WO2011018458A1 - Vorrichtung zur resektion von knochen, verfahren zur herstellung einer solchen vorrichtung, hierfür geeignete endoprothese und verfahren zur herstellung einer solchen endoprothese - Google Patents

Vorrichtung zur resektion von knochen, verfahren zur herstellung einer solchen vorrichtung, hierfür geeignete endoprothese und verfahren zur herstellung einer solchen endoprothese Download PDF

Info

Publication number
WO2011018458A1
WO2011018458A1 PCT/EP2010/061630 EP2010061630W WO2011018458A1 WO 2011018458 A1 WO2011018458 A1 WO 2011018458A1 EP 2010061630 W EP2010061630 W EP 2010061630W WO 2011018458 A1 WO2011018458 A1 WO 2011018458A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
template
support
tool guide
endoprosthesis
Prior art date
Application number
PCT/EP2010/061630
Other languages
English (en)
French (fr)
Inventor
Luis Schuster
Original Assignee
Luis Schuster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luis Schuster filed Critical Luis Schuster
Priority to GB1204087.9A priority Critical patent/GB2485128B/en
Priority to US13/389,700 priority patent/US9393028B2/en
Publication of WO2011018458A1 publication Critical patent/WO2011018458A1/de
Priority to US15/183,349 priority patent/US9839433B2/en
Priority to US15/796,480 priority patent/US10052110B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • A61B17/155Cutting femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • A61B17/157Cutting tibia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3859Femoral components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/389Tibial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30948Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using computerized tomography, i.e. CT scans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30962Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using stereolithography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Definitions

  • Apparatus for resecting bone method for producing such a device, endoprosthesis suitable for this purpose and method for producing such an endoprosthesis
  • the present invention relates to a device for the resection of bones, in particular for the preparation of the attachment of an endoprosthesis, a method for producing such a device, an endoprosthesis suitable for this purpose
  • a process for the preparation of such an endoprosthesis and a surgical kit which consists of these components and is particularly suitable for performing knee joint surgery.
  • Such devices have tool guides, for example, for guiding a knife for resection of a bone as well
  • Magnetic resonance tomography a tomographic image of the damaged bone, For example, a damaged knee joint to be made. These preoperative images could be corrected by approximating the contours of the damaged bone to the contours of a healthy bone. After such a correction, a virtual post-operative image of the damaged bone.
  • Implantation aid used d. h., the cut surfaces are incorporated into a template that is adapted to the individual bone structure of the patient.
  • These implantation aids can be used both for the implantation of individual endoprostheses in accordance with EP 1 074 229 A2 and also for conventional, commercially available, not individually or only partially individually adapted prostheses.
  • DE 42 19 939 A1 discloses a template for corresponding processing tools for processing bony structures and a method for defining the positional relationship of these processing tools relative to these bony structures, wherein initially sectional images of the bony structure made and a three-dimensional shape of this structure and their Surface is won. Subsequently, in the preoperative planning phase, an individual template is produced, which simulates the surface of the bone structure and is then placed intraoperatively on exposed contact points or surfaces in order to ensure a defined tool guidance.
  • Tool guides such as cutting surfaces or shafts have, as well as adapted to the bone contour surfaces for applying the templates, in part have the disadvantage that either an alignment of the templates intraoperatively by means of additional complex measurements of bone axes and ligament tensions or an exact system is usually possible only on pre-attached to the bone marker because the exact surface structure of the bone due to physical limitations in image acquisition, for example, by soft tissue or in the image not recognized Bulges usually can not be determined exactly virtual or the contact surfaces are overdetermined, and be included too large areas which on the one hand causes a large arithmetical, sometimes manual effort in the creation of the records and on the other hand, the stencil when setting then not conclusive to lie down and shake. It is therefore often necessary to attach appropriate pins or wires to the bone preoperatively before the three-dimensional image acquisitions are made. The stencil will be attached later.
  • the templates are completed according to a previous computed tomography display, for example of the knee joint skeleton, so that the guide shafts for the saw blades ensure the ideal resection levels for the prosthesis bearing.
  • the prefabricated templates are placed after the opening of the surgical site only on the bone and allow an immediate exact resection of the bone, which significantly relieves the attending physician and other important details of the operation, such as the surgical approach, hemostasis and Soft tissue management, can focus. As a result, an implantation can be carried out more accurately, reliably and reliably than in the case of the customary, reusable, and hitherto mainly in the above
  • Another disadvantage of the conventional implantation technique is the high expenditure of time for carrying out the adjustment steps during the operation, since this requires that the surgical wound be kept open longer and that the risk of infection is increased.
  • blood blockage during the time of the operation, a perfusion of the extremity is suppressed and the soft tissue with increasing
  • Cartilage tissue, fibrocartilage or bone tissue is sometimes not clearly identified in the preoperatively acquired images, which is why the template can move when placed on the bone, and the tool guide therefore does not come exactly to the point at which the bone is processed shall be.
  • Bone is described in detail and while one finds in these documents, a note that this is also a substantial preservation of the ligament of knee joints, or a better adaptation to the band structures of the knee joint is possible, but usually still finds necessary corrections of the ligament tensions on the knee joint (Soft tissue alignment) no mention here, since in this regard the use of conventional individual implantation aids initially no relief or benefits.
  • Knee joint occurring arthrosis leads to impairment or even destruction of the cartilage, mainly the inside tibial plateau and the inside femoral role, with simultaneous shortening of the band structures of the inside and rear capsular ligament apparatus. Due to the often occurring slight O-leg malposition, there is an increased train on the outside ligaments, which occasionally loosens due to chronic, mechanical overloading and undergoes a slight extension.
  • Knee joint can be achieved.
  • the conventional methods such as in the implantation description
  • Tibial plateaus (three tibial plateau heights are provided, each with 1 mm height increase over the original height or the "plus one" height).
  • Implantation procedure first the thigh or lower leg component (femoral or tibial component) depending on the procedure (femur first or tibia first) as low as possible implanted, and the resections for the second component, taking into account the leg axis and adaptation of the capsular ligament apparatus in extension and at Diffraction performs.
  • the invention is therefore based on the object to provide a corresponding device that simplifies the surgical procedure for the surgeon, which minimizes the risk of error, which shortens the duration of the operation, minimizes costs, while ensuring an exact alignment of the tool guide without costly readjustment, at the same time to the aforementioned, existing individual biomechanics of the
  • the present invention is also based on the object to provide a method for producing such Vorrraum, as well as suitable endoprostheses and methods for producing such endoprostheses.
  • the device according to the invention for resection of bones for preparing the attachment of an endoprosthesis to joints which consist of at least two mutually cooperating joint partners, has at least one tool guide and at least one suitable for aligning the at least one tool guide support, wherein the support either joint-orientation and Positioning the at least one tool guide allows at a further joint partner or distally to the machined, in particular to be resected and / or outside of the surgical area, the alignment and positioning of the at least one tool guide on the same joint partner allows.
  • the support according to a preferred
  • Embodiment also take place on intact skin soft tissue surfaces on the same or on the opposite joint partner.
  • a support preferably takes place on the bone in the immediate vicinity of the bone to be resected at the same or opposite joint partner.
  • the support - in the form of a second template - placed on the processed, for example, resected femur.
  • this support according to the invention consists of a 3-D reconstruction of the femoral prosthesis components to be implanted, for example polyamide.
  • the cartilaginous defect has already been corrected, but the lower-legged cartilage defect is still present since the original patient's bone is still present, and therefore the height defect of the tibial plateau, which is subsequently also compensated by the replacement with the tibial component of the endoprostheses , must first be corrected by introducing a corresponding placeholder.
  • the height of this defect is determined preoperatively on the basis of the height difference between the actual height of the patient 's tibial plateau and the tibial plateau height of the tibial component, which approximated that of a healthy knee joint.
  • this correction can also be achieved by a corresponding higher setting of the distractors around the height of the cartilage defect, whereby the insertion of a placeholder is unnecessary.
  • the leg axis can be checked continuously by inserting a measuring rod in a central opening of the device or template according to the invention. If the leg axis is correctly aligned and the belt tension is sufficiently balanced both in extension and in flexion, the lower part of the template can be aligned with the tool guides by inserting so-called
  • tibia first in which first the tibial side is resected, in order to create sufficient space in the joint.
  • the shin resection is carried out according to the invention by using a support which is distal to the site to be resected and / or outside the surgical area, the alignment and positioning of the at least one tool guide on the same joint partner, i. on the tibia.
  • This support according to the invention allows a bony support
  • Shin edge This allows precise alignment of the template, also with regard to the tibial axis.
  • a major problem is the precise positioning of the customized tibial template. Unlike the femur, the tibial region can not be exposed to the extent that it can be covered partially enveloping with a stencil. In addition, less suitable so-called “landmarks" can be found on the tibia, to which a template could be reliably aligned. Even the slightest tilting can cause serious deviations from the planned resection line.
  • the device according to the invention for the resection of bones in particular for the preparation of the attachment of an endoprosthesis, preferably has at least one further support which is suitable for aligning the at least one tool guide, wherein the support is configured in the form of points or lines.
  • the at least one tool guide and the at least one support are preferably immovably connected to one another, so that a resection template is formed from the tool guide and the at least one point or line-shaped support.
  • punctiform means that small areas are concerned, each less than 10% of the total area, preferably less than 5% of the total area, more preferably between 0.1% and 3% of the total area as support surface for bone or cartilage exhibit.
  • the tool guide and the support can also be made as a separate component of the resection template, which are immovably connected to each other in use by a fastening device, such as screws, clamps or locks according to the pre-determined orientations.
  • the tool guide can in this case be made of a more resistant, for example, a sinterable metallic material as standard, for example, in five different sizes and then several times with different, unchanged custom made plastic supports, for example
  • Bones of the patient must be adjusted during surgery, individual resection templates are produced, which can be generated by the use of, for example, computed tomography data.
  • two resection templates for the treatment of a knee joint one each for femur and one for tibia, for example made of polyamide, polyurethane, epoxy or the like, d. H. a material suitable for "rapid manufacturing" and sterilizable material.
  • the point or line-equipped support is formed on the basis of two- or three-dimensional image recordings, for example Tomographieamn the bone to be treated, the line shape of the support along defined surface structures of the bone or the point shape of the support based on special terrain features of the bone on the basis or three-dimensional image recordings.
  • the one or more tool guides may also be positioned and aligned relative to the surface texture of the bone based on the two- or three-dimensional image data such that a three-dimensional data set results from this data which may then be used to make the template.
  • a plurality of first linear supports are spaced apart in a plurality of first substantially parallel planes and a plurality of second linear supports are spaced apart in a plurality of second substantially parallel planes, wherein the first and second plurality of planes are not parallel to each other, in particular substantially at right angles to each other, are arranged, so that in particular results in a lattice-shaped support structure or support structure on which the template or implantation aid is then supported on the bone during surgery.
  • two-dimensional computed tomography images are suitable, by means of which one can also recognize the exact contour of the bone in the area of the sectional images.
  • the rib construction in the preparation of the linear supports has the advantage that only very precise landmarks of the bone are shown and incorporated into the template, which not only reduces the effort in the reconstruction of the joint surface negative, but also an exact and accurate support to the bone is guaranteed.
  • the ribs may have elasticity, by means of which any
  • the ribs can be pushed aside by their elasticity by imagewise unrecognized cartilage or soft tissue elevations, while the position of the template is still clearly held in the correct position by the predominantly correctly resting rib sections.
  • the at least one tool guide has a guide depth that extends substantially between the bone and a guide stop of the tool guide, d. H.
  • the depth of the guide and the depth of resection result in the insertion depth of the tool, d. that is, the depth that dips the tool into the template and the bone. Due to the guide stop at the distal end of the tool guide is an exact insertion depth of the tool and thus a predefined Resetechnischs- or
  • the plurality of lattice-shaped, in particular linear Abstü-tongues and the plurality of mutually angled tool guides preferably form a resection template, which is advantageously cast from a mold or worked out of a material such that the template is seamlessly formed from one piece.
  • a resection template which is advantageously cast from a mold or worked out of a material such that the template is seamlessly formed from one piece.
  • Image data set supplemented by the tool guides and working surfaces on the bone ensures the individual to the bone adapted template not only accurate alignment of the individual tool guides to each other, but also an exact positioning of the tool guides on the bone, so that the separately manufactured endoprosthesis after resection not only fits exactly on the cut surfaces, but also the original naturally healthy structure of the bone, ie especially its surface, exactly approximated.
  • the template additionally has viewing openings or fixing openings in order to provide the surgeon with a view of the surgical area during the operation
  • the template may according to a further embodiment of the present invention also comprise further support surfaces or pads that can be applied to other parts of the body, with respect to the bone to be processed a fixed or
  • the method according to the invention for producing a device for resecting bones with at least one tool guide and at least one support suitable for aligning the at least one tool guide preferably has the following steps:
  • Two or three-dimensional images are taken or made of the bone to be processed.
  • X-ray images or magnetic resonance tomography images which reflect the bone to be processed in layers are suitable for this purpose.
  • punctiform and / or linear contours of the bone are recognized on the two- or three-dimensional images. Suitable for this purpose are known from the prior art rendering methods that automatically scan and recognize such contours due to the grayscale gradations. 3. Then the appropriate tool guide is selected and positioned on the basis of the two- or three-dimensional images.
  • Positioning is based on a definition of the job to be edited, d. h., it is determined, for example, at which corner of the bone a point must be cut off.
  • a cutting surface is defined with respect to which a tool guide is positioned to guide a saw.
  • the template is made with at least one support, which allows the alignment and positioning of the at least one tool guide to another joint partner either in the immediate vicinity of the joint or joint-extending or distal to the resected site and / or outside the surgical area, the orientation and positioning of the at least one tool guide at the same
  • Joint partner allows.
  • the at least one tool guide positioned and aligned relative to the support is produced.
  • the known "rapid manufacturing" technologies d. h.
  • the template can be cast or molded from a suitable plastic, or plastic blocks are processed accordingly with milling, cutting and drilling machines, or a combination of the aforementioned methods is used. This is known in the art.
  • a three-dimensional data set is used, which includes the punctiform or line-shaped supports for mounting the template on the bone.
  • the line shape of the support is preferably carried out along defined surface structures of the bone and the point shape based on specific terrain features of the bone, which are detected by means of two- and / or three-dimensional image recordings.
  • a plurality of lattice-shaped linear supports and a plurality of mutually angled tool guides are determined according to a particular embodiment of the present invention and stored in a three-dimensional data set for producing a template according to the invention.
  • the supports and tool guides are then formed on the basis of the three-dimensional data set.
  • the template can also be configured universally adjustable.
  • the template or device is first prepared as described above, preferably made of stainless steel and it Instead of the ribs contact plates are aligned at different, eg nine different points of the femur, which are adjusted by eg screw thread before the operation to the exact distance and locked in this position by a corresponding counter screw.
  • the setting of the punctiform supports thus takes place in vitro, based on the two- or three-dimensional images. An adjustment during the operation is then no longer necessary, but can still be carried out if so desired.
  • Unversible in the sense of this invention therefore refers to the tool guides and the supports Re-usable femur and tibial stencils or femoral tibial stencils are preferably kept in, for example, five different sizes in order to meet the individual size differences of the patients
  • the reusable templates are, like the classic surgical instruments, cleaned, sterilized and
  • devices for fastening sensors e.g. a commercially available navigation system (for example Orthopilot® the company Aesculap AG) are attached, with the help of the femoral head center can be determined kinematically.
  • the tibial axis may thereby be e.g. mechanically and / or likewise with the help of
  • the present invention also relates to a method of making an endoprosthesis for attachment to a bone that has been specially treated with one of the above-described devices. Two or three-dimensional images of the bone to be processed are made for this or the two-dimensional or three-dimensional image data already prepared for producing the device for resection of the bone are used.
  • a stencil for resection of bones according to the invention for preparing the attachment of the endoprosthesis to joints which consist of at least two mutually cooperating joint partners made, the template with at least one tool guide and at least one suitable for aligning the at least one tool guide
  • Support is provided, wherein the support either joint-overlapping the alignment and positioning of the at least one tool guide allows at a further joint partner or distally to the site to be resected and / or outside the surgical area, the orientation and
  • Bone or cartilage and the virtual correction of the two or three-dimensional image data produced are aligned both to the cut surfaces of the bone or cartilage and to the outer contour of the healthy bone or cartilage and shaped accordingly.
  • Bone or cartilage is made, for example, by comparison with images of healthy bones or cartilages that have comparable shapes to the damaged bone or cartilage.
  • a virtual correction can also be made by interpolation of the healthy shapes of the bone / cartilage.
  • the present invention further relates to an endoprosthesis, which has been produced by the aforementioned method and in particular to a
  • Bone / cartilage is applied, which has been processed with one of the devices described above.
  • the endoprosthesis with a fiction, according to the invention Device are immovably connected to serve as a support surface for positioning the template.
  • the present invention also relates to an operation set for performing knee joint operations consisting of femoral and / or tibial components of an endoprosthesis or femoral and / or tibial components of a device, d. H. a template or implantation aid, consists, as described in more detail above.
  • Figure 1 The three-dimensional view of a device according to the invention with
  • Figure 2 shows a schematic cross section through the inventive
  • Figure 3 shows a cross section through the device according to the invention.
  • Figure 4 shows a three-dimensional view of the bone
  • FIG. 5 shows the schematic plan view of a device according to the invention with grid-shaped supports according to the invention
  • FIG. 6 shows a femur bone with lateral template jaws
  • FIG. 7 shows a femur bone with a template beak
  • Figure 8 is a three-dimensional sectional view of the invention
  • FIG. 9 the top view of a template according to the invention.
  • FIG. 10 shows the three-dimensional transverse view of an inventive device
  • FIG. 1 1 shows the three-dimensional view of a tibial template
  • FIG. 12 shows the three-dimensional partial view of the tibial template according to FIG. 11;
  • FIG. 13 shows the three-dimensional schematic sectional view of a tibial template
  • Figure 14 shows the three-dimensional schematic cross-sectional view of particular
  • FIG. 15 shows the three-dimensional rear view of the tibial template
  • FIG. 16 shows a femur bone with marker pins
  • FIG. 17 shows a three-dimensional plan view of a template with fastening pins and bones
  • Figure 18 shows the three-dimensional view of a tibial template with molded
  • FIG. 19 a schematic bottom view of a tibial template
  • FIG. 20 shows the view of a drilling template for tibial cones
  • FIG. 21 shows the view of a two-part tibial version
  • FIG. 22 shows the view of a two-part tibial template
  • FIG. 23 shows the three-dimensional view of a modified tibial template
  • Figure 24 is the three-dimensional view of a modified inventive
  • FIG. 1 shows the three-dimensional transverse view of a device according to the invention for resection of a femur bone 1 with a plurality of tool guides 3, 4, 5 and supports 6 according to the invention.
  • the femur bone is usually resected at several locations.
  • the femur bone is usually resected at several locations.
  • Cutting surfaces lie according to a first tool guide 3a, 3b in the coronal plane and resect the femur bone 1 on the kneecap facing side and the corresponding opposite side.
  • first tool guide 3a, 3b in the coronal plane and resect the femur bone 1 on the kneecap facing side and the corresponding opposite side.
  • This tool guide serves to penetrate a saw for cutting off the distal ends of the femur bone 1.
  • second tool guides 4a, 4b Arranged at right angles to the first tool guide 3a, 3b and third tool guide 5 are second tool guides 4a, 4b which are kanthomeatal (i.e., at an acute angle to the transverse plane)
  • Femurbone 1 are arranged, preferably about 45 ° inclined to the third
  • Tool guide 5 which is arranged transversely.
  • All tool guides 3a, 3b, 4a, 4b, 5 form an immovable, arranged at a fixed angle tool guide template, which also with
  • FIG. 1 shows the three-dimensional, schematic sectional view of a
  • Device in particular a resection template 2 with coronal tool guides 3a, 3b and a kanthomeatalen tool guide 4b, which are arranged at an acute angle to each other and the processing of certain
  • Each of the tool guides preferably has a guide stop 27, which defines the exact depth of penetration of the tool.
  • the tool such as a saw, is placed in the
  • Tool guides introduced, for example, a sowing shaft, which have a certain depth of leadership D. If the tool has overcome the guide depth D, the cutting into the bone takes place up to a resection depth d. Guide depth D and resection depth d give the immersion depth t of the tool.
  • Adaptation of the depth of the guide D to the tool ensures that not too little, but not too much bone is cut away, or that the soft tissue located behind the bone, such as tendons, ligaments or blood vessels, is not injured.
  • the very important protection of the sidebands of the knee joint during bone resection is ensured by the lateral shaft boundary of the tool.
  • the manufacturing technique of the resection template 2 according to the invention makes it possible to make the tool guides, such as resection shafts or boreholes, in exactly the length in which an exact insertion depth t of the tool can be determined.
  • Figure 3 shows a sectional view of the resection template 2 according to the invention with coronal tool guides 3a and 3b and kanthomeataler tool guide 4b, wherein the suitable for a saw shafts 8 can be seen.
  • Figure 3 shows a fourth tool guide 7, which is suitable for example for a drill, which makes a corresponding hole in the bone to support pin of the
  • FIG. 3 shows in section (three-dimensionally marked thereon) linear supports 6, which are explained in more detail as follows:
  • FIG. 4 shows the three-dimensional plan view of the distal end of the femur bone 1, on which the linear supports 6 can be seen.
  • the grid-shaped arranged, linear supports 6 are substantially rectangular, with sagittal ribs 6a and coronal ribs 6b substantially perpendicular to each other depicting the essential structures of the bone.
  • a computed tomography image is created which images different layers of the bone. Based on this
  • the linear supports 6 can then be reconstructed along the slice images, in which the bone surface along the two-dimensional
  • This rib construction has the advantage that only precise landmarks of the bone are displayed, which significantly reduces the effort involved in the reconstruction of the articulated surface negative.
  • an exact edition of the resection template 2 can be guaranteed on the bone 1, as any computer tomographically insufficient accurately detected soft tissue or synovial fluid can escape between the ribs, or the ribs can be easily pressed into increased surface areas until they hit the bone surface or even from the heightened
  • FIG. 5 The rib structure shown schematically in FIG. 4 is shown in FIG. 5 embedded in the resection template 2. Between the first arranged parallel to one another
  • first coronary tool guides 3a 1 and 3a 2 are used.
  • FIG. 6 shows second supports 9, such as coronary jaws, which are realized as lateral template jaws. This serves for the defined plant of the
  • Resection template 2 in the lateral direction at the distal end of the femur bone. This serves to support the coronary ribs 6b disposed in the coronal plane or by the second supports 9, which are designed as coronary jaws and are shown in FIG. 6, which are constructed on the outside of the femur on the left and on the right.
  • FIGS 7 and 8 show a third support 10 which is formed as a sagittal beak to fix the resection template 2 in the sagittal direction.
  • a third support is made especially above the patella sliding bearing, which is upwards, d. H. proximal, rejuvenated. But this template beak must not be too long, so that the upper recess or the
  • the anchoring of the third support 10 to the resection template 2 must be such that the anchoring does not close the coronary first tool guide 3b.
  • the template Schnabel can also be constructed from an extension of the tool guide 3 b.
  • FIG. 9 shows the plan view of the device according to the invention with two-part coronary tool guides 3a 1 and 3a 2 as well as coronary first tool guides 3b spaced parallel thereto but suitable for a saw, and two viewing apertures 11 which show the grid structure of the linear Support 6 and allow the operation area.
  • Figure 9 shows fixation holes 12 distally disposed on the template to introduce fixative.
  • two cylindrical shafts for example 3 to 4 cm in diameter, are located on the distal surface of the resection template 2, which provide an insight into the underlying articular surface and thus allow a check whether the template rests flush, ie whether the linear supports 6 rest flush on the bone surface.
  • anterior cruciate ligament A major complication of knee surgery is inadvertent resection of the anterior cruciate ligament. While in conventional bicondylar knee endoprostheses the anterior cruciate ligament is generally resected, the anterior cruciate ligament can be obtained in the custom-made knee joint endoprostheses of the present invention. To accidentally violate the anterior cruciate ligament
  • a 3 to 4 cm in diameter amount for example, circular and in projection on the femoral template
  • intercondylar Notch aligned opening attached which on the one hand grants the view of the anterior cruciate ligament, on the other hand also offers the possibility to protect the anterior cruciate ligament by introducing surgical instruments at the respective resection.
  • this opening also provides insight into the location of the ribs, the so-called notch hook, and in part also on the supports 6 of the lower thigh roller limitation.
  • the tool guides 3, 4, 5, 7, 14 can also be fitted, so that no displacement of the template by the laterally everted soft parts takes place at the open site.
  • the sidecut should then also be done on the side of the kneecap and the soft tissues to avoid drooping the template.
  • the invention also relates to a tibial template shown schematically in Figure 1 1 with separate, fifth tool guides 14 a1 and 14 a2, which are aligned sagittal, and a coronary tool guide 3 and a transverse tool guide 5. Also indicated are the linear
  • fixing guides 12 for example, nails or screws can be guided in order to ensure a holder of the template.
  • the supports 6 can also be embodied as a lattice structure shown in FIG. 12, the sagittal ribs 6a and corona ribs 6b also forming the lattice structure here, which are preferably arranged substantially at right angles to one another. It is important to bring the supports 6 as far as possible to the Intercondylenhöcker to thereby also achieve a certain lateral stabilization.
  • a connecting web 15 is shown, which leads to a support surface 16, which may optionally be punctiform, or - as shown in Figure 11 - area, which is here a template boom with a
  • tibial horseshoe which extends outward from the suprarenal site, and presses the support surface onto the intact, skin-covered surface of the shin.
  • the resection of the tibia takes place in this variant of the invention, initially by means of a template according to FIG. 1 1, wherein the recesses for the femoral rollers are here to carry out further.
  • a template which represents a combination of FIGS. 1 and 2 is to be made, which is a polyamide model of the tibial component of the endoprosthesis and inseparably connected thereto
  • tibial first is also suitable for the implantation of standard endoprostheses, as it is also possible to use a lower leg component (a tibial plateau), which is not largely adapted to the surface contour of the original tibial plateau.
  • a similar device for the tibia may be referred to as a "tibial stopper" (albeit a straight border running horizontally in front of the tibial margin, for example in the form of a cylindrical rod) in place of the sleeve-shaped support adapted to the tibial margin is inseparably attached to the thigh template, the exact stretched position of
  • sleeve-shaped support a lateral oscillation of the lower leg in the adjustment of the leg axis, or in the correction of the belt tension.
  • a third support 10 may be provided as a so-called tibial shield, which is constructed as a jaw-like support on the tibia leading edge so that an exact locking and positioning of the resection template 2 is ensured in an anteroposterior direction.
  • This third support 10 should moreover be modeled as well as possible medially next to the tibial tuberosity, in order to avoid lateral rotation of the template 2 about the vertical axis in the lateral direction, and to ensure the most accurate positioning about the vertical axis.
  • an opening can also be made medial to the tuberosity of the tibia.
  • FIG. 13 shows the lateral sidecut 13 of a tool guide of the tibial template in order to avoid displacement of the template by the laterally everted soft tissues. Moreover, it is possible according to Figure 14, the rear side of the
  • Tibial template by a support 17 to form so that it exactly corresponds to the resected surfaces of the distal end of the femur 1, which is in a bent position of 110 ° close to the tibial bone. This allows accurate positioning of the
  • Resection template 2 can be supported on the tibial bone. This is possible because the joint space is very narrow on receipt of the anterior cruciate ligament, and the tibial stencil could otherwise be displaced ventrally through the femur.
  • Figure 15 shows the schematic view of the tibial stencil with 15 sagittal
  • Attachment points 20 are attached to the bone 1, such as markers such as screws, such as Kirschner wires or pins, which are then inserted into corresponding receptacles of the template when it is placed on the bone.
  • FIG. 17 shows the introduction of corresponding fastening means 19 through suitable openings on the resection template 2.
  • FIG. 18 shows the three-dimensional view of a resection template 2 according to the invention, in particular a tibial template, to which an endoprosthesis 21 is integrally formed.
  • This embodiment of the present invention serves for the precise alignment of the tibial template with respect to the future implanted femoral prosthesis 21.
  • the one end of the template 2 represents a reproduction of the femoral prosthesis 21, the pin 22 has for insertion into, for example, recesses 23 shown in FIG.
  • the tibial stencil shaped as an endoprosthesis 21 is then applied to the femur like a femoral prosthesis after the resection of the femur and attached to the template 2 by means of Kirschner wires after full extension and precise alignment of the tibia in accordance with the Mikulicz line and fixation of the bone 1 , This allows an exact resection of the tibia even without fastening means 19, such as
  • FIG. 19 shows the three-dimensional view of a resection template 2, which has a guide aid 24 adjacent to the third support 10, which may be used, for example, as a Guide aid for a dipstick for the accurate determination of the Mikulic'z line, this guide aid in particular runs through the proximal part of the tibial template.
  • Guide aid 24 is located at its narrowest point exactly in front of the knee joint center, so that after insertion of a long measuring rod or tape measure a straight line between H Commonkopfstofftician, knee center and hock center can be determined.
  • FIG. 20 shows a drill guide 26 which is provided in a tibial template 25, which is provided, for example, for attachment to the resected bone 1.
  • FIG. 21 shows an alternative, two-part tibial socket 28 with pin 22, which can be implanted, so that the resection of the central portion of the inter-condyle bump is eliminated.
  • the tibial template 25 then also has two parts
  • FIG. 22 shows such an embodiment with drill guides 26.
  • the anterior cruciate ligament always means limited space in the joint space during the operation, as the anterior cruciate ligament prevents the tibia from sliding forward with respect to the femur.
  • the knee joint held in extension which means an additional narrowing of space.
  • the resection template 2 shown in FIG. 11 is modified by omitting the connection web 15 and all tool guides, except for the transversal, third tool guides 5. Then the horizontal cuts can be made.
  • the tool guides 3, 14a1, 14a2 for the vertical cuts on the tibia are then applied using a further modified resection template 2 ', as shown in FIG.
  • the transverse, third tool guides 5, which are likewise shown, can also be omitted in the modified resection template 2 '(not shown in FIG. 23). Due to the fact that the knee joint can be bent and there is no support by a prosthesis imitation on the resection surfaces of the femur, as shown in FIG. 18, the joint has significantly more clearance and sufficient space to also ensure the vertical cuts without additional injury to the bone structure ,
  • FIG. 24 shows the three-dimensional view of a modified bone-free device according to the invention for revision surgery.
  • the prosthesis eases after about 10 to 12 years. In these cases, the old prosthesis must be removed, a new implant bed created and a correspondingly larger, new prosthesis implanted. Because despite the relaxation of the old prosthesis the
  • Implant bearing after removal of the old prosthesis, is substantially as before the first implantation, a further modified template 2 "can be placed flush on the old implant bearing according to Figure 25.
  • Corresponding supports 6 are also provided here by the smooth But the surfaces of the implant bed are not absolutely necessary
  • the modified template 2 " only has tool guides for saw blades, which have a

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zur Resektion von Knochen (1) zur Vorbereitung des Anbringens einer Endoprothese an Gelenken, die aus mindestens zwei miteinander zusammenwirkenden Gelenkpartnern bestehen, mit mindestens einer Werkzeugführung (3, 4, 5, 7, 14) und mindestens einer zur Ausrichtung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) geeigneten Abstützung (6, 9, 10, 15, 21), wobei die mindestens eine Abstützung (15, 21) entweder in unmittelbarer Gelenknähe und/oder gelenkübergreifend die Ausrichtung und Positionierung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) an einem weiteren Gelenkpartner ermöglicht oder distal zu der zu bearbeitenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und Positionierung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) am gleichen Gelenkpartner ermöglicht. Die mindestens eine Werkzeugführung (3, 4, 5, 7, 14) und die mindestens eine Abstützung sind zur Herstellung einer individuellen Einmal-Schablone bevorzugt unverrückbar miteinander verbunden. Die Erfindung betrifft auch ein Verfahren zur Herstellung einer solchen Vorrichtung bzw. Schablone, eine hierfür geeignete Endoprothese, ein Verfahren zur Herstellung einer solchen Endoprothese und ein aus diesen Teilen bestehendes Operationsset.

