WO2011010582A1 - Sheet-like structural body, method for manufacturing sheet-like structural body, and surface-emitting body using sheet-like structural body - Google Patents

Sheet-like structural body, method for manufacturing sheet-like structural body, and surface-emitting body using sheet-like structural body Download PDF

Info

Publication number
WO2011010582A1
WO2011010582A1 PCT/JP2010/061877 JP2010061877W WO2011010582A1 WO 2011010582 A1 WO2011010582 A1 WO 2011010582A1 JP 2010061877 W JP2010061877 W JP 2010061877W WO 2011010582 A1 WO2011010582 A1 WO 2011010582A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
group
layer
fine particles
light
Prior art date
Application number
PCT/JP2010/061877
Other languages
French (fr)
Japanese (ja)
Inventor
恭雄 當間
邦雅 檜山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011523614A priority Critical patent/JP5673535B2/en
Publication of WO2011010582A1 publication Critical patent/WO2011010582A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a surface light emitter used for various displays, display devices, illumination, and the like, and a sheet-like structure that improves the light extraction efficiency of the surface light emitter. More specifically, the present invention relates to a sheet-like structure in which a light extraction layer having a concavo-convex structure made of an aggregate of metal oxide fine particles is formed, and a surface light emitter such as an organic electroluminescence element produced using the sheet-like structure.
  • organic electroluminescence elements that emit light by using electric energy from positive and negative electrodes using an organic material emit light at a low voltage of about several volts to several tens of volts.
  • the thin film type solid-state device is attracting attention because it saves space.
  • the light emission angle determined by the refractive index of the light emitter thin film layer and the refractive index of the medium through which the emitted light passes is greater than the critical angle. Is totally reflected and confined inside, and lost as guided light. As a result, light emitted from the light emitting layer having no directivity is lost except for the light previously emitted, and the light extraction efficiency (ratio of the energy emitted outside the substrate with respect to the emitted energy) is lowered. There is a problem.
  • the light extraction efficiency (light emission efficiency) in the forward direction derived from multiple reflection based on classical optics can be approximated by 1 / 2n 2 and is almost determined by the refractive index n of the light emitting layer. If the refractive index of the light emitting layer is about 1.7, the light emission efficiency from the organic EL part is simply about 20%.
  • the remaining light propagates in the area direction of the light emitting layer (spray in the lateral direction) or disappears at the metal electrode facing the transparent electrode with the light emitting layer interposed therebetween (absorption in the backward direction).
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and about 15% to 20% of the light generated in the light emitting layer. Only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • refractive index higher than that of air
  • Patent Document 3 proposes an optical sheet in which inorganic fine particles are added to a lens sheet and a diffusion sheet is unnecessary. Although this improves the light extraction efficiency, it is not yet sufficient, and it has been difficult to produce a fine uneven shape by this method for further efficiency improvement. There are also problems such as fine particles dispersed in the resin damaging the mold, peeling of the adhesive surface between the lens sheet and the substrate, and deterioration of the amount of light due to reflection due to the difference in refractive index at the interface.
  • Patent Document 4 discloses that transparency is improved by forming a photocatalytic film made of titanium oxide fine particles on the surface of a substrate. This is to apply a film-forming aqueous solution containing titanium oxide fine particles having a peroxo group to the surface of the substrate, and then heat to provide a photocatalytic high-hardness film, and to develop photocatalytic properties by heating. Therefore, the preferable temperature range of the heat treatment is described as 250 to 550 ° C. At this time, there is a possibility that the coating made of titanium oxide fine particles formed on the surface of the substrate has an uneven shape as in the present invention, but Patent Document 4 did not describe the structure. In addition, it has not been known that an uneven shape made of an aggregate of metal oxide fine particles can be used as a light extraction layer.
  • the present invention has been made in view of the above problems, and its object is to provide a sheet-like structure that can significantly improve the light extraction efficiency of a surface light emitter, and has high light extraction efficiency and improved durability. Another object of the present invention is to provide a flexible surface light emitter.
  • the present inventors have used an uneven shape made of an aggregate of metal oxide fine particles as a light extraction layer, and a surface light emission of an organic EL or the like by using a sheet-like structure using the same. It has been found that the light extraction efficiency of the body can be greatly improved.
  • metal oxide fine particles are amorphous metal oxide fine particles having an average particle diameter of 1 nm to 30 nm.
  • metal oxide fine particles according to any one of 1 to 4 above, wherein the metal oxide fine particles are oxide fine particles composed of Group 4 or Group 5 elements or composite oxide fine particles composed of Group 4 and Group 5 elements.
  • a step of applying a dispersion liquid containing metal oxide fine particles on at least one surface of a transparent substrate, and a softening point temperature of the substrate or lower A method for producing a sheet-like structure, which is produced by a step of drying with a step of forming a concavo-convex structure comprising an aggregate of the metal oxide fine particles by an external stimulus treatment.
  • a surface light emitter comprising the sheet-like structure according to any one of 1 to 5 bonded to a surface on a light emission side.
  • the present invention it is possible to obtain a sheet-like structure having improved light extraction efficiency and barrier properties that are significantly higher than those of conventional ones. Furthermore, the surface physical property represented by the organic EL element which was improved in the physical properties of the film as well as in flexibility and excellent in durability can be obtained.
  • FIG. 3 shows a cross-sectional view of a sheet-like structure provided with a light extraction layer having a concavo-convex structure comprising an aggregate of metal oxide fine particles of the present invention.
  • FIG. 1 shows a schematic cross-sectional view of an atmospheric pressure plasma processing apparatus as an example of the external stimulation processing of the present invention. It is the figure which illustrated the electrode structure of the atmospheric pressure plasma processing apparatus.
  • the present invention is a sheet-like structure provided with a light extraction layer having a concavo-convex structure composed of an aggregate of metal oxide fine particles, and has the concavo-convex structure on at least one side of a flexible transparent resin film substrate. It is a sheet-like structure provided with a light extraction layer.
  • the light extraction layer having a concavo-convex structure comprising an aggregate of metal oxide fine particles which is a feature of the present invention, is a layer having a concavo-convex shape formed by combining a plurality of metal oxide fine particles, and has a light extraction efficiency. It is a layer formed on a transparent substrate for the purpose of improvement.
  • the concavo-convex structure that is effective as the light extraction layer of the present invention is characterized in that the concavo-convex structure made of an aggregate of metal oxide fine particles as shown in FIG. 1 is continuously formed.
  • the concavo-convex structure used in the present invention is a structure in which the concavo-convex structure is periodically formed by so-called self-organization in which metal oxide fine particles are bonded to each other by an external stimulus. It is different from the uneven shape caused by the thickness.
  • the depth of the concavo-convex structure used in the present invention is a vertical distance from the apex of the convex portion to the lowest point between the adjacent convex portions, and is a transmission electron microscope (TEM). It can be measured by observation with a laser microscope or an atomic force microscope (AFM). The average depth is obtained from the average value of the depths of 300 or more concavo-convex structures. For example, the average value when AFM measurement is performed in a field of view with a side of 80 ⁇ m can be used.
  • the period of the concavo-convex structure of the present invention is a distance between adjacent convex portions, and can be measured by observation with an electron microscope or a laser microscope. An average period means the average value of the distance between the convex parts in a continuous 50 or more uneven structure.
  • each cycle is in the range of 0.5 to 2 times the average cycle, and more preferably in the range of 0.75 to 1.2 times.
  • the average depth of the concavo-convex structure of the present invention is preferably 1 ⁇ m or less, more preferably 5 nm to 500 nm, and particularly preferably 5 nm to 300 nm.
  • the light extraction efficiency is improved by setting the average depth to 5 nm or more, and it is preferable that the average depth is 1 ⁇ m or less because the decrease in transmittance is small.
  • the average period of the concavo-convex structure is preferably 1 ⁇ m or less, more preferably 5 nm to 500 nm, and particularly preferably 10 nm to 300 nm.
  • the light extraction layer having a concavo-convex structure made of the metal oxide of the present invention is preferably formed over the entire light emitting surface of the surface light emitter, and at least 50% of the light emitting surface has the concavo-convex structure of the present invention.
  • a take-out layer is preferably formed.
  • the step of applying a dispersion containing metal oxide fine particles to at least one surface of the substrate the step of drying at a temperature lower than the softening point temperature of the substrate, and the assembly of the metal oxide fine particles by an external stimulus treatment Manufactured by a process of forming an uneven structure on the body.
  • external stimulating treatment described later or a combination thereof, the fine particles can be fixed without damaging the base material in a low temperature process.
  • the metal oxide fine particles used in the present invention are preferably fine particles of 100 nm or less, more preferably 1 nm or more and 50 nm or less, and particularly preferably 1 nm or more and 30 nm or less.
  • the average particle diameter is less than 1 nm, particle aggregation proceeds in the dispersion, and thus there is a possibility that a desired uneven shape cannot be obtained.
  • the average particle diameter means an average value of diameters (sphere-converted particle diameters) when 200 or more particles are observed with a scanning electron microscope and each particle is converted into a sphere having the same volume.
  • the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal
  • a metal oxide that is one kind or two or more kinds of metals can be used.
  • oxide fine particles composed of Group 4 or Group 5 elements or composite oxide fine particles composed of Group 4 and Group 5 elements can form a highly rigid uneven shape, so that titanium oxide, zirconium oxide, hafnium oxide, oxidation Vanadium, niobium oxide, and tantalum oxide are preferable, and titanium oxide is particularly preferable.
  • titanium oxide various oxides and peroxides such as TiO 2 , TiO 3 , TiO, and TiO 3 / nH 2 O can be used.
  • titanium peroxide having a peroxo group is preferable.
  • the titanium oxide may be any of amorphous type, anatase type, brookite type, and rutile type, and these may be mixed, but amorphous type titanium oxide is preferred.
  • a method for producing the titanium oxide fine particles a general method for producing titanium dioxide powder can be used.
  • composition of fine particles and the method for producing the fine particles are not limited to this as long as the functions described above are obtained.
  • a titanium hydroxide is formed by reacting a tetravalent titanium compound such as titanium tetrachloride with a base such as ammonia.
  • this titanium hydroxide is peroxo-oxidized with an oxidizing agent to form ultrafine particles of amorphous titanium peroxide.
  • This reaction is preferably carried out in an aqueous medium.
