc is determined. Meanwhile, in Equation 3, P 3 and V 3 are determined, Ve is determined by the displacement of the piston, and Pe is also determined.
  • Equations 2 and 3 indicate that the C section can be predicted through the B section of FIG. 2 and the A 'section can be predicted through the D section.
  • the actual explosion that occurs during combustion is proportional to the amount of fuel, but the process is so complex that it is virtually unpredictable.
  • the purpose of engine control is to predict the final ignition timing, and the ignition timing can be controlled by the advance or perception conditions by the prediction, so that the top dead center can be controlled constantly.
  • a method of controlling a prepiston engine using a prediction curve according to an embodiment of the present invention will be described.
  • FIG. 4 is a flowchart of a method for controlling a prepiston engine according to an embodiment of the present invention
  • FIG. 8 is a structural diagram of a prepiston engine 100 according to an embodiment of the present invention.
  • a control method of a prepiston engine includes: acquiring measurement data including an axis position value and a measurement time value by calculating the position and time of the prepiston at a specific point (S10); Obtaining calculated data including a calculated position value and a calculated time value by calculating a position and a time of the specific point in a predetermined normalization curve (S20); Determining a prediction curve predicting the movement pattern of the pre-piston after the specific point by converting the normalization curve based on the measured data and the calculated data (S30); And controlling the prepiston engine using the genital prediction curve (S40).
  • the measurement data acquiring step S10 may be performed by using detection means installed in the prepiston engine 100.
  • the detecting means 60 is a device for detecting the time-specific position of the prepiron 30, for example, an encoder installed on the outer circumferential surface of the pre-piston engine 100 may be used. By using such a detection means, the position value and time value of the prepiston at a specific point (for example, top dead center, bottom dead center, center point, etc.) can be measured in real time.
  • Computation data acquisition step (S20) is a step of calculating the position value and time value of the pre-piston at a specific point using a predetermined standardization curve. Assuming that the standardized curve is a solution of the differential equation defined by Equation 1, the calculation data can be easily obtained by substituting the position value X of the prepiston in the solution.
  • the measurement data acquisition step (S10) and the calculation data acquisition step (S20) described above do not necessarily have to maintain their prognostic relationship, and any of the two steps You may perform the steps first.
  • Prediction curve determination step (S30) is a step of determining the prediction curve by converting the standardized curve on the basis of the measurement data and the calculation data obtained in the above-described step.
  • This prediction curve like the normalization curve, is expressed as a function of the position of the prepiston 30 over time.
  • the specific process of determining the prediction curve is as follows.
  • FIG. 5 is a graph showing the prediction curve p of section B obtained using the measurement curve M of section A and the standardization curve S.
  • S is an idealized standard curve representing the position (X) of the prepistone over time (t)
  • S is a measurement curve indicating the movement pattern of the pre-piston actually measured through the above-described means
  • P is Predictive curves for predicting the pre-piston movement pattern.
  • X * and t * denote the position and time values of the prepistone in the normalization curve S, respectively
  • ⁇ ', t' denote the position and time values of the prepistone in the measurement curve M, respectively.
  • t denotes a position value and a time value of the prepistone in the prediction curve P, respectively.
  • the conversion factor for converting the standardized curve is defined as the ratio of the calculated data obtained from the standardized curve to the measured data obtained from the measured curve at a specific point.
  • a transformation coefficient for obtaining a prediction curve of a section B is defined as follows by determining a specific point as a top dead center. [Equation 5]
  • n t is the time conversion factor, which is the ratio of the time value of the normalization curve to the time value of the measurement curve at the top dead center of the prepiston
  • n x is the position conversion coefficient of the measurement curve at the top dead center of the prepiston.
  • the prediction curve is determined as follows. [Equation 6] Therefore, by calculating the position transformation coefficient and the time transformation coefficient from the predetermined normalization curve and the top dead center of the prepiston, the prediction curve which is the motion pattern of the prepistone in the section B can be calculated using Equation (6).
  • FIG. 6 is a graph showing the prediction curve P of the C section obtained using the measurement curve M of the B section and the standardization curve S.
  • the transformation coefficient for obtaining the prediction curve of the C interval may be defined as follows by determining a specific point as the first center point.
  • Equation 7 The time conversion coefficient and position conversion coefficient defined by Equation (7) A prediction curve for predicting the pre-piston motion pattern in the subinterval C region to the prediction curve function defined by Equation 6 may be determined.
  • the time conversion coefficient is defined as the ratio of the time value of the normalization curve to the time value of the measurement curve at the bottom dead center
  • the position transformation coefficient is It is defined as the ratio of the position value of the normalization curve to the position value of the measurement curve at the point.
  • the time conversion coefficient is defined as the ratio of the time value of the normalization curve to the time value of the measurement curve at the second center point
  • the position conversion coefficient is It is defined as the ratio of the position value of the normalization curve to the position value of the measurement curve at the bottom dead center.
  • the prediction curve of the subsequent section may be determined using the measurement curve (or measurement data) and the standardization curve (or calculation data) of the previous section.
  • Pre-piston engine control step (S40) is a step of controlling the pre-piston engine using the prediction curve obtained through the above-described process.
  • the top dead center of the pre-piston can be made constant by adjusting the ignition timing of the spark plug, the injection timing of the injector, etc. using the determined prediction curve.
  • FIG. 7 is a graph illustrating a prediction curve derived in a method of controlling a prepiston engine according to an embodiment of the present invention.
  • the predictive curve of FIG. 7 predicts the driving pattern of the left prepiston in the structural diagram of the prepiston engine shown in FIG. 8, where "L” represents the left prepiston engine 100 and "prefers the right prepiston engine". (100 1 ) is referred to.
  • the ignition timing and injection timing of the prepiston engine may be determined through the prediction curve.
  • the intake, exhaust, and the scavenging valve can be appropriately adjusted by opening and closing the corresponding valve.
  • the standardized curve, the measured curve, and the predicted curve have been described by indicating the displacement of the prepistron position.
  • the prepiston engine can be controlled in the same manner as the conventional reciprocating engine. Can be.
  • FIG. 8 is a structural diagram of a pre-piston engine according to an embodiment of the present invention, wherein the pre-piston engine 100 is arranged to reciprocate the combustion cylinder 10 and the combustion cylinder along the movable shaft 20.
  • the prepiston engine 100 is provided with an intake port 11 and an exhaust port 12 in communication with the combustion cylinder.
  • Pre-piston engines are internal combustion engines using fuels such as hydrogen and two-stroke, one-cycle engines.
  • the pre-piston engine 100 is preferably an opposite pre-piston engine in which the pre-pistons 30 are respectively installed at both ends of the movable shaft 20 for reciprocating linear motion.
  • both pre-piston engines are arranged to alternately explode. Therefore, in order to generate energy by using the driving force in the linear direction transmitted from both prepiron engines, an energy conversion device 80 such as a hydraulic pump or a generator may be installed in the central portion of the movable shaft.
  • the detection means 60 is installed on one side of the pre-piston engine in association with the movable shaft 20, and the movable shaft 20 is installed in a structure capable of detecting the position of the movable shaft over time when the movable shaft 20 performs a reciprocating linear motion. Can be.
  • the engine control unit 70 is equipped with a control algorithm including a control method of the pre-piston engine according to an embodiment of the present invention.
  • the engine control unit 70 is configured to transmit and receive data to and from the detection means 70 and to transmit and receive control signals to and from the injector 50 and the spark plug 40.
  • the injector 50 and the spark plug 40 may be controlled by the engine control unit 70 at an operation time and an operation time. That is, the injection timing (operation time and operation time) of the injector and the ignition timing (operation time and operation time) of the spark plug can be appropriately adjusted using the above-described prediction curve.
  • the pre-piston engine 100 can control the variable stroke based on the predictive curve for predicting the driving pattern of the pre-piston 30, it can be expected a control effect similar to the control of the reciprocating engine.
  • the standardized curve can be represented by various variables such as the angle or the number of ' dimensions ' instead of the displacement of the prepiston.