Description

Vorrichtung zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Vorrichtung, hierfür geeignete Endoprothese und Verfahren zur Herstellung einer solchen Endoprothese
Die vorliegende Erfindung betrifft eine Vorrichtung zur Resektion von Knochen, insbesondere zur Vorbereitung des Anbringens einer Endoprothese, ein Verfahren zur Herstellung einer solchen Vorrichtung, eine hierfür geeignete Endoprothese, ein
Verfahren zur Herstellung einer solchen Endoprothese und ein Operationsset, das aus diesen Komponenten besteht und insbesondere zur Durchführung von Kniegelenk- Operationen geeignet ist. Solche Vorrichtungen weisen Werkzeugführungen auf, beispielsweise zur Führung eines Messers zur Resektion eines Knochens sowie
Abstützungen, die die Werkzeugführung relativ zum Knochen positionieren und ausrichten.
Im Stand der Technik ist es dabei seit vielen Jahren bekannt, beispielsweise bei herkömmlichen Kniegelenkoperationen mit Schablonen als Implantationshilfe zu arbeiten, wobei diese Schablonen in der Regel aus Metall bestehen und sich aus einer Vielzahl von zum Teil äußerst komplexen und filigranen Instrumenten und Messerapparaturen zusammensetzen, wodurch es bei der Operation notwendig wird, eine Vielzahl von
Justierschritten und Anpassungsmaßnahmen vorzunehmen, um eine genaue Ausrichtung der Werkzeugführung, beispielsweise einer Messerführung, zur exakten Resektion des Knochens zu gewährleisten und für einen korrekten Sitz der Prothese zu sorgen. Der Operateur hat hierfür in der Regel aufwendige Schulungen zu absolvieren und er muss während der Operation eine Vielzahl von anstrengenden Mess- und Justierschritten unter höchster Konzentration durchführen.
Aus der DE 4 434 539 C2 sind beispielsweise Verfahren bekannt, bei welchen vor der eigentlichen Operation mit Mitteln der Computertomographie oder der
Kernspintomographie ein tomographisches Bild von dem geschädigten Knochen, beispielsweise einem geschädigten Kniegelenk, angefertigt werden. Diese präoperativen Bilder könnten dergestalt korrigiert werden, als eine Annäherung der Konturen bei dem geschädigten Knochen an die Konturen eines gesunden Knochens durchgeführt wird. Nach einer solchen Korrektur wird ein virtuelles post-operatives Bild von dem
geschädigten Knochen angefertigt, welches dann für einen Vergleich mit dem präoperativen Bild zur Verfügung steht. Aus diesem Vergleich wird ein Subtraktionsbild angefertigt, welches dann die Anfertigung der Endoprothese ermöglicht. Die natürliche Knochenkontur wird damit möglichst genau approximiert. Aus der EP 1 074 229 A2 ist es bekannt, die kranken Knochenbereiche anhand eines tomographischen Bildes vorab virtuell abzutrennen, wobei die Abtrennung an markierten Schnittflächen vorgenommen wird. Dadurch erhält man unmittelbar an dem geschädigten Knochen orientierte bildmäßige Vorlagen, die gegebenenfalls noch anhand einer gesunden Knochenstruktur virtuell ergänzt und dann zur Herstellung einer exakt auf die Schnittflächen und die natürliche Knochenkontur angepasste Endoprothese verwendet werden. Gleichzeitig werden diese bildmäßigen Vorlagen zur Herstellung einer
Implantationshilfe verwendet, d. h., die Schnittflächen werden in eine Schablone eingearbeitet, die an die individuelle Knochenstruktur des Patienten angepasst ist. Diese Implantationshilfen können sowohl für die Implantation von individuellen Endoprothesen entsprechend EP1 074 229 A2 als auch von herkömmlichen, handelsüblichen, nicht individuell oder nur teilweise individuell angepassten Prothesen verwendet werden.
Aus der DE 42 19 939 A1 ist eine Schablone für entsprechende Bearbeitungswerkzeuge zur Bearbeitung knöcherner Strukturen und ein Verfahren zur Definition der Lagebe- Ziehung dieser Bearbeitungswerkzeuge relativ zu diesen knöchernen Strukturen bekannt, wobei zunächst Schnittbilder der knöchernen Struktur angefertigt und eine dreidimensionale Gestalt dieser Struktur und deren Oberfläche gewonnen wird. Anschließend wird in der präoperativen Planungsphase eine Individualschablone hergestellt, die die Oberfläche der Knochenstruktur nachbildet und intraoperativ dann auf freiliegende Kontaktpunkte bzw. -flächen aufgelegt wird, um eine definierte Werkzeugführung zu gewährleisten.
Die aus dem Stand der Technik bekannten Schablonen bzw. Implantationshilfen, die anhand der tomographischen Bildvorlagen erstellt wurden, und sowohl die
Werkzeugführungen wie beispielsweise Schneidflächen bzw. -schachte aufweisen, als auch an die Knochenkontur angepasste Flächen zum Anlegen der Schablonen, weisen teilweise den Nachteil auf, dass entweder eine Ausrichtung der Schablonen intraoperativ mittels zusätzlicher aufwändiger Messungen von Knochenachsen und Bandspannungen erfolgen muss oder eine exakte Anlage in der Regel nur über vorab am Knochen befestigte Marker möglich ist, da die genaue Oberflächenstruktur des Knochens durch physikalisch bedingte Grenzen bei der Bildaufnahme zum Beispiel durch Weichteile oder in den Bildaufnahmen nicht erkannte Ausbuchtungen in der Regel nicht exakt virtuell bestimmt werden kann oder die Kontaktflächen überbestimmt sind, und zu große Areale einbezogen werden was zum einen einen großen rechnerischen, zum Teil auch manuellen Aufwand bei der Erstellung der Datensätze verursacht und zum anderen die Schablone beim Aufsetzen dann nicht schlüssig zu liegen kommt und wackelt. Es ist daher oft notwendig, entsprechende Pins oder Drähte an dem Knochen präoperativ anzubringen, bevor die dreidimensionalen Bildaufnahmen erstellt werden. Daran wird die Schablone später befestigt.
Durch die Benutzung einer solchen individuellen Schablone verlagert sich die gesamte Mess- und Justierarbeit, auch ohne die Verwendung von Markern oder Pins, vor die Operation. Die Schablonen werden nach einer vorherigen computertomographischen Darstellung, beispielsweise des Kniegelenkskeletts, so fertiggestellt, dass die Führungsschächte für die Sägeblätter die idealen Resektionsebenen für das Prothesenlager gewährleisten. Die vorgefertigten Schablonen werden nach Eröffnung des Operationssitus nur noch auf den Knochen aufgesetzt und erlauben eine sofortige exakte Resektion des Knochens, wodurch der behandelnde Arzt erheblich entlastet wird und sich auf andere wichtige Details der Operation, wie zum Beispiel den operativen Zugang, die Blutstillung und das Weichteilmanagement, konzentrieren kann. Dadurch kann eine Implantation exakter, verlässlicher und zuverlässiger durchgeführt werden, als bei den üblichen, mehrfach wieder verwendbaren, und auch den bislang vor allem in den obigen
Druckschriften beschriebenen z.T. auch individuell angepassten Implantationshilfen beziehungsweise Schablonen.
Ein weiterer Nachteil der herkömmlichen Implantationstechnik ist der hohe zeitliche Aufwand für die Durchführung der Justierschritte während der Operation, da hierdurch die Operationswunde länger offen gehalten werden muss und das Infektionsrisiko erhöht wird. Auch durch die so genannte Blutsperre wird während der Zeit der Operation eine Durchblutung der Extremität unterbunden und die Weichteile mit zunehmender
Operationsdauer geschädigt. Nicht zuletzt resultiert daraus eine verlängerte Narkosezeit für den Patienten und somit ergibt sich eine Erhöhung des Operationsrisikos, unter anderem für Thrombosen, Embolien und kardiopulmonale Komplikationen. Implantationen mit der aus der EP 1 074 229 B1 bekannten Schablonentechnik reduzieren die Operationszeit im Durchschnitt weit über die Hälfte der üblichen
Operationszeit und belasten den Patienten daher weniger. Mehrfach verwendbare, nicht individuell angepasste Implantationsinstrumentarien weisen darüber hinaus den Nachteil auf, dass die Herstellung, die Lagerung, die Wartung und die Sterilisierung aufwendiger sind als bei individuell angefertigten Einweg- bzw. Einmal-Schablonen. Individuelle Schablonen können als Einmal-Artikel aus einem Kunststoff aus beispielsweise Polyamid hergestellt werden, wodurch bei jedem operativen Eingriff zwar die Herstellungskosten für solche Schablonen anfallen, diese aber aufgrund der heutigen computerunterstützten dreidimensionalen Herstellungstechniken (z. B. "rapid manufacturing") immer
kostengünstiger und immer schneller durchgeführt werden können. Darüber hinaus fallen keine Reinigungs-, Sterilisierungs-, Lagerungs-, Wartungs- und Kontrollkosten an.
Dennoch ergibt sich bei den individuell angefertigten Schablonen der Nachteil, dass diese nicht immer prä-operativ derart exakt ausgeformt werden können, dass die Abstützung, d. h. in der Regel die negativ zur Knochenoberfläche ausgestaltete Oberfläche der
Schablone, die Knochenoberfläche exakt abbildet.
In den präoperativ aufgenommenen Bildern wird zum Teil Knorpelgewebe, Faserknorpel oder Knochengewebe nicht eindeutig identifiziert, weswegen sich die Schablone beim Auflegen auf den Knochen verschieben kann, und die Werkzeug-führung daher nicht exakt an der Stelle zu liegen kommt, an der der Knochen auch bearbeitet werden soll.
Die Verwendung von individuell an den Knochen angepassten Implantationshilfen bei der Versorgung von Patienten mit Kniegelenks-Endoprothesen führt, wie in der EP 1 074 229 B1 oder der DE 42 19 939 A1 beschrieben, zu einer Verlagerung von Planungs- und Messarbeiten aus dem Operationssaal und somit zu einer wesentlichen Erleichterung der Operation und Verkürzungen der Operationszeit. Während bei diesem Stand der Technik die Möglichkeit einer exakten Resektion des
Knochens ausführlich beschrieben wird und während man in diesen Druckschriften auch eine Anmerkung findet, dass hierdurch auch ein weitgehender Erhalt des Bandapparates an Kniegelenken, beziehungsweise eine bessere Anpassung an die Bandstrukturen des Kniegelenks, möglich ist, findet die aber meistens trotzdem erforderlichen Korrekturen der Bandspannungen am Kniegelenk (Weichteil-Alignment) hier keine Erwähnung, da diesbezüglich die Verwendung von herkömmlichen individuellen Implantationshilfen zunächst keine Erleichterung oder Vorteile schafft.
In der Regel findet mit Fortschreiten der Arthrose des Kniegelenkes neben
der Veränderung der Gelenkoberflächen auch eine entsprechende Veränderung an den Bandstrukturen statt. Meistens kommt es zu einer durch die Entzündung
bedingten leichten Schrumpfung und Verkürzung der Bänder, gelegentlich auch zu einer Auslockerung, im Zusammenhang mit einer mechanischen Überlastung.
Der häufigste Fall einer schwerpunktmäßig im innenseitigen Kompartiment des
Kniegelenks ablaufenden Arthrose führt zu einer Beeinträchtigung oder sogar Zerstörung des Knorpelbelages, vorwiegend des innenseitigen Schienbeinplateaus und der innenseitigen Oberschenkelrolle, mit gleichzeitiger Verkürzung der Bandstrukturen des innenseitigen und rückwärtigen Kapselbandapparates. Durch die hierbei häufig auftretende leichte O-Beinfehlstellung kommt es zu einem vermehrten Zug auf den außenseitigen Bandapparat, der aufgrund von chronischer, mechanischer Überlastung gelegentlich auslockert und eine leichte Verlängerung erfährt.
Bei einem operativen Ersatz des Kniegelenkes durch eine Kniegelenkendoprothese kommt es zum einen darauf an, die mechanische Beinachse optimal wiederherzustellen, zum anderen aber auch die Bandspannung so exakt wie möglich einzustellen, um eine Einklemmung auf der einen Seite und eine Instabilität auf der anderen Seite zu vermeiden. Dies muss sowohl in Streckstellung als auch in Beugestellung des
Kniegelenks erreicht werden. Die herkömmlichen Methoden, wie zum Beispiel in der Implantationsbeschreibung
„Aesculap Orthopaedics Columbus, Knieendoprothesen-System"; Prospekt Nr. 0254 01 , der Firma Aesculap AG, ausgeführt, beschränken sich darauf, die mechanische Achse genau zu ermitteln, und die Resektionen sowohl am Oberschenkelknochen als auch am Unterschenkelknochen so durchzuführen, dass die Gelenklinie in der frontalen Ebene genau horizontal und in der seitlichen Ebene, eventuell mit einem Undefinierten, leichten Abfall nach hinten (Slope) ausgerichtet und anschließend der Bandapparat bei eingepflanzter Endoprothese in Streckung und in Beugung an diese Situation angepasst wird. Allerdings berücksichtigt dieses Verfahren nicht die beim Patienten vorhandene
Gelenklinie, welche hinsichtlich ihrer genauen Höhenlage, der Neigung nach hinten und der gelegentlichen seitlichen Neigung nach innen, nach neuesten Erkenntnissen eine bedeutende Rolle spielt.
Da es durch diese neu geschaffene Gelenklinie zu einer völligen Veränderung
des kinematischen Zusammenspiels von Gelenkoberflächen und Bändern kommt, muss häufig die Bandspannung für die Streckposition oder/und die Beugeposition neu angepasst werden, wobei vielfach nicht nur die krankhaft veränderten zu kurzen
Bandstrukturen sondern auch die gesunden Strukturen korrigiert werden müssen und regelmäßig das vordere Kreuzband, häufig auch das hintere Kreuzband, entfernt wird. Auch erfährt die gesamte Biomechanik oftmals eine grundlegende Veränderung, welches sich insbesondere im Zusammenspiel mit dem Kniescheibengelenk als äußerst problematisch, beziehungsweise für den Patienten nach der Operation als schmerzhaft erweist. Das Implantationsverfahren entsprechend der EP 1 074 229 B1 berücksichtigt zumindest noch die patientenspezifische Gelenklinie, doch ist auch hier nach Korrektur des durch die Arthrose bedingten Höhendefektes am Schienbeinplateau und an der Oberschenkelrolle, bedingt überwiegend durch den Knorpelschaden, die individuell angepasste
Kniegelenkendoprothese innenseitig zu eng, beziehungsweise der Bandapparat verkürzt und kontrahiert, so dass auch hier eine Korrektur der Bandspannung, allerdings nur im Bereich des krankhaft veränderten Kapsel- Bandgewebes, erforderlich ist.
In den eher seltenen Fällen, in welchen der außenseitigen Kapselbandapparat durch mechanische Überforderung ausgelockert ist, ist hier eine leichte Überkorrektur des innenseitigen Bandapparates erforderlich; bei gleichzeitiger minimaler Erhöhung des
Tibiaplateaus (es werden hierfür drei Tibiaplateauhöhen mit jeweils 1 mm Höhenzuname gegenüber der Originalhöhe beziehungsweise der "plus eins" Höhe bereitgestellt).
Auch bei diesem Verfahren ist somit das wiederholte Messen, beziehungsweise das wiederholte Einsetzen und Probieren der Prothese oder eines Probeimplantates erforderlich. Dies erfolgt, indem man, ähnlich wie auch bei den konventionellen
Implantationsverfahren, zunächst die Oberschenkel- oder die Unterschenkelkomponente (femorale oder tibiale Komponente) je nach Verfahren (Femur first oder Tibia first) so günstig wie mögliche implantiert, und die Resektionen für die zweite Komponente unter Berücksichtigung der Beinachse und Anpassung des Kapselbandapparates bei Streckung und bei Beugung durchführt. Der Erfindung liegt daher die Aufgabe zugrunde, eine entsprechende Vorrichtung anzugeben, die den operativen Eingriff für den Chirurgen vereinfacht, die das Fehlerrisiko minimiert, die die Operationsdauer verkürzt, die Kosten minimiert, und gleichzeitig eine exakte Ausrichtung der Werkzeugführung ohne aufwendiges Nachjustieren gewährleistet, wobei gleichzeitig auf die vorgenannte, vorhandene individuelle Biomechanik des
Patienten Rücksicht genommen wird.
Der vorliegenden Erfindung liegt darüber hinaus die Aufgabe zugrunde, ein Verfahren zur Herstellung einer solchen Vorrrichtung anzugeben, sowie hierfür geeignete Endopro- thesen und Verfahren zur Herstellung solcher Endoprothesen.
Diese Aufgaben werden durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche 1 , 10, 13, 15 und 17 gelöst. Vorteilhafte Ausgestaltungen der vorliegenden Erfindung sind in den Unteransprüchen gekennzeichnet und dort beschrieben. Besonders bevorzugte Ausführungsformen der vorliegenden Erfindung für die Behandlung eines Kniegelenks, d. h. des Tibia-Knochens und des Femurknochens, werden anhand der beigefügten Zeichnungen genauer erläutert.
Die erfindungsgemäße Vorrichtung zur Resektion von Knochen zur Vorbereitung des Anbringens einer Endoprothese an Gelenken, die aus mindestens zwei miteinander zusammenwirkenden Gelenkpartnern bestehen, weist mindestens eine Werkzeugführung und mindestens einer zur Ausrichtung der mindestens einen Werkzeugführung geeigneten Abstützung auf, wobei die Abstützung entweder gelenkübergreifend die Ausrichtung und Positionierung der mindestens einen Werkzeugführung an einem weiteren Gelenkpartner ermöglicht oder distal zu der zu bearbeitenden, insbesondere zu resezierenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und Positionierung der mindestens einen Werkzeugführung am gleichen Gelenkpartner ermöglicht. Außerhalb des Operationsgebiets kann die Abstützung nach einer bevorzugten
Ausführungsform auch auf intakten Haut-Weichteileoberflächen am gleichen oder am gegenüberliegenden Gelenkpartner erfolgen. Innerhalb des Operationsgebiets erfolgt eine Abstützung bevorzugt auf dem Knochen in unmittelbarer Nähe des zu resezierenden Knochens am gleichen oder gegenüberliegenden Gelenkpartner. Erfindungsgemäß wird nach der Resektion beispielsweise des Oberschenkelknochens für die Implantation einer Endoprothesen-Oberschenkel-Komponente, zum Beispiel durch Verwendung einer ersten individuellen Oberschenkelknochenschablone, zunächst die Abstützung - in Form einer zweite Schablone - auf den zu bearbeitenden, beispielsweise zu resezierenden Oberschenkelknochen aufgesetzt. Diese erfindungsgemäße Abstützung besteht nach einer bevorzugten Ausführungsform der vorliegenden Erfindung aus einer 3- D Rekonstruktion der zu implantierenden Oberschenkel-Prothesenkomponenten, aus zum Beispiel Polyamid. An dieser erfindungsgemäßen Abstützung, d.h. an der Oberschenkel- Prothesenkomponente, haftet die Resektionsvorrichtung, beziehungsweise die
Werkzeugführung für die Resektion am Unterschenkelknochen, zur Herstellung des Implantatlagers für die Unterschenkel-Prothesenkomponente, fest an.
Bei bekannter Höhe der benötigten Endoprothesen-Schienbeinkomponente (Tibiaplateau) entspricht der Abstand zwischen der Unterseite der Oberschenkel- Prothesenkompo- nenten-Rekonstruktion und der durch diese Werkzeugführung ermöglichte Schnittebene exakt der Höhe der Endoprothesen-Schienbeinkomponente, so dass in jedem Fall eine zu dieser Prothesenkomponente passende Resektion am Schienbeinknochen gewährleistet wird. Derartige neuartige Schablonen ermöglicht vor der Resektion ein genaues Prüfen der Bandspannung sowohl in Streckung als auch ein Beugung, unter Zuhilfenahme von so genannten Distraktoren, wobei hierfür entsprechende Schlitze an der körperfernen (distalen) und rückwärtigen (dorsalen) Gelenkfläche der Prothesenkomponenten an der Schablone angebracht werden. Die Bandspannung kann hierbei bei anliegender
Schablone und ohne diese wiederholte abzunehmen sowohl in Streckung als auch Beugung kontrolliert und korrigiert werden.
Zu berücksichtigen ist allerdings , dass an der Oberschenkel-Prothesenkomponenten- Rekonstruktion der Schablone, d.h. an der erfindungsgemäßen Abstützung, der knorpeligen Defekt zwar bereits korrigiert wurde, der unterschenkelseitige Knorpeldefekt jedoch noch vorhanden ist, da hier noch der originäre Patientenknochen vorliegt, und dass daher der Höhendefekt des Schienbeinplateaus, der anschließend ebenfalls durch den Ersatz mit der Schienbeinkomponente der Endoprothesen kompensiert wird, zunächst durch Einbringen eines entsprechenden Platzhalters korrigiert werden muss.
Die Höhe dieses Defektes, beziehungsweise die Höhe für diesen Platzhalter, wird präoperativ anhand des Höhenunterschiedes zwischen tatsächlicher Höhe des Patienten - Tibiaplateaus und der Tibiaplateauhöhe der Schienbeinkomponente, welche an die eines gesunden Kniegelenkes angenähert wurde, ermittelt. Diese Korrektur kann jedoch auch durch eine entsprechende höhere Einstellung der Distraktoren um die Höhe des Knorpeldefektes erzielt werden, wodurch sich das Einführen eines Platzhalters erübrigt.
Die Beinachse kann laufend durch das Einführen eines Messstabes in einer hierfür vorgesehenen zentralen Öffnung der erfindungsgemäßen Vorrichtung, bzw. Schablone, überprüft werden. Ist die Beinachse korrekt ausgerichtet und die Bandspannung sowohl bei Streckung als auch bei Beugung ausreichend ausbalanciert, kann der untere Teil der Schablone mit den Werkzeugführungen durch Einbringen von so genannten
Kirschnerdrähten in die dafür vorgesehenen Kanäle am Schienbein fixiert und die
Resektion am Unterschenkelknochen zuverlässig an der berechneten Stelle
vorgenommen werden.
Diese gelenkübergreifende Ausrichtung und Resektionen des jeweils gegenüberliegenden Gelenkpartners ermöglicht im Vergleich zum Stand der Technik eine wesentliche einfachere, zuverlässigere sowie schnellere Durchführung dieses Operationsschrittes.
Gelegentlich finden sich bei arthrotischen Kniegelenken sehr kontrakte und enge
Bandverhältnisse vor, so dass es sehr schwierig ist, eine entsprechende Schablone in das Gelenk einzubringen, ohne ausgedehnte Weichteillösungen und damit -Schädigungen vornehmen zu müssen. In diesen Fällen empfiehlt sich die umgekehrte Vorgehensweise (Tibia first), bei welcher zunächst die Schienbeinseite reseziert wird, um ausreichend Platz im Gelenk zu schaffen. Die Schienbeinresektion erfolgt dabei erfindungsgemäß durch Nutzung einer Abstützung, die distal zu der zu resezierenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und Positionierung der mindestens einen Werkzeugführung am gleichen Gelenkpartner, d.h. an der Tibia, ermöglicht.
Diese erfindungsgemäße Abstützung ermöglicht eine knöcherne Abstützung
beispielsweise am operativ eröffneten Schienbeinkopf durch eine zum Beispiel hülsenförmige Abstützung auf Haut und Knochenhaut über der intakten, distalen
Schienbeinkante. Dadurch wird eine genaue Ausrichtung der Schablone, auch hinsichtlich der Tibiaachse ermöglicht. Ein großes Problem stellt nämlich die genaue Positionierung der individuell angepassten Schienbeinschablone dar. Anders als am Oberschenkelknochen kann der Schienbeinbereich nicht soweit freigelegt werden, dass er zum Teil umhüllend mit einer Schablone abgedeckt werden kann. Zudem finden sich am Schienbein auch weniger geeignete so genannte "Landmarks", an welchen eine Schablone zuverlässig ausgerichtet werden könnte. Schon kleinste Verkippungen können hier schwerwiegende Abweichungen von der geplanten Resektionslinie bewirken.
Bei den bislang verwendeten Schablonensystemen wird ausschließlich eine
knöcherne Abstützung am freipräparierten Schienbeinknochen in unmittelbarer Nähe des Tibiaplateaus - soweit dieser freigelegt werden kann - genutzt, indem beispielsweise erste punkt- oder flächenförmige Abstützungen genutzt werden (DE 42 19 939 A1 ).
Durch die Kombination einer knöchernen Abstützung am Schienbeinkopf, so weit dieser freipräpariert werden kann, in Kombination mit einer Abstützung außerhalb des Operationssitus, weiter unterhalb über dem Schienbeinknochen, mit Abstützung auf Haut und Knochenhaut des Schienbeines, welche an dieser Körperstelle unmittelbar auf dem Knochen aufliegen und damit, ähnlich wie freiliegende Knochen, ein gutes Widerlager für die Schablone bieten, wie z.B. in Fig. 11 dargestellt, kann aufgrund des relativ langen Hebelarmes zwischen knöchern abgestützter Schablone und der weit unterhalb liegenden Schienbeinkante eine ausreichend sichere und genaue Ausrichtung der Schablone und damit der Schnittebenen in den jeweils individuell erforderlichen Neigungen erzielt werden. Diese bei den Implantationen entsprechend dem Stand der Technik bislang noch nicht praktizierte Ausrichtung einer Schienbeinschablone, in unmittelbarer Gelenknähe auf dem freipräparierten Knochen und gleichzeitig außerhalb des Operationsgebietes auf dem mit einer dünnen Knochenhaut und Hautschicht bedeckten weiter entfernt, insbesondere distal liegenden Schienbein, erhöht signifikant die Präzision und Zuverlässigkeit der Positionierung der Schablone und des Knochenschnittes.
Da bei der Implantation von Kniegelenkstotalendoprothesen Fehlpositionierungen mit kleinen Beuge - oder Streckfehlern verhältnismäßig gut toleriert werden, wurde einer exakten Beuge- oder Streckenausrichtung insgesamt bisher wenig Aufmerksamkeit geschenkt. Im Rahmen jedoch von zunehmenden Ansprüchen an die Implantationsgenauigkeit, insbesondere auch bei individuell angepassten Endoprothesen und bei Erhaltung der Kreuzbänder, gewinnt eine derartige Kontroll- und Korrekturvorrichtung zunehmend an Bedeutung.
Die beschriebenen Methoden zur achsengerechten Ausrichtung der Prothesen- komponenten sowie zur exakten Einstellung der Bandspannung können, mit leichten Variationen und in verschiedenen Kombinationen mit den Folgenden, im Einzelnen näher erläuternden Merkmalen, bei konventionellen und auch individuell angefertigten bikondylären und monokondylären Kniegelenksendoprothesen zur Anwendung gelangen. Ferner können derartige Schablonen auch bei der Implantation von Revisions- endoprothesen und Tumorprothesen angewandt werden. Diese weiter bevorzugten Merkmale werden wie folgt näher erläutert:
Die erfindungsgemäße Vorrichtung zur Resektion von Knochen, insbesondere zur Vorbereitung des Anbringens einer Endoprothese, weist bevorzugt mindestens eine weitere zur Ausrichtung der mindestens einen Werkzeugführung geeignete Abstützung auf, wobei die Abstützung punkt- oder linienförmig ausgestaltet ist. Dabei ist die mindestens eine Werkzeugführung und die mindestens eine Abstützung bevorzugt unverrückbar miteinander verbunden, so dass sich aus der Werkzeugführung und der mindestens einen punkt- oder linienförmig ausgestalteten Abstützung eine Resektions- Schablone bildet. Punktförmig im Sinne dieser Erfindung bedeutet, dass kleine Flächen betroffen sind, die jeweils weniger als 10% der Gesamtfläche, bevorzugt weniger als 5% der Gesamtfläche, besonders bevorzugt zwischen 0,1% und 3% der Gesamtfläche als Fläche zum Abstützen am Knochen oder Knorpel aufweisen. Die Werkzeugführung und die Abstützung können jedoch auch jeweils als eine getrennte Komponente der Resektionsschablone angefertigt werden, welche bei der Anwendung durch eine Befestigungsvorrichtung, wie Schrauben, Klammern oder Schlösser gemäß der vor der Operation festgelegten Ausrichtungen zueinander unverrückbar miteinander verbunden werden. Die Werkzeugführung kann hierbei aus einem beständigeren, zum Beispiel einem sinterbaren metallischen Werkstoffs serienmäßig, zum Beispiel in fünf verschiedenen Größen gefertigt werden und dann mehrfach mit verschiedenen, unverändert individuell angefertigten Abstützungen aus Kunststoff, zum Beispiel
Polyamid, verbundenen und angewandt werden. Hierdurch werden Herstellungskosten gespart. Durch die Verwendung der "rapid manufacturing"-Technologie können an Stelle einer Vielzahl von standardisierten Schablonen aus Metall, die erst umständlich an den
Knochen des Patienten während der Operation angepasst werden müssen, individuelle Resektionsschablonen hergestellt werden, die durch die Verwendung von beispielsweise Computertomographiedaten erzeugt werden können. Bei-spielsweise können zwei Resektionsschablonen für die Behandlung eines Knie-gelenks, jeweils eines für Femur und eine für Tibia, zum Beispiel aus Polyamid, Polyurethan, Epoxidharz oder dergleichen, d. h. einen für die "rapid manufacturing"-Technologie geeigneten und sterilisierbaren Werkstoff hergestellt werden.
Hierzu wird die punkt- oder linienförmig ausgestattete Abstützung anhand von zwei- oder dreidimensionalen Bildaufnahmen, beispielsweise Tomographieaufnahmen des zu behandelnden Knochens geformt, wobei die Linienform der Abstützung längs definierter Oberflächenstrukturen des Knochens beziehungsweise die Punktform der Abstützung anhand von besonderen Geländemerkmalen des Knochens anhand der zwei- oder dreidimensionalen Bildaufnahmen geformt ist. Gleichzeitig können die eine oder mehreren Werkzeugführungen ebenfalls anhand der zwei- oder dreidimensionalen Bilddaten relativ zur Oberflächenstruktur des Knochens positioniert und ausgerichtet werden, so dass sich aus diesen Daten ein dreidimensionaler Datensatz ergibt, der dann zur Herstellung der Schablone verwendet werden kann.
Nach einer besonderen Ausführungsform der vorliegenden Erfindung sind mehrere erste linienförmige Abstützungen in mehreren ersten, im Wesentlichen parallelen Ebenen voneinander beabstandet und mehrere zweite linienförmige Abstützungen in mehreren zweiten, im Wesentlichen parallelen Ebenen voneinander beabstandet angeordnet, wobei die mehrereren ersten und die mehreren zweiten Ebenen nicht parallel zueinander, insbesondere im Wesentlichen rechtwinklig zueinander, angeordnet sind, so dass sich insbesondere eine gitterförmige Auflagestruktur beziehungsweise Abstützstruktur ergibt, auf der sich die Schablone beziehungsweise Implantationshilfe dann während der Operation am Knochen abstützt. Hierzu eignen sich zweidimensionale Computertomographie-Bilder, anhand derer man ebenfalls im Bereich der Schnittbilder die genaue Kontur des Knochens erkennen kann. Exakt diese Schnittbilder werden dann als linienförmige Abstützung innerhalb der Schablone realisiert, so dass zwischen den linien- oder punktförmigen Abstützungen Hohlräume in die Schablone eingearbeitet werden, in denen sich dann vorhandenes (nicht erkanntes) Knorpelgewebe, zum Beispiel Faserknorpel oder Knochengewebe, ausbreiten kann, ohne dass die Auflage der
Schablone bzw. deren Ausrichtung gestört wird.
Die Rippenkonstruktion bei der Herstellung der linienförmigen Abstützungen hat den Vorteil, dass nur ganz präzise Landmarks des Knochens dargestellt und in die Schablone eingearbeitet werden, wodurch sich nicht nur der Aufwand bei der Rekonstruktion des Gelenkoberflächennegativs reduziert, sondern auch eine exakte und genaue Auflage auf den Knochen gewährleistet ist. Zusätzlich können die Rippen nach einer besonderen Ausführungsform der Erfindung in Abhängigkeit des verwendeten Materials und der gewählten Rippendicke eine Elastizität aufweisen, durch welche eventuelle
Oberflächenungenauigkeiten ausgeglichen werden. Die Rippen können durch ihre Elastizität durch bildmäßig nicht erfasste Knorpel oder Weichteileerhebungen beiseite gedrückt werden, während die Position der Schablone durch die überwiegend richtig aufliegenden Rippenabschnitte noch eindeutig in der richtige Position gehalten wird. An eindeutig und sicher zu definierenden Bereichen der Knorpel- oder Knochenoberfläche kann man zudem die Rippen verstärken, zum Beispiel durch weitere, zu den Ersteren nicht parallel, z.B. senkrecht verlaufende Rippenzüge.
Nach einer weiteren Ausführungsform der vorliegenden Erfindung weist die mindestens eine Werkzeugführung eine Führungstiefe auf, die sich im Wesentlichen zwischen dem Knochen und einem Führungsanschlag der Werkzeugführung erstreckt, d. h. im Falle eines Schneidschachts wäre dies die Schachttiefe der Schablone, so dass eine exakte Resektionstiefe anhand einer vordefinierten Eintauchtiefe des Werkzeugs gewährleistet ist. Die Führungstiefe und die Resektionstiefe ergeben die Eintauchtiefe des Werkzeugs, d. h., diejenige Tiefe, die das Werkzeug in die Schablone und den Knochen eintaucht. Durch den Führungsanschlag am distalen Ende der Werkzeugführung ist eine exakte Eintauchtiefe des Werkzeugs und somit eine vordefinierte Resektions- oder
Bearbeitungstiefe gegeben. Die mehreren gitterförmig angeordneten, insbesondere linienförmigen Abstü-tzungen und die mehreren zueinander winklig angeordneten Werkzeugführungen bilden bevorzugt eine Resektionsschablone, die mit Vorteil aus einer Form gegossen oder aus einem Material derart herausgearbeitet wird, dass die Schablone nahtlos aus einem Stück geformt ist. Zur Formung dieser Schablone eignet sich der zuvor erwähnte dreidimensionale
Bilddatensatz, der durch die Werkzeugführungen und Bearbeitungsflächen am Knochen entsprechend ergänzt wurde. Somit gewährleistet die individuell an den Knochen angepasste Schablone nicht nur eine genaue Ausrichtung der einzelnen Werkzeugführungen zueinander, sondern auch eine exakte Positionierung der Werkzeugführungen am Knochen, so dass die separat hergestellte Endoprothese nach der Resektion nicht nur exakt auf die Schnittflächen passt, sondern auch die ursprüngliche natürlich gesunde Struktur des Knochens, d. h. insbesondere dessen Oberfläche, genau approximiert.
Mit Vorteil weist die Schablone zusätzlich Sichtöffnungen bzw. Fixieröffnungen auf, um dem Operateur während der Operation eine Sicht auf das Operationsgebiet zu
ermöglichen, beziehungsweise, um die Schablone zusätzlich am Knochen zu fixieren, beispielsweise, wenn das Werkzeug benutzt und dadurch ein Verrutschen der Schablone zu befürchten ist. Durch diese Fixieröffnungen können beispielsweise Schrauben, Nägel oder Drähte in den Knochen zur Befestigung der Schablone eingeführt werden, wobei es nicht notwendig ist, zuvor entsprechende Markierungsstellen am Knochen festzulegen, da die exakte Positionierung der Schablone auf dem Knochen bereits durch die linien- bzw. punktförmigen Abstützungen gewährleistet ist.
Die Schablone kann nach einer weiteren Ausführungsform der vorliegenden Erfindung auch weitere Stützflächen oder Auflagen aufweisen, die an andere Körperstellen angelegt werden können, die gegenüber dem zu bearbeitenden Knochen eine feste bzw.
unverrückbare Position einnehmen.
Das erfindungsgemäße Verfahren zur Herstellung einer Vorrichtung zur Resektion von Knochen mit mindestens einer Werkzeugführung und mindestens einer zur Ausrichtung der mindestens einen Werkzeugführung geeigneten Abstützung weist bevorzugt folgende Schritte auf:
1. Es werden von dem zu bearbeitenden Knochen zwei- oder dreidimensionale Bilder aufgenommen bzw. angefertigt. Hierzu eignen sich Röntgenbilder oder Kernspintomographiebilder, die schichtweise den zu bearbeitenden Knochen wiedergeben.
2. Anschließend werden punkt- und/oder linienförmige Konturen des Knochens auf den zwei- oder dreidimensionalen Bildern erkannt. Hierzu eignen sich aus dem Stand der Technik bekannte Rendering-Verfahren, die aufgrund der Grauwertabstufungen solche Konturen automatisch abtasten und erkennen. 3. Anschließend wird die geeignete Werkzeugführung ausgewählt und anhand der zwei- oder dreidimensionalen Bilder auf diesen positioniert. Die
Positionierung erfolgt anhand einer Festlegung der zu bearbeitenden Stelle, d. h., es wird zum Beispiel festgestellt, an welcher Ecke des Knochens eine Stelle abgeschnitten werden muss. Hierfür wird eine Schnittfläche definiert, hinsichtlich derer eine Werkzeugführung zur Führung einer Säge positioniert wird.
4. Schließlich wird die Schablone mit mindestens einer Abstützung hergestellt, die entweder in unmittelbarer Gelenknähe oder gelenkübergreifend die Ausrichtung und Positionierung der mindestens einen Werkzeugführung an einem weiteren Gelenkpartner ermöglicht oder distal zu der zu resezierenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und Positionierung der mindestens einen Werkzeugführung am gleichen
Gelenkpartner ermöglicht. Dazu wird die mindestens eine relativ zur Abstützung positionierte und ausgerichtete Werkzeugführung hergestellt. Hierfür eignen sich die bekannten "rapid manufacturing"-Technologien, d. h., die Schablone kann aus einem geeigneten Kunststoff gegossen oder geformt werden, oder es werden Kunststoff blocke entsprechend mit Fräs-, Schneid- und Bohrmaschinen bearbeitet, oder es wird eine Kombination aus den vorgenannten Verfahren verwendet. Dies ist im Stand der Technik bekannt.
Zur Herstellung der Schablone wird ein dreidimensionaler Datensatz verwandt, der die punkt- bzw. linienförmig ausgestalteten Abstützungen zur Anlage der Schablone am Knochen beinhaltet. Die Linienform der Abstützung erfolgt dabei bevorzugt längs definierter Oberflächenstrukturen des Knochens und die Punktform anhand von besonderen Geländemerkmalen des Knochens, die mittels der zwei- und/oder dreidimensionalen Bildaufnahmen detektiert werden.
Anhand der zwei- und/oder dreidimensionalen Bilder werden nach einer besonderen Ausführungsform der vorliegenden Erfindung mehrere gitterförmig angeordnete linienförmige Abstützungen und mehrere zueinander winklig angeordnete Werkzeugführungen bestimmt und in einem dreidimensionalen Datensatz zur Herstellung einer erfindungsgemäßen Schablone abgespeichert. Zur nahtlosen Herstellung der Schablone werden die Abstützungen und Werkzeugführungen dann anhand des dreidimensionalen Datensatzes geformt.
Nach einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung kann die Schablone auch universell einstellbar ausgestaltet sein. Dazu wird die Schablone bzw. Vorrichtung zunächst wie oben beschrieben hergestellt, bevorzugt aus Edelstahl und es werden an Stelle der Rippen Kontaktplatten an verschiedenen, z.B. neun verschiedenen Punkten des Femurs ausgerichtet, welche durch z.B. durch Schraubengewinde vor der Operation auf den genauen Abstand eingestellt werden und in dieser Position durch eine entsprechende Gegenschraube arretiert werden. Die Einstellung der punktförmigen Abstützungen erfolgt also in vitro, anhand der zwei- oder dreidimensionalen Bilder. Eine Justierung während der Operation ist dann nicht mehr erforderlich, kann aber trotzdem noch durchgeführt werden, falls dies gewünscht wird.„Unverrückbar" im Sinne dieser Erfindung bezieht sich somit auf die Werkzeugführungen und die Abstützungen. Einige Schrauben müssen vor dem Einbringen der Sägeblätter in die Resektionsschächte ggf. entfernt werden, da hier ggf. eine Überschneidung von Resektionsschacht und Schraubengewinde nicht zu vermeiden ist. Wieder verwendbare Femur- und Tibia- schablonen beziehungsweise femorale Tibiaschablonen werden hierbei bevorzugt in z.B. fünf verschiedenen Größen bereitgehalten, um den individuellen Größenunterschieden der Patienten gerecht zu werden. Die wieder verwendbaren Schablonen werden, wie auch die klassischen chirurgischen Instrumentarien, gereinigt, sterilisiert und
wiederverwendet.
Des weiteren können nach einer weiteren Ausgestaltung der vorliegenden Erfindung an der Schablone Vorrichtungen zur Befestigung von Sensoren z.B. eines handelsüblichen Navigationssystems (zum Beispiel Orthopilot® der Firma Aesculap AG) angebracht werden, mit dessen Hilfe der Hüftkopfmittelpunkt kinematisch ermittelt werden kann. Die Tibiaachse kann dadurch z.B. mechanisch und/oder ebenfalls mit Hilfe des
Navigationssystems ausgerichtet werden.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung einer Endoprothese zur Anbringung an einem Knochen, der insbesondere mit einer der vorbeschriebenen Vorrichtungen bearbeitet wurde. Hierzu eignen sich folgende Verfahrensschritte: 1. Es werden zwei- oder dreidimensionale Bilder des zu bearbeitenden Knochens angefertigt, oder es werden die zur Herstellung der Vorrichtung zur Resektion des Knochens bereits angefertigten zwei- oder dreidimensionalen Bilddaten verwendet.
2. Anschließend werden die zu bearbeitenden Stellen am Knochen festgelegt und die von dem Knochen zu entfernende Stelle wird ausgewählt und positioniert. 3. Anschließend erfolgt ein virtuelles Korrigieren der zwei- oder dreidimen-sionalen Bilder beziehungsweise der entsprechenden Bilddaten für eine Annäherung der Konturen des Knochens beziehungsweise Knorpels an die Konturen eines gesunden Knochens beziehungsweise Knorpels. Die Bilddaten werden somit ergänzt bzw. verändert, so dass sich ein "idealer Knochen beziehungsweise
Knorpel" ergibt.
4. Danach wird eine erfindungsgemäße Schablone zur Resektion der Knochen zur Vorbereitung des Anbringens der Endoprothese an Gelenken, die aus mindestens zwei miteinander zusammenwirkenden Gelenkpartnern bestehen, hergestellt, wobei die Schablone mit mindestens einer Werkzeugführung und mindestens einer zur Ausrichtung der mindestens einen Werkzeugführung geeigneten
Abstützung ausgestattet wird, wobei die Abstützung entweder gelenkübergreifend die Ausrichtung und Positionierung der mindestens einen Werkzeugführung an einem weiteren Gelenkpartner ermöglicht oder distal zu der zu resezierenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und
Positionierung der mindestens einen Werkzeugführung am gleichen Gelenkpartner ermöglicht.
5. Schließlich wird die Endoprothese anhand der zu bearbeitenden Stellen des
Knochens beziehungsweise Knorpels und der virtuellen Korrektur der zwei- oder dreidimen-sionalen Bilddaten hergestellt. Insbesondere wird die Endoprothese sowohl an die Schnittflächen des Knochens beziehungsweise Knorpels als auch an die äußere Kontur des gesunden Knochens beziehungsweise Knorpels ausgerichtet und entsprechend geformt. Die virtuelle Korrektur des zwei- oder dreidimensionalen Bildes des geschädigten
Knochens beziehungsweise Knorpels wird beispielsweise durch einen Vergleich mit Bildern von gesunden Knochen beziehungsweise Knorpeln vorgenommen, die mit dem geschädigten Knochen beziehungsweise Knorpel vergleichbare Formen aufweisen.
Alternativ kann eine virtuelle Korrektur auch anhand einer Interpolation der gesunden Formen des Knochens/Knorpels vorgenommen werden.
Die vorliegende Erfindung betrifft darüber hinaus eine Endoprothese, die mit dem vorgenannten Verfahren hergestellt wurde und die insbesondere auf einem
Knochen/Knorpel aufgesetzt wird, der mit einer der vorbeschriebenen Vorrichtungen bearbeitet wurde. Alternativ kann die Endoprothese auch mit einer erfindungs-gemäßen Vorrichtung unverrückbar verbunden werden, um als Stützfläche zur Positionierung der Schablone zu dienen.
Schließlich betrifft die vorliegende Erfindung auch ein Operationsset zur Durch-führung von Kniegelenk-Operationen, das aus femoralen und/oder tibialen Komponenten einer Endoprothese bzw. femoralen und/oder tibialen Komponenten einer Vorrichtung, d. h. einer Schablone bzw. Implantationshilfe, besteht, wie sie oben genauer beschrieben wurde. Einige bevorzugte Ausführungsformen der vorliegenden Erfindung werden nun anhand der beiliegenden Zeichnungen näher erläutert. Dabei zeigen:
Figur 1 Die dreidimensionale Ansicht einer erfindungsgemäßen Vorrichtung mit
Knochen,
Figur 2 einen schematischen Querschnitt durch die erfindungsgemäße
Vorrichtung mit Knochen,
Figur 3 einen Querschnitt durch die erfindungsgemäße Vorrichtung mit
Knochen,
Figur 4 eine dreidimensionale Aufsicht auf den Knochen mit
erfindungsgemäßen gitterförmigen Abstützungen,
Figur 5 die schematische Aufsicht auf eine erfindungsgemäße Vorrichtung mit erfindungsgemäßen gitterförmigen Abstützungen,
Figur 6 einen Femurknochen mit seitlichen Schablonenbacken,
Figur 7 einen Femurknochen mit Schablonenschnabel,
Figur 8 eine dreidimensionale Schnittansicht der erfindungsgemäßen
Vorrichtung mit Schablonenschnabel,
Figur 9 die Aufsicht auf eine erfindungsgemäße Schablone,
Figur 10 die dreidimensionale Queransicht auf eine erfindungsgemäße
Schablone mit taillierten Werkzeugführungen,
Figur 1 1 die dreidimensionale Ansicht einer Tibiaschablone,
Figur 12 die dreidimensionale Teilansicht der Tibiaschablone nach Figur 1 1 , Figur 13 die dreidimensionale schematische Schnittdarstellung einer
Werkzeugführung der Tibiaschablone nach Figur 11 , Figur 14 die dreidimensionale schematische Queransicht auf besondere
Stützflächen der Tibiaschablone,
Figur 15 die dreidimensionale Rückansicht der Tibiaschablone, Figur 16 einen Femurknochen mit Markerpins,
Figur 17 die dreidimensionale Aufsicht auf eine Schablone mit Befestigungspins und Knochen,
Figur 18 die dreidimensionale Ansicht einer Tibiaschablone mit angeformter
Femur-Endoprothese,
Figur 19 schematische Unteransicht einer Tibiaschablone,
Figur 20 die Ansicht einer Bohrschablone für Tibiazapfen,
Figur 21 die Ansicht einer zweiteiligen Tibiafassung,
Figur 22 die Ansicht einer zweiteiligen Tibiaschablone,
Figur 23 die dreidimensionale Ansicht einer modifizierten Tibiaschablone, und
Figur 24 die dreidimensionale Ansicht einer modifizierten erfindungsgemäßen
Vorrichtung ohne Knochen.
Figur 1 zeigt die dreidimensionale Queransicht einer erfindungsgemäßen Vorrichtung zur Resektion eines Femurknochens 1 mit mehreren Werkzeugführungen 3, 4, 5 und erfindungsgemäßen Abstützungen 6. Zur Behandlung eines Kniegelenkschadens wird der Femurknochen in der Regel an mehreren Stellen reseziert. Hierzu wird der
Femurknochen in verschiedenen Ebenen abgeschnitten, um die krankhafte
Knorpeloberfläche beziehungsweise Knochenoberfläche abzuschneiden. Die
Schnittflächen liegen dabei gemäß einer ersten Werkzeugführung 3a, 3b in der koronaren Ebene und resezieren den Femurknochen 1 an der der Kniescheibe zugewandten Seite sowie der entsprechend gegenüberliegenden Seite. Darüber hinaus weist die
erfindungsgemäße Vorrichtung eine im Wesentlichen senkrecht zur ersten
Werkzeugführung 3a, 3b liegende dritte Werkzeugführung 5 auf, die transversal zum Femurknochen angeordnet ist. Diese Werkzeugführung dient zum Eindringen einer Säge zum Abschneiden der distalen Enden des Femurknochens 1. Winklig zu der ersten Werkzeugführung 3a, 3b und dritten Werkzeugführung 5 sind zweite Werkzeugführungen 4a, 4b angeordnet, die kanthomeatal (d.h. spitzwinklig zur Transversalebene) zum
Femurknochen 1 angeordnet sind, bevorzugt etwa 45° geneigt zur dritten
Werkzeugführung 5, die transversal angeordnet ist.
Alle Werkzeugführungen 3a, 3b, 4a, 4b, 5 bilden eine unverrückbare, zueinander in einem festen Winkel angeordnete Werkzeugführungsschablone, die darüber hinaus mit
Abstützungen 6 versehen ist, die relativ zu den Werkzeugführungen zur genauen Anlage am Knochen 1 ausgebildet ist. Figur 2 zeigt die dreidimensionale, schematische Schnittdarstellung einer
erfindungsgemäßen Vorrichtung, insbesondere eine Resektionsschablone 2 mit koronaren Werkzeugführungen 3a, 3b und einer kanthomeatalen Werkzeug-führung 4b, die zueinander spitzwinklig angeordnet sind und das Bearbeiten gewisser
Knochenoberflächen am Femurknochen zulassen. Jede der Werkzeugführungen weist dabei bevorzugt einen Führungsanschlag 27 auf, der die genaue Eindringtiefe des Werkzeugs definiert. Das Werkzeug, wie beispielsweise eine Säge, wird in die
Werkzeugführungen eingeführt, beispielsweise einen Sägeschacht, die über eine gewisse Führungstiefe D verfügen. Hat das Werkzeug die Führungstiefe D überwunden, erfolgt das Einschneiden in den Knochen bis zu einer Resektionstiefe d. Führungstiefe D und Resektionstiefe d ergeben die Eintauchtiefe t des Werkzeugs. Durch die genaue
Anpassung der Führungstiefe D an das Werkzeug wird gewährleistet, dass nicht zuwenig, aber auch nicht zuviel Knochen weggeschnitten wird, beziehungsweise dass das hinter dem Knochen befindliche Weichgewebe, wie beispielsweise Sehnen, Bänder oder Blutgefäße, nicht verletzt wird. Durch die seitliche Schachtbegrenzung des Werkzeuges wird zusätzlich auch der sehr wichtige Schutz der Seitenbänder des Kniegelenkes während der Knochenresektion gewährleistet.
Die Herstellungstechnik der erfindungsgemäßen Resektionsschablone 2 ermöglicht es, die Werkzeugführungen, wie beispielsweise Resektionsschächte oder Bohrlöcher, in genau derjenigen Länge anzufertigen, in der eine genaue Eintauchtiefe t des Werkzeugs festgelegt werden kann.
Figur 3 zeigt eine Schnittdarstellung der erfindungsgemäßen Resektionsschablone 2 mit koronaren Werkzeugführungen 3a und 3b sowie kanthomeataler Werkzeugführung 4b, wobei die für eine Säge geeigneten Schächte 8 erkennbar sind. Darüber hinaus zeigt Figur 3 eine vierte Werkzeugführung 7, die beispielsweise für einen Bohrer geeignet ist, der eine entsprechende Bohrung im Knochen vornimmt, um Stützzapfen der
Endoprothese aufzunehmen. Durch die Bohrung kann eine Ausnehmung 23 im Knochen hergestellt werden, die dann zur Befestigung der Endoprothese dient. Gleichzeitig zeigt Figur 3 im Schnitt (darauf dreidimensional markiert) linienförmige Abstützungen 6, die wie folgt näher erläutert werden:
Figur 4 zeigt die dreidimensionale Aufsicht auf das distale Ende des Femurknochens 1 , auf dem die linienförmigen Abstützungen 6 erkennbar sind. Zur besseren Darstellung sind die anderen Teile der Resektionsschablone 2 nicht abgebildet. Die gitterförmig angeordneten, linienförmigen Abstützungen 6 stehen im Wesentlichen rechtwinklig, wobei Sagittalrippen 6a und Koronarrippen 6b im Wesentlichen senkrecht aufeinanderstehend die wesentlichen Strukturen des Knochens abbilden. Die genaue Positionierung der Resektionsschablone 2 erfolgt über diese Gitter-struktur aus linienförmigen Abstützungen 6. Um eine optimale Wiedergabe der
Oberflächenstruktur des Knochens 1 zu erzielen, d. h., um die spätere Schablone 2 exakt am Knochen 1 positionieren zu können, wird beispielsweise ein Computertomographiebild erstellt, das verschiedene Schichten des Knochens abbildet. Anhand dieses
Computertomographiebildes lassen sich im Schnitt zweidimensionale, linienförmige
Grauwertunterschiede detektieren, die den Übergang zwischen Knochen und Weichteilen markieren. Längs der Schichtbilder lassen sich dann die linienförmigen Abstützungen 6 rekonstruieren, in dem die Knochenoberfläche entlang der zweidimensionalen
Tomographieschnittbilder abgetastet und abgeformt wird. Diese Rippenkonstruktion hat den Vorteil, dass nur präzise Landmarks des Knochens dargestellt werden, wodurch sich der Aufwand bei der Rekonstruktion des Gelenkoberflächennegativs deutlich reduziert. Zudem kann eine exakte Auflage der Resektionsschablone 2 auf dem Knochen 1 gewährleistet werden, da etwaiges computertomographisch nicht ausreichend exakt erfasstes Weichteilgewebe oder Gelenkflüssigkeit zwischen die Rippen ausweichen kann, beziehungsweise die Rippen sich in erhöhte Oberflächenareale leichter eindrücken lassen, bis diese auf die Knochenoberfläche stoßen oder auch von den erhöhten
Oberflächenarealen weggedrückt werden können.
Die in Figur 4 schematisch dargestellte Rippenstruktur zeigt Figur 5 eingebettet in der Resektionsschablone 2. Zwischen den ersten parallel zueinander angeordneten
Werkzeugführungen 3a und 3b, den zweiten Werkzeugführungen 4a und 4b und den dritten Werkzeugführungen 5 ist die gitterförmige Abstützstruktur 6 aus Sagittalrippen 6a und schräg dazu angeordneten Koronarrippen 6b erkennbar. Zur Resektion der zwei Knochenhöcker am distalen Ende des Femurknochens 1 dienen voneinander geteilte erste koronare Werkzeugführungen 3a 1 und 3a 2.
Bei einer computertomographischen Darstellung des Femur ist in der Regel der
Knorpelbelag zwischen den beiden Oberschenkelrollen bis zum Beginn des
Kniescheibengleitlagers erhalten, wodurch sich durch Nachzeichnen der Oberfläche in sagittaler Richtung, zum Beispiel mit drei Bahnen, die jeweils z.B. drei Schichten breit sind, bogenförmige Strukturen rekonstruieren lassen, welche beim Aufsetzen der Resektionsschablone 2 ein Einhaken derselben an der Knochenoberfläche bewirken. Dadurch wird ein Verrutschen derselben nach oben, aber auch zu den Seiten hin, verhindert, wodurch sich die Schablone 2 exakt positionieren lässt. Figur 6 zeigt zweite Abstützungen 9, wie beispielsweise koronare Backen, die als seitliche Schablonenbacken realisiert werden. Dies dient zur definierten Anlage der
Resektionsschablone 2 in seitlicher Richtung am distalen Ende des Femurknochens. Dies dient zur Unterstützung der in koronarer Ebene angeordneten Koronarrippen 6b oder durch die in Figur 6 dargestellten, als koronare Backen ausgebildete zweite Abstützungen 9, die links und rechts an der Außenseite des Femurs konstruiert werden.
Beim Rekonstruieren dieser zweiten Abstützung ist darauf zu achten, dass die koronaren Backen bei ca. 1 10° Beugung des Kniegelenks nach Eröffnung des Kniegelenks und Evertierung der Kniescheibe nicht mit dem äußeren oder inneren Seitenband in
Berührung kommen, sondern oberhalb und ventral die Epicondylenhöcker umfahren, und dabei auch nicht zu nahe an die Gelenkränder heranreichen, um nicht mit eventuell vorhandenen Osteopythen in Konflikt zu geraten. Bei dieser Konstruktion sollten auf der Knochenseite zum Beispiel 0,2 mm abgezogen werden, um Knochenhaut und verbliebene Schleimhautreste zu berücksichtigen.
Figuren 7 und 8 zeigen eine dritte Abstützung 10, die als sagittaler Schnabel ausgebildet ist, um die Resektionsschablone 2 in sagittaler Richtung zu fixieren. Dabei wird insbesondere oberhalb des Kniescheibengleitlagers eine solche dritte Abstützung angefertigt, die sich nach oben hin, d. h. proximal, verjüngt. Dieser Schablonenschnabel darf aber nicht zu lang geraten, damit der obere Rezessus beziehungsweise der
Musculus articularis genus nicht zu sehr geschädigt wird. Die Verankerung der dritten Abstützung 10 an der Resektionsschablone 2 muss so erfolgen, dass die Verankerung die koronare erste Werkzeugführung 3b nicht verschließt. Der Schablonen Schnabel kann auch aus einer Verlängerung der Werkzeugführung 3 b konstruiert werden.
Figur 9 zeigt die Aufsicht auf die erfindungsgemäße Vorrichtung mit zweigeteilten koronaren Werkzeugführungen 3a 1 und 3a 2 sowie parallel dazu aber beabstandet angeordnete koronare erste Werkzeugführungen 3b, die für eine Säge geeignet sind, sowie zwei Sichtöffnungen 1 1 , die den Blick auf die Gitterstruktur der linienförmigen Abstützung 6 und das Operationsgebiet erlauben. Zusätzlich zeigt Figur 9 Fixieröffnungen 12, die distal an der Schablone angeordnet sind, um Fixiermittel einzubringen. Im speziellen Ausführungsbeispiel nach Figur 9 befinden sich an der distalen Fläche der Resektionsschablone 2 zwei zum Beispiel 3 bis 4 cm im Durchmesser betragende zylindrische Schächte, die Einblick auf die darunter liegende Gelenkfläche gewährleisten und somit eine Kontrolle ermöglichen, ob die Schablone bündig aufliegt, d. h., ob die linienförmigen Abstützungen 6 bündig auf der Knochenoberfläche aufliegen.
Eine erhebliche Komplikation bei einem Knieeingriff stellt die versehentliche Resektion des vorderen Kreuzbandes dar. Während bei konventionellen bikondylären Kniegelenks- Endoprothesen das vordere Kreuzband grundsätzlich reseziert wird, kann bei den individuell angefertigten Kniegelenks-Endoprothesen nach der vorliegenden Erfindung das vordere Kreuzband erhalten werden. Um ein versehentliches Verletzen der
Kreuzbänder zu vermeiden, wird an der Femurschablone eine zum Beispiel 3 bis 4 cm im Durchmesser betragende, beispielsweise kreisrunde und in Projektion auf die
interkondyläre Notch ausgerichtete Öffnung angebracht, welche zum Einen den Einblick auf das vordere Kreuzband gewährt, zum anderen aber auch die Möglichkeit bietet, durch Einbringen von chirurgischen Instrumentarien bei der jeweiligen Resektion das vordere Kreuzband zu schützen. Zusätzlich gewährt diese Öffnung auch den Einblick auf die Lage der Rippen, des so genannten Notch-Hakens, und zum Teil auch auf die Abstützungen 6 der unteren Oberschenkel-Rollenbegrenzung.
Gemäß Figur 10 lassen sich die Werkzeugführungen 3, 4, 5, 7, 14 auch taillieren, so dass am offenen Situs kein Abdrängen der Schablone durch die lateral evertierten Weichteile erfolgt. Die Taillierung sollte dann auch auf der Seite der Kniescheibe und der Weichteile erfolgen, um ein Abdrängen der Schablone zu vermeiden.
Des weiteren betrifft die Erfindung auch eine in Figur 1 1 schematisch dargestellte Tibia- Schablone mit voneinander getrennten, fünften Werkzeugführungen 14 a1 und 14 a2, die sagittal ausgerichtet sind, sowie einer koronaren Werkzeugführung 3 und einer transversalen Werkzeugführung 5. Angedeutet sind ebenfalls die linienförmigen
Abstützungen 6 sowie Fixierführungen 12, die zum Festlegen der Schablone am Knochen dienen. Durch diese Fixierführungen 12 können beispielsweise Nägel oder Schrauben geführt werden, um eine Halterung der Schablone zu gewährleisten. Die exakte
Positionierung und Ausrichtung der Schablone erfolgt aber über die linienförmigen Abstützungen 6. Die Abstützungen 6 können ebenfalls als in Figur 12 gezeigte Gitterstruktur ausgeführt werden, wobei auch hier Sagittalrippen 6a und Koronarrippen 6b die Gitterstruktur bilden, die vorzugsweise im Wesentlichen rechtwinklig zueinander angeordnet sind. Dabei ist es wichtig, die Abstützungen 6 möglichst weit an den Intercondylenhöcker hinaufzuführen, um hierdurch auch eine gewisse seitliche Stabilisierung zu erreichen.
Gleichfalls in Figur 11 ist ein Verbindungssteg 15 gezeigt, der zu einer Stützfläche 16 führt, die gegebenenfalls punktförmig ausgebildet sein kann, oder - wie in Figur 11 gezeigt - flächig, wobei es sich hier um einen Schablonenausleger mit einem
sogenannten Schienbeinbügel handelt, der aus dem Oberationssitus nach außen reicht, und die Stützfläche auf die intakte, hautbedeckte Oberfläche des Schien-beins drückt. Dies verhindert eine Rotation der Tibiaschablone 2 um die Querachse, und auch hinsichtlich der vertikalen Achse in anteroposteriorer Richtung. Die Resektion der Tibia erfolgt bei dieser Variante der Erfindung zunächst mittels einer Schablone entsprechend Fig. 1 1 , wobei die Aussparungen für die Oberschenkelrollen hier noch weitergehend vorzunehmen sind. Im zweiten Schritt ist eine Schablone, welche eine Kombination aus Fig.1 und Fig.2 darstellt, anzufertigen, welche ein Polyamidmodell der Schienbeinkomponente der Endoprothese und damit untrennbar verbunden eine
Sägeführung für die Resektionen am Oberschenkelknochen darstellt, wobei mit einer ersten derartigen Schablone nur der körperferne (distale) Schnitt am Oberschenkelknochen in Streckstellung und mit einer zweiten Schablone nur der hinteren (dorsale) Schnitt der Oberschenkelrollen in Beugestellung ermöglicht wird. Analog zu der oben aufgeführten Vorgehensweise (Femur first) wird auch hier
jeweils zunächst die Achse (bei der Streckung) eingestellt und dann die Bandspannung (bei Streckung und Beugung) ausbalanciert. Durch eine geeignete dritte Schablone werden anschließend die so genannten Abkantschnitte durchgeführt und die Resektionen des Oberschenkelknochens damit vollendet.
Diese Vorgehensweise (Tibia first) eignet sich auch für die Implantation von Standard- endoprothesen, da hierbei auch eine Unterschenkelkomponente (ein Tibiaplateau) eingesetzt werden kann, welches nicht weitgehend an die Oberflächenkontur des originären Schienbeinplateaus angepasst ist. Bei der„Femur first" Methode kann eine ähnliche Vorrichtung für das Schienbein als "Schienbeinstopper" (allerdings als gerade, horizontal vor der Schienbeinkante verlaufende Begrenzung, zum Beispiel in Form eines zylindrischen Stabes) an Stelle der hülsenförmig an die Schienbeinkante angepassten Abstützung, die ebenfalls untrennbar an die Oberschenkelschablone angeheftet ist, die exakte Streckposition des
Kniegelenkes, die präoperativ auf den Bilddaten fixiert wurde, anzeigen.
Dies ist in den Fällen hilfreich, bei welchen ein mehr oder minder großes Streckdefizit des Kniegelenks infolge der Bandverkürzungen vorliegt. Dieses Streckdefizit wird beim Ausgleichen der Bandspannung teilweise oder ganz gelöst und ergibt somit eine veränderte Position bei Streckung gegenüber der welche bei der Bilderstellung vorlag. Die gerade Form dieser Schienbeinabstützung erlaubt hierbei im Gegensatz zur
hülsenförmigen Abstützung ein seitliches Pendeln des Unterschenkels bei der Einstellung der Beinachse, beziehungsweise bei der Korrektur der Bandspannung.
Zusätzlich kann eine dritte Abstützung 10 als so genannter Tibiaschild vorgesehen sein, der als backenartige Auflage an der Schienbeinvorderkante so konstruiert ist, dass eine exakte Arretierung und Positionierung der Resektions-schablone 2 in anteroposteriorer Richtung gewährleistet ist. Diese dritte Abstützung 10 sollte sich zudem möglichst gut medial neben dem Schienbein-höcker einmodellieren, um eine seitliche Rotation der Schablone 2 um die verti-kale Achse in lateraler Richtung zu vermeiden, und um eine möglichst genaue Positionierung um die Hochachse zu gewährleisten. Um die bündige Auflage der als Schienbeinschild ausgeführten dritter Abstützung 10 zu überprüfen, kann auch hier eine Öffnung medial der Tuberositas tibiae angebracht werden.
Figur 13 zeigt die laterale Taillierung 13 einer Werkzeugführung der Tibiaschablone, um auch hier ein Abdrängen der Schablone durch die lateral evertierten Weichteile zu vermeiden. Darüber hinaus ist es nach Figur 14 möglich, die hintere Seite der
Tibiaschablone durch eine Auflage 17 so zu formen, dass diese exakt den resezierten Oberflächen des distalen Endes des Femurs 1 entspricht, der in 110° gebeugter Stellung nahe am Tibiaknochen liegt. Dadurch kann eine genaue Positionierung der
Resektionschablone 2 am Tibiaknochen unterstützt werden. Dies ist möglich, da bei Erhalt des vorderen Kreuzbandes der Gelenkspalt sehr eng ist und die Tibiaschablone ansonsten durch den Femur ventral abgedrängt werden könnte. Figur 15 zeigt die schematische Ansicht auf die Tibiaschablone mit 15 sagittal
ausgerichteten Werkzeugführungen 14 a1 und 14 a2 sowie einer transversalen
Werkzeugführung 5, wobei sagittale Kanäle 18 vorgesehen sind, die das Einbringen von entsprechend dicken Kirschnerdrähten oder Steinmannnägeln an eine Schnittstelle zwischen der vertikalen Resektionsebene am Intercondylenhöcker und der horizontalen Resektionsebene auf dem Schienbeinplateau ermöglicht. Dadurch wird nicht nur eine zusätzliche Fixierung der Schablone 2 am Knochen 1 erreicht, sondern es wird auch verhindert, dass versehentlich bei der horizontalen Resektion zu weit nach innen in den so genannten Intercondylen-höcker hineingesägt wird, oder dass bei der vertikalen Resektion zu tief in den Schienbeinkopf hineingesägt wird. Dies würde dann eine erhebliche Komplikation darstellen, da das in der Regel den Bruch des Intercondylen- höckers oder auch den Bruch der inneren oder äußeren Kniescheibenkonsole zur Folge hätte. Um eine exakte Positionierung der Resektionsschablone 2 zu gewährleisten, können natürlich auch gemäß Figur 16 zusätzlich Befestigungsmittel 19 oder
Befestigungsstellen 20 am Knochen 1 angebracht werden, wie beispielsweise Marker, wie Schrauben, wie Kirschnerdrähte oder Pins, die dann in entsprechende Aufnahmen der Schablone eingeführt werden, wenn diese auf dem Knochen aufgesetzt wird.
Figur 17 zeigt die Einführung entsprechender Befestigungsmittel 19 durch geeignete Öffnungen an der Resektionsschablone 2.
Figur 18 zeigt die dreidimensionale Ansicht einer erfindungsgemäßen Resektionsschablone 2, insbesondere eine Tibiaschablone, an die eine Endoprothese 21 angeformt ist. Diese Ausführungsform der vorliegenden Erfindung dient zur genauen Ausrichtung der Tibiaschablone gegenüber der zukünftigen implantierten Femurprothese 21. Das eine Ende der Schablone 2 stellt dabei eine Reproduktion der Femurprothese 21 dar, die Zapfen 22 zum Einführen in beispielsweise in Figur 3 gezeigte Ausnehmungen 23 aufweist. Die als Endoprothese 21 geformte Tibiaschablone wird dann nach der Resektion des Femurs wie eine Femurprothese am Femur aufgebracht und nach voller Streckung und genauer Ausrich-tung der Tibia entsprechend der Mikulic'z-Linie und nach Fixierung des Knochens 1 an der Schablone 2 mittels Kirschnerdrähten befestigt. Dies erlaubt eine exakte Resektion der Tibia auch ohne Befestigungsmittel 19, wie beispielsweise
Markerschrauben. Figur 19 zeigt die dreidimensionale Ansicht einer Resektionsschablone 2, die eine Führungshilfe 24 neben der dritten Abstützung 10 aufweist, die beispielsweise als Führungshilfe für einen Messstab zur genauen Bestimmung der Mikulic'z-Linie dient, wobei diese Führungshilfe insbesondere durch den proximalen Teil der Tibiaschablone läuft. Die in Form einer sanduhrförmigen Bohrung in vertikaler Richtung laufende
Führungshilfe 24 liegt an ihrer schmälsten Stelle exakt vor dem Kniegelenksmittelpunkt, so dass nach Einführen eines langen Messstabes oder Maßbandes eine gerade Linie zwischen Hüftkopfmittelpunkt, Kniegelenksmittelpunkt und Sprunggelenksmittelpunkt bestimmbar ist.
Figur 20 zeigt eine Bohrführung 26, die in einer Tibiaschablone 25 vorgesehen ist, die beispielsweise zur Befestigung am resezierten Knochen 1 vorgesehen ist. Nach Abnahme beispielsweise der femoralen Tibiaschablone 2 muss der vordere Anteil des
Intercondylenhöckers noch so weit mit der oszillierenden Säge reseziert und die Kanten mittels einer Rundfeile geglättet werden, dass der vordere Bügel zwischen den beiden Plateaus der Schienbeinfassung sich soweit auf dem Tibiaplateau vorschieben lässt, dass ein randbündiger Sitz der Schienbeinfassung auf dem resezierten Schienbeinknochen gewährleistet wird. Bei dieser Gelegen-heit können auch noch Korrekturen am Sitz der Schienbeinfassung vorgenommen werden, zum Beispiel auch durch kleine Korrekturen mittels einer geraden Feile an der vorderen und den seitlichen Begrenzungen des Intercondylenhöckers. Über die Bohrkanäle auf der Schablone können schließlich die Verankerungskanäle für die Zapfen der Schienbeinfassung gebohrt werden.
Figur 21 zeigt eine alternative, zweiteilige Tibiafassung 28 mit Zapfen 22, die implantiert werden kann, so dass die Resektion des zentralen Anteils des Interkondylenhöckers entfällt. Allerdings muss die Tibiaschablone 25 dann ebenfalls aus zwei Teilen
entsprechend der Tibiafassung 28 bestehen, welche durch eine vor den
Interkondylenhöckern verlaufenden Spange 29 verbunden werden. Figur 22 zeigt eine solche Ausführungsform mit Bohrführungen 26.
Bei Implantationen mit Erhalt des vorderen Kreuzbandes, also bei Implantationen von individuellen Endoprothesen, ist in der Regel zwischen Femur und Tibia kein
ausreichender Platz vorhanden, um die vertikalen Schnitte an der Tibia durchführen, ohne entweder den Femur zu verletzen, oder zu tief in die Tibia einzuschneidenden. Der Erhalt des vorderen Kreuzbandes bedeutet während der Operation immer eingeschränkte Platzverhältnisse im Gelenkspalt, da das vordere Kreuzband ein Vorgleiten der Tibia gegenüber dem Femur verhindert. Zudem wird bei der Verwendung der Resektionsschablone 2 das Kniegelenk in Streckung gehalten, was eine zusätzliche Einengung der Platzverhältnisse bedeutet.
Zu diesem Zweck wird die in Figur 11 gezeigte Resektionsschablone 2 modifiziert, indem der Verbindungssteg 15 und alle Werkzeugführungen, bis auf die transversalen, dritten Werkzeugführungen 5, weggelassen werden. Dann können die horizontalen Schnitte vorgenommen werden. Die Werkzeugführungen 3, 14a1 , 14a2 für die vertikalen Schnitte an der Tibia werden anschließend mithilfe einer weiter modifizierten Resektionsschablone 2', wie in Figur 23 dargestellt, angelegt. Die ebenfalls gezeigten transversalen, dritten Werkzeugführungen 5 können bei der modifizierten Resektionsschablone 2' auch weggelassen werden (in Figur 23 nicht dargestellt). Dadurch, dass das Kniegelenk gebeugt werden kann und keine Abstützung durch eine Prothesenimitation auf den Resektionsflächen des Femurs vorhanden ist, wie in Figur 18 dargestellt, hat das Gelenk deutlich mehr Spiel und ausreichend Platz, um auch die vertikalen Schnitte ohne zusätzliche Verletzung der Knochenstruktur zu gewährleisten.
Die Befestigung der modifizierten Resektionsschablone 2' nach Figur 23 an der Tibia kann zusätzlich mit zwei steckerartigen Plättchen 30 erfolgen, welche in die bereits durchgeführten horizontalen Resektionsspalten eingeführt werden. Dies ermöglicht damit eine noch genauere Positionierung.
Figur 24 zeigt die dreidimensionale Ansicht einer modifizierten erfindungsgemäßen Vorrichtung ohne Knochen für den Revisionseingriff. In der Regel kommt es nach circa 10 bis 12 Jahren zu einer Lockerung der Prothese. In diesen Fällen muss die alte Prothese entnommen, ein neues Implantatlager geschaffen und eine entsprechend größere, neue Prothese implantiert werden. Da trotz der Lockerung der alten Prothese das
Implantatlager, nach Entnahme der alten Prothese, sich im wesentlichen wie vor der Erstimplantation darstellt, kann eine entsprechend nach Figur 25 weitere modifizierte Schablone 2" bündig auf dem alten Implantatlager aufgesetzt werden. Gemäß der Erfindung sind auch hier entsprechende Abstützungen 6 vorgesehen, durch die glatten Oberflächen des Implantatlagers aber nicht unbedingt notwendig. Die modifizierte Schablone 2" weist lediglich Werkzeugführungen für Sägeblätter auf, die eine
Nachresektion von zum Beispiel 2 mm an jeder Ebene des Implantatlagers ermöglichen. Dadurch kann zeitsparend und/oder Knochen sparend und exakt ein neues Implantatlager für eine konventionelle oder auch individuell angefertigte Wechselprothese vorbereitet werden.