  • it is also possible to transfer to anatase-type titanium peroxide by arbitrary heat treatment.
  • the peroxidation oxidizing agent is not particularly limited, and various types can be used as long as they can form a titanium peroxo compound, that is, titanium peroxide, but hydrogen peroxide is preferable.
  • hydrogen peroxide is used as the oxidizing agent
  • the concentration of hydrogen peroxide is not particularly limited, but is preferably 30 to 40%. It is preferred to cool the titanium hydroxide before peroxolation. The cooling temperature at that time is preferably 1 to 5 ° C.
  • the titanium hydroxide thus obtained is washed with pure water, cooled to around 5 ° C., and then peroxoated with hydrogen peroxide. Thereby, the aqueous dispersion containing the titanium oxide fine particle which has an amorphous peroxo group can be manufactured.
  • titanium compounds can be used as long as they can form titanium hydroxide also called orthotitanic acid (H 4 TiO 4 ) when reacted with a base.
  • water-soluble inorganic acid salts of titanium such as titanium tetrachloride, titanium sulfate, titanium nitrate, and titanium phosphate.
  • water-soluble organic acid salts of titanium such as titanium oxalate can be used.
  • titanium tetrachloride is preferred because it is particularly excellent in water solubility and no components other than titanium remain in the titanium oxide dispersion.
  • the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but a relatively dilute solution is preferable.
  • the solution concentration of the tetravalent titanium compound is preferably 5 to 0.01% by mass, and more preferably 0.9 to 0.3% by mass.
  • bases to be reacted with the tetravalent titanium compound various bases can be used as long as they can react with the tetravalent titanium compound to form titanium hydroxide, and include ammonia, caustic soda, sodium carbonate, Although caustic potash and the like can be exemplified, ammonia is most preferable.
  • the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but a relatively dilute solution is preferable.
  • the concentration of the base solution is preferably 10 to 0.01% by mass, and more preferably 1.0 to 0.1% by mass.
  • the ammonia concentration is preferably 10 to 0.01% by mass, more preferably 1.0 to 0.1% by mass.
  • a method using a sol-gel method can be mentioned.
  • This is a mixture of titanium alkoxide with a solvent such as water and alcohol, an acid or base catalyst, and the titanium alkoxide is hydrolyzed to produce a sol solution of ultrafine titanium oxide.
  • a solvent such as water and alcohol, an acid or base catalyst
  • the titanium alkoxide is hydrolyzed to produce a sol solution of ultrafine titanium oxide.
  • at least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof may be mixed.
  • the titanium oxide thus obtained is an amorphous type having a peroxo group.
  • titanium alkoxide a compound represented by the general formula: Ti (OR ′) 4 (where R ′ is an alkyl group), or one or two alkoxide groups (OR ′) in the general formula is a carboxyl group.
  • R ′ is an alkyl group
  • OR ′ is an alkoxide groups
  • a compound substituted with a ⁇ -dicarbonyl group or a mixture thereof is preferable.
  • titanium alkoxide examples include Ti (O—iso—C 3 H 7 ) 4 , Ti (On—C 4 H 9 ) 4 , Ti (O—CH 2 CH (C 2 H 5 ) C 4. H 9 ) 4 , Ti (O—C 17 H 35 ) 4 , Ti (O—iso—C 3 H 7 ) 2 [CO (CH 3 ) CHCOCH 3 ] 2 , Ti (On—C 4 H 9 ) 2 [OC 2 H 4 N (C 2 H 4 OH) 2 ] 2 , Ti (OH) 2 [OCH (CH 3 ) COOH] 2 , Ti (OCH 2 CH (C 2 H 5 ) CH (OH) C 3 H 7 ) 4 , Ti (On-C 4 H 9 ) 2 (OCOC 17 H 35 ) and the like.
  • Examples of the compound of copper, manganese, nickel, cobalt, iron or zinc described above include Ni compound: Ni (OH) 2 , NiCl 2 , Co compound: Co (OH) NO 3 , Co (OH) 2 , CoSO 4 , CoCl 2 , Cu compound: Cu (OH) 2 , Cu (NO 3 ) 2 , CuSO 4 , CuCl 2 , Cu (CH 3 COO) 2 , Mn compound: MnNO 3 , MnSO 4 , MnCl 2 , Fe compound: Fe ( OH) 2, Fe (OH) 3, FeCl 3, Zn compounds: Zn (NO 3) 2, ZnSO 4, and the like ZnCl 2.
  • the blending amount of copper, manganese, nickel, cobalt, iron, and zinc is preferably 1: 0.01 to 1: 0.5 in terms of the stability of the aqueous dispersion in terms of the molar ratio of titanium to the metal component.
  • a ratio of 1: 0.03 to 1: 0.1 is more preferable.
  • a dispersion in which the prepared metal oxide fine particles are dispersed in the presence of a surfactant or a dispersant, and form a film on a substrate in a coating process.
  • coating means examples include known coating methods such as spray coating, dip coating, flow coating, spin coating, and die coating, and screen printing, roll screen printing, offset printing, flexographic printing, gravure printing, inkjet printing, and the like. It can also be applied using any printing method.
  • the drying treatment is performed below the softening point of the base material so as not to damage the base material.
  • the thickness of the coating film is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and particularly preferably 0.5 to 10 ⁇ m in terms of dry film thickness.
  • organosilicon compounds can be used as the surfactant or dispersant.
  • organosilicon compound various silane compounds and various silicone oils, silicone rubbers and silicone resins can be used, but those having an alkyl silicate structure or a polyether structure in the molecule, or having an alkyl silicate structure and a polyether structure. It is desirable to have both.
  • the alkyl silicate structure refers to a structure in which an alkyl group is bonded to a silicon atom of a siloxane skeleton.
  • the polyether structure is not limited to these, but specifically, polyethylene oxide, polypropylene oxide, polytetramethylene oxide, polyethylene oxide-polypropylene oxide block copolymer, polyethylene polytetramethylene glycol. Examples thereof include molecular structures such as a copolymer and a polytetramethylene glycol-polypropylene oxide copolymer. Among them, the polyethylene oxide-polypropylene oxide block copolymer is more preferable from the viewpoint of controlling the wettability depending on the block degree and molecular weight.
  • polyether-modified silicone such as polyether-modified polydimethylsiloxane is suitable.
  • This can be produced by a known method, for example, by the synthesis examples 1, 2, 3, 4 described in JP-A-4-242499, the method described in the reference example of JP-A-9-165318, etc. Can be manufactured.
  • polyethylene oxide-polypropylene oxide block copolymer-modified polydimethylsiloxane obtained by reacting methallyl polyethylene oxide-polypropylene oxide block copolymer with dihydropolydimethylsiloxane is preferred.
  • TSF4445, TSF4446 manufactured by GE Toshiba Silicone Co., Ltd.
  • SH200 manufactured by Toray Dow Corning Silicone Co., Ltd.
  • KP series manufactured by Shin-Etsu Chemical Co., Ltd.
  • DC3PA, ST869A, SH3746, SH3746M Toray Dow Corning Silicone Co., Ltd.
  • additives for paints they can be used as appropriate as long as they can provide these performances other than for paints.
  • the transparent substrate used in the sheet-like structure of the present invention is not particularly limited as long as it has high light transmittance.
  • a glass substrate, a resin substrate, a resin film, etc. are preferably mentioned in terms of excellent hardness as a base material and ease of film formation on the surface, but from the viewpoint of lightness and flexibility It is preferable to use a transparent resin film.
  • the transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • Resin films vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 0 ⁇ 780 nm), can be preferably applied to a transparent resin film according to the present invention.
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyether sulfone
  • PC polycarbonate
  • Polyamide resin film polyimide resin film
  • acrylic resin film acrylic resin film
  • TAC triacetyl cellulose
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the refractive index of the transparent resin film is preferably 1.50 or more, more preferably 1.60 or more and 1.80 or less.
  • the refractive index of the concavo-convex structure by the metal oxide fine particles and the refractive index difference of the transparent resin film are preferably small, the refractive index difference is preferably 0.2 or less, and further 0.1 or less. Preferably there is.
  • the thickness of the transparent resin film is preferably from 50 ⁇ m to 250 ⁇ m, and more preferably from 75 ⁇ m to 200 ⁇ m.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the resin film may contain a filler for the purpose of imparting a light scattering function, and the particle size of the filler is preferably about 0.5 to 10 ⁇ m.
  • a barrier coat layer or a hard coat layer may be formed in advance on both surfaces or one surface of the transparent substrate.
  • the refractive index of the barrier coat layer and the hard coat layer is the refractive index of the transparent resin film.
  • the rate is preferably the same or slightly lower than the rate.
  • a resin containing fine particles having an average particle diameter of 1 nm or more and 400 nm or less may be used as the hard coat layer. Fine particles having a refractive index higher than that of the resin in the transparent resin have an average particle diameter of 1 to 400 nm.
  • any external stimulation treatment can be used as long as it is a method of forming an aggregate of metal oxide fine particles in a concavo-convex structure.
  • a flexible substrate is used. It is necessary to prevent damage.
  • Examples of the external stimulation treatment method that can be used in the present invention include plasma discharge treatment, microwave irradiation treatment, ultraviolet irradiation treatment, electromagnetic wave irradiation treatment, pressure treatment, and heat treatment.
  • Plasma discharge treatment, microwave irradiation treatment, and ultraviolet irradiation treatment, and more specifically, oxygen plasma treatment, microwave irradiation treatment, ultraviolet irradiation ozone treatment, or a combination of these treatments is preferably performed.
  • Plasma processing apparatus that can be preferably used in the practice of the present invention will be described below, but the present invention is not limited to this.
  • plasma processing flame plasma processing, corona discharge processing, atmospheric pressure plasma processing, and the like are targeted.
  • atmospheric pressure plasma processing will be described as a representative of plasma processing.
  • the plasma treatment step according to the present invention is preferably an atmospheric pressure plasma treatment performed at or near atmospheric pressure from the viewpoint of productivity because the subsequent coating step can be performed quickly.
  • the specific pressure is preferably from 70 kPa to 130 kPa, and most preferably atmospheric pressure without any pressure reduction or pressurization.
  • the inert gas refers to a group 18 element of the periodic table, so-called rare gas, helium, neon , Argon, krypton, xenon, radon or the like, and more preferably in a nitrogen gas atmosphere, and argon or helium is particularly preferably used.