  • the standardized curve is defined by the angle unit corresponding to the reciprocating engine and the prediction curve is displayed by the angle. Can be controlled in the same way as a conventional reciprocating engine. All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Abstract

The present invention relates to a control method for a free-piston engine, comprising the steps of: acquiring measurement data containing a measured-position value and a measured-time value obtained by measuring the position and the time of a free piston at a specific point; acquiring calculation data containing a calculated-position value and a calculated-time value obtained by calculating the position and the time at the specific point from a predetermined standardisation curve; determining a prediction curve for predicting the pattern of movement of the piston after the specific point by subjecting the standardisation curve to conversion based on the measurement data and the calculation data; and controlling the free-piston engine by using the prediction curve, wherein a pattern of movement which is very similar to the actual pattern of movement of the free piston can be predicted, and the free-piston engine control performance can be improved.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
예측곡선을 이용한 프리피스톤 엔진의 제어방법 및 이에 의해 제어되는 프리피스톤 엔진  Prepiston engine control method using predictive curve and prepiston engine controlled by it
【기술분야】  Technical Field
본 발명은 프리피스톤 엔진의 제어방법에 관한 것으로서 , 보다 상세하게는 프리피스톤의 운전패턴을 예측하는 예측곡선을 이용하여 프리피스톤 엔진을 제어하는 프리피스톤 엔진의 제어방법 및 이에 의해 제어되는 프리피스톤 엔진에 관한 것이다.  The present invention relates to a control method of a pre-piston engine, and more particularly, to a control method of a pre-piston engine using a predictive curve for predicting a driving pattern of the pre-piston and a pre-piston engine controlled by the pre-piston engine. It is about.
【배경기술】  Background Art
프리피스톤 엔진 (free— pistion engine)은 직선 왕복형 엔진으로서 2행정 1사이클 엔진이며 , 크랭크 기구가 없는 엔진이다. 프리피스톤 엔진은 하나의 축 (가동축)을 통해 직선형태로 연결되어 있으며, 유압펌프 또는 발전기와 같은 에너지 변환장치와 연결되어 에너지를 발생시킬 수 있다. 이러한 프리피스톤 엔진은 피스톤의 이동속도가 빨라 혼합기를 높은 압력으로 압축하여 고압축비의 실현이 가능하고 또한 크램크 기구가 없어 동력변환 손실이 적어 , 엔진 효율의 한계를 극복할 수 있는 엔진으로서 최근에 크게 주목받고 있다.  The free-pistion engine is a straight-stroke reciprocating engine, a two-stroke, one-cycle engine, with no crank mechanism. The prepiston engine is connected in a straight line through one shaft (moving shaft), and can be connected to an energy converter such as a hydraulic pump or a generator to generate energy. The prepiston engine has a high piston speed, which allows the mixer to be compressed at a high pressure to realize a high compression ratio. Also, since there is no cramp mechanism, power conversion loss is small and the engine efficiency can be overcome recently. It is attracting much attention.
하지만, 프리피스톤 엔진은 가변 스트로크로 인하여 제어가 어렵고, 프리피스톤 엔진의 특성상, 관성을 이용할 수 없으므로 제어가 한번이라도 실패하면 엔진이 멈추는 현상이 발생한다 . 또한 , 관성체의 부재로 인해 운전속도 등의 운전패턴이 자주 변하는 현상이 발생한다.  However, the pre-piston engine is difficult to control due to the variable stroke, and because of the characteristics of the pre-piston engine, the inertia cannot be used, so if the control fails at least once, the engine stops. In addition, a phenomenon in which the driving pattern such as the driving speed changes frequently due to the absence of an inertial body.
이와 같은 프리피스톤 엔진의 제어 상의 문제점을 해결하기 위해 각종 제어기법이 제안되어 왔다. 특히, Johansen 등은 프리피스톤의 운동패턴을 Sine 곡선으로 예측하여 프리피스론 엔진을 제어하는 방법을 계안하였으나 (Free一 Piston Diesel Engine Timing and Control 一 Towards Electronic Cam - and Crankshaft , Johansen et al , IEEE Trans . Control Electronic Cam .一 and Crankshaft , Johansen et al , IEEE Trans . ControlVarious control methods have been proposed to solve such control problems of the prepiston engine. In particular, Johansen et al. Proposed a method of controlling the prepiston engine by predicting the movement pattern of the pre-piston by the sine curve (Free Piston Diesel Engine Timing and Control. Control Electronic Cam. 一 and Crankshaft, Johansen et al, IEEE Trans. Control
Systems Technology, vol. 9, 2001), 이 방법은 프리피스톤 엔진의 운전패턴과 왕복동 엔진의 운전패턴이 완전히 상이함에도 불구하고 왕복동 엔진의 운전패턴인 Sine 커브로 프리피스톤 운전패턴을 예측하였기 때문에 상사점 및 /또는 하사점 근방에서의 오차율이 높아 정밀한 엔진 제어가 이루어지기 어려웠다. Systems Technology, vol. 9, 2001), since this method predicts the pre-piston driving pattern by the sine curve, which is the driving pattern of the reciprocating engine, even though the driving pattern of the pre-piston engine and the driving pattern of the reciprocating engine are completely different, the top dead center and / or the bottom dead center. The high rate of error in the vicinity made it difficult to achieve precise engine control.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명이 해결하고자 하는 첫 번째 과제는 표준화곡선을 변환하여 얻는 예측곡선을 이용하여 프리피스톤 엔진을 제어하는 프리피스톤 엔진의 제어방법을 제공하는 것이다.  The present invention has been made to solve the above problems, the first problem to be solved by the present invention is to provide a control method of the pre-piston engine using a predictive curve obtained by converting the standardized curve will be.
본 발명이 해결하고자 하는 두 번째 과제는 상술한 프리피스톤 엔진의 제어방법에 의해 제어되는 프리피스톤 엔진을 제공하는 것이다. 【기술적 해결방법】  The second problem to be solved by the present invention is to provide a pre-piston engine controlled by the control method of the pre-piston engine described above. Technical Solution
본 발명은 상기 첫 번째 과제를 달성하기 위하여,  The present invention to achieve the first object,
(a) 특정 지점에서 프리피스톤의 위치 및 시간을 측정하여 측정위치값 및 측정시간값올 포함하는 측정데이터를 획득하는 단계 ;  (a) measuring the position and time of the pre-piston at a specific point to obtain measurement data including the measurement position value and the measurement time value;
(b) 미리 결정된 표준화곡선에서 상기 특정 지점의 위치 및 시간을 계산하여 계산위치값 및 계산시간값을 포함하는 계산데이터를 획득하는 단계 ;  (b) obtaining the calculation data including the calculation position value and the calculation time value by calculating the position and time of the specific point in a predetermined normalization curve;
(c) 상기 측정데이터와 상기 계산데이터를 기초로 상기 표준화곡선을 변환하여 상기 특정 지점 이후 상기 프리피스톤의 운동패턴을 예측하는 예측곡선을 결정하는 단계 ; 및  (c) determining a prediction curve predicting the movement pattern of the pre-piston after the specific point by converting the normalization curve based on the measured data and the calculated data; And
(d) 상기 예측곡선을 이용하여 상기 프리피스톤 엔진을 제어하는 단계 ;를 포함하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법을 제공한다. 여기서, 상기 표준화곡선은 상기 프리피스톤의 이상적인 운동패턴인 것이 바람직하다 . and (d) controlling the prepiston engine using the predictive curve. Here, the normalization curve is preferably an ideal movement pattern of the pre-piston.
또한, 상기 (C) 단계에서 상기 예측곡선은 하기의 수식에 의해 결정될 수 있다.  In addition, in the step (C), the prediction curve may be determined by the following equation.