Claims

Ansprüche
1. Vorrichtung zur Resektion von Knochen (1 ) zur Vorbereitung des Anbringens einer Endoprothese an Gelenken, die aus mindestens zwei miteinander
zusammenwirkenden Gelenkpartnern bestehen, mit mindestens einer
Werkzeugführung (3, 4, 5, 7, 14) und mindestens einer zur Ausrichtung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) geeigneten Abstützung (6, 9, 10, 15, 21 ), dadurch gekennzeichnet,
dass die mindestens eine Abstützung (15, 21 ) entweder in unmittelbarer
Gelenknähe und/oder gelenkübergreifend die Ausrichtung und Positionierung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) an einem weiteren
Gelenkpartner ermöglicht oder distal zu der zu bearbeitenden, insbesondere zu resezierenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und Positionierung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) am gleichen Gelenkpartner ermöglicht.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet,
dass die mindestens eine Abstützung (21 ) aus einer 3-D Rekonstruktion der zu implantierenden Prothesenkomponenten oder aus einer Abstützung besteht, die am operativ eröffneten Schienbeinkopf auf Haut und Knochenhaut über der intakten, distalen Schienbeinkante zu liegen kommt.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet,
dass neben der mindestens einen Abstützung (15, 21 ) eine weitere punkt- oder linienförmig ausgestaltete Abstützung (6) anhand von zwei- oder dreidimensionalen
Bildaufnahmen des zu behandelnden Knochens geformt ist, wobei die Linienform der Abstützung (6) längs definierter Oberflächenstrukturen des Knochens (1 ) und/oder die Punktform der Abstützung (6) anhand von besonderen
Geländemerkmalen des Knochens (1 ) anhand der zwei- oder dreidimensionalen Bildaufnahmen geformt ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere erste linienförmige Abstützungen (6) in mehreren ersten, im wesentlichen parallelen Ebenen voneinander beabstandet und mehrere zweite linienförmige Abstützungen (6) in mehreren zweiten, im wesentlichen parallelen
Ebenen voneinander beabstandet angeordnet sind und die mehreren ersten und die mehreren zweiten Ebenen nicht parallel zueinander, insbesondere im wesentlichen rechtwinklig zueinander angeordnet sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere gitterförmig angeordnete, linienförmige Abstützungen (6) und mehrere zueinander winklig angeordnete Werkzeugführungen (3, 4, 5, 7, 14) eine Schablone (2) bilden, wobei die Abstützungen (6) und Werkzeugführungen (3, 4, 5, 7, 14) aus einer Form gegossen oder aus einem Material derart herausgearbeitet werden, dass die Schablone (2) nahtlos aus einem Stück geformt ist, wobei die Schablone (2) Sichtöffnungen (11 ) und/oder Fixieröffnungen (12) aufweist.
6. Verfahren zur Herstellung einer Vorrichtung zur Resektion von Knochen (1 ), mit mindestens einer Werkzeugführung (3, 4, 5, 7, 14) und mindestens einer zur Ausrichtung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) geeigneten Abstützung (6, 9, 10, 15, 21 ), mit folgenden Schritten:
a) Anfertigen von zwei- oder dreidimensionalen Bildern des zu bearbeitenden Knochens (1 ),
b) Erkennen von punkt- und/oder linienförmigen Konturen des Knochens (1 ) auf den zwei- oder dreidimensionalen Bildern,
c) Festlegen von zu bearbeitenden Stellen und Auswahl und Positionieren mindestens einer Werkzeugführung (3, 4, 5, 7, 14) und
d) Herstellen einer Schablone (2) mit mindestens einer Abstützung (15, 21 ), die entweder in unmittelbarer Gelenknähe und/oder gelenkübergreifend die Ausrichtung und Positionierung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) an einem weiteren Gelenkpartner ermöglicht oder distal zu der zu bearbeitenden Stelle und/oder außerhalb des Operationsgebiets die Ausrichtung und Positionierung der mindestens einen Werkzeugführung (3, 4, 5, 7, 14) am gleichen Gelenkpartner ermöglicht, und der mindestens einen, relativ zur Abstützung (15, 21 ) positionierten und ausgerichteten Werkzeugführung (3, 4, 5, 7, 14) .
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet,
dass mehrere weitere, gitterförmig angeordnete linienförmige Abstützungen (6) und mehrere zueinander winklig angeordnete Werkzeugführungen (3, 4, 5, 7, 14) anhand der zwei- oder dreidimensionalen Bilder des zu bearbeitenden Knochens (1 ) bestimmt und in einem dreidimensionalen Datensatz zur Herstellung einer
Schablone (2) abgespeichert werden, wobei die Abstützungen (6) und Werkzeug- führungen (3, 4, 5, 7, 14) dann anhand des dreidimensionalen Datensatzes aus einer Form gegossen oder aus einem Material derart herausgearbeitet werden, dass die Schablone (2) nahtlos aus einem Stück geformt ist.
8. Verfahren zur Herstellung einer Endoprothese oder zur Herstellung einer
Abstützung (21 ) zur Ausrichtung und Positionierung der mindestens einen
Werkzeugführung an einem weiteren Gelenkpartner zur Anbringung an einem Knochen (1 ), der insbesondere mit einer Vorrichtung nach einem der Ansprüche 1 bis 5 bearbeitet wurde, mit folgenden Verfahrensschritten:
a) Anfertigen von zwei- oder dreidimensionalen Bildern des zu bearbeitenden
Knochens (1 ),
b) Festlegen von zu bearbeitenden Stellen und Auswahl und Positionieren mindestens einer von dem Knochen zu entfernenden Stelle,
c) virtuelles Korrigieren der zwei- oder dreidimensionalen Bilder für eine
Annäherung der Konturen des Knochens (1 ) an die Konturen eines gesunden
Knochens (1 ), und
d) Herstellen einer Endoprothese oder einer Abstützung (21 ) anhand der zu bearbeitenden Stellen des Knochens (1 ) und der virtuellen Korrektur der zwei- oder dreidimensionalen Bilder.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet,
dass die virtuelle Korrektur des zwei- oder dreidimensionalen Bildes von dem geschädigten Knochen (1 ) durch einen Vergleich mit Bildern von gesunden
Knochen (1 ) vorgenommen wird, die mit dem geschädigten Knochen (1 )
vergleichbare Formen aufweisen.
10. Endoprothese oder Abstützung, die mit einem Verfahren nach einem der Ansprüche 8 oder 9 hergestellt und auf einen Knochen (1 ) aufgesetzt wird, der mit einer Vorrichtung nach einem der Ansprüche 1 bis 5 bearbeitet wurde.
1 1. Operationsset zur Durchführung von Kniegelenk-Operationen, bestehend aus
femoralen und/oder tibialen Komponenten einer Endoprothese nach Anspruch 10 und femoralen und/oder tibialen Komponenten einer Vorrichtung nach einem der Ansprüche 1 bis 5.
PCT/EP2010/061630 2009-08-13 2010-08-10 Vorrichtung zur resektion von knochen, verfahren zur herstellung einer solchen vorrichtung, hierfür geeignete endoprothese und verfahren zur herstellung einer solchen endoprothese WO2011018458A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1204087.9A GB2485128B (en) 2009-08-13 2010-08-10 Method for the manufacture of a device for the resection of bones
US13/389,700 US9393028B2 (en) 2009-08-13 2010-08-10 Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US15/183,349 US9839433B2 (en) 2009-08-13 2016-06-15 Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US15/796,480 US10052110B2 (en) 2009-08-13 2017-10-27 Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009028503A DE102009028503B4 (de) 2009-08-13 2009-08-13 Resektionsschablone zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Resektionsschablone und Operationsset zur Durchführung von Kniegelenk-Operationen
DE102009028503.2 2009-08-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/389,700 A-371-Of-International US9393028B2 (en) 2009-08-13 2010-08-10 Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US15/183,349 Continuation US9839433B2 (en) 2009-08-13 2016-06-15 Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis

Publications (1)

Publication Number Publication Date
WO2011018458A1 true WO2011018458A1 (de) 2011-02-17

Family

ID=43066868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/061630 WO2011018458A1 (de) 2009-08-13 2010-08-10 Vorrichtung zur resektion von knochen, verfahren zur herstellung einer solchen vorrichtung, hierfür geeignete endoprothese und verfahren zur herstellung einer solchen endoprothese

Country Status (4)

Country Link
US (3) US9393028B2 (de)
DE (1) DE102009028503B4 (de)
GB (1) GB2485128B (de)
WO (1) WO2011018458A1 (de)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8398646B2 (en) 2006-06-09 2013-03-19 Biomet Manufacturing Corp. Patient-specific knee alignment guide and associated method
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8486150B2 (en) 2007-04-17 2013-07-16 Biomet Manufacturing Corp. Patient-modified implant
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US8900244B2 (en) 2006-02-27 2014-12-02 Biomet Manufacturing, Llc Patient-specific acetabular guide and method
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
CN106456190A (zh) * 2015-03-13 2017-02-22 瑞特医疗技术公司 患者特定外科手术设备、系统与方法
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
CN111565651A (zh) * 2017-10-10 2020-08-21 卡尔莱宾格医疗技术有限责任两合公司 腓骨骨材料移除模板和腓骨骨材料转移模板
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
US11554019B2 (en) 2007-04-17 2023-01-17 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2696584C (en) 2007-08-17 2016-11-29 Mohamed Rashwan Mahfouz Implant design analysis suite
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8160345B2 (en) 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8737700B2 (en) 2007-12-18 2014-05-27 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US9078755B2 (en) 2009-02-25 2015-07-14 Zimmer, Inc. Ethnic-specific orthopaedic implants and custom cutting jigs
CA2753485C (en) 2009-02-25 2014-01-14 Mohamed Rashwan Mahfouz Customized orthopaedic implants and related methods
US9839434B2 (en) 2009-10-29 2017-12-12 Zimmer, Inc. Patient-specific mill guide
US9579106B2 (en) 2010-03-31 2017-02-28 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Shoulder arthroplasty instrumentation
CA2816339C (en) 2010-10-29 2020-09-15 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
EP2632349B1 (de) 2010-10-29 2018-03-07 The Cleveland Clinic Foundation Hilfssystem zur befestigung eines serienimplantats an einem patientengewebe
US9615840B2 (en) 2010-10-29 2017-04-11 The Cleveland Clinic Foundation System and method for association of a guiding aid with a patient tissue
EP2632383B1 (de) 2010-10-29 2022-02-23 The Cleveland Clinic Foundation System zur unterstützung der anordnung eines standardinstruments in bezug zu einem patientengewebe
WO2012154914A1 (en) 2011-05-11 2012-11-15 The Cleveland Clinic Foundation Generating patient specific instruments for use as surgical aids
EP3141196B1 (de) 2011-05-19 2020-04-08 The Cleveland Clinic Foundation Vorrichtung zur referenzindikation für ein patientengewebe
US9913690B2 (en) * 2011-12-21 2018-03-13 Zimmer, Inc. System and method for pre-operatively determining desired alignment of a knee joint
US10325065B2 (en) 2012-01-24 2019-06-18 Zimmer, Inc. Method and system for creating patient-specific instrumentation for chondral graft transfer
CA3072716C (en) 2012-03-28 2022-03-22 Orthosoft Ulc Glenoid implant surgery using patient specific instrumentation
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
EP2854663B1 (de) 2012-05-24 2022-05-25 Zimmer Inc. Patientenspezifische instrumente zur gelenkreparatur
US9033989B2 (en) * 2012-06-04 2015-05-19 Depuy (Ireland) Surgical cutting guide
ES2643061T3 (es) 2012-07-23 2017-11-21 Orthosoft, Inc. Instrumentación específica del paciente para la cirugía de corrección de implantes
AU2013296108B2 (en) 2012-07-24 2017-08-31 Orthosoft Ulc Patient specific instrumentation with mems in surgery
WO2014026082A1 (en) * 2012-08-09 2014-02-13 Smith & Nephew, Inc. Patient-matched total knee arthroplasty
US9402637B2 (en) 2012-10-11 2016-08-02 Howmedica Osteonics Corporation Customized arthroplasty cutting guides and surgical methods using the same
CA2908748C (en) 2013-06-11 2022-04-26 Orthosoft Inc. Acetabular cup prosthesis positioning instrument and method
CA2908780A1 (en) 2013-06-11 2014-12-18 Orthosoft Inc. Computer assisted subchondral injection
EP3049032A4 (de) 2013-09-25 2017-07-05 Zimmer, Inc. Patientenspezifisches instrument (psi) für die orthopädische chirurgie sowie systeme und verfahren zur verwendung von röntgenstrahlen zur herstellung davon
EP3096694B1 (de) * 2014-01-23 2020-01-01 ConforMIS, Inc. Hautbezogene chirurgische führungen
US10105146B2 (en) * 2014-03-30 2018-10-23 Amir A. Jamali Bone cutting guide system for osteochondral transplantation
US10939921B2 (en) * 2014-03-30 2021-03-09 Amir A. Jamali Bone cutting guide system for osteochondral transplantation
CN106232062B (zh) 2014-04-30 2019-01-11 捷迈有限公司 利用患者特定仪器的髋臼杯冲击
EP3151759B1 (de) 2014-06-03 2021-03-17 Zimmer, Inc. Patientenspezifischer schneideblock sowie verfahren zur herstellung davon
DE102015201029A1 (de) 2015-01-22 2016-07-28 Luis Schuster Schablonen, Prothesen und Orthesen
CA2974837A1 (en) 2015-02-02 2016-08-11 Orthosoft Inc. Acetabulum rim digitizer device and method
WO2016149824A1 (en) 2015-03-25 2016-09-29 Orthosoft Inc. Method and system for assisting implant placement in thin bones such as scapula
EP3304380B1 (de) 2015-05-28 2020-05-20 Zimmer, Inc. Patientenspezifisches knochentransplantatsystem
US10582969B2 (en) 2015-07-08 2020-03-10 Zimmer, Inc. Patient-specific instrumentation for implant revision surgery
AU2016331086B2 (en) 2015-09-30 2021-06-24 Zimmer, Inc. Patient-specific instrumentation for patellar resurfacing surgery and method
US10624764B2 (en) 2015-11-26 2020-04-21 Orthosoft Ulc System and method for the registration of an anatomical feature
DE102016105208B3 (de) * 2016-03-21 2017-07-06 Gottfried Wilhelm Leibniz Universität Hannover Medizinisches Instrumentarium
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
US11576725B2 (en) 2017-12-12 2023-02-14 Orthosoft Ulc Patient-specific instrumentation for implant revision surgery
US11266449B2 (en) 2017-12-19 2022-03-08 Orthopediatrics Corp Osteotomy device and methods
US11000296B2 (en) * 2017-12-20 2021-05-11 Encore Medical, L.P. Joint instrumentation and associated methods of use
FR3095887B1 (fr) * 2019-05-10 2022-06-24 Addidream Procede de fabrication assistee par ordinateur d’une maquette sur-mesure d’un os