  • nitrogen gas it is most preferable to use nitrogen gas from the viewpoint of manufacturing cost.
  • a reactive gas it is preferable to contain 0.01% to 30% (volume ratio) of a reactive gas together with an inert gas, more preferably 0.1% to 20%, and most preferably 1% to It is more preferable in the practice of the present invention to contain 15% reactive gas.
  • a plurality of reactive gases used in the present invention can be used, but at least one of them is preferably in a plasma state in the discharge space and containing a component capable of treating the surface of the object.
  • the reactive gas a gas such as oxygen, carbon dioxide, nitrogen (except in the case of a nitrogen atmosphere), hydrogen, or the like may be included.
  • a gas such as oxygen, carbon dioxide, nitrogen (except in the case of a nitrogen atmosphere), hydrogen, or the like may be included.
  • methane, ammonia, various organometallic compounds, fluorine compounds, or the like as the reactive gas.
  • oxygen plasma treatment using oxygen gas in combination with the above-described reactive gas is most preferable from the viewpoint of reactivity. Furthermore, by using together with the amorphous metal oxide fine particles of the present invention, adhesion between particles is promoted, which is more preferable.
  • the starting voltage increases.
  • the atmospheric gas is helium, argon, or nitrogen, and AC or high frequency is used as a power source. It is preferable to use it.
  • the frequency is preferably 1 kHz to 1 GHz.
  • Power to be applied, the composition of the sample of interest, also depends surface properties such as, it is necessary to optimize the conditions, 0.1 seconds number ⁇ with power in the range of 0.01 ⁇ 10 W / cm 2 Discharge treatment is performed in the range of 10 seconds. If the applied power is too high, the smoothness of the surface may be impaired and problems such as contamination of scattered substances due to discharge may occur.
  • FIG. 2 shows an example of a so-called roll-to-roll plasma processing apparatus that can be applied to a flexible film substrate transport process.
  • the atmospheric pressure plasma processing apparatus 30 is an apparatus having an electric field applying means 40 having two power sources, a gas supplying means 50, and an electrode temperature adjusting means 60.
  • a mixture G of gas and a discharge gas such as nitrogen is supplied, activated here and introduced onto the substrate F.
  • a discharge space (between the counter electrodes) 32 between the roll rotating electrode (first electrode) 35 and the square tube electrode (second electrode) 36 is connected to the roll rotating electrode (first electrode) 35 from the first power source 41.
  • the first high-frequency electric field having the frequency ⁇ 1, the electric field strength V1, and the current I1 is supplied to the square tube electrode (second electrode) 36, and the second high-frequency electric field having the frequency ⁇ 2, the electric field strength V2, and the current I2 is supplied from the second power source 42. It comes to apply.
  • a first filter 43 is installed between the roll rotation electrode (first electrode) 35 and the first power supply 41, and the first filter 43 easily passes a current from the first power supply 41 to the first electrode.
  • the current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply is difficult to pass.
  • a second filter 44 is provided between the square tube electrode (second electrode) 36 and the second power source 42, and the second filter 44 is a current from the second power source 42 to the second electrode. It is designed to make it difficult to pass the current from the first power supply 41 to the second power supply by grounding the current from the first power supply 41.
  • the roll rotating electrode 35 may be the second electrode, and the square tube electrode 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power source preferably applies a higher high-frequency electric field strength (V1> V2) than the second power source. Further, the frequency has the ability to satisfy ⁇ 1 ⁇ 2.
  • the current is preferably I1 ⁇ I2.
  • the current I1 of the first high-frequency electric field is preferably 0.3 to 20 mA / cm 2 , more preferably 1.0 to 20 mA / cm 2 .
  • the current I2 of the second high frequency electric field is preferably 10 to 100 mA / cm 2 , more preferably 20 to 100 mA / cm 2 .
  • the reactive gas G generated by the gas generator 51 is introduced into the atmospheric pressure plasma processing vessel 31 from the air supply port 52 while controlling the flow rate.
  • the base material F is unwound from the original winding (not shown) and conveyed, or is conveyed from the previous process, and the air entrained by the base material by the nip roll 65 via the guide roll 64 is blocked. While being in contact with the roll rotation electrode 35, it is transferred between the roll tube electrode 36 and the square tube electrode 36, and an electric field is generated from both the roll rotation electrode (first electrode) 35 and the square tube electrode (second electrode) 36. Then, discharge plasma is generated between the counter electrodes (discharge space) 32.
  • the substrate F is treated with a plasma state gas while being wound while being in contact with the roll rotating electrode 35.
  • the base material F is transferred to the next process through the nip roll 66 and the guide roll 67.
  • the treated exhaust G ′ after the discharge treatment is discharged from the exhaust port 53.
  • the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is passed through the pipe 61 by the liquid feed pump P. Send to both electrodes and adjust the temperature from inside the electrodes.
  • 68 and 69 are partition plates which partition the atmospheric pressure plasma processing vessel 31 and the outside world.
  • Each square tube electrode 36 shown in FIG. 2 has an effect of widening the discharge range (discharge area) as compared with the cylindrical electrode, and thus is preferably used in the present invention. Further, as shown in FIG. 3, it is preferable to cover the surface of the metal base 36A with a dielectric 36B to form a rectangular tube electrode 36a for discharging at atmospheric pressure.
  • the distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metal base of the other electrode when a dielectric is provided on one of the electrodes.
  • a dielectric when a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metal matrix, the magnitude of the applied electric field strength, the purpose of using plasma, etc., but in any case, uniform discharge is performed. From the viewpoint, it is preferably 0.1 to 20 mm, particularly preferably 0.5 to 2 mm.
  • the atmospheric pressure plasma processing container 31 is preferably a processing container made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes.
  • polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation.
  • the first power source (high frequency power source) installed in the atmospheric pressure plasma discharge processing apparatus of the present invention
  • Second power source As the second power source (high frequency power source), Manufacturer Frequency Product name Pearl Industry 800kHz CF-2000-800k Pearl Industry 2MHz CF-2000-2M Pearl Industry 13.56MHz CF-5000-13M Pearl Industry 27MHz CF-2000-27M Pearl Industry 150MHz CF-2000-150M And the like, and any of them can be preferably used.
  • * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode).
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma processing apparatus.
  • the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma.
  • the target sample surface is processed.
  • the upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 W / cm 2 .
  • discharge area (cm ⁇ 2 >) points out the area of the range which discharge occurs in an electrode.
  • the output density is improved while maintaining the uniformity of the second high frequency electric field. More preferably, it is 5 W / cm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called a continuous mode
  • an intermittent oscillation mode called ON / OFF intermittently called a pulse mode
  • the second electrode side second
  • the high frequency electric field is more preferably a continuous sine wave.
  • FIG. 2 is an apparatus having an electrode temperature adjusting means 60.
  • the atmospheric pressure plasma processing apparatus shown in FIG. 1 is an apparatus having an electrode temperature adjusting means 60.
  • the plasma discharge treatment according to the present invention is preferably performed at a temperature as high as possible from the viewpoint of reactivity, but in the present invention, the treatment is performed below the softening point of the base material so as not to damage the base material.
  • the temperature range of the roll rotating electrode (first electrode) is preferably 50 ° C. or higher and 100 ° C. or lower.
  • the plasma irradiation time can be controlled by the conveyance speed of the substrate F, and is appropriately adjusted according to the irradiation time.
  • a preferable irradiation time is 0.1 to 100 seconds, more preferably 0.2 to 30 seconds, and most preferably 0.5 to 20 seconds. Although the effect of the present invention is easily exhibited as the irradiation is continued for a long time, it is preferable to process in a shorter time in consideration of productivity.
  • a microwave processing used in the present invention it is preferable to use a microwave having a frequency of 0.3 GHz to 50 GHz, and 0.8 GHz and 1.5 GHz band, 2 GHz band, amateur radio, aircraft used in mobile communication.
  • the 1.2 GHz band used for radar, 2.4 GHz band used for microwave ovens, local radio, VICS, 3 GHz band used for ship radar, etc., and 5.6 GHz used for other ETC communications are all electromagnetic waves.
  • An electromagnetic wave or the like that falls within the category is preferable, but a microwave (frequency of 0.3 GHz to 50 GHz) is more preferable.
  • the most commonly used microwave is 2.45 GHz among the above-mentioned microwaves, and can be processed by using, for example, a microwave reactor manufactured by Shikoku Keiki Kogyo.
  • a substance having electromagnetic wave absorption ability is combined with the metal oxide fine particles described above, and the substance selectively absorbs microwaves, whereby a local heat treatment can be performed.
  • the power of the microwave irradiation treatment is preferably 300 W to 800 W, more preferably 400 W to 600 W.
  • the irradiation time can be arbitrarily selected depending on the reactivity, but preferably it can be processed within 10 minutes, more preferably within 2 minutes.
  • the substance having the ability to absorb electromagnetic waves is more preferably fine particles having a sufficiently small particle diameter that does not cause light scattering, like the metal oxide fine particles described above. From the viewpoint of suppressing light scattering typified by Mie scattering, fine particles having an average diameter of 1 to 100 nm are preferable, and diameters of 1 nm to 50 nm are more preferable.
  • the above-mentioned substance having electromagnetic wave absorbing ability absorbs the irradiated electromagnetic wave and converts it into heat, so that the substance itself generates heat and becomes a heat source, so that dielectric loss or resistance loss is taken so as not to damage the substrate. It is preferable to use a material that is large and efficiently generates heat and can be locally heated.
  • metal oxide or metal is preferable.
  • the metal oxide is preferably an oxide of copper, nickel, zinc, tin, or indium.
  • a metal oxide is oxidized by irradiation with electromagnetic waves in the presence of oxygen, a metal salt, halide, or organometallic compound containing a metal atom can also be used.
  • Metals of metal salts, metal oxides, organometallic compounds, halogen metal compounds, metal hydrides include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl , Pb, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like.
  • Examples of the metal having electromagnetic wave absorbing ability that can be preferably used in the present invention include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, Aluminum, ruthenium, germanium, molybdenum, tungsten, tin oxide / antimony, indium tin oxide (ITO), fluorine doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and carbon paste, lithium, beryllium, sodium, magnesium , Potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium / copper mixture, magnesium / Mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, can be used lithium / aluminum mixtures.