X X
(여기서, x=f(t )는 시간 t에서의 프리피스톤 위치 X를 나타내는 표준화곡선 함수, nx는 상기 측정위치값에 대한 상기 계산위치값의 비율인 위치변환계수, nt는 상기 측정시간값에 대한 상기 계산시간값에 대한 비율인 시간변환계수임) Where x = f (t) is a standardized curve function representing the pre-piston position X at time t, n x is a position conversion coefficient that is the ratio of the calculated position value to the measured position value, and n t is the measurement time Time conversion factor which is a ratio of the calculated time value to a value)
또한, 상기 특정 지점은 상기 프리피스톤의 상사점을 포함하고, 상기 위치변환계수는 상사점에서 상기 측정위치값에 대한 상기 계산위치값의 비율이고, 상기 시간변환계수는 상사점에서 상기 측정시간값에 대한 상기 계산시간값의 비율인 것이 바람직하다.  In addition, the specific point includes the top dead center of the pre-piston, the position conversion coefficient is the ratio of the calculated position value to the measurement position value at the top dead center, the time conversion coefficient is the measurement time value at the top dead center It is preferable that it is the ratio of said calculation time value with respect to.
또한, 상기 특정 지점은 상기 프리피스톤의 제 1 증심점을 포함하고, 상기 위치변환계수는 상사점에서의 상기 측정데이터의 위치값에 대한 상기 계산데이터의 위치값의 비율이고, 상기 시간변환계수는 제 1 중심점에서의 상기 측정데이터의 시간값에 대한 상기 계산데이터의 시간값의 비율인 것이 바람직하다 .  In addition, the specific point includes the first augmentation point of the pre-piston, the position conversion coefficient is a ratio of the position value of the calculated data to the position value of the measurement data at the top dead center, the time conversion coefficient is It is preferable that it is a ratio of the time value of the said calculation data with respect to the time value of the said measurement data in a 1st center point.
또한, 상기 특정 지점은 상기 프리피스론의 하사점을 포함하고, 상기 위치변환계수는 하사점에서 상기 측정데이터의 위치값에 대한 상기 계산데이터의 위치값의 비을이고, 상기 시간변환계수는 하사점에서 상기 측정데이터의 시간값에 대한 상기 계산데이터의 시간값의 비율인 것이 바람직하다.  The specific point includes the bottom dead center of the prepiron, the position conversion coefficient is a ratio of the position value of the calculated data to the position value of the measurement data at the bottom dead center, and the time conversion coefficient is the bottom dead center. Is a ratio of the time value of the calculated data to the time value of the measured data.
또한, 상기 특정 지점은 상기 프리피스톤의 제 2 중심점을 포함하고, 상기 위치변환계수는 하사점에서의 상기 측정데이터의 위치값에 대한 상기 계산데이터의 위치값의 비율이고, 상기 시간변환계수는 제 2 중심점에서의 상기 측정데이터의 시간값에 대한 상기 계산데이터의 시간값의 비율인 것이 바람직하다 . The specific point may also include a second center point of the prepiston, and the position conversion coefficient may correspond to the position value of the measurement data at the bottom dead center. Preferably, the time conversion coefficient is a ratio of the time value of the calculated data to the time value of the measured data at the second center point.
또한, 상기 (d) 단계에서 , 상기 예측곡선을 이용하여 상기 프리피스톤 엔진의 점화시기 및 분사시기를 제어할 수 있다.  In addition, in step (d), the ignition timing and injection timing of the prepiston engine may be controlled using the prediction curve.
또한, 상기 프리피스톤의 위치는 변위 또는 각도로 표시될 수 있다. 본 발명은 상기 두 번째 과제를 달성하기 위하여 ,  In addition, the position of the prepistone may be represented by a displacement or an angle. The present invention to achieve the second object,
연소실린더, 상기 연소실린더 내를 가동축에 따라 왕복 운동하도록 배치된 프리피스론, 상기 연소실린더 내부에 설치된 점화플러그, 및 상기 연소실린더 내부로 연료를 공급하는 인젝터를 포함하는 프리피스톤 엔진에 있어서 ,  In a pre-piston engine comprising a combustion cylinder, a prepistron disposed to reciprocate in the combustion cylinder along a movable shaft, an ignition plug installed in the combustion cylinder, and an injector for supplying fuel into the combustion cylinder.
상기 프리피스톤의 위치를 검출하는 검출수단; 및  Detection means for detecting a position of the prepistone; And
상기 점화플러그의 점화시기 및 상기 인젝터의 분사시기를 제어하는 엔진제어부를 포함하고,  An engine control unit controlling an ignition timing of the spark plug and an injection timing of the injector,
상기 엔진제어부는 상술한 예측곡선을 이용한 프리피스톤 엔진의 제어방법을 포함하는 제어 알고리즘을 탑재한 것을 특징으로 하는 프리피스톤 엔진을 제공한다.  The engine control unit provides a pre-piston engine, characterized in that the control algorithm including a control method of the pre-piston engine using the above-described prediction curve.
【유리한 효과】  Advantageous Effects
본 발명에 따른 프리피스톤 엔진의 제어방법은, 실제 운전 중인 프리피스톤 엔진에서 측정된 측정데이터를 기초로 미리 정해진 표준화곡선을 변환하여 얻어진 예측곡선을 이용하므로, 프리피스톤의 실제 운동패턴과 매우 유사한 운동패턴을 예측할 수 있다. 또한, 이러한 예측된 운동패턴을 이용하여 프리피스톤 엔진의 점화시기 및 분사시기를 결정할 수 있으므로, 보다 정확하게 프리피스톤 엔진을 제어할 수 있으며, 이를 통해 프리피스톤 엔진의 제어성능 및 안정성을 극대화시킬 수 있다.  The control method of the pre-piston engine according to the present invention uses a predictive curve obtained by converting a predetermined standardized curve based on measurement data measured by a pre-piston engine in actual operation, so that the motion is very similar to the actual motion pattern of the pre-piston. Predict patterns. In addition, since the ignition timing and injection timing of the prepiston engine can be determined using the predicted motion pattern, the prepiston engine can be controlled more accurately, thereby maximizing the control performance and stability of the prepiston engine. .
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 일반적인 프리피스론 엔진의 개략 구조도이다. 도 2는 프리피스톤의 운동패턴을 도시한 도면이다. 1 is a schematic structural diagram of a general prepiron engine. 2 is a diagram illustrating a movement pattern of the pre-piston.
도 3은 Otto 사이클의 압력 -부피 선도를 나타낸 그래프이다.  3 is a graph showing the pressure-volume diagram of an Otto cycle.
도 4는 본 발명의 일 실시예에 따른 프리피스톤 엔진의 제어방법의 흐름도이다.  4 is a flowchart illustrating a control method of a prepiston engine according to an embodiment of the present invention.
도 5는 A 구간의 측정곡선 및 표준화곡선을 이용하여 얻어진 B 구간의 예측곡선올 도시한 그래프이다.  5 is a graph showing the prediction curve of the B section obtained using the measurement curve and the normalization curve of the A section.
도 6은 B 구간의 측정곡선 및 표준화곡선을 이용하여 얻어진 C 구간의 예측곡선을 도시한 그래프이다.  FIG. 6 is a graph showing a prediction curve of a section C obtained by using the measurement curve and the normalization curve of the section B. FIG.
도 7은 본 발명의 일 실시예에 따른 예측곡선에 따라 프리피스톤 엔진을 제어하는 과정을 나타낸 도면이다.  7 is a diagram illustrating a process of controlling a prepiston engine according to a prediction curve according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 프리피스톤 엔진의 구조도이다. 【발명의 실시를 위한 형태】  8 is a structural diagram of a pre-piston engine according to an embodiment of the present invention. [Form for implementation of invention]
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.  Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, these examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.
도 1은 일반적인 프리피스톤 엔진의 개략 구조도이다.  1 is a schematic structural diagram of a general prepiston engine.
도 1에서 B는 보어의 직경 , A는 보어의 단면적, TDC 및 BDC는 각각 프리피스톤의 상사점 및 하사점 , PL은 좌측 실린더의 압력 , PR은 우측 실린더의 압력, s는 스크로크 (stroke), x는 프리피스톤의 변위 , xs는 하프 스트로크 (half stroke) , 은 최대 하프 스크로크 (maximum half stroke)를 나타낸다. In Figure 1, B is the diameter of the bore, A is the cross-sectional area of the bore, TDC and BDC are the top dead center and the bottom dead center of the pre-piston, respectively, P L is the pressure of the left cylinder, P R is the pressure of the right cylinder, s is stroke ( stroke, x is the displacement of the prepiston, x s is the half stroke, and is the maximum half stroke.