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219939A1 (de) 1992-06-18 1993-12-23 Klaus Dipl Ing Radermacher Schablone für Bearbeitungswerkzeuge zur Bearbeitung knöcherner Strukturen und Verfahren zur Definition und Reproduktion der Lagebeziehung eines Bearbeitungswerkzeuges relativ zu einer knöchernen Struktur
DE4434539C2 (de) 1994-09-27 1998-06-04 Luis Dr Med Schuster Verfahren zur Herstellung einer Endoprothese als Gelenkersatz bei Kniegelenken
EP1074229A2 (de) 1999-08-04 2001-02-07 Schuster, Luis, Dr.med. Verfahren zur Herstellung einer Endoprothese als Gelenkersatz bei Kniegelenken
US20040153087A1 (en) * 2003-02-04 2004-08-05 Sanford Adam H. Provisional orthopedic implant with removable guide
WO2007092841A2 (en) * 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP1832239A1 (de) * 2006-03-06 2007-09-12 Howmedica Osteonics Corp. Einweg-Resektionsführung
US20080262624A1 (en) * 2007-04-17 2008-10-23 Biomet Manufacturing Corp. Patient-Modified Implant And Associated Method

Family Cites Families (921)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1480285A (en) 1917-12-31 1924-01-08 Robert A Moore Portable sanding machine
US2181746A (en) 1939-02-04 1939-11-28 John R Siebrandt Combination bone clamp and adjustable drill guide
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2416228A (en) 1944-08-15 1947-02-18 Gudel & Sheppard Co Cutting tool
US2618913A (en) 1950-02-23 1952-11-25 George H Plancon Abrading machine shoe construction
US2910978A (en) 1955-03-28 1959-11-03 Marshall R Urist Hip socket means
US3330611A (en) 1965-08-16 1967-07-11 Sidney T Heifetz Mobile bulk-storage compartment carts
US3840904A (en) 1973-04-30 1974-10-15 R Tronzo Acetabular cup prosthesis
US3975858A (en) 1974-08-29 1976-08-24 Joe Much Toy construction fabricating member and assemblage
GB1563334A (en) 1977-05-30 1980-03-26 Charnley Surgical Inventions Acetabular proshesis
DE2834295B2 (de) 1978-08-04 1980-05-29 Orthoplant Orthopaedische Implantate Gmbh & Co Kg, 2800 Bremen Vorrichtung zum Herstellen einer sich vom stirnseitigen Endabschnitt eines Knochens konisch verjüngenden Mantelfläche
US4306866A (en) 1979-08-27 1981-12-22 Ipco Corporation Adjustable dental drill guide
AU7986682A (en) 1981-02-12 1982-08-19 New York University Apparatus for stereotactic surgery
US4524766A (en) 1982-01-07 1985-06-25 Petersen Thomas D Surgical knee alignment method and system
US4475549A (en) 1982-01-18 1984-10-09 Indong Oh Acetabular cup positioner and method
US4619658A (en) 1982-02-24 1986-10-28 Pappas Michael J Spherical kinematic joint
DE3213434C1 (de) 1982-04-10 1983-10-27 Günther Dr.med. 7400 Tübingen Aldinger Verfahren zur Herstellung individuell gestalteter Endoprothesen oder Implantate
US4457306A (en) 1982-05-05 1984-07-03 Howmedica, Inc. Tool and method for engaging two members of a joint prosthesis
US4421112A (en) 1982-05-20 1983-12-20 Minnesota Mining And Manufacturing Company Tibial osteotomy guide assembly and method
US4436684A (en) 1982-06-03 1984-03-13 Contour Med Partners, Ltd. Method of forming implantable prostheses for reconstructive surgery
EP0114505B1 (de) 1982-12-28 1987-05-13 Diffracto Ltd. Einrichtung und Verfahren zum Kalibrieren eines Roboters
JPS59157715A (ja) 1983-02-25 1984-09-07 Hitachi Ltd ロボツトの直接教示方法
US4506393A (en) 1983-03-29 1985-03-26 Murphy Stephen B Method of prosthesis design
US4663720A (en) 1984-02-21 1987-05-05 Francois Duret Method of and apparatus for making a prosthesis, especially a dental prosthesis
US4621630A (en) 1983-04-15 1986-11-11 Pfizer Hospital Products Group, Inc. Guide for femoral neck osteotomy
US4528980A (en) 1983-10-19 1985-07-16 Howmedica, Inc. Acetabulum sizer and drill guide
US4565191A (en) 1984-01-12 1986-01-21 Slocum D Barclay Apparatus and method for performing cuneiform osteotomy
JPS60231208A (ja) 1984-05-01 1985-11-16 Nippon Telegr & Teleph Corp <Ntt> 自動機械の制御方法
US4778474A (en) 1984-11-16 1988-10-18 Homsy Charles A Acetabular prosthesis
DE3447365A1 (de) 1984-12-24 1986-07-03 Bernd Dr. 6000 Frankfurt Lammel Verfahren und vorrichtung zur vermeidung von bildverwischungen bei medizinischen bildgebenden verfahren hervorgerufen durch bewegungen des patienten waehrend der bildaufnahme
CH665152A5 (de) 1985-01-10 1988-04-29 Urs Kellner Verfahren zum herstellen eines konischen aussengewindes.
US4632111A (en) 1985-03-21 1986-12-30 Minnesota Mining And Manufacturing Company Acetabular cup positioning apparatus
US4633862A (en) 1985-05-30 1987-01-06 Petersen Thomas D Patellar resection sawguide
US4706660A (en) 1985-05-30 1987-11-17 Petersen Thomas D Patellar clamp
US4696292A (en) 1985-07-02 1987-09-29 Heiple Kingsbury G Tool for use in anchoring implantable prosthesis and method
US4846161A (en) 1985-10-28 1989-07-11 Roger Gregory J Method and apparatus for removing prosthetic cement
US4721104A (en) 1985-12-02 1988-01-26 Dow Corning Wright Corporation Femoral surface shaping apparatus for posterior-stabilized knee implants
US4703751A (en) 1986-03-27 1987-11-03 Pohl Kenneth P Method and apparatus for resecting a distal femoral surface
US4722330A (en) 1986-04-22 1988-02-02 Dow Corning Wright Corporation Femoral surface shaping guide for knee implants
DE3707518A1 (de) 1986-05-16 1987-11-26 Copf Franz Prothesenteil sowie verfahren zu seiner herstellung
US4822365A (en) 1986-05-30 1989-04-18 Walker Peter S Method of design of human joint prosthesis
US4936862A (en) 1986-05-30 1990-06-26 Walker Peter S Method of designing and manufacturing a human joint prosthesis
AT387711B (de) 1986-07-15 1989-03-10 David Thomas Knochenfixationsplatte
DE3626549A1 (de) 1986-08-06 1988-02-11 Mecron Med Prod Gmbh Verfahren zur herstellung einer endoprothese mit individueller anpassung
US4759350A (en) 1986-10-17 1988-07-26 Dunn Harold K Instruments for shaping distal femoral and proximal tibial surfaces
GB2197790B (en) 1986-11-17 1991-01-16 Jonathan Paul Beacon Apparatus for use in accurately inserting prostheses
US4821213A (en) 1986-12-19 1989-04-11 General Electric Co. System for the simultaneous display of two or more internal surfaces within a solid object
US4719907A (en) 1987-03-18 1988-01-19 Orthospec, Inc. Orthopedic pin placement guide
US4841975A (en) 1987-04-15 1989-06-27 Cemax, Inc. Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging
JPH021675A (ja) 1987-12-24 1990-01-05 Nec Corp オフセットqpsk方式用の搬送波再生回路
US5194066A (en) 1988-01-11 1993-03-16 Boehringer Mannheim Corporation Modular joint prosthesis
US4976737A (en) 1988-01-19 1990-12-11 Research And Education Institute, Inc. Bone reconstruction
US5253506A (en) 1988-01-19 1993-10-19 The Gates Rubber Company Crimping apparatus
US5056351A (en) 1988-01-29 1991-10-15 Dayco Products, Inc. Crimping device and adjusting ring
EP0326768A3 (de) 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computerunterstütze chirurgische Vorrichtung
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4893619A (en) 1988-02-04 1990-01-16 Intermedics Orthopedics, Inc. Humeral osteotomy guide
US5007936A (en) 1988-02-18 1991-04-16 Cemax, Inc. Surgical method for hip joint replacement
US4979949A (en) 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US4892545A (en) 1988-07-14 1990-01-09 Ohio Medical Instrument Company, Inc. Vertebral lock
US4896663A (en) 1988-10-14 1990-01-30 Boehringer Mannheim Corporation Self centering femoral drill jig
US4952213A (en) 1989-02-03 1990-08-28 Boehringer Mannheim Corporation Tibial cutting guide
US4959066A (en) 1989-02-24 1990-09-25 Zimmer, Inc. Femoral osteotomy guide assembly
US4907577A (en) 1989-04-03 1990-03-13 Wu Shing Sheng Spinal transpedicle drill jig
US4985037A (en) 1989-05-22 1991-01-15 Petersen Thomas D Universal modular prosthesis stem extension
US5041117A (en) 1989-08-31 1991-08-20 Boehringer Mannheim Corporation Elbow arthroplasty instrumentation and surgical procedure
US4927422A (en) 1989-08-31 1990-05-22 Boehringer Mannheim Corporation Elbow arthroplasty instrumentation and surgical procedure
US5053039A (en) 1989-09-14 1991-10-01 Intermedics Orthopedics Upper tibial osteotomy system
US5234433A (en) 1989-09-26 1993-08-10 Kirschner Medical Corporation Method and instrumentation for unicompartmental total knee arthroplasty
US5122144A (en) 1989-09-26 1992-06-16 Kirschner Medical Corporation Method and instrumentation for unicompartmental total knee arthroplasty
JPH0661691B2 (ja) 1989-09-29 1994-08-17 オリンパス光学工業株式会社 光学素子研磨方法および装置
DE3934153A1 (de) 1989-10-12 1991-04-18 Johnson & Johnson Gmbh Tampon, insbesondere fuer die frauenhygiene, sowie verfahren und vorrichtung zur herstellung desselben
EP0425714A1 (de) 1989-10-28 1991-05-08 Metalpraecis Berchem + Schaberg Gesellschaft Für Metallformgebung Mbh Verfahren zur Herstellung einer Implantat-Gelenkprothese
GB8925380D0 (en) 1989-11-09 1989-12-28 Leonard Ian Producing prostheses
US5030221A (en) 1989-12-13 1991-07-09 Buechel Frederick F Prosthesis holding system
US5246444A (en) 1990-01-08 1993-09-21 Schreiber Saul N Osteotomy device and method
US5030219A (en) 1990-01-22 1991-07-09 Boehringer Mannheim Corporation Glenoid component installation tools
US5129908A (en) 1990-01-23 1992-07-14 Petersen Thomas D Method and instruments for resection of the patella
US5062843A (en) 1990-02-07 1991-11-05 Mahony Iii Thomas H Interference fixation screw with integral instrumentation
US5098383A (en) 1990-02-08 1992-03-24 Artifax Ltd. Device for orienting appliances, prostheses, and instrumentation in medical procedures and methods of making same
US5133760A (en) 1990-02-12 1992-07-28 Alvarado Orthopedic Research, Inc. Universal modular prosthesis stem extension
FR2659226B1 (fr) 1990-03-07 1992-05-29 Jbs Sa Prothese pour disques intervertebraux et ses instruments d'implantation.
GB9005496D0 (en) 1990-03-12 1990-05-09 Howmedica Tibial component for a replacement knee prosthesis and total knee prosthesis incorporating such a component
US5006121A (en) 1990-04-23 1991-04-09 Artifex Ltd. Bone broaches and methods of manufacturing thereof
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5108425A (en) 1990-05-30 1992-04-28 Hwang Ned H C Low turbulence heart valve
US5300077A (en) 1990-07-16 1994-04-05 Arthrotek Method and instruments for ACL reconstruction
US6019767A (en) 1990-07-16 2000-02-01 Arthrotek Tibial guide
US6254604B1 (en) 1990-07-16 2001-07-03 Arthrotek, Inc. Tibial guide
US5274565A (en) 1990-10-03 1993-12-28 Board Of Regents, The University Of Texas System Process for making custom joint replacements
US5123927A (en) 1990-12-05 1992-06-23 University Of British Columbia Method and apparatus for antibiotic knee prothesis
SE468198B (sv) 1990-12-12 1992-11-23 Nobelpharma Ab Foerfarande och anordning foer framstaellning av individuellt utformade tredimensionella kroppar anvaendbara som tandersaettningar, proteser, etc
US5206023A (en) 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
US5053037A (en) 1991-03-07 1991-10-01 Smith & Nephew Richards Inc. Femoral instrumentation for long stem surgery
US5098436A (en) 1991-03-07 1992-03-24 Dow Corning Wright Corporation Modular guide for shaping of femur to accommodate intercondylar stabilizing housing and patellar track of implant
US5129909A (en) 1991-03-13 1992-07-14 Sutherland Charles J Apparatus and method for making precise bone cuts in total knee replacement
US5438263A (en) 1991-03-15 1995-08-01 Fonar Corporation Method of selectable resolution magnetic resonance imaging
US7527628B2 (en) 1991-05-30 2009-05-05 Synvasive Technology, Inc. Surgical saw blade having at least one pair of opposed teeth shaped as right triangles
US5899907A (en) 1991-06-27 1999-05-04 Johnson; Lanny L. Instrumentation for proximal femoral compaction broaching
US5329846A (en) 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
US5449360A (en) 1991-08-23 1995-09-12 Schreiber; Saul N. Osteotomy device and method
ATE170008T1 (de) 1991-10-02 1998-09-15 Spectra Group Ltd Inc Herstellung dreidimensionaler objekte
US5677107A (en) 1991-10-02 1997-10-14 Spectra Group Limited, Inc. Production of three-dimensional objects
DE4135465A1 (de) 1991-10-28 1993-04-29 Schroeck Peter Dipl Ing Fh Radialpresse mit zwei radial gegeneinander beweglichen pressenjochen
US5344423A (en) 1992-02-06 1994-09-06 Zimmer, Inc. Apparatus and method for milling bone
GB9202561D0 (en) 1992-02-07 1992-03-25 Howmedica Orthopaedic instrument
US5507833A (en) 1992-02-10 1996-04-16 Kim-Med, Inc. Hip replacement system and method for implanting the same
US5520695A (en) 1992-02-14 1996-05-28 Johnson & Johnson Professional, Inc. Instruments for use in knee replacement surgery
US5342366A (en) 1992-02-19 1994-08-30 Biomet, Inc. Surgical instruments for hip revision
DE69319587T2 (de) 1992-02-20 1999-04-01 Synvasive Technology Inc Chirurgischer schneideblock
US5176684A (en) 1992-02-20 1993-01-05 Dow Corning Wright Modular shaping and trial reduction guide for implantation of posterior-stabilized femoral prosthesis and method of using same
US5230352A (en) 1992-03-04 1993-07-27 American Cyanamid Company Medical suturing device, a single-strike die mechanism, and a method of using said die mechanism for forming the medical suturing device
US5766251A (en) 1992-03-13 1998-06-16 Tomihisa Koshino Wedge-shaped spacer for correction of deformed extremities
US5258032A (en) 1992-04-03 1993-11-02 Bertin Kim C Knee prosthesis provisional apparatus and resection guide and method of use in knee replacement surgery
US5261915A (en) 1992-04-16 1993-11-16 Scott M. Durlacher Femur bone rasp with adjustable handle
DE4213597A1 (de) 1992-04-24 1993-10-28 Klaus Draenert Mit Knochenzement zu verankernde Femurprothesenkomponente und Verfahren zu ihrer Herstellung
US5365996A (en) 1992-06-10 1994-11-22 Amei Technologies Inc. Method and apparatus for making customized fixation devices
IT1256891B (it) 1992-07-24 1995-12-27 Stelo femorale per la protesi totale dell'anca
CA2098081A1 (en) 1992-08-13 1994-02-14 Terry L. Dietz Alignment guide and method
US5370692A (en) 1992-08-14 1994-12-06 Guild Associates, Inc. Rapid, customized bone prosthesis
US5320529A (en) 1992-09-09 1994-06-14 Howard C. Weitzman Method and apparatus for locating an ideal site for a dental implant and for the precise surgical placement of that implant
GB9221257D0 (en) 1992-10-09 1992-11-25 Minnesota Mining & Mfg Glenoid alignment guide
GB9322327D0 (en) 1993-10-29 1993-12-15 Howmedica Method and apparatus for implanting an acetabular cup
AU5598894A (en) 1992-11-09 1994-06-08 Ormco Corporation Custom orthodontic appliance forming method and apparatus
US5360446A (en) 1992-12-18 1994-11-01 Zimmer, Inc. Interactive prosthesis design system for implantable prosthesis
US5370699A (en) 1993-01-21 1994-12-06 Orthomet, Inc. Modular knee joint prosthesis
US5320625A (en) 1993-01-21 1994-06-14 Bertin Kim C Apparatus and method for implanting a prosthetic acetabular cup and then testing the stability of the implant
WO1994018638A1 (en) 1993-02-10 1994-08-18 Southwest Research Institute Automated design and manufacture of artificial limbs
US6066175A (en) 1993-02-16 2000-05-23 Henderson; Fraser C. Fusion stabilization chamber
US5405395A (en) 1993-05-03 1995-04-11 Wright Medical Technology, Inc. Modular femoral implant
US5474559A (en) 1993-07-06 1995-12-12 Zimmer, Inc. Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment
CA2126627C (en) 1993-07-06 2005-01-25 Kim C. Bertin Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment
US5364402A (en) 1993-07-29 1994-11-15 Intermedics Orthopedics, Inc. Tibial spacer saw guide
GB9322383D0 (en) 1993-10-29 1993-12-15 Howmedica Method and apparatus for implanting an acetabular cup
US5417694A (en) 1993-11-08 1995-05-23 Smith & Nephew Richards Inc. Distal femoral cutting guide apparatus with anterior or posterior referencing for use in knee joint replacement surgery
US5720752A (en) 1993-11-08 1998-02-24 Smith & Nephew, Inc. Distal femoral cutting guide apparatus with anterior or posterior referencing for use in knee joint replacement surgery
US5658294A (en) 1993-12-02 1997-08-19 Sulzer Orthopedics Inc. Instrument for holding an acetabular cup
DE4341367C1 (de) 1993-12-04 1995-06-14 Harald Dr Med Dr Med Eufinger Verfahren zur Herstellung von Endoprothesen
NL9302200A (nl) 1993-12-16 1995-07-17 Endocare Ag Elliptische acetabulumcomponent voor een heupprothese.
US5540695A (en) 1994-02-18 1996-07-30 Howmedica Inc. Osteotomy cutting guide
CA2142634C (en) 1994-02-18 2005-09-20 Salvatore Caldarise Self-lubricating implantable articulation member
US5885298A (en) 1994-02-23 1999-03-23 Biomet, Inc. Patellar clamp and reamer with adjustable stop
RU2125835C1 (ru) 1994-03-02 1999-02-10 Владимир Беньевич Низковолос Стереотаксическая система
BE1008128A3 (nl) 1994-03-10 1996-01-23 Materialise Nv Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie.
BE1008372A3 (nl) 1994-04-19 1996-04-02 Materialise Nv Werkwijze voor het vervaardigen van een geperfektioneerd medisch model uitgaande van digitale beeldinformatie van een lichaamsdeel.
US5472415A (en) 1994-04-26 1995-12-05 Zimmer, Inc. Disposable provisional instrument component for evaluating the fit of an orthopaedic implant
US5723331A (en) 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
WO1995032008A1 (en) 1994-05-24 1995-11-30 Implico B.V. A biomaterial and bone implant for bone repair and replacement
DE4421153A1 (de) 1994-06-10 1995-12-14 Artos Med Produkte Verfahren zur Herstellung einer Prothese
US5496324A (en) 1994-06-20 1996-03-05 Zimmer, Inc. Proximal body milling apparatus
FR2721195B1 (fr) 1994-06-21 1996-09-13 Jacques Afriat Dispositif de mise en place d'une lame-plaque pour la réalisation d'une ostéotomie de réaxation dans une zone osseuse.
RU2083179C1 (ru) 1994-07-08 1997-07-10 Михаил Петрович Лисицын Стереотаксическое устройство для определения и выполнения костных каналов при пластике крестообразных связок коленного сустава
FR2722392A1 (fr) 1994-07-12 1996-01-19 Biomicron Appareil de resection des condyles de genou pour la mise en place d'une prothese et procede de mise en place d'un tel appareil
US5549688A (en) 1994-08-04 1996-08-27 Smith & Nephew Richards Inc. Asymmetric femoral prosthesis
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US6402787B1 (en) 2000-01-30 2002-06-11 Bill J. Pope Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US5810827A (en) 1994-09-02 1998-09-22 Hudson Surgical Design, Inc. Method and apparatus for bony material removal
US5845255A (en) 1994-10-28 1998-12-01 Advanced Health Med-E-Systems Corporation Prescription management system
US5578037A (en) 1994-11-14 1996-11-26 Johnson & Johnson Professional, Inc. Surgical guide for femoral resection
US5560096B1 (en) 1995-01-23 1998-03-10 Smith & Nephew Richards Inc Method of manufacturing femoral knee implant
US5671018A (en) 1995-02-07 1997-09-23 Texas Instruments Incorporated Motion adaptive vertical scaling for interlaced digital image data
US5613969A (en) 1995-02-07 1997-03-25 Jenkins, Jr.; Joseph R. Tibial osteotomy system
US5607431A (en) 1995-02-09 1997-03-04 Howmedica Inc. Prosthetic hip implantation method and apparatus
US5879398A (en) 1995-02-14 1999-03-09 Zimmer, Inc. Acetabular cup
US5611802A (en) 1995-02-14 1997-03-18 Samuelson; Kent M. Method and apparatus for resecting bone
US5702460A (en) 1995-02-15 1997-12-30 Smith & Nephew, Inc. Revision femoral trial prosthesis
US5609642A (en) 1995-02-15 1997-03-11 Smith & Nephew Richards Inc. Tibial trial prosthesis and bone preparation system
IT1273952B (it) 1995-02-22 1997-07-11 Francesco Caracciolo Protesi anatomica totale dell'anca
US5593411A (en) 1995-03-13 1997-01-14 Zimmer, Inc. Orthopaedic milling guide for milling intersecting planes
US5620448A (en) 1995-03-24 1997-04-15 Arthrex, Inc. Bone plate system for opening wedge proximal tibial osteotomy
SE9501828D0 (sv) 1995-05-17 1995-05-17 Astra Ab Cutting guide
RU2113182C1 (ru) 1995-05-22 1998-06-20 Лисицын Михаил Петрович Способ статической стабилизации коленного сустава
WO1996037154A1 (de) 1995-05-26 1996-11-28 Mathys Medizinaltechnik Ag Instrumentarium für umstellungs-osteotomie der unteren extremität
US5601565A (en) 1995-06-02 1997-02-11 Huebner; Randall J. Osteotomy method and apparatus
US5634927A (en) 1995-07-06 1997-06-03 Zimmer, Inc. Sizing plate and drill guide assembly for orthopaedic knee instrumentation
US5601563A (en) * 1995-08-25 1997-02-11 Zimmer, Inc. Orthopaedic milling template with attachable cutting guide
US5745834A (en) 1995-09-19 1998-04-28 Rockwell International Corporation Free form fabrication of metallic components
US5709689A (en) 1995-09-25 1998-01-20 Wright Medical Technology, Inc. Distal femur multiple resection guide
US5716361A (en) 1995-11-02 1998-02-10 Masini; Michael A. Bone cutting guides for use in the implantation of prosthetic joint components
US5704941A (en) 1995-11-03 1998-01-06 Osteonics Corp. Tibial preparation apparatus and method
AU7276196A (en) 1995-11-08 1997-05-29 Emcc Engineering Manufacturing Consulting Corporation Ag Artificial cotyloid cavity
US5662656A (en) 1995-12-08 1997-09-02 Wright Medical Technology, Inc. Instrumentation and method for distal femoral sizing, and anterior and distal femoral resections
DE19546405A1 (de) 1995-12-12 1997-06-19 Busch Dieter & Co Prueftech Verfahren zum gegenseitigen Ausrichten von Körpern und Lagemeßsonde hierfür
US5697933A (en) 1995-12-18 1997-12-16 Medicinelodge, Inc. Bone-tendon-bone drill guide
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
FR2744357B1 (fr) 1996-02-02 1998-09-04 Voydeville Gilles Prothese de hanche non luxable et peu usable
ATE300964T1 (de) 1996-02-13 2005-08-15 Massachusetts Inst Technology Bestrahlte und schmeltzbehandelte ultrahoch molekulare polyethylen prothesen
US5676668A (en) 1996-02-20 1997-10-14 Johnson & Johnson Professional, Inc. Femoral locating device assembly
US5702464A (en) 1996-02-20 1997-12-30 Smith & Nephew Inc. Modular trial tibial insert
US5681354A (en) 1996-02-20 1997-10-28 Board Of Regents, University Of Colorado Asymmetrical femoral component for knee prosthesis
US5653714A (en) 1996-02-22 1997-08-05 Zimmer, Inc. Dual slide cutting guide
US5769092A (en) 1996-02-22 1998-06-23 Integrated Surgical Systems, Inc. Computer-aided system for revision total hip replacement surgery
WO1997030648A1 (en) 1996-02-23 1997-08-28 Midwest Orthopedic Research Foundation Device and method for distal femur cutting and prothesis measuring
HU219444B (hu) 1996-02-26 2001-04-28 Gábor Krakovits Felületpótló térdprotézis
US5725376A (en) 1996-02-27 1998-03-10 Poirier; Michel Methods for manufacturing a dental implant drill guide and a dental implant superstructure
US5824078A (en) 1996-03-11 1998-10-20 The Board Of Trustees Of The University Of Arkansas Composite allograft, press, and methods
US5722978A (en) 1996-03-13 1998-03-03 Jenkins, Jr.; Joseph Robert Osteotomy system
CA2201057C (en) 1996-03-29 2002-01-01 Kenji Morimoto A method of processing a sectional image of a sample bone including a cortical bone portion and a cancellous bone portion
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US5779710A (en) 1996-06-21 1998-07-14 Matsen, Iii; Frederick A. Joint replacement method and apparatus
US6126690A (en) 1996-07-03 2000-10-03 The Trustees Of Columbia University In The City Of New York Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis
US6066176A (en) 1996-07-11 2000-05-23 Oshida; Yoshiki Orthopedic implant system
US5762125A (en) 1996-09-30 1998-06-09 Johnson & Johnson Professional, Inc. Custom bioimplantable article
US6343987B2 (en) 1996-11-07 2002-02-05 Kabushiki Kaisha Sega Enterprises Image processing device, image processing method and recording medium
FR2755600B1 (fr) 1996-11-08 1999-02-05 Proseal Instrumentation de pose d'une lame-agrafe pour osteotomie de soustraction pour le traitement d'une gonarthrose
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US20070233269A1 (en) 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US20110071802A1 (en) 2009-02-25 2011-03-24 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US20090222103A1 (en) 2001-05-25 2009-09-03 Conformis, Inc. Articular Implants Providing Lower Adjacent Cartilage Wear
US6463351B1 (en) 1997-01-08 2002-10-08 Clynch Technologies, Inc. Method for producing custom fitted medical devices
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
CA2278780C (en) 1997-01-28 2003-12-02 Albert H. Burstein Method and apparatus for femoral resection
US5824111A (en) 1997-01-31 1998-10-20 Prosthetic Design, Inc. Method for fabricating a prosthetic limb socket
US5976149A (en) 1997-02-11 1999-11-02 Medidea, Llc Method and apparatus for aligning a prosthetic element
US5980526A (en) 1997-02-12 1999-11-09 Orthopaedic Innovations, Inc. Wedge osteotomy device including a guide for controlling osteotomy depth
US5880976A (en) 1997-02-21 1999-03-09 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
US6205411B1 (en) 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
DE29704393U1 (de) 1997-03-11 1997-07-17 Aesculap Ag Vorrichtung zur präoperativen Bestimmung der Positionsdaten von Endoprothesenteilen
DE19755536A1 (de) 1997-12-13 1999-06-17 Ceramtec Ag Hüftgelenkspfanne
US5792143A (en) 1997-04-21 1998-08-11 Biomet, Inc Neck length measuring device and method of using same for implanting a hip prosthesis
US6120544A (en) 1997-05-16 2000-09-19 Eska Implants Gmbh & Co. Femur endoprosthesis for articial hip joint
US5895389A (en) 1997-05-29 1999-04-20 Synthes (U.S.A.) Drilling guide and measuring instrumentation
DE19731442A1 (de) 1997-07-22 1999-02-11 Plus Endoprothetik Ag Pfanne für eine Gelenkendoprothese
GB9717433D0 (en) 1997-08-19 1997-10-22 Univ Nottingham Biodegradable composites
US5860980A (en) 1997-09-15 1999-01-19 Axelson, Jr.; Stuart L. Surgical apparatus for use in total knee arthroplasty and surgical methods for using said apparatus
CA2304339C (en) 1997-09-26 2007-04-03 Massachusetts Institute Of Technology Metal and ceramic containing parts produced from powder using binders derived from salt
FR2768916B1 (fr) 1997-10-01 2000-02-25 Transysteme Sa Agrafe d'osteotomie tibiale
US5924987A (en) 1997-10-06 1999-07-20 Meaney; James F. M. Method and apparatus for magnetic resonance arteriography using contrast agents
JP4217925B2 (ja) 1997-10-24 2009-02-04 ソニー株式会社 平面型レンズの製造方法
WO1999022672A2 (en) 1997-10-31 1999-05-14 Midwest Orthopaedic Research Foundation Acetabular cup prosthesis with extension for deficient acetabulum
US5876456A (en) 1997-11-14 1999-03-02 Sulzer Orthopedics Inc. Implantable prosthesis having interference-locked hole plugs
GB9724280D0 (en) 1997-11-17 1998-01-14 Benoist Girard & Cie Device to pressurise cement when implanting an acetabular cup
US6161080A (en) 1997-11-17 2000-12-12 The Trustees Of Columbia University In The City Of New York Three dimensional multibody modeling of anatomical joints
US5967777A (en) 1997-11-24 1999-10-19 Klein; Michael Surgical template assembly and method for drilling and installing dental implants
ATE190212T1 (de) 1998-02-11 2000-03-15 Plus Endoprothetik Ag Femorale hüftgelenkprothese
RU2138223C1 (ru) 1998-02-19 1999-09-27 Иова Александр Сергеевич Устройство для стереотаксического наведения хирургического инструмента
US6258095B1 (en) 1998-03-28 2001-07-10 Stryker Technologies Corporation Methods and tools for femoral intermedullary revision surgery
SE9801168L (sv) 1998-04-01 1999-07-12 Stig Lindequist Förfarande och anordning för bestämning av positionen hos fixeringsorgan vid höftledsfraktur
US6008433A (en) 1998-04-23 1999-12-28 Stone; Kevin R. Osteotomy wedge device, kit and methods for realignment of a varus angulated knee
US6519998B2 (en) 1998-04-22 2003-02-18 Uniflex-Hydraulik Gmbh Radial press
EP1027681A4 (de) 1998-05-13 2001-09-19 Acuscape International Inc Verfahren und vorrichtung zum generieren von 3d-modellen medizinischer bilder
AU2695799A (en) 1998-05-22 1999-12-02 Howmedica Osteonics Corp. Acetabular cup assembly with selected bearing
EP1079756B1 (de) 1998-05-28 2004-08-04 Orthosoft, Inc. Interaktives und rechnerunterstüztes chirurgisches system
US6059789A (en) 1998-06-22 2000-05-09 Xomed Surgical Products, Inc. Drill guide for creating a tunnel in bone for fixating soft tissue to the bone and kit and method for fixating soft tissue to bone
US6126692A (en) 1998-06-25 2000-10-03 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Retaining mechanism for a modular tibial component of a knee prosthesis
US6554837B1 (en) 1998-06-29 2003-04-29 Plus Endoprothetik Ag Device and method for inserting a prosthetic knee
US6086593A (en) 1998-06-30 2000-07-11 Bonutti; Peter M. Method and apparatus for use in operating on a bone
US6327491B1 (en) 1998-07-06 2001-12-04 Neutar, Llc Customized surgical fixture
US6322728B1 (en) 1998-07-10 2001-11-27 Jeneric/Pentron, Inc. Mass production of dental restorations by solid free-form fabrication methods
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
AU772012B2 (en) 1998-09-14 2004-04-08 Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US9289153B2 (en) 1998-09-14 2016-03-22 The Board Of Trustees Of The Leland Stanford Junior University Joint and cartilage diagnosis, assessment and modeling
US6033415A (en) 1998-09-14 2000-03-07 Integrated Surgical Systems System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system
US7239908B1 (en) 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
DE19843797A1 (de) 1998-09-24 2000-03-30 Gmt Medizinische Technik Gmbh Hüftgelenkpfanne
US6547823B2 (en) 1999-01-22 2003-04-15 Osteotech, Inc. Intervertebral implant
US6424332B1 (en) 1999-01-29 2002-07-23 Hunter Innovations, Inc. Image comparison apparatus and method
US6159217A (en) 1999-02-02 2000-12-12 Robie; Bruce H. Trochlear clamp
EP1025818B1 (de) 1999-02-03 2007-04-04 DePuy Products, Inc. Modulares Gelenkprothesensystem
US6156069A (en) 1999-02-04 2000-12-05 Amstutz; Harlan C. Precision hip joint replacement method
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
RU2218242C2 (ru) 1999-02-11 2003-12-10 Физический институт им. П.Н. Лебедева РАН Способ изготовления медицинских имплантатов из биосовместимых материалов
US6696073B2 (en) 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same
US20070233272A1 (en) 1999-02-23 2007-10-04 Boyce Todd M Shaped load-bearing osteoimplant and methods of making same
US6622567B1 (en) 1999-03-01 2003-09-23 Microstrain, Inc. Micropower peak strain detection system for remote interrogation
US6629999B1 (en) 1999-03-08 2003-10-07 Louis A. Serafin, Jr. Modular joint
US6203844B1 (en) 1999-04-01 2001-03-20 Joon B. Park Precoated polymeric prosthesis and process for making same
US6206927B1 (en) 1999-04-02 2001-03-27 Barry M. Fell Surgically implantable knee prothesis
US6923831B2 (en) 1999-05-10 2005-08-02 Barry M. Fell Surgically implantable knee prosthesis having attachment apertures
DE19922279A1 (de) 1999-05-11 2000-11-16 Friedrich Schiller Uni Jena Bu Verfahren zur Generierung patientenspezifischer Implantate
ATE333861T1 (de) 1999-05-20 2006-08-15 Univ Boston Polymer verstärkte anatomisch geformte bioaktive prothesen
US6391251B1 (en) 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US6203546B1 (en) 1999-07-27 2001-03-20 Macmahon Edward B Method and apparatus for medial tibial osteotomy
US6312258B1 (en) 1999-08-19 2001-11-06 Arthur Ashman Kit for immediate post-extraction implantation
US6338738B1 (en) 1999-08-31 2002-01-15 Edwards Lifesciences Corp. Device and method for stabilizing cardiac tissue
US6270529B1 (en) 1999-09-01 2001-08-07 Wright Medical Technology, Inc. Modular implant for replacing end of radius and having drainage passage for trapped fluid
US20050027361A1 (en) 1999-10-22 2005-02-03 Reiley Mark A. Facet arthroplasty devices and methods
US6210445B1 (en) 1999-10-26 2001-04-03 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6975755B1 (en) 1999-11-25 2005-12-13 Canon Kabushiki Kaisha Image processing method and apparatus
US7013191B2 (en) 1999-11-30 2006-03-14 Orametrix, Inc. Interactive orthodontic care system based on intra-oral scanning of teeth
US6379388B1 (en) 1999-12-08 2002-04-30 Ortho Development Corporation Tibial prosthesis locking system and method of repairing knee joint
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
US6702821B2 (en) 2000-01-14 2004-03-09 The Bonutti 2003 Trust A Instrumentation for minimally invasive joint replacement and methods for using same
US6770078B2 (en) 2000-01-14 2004-08-03 Peter M. Bonutti Movable knee implant and methods therefor
US6488715B1 (en) 2000-01-30 2002-12-03 Diamicron, Inc. Diamond-surfaced cup for use in a prosthetic joint
US6354011B1 (en) 2000-02-01 2002-03-12 Pruftechnik Dieter Busch Ag Orientation measuring device
US6591581B2 (en) 2000-03-08 2003-07-15 Arthrex, Inc. Method for preparing and inserting round, size specific osteochondral cores in the knee
US6238435B1 (en) 2000-03-10 2001-05-29 Bristol-Myers Squibb Co Assembly tool for prosthetic implant
US7074241B2 (en) 2000-03-14 2006-07-11 Smith & Nephew, Inc. Variable geometry rim surface acetabular shell liner
US7682398B2 (en) 2000-03-14 2010-03-23 Smith & Nephew, Inc. Variable geometry rim surface acetabular shell liner
US6712856B1 (en) 2000-03-17 2004-03-30 Kinamed, Inc. Custom replacement device for resurfacing a femur and method of making the same