  • Examples of the external stimulus treatment that can be preferably used in the present invention include an ultraviolet irradiation treatment.
  • the ultraviolet irradiation method may be any device such as a high-pressure mercury lamp, a xenon lamp, a deuterium lamp, or an LED lamp, but preferably a device capable of irradiating light with a wavelength of ultraviolet light of about 150 to 400 nm is used. An apparatus capable of irradiating ultraviolet light of 185 to 365 nm is more preferable.
  • ozone generated by ultraviolet light has an effect of promoting adhesion between peroxidized active fine particles, which is a more preferable embodiment.
  • the preferable oxygen concentration is 18 to 50%, more preferably 20 to 30%.
  • the treatment is performed by exposing to ozone together with ultraviolet light irradiation.
  • the treatment time is preferably 1 to 30 minutes, more preferably about 2 to 15 minutes.
  • the heat treatment a method using an oven or a hot plate can be raised, but since a treatment at a temperature that does not deteriorate the resin base material is required, the heating temperature is preferably 110 ° C. or higher and 200 ° C. or lower. Furthermore, 110 degreeC or more and 150 degrees C or less are preferable.
  • a compound that promotes adhesion between the metal oxide fine particles should be used. preferable.
  • a urea compound represented by the general formula [I] can be preferably used.
  • R 1 and R 6 are an alkyl group, an alkenyl group, an aryl group, a group having a polyoxyalkylene chain, and a group having a polyester chain
  • R 3 and R 4 are a hydrogen atom or an alkyl group, respectively.
  • R 2 and R 5 represent an alkylene group, an alkenylene group, an arylene group, a divalent group having a polyester chain, or a divalent group having a polyoxyalkylene chain
  • n represents an integer of 1 or more.
  • At least one of R 2 and R 5 is a divalent group having a poly (oxyalkylene) chain.
  • either R 1 or R 6 is preferably a group having a polyoxyalkylene chain.
  • One of R 2 and R 5 may be a simple bond.
  • the alkyl group or alkenyl group represented by R 1 or R 6 is preferably an alkyl group or alkenyl group having 1 to 30 carbon atoms, preferably an alkyl group or alkenyl group having 18 or less carbon atoms, more preferably. Is an alkyl group or alkenyl group having 8 or less carbon atoms. Also preferred as the aryl group is a phenyl group.
  • the typical substituent is not particularly limited, and may be an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, decyl group, dodecyl group, etc.), cycloalkyl group (for example, cyclohexane).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, decyl group, dodecyl group, etc.
  • cycloalkyl group for example, cyclohexane
  • a heterocyclic oxy group (the heterocyclic ring is as defined above for the heterocyclic group), an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy
  • substituents examples include a carboxyl group, an aryloxycarbonyl group, an alkoxycarbonyl group, and the like.
  • R 1 or R 6 and having a poly (oxyalkylene) chain examples include: -(R "O) m -R '
  • R ′′ is an alkylene group having 2 to 4 carbon atoms, preferably a group such as ethylene or propylene.
  • R ′ is a hydrogen atom or a group having 1 to 30 carbon atoms.
  • m represents 1. Represents an integer of ⁇ 16, preferably 3 ⁇ 10.
  • the alkyl group, alkenyl group, aryl group and acyl group represented by R ′ may each have a substituent, and examples of the substituent include the above-described substituents. A plurality of these may be substituted.
  • preferred examples of the substituent include a carboxyl group, an aryloxycarbonyl group, and an alkoxycarbonyl group.
  • the group having a polyester chain represented by R 1 and R 6 is not particularly limited as long as it is a monovalent group having an ester structural unit in its skeleton.
  • the group having a polyester chain preferably has about 1 to about 10 ester structural units.
  • the ester structural unit for example, a structural unit comprising an ester of an alkanediol having 1 to 8 carbon atoms and an alkanedicarboxylic acid or benzenedicarboxylic acid (phthalic acid) having 1 to 10 carbon atoms is preferable.
  • An ester consisting of For example, an ester structural unit composed of ethylene glycol and succinic acid can be used.
  • Examples of the alkylene group and alkenylene group represented by R 2 and R 5 include an alkylene group and alkenylene group having 1 to 30 carbon atoms, respectively.
  • An alkylene group and alkenylene group having 1 to 18 carbon atoms are exemplified.
  • an alkylene group having 1 to 8 carbon atoms and an alkenylene group are preferable. These may have a substituent.
  • a phenylene group is mentioned typically and you may have a substituent. Examples of these substituents include those described above.
  • the divalent group having a poly (oxyalkylene) chain represented by R 2 and R 5 is an arbitrary group containing a poly (oxyalkylene) chain, and the poly (oxyalkylene) structural unit is and the nitrogen atom of R 1 and urea structural units, and may, if possible attached via any divalent group directly or other nitrogen atoms of R 6 and urea structural units.
  • Preferred examples of the divalent group include groups such as an alkylene group (having 1 to 22 carbon atoms), an arylene group (eg, a phenylene group), an imino group, and a carbonyl group.
  • the divalent group having a poly (oxyalkylene) chain represented by R 2 and R 5 is preferably, for example, -(R "O) m-
  • R ′′ is an alkylene group having 2 to 4 carbon atoms, preferably a group such as ethylene, propylene, etc.
  • m is 0 Represents an integer of ⁇ 16, preferably 3 ⁇ 10.
  • the divalent group having a polyester chain represented by R 2 and R 5 is not limited as long as it is a divalent group having an ester structural unit in its skeleton, and one ester structural unit is present. A group having about 10 or more is preferable.
  • the polyester structural unit may be bonded to the nitrogen atom of R 1 and the urea structural unit, and to the nitrogen atom of R 6 and the urea structural unit directly or through any other divalent group.
  • the polyester structural unit is preferably a structural unit comprising an ester of an alkanediol having 1 to 8 carbon atoms and an alkanedicarboxylic acid or benzenedicarboxylic acid (phthalic acid) having 1 to 10 carbon atoms.
  • These divalent groups represented by R 2 and R 5 may be formed by linking the divalent groups listed above.
  • R 2 and R 5 may be different from each other.
  • R 3 and R 4 each represent a hydrogen atom or an alkyl group, and examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms. Preferred is a hydrogen atom.
  • each of R 1 , R 6 , R 3 and R 5 is preferably in the range of 2 to 30, more preferably 4 to 18, and most preferably 5 to 15.
  • the groups represented by R 1 , R 6 , and R 3 , R 5 are particularly limited as long as the compound represented by the general formula [I] is dissolved in the solvent of the metal oxide fine particle dispersion.
  • Each can optionally have an independent structure.
  • the terminal groups R 1 and R 6 preferably have the same structural unit, and the terminal groups R 1 and R 6 and the linking groups R 2 and R 5 more preferably have the same structural unit.
  • At least one of R 1, R 6 is a structure having the poly (oxyalkylene) chain (or poly (alkyleneoxy) chain), further, at least one of the end groups R 1, R 6 More preferably, at least one of R 3 and R 5 has a poly (oxyalkylene) chain. Most preferably, the terminal groups R 1 and R 6 and the linking group R 2 or R 5 have a poly (oxyalkylene) chain (structural unit).
  • n represents an integer of 1 or more. Specifically, n can be 1 or more and 1000 or less, preferably 1 or more and 100 or less, and more preferably 1 or more and 50 or less. 1 or more and 10 or less are most preferable.
  • the content of the urea compound represented by the general formula [I] is not particularly limited, but this compound is effective even in a small amount, and is relatively small in terms of burnout at low temperatures and film properties. It is preferable to apply at. Specifically, it is preferably 100% by mass or less, more preferably 10% by mass or more and 50% by mass or less, based on the metal oxide particles. Moreover, it is preferable that it is 20 mass% or less with respect to the whole coating liquid, and it is still more preferable that it is 1 mass% or more and 10 mass% or less.
  • the sheet-like structure formed as described above can be used as a constituent member of a surface light emitter.
  • the place where the sheet-like structure of the present invention is used may be anywhere as long as the light extraction efficiency of the surface light emitter is improved.
  • a diffusion film for a liquid crystal backlight, a transparent substrate such as an organic EL element, an organic EL or an LED It can be used as a light extraction sheet to be bonded to the emission side surface of a surface light emitting element such as a transparent substrate or a light extraction sheet.
  • the surface on which the concavo-convex structure is formed may be used on either the light-emitting side or the emission side.
  • an organic EL element on the fine concavo-convex structure side In the case of forming such a thin-film light emitting layer, a resin layer such as a hard coat material can be formed on the concavo-convex structure and smoothed for use.
  • either side of the sheet-like structure of the present invention is set to the surface light emitting element side. It can be used in close contact with oil or adhesive, or it can be used by intentionally mixing air.
  • Embodiments of an organic EL device which is an example of a surface light emitter of the present invention will be described in detail below, but the contents described below are representative examples of embodiments of the present invention, and the present invention exceeds the gist thereof. As long as there is no, it is not limited to these contents.
  • Organic EL device Preferred specific examples of the layer structure of the organic EL element are shown below.
  • the light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer comprising a plurality of light emitting layers A unit may be formed.
  • the hole transport layer also includes a hole injection layer and an electron blocking layer.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as the contained light emitting material satisfies the above requirements.
  • the total film thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained. Note that the total film thickness of the light emitting layer is a film thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers.
  • each light emitting layer is preferably adjusted in the range of 1 to 50 nm, more preferably in the range of 1 to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.
  • a light emitting material or a host compound which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.
  • a plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
  • the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
  • a light emitting material also referred to as a light emitting dopant compound
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • known host compounds may be used alone or in combination of two or more.
  • the organic EL element can be made highly efficient.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • the known host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) is used.
  • a phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent material emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 0.01 or more at 25 ° C. Although defined as a compound, the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Lecture 4 of the 4th edition.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
  • the carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent material.
  • Energy transfer type to obtain light emission from the phosphorescent light emitting material, and another one is that the phosphorescent light emitting material becomes a carrier trap, and recombination of carriers occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained.
  • the excited state energy of the phosphorescent material is required to be lower than the excited state energy of the host compound.
  • the phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • Fluorescent light emitters can also be used for the organic EL elements.
  • fluorescent emitters include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • dopants can also be used in the present invention.
  • International Publication No. 00/70655 pamphlet JP-A Nos. 2002-280178, 2001-181616, 2002-280179, 2001 -181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, International Publication No. 02/15645, JP 2002-332291, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No.