도 1과 같은 구조를 가지는 프리피스톤의 운동방정식은 다음과 같다. 【수학식 1】
Figure imgf000006_0001
여기서, Ff는 마찰력을, Fffl은 부하흡수력올 의미하며 , 하나의 사이클 내에서 상기 마찰력과 부하흡수력은 동일하게 일어나는 것으로 가정할 수 있다.
The equation of motion of the prepistone having the structure as shown in FIG. 1 is as follows. [Equation 1]
Figure imgf000006_0001
Where F f is the frictional force, F ffl is the load absorbing power, and one cycle It can be assumed that the frictional force and the load absorbing force occur within the same.
상기 수학식 1로 표시되는 미분방정식의 해가 프리피스톤의 이상적인 운동패턴을 나타내는 표준화곡선으로 쓰일 수 있다.  The solution of the differential equation represented by Equation 1 may be used as a standardized curve representing an ideal motion pattern of the prepiston.
도 2는 본 발명의 일 실시예에 따른 프리피스톤 제어방법의 개념올 설명하기 위해 프리피스톤의 운동패턴을 도시한 도면이다.  2 is a diagram illustrating a movement pattern of the prepiston to explain the concept of the prepiston control method according to an embodiment of the present invention.
도 2에서 프리피스톤이 상사점 (TDC)을 지나는 순간 , B 구간 (상사점에서 제 1 중심점까지의 구간)을 예측하고, 프리피스톤이 제 1 중심점을 지나는 순간 , C 구간 (제 1 증심점에서 하사점까지의 구간)을 예측하고 , 프리피스톤이 하사점 (BDC)을 지나는 순간 D 구간 (하사점에서 제 2 증심점까지의 구간)을 예측하고, 프리피스톤이 제 2 증심점을 지나는 순간 A' 구간 (제 2 중심점에서 상사점까지의 구간)을 예측할 수 있다. 각 구간에서의 예측곡선은 상술한 표준화곡선을 좌표변환하여 얻어낼 수 있으며 , 좌표변환의 방법으로는 왕복동 엔진과 동일하게 각도단위 또는 비율단위로도 가능하다. 예측곡선을 계산하는 구체적인 방법은 후술하기로 한다. 여기서 , 중심점이란 상사점과 하사점의 기하학적 증심이 되는 점으로서, 프리피스톤 변위가 0인 지점을 의미하며, 본 명세서에서 제 1 중심점은 프리피스톤이 상사점에서 하사점으로 이동할 때 지나는 중심점을, 제 2 중심점은 프리피스톤이 하사점에서 상사점으로 이동할 때 지나는 중심점을 지칭한다 .  In FIG. 2, the moment when the prepiston passes the top dead center (TDC), predicts the section B (the section from the top dead center to the first center point), and the moment the prepiston passes the first center point, the section C (at the first center point) Predict the interval to the bottom dead center), predict the interval D (the interval from the bottom dead center to the second center of gravity) when the prepiston passes the bottom dead center (BDC), and the moment A when the prepiston passes the second center of gravity; 'Section (section from the second center point to the top dead center) can be predicted. Prediction curves in each section can be obtained by coordinate transformation of the above-described standardization curve, and the coordinate transformation method can be performed in angle units or ratio units in the same way as in a reciprocating engine. A detailed method of calculating the prediction curve will be described later. Here, the center point is a point that is the geometric center of the top dead center and the bottom dead center, means a point where the pre-piston displacement is 0, in this specification, the first center point is the center point that passes when the pre-piston moves from the top dead center to the bottom dead center. The second center point refers to the center point that passes when the prepiston moves from the bottom dead center to the top dead center.
도 3은 Otto 사이클의 압력 -부피 선도를 나타낸 그래프이다.  3 is a graph showing the pressure-volume diagram of an Otto cycle.
도 3에 도시된 Otto 사이클은 도 1에 도시된 프리피스톤 엔진에서 좌측 실린더의 압력 -부피 관계를 나타낸 것이며, 우측 실린더의 압력 -부피 선도는 이와 대칭되게 표시될 수 있다.  The Otto cycle shown in FIG. 3 shows the pressure-volume relationship of the left cylinder in the prepiston engine shown in FIG. 1, and the pressure-volume diagram of the right cylinder may be displayed symmetrically.
도 3을 참조하면, 1에서 2까지의 과정이 압축행정 , 2에서 3까지의 과정이 폭발행정이고, 3에서 4까지의 과정이 팽창행정, 4에서 1 '까지의 과정이 소기행정 및 흡입행정이다. 1' 에서 1까지의 과정은 관성팽창행정이다. 우측 실린더는 상술한 과정과 반대의 행정을 거친다. 1'에서 2까지의 압축행정에서의 지배방정식은 다음과 같다. Referring to FIG. 3, the processes from 1 to 2 are compression strokes, the processes from 2 to 3 are explosion strokes, the processes from 3 to 4 are expansion strokes, and the processes from 4 to 1 'are scavenging strokes and suction strokes. to be. The process from 1 'to 1 It is an inertial expansion stroke. The right cylinder goes through the reverse stroke of the above process. The governing equation for the compression stroke from 1 'to 2 is
【수학식 2】  [Equation 2]
Figure imgf000008_0001
여기서, Pc는 1'에서 2까지의 압축행정에서의 압력, Vc는 이 때의 부피, n은 비열비 (specific heat ratio)를 나타낸다.
Yes
Figure imgf000008_0001
Where Pc is the pressure in the compression stroke from 1 'to 2, Vc is the volume at this time, and n is the specific heat ratio.
3에서 4까지의 팽창행정에서의 지배방정식은 다음과 같다.  The governing equations for the expansion strokes from 3 to 4 are as follows.
【수학식 3]  [Equation 3]
^ e 여기서 , Pe는 3에서 4까지의 팽창행정에서의 압력 , Ve는 이 때의 부피, n은 비열비 (specific heat ratio)를 나타낸다. ^ e where Pe is the pressure in the expansion stroke from 3 to 4, Ve is the volume at this time, n is the specific heat ratio.
수학식 2 및 수학식 3으로 정의되는 프리피스톤 운동은 좌측 및 우측 실린더에서 동시에 일어난다 .  The prepiston movement, defined by equations (2) and (3), occurs simultaneously in the left and right cylinders.
수학식 2에서 ΡΓ와 Vr가 결정되면 피스톤의 변위에 의해 Vc가 결정되고, 따라서 Pc는 결정된다. 한편, 수학식 3에서 P3과 V3은 결정되고, 피스톤의 변위에 의해 Ve가 결정되며, 따라서 Pe도 결정된다. When Ρ Γ and V r are determined in Equation 2, Vc is determined by the displacement of the piston, and thus Pc is determined. Meanwhile, in Equation 3, P 3 and V 3 are determined, Ve is determined by the displacement of the piston, and Pe is also determined.
결국, 수학식 2 및 수학식 3은 도 2의 B 구간을 통해서 C 구간올 예측할 수 있음과, D 구간을 통해서 A' 구간을 예측할 수 있음을 나타낸다. 물론, 연소과정에서 발생하는 실제 폭발과정은 연료량에 비례하나, 그 과정이 너무 복잡하므로 사실상 예측이 불가능하다. 하지만, 엔진 제어의 목적은 최종 점화시기를 예측함에 있는 것이고, 점화시기는 예측에 의하여 진각 또는 지각의 조건으로 조절할 수 있으므로 상사점을 일정하게 제어할 수 있다. 이하, 본 발명의 일 실시예에 따른 예측곡선을 이용한 프리피스톤 엔진의 제어방법을 설명하기로 한다. As a result, Equations 2 and 3 indicate that the C section can be predicted through the B section of FIG. 2 and the A 'section can be predicted through the D section. Of course, the actual explosion that occurs during combustion is proportional to the amount of fuel, but the process is so complex that it is virtually unpredictable. However, the purpose of engine control is to predict the final ignition timing, and the ignition timing can be controlled by the advance or perception conditions by the prediction, so that the top dead center can be controlled constantly. Hereinafter, a method of controlling a prepiston engine using a prediction curve according to an embodiment of the present invention will be described.