AU2001249935A1 (en) 2000-04-05 2001-10-23 Therics, Inc. System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system
US6772026B2 (en) 2000-04-05 2004-08-03 Therics, Inc. System and method for rapidly customizing design, manufacture and/or selection of biomedical devices
US6711432B1 (en) 2000-10-23 2004-03-23 Carnegie Mellon University Computer-aided orthopedic surgery
US20040068187A1 (en) 2000-04-07 2004-04-08 Krause Norman M. Computer-aided orthopedic surgery
US6701174B1 (en) 2000-04-07 2004-03-02 Carnegie Mellon University Computer-aided bone distraction
US7494510B2 (en) 2000-04-13 2009-02-24 Smith And Nephew Orthopaedics Ag Leaflike shaft of a hip-joint prosthesis for anchoring in the femur
US6395005B1 (en) 2000-04-14 2002-05-28 Howmedica Osteonics Corp. Acetabular alignment apparatus and method
US6676706B1 (en) 2000-04-26 2004-01-13 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
AU2001251606A1 (en) 2000-04-28 2001-11-12 Orametirix, Inc. Method and system for scanning a surface and generating a three-dimensional object
EP2062541B1 (de) 2000-05-01 2018-07-11 ArthroSurface, Inc. System zur gelenkerneuerungsreparatur
US6610067B2 (en) 2000-05-01 2003-08-26 Arthrosurface, Incorporated System and method for joint resurface repair
US6520964B2 (en) 2000-05-01 2003-02-18 Std Manufacturing, Inc. System and method for joint resurface repair
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US6379299B1 (en) 2000-05-04 2002-04-30 German Borodulin Vaginal speculum with adjustable blades
SG92703A1 (en) 2000-05-10 2002-11-19 Nanyang Polytechnic Method of producing profiled sheets as prosthesis
DE10026172A1 (de) 2000-05-26 2001-11-29 Roche Diagnostics Gmbh System zur Entnahme von Körperflüssigkeit
WO2001091924A1 (en) 2000-06-01 2001-12-06 Board Of Regents, The University Of Texas System Direct selective laser sintering of metals
US6823871B2 (en) 2000-06-01 2004-11-30 Arthrex, Inc. Allograft bone or synthetic wedges for osteotomy
US6258097B1 (en) 2000-06-02 2001-07-10 Bristol-Myers Squibb Co Head center instrument and method of using the same
DE10029585C2 (de) 2000-06-15 2002-04-18 Siemens Ag Verfahren zum Betrieb eines Magnetresonanzgeräts mit Ermittlung von Lageveränderungen
US20020082741A1 (en) 2000-07-27 2002-06-27 Jyoti Mazumder Fabrication of biomedical implants using direct metal deposition
DE10036987A1 (de) 2000-07-29 2002-02-07 Klaus Draenert Modularer Pfannenersatz
US20020128872A1 (en) 2000-08-07 2002-09-12 Giammattei Charles P. Medical data recordation system
EP1315470B1 (de) 2000-08-28 2009-07-15 Disc Dynamics, Inc. System zur wiederherstellung von gelenkoberflächen von säugetieren
US20020186818A1 (en) 2000-08-29 2002-12-12 Osteonet, Inc. System and method for building and manipulating a centralized measurement value database
TW508860B (en) 2000-08-30 2002-11-01 Mitsui & Amp Co Ltd Paste-like thin electrode for battery, its manufacturing method, and battery
EP1319217B1 (de) 2000-09-14 2008-11-12 The Board Of Trustees Of The Leland Stanford Junior University Verfahren zur manipulation medizinischer bilder
EP2036495A1 (de) 2000-09-14 2009-03-18 The Board of Trustees of The Leland Stanford Junior University Beurteilungsbedingung eines Gelenk- und Knorpelverlusts
AU9088801A (en) 2000-09-14 2002-03-26 Univ Leland Stanford Junior Assessing the condition of a joint and devising treatment
DE60115722T2 (de) 2000-09-18 2006-09-07 Fuji Photo Film Co., Ltd., Minami-Ashigara System zum Speichern von Kunstknochenschablonen und Aufzeichnungsträger dafür
EP1190676B1 (de) 2000-09-26 2003-08-13 BrainLAB AG Vorrichtung zum Bestimmen der Position eines Schneidblocks
SE517237C2 (sv) 2000-09-28 2002-05-14 Urban Lindgren Riktinstrument för att utföra kapning av en lårbenshals
US6482236B2 (en) 2000-10-12 2002-11-19 Matthew J. Habecker Prosthetic ankle joint mechanism
WO2002036024A1 (en) 2000-11-03 2002-05-10 Hôpital Sainte-Justine Adjustable surgical templates
FR2816200A1 (fr) 2000-11-06 2002-05-10 Praxim Determination de la position d'une prothese du genou
US6510334B1 (en) 2000-11-14 2003-01-21 Luis Schuster Method of producing an endoprosthesis as a joint substitute for a knee joint
US20050010227A1 (en) 2000-11-28 2005-01-13 Paul Kamaljit S. Bone support plate assembly
US6786930B2 (en) 2000-12-04 2004-09-07 Spineco, Inc. Molded surgical implant and method
RU2187975C1 (ru) 2000-12-05 2002-08-27 ООО НПО "Остеомед" Способ эндопротезирования коленного сустава
US6558391B2 (en) 2000-12-23 2003-05-06 Stryker Technologies Corporation Methods and tools for femoral resection in primary knee surgery
US6725077B1 (en) 2000-12-29 2004-04-20 Ge Medical Systems Global Technology Company, Llc Apparatus and method for just-in-time localization image acquisition
EP1219239A1 (de) 2000-12-30 2002-07-03 Istituti Ortopedici Rizzoli Verfahren und Gerät zur gleichzeitigen anatomischen und funktionellen Erfassung eines Gelenkes
US6589281B2 (en) 2001-01-16 2003-07-08 Edward R. Hyde, Jr. Transosseous core approach and instrumentation for joint replacement and repair
US6427698B1 (en) 2001-01-17 2002-08-06 Taek-Rim Yoon Innominate osteotomy
US6780190B2 (en) 2001-01-23 2004-08-24 Depuy Orthopaedics, Inc. Method and apparatus for resecting a greater tubercle from a humerus of a patient during performance of a shoulder replacement procedure
ES2301618T3 (es) 2001-01-25 2008-07-01 SMITH &amp; NEPHEW, INC. Sistema de contencion para restringir un componente protesico.
US20040102866A1 (en) 2001-01-29 2004-05-27 Harris Simon James Modelling for surgery
WO2002060653A2 (en) 2001-01-29 2002-08-08 The Acrobot Company Limited Active-constraint robots
US6514259B2 (en) 2001-02-02 2003-02-04 Carnegie Mellon University Probe and associated system and method for facilitating planar osteotomy during arthoplasty
US6562073B2 (en) 2001-02-06 2003-05-13 Sdgi Holding, Inc. Spinal bone implant
US7547307B2 (en) 2001-02-27 2009-06-16 Smith & Nephew, Inc. Computer assisted knee arthroplasty instrumentation, systems, and processes
US20050113846A1 (en) 2001-02-27 2005-05-26 Carson Christopher P. Surgical navigation systems and processes for unicompartmental knee arthroplasty
DE60232316D1 (de) 2001-02-27 2009-06-25 Smith & Nephew Inc Vorrichtung zur totalen knierekonstruktion
US6750653B1 (en) 2001-04-03 2004-06-15 Usa Instruments, Inc. Knee/foot/ankle combination coil for MRI systems
US7326212B2 (en) 2002-11-19 2008-02-05 Acumed Llc Bone plates with reference marks
AUPR457901A0 (en) 2001-04-26 2001-05-24 Sekel, Ronald Acetabular prosthesis assembly
US7695521B2 (en) 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
ATE504264T1 (de) 2001-05-25 2011-04-15 Conformis Inc Verfahren und zusammensetzungen zur reparatur der oberfläche von gelenken
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US6990220B2 (en) 2001-06-14 2006-01-24 Igo Technologies Inc. Apparatuses and methods for surgical navigation
US6482209B1 (en) 2001-06-14 2002-11-19 Gerard A. Engh Apparatus and method for sculpting the surface of a joint
US6723102B2 (en) 2001-06-14 2004-04-20 Alexandria Research Technologies, Llc Apparatus and method for minimally invasive total joint replacement
US7174282B2 (en) 2001-06-22 2007-02-06 Scott J Hollister Design methodology for tissue engineering scaffolds and biomaterial implants
FR2826254B1 (fr) 2001-06-25 2004-06-18 Aesculap Sa Dispositif de positionnement d'un plan de coupe d'un guide de coupe d'un os
US6840959B2 (en) 2001-07-05 2005-01-11 Howmedica Ostenics Corp. Pelvic prosthesis plus methods and tools for implantation
FR2826859B1 (fr) 2001-07-09 2003-09-19 Tornier Sa Ancillaire de pose d'un composant humeral de prothese de coude
EP1408884A1 (de) 2001-07-12 2004-04-21 Osteotech, Inc. Zwischenwirbelimplantat mit bewegungsresistenter struktur
US20030011624A1 (en) 2001-07-13 2003-01-16 Randy Ellis Deformable transformations for interventional guidance
US7241315B2 (en) 2001-07-23 2007-07-10 Robert Evans Femoral head resurfacing apparatus and methods
US7892288B2 (en) 2001-08-27 2011-02-22 Zimmer Technology, Inc. Femoral augments for use with knee joint prosthesis
US20040162619A1 (en) 2001-08-27 2004-08-19 Zimmer Technology, Inc. Tibial augments for use with knee joint prostheses, method of implanting the tibial augment, and associated tools
JP2003070816A (ja) 2001-08-30 2003-03-11 Pentax Corp インプラントの設計方法およびインプラント
US7353153B2 (en) 2001-10-17 2008-04-01 Maria-Grazia Ascenzi Method and system for modeling bone structure
FR2831794B1 (fr) 2001-11-05 2004-02-13 Depuy France Procede de selection d'elements de prothese de genou et dispositif pour sa mise en oeuvre
US7141053B2 (en) 2001-11-28 2006-11-28 Wright Medical Technology, Inc. Methods of minimally invasive unicompartmental knee replacement
AU2002348204A1 (en) 2001-11-28 2003-06-10 Wright Medical Technology, Inc. Instrumentation for minimally invasive unicompartmental knee replacement
US20030105526A1 (en) 2001-11-30 2003-06-05 Amei Technologies Inc. High tibial osteotomy (HTO) wedge
DE10162366A1 (de) 2001-12-18 2003-07-03 Herbert Hatzlhoffer Positionierhilfe für chirurgische Werkzeuge
CN2519658Y (zh) 2001-12-29 2002-11-06 上海复升医疗器械有限公司 安装股骨颈保护装置的器具
US20030130741A1 (en) 2002-01-07 2003-07-10 Mcminn Derek James Wallace Hip prosthesis
DE10200690B4 (de) 2002-01-10 2005-03-03 Intraplant Ag Hilfsmittel zur Implantation einer Hüftgelenkendoprothese
EP1327424B1 (de) 2002-01-11 2012-09-12 Barry M. Fell Knieendoprothese mit medial versetzter Tibiafläche
US6709462B2 (en) 2002-01-11 2004-03-23 Mayo Foundation For Medical Education And Research Acetabular shell with screw access channels
GB0201149D0 (en) 2002-01-18 2002-03-06 Finsbury Dev Ltd Prosthesis
US7819925B2 (en) 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
NO20020647A (no) 2002-02-08 2003-07-28 Scandinavian Customized Prosthesis Asa System og fremgangsmåte for utarbeidelse og overføring av spesifikasjoner for pasienttilpassede proteser
US6711431B2 (en) 2002-02-13 2004-03-23 Kinamed, Inc. Non-imaging, computer assisted navigation system for hip replacement surgery
EP1476097A4 (de) 2002-02-20 2010-12-08 Zimmer Inc Knie-arthroplastieprothese und verfahren
FR2836372B1 (fr) 2002-02-28 2004-06-04 Obl Procede et dispositif pour la mise en place d'implants dentaires
EP1480549A4 (de) 2002-03-05 2010-05-26 Zimmer Inc Minimal-invasives knie-totalarthroplastie-verfahren und instrumente
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US6942475B2 (en) 2002-03-13 2005-09-13 Ortho Development Corporation Disposable knee mold
WO2003079940A2 (en) 2002-03-19 2003-10-02 The Board Of Trustees Of The University Of Illinois System and method for prosthetic fitting and balancing in joints
US7275218B2 (en) 2002-03-29 2007-09-25 Depuy Products, Inc. Method, apparatus, and program for analyzing a prosthetic device
US6945976B2 (en) 2002-03-29 2005-09-20 Depuy Products, Inc. Method and apparatus for resecting bone from an ulna in preparation for prosthetic implantation
US6695883B2 (en) 2002-04-11 2004-02-24 Theodore W. Crofford Femoral neck fixation prosthesis
WO2003090022A2 (en) 2002-04-16 2003-10-30 Noble Philip C Computer-based training methods for surgical procedures
US6887247B1 (en) 2002-04-17 2005-05-03 Orthosoft Inc. CAS drill guide and drill tracking system
EP1501438B1 (de) 2002-04-30 2011-11-16 Orthosoft Inc. Berechnung der femur-resektion bei knieoperationen
WO2003094698A2 (en) 2002-05-09 2003-11-20 Hayes Medical, Inc. Bone milling instrument
US7048741B2 (en) 2002-05-10 2006-05-23 Swanson Todd V Method and apparatus for minimally invasive knee arthroplasty
US8801720B2 (en) 2002-05-15 2014-08-12 Otismed Corporation Total joint arthroplasty system
US20040039395A1 (en) 2002-05-24 2004-02-26 Coon Thomas M. Instruments for knee surgery and method of use
WO2003101175A2 (en) 2002-05-30 2003-12-11 Osteotech, Inc. Method and apparatus for machining a surgical implant
US7993353B2 (en) 2002-06-04 2011-08-09 Brainlab Ag Medical tracking system with universal interface
US7651501B2 (en) 2004-03-05 2010-01-26 Wright Medical Technology, Inc. Instrument for use in minimally invasive hip surgery
US8652142B2 (en) 2006-04-28 2014-02-18 Acumed Llc Osteotomy systems
AU2003256500A1 (en) 2002-07-23 2004-02-09 Ortho Development Corporation Knee balancing block
US6749829B2 (en) 2002-07-23 2004-06-15 Bp Corporation North America Inc. Hydrogen to steam reforming of natural gas to synthesis gas
TW558689B (en) 2002-08-30 2003-10-21 Univ Taipei Medical Three-dimensional surgery simulation system and method
US20040054416A1 (en) 2002-09-12 2004-03-18 Joe Wyss Posterior stabilized knee with varus-valgus constraint
GB2393625B (en) 2002-09-26 2004-08-18 Internet Tech Ltd Orthopaedic surgery planning
US8086336B2 (en) 2002-09-30 2011-12-27 Medical Modeling Inc. Method for design and production of a custom-fit prosthesis
CN1728976A (zh) 2002-10-07 2006-02-01 康复米斯公司 具有与关节表面相匹配的三维几何结构的微创关节植入物
CA2501041A1 (en) 2002-10-07 2004-04-22 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
WO2004037119A2 (en) 2002-10-23 2004-05-06 Mako Surgical Corp. Modular femoral component for a total knee joint replacement for minimally invasive implantation
CN1780594A (zh) 2002-11-07 2006-05-31 康复米斯公司 用于确定半月板的大小和形状以及设计治疗的方法
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
CA2448592C (en) 2002-11-08 2011-01-11 Howmedica Osteonics Corp. Laser-produced porous surface
US6749638B1 (en) 2002-11-22 2004-06-15 Zimmer Technology, Inc. Modular knee prosthesis
US20040102852A1 (en) 2002-11-22 2004-05-27 Johnson Erin M. Modular knee prosthesis
US7318827B2 (en) 2002-12-02 2008-01-15 Aesculap Ag & Co. Kg Osteotomy procedure
WO2004051301A2 (en) 2002-12-04 2004-06-17 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
US7811312B2 (en) 2002-12-04 2010-10-12 Morphographics, Lc Bone alignment implant and method of use
US20070282347A9 (en) 2002-12-20 2007-12-06 Grimm James E Navigated orthopaedic guide and method
US20040122439A1 (en) 2002-12-20 2004-06-24 Dwyer Kimberly A. Adjustable biomechanical templating & resection instrument and associated method
US7029477B2 (en) 2002-12-20 2006-04-18 Zimmer Technology, Inc. Surgical instrument and positioning method
US7789885B2 (en) 2003-01-15 2010-09-07 Biomet Manufacturing Corp. Instrumentation for knee resection
US7837690B2 (en) 2003-01-15 2010-11-23 Biomet Manufacturing Corp. Method and apparatus for less invasive knee resection
US8355773B2 (en) 2003-01-21 2013-01-15 Aesculap Ag Recording localization device tool positional parameters
US20040143336A1 (en) 2003-01-22 2004-07-22 Brian Burkinshaw Two-piece modular patellar prosthetic system
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US6916324B2 (en) 2003-02-04 2005-07-12 Zimmer Technology, Inc. Provisional orthopedic prosthesis for partially resected bone
US20040220583A1 (en) 2003-02-04 2004-11-04 Zimmer Technology, Inc. Instrumentation for total knee arthroplasty, and methods of performing same
US7309339B2 (en) 2003-02-04 2007-12-18 Howmedica Osteonics Corp. Apparatus for aligning an instrument during a surgical procedure
WO2004071310A1 (en) 2003-02-10 2004-08-26 Smith & Nephew, Inc. Acetabular reamer
US20040158254A1 (en) 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
US7896889B2 (en) 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
WO2004075771A1 (en) 2003-02-28 2004-09-10 Materialise, Naamloze Vennootschap Method for placing and manufacturing a dental superstructure, method for placing implants and accessories used thereby
WO2004078069A2 (en) 2003-03-05 2004-09-16 Therics, Inc. Process for manufacturing biomedical articles by infiltrating biocompatible metal alloys in porous matrices
US6960216B2 (en) 2003-03-21 2005-11-01 Depuy Acromed, Inc. Modular drill guide
US7238190B2 (en) 2003-03-28 2007-07-03 Concepts In Medicine Iii, Llc Surgical apparatus to allow replacement of degenerative ankle tissue
US7527631B2 (en) 2003-03-31 2009-05-05 Depuy Products, Inc. Arthroplasty sizing gauge
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
US6993406B1 (en) 2003-04-24 2006-01-31 Sandia Corporation Method for making a bio-compatible scaffold
US7102626B2 (en) 2003-04-25 2006-09-05 Hewlett-Packard Development Company, L.P. Multi-function pointing device
EP1631192B1 (de) 2003-05-16 2012-12-05 Mazor Robotics Ltd. Robotische kniegelenks-total/teil-arthoplastik
US7601155B2 (en) 2003-05-20 2009-10-13 Petersen Thomas D Instruments and method for minimally invasive surgery for total hips
US8057482B2 (en) 2003-06-09 2011-11-15 OrthAlign, Inc. Surgical orientation device and method
US7559931B2 (en) 2003-06-09 2009-07-14 OrthAlign, Inc. Surgical orientation system and method
GB0313445D0 (en) 2003-06-11 2003-07-16 Midland Medical Technologies L Hip resurfacing
EP1638459A2 (de) 2003-06-11 2006-03-29 Case Western Reserve University Computergestützes design von skelettimplantaten
EP1486900A1 (de) 2003-06-12 2004-12-15 Materialise, Naamloze Vennootschap Methode und System zur Herstellung einer chirurgischen Führungsschablone
US20050027303A1 (en) 2003-06-17 2005-02-03 Lionberger David R. Pelvic waypoint clamp assembly and method
US7104997B2 (en) 2003-06-19 2006-09-12 Lionberger Jr David R Cutting guide apparatus and surgical method for use in knee arthroplasty
US20040260302A1 (en) 2003-06-19 2004-12-23 Sheldon Manspeizer Internal brace for distraction arthroplasty
EP1654104A4 (de) 2003-07-09 2007-09-05 D4D Technologies Lp Fräsrohlingbibliothek und rechnerimplementiertes verfahren zur effizienten auswahl von rohlingen zur erfüllung gegebener kriterien
US7218232B2 (en) 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
US7427272B2 (en) 2003-07-15 2008-09-23 Orthosoft Inc. Method for locating the mechanical axis of a femur
WO2005009303A1 (en) 2003-07-24 2005-02-03 San-Tech Surgical Sarl Orientation device for surgical implement
US7419507B2 (en) 2003-08-21 2008-09-02 The Curators Of The University Of Missouri Elbow arthroplasty system
US8484001B2 (en) 2003-08-26 2013-07-09 Voyant Health Ltd. Pre-operative medical planning system and method for use thereof
DE10341187A1 (de) 2003-09-06 2005-03-31 Bernhard Linnekogel Verfahren zur Herstellung von individuellem Ersatz für Knochen, knorplige Elemente und daraus gefügte Elemente, insbesondere Gelenke, für Mensch und Tier sowie damit hergestelltes Gelenk
US20050055024A1 (en) 2003-09-08 2005-03-10 James Anthony H. Orthopaedic implant and screw assembly
GB0321582D0 (en) 2003-09-15 2003-10-15 Benoist Girard Sas Prosthetic acetabular cup and prosthetic femoral joint incorporating such a cup
US6944518B2 (en) 2003-09-18 2005-09-13 Depuy Products, Inc. Customized prosthesis and method of designing and manufacturing a customized prosthesis by utilizing computed tomography data
GB0322084D0 (en) 2003-09-22 2003-10-22 Depuy Int Ltd A drill guide assembly
US20050070897A1 (en) 2003-09-29 2005-03-31 Petersen Thomas D. Laser triangulation of the femoral head for total knee arthroplasty alignment instruments and surgical method
US8388690B2 (en) 2003-10-03 2013-03-05 Linvatec Corporation Osteotomy system
US7390327B2 (en) 2003-10-03 2008-06-24 Howmedica Osteonics Corp. Punch apparatus and method for surgery
US7364580B2 (en) 2003-10-08 2008-04-29 Biomet Manufacturing Corp. Bone-cutting apparatus
WO2005034818A1 (ja) 2003-10-09 2005-04-21 B.I.Tec Ltd. 複合材料を用いたセメントレス型人工関節ステム
JP4567686B2 (ja) 2003-10-14 2010-10-20 ザ ユニバーシティ オブ アイオワ リサーチ ファウンデーション くるぶし用補綴及びくるぶし用補綴の移植方法
WO2005037147A1 (en) 2003-10-17 2005-04-28 Smith & Nephew, Inc. High flexion articular insert
US7392076B2 (en) 2003-11-04 2008-06-24 Stryker Leibinger Gmbh & Co. Kg System and method of registering image data to intra-operatively digitized landmarks
CA2545941A1 (en) 2003-11-14 2005-06-23 Drexel University Method and apparatus for computer-aided tissue engineering for modeling, design and freeform fabrication of tissue scaffolds, constructs, and devices
WO2005048851A1 (en) 2003-11-14 2005-06-02 Smith & Nephew, Inc. Adjustable surgical cutting systems
US7591821B2 (en) 2003-11-18 2009-09-22 Smith & Nephew, Inc. Surgical technique and instrumentation for minimal incision hip arthroplasty surgery
US7042222B2 (en) 2003-11-19 2006-05-09 General Electric Company Phased array knee coil
AU2004292996B2 (en) 2003-11-20 2008-09-25 Microport Orthopedics Holdings Inc. Guide clamp for guiding placement of a guide wire in a femur
WO2005051233A2 (en) 2003-11-21 2005-06-09 William Marsh Rice University Computer-aided tissue engineering of a biological body
US7723395B2 (en) 2004-04-29 2010-05-25 Kensey Nash Corporation Compressed porous materials suitable for implant
US20050137708A1 (en) 2003-12-23 2005-06-23 Ron Clark Device and method of arthroscopic knee joint resurfacing
US7282054B2 (en) 2003-12-26 2007-10-16 Zimmer Technology, Inc. Adjustable cut block
US8175683B2 (en) 2003-12-30 2012-05-08 Depuy Products, Inc. System and method of designing and manufacturing customized instrumentation for accurate implantation of prosthesis by utilizing computed tomography data
US8535383B2 (en) 2004-01-12 2013-09-17 DePuy Synthes Products, LLC Systems and methods for compartmental replacement in a knee
US7258701B2 (en) 2004-01-12 2007-08-21 Depuy Products, Inc. Systems and methods for compartmental replacement in a knee
US7176466B2 (en) 2004-01-13 2007-02-13 Spectrum Dynamics Llc Multi-dimensional image reconstruction
US7815645B2 (en) 2004-01-14 2010-10-19 Hudson Surgical Design, Inc. Methods and apparatus for pinplasty bone resection
AU300211S (en) 2004-01-19 2004-11-12 Synthes Gmbh Surgical aiming device
US20050171545A1 (en) 2004-01-30 2005-08-04 Howmedica Osteonics Corp. Knee computer-aided navigation instruments
US20050187562A1 (en) 2004-02-03 2005-08-25 Grimm James E. Orthopaedic component inserter for use with a surgical navigation system
US20050267353A1 (en) 2004-02-04 2005-12-01 Joel Marquart Computer-assisted knee replacement apparatus and method
WO2005077039A2 (en) 2004-02-05 2005-08-25 Osteobiologics, Inc. Absorbable orthopedic implants
US7442196B2 (en) 2004-02-06 2008-10-28 Synvasive Technology, Inc. Dynamic knee balancer
FR2865928B1 (fr) 2004-02-10 2006-03-17 Tornier Sa Dispositif chirurgical d'implantation d'une prothese totale de hanche
US8562649B2 (en) 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
GB0404345D0 (en) 2004-02-27 2004-03-31 Depuy Int Ltd Surgical jig and methods of use
US7383164B2 (en) 2004-03-05 2008-06-03 Depuy Products, Inc. System and method for designing a physiometric implant system
US8114086B2 (en) 2004-03-08 2012-02-14 Zimmer Technology, Inc. Navigated cut guide locator
US20050203540A1 (en) 2004-03-09 2005-09-15 Broyles Joseph E. Pelvis level
EP1722705A2 (de) 2004-03-10 2006-11-22 Depuy International Limited Orthopädische betriebssysteme; verfahren; implantate und instrumente
GB0405386D0 (en) 2004-03-10 2004-04-21 Depuy Int Ltd Device
WO2005087116A2 (en) 2004-03-11 2005-09-22 Branch Thomas P Method and apparatus for aligning a knee for surgery or the like
US20060089621A1 (en) 2004-03-18 2006-04-27 Mike Fard Bone mill and template
JP4436835B2 (ja) 2004-03-23 2010-03-24 株式会社ビー・アイ・テック 複合材料を用いた人工関節ステムの製造方法
BRPI0509185A (pt) 2004-03-26 2007-09-18 Synthes Usa implante de múltiplas peças, método de fabricar um implante intervertebral e conjunto de implante intervertebral
US7163542B2 (en) 2004-03-30 2007-01-16 Synthes (U.S.A.) Adjustable depth drill bit
US20050234465A1 (en) 2004-03-31 2005-10-20 Mccombs Daniel L Guided saw with pins
ATE428356T1 (de) 2004-04-20 2009-05-15 Finsbury Dev Ltd Ausrichtungsführung
EP1588668B1 (de) 2004-04-20 2008-12-10 Finsbury (Development) Limited Zielgerät zur Operationen des Femurkopfs
US7666187B2 (en) 2004-04-22 2010-02-23 Howmedica Osteonics Corp. Bone shaped cutting block
US7333013B2 (en) 2004-05-07 2008-02-19 Berger J Lee Medical implant device with RFID tag and method of identification of device
US8083746B2 (en) 2004-05-07 2011-12-27 Arthrex, Inc. Open wedge osteotomy system and surgical method
NO322674B1 (no) 2004-05-18 2006-11-27 Scandinavian Customized Prosth Pasientilpasset kappemal for noyaktig kapping av larhals i en total hofteprotese operasjon
US7169185B2 (en) 2004-05-26 2007-01-30 Impact Science And Technology, Inc. Canine acetabular cup
US7294133B2 (en) 2004-06-03 2007-11-13 Zimmer Technology, Inc. Method and apparatus for preparing a glenoid surface
US7632273B2 (en) 2004-06-29 2009-12-15 Depuy Products, Inc. Minimally invasive bone broach
US7198628B2 (en) 2004-06-30 2007-04-03 Depuy Products, Inc. Adjustable humeral cutting guide
US20060004284A1 (en) 2004-06-30 2006-01-05 Frank Grunschlager Method and system for generating three-dimensional model of part of a body from fluoroscopy image data and specific landmarks
US7458435B2 (en) 2004-08-05 2008-12-02 Yamaha Hatsudoki Kabushiki Kaisha Vehicle control unit and vehicle
US8353965B2 (en) 2004-09-03 2013-01-15 Seitz Jr William H Small joint orthopedic implants and their manufacture
US20080094396A1 (en) 2004-09-09 2008-04-24 Koninklijke Philips Electronics, N.V. System For The Three-Dimensional Imaging Of A Moving Joint
GB0420346D0 (en) 2004-09-13 2004-10-13 Finsbury Dev Ltd Tool
US8142454B2 (en) 2004-09-29 2012-03-27 The Regents Of The University Of California, San Francisco Apparatus and method for magnetic alteration of anatomical features
GB0422666D0 (en) 2004-10-12 2004-11-10 Benoist Girard Sas Prosthetic acetabular cups
US8015712B2 (en) 2004-10-29 2011-09-13 Medipurpose Pte Ltd Safety scalpel
US8043297B2 (en) 2004-11-03 2011-10-25 Synthes Usa, Llc Aiming arm for bone plates
US20060100832A1 (en) 2004-11-08 2006-05-11 Bowman Gerald D Method a designing, engineering modeling and manufacturing orthotics and prosthetics integrating algorithm generated predictions
US20060111722A1 (en) 2004-11-19 2006-05-25 Hacene Bouadi Surgical cutting tool
US7766913B2 (en) 2004-12-07 2010-08-03 Depuy Products, Inc. Bone shaping instrument and method for using the same
WO2006062518A2 (en) 2004-12-08 2006-06-15 Interpore Spine Ltd. Continuous phase composite for musculoskeletal repair
US20060210644A1 (en) 2004-12-16 2006-09-21 Bruce Levin Materials, methods, and devices for treatment of arthropathies and spondylopathies
US20060136058A1 (en) 2004-12-17 2006-06-22 William Pietrzak Patient specific anatomically correct implants to repair or replace hard or soft tissue
US7458975B2 (en) 2004-12-21 2008-12-02 Johnson & Johnson Method of replacing an anterior cruciate ligament in the knee
US7963968B2 (en) 2004-12-21 2011-06-21 Smith & Nephew, Inc. Distal femoral trial with removable cutting guide
US7896921B2 (en) 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
WO2006074550A1 (en) 2005-01-14 2006-07-20 National Research Council Of Canada Implantable biomimetic prosthetic bone
US20060161167A1 (en) 2005-01-18 2006-07-20 Reese Myers Acetabular instrument alignment guide
US20060195111A1 (en) 2005-01-25 2006-08-31 Orthosoft Inc. Universal positioning block assembly
US20060200158A1 (en) 2005-01-29 2006-09-07 Farling Toby N Apparatuses and methods for arthroplastic surgery
WO2008016687A2 (en) 2006-08-02 2008-02-07 Ibalance Medical, Inc. Method and apparatus for performing a high tibial, dome osteotomy
US8771279B2 (en) 2005-01-31 2014-07-08 Arthrex, Inc. Method and apparatus for performing an osteotomy in bone
US7967823B2 (en) 2005-01-31 2011-06-28 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US8540777B2 (en) 2005-01-31 2013-09-24 Arthrex, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US7935119B2 (en) 2005-01-31 2011-05-03 Ibalance Medical, Inc. Method for performing an open wedge, high tibial osteotomy
US20060172263A1 (en) 2005-02-01 2006-08-03 D4D Technologies, Lp Mill blank
US20060178497A1 (en) 2005-02-04 2006-08-10 Clemson University And Thordon Bearings, Inc. Implantable biomedical devices including biocompatible polyurethanes
JP2008529607A (ja) 2005-02-08 2008-08-07 アイバランス・メディカル・インコーポレーテッド 楔開き骨切り術のために骨に楔状開口を形成するための方法及び装置
EP1850782B1 (de) 2005-02-09 2013-11-06 Arthrex, Inc. Mehrteiliges implantat für open-wedge-knie-osteotomien
EP1690503B1 (de) 2005-02-15 2013-07-24 BrainLAB AG Benutzerführung bei der Justierung von Knochenschneidblöcken
US20060184176A1 (en) 2005-02-17 2006-08-17 Zimmer Technology, Inc. Tibial trialing assembly and method of trialing a tibial implant
EP2818187A3 (de) 2005-02-18 2015-04-15 Zimmer, Inc. Intelligente Gelenkimplantatsensoren
US8055487B2 (en) 2005-02-22 2011-11-08 Smith & Nephew, Inc. Interactive orthopaedic biomechanics system
US20060190086A1 (en) 2005-02-22 2006-08-24 Mako Surgical Corporation Knee implant
US8007538B2 (en) 2005-02-25 2011-08-30 Shoulder Innovations, Llc Shoulder implant for glenoid replacement
GB0504172D0 (en) 2005-03-01 2005-04-06 King S College London Surgical planning
WO2006107800A2 (en) 2005-04-01 2006-10-12 Ibalance Medical, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US7628794B2 (en) 2005-04-06 2009-12-08 Trigon Inc. Prosthetic revision knee system
US20060226570A1 (en) 2005-04-12 2006-10-12 Zimmer Technology, Inc. Method for making a metal-backed acetabular implant
US7474223B2 (en) 2005-04-18 2009-01-06 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
US8021432B2 (en) 2005-12-05 2011-09-20 Biomet Manufacturing Corp. Apparatus for use of porous implants
US8066778B2 (en) 2005-04-21 2011-11-29 Biomet Manufacturing Corp. Porous metal cup with cobalt bearing surface
US7809184B2 (en) 2005-05-04 2010-10-05 Brainlab Ag Devices and methods for automatically verifying, calibrating and surveying instruments for computer-assisted surgery
AU2006251751B2 (en) 2005-05-20 2012-09-13 Smith & Nephew, Inc. Patello-femoral joint implant and instrumentation
US20060276797A1 (en) 2005-05-24 2006-12-07 Gary Botimer Expandable reaming device
US7695477B2 (en) 2005-05-26 2010-04-13 Zimmer, Inc. Milling system and methods for resecting a joint articulation surface
EP1908023A1 (de) 2005-06-02 2008-04-09 Depuy International Limited Chirurgisches system und verfahren
JP4864966B2 (ja) 2005-06-03 2012-02-01 デピュイ・(アイルランド)・リミテッド 関節置換術に用いるための器具
JP4864967B2 (ja) 2005-06-03 2012-02-01 デピュイ・(アイルランド)・リミテッド 関節置換術に用いるための器具
US7727239B2 (en) 2005-06-10 2010-06-01 Zimmer Technology, Inc. Milling system with guide paths and related methods for resecting a joint articulation surface
GB0511847D0 (en) 2005-06-13 2005-07-20 Smith & Nephew Medical apparatus
US7621920B2 (en) 2005-06-13 2009-11-24 Zimmer, Inc. Adjustable cut guide
US9301845B2 (en) 2005-06-15 2016-04-05 P Tech, Llc Implant for knee replacement
US20060287891A1 (en) 2005-06-16 2006-12-21 Cerner Innovation, Inc. System and method in a computerized environment for charting pediatric growth
US20070016008A1 (en) 2005-06-23 2007-01-18 Ryan Schoenefeld Selective gesturing input to a surgical navigation system
US9058812B2 (en) 2005-07-27 2015-06-16 Google Technology Holdings LLC Method and system for coding an information signal using pitch delay contour adjustment
US7983777B2 (en) 2005-08-19 2011-07-19 Mark Melton System for biomedical implant creation and procurement
US20070039208A1 (en) 2005-08-22 2007-02-22 Fila Luxembourg S.A.R.L. Adaptable shoe having an expandable sole assembly
US7643862B2 (en) 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
US20070073133A1 (en) 2005-09-15 2007-03-29 Schoenefeld Ryan J Virtual mouse for use in surgical navigation
US20070073136A1 (en) 2005-09-15 2007-03-29 Robert Metzger Bone milling with image guided surgery
US7582091B2 (en) 2005-09-19 2009-09-01 Zimmer Technology, Inc. Osteotomy guide
US20070066917A1 (en) 2005-09-20 2007-03-22 Hodorek Robert A Method for simulating prosthetic implant selection and placement
US8012214B2 (en) 2005-09-27 2011-09-06 Randall Lane Acker Joint prosthesis
EP3187153A3 (de) 2005-09-30 2017-09-20 ConforMIS, Inc. Lagerimplantat
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
WO2007045000A2 (en) 2005-10-14 2007-04-19 Vantus Technology Corporation Personal fit medical implants and orthopedic surgical instruments and methods for making
GB0521173D0 (en) 2005-10-18 2005-11-23 Finsbury Dev Ltd Tool
US20070118138A1 (en) 2005-10-26 2007-05-24 Jai-Gon Seo Alignment and connection device of femur cutter and tibia cutter and method of knee arthroplasty using the same
US7371260B2 (en) 2005-10-26 2008-05-13 Biomet Sports Medicine, Inc. Method and instrumentation for the preparation and transplantation of osteochondral allografts
JP5265372B2 (ja) 2005-10-31 2013-08-14 デピュイ・プロダクツ・インコーポレイテッド モジュラー固定式および可動式ベアリングプロテーゼシステム
US8403985B2 (en) 2005-11-02 2013-03-26 Zimmer, Inc. Joint spacer implant
US20070118055A1 (en) 2005-11-04 2007-05-24 Smith & Nephew, Inc. Systems and methods for facilitating surgical procedures involving custom medical implants
DE102005054575B3 (de) 2005-11-16 2007-04-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Regelung eines Roboterarms sowie Roboter zur Durchführung des Verfahrens
EP1951158A4 (de) 2005-11-21 2010-03-31 Vertegen Inc Vorrichtungen und verfahren zur behandlung von facettengelenken, uncovertebralgelenken, costovertebralgelenken und anderen gelenken
EP1951136A1 (de) 2005-11-23 2008-08-06 Conformis, Inc. Implantatsgreifer