  • At least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.
  • ⁇ Middle layer ⁇ A case where a non-light emitting intermediate layer (also referred to as an undoped region or the like) is provided between the light emitting layers will be described.
  • the non-light emitting intermediate layer is a layer provided between the light emitting layers.
  • the film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 20 nm, and more preferably in the range of 3 to 10 nm to suppress interaction such as energy transfer between adjacent light emitting layers, and This is preferable because a large load is not applied to the voltage characteristics.
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
  • the non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Including the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, and the case where the molecular structure of the host compound is the same, etc.)
  • a compound common to each light-emitting layer for example, a host compound
  • each common host material where a common host material is used
  • Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
  • the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and their forefront of industrialization” (published by NTT Corporation on November 30, 1998). There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer in a broad sense, has a function of a hole transport layer, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • the counter electrode is an electrode facing the transparent conductive layer.
  • the transparent conductive layer is mainly used as an anode
  • the following cathode can be used as the counter electrode.
  • a material having a work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound and a mixture thereof as an electrode material
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the cathode after the metal is produced with a thickness of 1 nm to 20 nm on the cathode.
  • An element in which both the anode and the cathode are transmissive can be manufactured.
  • An organic EL element can be produced by sequentially forming a transparent conductive layer, an organic electroluminescence layer, and a counter electrode on a transparent substrate.
  • a transparent conductive layer can be formed on a transparent substrate using a desired electrode material.
  • the transparent conductive layer can be formed by a method such as vapor deposition or sputtering.
  • a transparent conductive layer can be formed from a material containing metal nanowires, a conductive polymer, or a transparent conductive metal oxide by a liquid phase film forming method such as a coating method or a printing method.
  • a transparent conductive layer containing metal nanowires by a liquid phase film-forming method such as a coating method or a printing method.
  • a liquid phase film-forming method such as a coating method or a printing method.
  • coating methods roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc.
  • the printing method a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
  • physical surface treatment such as corona discharge treatment or plasma discharge treatment can be applied to the surface of the releasable substrate as a preliminary treatment for improving the adhesion and coating properties.
  • a layer formed between the transparent conductive layer and the cathode, consisting of all or part of the anode buffer layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, and cathode buffer layer is called an organic electroluminescence layer.
  • an organic electroluminescence layer As an example of a method for producing this organic electroluminescence layer, a method for producing an organic electroluminescence layer comprising a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer will be described.
  • An organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed on a transparent substrate on which a transparent conductive layer is formed.
  • a method for thinning the organic compound thin film there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature ⁇ 50 to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm. Is provided.
  • a desired organic EL element is obtained by the above steps.
  • the organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • a DC voltage is applied to the multicolor liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the surface light emitter according to the present invention can be used as a display device, a display, and various light sources.
  • light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors.
  • it is not limited to this, it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • the sheet-like structure of the present invention can be applied to an organic EL element that is one of surface light emitters.
  • an organic EL element a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a light emitting material that emits fluorescent or phosphorescent light, and the light emission. Any combination of a dye material that emits light from the material as excitation light may be used, but in the white organic EL device according to the present invention, a method of combining a plurality of light-emitting dopants is preferable.
  • a method of having a plurality of emission dopants in one emission layer, a plurality of emission layers, and an emission wavelength of each emission layer examples thereof include a method in which different dopants are present, and a method in which minute pixels emitting light of different wavelengths are formed in a matrix.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the platinum complex according to the present invention is known so as to be suitable for the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined to be whitened.
  • the white organic EL element is used as a liquid crystal display device as a kind of lamp such as various light emitting light sources and lighting devices, home lighting, interior lighting, and exposure light source. It is also useful for display devices such as backlights.
  • backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • Example 1 Preparation of amorphous titanium oxide dispersion 1 >> 10 g of 50% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) is added to 500 ml of water, and a solution made up to 1000 ml by adding pure water is prepared. 2.5% aqueous ammonia was added dropwise thereto to adjust the pH to 6.9, and titanium hydroxide was precipitated. The precipitate is continuously washed with pure water so that the electrical conductivity in the supernatant is 0.8 mS / m or less, and when the electrical conductivity is 0.738 mS / m, the washing is terminated, and then 0.73 mass%. 430 g of a hydroxide-containing liquid having a concentration was produced.
  • amorphous type titanium oxide dispersion 1 25 g was added while cooling this containing liquid to 1 to 5 ° C., and stirred for 16 hours to obtain 450 g of a pale yellowish brown 0.86 mass% concentration dispersion. This was designated as amorphous type titanium oxide dispersion 1.
  • amorphous titanium oxide dispersion 2 10 g of 50% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) is added to 500 ml of water, and a solution made up to 1000 ml by adding pure water is prepared. 2.5% aqueous ammonia was added dropwise thereto to adjust the pH to 6.9, and titanium hydroxide was precipitated. The precipitate is continuously washed with pure water so that the electrical conductivity in the supernatant is 0.8 mS / m or less, and when the electrical conductivity is 0.738 mS / m, the washing is terminated, and then 0.73 mass%. 430 g of a hydroxide-containing liquid having a concentration was produced.
  • a sheet on which a light extraction layer was formed using the coating solutions 1 to 5 was prepared.
  • the coating solution 1 was applied to one side of a 100 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 ⁇ m, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, plasma treatment was performed under the following conditions to obtain a sheet-like structure having a concavo-convex structure formed by an aggregate of metal oxide fine particles on one side of the PEN film.
  • the coating solution 3 was applied to one side of a 100 ⁇ m-thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 ⁇ m, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, using a microwave reactor manufactured by Shikoku Keikoku Kogyo Co., Ltd., a 2.45 GHz microwave was irradiated at an output of 600 W for 2 minutes, and a sheet 5 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film was formed. Obtained.
  • the coating solution 1 was applied to one side of a 100 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 ⁇ m, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, using a high-pressure mercury lamp, 200 W / cm 2 of ultraviolet light was irradiated for 15 minutes to obtain a sheet 6 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that an uneven structure having an average depth of 5 nm was formed with an average period of 250 nm by an aggregate of titanium oxide fine particles having an average particle diameter of 5 nm.
  • the coating solution 4 was applied to one side of a 100 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 ⁇ m, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, the temperature of the oven was raised to 120 ° C., and a heat treatment was further performed for 5 hours to obtain a sheet 7 having a concavo-convex structure formed by an aggregate of metal oxide fine particles on one side of the PEN film.
  • the coating solution 5 was applied to one side of a 100 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 ⁇ m, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, using a microwave reactor manufactured by Shikoku Keikoku Kogyo Co., Ltd., a 2.45 GHz microwave was irradiated at an output of 600 W for 2 minutes, and a sheet 8 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film was formed. Obtained.
  • a sheet 9 having a concavo-convex shape made of a resin was produced by the following method with reference to JP-A No. 2004-45471. Biaxially-stretched PET film with a thickness of 100 ⁇ m using a roll intaglio with fine concavo-convex shape formed on the surface after chromium plating on the iron core surface, # 250 liquid sand blasting treatment, and chrome plating treatment again A concavo-convex shape made of a curable acrylic resin having a refractive index of 1.54 was formed on one surface (manufactured by Teijin DuPont; refractive index 1.65). As a result of evaluation by the same method as that for the sheet 1, it was confirmed that a random uneven shape with an average depth of 1.2 ⁇ m and an interval between protrusions of 0.5 to 2.0 ⁇ m was formed.
  • a sheet 10 having a concavo-convex shape formed of a resin containing fine particles was produced by the following method.
  • the curable resin to be used is changed to a resin in which 10% by mass of titanium oxide fine particles having a particle diameter of 200 nm are dispersed in an acrylic resin having a refractive index of 1.54, Similarly, a sheet 10 was produced.
  • a random uneven shape having an average depth of 1.0 ⁇ m and an interval between protrusions of 0.1 to 1.5 ⁇ m is formed, and the protrusions are partially missing. The shape was confirmed.
  • a sheet 11 on which a titanium oxide film having no uneven structure was formed by the following method.
  • the coating solution 1 was applied to one side of a 100 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 ⁇ m, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, the temperature of the oven was raised to 100 ° C., and a heat treatment was further performed for 5 hours to obtain a sheet 11.
  • the water vapor transmission rate was measured based on the JIS standard K7129 method (temperature 40 ° C., humidity 90% RH) using the MOCON method and PERMATRAN-W3 / 33 manufactured by MOCON. As a result, the sheets 1 to 8 were less than the measurement limit (0.01 g / m 2 / day) of the Mocon method, and it was found that the moisture resistance was improved with respect to the sheets 9, 10, and 11. The results are shown in Table 1 as water vapor barrier properties.
  • ITO Indium Tin Oxide; refractive index: 1.85
  • PEN film manufactured by Teijin DuPont; refractive index 1.75
  • the substrate provided with the layer was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • PEDOT / PSS polystyrene sulfonate
  • This substrate was transferred to a glove box in accordance with JIS B 9920 under a nitrogen atmosphere, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or lower, and an oxygen concentration of 0.8 ppm.
  • a coating solution for a hole transport layer was prepared as follows in a glove box, and applied with a spin coater under conditions of 1500 rpm and 30 seconds. This substrate was dried by heating at a substrate surface temperature of 150 ° C. for 30 minutes to provide a hole transport layer. The film thickness was 20 nm when it apply
  • the coating liquid for electron carrying layers was prepared as follows, and it apply
  • a resistance heating boat containing potassium fluoride was energized and heated to provide a 3 nm electron injection layer made of potassium fluoride on the substrate.
  • a resistance heating boat containing aluminum was energized and heated, and a cathode having a thickness of 100 nm made of aluminum was provided at a deposition rate of 1 to 2 nm / second.
  • the surface opposite to the organic EL layer of the transparent substrate constituting the organic EL element 1 thus fabricated and the surface of the sheets 1 to 11 where the light extraction layer is not formed are the same as the transparent substrate. It was made to adhere through a matching oil having a refractive index of. Thereafter, the organic EL element 1 was caused to emit light by passing a constant current of 2.5 mA / cm 2 , and the sheets 1 to 11 were evaluated. For measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used, and the front luminance and light extraction efficiency without a sheet were set to 100, and relative values were obtained. The obtained results are shown in Table 1.