도 4는 본 발명의 일 실시예에 따론 프리피스톤 엔진의 제어방법의 흐름도이고, 도 8은 본 발명의 일 실시예에 따른 프리피스톤 엔진 (100)의 구조도이다.  4 is a flowchart of a method for controlling a prepiston engine according to an embodiment of the present invention, and FIG. 8 is a structural diagram of a prepiston engine 100 according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 프리피스톤 엔진의 제어방법은, 특정 지점에서 상기 프리피스톤의 위치 및 시간을 축정하여 축정위치값 및 측정시간값을 포함하는 측정데이터를 획득하는 단계 (S10); 미리 결정된 표준화곡선에서 상기 특정 지점의 위치 및 시간을 계산하여 계산위치값 및 계산시간값을 포함하는 계산데이터를 획득하는 단계 (S20); 상기 측정데이터와 상기 계산데이터를 기초로 상기 표준화곡선을 변환하여 상기 특정 지점 이후 프리피스톤의 운동패턴올 예측하는 예측곡선을 결정하는 단계 (S30); 및 성기 예측곡선을 이용하여 상기 프리피스톤 엔진을 제어하는 단계 (S40);를 포함한다.  A control method of a prepiston engine according to an embodiment of the present invention includes: acquiring measurement data including an axis position value and a measurement time value by calculating the position and time of the prepiston at a specific point (S10); Obtaining calculated data including a calculated position value and a calculated time value by calculating a position and a time of the specific point in a predetermined normalization curve (S20); Determining a prediction curve predicting the movement pattern of the pre-piston after the specific point by converting the normalization curve based on the measured data and the calculated data (S30); And controlling the prepiston engine using the genital prediction curve (S40).
측정데이터 획득단계 (S10)는 프리피스톤 엔진 (100)에 설치된 검출수단을 이용하여 이루어질 수 있다. 검출수단 (60)은 프리피스론 (30)의 시간별 위치를 검출하는 장치로서, 일 예로 프리피스톤 엔진 (100)의 외주면에 설치되는 엔코더가 사용될 수 있다. 이와 같은 검출수단을 이용하여 특정 지점 (예를 들면 상사점, 하사점, 중심점 등)에서의 프리피스톤의 위치값 및 시간값을 실시간으로 계측할 수 있다.  The measurement data acquiring step S10 may be performed by using detection means installed in the prepiston engine 100. The detecting means 60 is a device for detecting the time-specific position of the prepiron 30, for example, an encoder installed on the outer circumferential surface of the pre-piston engine 100 may be used. By using such a detection means, the position value and time value of the prepiston at a specific point (for example, top dead center, bottom dead center, center point, etc.) can be measured in real time.
계산데이터 획득단계 (S20)는 미리 결정된 표준화곡선을 이용하여 특정 지점에서의 프리피스톤의 위치값 및 시간값을 계산하는 단계이다. 표준화곡선올 수학식 1로 정의되는 미분방정식의 해로 가정하면, 계산데이터는 상기 해에 프리피스톤의 위치값 (X)을 대입하여 손쉽게 얻어낼 수 있다.  Computation data acquisition step (S20) is a step of calculating the position value and time value of the pre-piston at a specific point using a predetermined standardization curve. Assuming that the standardized curve is a solution of the differential equation defined by Equation 1, the calculation data can be easily obtained by substituting the position value X of the prepiston in the solution.
상술한 측정데이터 획득단계 (S10) 및 계산데이터 획득 단계 (S20)는 반드시 그 선후관계가 유지되어야 하는 것은 아니며 , 두 단계 중 어느 한 단계를 먼저 수행해도 좋다. The measurement data acquisition step (S10) and the calculation data acquisition step (S20) described above do not necessarily have to maintain their prognostic relationship, and any of the two steps You may perform the steps first.
예측곡선 결정단계 (S30)는 상술한 단계에서 얻어진 측정데이터와 계산데이터를 기초로 표준화곡선을 변환하여 예측곡선을 결정하는 단계이다. 이 예측곡선은 표준화곡선과 마찬가지로 시간에 따른 프리피스톤 (30)의 위치의 함수로 표현된다. 예측곡선을 결정하는 구체적인 과정을 살펴보면 다음과 같다.  Prediction curve determination step (S30) is a step of determining the prediction curve by converting the standardized curve on the basis of the measurement data and the calculation data obtained in the above-described step. This prediction curve, like the normalization curve, is expressed as a function of the position of the prepiston 30 over time. The specific process of determining the prediction curve is as follows.
도 5는 A 구간의 측정곡선 (M) 및 표준화곡선 (S)을 이용하여 얻어진 B 구간의 예측곡선 (p)을 도시한 그래프이다.  5 is a graph showing the prediction curve p of section B obtained using the measurement curve M of section A and the standardization curve S. FIG.
도 5에서 , S는 시간 (t)에 따른 프리피스톤의 위치 (X)를 나타내는 이상적인 표준화곡선을, S는 상술한 축정수단을 통해 실제 측정된 프리피스톤의 운동패턴을 나타내는 측정곡선올, P는 프리피스톤의 운동패턴을 예축하는 예측곡선을 나타낸다.  In Fig. 5, S is an idealized standard curve representing the position (X) of the prepistone over time (t), S is a measurement curve indicating the movement pattern of the pre-piston actually measured through the above-described means, P is Predictive curves for predicting the pre-piston movement pattern.
도 5에서 X* , t*는 각각 표준화곡선 (S)에서 프리피스톤의 위치값 및 시간값을, χ ' , t'는 각각 측정곡선 (M)에서 프리피스톤의 위치값 및 시간값올, X , t는 각각 예측곡선 (P)에서 프리피스톤의 위치값 및 시간값을 나타낸다.  In FIG. 5, X * and t * denote the position and time values of the prepistone in the normalization curve S, respectively, and χ ', t' denote the position and time values of the prepistone in the measurement curve M, respectively. t denotes a position value and a time value of the prepistone in the prediction curve P, respectively.
따라서, 표준화곡선 (S)을 정의하는 함수 f에 대해서 다음과 같은 식이 성립된다.  Therefore, the following equation holds for the function f that defines the standardization curve S.
【수학식 4】
Figure imgf000010_0001
여기서, 함수 f와 g는 서로 역함수의 관계이다.
[Equation 4]
Figure imgf000010_0001
Here, the functions f and g are inverse functions of each other.
표준화곡선을 변환하기 위한 변환계수는 특정 지점에서 측정곡선으로부터 얻어진 측정데이타에 대한 표준화곡선으로부터 얻어진 계산데이터의 비율로 정의된다 .  The conversion factor for converting the standardized curve is defined as the ratio of the calculated data obtained from the standardized curve to the measured data obtained from the measured curve at a specific point.
예컨대, B 구간의 예측곡선을 얻기 위한 변환계수는 특정 지점을 상사점으로 결정하여 다음과 같이 정의된다 . 【수학식 5] For example, a transformation coefficient for obtaining a prediction curve of a section B is defined as follows by determining a specific point as a top dead center. [Equation 5]
TDC _ XTDC TDC _ X TDC
-, , ηχ=—ᅳᅳ -,, η χ = — ᅳ ᅳ
TDC x TDC 여기서, nt는 시간변환계수로서 프리피스톤의 상사점에서 측정곡선의 시간값에 대한 표준화곡선의 시간값의 비율이고, nx는 위치변환계수로서 프리피스톤의 상사점에서 측정곡선의 위치값에 대한 표준화곡선의 위치값의 비율이다. 따라서 , 수학식 5에 의해 상사점에서 시간변환계수 및 위치변환계수를 결정할 수 있다. TDC x TDC where n t is the time conversion factor, which is the ratio of the time value of the normalization curve to the time value of the measurement curve at the top dead center of the prepiston, and n x is the position conversion coefficient of the measurement curve at the top dead center of the prepiston. The ratio of the position value of the normalization curve to the position value. Therefore, it is possible to determine the time conversion coefficient and the position conversion coefficient at the top dead center by the equation (5).