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US8198080B2 (en) 2005-12-14 2012-06-12 The Invention Science Fund I, Llc Bone delivery device
US20080058947A1 (en) 2005-12-15 2008-03-06 Zimmer, Inc. Distal femoral knee prostheses
GB0525637D0 (en) 2005-12-16 2006-01-25 Finsbury Dev Ltd Tool
US7578851B2 (en) 2005-12-23 2009-08-25 Howmedica Osteonics Corp. Gradient porous implant
US20070156066A1 (en) 2006-01-03 2007-07-05 Zimmer Technology, Inc. Device for determining the shape of an anatomic surface
GB0601803D0 (en) 2006-01-30 2006-03-08 Finsbury Dev Ltd Tool
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
US9017336B2 (en) 2006-02-15 2015-04-28 Otismed Corporation Arthroplasty devices and related methods
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US7780672B2 (en) 2006-02-27 2010-08-24 Biomet Manufacturing Corp. Femoral adjustment device and associated method
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US20080257363A1 (en) 2007-04-17 2008-10-23 Biomet Manufacturing Corp. Method And Apparatus For Manufacturing An Implant
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US20110046735A1 (en) 2006-02-27 2011-02-24 Biomet Manufacturing Corp. Patient-Specific Implants
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US8337426B2 (en) 2009-03-24 2012-12-25 Biomet Manufacturing Corp. Method and apparatus for aligning and securing an implant relative to a patient
US8167823B2 (en) 2009-03-24 2012-05-01 Biomet Manufacturing Corp. Method and apparatus for aligning and securing an implant relative to a patient
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US20110190899A1 (en) 2006-02-27 2011-08-04 Biomet Manufacturing Corp. Patient-specific augments
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US20110172672A1 (en) 2006-02-27 2011-07-14 Biomet Manufacturing Corp. Instrument with transparent portion for use with patient-specific alignment guide
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US20080058945A1 (en) 2006-03-13 2008-03-06 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
US7842092B2 (en) 2006-03-14 2010-11-30 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
US20070219640A1 (en) 2006-03-16 2007-09-20 Active Implants Corporation Ceramic-on-ceramic prosthetic device coupled to a flexible bone interface
CA2644574C (en) 2006-03-17 2016-11-08 Zimmer, Inc. Methods of predetermining the contour of a resected bone surface and assessing the fit of a prosthesis on the bone
US8333805B2 (en) * 2006-03-20 2012-12-18 Howmedica Osteonics Corp. Composite joint implant
US8858632B2 (en) 2006-03-23 2014-10-14 Formae, Inc. Implants for replacing hyaline cartilage, with hydrogel reinforced by three-dimensional fiber arrays
GB0606837D0 (en) 2006-04-05 2006-05-17 Depuy Int Ltd Cutting guide instrument
US8075627B2 (en) 2006-04-07 2011-12-13 Depuy Products, Inc. System and method for transmitting orthopaedic implant data
US8015024B2 (en) 2006-04-07 2011-09-06 Depuy Products, Inc. System and method for managing patient-related data
US8246663B2 (en) 2006-04-10 2012-08-21 Scott Lovald Osteosynthesis plate, method of customizing same, and method for installing same
US20070255412A1 (en) 2006-04-18 2007-11-01 Binyamin Hajaj Prosthetic device
JP5408783B2 (ja) 2006-04-19 2014-02-05 ブレーム ペーター モジュール式の腰部インプラント
WO2007123963A2 (en) 2006-04-19 2007-11-01 Ibalance Medical, Inc. Method and apparatus for performing multidirectional tibial tubercle transfers
US7623702B2 (en) 2006-04-27 2009-11-24 Mako Surgical Corp. Contour triangulation system and method
US8461992B2 (en) 2006-05-12 2013-06-11 Solstice Medical, Llc RFID coupler for metallic implements
US7385498B2 (en) 2006-05-19 2008-06-10 Delphi Technologies, Inc. Wristband reader apparatus for human-implanted radio frequency identification device
US8635082B2 (en) 2006-05-25 2014-01-21 DePuy Synthes Products, LLC Method and system for managing inventories of orthopaedic implants
WO2007139949A2 (en) 2006-05-25 2007-12-06 Spinemedica Corporation Patient-specific spinal implants and related systems and methods
WO2007137327A1 (en) 2006-05-26 2007-12-06 Ellysian Ltd Hip resurfacing clamp
US7695520B2 (en) 2006-05-31 2010-04-13 Biomet Manufacturing Corp. Prosthesis and implementation system
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
CN101466317B (zh) 2006-06-12 2011-08-31 史密夫和内修有限公司 用于进行胫骨切除的系统、方法和装置
CA2690896A1 (en) 2006-06-19 2007-12-27 Igo Technologies Inc. Joint placement methods and apparatuses
US7678115B2 (en) 2006-06-21 2010-03-16 Howmedia Osteonics Corp. Unicondylar knee implants and insertion methods therefor
US20080009952A1 (en) 2006-06-30 2008-01-10 Hodge W A Precision acetabular machining system and resurfacing acetabular implant
US8241292B2 (en) 2006-06-30 2012-08-14 Howmedica Osteonics Corp. High tibial osteotomy system
US7686812B2 (en) 2006-06-30 2010-03-30 Howmedica Osteonics Corp. Method for setting the rotational position of a femoral component
WO2008007194A2 (en) 2006-07-07 2008-01-17 Precimed, S.A. Bone plate with complex, adjacent holes joined by a bend relief zone
EP2037834B1 (de) 2006-07-11 2016-09-14 2Ingis S.A. Herstellungsverfahren einer knochenprothese oder einer preimplantaire simulation und vorrichtung zum betreiben dieses verfahrens
US7953612B1 (en) 2006-07-17 2011-05-31 Ecomglobalmedical Research & Development, Inc System and method for providing a searchable database of surgical information
US20080021299A1 (en) 2006-07-18 2008-01-24 Meulink Steven L Method for selecting modular implant components
US20080021567A1 (en) 2006-07-18 2008-01-24 Zimmer Technology, Inc. Modular orthopaedic component case
WO2008014618A1 (en) 2006-08-03 2008-02-07 Orthosoft Inc. Computer-assisted surgery tools and system
US7594933B2 (en) 2006-08-08 2009-09-29 Aesculap Ag Method and apparatus for positioning a bone prosthesis using a localization system
EP1886641A1 (de) 2006-08-11 2008-02-13 BrainLAB AG Verfahren und System zum Bestimmen der relativen Lage eines medizinischen Instruments relativ zu einer Körperstruktur
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
TW200821888A (en) 2006-08-18 2008-05-16 Smith & Amp Nephew Inc Systems and methods for designing, analyzing and using orthopaedic devices
US20120150243A9 (en) 2006-08-31 2012-06-14 Catholic Healthcare West (Chw) Computerized Planning Tool For Spine Surgery and Method and Device for Creating a Customized Guide for Implantations
US20080062183A1 (en) 2006-09-11 2008-03-13 Bart Swaelens Hybrid data structures for graphics programs
US20080097451A1 (en) 2006-09-20 2008-04-24 United Orthopedic Corporation Surgical tool assembly for total knee arthroplasty
US7604665B2 (en) 2006-09-20 2009-10-20 Depuy Products, Inc. Glenoid component for shoulder arthroplasty
WO2008039508A2 (en) 2006-09-27 2008-04-03 Ibalance Medical, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US8641771B2 (en) 2006-09-29 2014-02-04 DePuy Synthes Products, LLC Acetabular cup having a wireless communication device
GB2442441B (en) 2006-10-03 2011-11-09 Biomet Uk Ltd Surgical instrument
GB0620359D0 (en) 2006-10-13 2006-11-22 Symmetry Medical Inc Medical devices
US8083749B2 (en) 2006-12-01 2011-12-27 Arthrex, Inc. Method and apparatus for performing an open wedge, low femoral osteotomy
US20080140081A1 (en) 2006-12-04 2008-06-12 Zimmer, Inc. Cut guides
US20090234360A1 (en) 2006-12-12 2009-09-17 Vladimir Alexander Laser assisted total joint arthroplasty
US8214016B2 (en) 2006-12-12 2012-07-03 Perception Raisonnement Action En Medecine System and method for determining an optimal type and position of an implant
US20080146969A1 (en) 2006-12-15 2008-06-19 Kurtz William B Total joint replacement component positioning as predetermined distance from center of rotation of the joint using pinless navigation
US8460302B2 (en) 2006-12-18 2013-06-11 Otismed Corporation Arthroplasty devices and related methods
US8075563B2 (en) 2006-12-29 2011-12-13 Greatbatch Medical S.A. Resurfacing reamer with cutting struts
US8562616B2 (en) 2007-10-10 2013-10-22 Biomet Manufacturing, Llc Knee joint prosthesis system and method for implantation
US8300674B2 (en) 2007-01-12 2012-10-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for complexity reduction in detection of delay and Doppler shifted signature sequences
US20090287309A1 (en) 2007-01-30 2009-11-19 Tornier Sas Intra-articular joint replacement
US8313530B2 (en) 2007-02-12 2012-11-20 Jmea Corporation Total knee arthroplasty system
EP2114262A1 (de) 2007-02-13 2009-11-11 Orthogroup, Inc. Bohrsystem für hüftgelenkimplantate
US7603192B2 (en) 2007-02-13 2009-10-13 Orthohelix Surgical Designs, Inc. Method of making orthopedic implants and the orthopedic implants
US8814874B2 (en) 2007-02-13 2014-08-26 Medtronic Navigation, Inc. Navigated cut guide for total knee reconstruction
US20080195099A1 (en) 2007-02-13 2008-08-14 The Brigham And Women's Hospital, Inc. Osteotomy system
JP2010534077A (ja) 2007-02-14 2010-11-04 スミス アンド ネフュー インコーポレーテッド 2コンパートメント膝関節移植のためのコンピュータ支援外科手術のための方法及びシステム
US8600478B2 (en) 2007-02-19 2013-12-03 Medtronic Navigation, Inc. Automatic identification of instruments used with a surgical navigation system
DE102007011093B3 (de) 2007-02-28 2008-06-19 Aesculap Ag & Co. Kg Chirurgischer Datenträger
US8043382B2 (en) 2007-02-28 2011-10-25 Biomet Manufacturing Corp. Reinforced medical implants
GB0704125D0 (en) 2007-03-03 2007-04-11 Univ Dundee Ossicular replacement prosthesis
US8014984B2 (en) 2007-03-06 2011-09-06 The Cleveland Clinic Foundation Method and apparatus for preparing for a surgical procedure
US7959637B2 (en) 2007-03-13 2011-06-14 Biomet Manufacturing Corp. Distal femoral cutting guide
EP2124764B1 (de) 2007-03-14 2017-07-19 ConforMIS, Inc. Chirurgische arthroplastie-werkzeuge
US8313490B2 (en) 2007-03-16 2012-11-20 Zimmer Technology, Inc. Single plane anatomic referencing tissue preparation
US7794462B2 (en) 2007-03-19 2010-09-14 Zimmer Technology, Inc. Handpiece calibration device
GB2447702A (en) 2007-03-23 2008-09-24 Univ Leeds Surgical bone cutting template
MX2009010707A (es) 2007-04-04 2010-03-26 Alexandria Res Technologies Llc Aparato y metodo para esculpir la superficie de una articulacion.
US8357205B2 (en) 2007-04-10 2013-01-22 Mohamed Naushad Rahaman Femoral head and method of manufacture thereof
US8926618B2 (en) 2007-04-19 2015-01-06 Howmedica Osteonics Corp. Cutting guide with internal distraction
US8167951B2 (en) 2007-05-09 2012-05-01 Arthrex, Inc. Method and apparatus for reconstructing a ligament and/or repairing cartilage, and for performing an open wedge, high tibial osteotomy
CA2687116C (en) 2007-05-14 2015-05-26 Queen's University At Kingston Patient-specific surgical guidance tool and method of use
JP2010527706A (ja) 2007-05-21 2010-08-19 アクティブ インプランツ コーポレーション 寛骨臼用の人工器官
US7780740B2 (en) 2007-05-21 2010-08-24 Active Implants Corporation Methods, systems, and apparatus for implanting prosthetic devices into cartilage
US7972338B2 (en) 2007-05-23 2011-07-05 O'brien Todd Self-supporting osteotomy guide and retraction device and method of use
FR2916626B1 (fr) 2007-06-04 2014-09-19 Jean Capsal Procede de realisation d'un dispositif d'assistance au forage d'au moins un puits d'implantation dans une structure osseuse et dispositif obtenu
US8603093B2 (en) 2007-06-07 2013-12-10 Sam Hakki Method of determining acetabular center axis
WO2008157412A2 (en) 2007-06-13 2008-12-24 Conformis, Inc. Surgical cutting guide
GB0712247D0 (en) 2007-06-25 2007-08-01 I J Smith & Nephew Ltd Medical device
GB0712290D0 (en) 2007-06-25 2007-08-01 Depuy Orthopaedie Gmbh Surgical instrument
DE102007032583B3 (de) 2007-07-09 2008-09-18 Eska Implants Gmbh & Co.Kg Set zur Erstellung eines Offset-Resurfacing-Hüftgelenksimplantates
WO2009006741A1 (en) 2007-07-09 2009-01-15 Orthosoft Inc. Universal positioning device for orthopedic surgery and method of use thereof
AU2008275015B2 (en) 2007-07-11 2014-08-14 Smith & Nephew, Inc. Methods and apparatus for determining pin placement during hip surgery
WO2009015009A1 (en) 2007-07-20 2009-01-29 Talus Medical, Inc. Methods and devices for deploying biological implants
JP2009056299A (ja) 2007-08-07 2009-03-19 Stryker Leibinger Gmbh & Co Kg 外科手術をプランニングするための方法及びシステム
US8182489B2 (en) 2007-08-07 2012-05-22 Arthrex, Inc. Method and apparatus for performing an open wedge osteotomy
CA2696584C (en) 2007-08-17 2016-11-29 Mohamed Rashwan Mahfouz Implant design analysis suite
US8430882B2 (en) 2007-09-13 2013-04-30 Transcorp, Inc. Transcorporeal spinal decompression and repair systems and related methods
WO2009036367A1 (en) 2007-09-13 2009-03-19 Transcorp, Inc. Transcorporeal spinal decompression and repair system and related method
KR100950990B1 (ko) 2007-09-14 2010-04-02 최길운 뼈 치료용 장치
US8197486B2 (en) 2007-09-20 2012-06-12 Depuy Products, Inc. Surgical cutting guide
DE102007045885B4 (de) 2007-09-25 2014-12-31 Zimmer Gmbh Einteiliges medizinisches Fußimplantat sowie System
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
EP2957244B1 (de) 2007-09-30 2020-04-15 DePuy Products, Inc. Verfahren zur herstellung eines massgeschneiderten patientespezifischen orthopädischen chirurgischen instrumentes
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
EP2198397B1 (de) 2007-10-12 2012-08-29 Solstice Medical, Llc. Kleines rfid-etikett mit gamma-abschirmung und verkürztem patch
EP2397091B1 (de) 2007-11-02 2015-12-02 Biomet C.V. Fixiersystem für Ellbogenbruch
US20090118736A1 (en) 2007-11-05 2009-05-07 Stefan Kreuzer Apparatus and Method for Aligning a Guide Pin for Joint Re-Surfacing
US7873147B2 (en) 2007-11-05 2011-01-18 The University Of Western Ontario Radiostereometric calibration cage
US20090149977A1 (en) 2007-11-06 2009-06-11 Schendel Stephen A Methods, systems, and computer program products for shaping medical implants directly from virtual reality models
US10582934B2 (en) 2007-11-27 2020-03-10 Howmedica Osteonics Corporation Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs
AU2008335328B2 (en) 2007-12-06 2014-11-27 Smith & Nephew, Inc. Systems and methods for determining the mechanical axis of a femur
CA2719033C (en) 2007-12-07 2014-07-08 Zimmer Orthopaedic Surgical Products, Inc. Spacer mold and methods therefor
EP2231072B1 (de) 2007-12-10 2019-05-22 Mako Surgical Corp. Prothesenvorrichtung und system zur vorbereitung eines knochens für die aufnahme einer prothesenvorrichtung
WO2009075562A1 (en) 2007-12-11 2009-06-18 Universiti Malaya Process to design and fabricate a custom-fit implant
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8160345B2 (en) 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8221430B2 (en) 2007-12-18 2012-07-17 Otismed Corporation System and method for manufacturing arthroplasty jigs
US8311306B2 (en) 2008-04-30 2012-11-13 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US20110004317A1 (en) 2007-12-18 2011-01-06 Hacking Adam S Orthopaedic implants
US8545509B2 (en) 2007-12-18 2013-10-01 Otismed Corporation Arthroplasty system and related methods
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8715291B2 (en) 2007-12-18 2014-05-06 Otismed Corporation Arthroplasty system and related methods
US8777875B2 (en) 2008-07-23 2014-07-15 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
WO2009087640A1 (en) 2008-01-11 2009-07-16 Technion - Research & Development Foundation Ltd Modeling micro-scaffold-based implants for bone tissue engineering
US8075501B2 (en) 2008-01-17 2011-12-13 Tensegrity Technologies, Inc. Methods for designing a foot orthotic
CA2706356C (en) 2008-02-20 2017-03-28 Mako Surgical Corp. Implant planning using corrected captured joint motion information
DE102008010333A1 (de) 2008-02-21 2009-08-27 Aesculap Ag Magazin zur Aufnahme mindestens einer Knochenschraube und Knochenplatte mit einem derartigen Magazin
US20100145455A1 (en) 2008-12-10 2010-06-10 Innvotec Surgical, Inc. Lockable spinal implant
US8702801B2 (en) 2008-02-25 2014-04-22 Linares Medical Devices, Llc Artificial wear resistant plug for mounting to existing joint bone
US7988736B2 (en) 2008-02-27 2011-08-02 Biomet Manufacturing Corp. Method and apparatus for providing resorbable fixation of press-fit implants
US9408618B2 (en) 2008-02-29 2016-08-09 Howmedica Osteonics Corporation Total hip replacement surgical guide tool
US8469961B2 (en) 2008-03-05 2013-06-25 Neville Alleyne Methods and compositions for minimally invasive capsular augmentation of canine coxofemoral joints
WO2009111626A2 (en) 2008-03-05 2009-09-11 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US8273090B2 (en) 2008-03-07 2012-09-25 Traiber, S.L. Tibial plateau and/or femoral condyle resection system for prosthesis implantation
EP2268215B1 (de) 2008-03-25 2018-05-16 Orthosoft Inc. Verfahren zur planung und system zur planung/führung von veränderungen an einem knochen
US8518272B2 (en) 2008-04-04 2013-08-27 Biomet Biologics, Llc Sterile blood separating system
US8361147B2 (en) 2008-04-09 2013-01-29 Active Implants Corporation Meniscus prosthetic devices with anti-migration features
GB0809721D0 (en) 2008-05-28 2008-07-02 Univ Bath Improvements in or relating to joints and/or implants
US8114156B2 (en) 2008-05-30 2012-02-14 Edwin Burton Hatch Flexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints
AU2009259930B2 (en) 2008-06-19 2015-02-19 Moximed, Inc. Implantable brace for providing joint support
EP2143391B1 (de) 2008-07-07 2011-06-08 BrainLAB AG Vorrichtung zur Positionierung oder Anbringung einer Vorrichtung für medizinische Eingriffe, insbesondere eines Inzisionsblocks oder eines Schnittblocks
TWI560969B (en) 2008-07-09 2016-12-01 Access Business Group Int Llc Wireless charging system and remote device and method of the same
GB0813093D0 (en) 2008-07-17 2008-08-27 Invibio Ltd Polymeric materials
US8702805B2 (en) 2008-07-21 2014-04-22 Harutaro Trabish Acetabulum surgical resurfacing aid
US8617175B2 (en) 2008-12-16 2013-12-31 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US20100069911A1 (en) 2008-07-24 2010-03-18 OrthAlign, Inc. Systems and methods for joint replacement
US20100023030A1 (en) 2008-07-24 2010-01-28 Leonard Remia Surgical fastener devices and methods for their manufacture and use
US8920427B2 (en) 2008-08-01 2014-12-30 DePuy Synthes Products, LLC Orthopaedic surgical method for performing a patellofemoral arthroplasty procedure
US7666181B2 (en) 2008-08-02 2010-02-23 Tarek Ahmed Nabil Abou El Kheir Multi-purpose minimally invasive instrument that uses a micro entry port
US20100057088A1 (en) 2008-08-26 2010-03-04 Maxx Orthopedics, Inc. Distal Femoral Cutting Guide
AU2009291743B2 (en) 2008-09-10 2015-02-05 Orthalign, Inc Hip surgery systems and methods
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US8257357B2 (en) 2008-09-23 2012-09-04 Edwin Burton Hatch Combination of a motor driven oscillating orthopedic reshaping and resurfacing tool and a surface-matching sheet metal prosthesis
US8623062B2 (en) 2008-09-29 2014-01-07 Dimitriy G. Kondrashov System and method to stablize a spinal column including a spinolaminar locking plate
US8992538B2 (en) 2008-09-30 2015-03-31 DePuy Synthes Products, Inc. Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
US8192441B2 (en) 2008-10-03 2012-06-05 Howmedica Osteonics Corp. High tibial osteotomy instrumentation
US20100105011A1 (en) 2008-10-29 2010-04-29 Inpronto Inc. System, Method And Apparatus For Tooth Implant Planning And Tooth Implant Kits
GB0822078D0 (en) 2008-12-03 2009-01-07 Finsbury Dev Ltd Tool
USD622854S1 (en) 2008-12-19 2010-08-31 Mako Surgical Corp. Patellofemoral implant
TW201023816A (en) 2008-12-26 2010-07-01 Lu-Sun Shi Thighbone replacement module and its surgical tool
US20100168752A1 (en) 2008-12-29 2010-07-01 Edwards Jon M Orthopaedic cutting tool having a chemically etched metal insert and method of manufacturing
US20100185202A1 (en) 2009-01-16 2010-07-22 Lester Mark B Customized patient-specific patella resectioning guide
US8444564B2 (en) 2009-02-02 2013-05-21 Jointvue, Llc Noninvasive diagnostic system
EP3678144A1 (de) 2009-02-13 2020-07-08 Biomet Manufacturing, LLC Verfahren und gerät zur herstellung eines implantats
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US20100217399A1 (en) 2009-02-22 2010-08-26 Groh Gordon I Base plate system for shoulder arthroplasty and method of using the same
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US8808297B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US20100217270A1 (en) 2009-02-25 2010-08-26 Conformis, Inc. Integrated Production of Patient-Specific Implants and Instrumentation
US8337503B2 (en) 2009-04-13 2012-12-25 George John Lian Custom radiographically designed cutting guides and instruments for use in total ankle replacement surgery
WO2010120990A1 (en) 2009-04-15 2010-10-21 James Schroeder Personal fit medical implants and orthopedic surgical instruments and methods for making
EP2419035B1 (de) 2009-04-16 2017-07-05 ConforMIS, Inc. Patientenspezifische gelenkarthroplastie-verfahren zur bänderreparatur
WO2010124164A1 (en) 2009-04-23 2010-10-28 Ure Keith J A device and method for achieving accurate positioning of acetabular cup during total hip replacement
US20100274253A1 (en) 2009-04-23 2010-10-28 Ure Keith J Device and method for achieving accurate positioning of acetabular cup during total hip replacement
WO2010129870A1 (en) 2009-05-07 2010-11-11 Smith & Nephew, Inc. Patient specific alignment guide for a proximal femur
US8439925B2 (en) 2009-05-11 2013-05-14 Trinity Orthopedics, Llc Transiliac-transsacral method of performing lumbar spinal interventions
US8828311B2 (en) 2009-05-15 2014-09-09 Board Of Regents, The University Of Texas System Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting
CN102458269A (zh) 2009-06-24 2012-05-16 定制Med整形(私人)有限公司 定位导板和股骨切骨引导系统
US9707058B2 (en) 2009-07-10 2017-07-18 Zimmer Dental, Inc. Patient-specific implants with improved osseointegration
US20110015752A1 (en) 2009-07-14 2011-01-20 Biomet Manufacturing Corp. System and Method for Acetabular Cup
EP2456473B1 (de) 2009-07-23 2016-02-17 Didier Nimal Biomedizinische vorrichtung, herstellungsverfahren dafür und ihre anwendung
US8702717B2 (en) 2009-07-31 2014-04-22 Zimmer Gmbh Glenoid alignment tool
WO2011019797A2 (en) 2009-08-11 2011-02-17 The Cleveland Clinic Foundation Method and apparatus for insertion of an elongate pin into a surface
US8696680B2 (en) 2009-08-11 2014-04-15 The Cleveland Clinic Foundation Method and apparatus for insertion of an elongate pin into a surface
DE102009028503B4 (de) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resektionsschablone zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Resektionsschablone und Operationsset zur Durchführung von Kniegelenk-Operationen
CN102573704B (zh) 2009-08-19 2016-03-16 史密夫和内修有限公司 多孔植入物结构
US8313491B2 (en) 2009-08-20 2012-11-20 Wright Medical Technology, Inc. Adjustable femoral resection guide
TWI381828B (zh) 2009-09-01 2013-01-11 Univ Chang Gung Method of making artificial implants
US9839434B2 (en) 2009-10-29 2017-12-12 Zimmer, Inc. Patient-specific mill guide
CH702194A2 (fr) 2009-11-05 2011-05-13 Cristiano Hossri Ribeiro Plaque multi - ajustable pour l'ostéotomie.
AU2010321626A1 (en) 2009-11-17 2012-06-07 Queen's University At Kingston Patient-specific guide for acetabular cup placement
WO2011063250A1 (en) 2009-11-20 2011-05-26 Knee Creations, Llc Implantable devices for subchondral treatment of joint pain
FR2955250B1 (fr) 2010-01-15 2012-02-03 Tornier Sa Ensemble chirurgical d'assistance a l'implantation d'un composant glenoidien de prothese d'epaule
US20110177590A1 (en) 2009-12-11 2011-07-21 Drexel University Bioprinted Nanoparticles and Methods of Use
GB0922339D0 (en) 2009-12-21 2010-02-03 Mcminn Derek J W Acetabular cup prothesis and introducer thereof
US20110151027A1 (en) 2009-12-21 2011-06-23 Theodore D Clineff Strontium-doped calcium phosphate bone graft materials
US8260589B1 (en) 2009-12-24 2012-09-04 Indian Institute Of Technology Madras Methods and systems for modeling a physical object
GB0922640D0 (en) 2009-12-29 2010-02-10 Mobelife Nv Customized surgical guides, methods for manufacturing and uses thereof
US20110190901A1 (en) 2010-02-03 2011-08-04 Active Implants Corporation Acetabular Prosthetic Devices and Associated Methods
US8834568B2 (en) 2010-02-04 2014-09-16 Paul S. Shapiro Surgical technique using a contoured allograft cartilage as a spacer of the carpo-metacarpal joint of the thumb or tarso-metatarsal joint of the toe
US9603670B2 (en) 2010-02-25 2017-03-28 Ao Technology Ag Method for designing and/or optimizing a surgical device
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
GB201003921D0 (en) 2010-03-10 2010-04-21 Depuy Orthopaedie Gmbh Orthopaedic instrument
GB201004878D0 (en) 2010-03-24 2010-05-05 Dawood Andrew J S A positioning guide for hip joint replacement/resurfacing prosthesis
US20110238071A1 (en) 2010-03-24 2011-09-29 Alain Fernandez-Scoma Drill assistance kit for implant hole in a bone structure
US9579106B2 (en) 2010-03-31 2017-02-28 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Shoulder arthroplasty instrumentation
US9066733B2 (en) 2010-04-29 2015-06-30 DePuy Synthes Products, Inc. Orthognathic implant and methods of use
US8543234B2 (en) 2010-06-07 2013-09-24 Fei Gao Method and software system for treatment planning and surgical guide CAD/CAM
US8532806B1 (en) 2010-06-07 2013-09-10 Marcos V. Masson Process for manufacture of joint implants
US9386994B2 (en) 2010-06-11 2016-07-12 Smith & Nephew, Inc. Patient-matched instruments
CA2802119C (en) 2010-06-11 2019-03-26 Sunnybrook Health Sciences Center Method of forming patient-specific implant
US8932299B2 (en) 2010-06-18 2015-01-13 Howmedica Osteonics Corp. Patient-specific total hip arthroplasty
US8870889B2 (en) 2010-06-29 2014-10-28 George Frey Patient matching surgical guide and method for using the same
KR101859932B1 (ko) 2010-06-29 2018-05-21 조지 프레이 환자 맞춤형 수술 가이드 및 이를 이용하기 위한 방법
WO2012005860A1 (en) 2010-07-08 2012-01-12 Synthes Usa, Llc Advanced bone marker and custom implants
CA2841427C (en) 2010-07-09 2018-10-16 The Cleveland Clinic Foundation Method and apparatus for providing a relative location indication during a surgical procedure
US8828089B1 (en) 2010-07-12 2014-09-09 Howmedica Osteonics Corp. Augmenting an acetabular implant site
WO2012021241A2 (en) 2010-08-12 2012-02-16 Smith & Nephew, Inc. Methods and devices for installing standard and reverse shoulder implants
US8808302B2 (en) 2010-08-12 2014-08-19 DePuy Synthes Products, LLC Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
WO2012021764A2 (en) 2010-08-13 2012-02-16 Smith & Nephew, Inc. Orthopaedic implants and methods
CA2807948A1 (en) 2010-08-13 2012-02-16 Smith & Nephew, Inc. Surgical guides
KR20190122895A (ko) 2010-08-25 2019-10-30 스미스 앤드 네퓨, 인크. 임플란트 최적화를 위한 수술 중 스캐닝
CN103338714B (zh) 2010-09-07 2015-11-25 克里夫兰诊所基金会 假体植入部的定位设备
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US8617170B2 (en) 2010-09-29 2013-12-31 DePuy Synthes Products, LLC Customized patient-specific computer controlled cutting system and method
US8356027B2 (en) 2010-10-07 2013-01-15 Sap Ag Hybrid query execution plan generation and cost model evaluation
US9615840B2 (en) 2010-10-29 2017-04-11 The Cleveland Clinic Foundation System and method for association of a guiding aid with a patient tissue
EP2632349B1 (de) 2010-10-29 2018-03-07 The Cleveland Clinic Foundation Hilfssystem zur befestigung eines serienimplantats an einem patientengewebe
EP2632383B1 (de) 2010-10-29 2022-02-23 The Cleveland Clinic Foundation System zur unterstützung der anordnung eines standardinstruments in bezug zu einem patientengewebe
US20120276509A1 (en) 2010-10-29 2012-11-01 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
CA2816339C (en) 2010-10-29 2020-09-15 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
BE1019572A5 (nl) 2010-11-10 2012-08-07 Materialise Nv Geoptimaliseerde methoden voor de productie van patientspecifieke medische hulpmiddelen.
US20120150242A1 (en) 2010-12-14 2012-06-14 Richard Mannion Method for placing spinal implants
CN102038553B (zh) 2011-01-10 2013-03-27 中国人民解放军第一零五医院 骨科通用器械盒
EP2670327B1 (de) 2011-02-01 2016-09-21 Nextremity Solutions, Inc. Knochendefektreparaturvorrichtung
EP2502582B1 (de) 2011-03-25 2016-11-30 National Cheng Kung University Führungseinrichtung für eine Bohroperation der Wirbelsäule
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
EP2709564B1 (de) 2011-05-06 2019-04-17 Zimmer, Inc. Patientenspezifische herstellung von porösen metallprothesen
EP3141196B1 (de) 2011-05-19 2020-04-08 The Cleveland Clinic Foundation Vorrichtung zur referenzindikation für ein patientengewebe
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
AU2012271895B2 (en) 2011-06-13 2015-01-22 Materialise Nv Patient-specific partial knee guides and other instruments
AU2012271616B2 (en) 2011-06-16 2015-05-07 Zimmer, Inc. Micro-alloyed porous metal having optimized chemical composition and method of manufacturing the same
USD672038S1 (en) 2011-06-29 2012-12-04 George Frey Surgical guide
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
CA2841889C (en) 2011-07-13 2019-08-20 Zimmer, Inc. Rapid manufacturing of porous metal prostheses
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9011456B2 (en) 2011-08-17 2015-04-21 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Method for orienting an acetabular cup and instruments for use therewith
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
FR2979817B1 (fr) 2011-09-13 2014-08-01 Jean-Michel Bertin Procede de fabrication d'une prothese par prototypage rapide
EP2757977A1 (de) 2011-09-20 2014-07-30 The Cleveland Clinic Foundation Verfahren und system zur herstellung von mindestens einer patientenspezifischen chirugischen hilfe
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US20130085590A1 (en) 2011-10-03 2013-04-04 Jason A. Bryan Synthetic bone model and method for providing same
US20140257508A1 (en) 2011-10-14 2014-09-11 Conformis, Inc. Methods and Systems for Identification, Assessment, Modeling and Repair of Anatomical Disparities in Joint Replacement
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
AU2012328382B2 (en) 2011-10-28 2015-03-12 Materialise N.V. Shoulder base plate coverage and stability
CN102335742B (zh) 2011-11-04 2013-01-30 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
IN2014CN03020A (de) 2011-11-04 2015-07-03 Panasonic Corp
FR2982476A1 (fr) 2011-11-15 2013-05-17 Tornier Sa Instrumentation chirurgicale specifique a un patient pour la preparation d'un os du patient
US10098761B2 (en) 2012-03-31 2018-10-16 DePuy Synthes Products, Inc. System and method for validating an orthopaedic surgical plan
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
CA2873078A1 (en) 2012-05-14 2013-11-21 Frederik Gelaude Implantable bone augment and method for manufacturing an implantable bone augment
DE102012011371B9 (de) 2012-06-11 2018-10-18 Kulzer Gmbh Herstellung individueller dentaler Prothesen via CAD/CAM und Rapid Manufacturing/Rapid Prototyping aus digital erhobenen Daten der Mundsituation
US20140005672A1 (en) 2012-06-30 2014-01-02 Jon M. Edwards Cutting block including modular mounting systems
GB2504679A (en) 2012-08-03 2014-02-12 Nobel Biocare Services Ag Bone substitute structure and material
AU2013308460A1 (en) 2012-08-31 2015-03-05 Smith & Nephew, Inc. Patient specific implant technology
US20140081659A1 (en) 2012-09-17 2014-03-20 Depuy Orthopaedics, Inc. Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
TW201726746A (zh) 2012-11-07 2017-08-01 輝瑞股份有限公司 抗切口3(anti-notch3)抗體及抗體-藥物共軛體
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US8920512B2 (en) 2012-12-19 2014-12-30 Biomet Sports Medicine, Llc Method and apparatus for pre-forming a high tibial osteotomy
US9387083B2 (en) 2013-01-30 2016-07-12 Conformis, Inc. Acquiring and utilizing kinematic information for patient-adapted implants, tools and surgical procedures
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US20140303938A1 (en) 2013-04-05 2014-10-09 Biomet Manufacturing Corp. Integrated orthopedic planning and management process
US20140303990A1 (en) 2013-04-05 2014-10-09 Biomet Manufacturing Corp. Integrated orthopedic planning and management process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219939A1 (de) 1992-06-18 1993-12-23 Klaus Dipl Ing Radermacher Schablone für Bearbeitungswerkzeuge zur Bearbeitung knöcherner Strukturen und Verfahren zur Definition und Reproduktion der Lagebeziehung eines Bearbeitungswerkzeuges relativ zu einer knöchernen Struktur
DE4434539C2 (de) 1994-09-27 1998-06-04 Luis Dr Med Schuster Verfahren zur Herstellung einer Endoprothese als Gelenkersatz bei Kniegelenken
EP1074229A2 (de) 1999-08-04 2001-02-07 Schuster, Luis, Dr.med. Verfahren zur Herstellung einer Endoprothese als Gelenkersatz bei Kniegelenken
US20040153087A1 (en) * 2003-02-04 2004-08-05 Sanford Adam H. Provisional orthopedic implant with removable guide
WO2007092841A2 (en) * 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP1832239A1 (de) * 2006-03-06 2007-09-12 Howmedica Osteonics Corp. Einweg-Resektionsführung
US20080262624A1 (en) * 2007-04-17 2008-10-23 Biomet Manufacturing Corp. Patient-Modified Implant And Associated Method