  • the sheet-like structure of the present invention has a high effect of improving the light extraction efficiency, and has excellent water vapor barrier properties and high durability. Moreover, it turns out that the thing which disperse
  • Example 2 Production of organic EL elements 2 to 6 >> Using the sheets 1, 3, 4, 9, and 10 prepared in Example 1 as the substrate, the ITO transparent conductive layer and the organic electrolayer were formed on the opposite surface on which the light extraction layer was formed in the same manner as the organic EL element 1 was manufactured. A luminescence layer and a cathode were formed, and organic EL elements 2 to 4 using the sheet-like structure of the present invention as a substrate and comparative organic EL elements 5 and 6 were produced.
  • the organic EL device having the configuration of the present invention has high external extraction quantum efficiency and excellent durability against heating.
  • Example 3 After sticking the sheet
  • the surface light emitter according to the present invention can be used as a thin illuminating device that emits white light having a long light emission life while maintaining high light emission efficiency even with a slight bending motion.
  • Atmospheric pressure plasma processing apparatus 31 Atmospheric pressure plasma processing container 32 Discharge space 36 Rectangular tube electrode 40 Electric field application means 41 1st power supply 42 2nd power supply 43 1st filter 44 2nd filter 50 Gas supply means 51 Gas generator 52 Supply Air outlet 53 Air outlet 60 Electrode temperature adjusting means 64 Guide roll 65 Nip roll 68, 69 Partition plate F Substrate G 'Processing exhaust port 36a Square tube electrode 36A Metal base 36B Dielectric coating layer

Abstract

Provided is a sheet-like structural body, by which light extraction efficiency of a surface-emitting body is significantly improved. A flexible surface-emitting body having a high light extraction efficiency and improved durability is also provided. The sheet-like structural body is characterized in that a light extraction layer, which has a recessed/protruding structure composed of an aggregate of metal oxide fine particles, is provided on a transparent base material.

Description

シート状構造体とその製造方法およびそれを用いた面発光体Sheet-like structure, method for producing the same, and surface light emitter using the same
 本発明は、各種ディスプレイ、表示装置および照明等に用いられる面発光体、および該面発光体の光取り出し効率を向上させるシート状構造体に関する。更に詳しくは金属酸化物微粒子の集合体からなる凹凸構造を有する光取り出し層が形成されたシート状構造体、およびそれを用いて作製された有機エレクトロルミネッセンス素子等の面発光体に関する。 The present invention relates to a surface light emitter used for various displays, display devices, illumination, and the like, and a sheet-like structure that improves the light extraction efficiency of the surface light emitter. More specifically, the present invention relates to a sheet-like structure in which a light extraction layer having a concavo-convex structure made of an aggregate of metal oxide fine particles is formed, and a surface light emitter such as an organic electroluminescence element produced using the sheet-like structure.
 各種ディスプレイのバックライト、看板や非常灯等の表示板、照明等の光源として用いられる面発光体は、高輝度、高効率、薄型、軽量といった多くの優れた特徴を有することから、近年注目されている。このような面発光体の中でも、有機材料を用いて正負の各極からの電気エネルギーによって発光させる有機エレクトロルミネッセンス素子(以下、有機EL素子)は、数V~数十V程度の低電圧で発光が可能であり、薄膜型の完全固体素子であるため省スペースである等の理由から特に注目されている。 Surface light emitters used as backlights for various displays, display boards such as signboards and emergency lights, and light sources such as lighting have attracted attention in recent years because they have many excellent features such as high brightness, high efficiency, thinness, and light weight. ing. Among such surface light emitters, organic electroluminescence elements (hereinafter referred to as organic EL elements) that emit light by using electric energy from positive and negative electrodes using an organic material emit light at a low voltage of about several volts to several tens of volts. In particular, the thin film type solid-state device is attracting attention because it saves space.
 しかしながら、有機EL素子のような薄膜からなる面発光素子の場合、発光体薄膜層の屈折率と発光した光が出射する際に通過する媒質との屈折率により決まる光の出射角が臨界角以上の発光は全反射して内部に閉じ込められ、導波光として失われる。その結果、指向性がない発光層の発光は前に出てくる光以外は失われることとなり、光の取り出し効率(発光したエネルギーに対して基板の外に出てくるエネルギーの割合)が低くなるという問題がある。 However, in the case of a surface light emitting device made of a thin film such as an organic EL device, the light emission angle determined by the refractive index of the light emitter thin film layer and the refractive index of the medium through which the emitted light passes is greater than the critical angle. Is totally reflected and confined inside, and lost as guided light. As a result, light emitted from the light emitting layer having no directivity is lost except for the light previously emitted, and the light extraction efficiency (ratio of the energy emitted outside the substrate with respect to the emitted energy) is lowered. There is a problem.
 古典光学に基づいた多重反射から導き出される前方向への光取り出し効率(発光効率)は1/2nで近似でき、発光層の屈折率nでほぼ決まってしまう。発光層の屈折率を約1.7とすると、単純に前記有機EL部からの発光効率は約20%となる。残りの光は、発光層の面積方向へ伝搬するか(横方向への霧散)、発光層を挟んで透明電極と相対する金属電極で消失する(後方向への吸収)。換言すると、有機EL素子は、空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せない。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。 The light extraction efficiency (light emission efficiency) in the forward direction derived from multiple reflection based on classical optics can be approximated by 1 / 2n 2 and is almost determined by the refractive index n of the light emitting layer. If the refractive index of the light emitting layer is about 1.7, the light emission efficiency from the organic EL part is simply about 20%. The remaining light propagates in the area direction of the light emitting layer (spray in the lateral direction) or disappears at the metal electrode facing the transparent electrode with the light emitting layer interposed therebetween (absorption in the backward direction). In other words, the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and about 15% to 20% of the light generated in the light emitting layer. Only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
 このような現象を回避し、光取り出し効率を向上させる工夫として、表面に凹凸構造を形成した透明基板や、マトリクス中に光を散乱させる粒子を含有させた光拡散層、レンズシートなどの方法が提案されている。 In order to avoid such a phenomenon and improve the light extraction efficiency, there are methods such as a transparent substrate having a concavo-convex structure on the surface, a light diffusion layer containing particles that scatter light in the matrix, and a lens sheet. Proposed.
 しかしながら、透明基板の表面に凹凸を形成する方法においては、凹凸を形成する手段として、フォトリソグラフィと同様にエッチングで凹凸を設ける方法が一般的であるが、生産性が悪く、コストアップになる。また、ガラス基板の表面に、サンドブラスト加工法、フロスト加工法等により、マイクロレンズ形状を模した凹凸構造を形成する方法も提案されているが、周期性を持った凹凸形状の作製は難しく、さらに透明樹脂基板への加工には使用できない(特許文献1参照)。 However, in the method of forming irregularities on the surface of the transparent substrate, as a means for forming irregularities, a method of providing irregularities by etching as in the case of photolithography is common, but the productivity is poor and the cost is increased. In addition, a method of forming an uneven structure imitating a microlens shape on the surface of a glass substrate by a sandblasting method, a frosting method, or the like has also been proposed, but it is difficult to produce an uneven shape with periodicity. It cannot be used for processing into a transparent resin substrate (see Patent Document 1).
 また、ロール凹版等を用いて透明樹脂基材上に凹凸形状を有する光拡散層を形成する方法や、凹凸形状を持つフィルムを基板表面に貼付して作製した有機EL素子が提案されている(特許文献1、特許文献2参照)。このような凹凸形状を持つフィルムを用いた場合には、フィルムだけでは十分な効果が得られないため、一般に光拡散層を併用する必要がある。また、数100nm以下の微細な凹凸形状を周期的に形成することは難しい。 In addition, a method of forming a light diffusion layer having a concavo-convex shape on a transparent resin substrate using a roll intaglio or the like, and an organic EL element produced by attaching a film having a concavo-convex shape to the substrate surface have been proposed ( (See Patent Document 1 and Patent Document 2). When a film having such a concavo-convex shape is used, it is generally necessary to use a light diffusing layer together because a sufficient effect cannot be obtained by the film alone. Moreover, it is difficult to periodically form a fine uneven shape of several hundred nm or less.
 これに対し特許文献3では、レンズシート中に無機微粒子を添加した、拡散シートが不要な光学シートが提案されている。これにより光取り出し効率の向上はするが、まだ十分ではなく、さらなる効率向上のために微細な凹凸形状をこの方法で作製することは困難であった。また、樹脂中に分散した微粒子が金型を傷つけるといった問題や、レンズシートと基板との接着面の剥がれや、界面の屈折率差による反射による光量の劣化という問題もあった。 On the other hand, Patent Document 3 proposes an optical sheet in which inorganic fine particles are added to a lens sheet and a diffusion sheet is unnecessary. Although this improves the light extraction efficiency, it is not yet sufficient, and it has been difficult to produce a fine uneven shape by this method for further efficiency improvement. There are also problems such as fine particles dispersed in the resin damaging the mold, peeling of the adhesive surface between the lens sheet and the substrate, and deterioration of the amount of light due to reflection due to the difference in refractive index at the interface.
 一方、特許文献4では、基材表面にチタン酸化物微粒子からなる光触媒性被膜を形成することにより、透明性が向上することが開示されている。これは、ペルオキソ基を持つチタン酸化物微粒子を含有する被膜形成用水溶液を基材表面に塗布し、その後加熱することにより光触媒性高硬度被膜を具備させるものであり、加熱により光触媒性を発現させることが必要であるため、加熱処理の好ましい温度範囲は250~550℃と記載されている。この際に基材表面に形成されるチタン酸化物微粒子からなる被膜が、本発明の如き凹凸形状を有している可能性はあるが、特許文献4にはその構造についての記載はなかった。また、金属酸化物微粒子の集合体からなる凹凸形状が、光取り出し層として利用できることについても、知られていなかった。 On the other hand, Patent Document 4 discloses that transparency is improved by forming a photocatalytic film made of titanium oxide fine particles on the surface of a substrate. This is to apply a film-forming aqueous solution containing titanium oxide fine particles having a peroxo group to the surface of the substrate, and then heat to provide a photocatalytic high-hardness film, and to develop photocatalytic properties by heating. Therefore, the preferable temperature range of the heat treatment is described as 250 to 550 ° C. At this time, there is a possibility that the coating made of titanium oxide fine particles formed on the surface of the substrate has an uneven shape as in the present invention, but Patent Document 4 did not describe the structure. In addition, it has not been known that an uneven shape made of an aggregate of metal oxide fine particles can be used as a light extraction layer.