계산된 변환계수를 이용하여 예측곡선과 표준화곡선과의 관계를 X* = nxXx, t* = ntXt와 같이 정의하면, 아래와 같이 예측곡선이 결정된다. 【수학식 6】
Figure imgf000011_0001
따라서, 미리 정해진 표준화곡선과, 프리피스톤의 상사점으로부터 위치변환계수 및 시간변환계수를 계산하면, B 구간에서의 프리피스톤의 운동패턴인 예측곡선을 수학식 6을 이용하여 계산해 낼 수 있다 .
If the relationship between the prediction curve and the normalization curve is defined as X * = n x Xx, t * = n t Xt using the calculated transformation coefficient, the prediction curve is determined as follows. [Equation 6]
Figure imgf000011_0001
Therefore, by calculating the position transformation coefficient and the time transformation coefficient from the predetermined normalization curve and the top dead center of the prepiston, the prediction curve which is the motion pattern of the prepistone in the section B can be calculated using Equation (6).
도 6는 B 구간의 측정곡선 (M) 및 표준화곡선 (S)을 이용하여 얻어진 C 구간의 예측곡선 (P)올 도시한 그래프이다.  FIG. 6 is a graph showing the prediction curve P of the C section obtained using the measurement curve M of the B section and the standardization curve S. FIG.
C 구간의 예측곡선을 얻기 위한 변환계수는 특정 지점을 제 1 중심점으로 결정하여 다음과 같이 정의될 수 있다.  The transformation coefficient for obtaining the prediction curve of the C interval may be defined as follows by determining a specific point as the first center point.
【수학식 7】
Figure imgf000011_0002
상기 수학식 7에 의해 정의된 시간변환계수 및 위치변환계수를 수학식 6으로 정의된 예측곡선 함수에 대입하연 C 구간에서 프리피스톤 운동패턴을 예측하는 예측곡선을 결정할 수 있다.
[Equation 7]
Figure imgf000011_0002
The time conversion coefficient and position conversion coefficient defined by Equation (7) A prediction curve for predicting the pre-piston motion pattern in the subinterval C region to the prediction curve function defined by Equation 6 may be determined.
상술한 과정을 동일하게 적용하여 D 구간 및 A'구간 각각에 대한 예측곡선을 계산해 낼 수 있다.  The same process as described above may be used to calculate the prediction curves for each of the D section and the A 'section.
즉, D 구간의 예측곡선을 결정하기 위해, 하사점을 특정 지점으로 결정하면 시간변환계수는 하사점에서 측정곡선의 시간값에 대한 표준화곡선의 시간값의 비율로 정의되고, 위치변환계수는 하사점에서 측정곡선의 위치값에 대한 표준화곡선의 위치값의 비율로 정의된다.  That is, in order to determine the prediction curve of the D interval, when the bottom dead center is determined as a specific point, the time conversion coefficient is defined as the ratio of the time value of the normalization curve to the time value of the measurement curve at the bottom dead center, and the position transformation coefficient is It is defined as the ratio of the position value of the normalization curve to the position value of the measurement curve at the point.
A'구간의 예측곡선을 결정하기 위해 , 제 2 중심점을 특정 지점으로 결정하면 시간변환계수는 제 2 중심점에서 측정곡선의 시간값에 대한 표준화곡선의 시간값의 비율로 정의되고, 위치변환계수는 하사점에서 측정곡선의 위치값에 대한 표준화곡선의 위치값의 비율로 정의된다.  In order to determine the prediction curve of section A ', when the second center point is determined as a specific point, the time conversion coefficient is defined as the ratio of the time value of the normalization curve to the time value of the measurement curve at the second center point, and the position conversion coefficient is It is defined as the ratio of the position value of the normalization curve to the position value of the measurement curve at the bottom dead center.
상술한 과정을 통해서 , 이전 구간의 측정곡선 (또는 측정데이터 ) 및 표준화곡선 (또는 계산데이터 )을 이용하여 이후 구간의 예측곡선을 결정할 수 있다.  Through the above-described process, the prediction curve of the subsequent section may be determined using the measurement curve (or measurement data) and the standardization curve (or calculation data) of the previous section.
프리피스톤 엔진 제어단계 (S40)는 전술한 과정을 통해 얻어진 예측곡선을 이용하여 프리피스톤 엔진을 제어하는 단계이다. 이 단계에서는, 결정된 예측곡선을 이용하여 점화플러그의 점화시기 및 인젝터의 분사시기 등을 조절하여 프리피스톤의 상사점을 일정하게 할 수 있다.  Pre-piston engine control step (S40) is a step of controlling the pre-piston engine using the prediction curve obtained through the above-described process. In this step, the top dead center of the pre-piston can be made constant by adjusting the ignition timing of the spark plug, the injection timing of the injector, etc. using the determined prediction curve.
도 7은 본 발명의 일 실시예에 따른 프리피스톤 엔진의 제어방법 과정에서 도출된 예측곡선을 도시한 그래프이다.  FIG. 7 is a graph illustrating a prediction curve derived in a method of controlling a prepiston engine according to an embodiment of the present invention.
도 7의 예측곡선은 도 8에 도시된 프리피스톤 엔진의 구조도에서 좌측의 프리피스톤의 운전패턴을 예측한 것으로, "L' '은 좌측 프리피스론 엔진 (100)을, '은 우측 프리피스톤 엔진 (1001)올 지칭한다. The predictive curve of FIG. 7 predicts the driving pattern of the left prepiston in the structural diagram of the prepiston engine shown in FIG. 8, where "L" represents the left prepiston engine 100 and "prefers the right prepiston engine". (100 1 ) is referred to.
도 8에 도시된 바와 같이 프리피스론 (30)이 피스론로드와 일체로 형성된 가동축 (20)의 양단에 각각 설치된 대향형 프리피스톤 엔진의 경우는, 각 프리피스론의 운동이 서로 대칭적으로 이루어지므로, 한쪽의 프리피스톤의 운전패턴을 이용하여 양측의 프리피스톤 엔진을 제어할 수 있다. As shown in FIG. 8, in the case of the opposing pre-piston engines in which the prepiron 30 is installed at both ends of the movable shaft 20 integrally formed with the piron rod, the movements of the respective prepirons are symmetrical with each other. Is made of, It is possible to control the pre-piston engines on both sides by using the operation pattern of the pre-piston.
도 7에 도시된 바와 같이, 예측곡선을 통해 프리피스톤 엔진의 점화시기 및 분사시기를 결정할 수 있다. 또한, 흡기밸브, 배기밸브 및 소기밸브가 구비된 프리피스톤 엔진의 경우에는, 해당되는 밸브를 개폐함으로써 흡기, 배기 및 소기 시기를 적절히 조절할 수 있다.  As illustrated in FIG. 7, the ignition timing and injection timing of the prepiston engine may be determined through the prediction curve. Moreover, in the case of the pre-piston engine provided with the intake valve, the exhaust valve, and the scavenging valve, the intake, exhaust, and scavenging timings can be appropriately adjusted by opening and closing the corresponding valve.
표준화곡선, 측정곡선 및 예측곡선은 프리피스론 위치를 변위로 표시하여 설명되었으나, 프리피스톤 위치를 왕복동 엔진에 대응되는 각도로 변환하여 표시하면 종래의 왕복동 엔진과 동일한 방법으로 프리피스톤 엔진을 제어할 수 있다.  The standardized curve, the measured curve, and the predicted curve have been described by indicating the displacement of the prepistron position. However, when the prepiston position is converted to an angle corresponding to the reciprocating engine, the prepiston engine can be controlled in the same manner as the conventional reciprocating engine. Can be.
도 8은 본 발명의 일 실시예에 따른 프리피스톤 엔진의 구조도로서, 상기 프리피스톤 엔진 (100)은, 연소실린더 (10), 상기 연소실린더 내를 가동축 (20)에 따라 왕복 운동하도록 배치된 프리피스톤 (30), 상기 연소실린더 내부에 설치된 점화플러그 (40), 및 상기 연소실린더 내부로 연료를 공급하는 인젝터 (50), 상기 프리피스톤의 위치를 검출하는 검출수단 (60) 및 상기 점화플러그의 점화시기 및 상기 인젝터의 분사시기를 제어하는 엔진제어부 (70)를 포함한다.  8 is a structural diagram of a pre-piston engine according to an embodiment of the present invention, wherein the pre-piston engine 100 is arranged to reciprocate the combustion cylinder 10 and the combustion cylinder along the movable shaft 20. A pre-piston 30, an ignition plug 40 installed inside the combustion cylinder, an injector 50 for supplying fuel to the combustion cylinder, a detection means 60 for detecting the position of the pre-piston and the ignition plug Engine control unit 70 for controlling the ignition timing and the injection timing of the injector.