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10390845B2 (en) 2006-02-27 2019-08-27 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US10743937B2 (en) 2006-02-27 2020-08-18 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US10507029B2 (en) 2006-02-27 2019-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US10426492B2 (en) 2006-02-27 2019-10-01 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US10206695B2 (en) 2006-02-27 2019-02-19 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8828087B2 (en) 2006-02-27 2014-09-09 Biomet Manufacturing, Llc Patient-specific high tibia osteotomy
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8900244B2 (en) 2006-02-27 2014-12-02 Biomet Manufacturing, Llc Patient-specific acetabular guide and method
US9913734B2 (en) 2006-02-27 2018-03-13 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9005297B2 (en) 2006-02-27 2015-04-14 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9700329B2 (en) 2006-02-27 2017-07-11 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US11534313B2 (en) 2006-02-27 2022-12-27 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9993344B2 (en) 2006-06-09 2018-06-12 Biomet Manufacturing, Llc Patient-modified implant
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US11576689B2 (en) 2006-06-09 2023-02-14 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US10206697B2 (en) 2006-06-09 2019-02-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US8398646B2 (en) 2006-06-09 2013-03-19 Biomet Manufacturing Corp. Patient-specific knee alignment guide and associated method
US10893879B2 (en) 2006-06-09 2021-01-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US11554019B2 (en) 2007-04-17 2023-01-17 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8486150B2 (en) 2007-04-17 2013-07-16 Biomet Manufacturing Corp. Patient-modified implant
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9839433B2 (en) 2009-08-13 2017-12-12 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US10052110B2 (en) 2009-08-13 2018-08-21 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US11324522B2 (en) 2009-10-01 2022-05-10 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
DE112010003901B4 (de) 2009-10-01 2020-07-16 Biomet Manufacturing, Llc Patientenspezifische Ausrichtungsführung mit Schneidfläche und Laseranzeige
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9579112B2 (en) 2010-03-04 2017-02-28 Materialise N.V. Patient-specific computed tomography guides
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
US10893876B2 (en) 2010-03-05 2021-01-19 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10098648B2 (en) 2010-09-29 2018-10-16 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US11234719B2 (en) 2010-11-03 2022-02-01 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9743935B2 (en) 2011-03-07 2017-08-29 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US10251690B2 (en) 2011-04-19 2019-04-09 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9743940B2 (en) 2011-04-29 2017-08-29 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US8903530B2 (en) 2011-06-06 2014-12-02 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9687261B2 (en) 2011-06-13 2017-06-27 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9668747B2 (en) 2011-07-01 2017-06-06 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US11253269B2 (en) 2011-07-01 2022-02-22 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9439659B2 (en) 2011-08-31 2016-09-13 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9603613B2 (en) 2011-08-31 2017-03-28 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US10456205B2 (en) 2011-09-29 2019-10-29 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US11406398B2 (en) 2011-09-29 2022-08-09 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US10426493B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9936962B2 (en) 2011-10-27 2018-04-10 Biomet Manufacturing, Llc Patient specific glenoid guide
US10842510B2 (en) 2011-10-27 2020-11-24 Biomet Manufacturing, Llc Patient specific glenoid guide
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US11602360B2 (en) 2011-10-27 2023-03-14 Biomet Manufacturing, Llc Patient specific glenoid guide
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US11298188B2 (en) 2011-10-27 2022-04-12 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US10426549B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9827106B2 (en) 2012-02-02 2017-11-28 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9597201B2 (en) 2012-12-11 2017-03-21 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US11617591B2 (en) 2013-03-11 2023-04-04 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US10441298B2 (en) 2013-03-11 2019-10-15 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9700325B2 (en) 2013-03-12 2017-07-11 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10426491B2 (en) 2013-03-13 2019-10-01 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US11191549B2 (en) 2013-03-13 2021-12-07 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10376270B2 (en) 2013-03-13 2019-08-13 Biomet Manufacturing, Llc Universal acetabular guide and associated hardware
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US10335162B2 (en) 2014-09-29 2019-07-02 Biomet Sports Medicine, Llc Tibial tubercle osteotomy
US11026699B2 (en) 2014-09-29 2021-06-08 Biomet Manufacturing, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US10413308B2 (en) 2015-03-13 2019-09-17 Wright Medical Technology, Inc. Patient-specific surgical devices, systems, and methods
US11399850B2 (en) 2015-03-13 2022-08-02 Wright Medical Technology, Inc. Patient-specific surgical devices, systems, and methods
CN106456190A (zh) * 2015-03-13 2017-02-22 瑞特医疗技术公司 患者特定外科手术设备、系统与方法
US11826063B2 (en) 2015-03-13 2023-11-28 Wright Medical Technology, Inc. Patient-specific surgical devices, system, and methods
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10925622B2 (en) 2015-06-25 2021-02-23 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US11801064B2 (en) 2015-06-25 2023-10-31 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
CN111565651A (zh) * 2017-10-10 2020-08-21 卡尔莱宾格医疗技术有限责任两合公司 腓骨骨材料移除模板和腓骨骨材料转移模板
US11779346B2 (en) 2017-10-10 2023-10-10 Karl Leibinger Medizintechnik Gmbh & Co. Kg Fibula bone material removal and transfer template