特開2008-66027号公報JP 2008-66027 A 特開2004-45471号公報JP 2004-45471 A 特開2009-25774号公報JP 2009-25774 A 特開2003-210996号公報Japanese Patent Laid-Open No. 2003-210996
 上述したような従来の技術では、光取り出し効率はまだ不十分であり、さらなる向上が求められていた。特に樹脂基板に対しては、微細凹凸形状の形成が難しく、光取り出し効率の向上とフレキシブル性を両立させることが課題であった。 In the conventional technology as described above, the light extraction efficiency is still insufficient, and further improvement has been demanded. Particularly for resin substrates, it is difficult to form fine irregularities, and it has been a challenge to achieve both improved light extraction efficiency and flexibility.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、面発光体の光取り出し効率を大幅に向上できるシート状構造体を提供するとともに、光取り出し効率が高く、耐久性が改良された、フレキシブル性を有する面発光体を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide a sheet-like structure that can significantly improve the light extraction efficiency of a surface light emitter, and has high light extraction efficiency and improved durability. Another object of the present invention is to provide a flexible surface light emitter.
 本発明者らは、上記課題について鋭意検討した結果、金属酸化物微粒子の集合体からなる凹凸形状を光取り出し層として用いること、および、これを用いたシート状構造体により有機EL等の面発光体の光取り出し効率を大幅に向上できることを見出した。 As a result of intensive studies on the above problems, the present inventors have used an uneven shape made of an aggregate of metal oxide fine particles as a light extraction layer, and a surface light emission of an organic EL or the like by using a sheet-like structure using the same. It has been found that the light extraction efficiency of the body can be greatly improved.
 本発明における光取り出し効率向上の作用機構は明らかではないが、ナノサイズの金属酸化物微粒子による高透過率と、微粒子の集合体による光散乱の効果、および凹凸構造による集光効果が合わさって驚くべき効果が発揮された結果と推察される。 Although the mechanism of action for improving the light extraction efficiency in the present invention is not clear, it is surprising that the high transmittance by the nano-sized metal oxide fine particles, the effect of light scattering by the aggregate of fine particles, and the light collecting effect by the uneven structure are combined. It is inferred that the effect that should have been demonstrated.
 従って、本発明は以下の構成により達成される。 Therefore, the present invention is achieved by the following configuration.
 1.透明基材上に、金属酸化物微粒子の集合体からなる凹凸構造を有する光取り出し層が設けられたことを特徴とするシート状構造体。 1. A sheet-like structure having a light extraction layer having a concavo-convex structure made of an aggregate of metal oxide fine particles on a transparent substrate.
 2.該透明基材が透明樹脂フィルムであることを特徴とする前記1に記載のシート状構造体。 2. 2. The sheet-like structure according to 1 above, wherein the transparent substrate is a transparent resin film.
 3.該凹凸構造が、平均深さが5nm以上300nm以下で、平均周期が10nm以上300nm以下の周期性凹凸構造であることを特徴とする前記1または2に記載のシート状構造体。 3. 3. The sheet-like structure according to 1 or 2, wherein the uneven structure is a periodic uneven structure having an average depth of 5 nm to 300 nm and an average period of 10 nm to 300 nm.
 4.該金属酸化物微粒子が、平均粒子径1nm以上30nm以下のアモルファス型金属酸化物微粒子であることを特徴とする前記1~3のいずれか1項に記載のシート状構造体。 4. 4. The sheet-like structure according to any one of 1 to 3 above, wherein the metal oxide fine particles are amorphous metal oxide fine particles having an average particle diameter of 1 nm to 30 nm.
 5.該金属酸化物微粒子が、4族または5族の元素でなる酸化物微粒子もしくは4族と5族の元素でなる複合酸化物微粒子であることを特徴とする前記1~4のいずれか1項に記載のシート状構造体。 5. 5. The metal oxide fine particles according to any one of 1 to 4 above, wherein the metal oxide fine particles are oxide fine particles composed of Group 4 or Group 5 elements or composite oxide fine particles composed of Group 4 and Group 5 elements. The sheet-like structure described.
 6.前記1~5のいずれか1項に記載のシート状構造体の製造方法において、透明基材の少なくとも片面に、金属酸化物微粒子を含む分散液を塗布する工程と、基材の軟化点温度以下で乾燥する工程と、外部刺激処理によって該金属酸化物微粒子の集合体からなる凹凸構造を形成する工程により製造されたことを特徴とするシート状構造体の製造方法。 6. 6. In the method for producing a sheet-like structure according to any one of 1 to 5, a step of applying a dispersion liquid containing metal oxide fine particles on at least one surface of a transparent substrate, and a softening point temperature of the substrate or lower A method for producing a sheet-like structure, which is produced by a step of drying with a step of forming a concavo-convex structure comprising an aggregate of the metal oxide fine particles by an external stimulus treatment.
 7.前記外部刺激処理が、プラズマ放電処理、マイクロ波照射処理、紫外線照射処理から選ばれる処理であることを特徴とする前記6に記載のシート状構造体の製造方法。 7. 7. The method for producing a sheet-like structure according to 6, wherein the external stimulation process is a process selected from a plasma discharge process, a microwave irradiation process, and an ultraviolet irradiation process.
 8.前記1~5のいずれか1項に記載のシート状構造体を、透明基板として用いたことを特徴とする面発光体。 8. A surface light emitter using the sheet-like structure according to any one of 1 to 5 as a transparent substrate.
 9.前記1~5のいずれか1項に記載のシート状構造体を、光の出射側の表面に貼合することを特徴とする面発光体。 9. 6. A surface light emitter comprising the sheet-like structure according to any one of 1 to 5 bonded to a surface on a light emission side.
 本発明によれば、従来より大幅な光取り出し効率とバリア性が向上したシート状構造体を得ることができる。さらに、フレキシブル性とともに膜物性が大幅に向上し、耐久性に優れた、有機EL素子に代表される面発光体を得ることができるものである。 According to the present invention, it is possible to obtain a sheet-like structure having improved light extraction efficiency and barrier properties that are significantly higher than those of conventional ones. Furthermore, the surface physical property represented by the organic EL element which was improved in the physical properties of the film as well as in flexibility and excellent in durability can be obtained.
本発明の金属酸化物微粒子の集合体からなる凹凸構造を有する光取り出し層が設けられたシート状構造体の断面図を示す。FIG. 3 shows a cross-sectional view of a sheet-like structure provided with a light extraction layer having a concavo-convex structure comprising an aggregate of metal oxide fine particles of the present invention. 本発明の外部刺激処理の一つの例として大気圧プラズマ処理装置の概略構成断面図を示す。FIG. 1 shows a schematic cross-sectional view of an atmospheric pressure plasma processing apparatus as an example of the external stimulation processing of the present invention. 大気圧プラズマ処理装置の電極構成を例示した図である。It is the figure which illustrated the electrode structure of the atmospheric pressure plasma processing apparatus.
 以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.
 本発明は、金属酸化物微粒子の集合体からなる凹凸構造を有する光取り出し層が設けられたシート状構造体であって、特にフレキシブルな透明樹脂フィルム基材の少なくとも片面に、該凹凸構造を有する光取り出し層が設けられたシート状構造体であることを特徴とする。 The present invention is a sheet-like structure provided with a light extraction layer having a concavo-convex structure composed of an aggregate of metal oxide fine particles, and has the concavo-convex structure on at least one side of a flexible transparent resin film substrate. It is a sheet-like structure provided with a light extraction layer.
 <凹凸構造>
 本発明の特徴である金属酸化物微粒子の集合体からなる凹凸構造を有する光取り出し層とは、金属酸化物微粒子が複数個結合して形成された凹凸形状を有する層であり、光取り出し効率の向上を目的として透明基材上に形成された層である。
<Uneven structure>
The light extraction layer having a concavo-convex structure comprising an aggregate of metal oxide fine particles, which is a feature of the present invention, is a layer having a concavo-convex shape formed by combining a plurality of metal oxide fine particles, and has a light extraction efficiency. It is a layer formed on a transparent substrate for the purpose of improvement.
 本発明の光取り出し層として効果が得られる凹凸構造は、図1に示されるような金属酸化物微粒子の集合体からなる凹凸構造が連続して形成されることを特徴とする。本発明で用いられる凹凸構造は、金属酸化物微粒子同士が外部刺激により結合する、いわゆる自己組織化により、凹凸構造が周期的に形成されるものであり、微粒子を塗布した時に生じる微粒子個々の大きさに起因する凹凸形状とは異なるものである。 The concavo-convex structure that is effective as the light extraction layer of the present invention is characterized in that the concavo-convex structure made of an aggregate of metal oxide fine particles as shown in FIG. 1 is continuously formed. The concavo-convex structure used in the present invention is a structure in which the concavo-convex structure is periodically formed by so-called self-organization in which metal oxide fine particles are bonded to each other by an external stimulus. It is different from the uneven shape caused by the thickness.
 尚、図1で示されるように、本発明に用いる凹凸構造の深さは、凸部の頂点からその隣接する凸部間の最も低い地点までの垂直距離であり、透過型電子顕微鏡(TEM)やレーザー顕微鏡による観察や原子間力顕微鏡(AFM)により測定できる。平均深さは、300個以上の凹凸構造の深さの平均値により求められたものであり、例えば一辺が80μmの視野でAFM測定した際の平均値が使用できる。また、本発明の凹凸構造の周期は、隣り合う凸部間の距離であり、電子顕微鏡やレーザー顕微鏡による観察により測定できる。平均周期は、連続する50個以上の凹凸構造における凸部間の距離の平均値をいう。 As shown in FIG. 1, the depth of the concavo-convex structure used in the present invention is a vertical distance from the apex of the convex portion to the lowest point between the adjacent convex portions, and is a transmission electron microscope (TEM). It can be measured by observation with a laser microscope or an atomic force microscope (AFM). The average depth is obtained from the average value of the depths of 300 or more concavo-convex structures. For example, the average value when AFM measurement is performed in a field of view with a side of 80 μm can be used. Moreover, the period of the concavo-convex structure of the present invention is a distance between adjacent convex portions, and can be measured by observation with an electron microscope or a laser microscope. An average period means the average value of the distance between the convex parts in a continuous 50 or more uneven structure.