또한, 프리피스톤 엔진 (100)에는 연소실린더와 연통한 흡기포트 (11) 및 배기포트 (12)가 구비되어 있다.  In addition, the prepiston engine 100 is provided with an intake port 11 and an exhaust port 12 in communication with the combustion cylinder.
프리피스톤 엔진은 수소 등과 같은 연료를 이용한 내연기관이며 , 2행정 1사이클 엔진이다. 본 발명의 일 실시예에 따른 프리피스톤 엔진 (100)은 왕복직선운동을 하는 가동축 (20)의 양단에 프리피스톤 (30)이 각각 설치되는 대향형 프리피스톤 엔진인 것이 바람직하다. 이 경우, 양쪽 프리피스톤 엔진은 서로 번갈아 가면서 폭발행정이 이루어지도록 되어 있다. 따라서, 양쪽 프리피스론 엔진으로부터 전달되는 직선방향의 구동력을 이용하여 에너지를 발생시키기 위해, 가동축의 증심부에는 유압펌프 또는 발전기와 같은 에너지변환장치 (80)가 설치될 수 있다. 검출수단 (60)은 프리피스톤 엔진의 일측에 가동축 (20)과 연계되어 설치되고, 가동축 (20)이 왕복 직선운동을 할 때 가동축의 위치를 시간에 따라 검출할 수 있는 구조로 설치될 수 있다. Pre-piston engines are internal combustion engines using fuels such as hydrogen and two-stroke, one-cycle engines. The pre-piston engine 100 according to an embodiment of the present invention is preferably an opposite pre-piston engine in which the pre-pistons 30 are respectively installed at both ends of the movable shaft 20 for reciprocating linear motion. In this case, both pre-piston engines are arranged to alternately explode. Therefore, in order to generate energy by using the driving force in the linear direction transmitted from both prepiron engines, an energy conversion device 80 such as a hydraulic pump or a generator may be installed in the central portion of the movable shaft. The detection means 60 is installed on one side of the pre-piston engine in association with the movable shaft 20, and the movable shaft 20 is installed in a structure capable of detecting the position of the movable shaft over time when the movable shaft 20 performs a reciprocating linear motion. Can be.
한편, 엔진제어부 (70)에는 본 발명의 일 실시예에 따른 프리피스톤 엔진의 제어방법을 포함하는 제어 알고리즘이 탑재되어 있다. 그리고, 엔진제어부 (70)는 검출수단 (70)과 데이터를 송수신하고, 인젝터 (50) 및 점화플러그 (40)와 제어신호를 송수신할 수 있는 구조로 되어 있다.  On the other hand, the engine control unit 70 is equipped with a control algorithm including a control method of the pre-piston engine according to an embodiment of the present invention. The engine control unit 70 is configured to transmit and receive data to and from the detection means 70 and to transmit and receive control signals to and from the injector 50 and the spark plug 40.
인젝터 (50) 및 점화플러그 (40)는 상기 엔진제어부 (70)에 의해 그 작동시점과 작동시간이 제어될 수 있다. 즉, 인젝터의 분사시기 (작동시점 및 작동시간) 및 점화플러그의 점화시기 (작동시점 및 작동시간)는 상술한 예측곡선을 이용하여 적절히 조절될 수 있다.  The injector 50 and the spark plug 40 may be controlled by the engine control unit 70 at an operation time and an operation time. That is, the injection timing (operation time and operation time) of the injector and the ignition timing (operation time and operation time) of the spark plug can be appropriately adjusted using the above-described prediction curve.
따라서, 본 발명에 따른 프리피스톤 엔진 (100)은 프리피스톤 (30)의 운전패턴을 예측하는 예측곡선을 기초로 가변 스트로크를 제어할 수 있으므로, 왕복동 엔진의 제어와 유사한 제어효과를 기대할 수 있다.  Therefore, the pre-piston engine 100 according to the present invention can control the variable stroke based on the predictive curve for predicting the driving pattern of the pre-piston 30, it can be expected a control effect similar to the control of the reciprocating engine.
또한, 표준화곡선을 프리피스톤의 변위 대신 각도 또는 무'차원수 등 여러 가지 변수로 표시할 수 있고, 특히 표준화곡선을 왕복동 엔진에 대응되는 각도 단위로 정의하여 예측곡선을 각도로 표시함으로써 프리피스톤 엔진을 기존의 왕복동 엔진과 동일한 방법으로 제어할 수 있다. 본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 , 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. In addition, the standardized curve can be represented by various variables such as the angle or the number of ' dimensions ' instead of the displacement of the prepiston.In particular, the standardized curve is defined by the angle unit corresponding to the reciprocating engine and the prediction curve is displayed by the angle. Can be controlled in the same way as a conventional reciprocating engine. All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
(a) 특정 지점에서 프리피스톤의 위치 및 시간을 측정하여 측정위치값 및 측정시간값을 포함하는 측정데이터를 획득하는 단계 ;  (a) measuring the position and time of the pre-piston at a specific point to obtain measurement data including the measurement position value and the measurement time value;
(b) 미리 결정된 표준화곡선에서 상기 특정 지점의 위치 및 시간을 계산하여 계산위치값 및 계산시간값을 포함하는 계산데이터를 획득하는 단계;  (b) calculating position and time of the specific point in a predetermined normalization curve to obtain calculated data including a calculated position value and a calculated time value;
(c) 상기 측정데이터와 상기 계산데이터를 기초로 상기 표준화곡선올 변환하여 상기 특정 지점 이후 상기 프리피스톤의 운동패턴을 예측하는 예측곡선을 결정하는 단계 ; 및  (c) determining a prediction curve predicting the movement pattern of the pre-piston after the specific point by converting the normalization curve based on the measured data and the calculated data; And
(d) 상기 예측곡선을 이용하여 상기 프리피스톤 엔진을 제어하는 단계를 포함하는 예측곡선을 이용한 프리피스론 엔진의 제어방법 .  and (d) controlling the prepiston engine using the prediction curve.
【청구항 2】  [Claim 2]
저 U항에 있어서,  In that U term,
상기 표준화곡선은 상기 프리피스톤의 이상적인 운동패턴을 나타내는 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 .  The normalization curve control method of the pre-piston engine using a prediction curve, characterized in that representing the ideal movement pattern of the pre-piston.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 (c) 단계에서 상기 예측곡선은 하기의 수식에 의해 결정되는 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 .
Figure imgf000015_0001
The control method of the pre-piston engine using the prediction curve in the step (c) is characterized in that the prediction curve is determined by the following equation.
Figure imgf000015_0001
(여기서, X=f (t)는 시간 t에서의 프리피스톤 위치 X를 나타내는 표준화곡선 함수, 는 상기 측정위치값에 대한 상기 계산위치값의 비율인 위치변환계수, nt는 상기 측정시간값에 대한 상기 계산시간값에 대한 비을인 시간변환계수임) Where X = f (t) is a standardized curve function representing the pre-piston position X at time t, is a position conversion coefficient that is the ratio of the calculated position value to the measured position value, and n t is the measured time value Is a time conversion factor that is the ratio of the calculated time values for
【청구항 4】 [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 특정 지점은 상기 프리피스톤의 상사점을 포함하고  The specific point includes the top dead center of the prepistone
상기 위치변환계수는 상사점에서 상기 측정위치값에 대한 상기 계산위치값의 비율이고,  The position conversion coefficient is a ratio of the calculated position value to the measured position value at a top dead center,
상기 시간변환계수는 상사점에서 상기 측정시간값에 대한 상기 계산시간값의 비을인 것을 특징으로 하는 예측곡선올 이용한 프리피스톤 엔진의 제어방법 .  And the time conversion coefficient is a ratio of the calculated time value to the measured time value at top dead center.