Also Published As

Publication number Publication date
US20180049751A1 (en) 2018-02-22
US9393028B2 (en) 2016-07-19
DE102009028503A1 (de) 2011-02-17
GB201204087D0 (en) 2012-04-18
US9839433B2 (en) 2017-12-12
US20120209276A1 (en) 2012-08-16
GB2485128B (en) 2015-12-02
US20160296240A1 (en) 2016-10-13
GB2485128A (en) 2012-05-02
US10052110B2 (en) 2018-08-21
DE102009028503B4 (de) 2013-11-14

Similar Documents

Publication Publication Date Title
DE102009028503B4 (de) Resektionsschablone zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Resektionsschablone und Operationsset zur Durchführung von Kniegelenk-Operationen
DE69635956T2 (de) Knochenschneideführungseinheit zur verwendung beim implantieren von gelenkprothesenkomponenten
DE19936682C1 (de) Verfahren zur Herstellung einer Endoprothese als Gelenkersatz bei Kniegelenken
EP1558150B1 (de) Vorrichtung zur bestimmung der lage einer kniegelenkendoprothese
DE60312628T2 (de) Vorrichtung zum Ausrichten des Beines für eine unikondylare Arthroplastie des Knies
DE112010003901B4 (de) Patientenspezifische Ausrichtungsführung mit Schneidfläche und Laseranzeige
DE60309419T2 (de) Verstellbare biomechanische Messvorrichtung
DE4434539C2 (de) Verfahren zur Herstellung einer Endoprothese als Gelenkersatz bei Kniegelenken
DE602005001057T2 (de) Satz von Knochenschutzausrüstungen
DE69630776T2 (de) Instrument zur tibiaresektion
DE60320485T2 (de) Führungsvorrichtung zum Schneiden einer Aussparung für eine Gelenkprothese und zugehöriges Schneidwerkzeug
DE602005003462T2 (de) Hilfsanordnung zur implantation von knieprothesen
DE10031887B4 (de) System für Implantationen von Kniegelenksprothesen
EP1819280A2 (de) Bänderspannvorrichtung, schnittlehre und verfahren zur osteotomie
DE102004042347A1 (de) System und Verfahren zum Durchführen einer Kugelgelenk-Arthroskopie
DE102011082902A1 (de) Patientenspezifische Ellenbogenführungen und zugehörige Verfahren
US10702291B2 (en) System, guide tools and design methods related thereto for performing osteochondral transplantation surgery in a joint
EP3242637B1 (de) Lehre für die bestimmung einer für einen patienten passenden implantatgrösse des femurimplantats einer knie-endoprothese
DE10358926B4 (de) Resektionsschnittlehre
EP2677939B1 (de) Patientenspezifischer proberepositionsblock
DE112019005098T5 (de) Gelenkprothesenkomponente, zugehöriges chirurgisches instrument für die knochenbearbeitung und prothesenherstellungsverfahren
DE112020002071T5 (de) Systeme und Verfahren zur Auswahl künstlicher Femurkomponenten
EP2081505B1 (de) Schablone zum durchführen einer umstellungsosteotomie
DE102006035590A1 (de) Kniescheiben-Spreizgerät
DE102015201029A1 (de) Schablonen, Prothesen und Orthesen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1204087

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20100810

WWE Wipo information: entry into national phase

Ref document number: 1204087.9

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 13389700

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10743102

Country of ref document: EP

Kind code of ref document: A1