【청구항 5】  [Claim 5]
제 3항에 있어서,  The method of claim 3,
상기 특정 지점은 상기 프리피스톤의 제 1 중심점을 포함하고, 상기 위치변환계수는 상사점에서의 상기 측정데이터의 위치값에 대한 상기 계산데이터의 위치값의 비율이고,  The specific point includes a first center point of the prepiston, the position conversion coefficient is a ratio of a position value of the calculated data to a position value of the measured data at a top dead center,
상기 시간변환계수는 제 1 증심점에서의 상기 측정데이터의 시간값에 대한 상기 계산데이터의 시간값의 비율인 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 .  And the time conversion coefficient is a ratio of a time value of the calculated data to a time value of the measured data at a first increasing center point.
【청구항 6】  [Claim 6]
겨 13항에 있어서,  According to claim 13,
상기 특정 지점은 상기 프리피스톤의 하사점올 포함하고,  The specific point includes the bottom dead center of the prepistone,
상기 위치변환계수는 하사점에서 상기 측정데이터의 위치값에 대한 상기 계산데이터의 위치값의 비율이고,  The position conversion coefficient is a ratio of the position value of the calculated data to the position value of the measured data at the bottom dead center,
상기 시간변환계수는 하사점에서 상기 측정데이터의 시간값에 대한 상기 계산데이터의 시간값의 비율인 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 .  And the time conversion coefficient is a ratio of the time value of the calculated data to the time value of the measured data at the bottom dead center.
【청구항 7】  [Claim 7]
제 3항에 있어서 ,  The method of claim 3,
상기 특정 지점은 상기 프리피스론의 제 2 중심점올 포함하고, 상기 위치변환계수는 하사점에서의 상기 측정데이터의 위치값에 대한 상기 계산데이터의 위치값의 비율이고, The specific point comprises a second central point of the prepiron, The position conversion coefficient is a ratio of the position value of the calculated data to the position value of the measured data at the bottom dead center;
상기 시간변환계수는 제 2 중심점에서의 상기 측정'데이터의 시간값에 대한 상기 계산데이터의 시간값의 비율인 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 . Said time conversion factor control method for a free piston engine with a prediction curve which is characterized in that the ratio of the time value of the calculated data for the measured "time value of the data in a second center point.
【청구항 8】  [Claim 8]
제 1항에 있어서 ,  The method of claim 1,
상기 (d) 단계에서,  In the step (d),
상기 예측곡선을 이용하여 상기 프리피스톤 엔진의 점화시기 및 분사시기를 제어하는 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 .  The control method of the pre-piston engine using the prediction curve, characterized in that for controlling the ignition timing and injection timing of the pre-piston engine using the prediction curve.
【청구항 9】  [Claim 9]
게 1항에 있어서 ,  According to claim 1,
상기 프리피스톤의 위치는 변위 또는 각도로 표시되는 것을 특징으로 하는 예측곡선을 이용한 프리피스톤 엔진의 제어방법 .  The position of the pre-piston is a control method of the pre-piston engine using a prediction curve, characterized in that represented by the displacement or angle.
【청구항 10】  [Claim 10]
연소실린더 , 상기 연소실린더 내를 가동축에 따라 왕복 운동하도록 배치된 프리피스톤, 상기 연소실린더 내부에 설치된 점화플러그, 및 상기 연소실린더 내부로 연료를 공급하는 인젝터를 포함하는 프리피스톤 엔진에 있어서 ,  A prepiston engine comprising a combustion cylinder, a prepiston arranged to reciprocate in the combustion cylinder along a moving shaft, an ignition plug installed inside the combustion cylinder, and an injector for supplying fuel into the combustion cylinder.
상기 프리피스톤의 위치를 검출하는 검출수단; 및  Detection means for detecting a position of the prepistone; And
상기 점화플러그의 점화시기 및 상기 인젝터의 분사시기를 제어하는 엔진제어부를 포함하고,  An engine control unit controlling an ignition timing of the spark plug and an injection timing of the injector,
상기 엔진제어부는 게 1항에 따론 방법을 포함하는 제어 알고리즘을 탑재한 것을 특징으로 하는 프리피스톤 엔진.  The engine control unit is a pre-piston engine, characterized in that equipped with a control algorithm including a method according to claim 1.
PCT/KR2009/007155 2009-12-02 2009-12-02 Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby WO2011068258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/007155 WO2011068258A1 (en) 2009-12-02 2009-12-02 Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/007155 WO2011068258A1 (en) 2009-12-02 2009-12-02 Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby

Publications (1)

Publication Number Publication Date
WO2011068258A1 true WO2011068258A1 (en) 2011-06-09

Family

ID=44115089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007155 WO2011068258A1 (en) 2009-12-02 2009-12-02 Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby

Country Status (1)

Country Link
WO (1) WO2011068258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2576797A (en) * 2018-12-21 2020-03-04 Libertine Fpe Ltd Method and system for controlling a free piston mover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028362A1 (en) * 1996-01-30 1997-08-07 Kvaerner Asa A method for controlling the stroke of a diesel free-piston gas generator
US20060119350A1 (en) * 2004-12-07 2006-06-08 Global Cooling Bv Apparatus for determining free piston position and an apparatus for controlling free piston position
US20060124083A1 (en) * 2004-12-15 2006-06-15 Denso Corporation Control device for free piston engine and method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028362A1 (en) * 1996-01-30 1997-08-07 Kvaerner Asa A method for controlling the stroke of a diesel free-piston gas generator
US20060119350A1 (en) * 2004-12-07 2006-06-08 Global Cooling Bv Apparatus for determining free piston position and an apparatus for controlling free piston position
US20060124083A1 (en) * 2004-12-15 2006-06-15 Denso Corporation Control device for free piston engine and method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2576797A (en) * 2018-12-21 2020-03-04 Libertine Fpe Ltd Method and system for controlling a free piston mover
GB2576797B (en) * 2018-12-21 2021-07-21 Libertine Fpe Ltd Method and system for controlling a free piston mover

Similar Documents

Publication Publication Date Title
CN109790789B (en) Method for detecting a phase difference between an inlet valve stroke and an outlet valve stroke of an internal combustion engine
EP1012459B1 (en) Internal combustion engines
EP1002939A2 (en) Intake-air quantity control apparatus for internal combustion engine with variable valve timing system
CN110770427B (en) Method for determining a current trim value for the length of an intake pipe of an internal combustion engine
EP1712760A2 (en) Indirect variable valve actuation for an internal combustion engine
JP5944249B2 (en) Internal EGR amount calculation device for internal combustion engine
EP2942516A1 (en) Method to determine the injection pattern in the compression stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
US10968844B2 (en) Method for determining the current compression ratio of an internal combustion engine during operation
CN102042108A (en) Method for determining an in-cylinder pressure curve within a multi-cylinder engine
CN102135023B (en) Method for controlling an engine valve of an internal combustion engine
KR101154516B1 (en) Method for controlling free-piston engine using prediction curve and free-piston engine controlled by the same
WO2011068258A1 (en) Control method for a free-piston engine using a prediction curve and a free-piston engine controlled thereby
EP2944796B1 (en) Method to determine the injection pattern in the intake stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
WO2006065489A2 (en) Optimal heat engine
CN108868943A (en) Using two or the four stroke switching method of engine of the full changeable air valve of electromagnetism
CN101608574A (en) CZD differential speed type reciprocating IC engine
Oguri et al. Development of analysis model for piston movement
JP7327423B2 (en) Control device for internal combustion engine and internal combustion engine
KR101170233B1 (en) Engine system and Method to estimate combustion pressure thereof
ARABACI Analysis of Design Parameters of a Novel Modified Reciprocating Mechanism
Narwade et al. Overview of existing engine system for rail application
JP4173428B2 (en) In-cylinder pressure detection device for internal combustion engine
RU92479U1 (en) STIRLING'S ENGINE
JP2008274796A (en) Torque estimation device for variable compression ratio engine
Kara’een FACULTY OF ENGINEERING AND TECHNOLOGY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851875

Country of ref document: EP

Kind code of ref document: A1