 この際に、個々の周期が平均周期の0.5~2倍の範囲に入っていることが好ましく、さらに0.75倍から1.2倍の範囲に入っていることが好ましい。 At this time, it is preferable that each cycle is in the range of 0.5 to 2 times the average cycle, and more preferably in the range of 0.75 to 1.2 times.
 本発明の凹凸構造の平均深さは1μm以下であることが好ましく、更に好ましくは5nm以上500nm以下、特に好ましくは5nm以上300nm以下である。平均深さ5nm以上とすることにより光取り出し効率を向上し、1μm以下とすることにより透過率の低下が少なく好ましい。また、凹凸構造の平均周期は1μm以下であることが好ましく、更に好ましくは5nm以上500nm以下、特に好ましくは10nm以上300nm以下である。 The average depth of the concavo-convex structure of the present invention is preferably 1 μm or less, more preferably 5 nm to 500 nm, and particularly preferably 5 nm to 300 nm. The light extraction efficiency is improved by setting the average depth to 5 nm or more, and it is preferable that the average depth is 1 μm or less because the decrease in transmittance is small. The average period of the concavo-convex structure is preferably 1 μm or less, more preferably 5 nm to 500 nm, and particularly preferably 10 nm to 300 nm.
 本発明の凹凸構造の平均深さおよび平均周期の測定にあたっては、試料の中央近傍の1箇所を測定する方法であっても、試料表面の周縁部と中央部の数カ所を選び、それらの測定値の平均値をとる方法であっても良い。 In measuring the average depth and average period of the concavo-convex structure of the present invention, even if it is a method of measuring one location near the center of the sample, select several locations at the periphery and the center of the sample surface, and the measured values The method of taking the average value of
 本発明の金属酸化物からなる凹凸構造を有する光取り出し層は、面発光体の発光面全体に渡り形成されていることが好ましく、少なくとも発光面の50%以上が本発明の凹凸構造を有する光取り出し層が形成されていることが好ましい。 The light extraction layer having a concavo-convex structure made of the metal oxide of the present invention is preferably formed over the entire light emitting surface of the surface light emitter, and at least 50% of the light emitting surface has the concavo-convex structure of the present invention. A take-out layer is preferably formed.
 本発明においては、基材の少なくとも片面に、金属酸化物微粒子を含む分散液を塗布する工程と、基材の軟化点温度以下で乾燥する工程と、外部刺激処理によって該金属酸化物微粒子の集合体に凹凸構造を形成する工程により製造される。後述する外部刺激処理またはそれらを組み合わせることで、低温プロセスで基材へダメージを与えることなく、微粒子間を固着させることができる。 In the present invention, the step of applying a dispersion containing metal oxide fine particles to at least one surface of the substrate, the step of drying at a temperature lower than the softening point temperature of the substrate, and the assembly of the metal oxide fine particles by an external stimulus treatment Manufactured by a process of forming an uneven structure on the body. By external stimulating treatment described later or a combination thereof, the fine particles can be fixed without damaging the base material in a low temperature process.
 <金属酸化物微粒子>
 本発明で用いられる金属酸化物微粒子は、100nm以下の微粒子であることが好ましく、更に好ましくは1nm以上50nm以下の平均粒子径であり、特に好ましくは、1nm以上30nm以下の平均粒子径である。平均粒子径が1nm未満の場合、分散液中で粒子凝集が進んでしまうため、所望の凹凸形状が得られないおそれがある。一方、平均粒子径を100nm以下とすることにより、微粒子自体が光散乱を起こすことによる透明性の低下が少なく、微粒子の集合体による散乱効果が大きくなるため好ましい。ここで平均粒子径とは、走査型電子顕微鏡により200個以上の粒子を観察し、各粒子を同体積の球に換算した時の直径(球換算粒径)の平均値をいう。
<Metal oxide fine particles>
The metal oxide fine particles used in the present invention are preferably fine particles of 100 nm or less, more preferably 1 nm or more and 50 nm or less, and particularly preferably 1 nm or more and 30 nm or less. When the average particle diameter is less than 1 nm, particle aggregation proceeds in the dispersion, and thus there is a possibility that a desired uneven shape cannot be obtained. On the other hand, it is preferable to set the average particle size to 100 nm or less because there is little decrease in transparency due to light scattering by the fine particles themselves, and the scattering effect by the aggregate of fine particles is increased. Here, the average particle diameter means an average value of diameters (sphere-converted particle diameters) when 200 or more particles are observed with a scanning electron microscope and each particle is converted into a sphere having the same volume.
 金属酸化物微粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物を用いることができ、具体的には、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム(アルミナ)、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化バナジウム、酸化インジウム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等の粒子および複合粒子が挙げられる。その中でも、4族または5族の元素でなる酸化物微粒子あるいは4族と5族の元素でなる複合酸化物微粒子により、剛性の高い凹凸形状ができるため、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タンタルが好ましく、特に酸化チタンが好ましい。 As the metal oxide fine particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal A metal oxide that is one kind or two or more kinds of metals can be used. Specifically, for example, titanium oxide, zinc oxide, aluminum oxide (alumina), zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide, Magnesium oxide, vanadium oxide, indium oxide, tin oxide, lead oxide, and double oxides composed of these oxides, lithium niobate, potassium niobate, lithium tantalate, aluminum Particles and composite particles such as hexafluorophosphate, magnesium oxide (MgAl 2 O 4) can be mentioned. Among them, oxide fine particles composed of Group 4 or Group 5 elements or composite oxide fine particles composed of Group 4 and Group 5 elements can form a highly rigid uneven shape, so that titanium oxide, zirconium oxide, hafnium oxide, oxidation Vanadium, niobium oxide, and tantalum oxide are preferable, and titanium oxide is particularly preferable.
 酸化チタンとしてはTiO、TiO、TiO、TiO/nHO等の各種の酸化物、過酸化物が使用可能である。特に、ペルオキソ基を有する過酸化チタンが好ましい。酸化チタンはアモルファス型、アナターゼ型、ブルッカイト型、ルチル型のいずれでもよく、これらが混在していてもよいが、アモルファス型酸化チタンが好ましい。 As the titanium oxide, various oxides and peroxides such as TiO 2 , TiO 3 , TiO, and TiO 3 / nH 2 O can be used. In particular, titanium peroxide having a peroxo group is preferable. The titanium oxide may be any of amorphous type, anatase type, brookite type, and rutile type, and these may be mixed, but amorphous type titanium oxide is preferred.
 前記酸化チタン微粒子の製造方法としては、一般的な二酸化チタン粉末の製造方法を用いることができる。 As a method for producing the titanium oxide fine particles, a general method for producing titanium dioxide powder can be used.
 酸化チタン微粒子の好ましい製造方法例を以下に示すが、本発明においては上述した機能が得られれば、微粒子の組成および製造方法はこれに限らない。 An example of a preferable method for producing titanium oxide fine particles is shown below. However, in the present invention, the composition of fine particles and the method for producing the fine particles are not limited to this as long as the functions described above are obtained.
 〈酸化チタン微粒子の製造方法〉
 まず、四塩化チタン等の四価チタンの化合物とアンモニア等の塩基とを反応させて、水酸化チタンを形成する。次に、この水酸化チタンを酸化剤でペルオキソ化し、超微細粒子のアモルファス型過酸化チタンを形成する。この反応は好ましくは水性媒体中で行なわれる。さらに、任意に加熱処理することによりアナターゼ型過酸化チタンに転移させることも可能である。
<Method for producing titanium oxide fine particles>
First, a titanium hydroxide is formed by reacting a tetravalent titanium compound such as titanium tetrachloride with a base such as ammonia. Next, this titanium hydroxide is peroxo-oxidized with an oxidizing agent to form ultrafine particles of amorphous titanium peroxide. This reaction is preferably carried out in an aqueous medium. Furthermore, it is also possible to transfer to anatase-type titanium peroxide by arbitrary heat treatment.
 ペルオキソ化用酸化剤は特に限定されるものではなく、チタンのペルオキソ化物、すなわち過酸化チタンが形成できるものであれば各種のものが使用できるが、過酸化水素が好ましい。酸化剤として過酸化水素水を使用する場合は、過酸化水素の濃度は特に制限されることはないが、30~40%のものが好適である。ペルオキソ化前には水酸化チタンを冷却することが好ましい。その際の冷却温度は1~5℃が好ましい。 The peroxidation oxidizing agent is not particularly limited, and various types can be used as long as they can form a titanium peroxo compound, that is, titanium peroxide, but hydrogen peroxide is preferable. When hydrogen peroxide is used as the oxidizing agent, the concentration of hydrogen peroxide is not particularly limited, but is preferably 30 to 40%. It is preferred to cool the titanium hydroxide before peroxolation. The cooling temperature at that time is preferably 1 to 5 ° C.
 このようにして得られたチタンの水酸化物は純水で洗浄した後、5℃前後に冷却され、次に、過酸化水素水でペルオキソ化される。これにより、アモルファス型のペルオキソ基を有するチタン酸化物微細粒子を含有する水性分散液を製造することができる。 The titanium hydroxide thus obtained is washed with pure water, cooled to around 5 ° C., and then peroxoated with hydrogen peroxide. Thereby, the aqueous dispersion containing the titanium oxide fine particle which has an amorphous peroxo group can be manufactured.
 上述した四価チタンの化合物としては、塩基と反応させた際に、オルトチタン酸(HTiO)とも呼称される水酸化チタンを形成できるものであれば各種のチタン化合物が使用でき、例えば四塩化チタン、硫酸チタン、硝酸チタン、燐酸チタン等のチタンの水溶性無機酸塩がある。それ以外にも蓚酸チタン等のチタンの水溶性有機酸塩も使用できる。なお、これらの各種チタン化合物の中では、水溶性に特に優れ、かつチタン酸化物の分散液中にチタン以外の成分が残留しない点で、四塩化チタンが好ましい。 As the above-mentioned tetravalent titanium compound, various titanium compounds can be used as long as they can form titanium hydroxide also called orthotitanic acid (H 4 TiO 4 ) when reacted with a base. There are water-soluble inorganic acid salts of titanium such as titanium tetrachloride, titanium sulfate, titanium nitrate, and titanium phosphate. In addition, water-soluble organic acid salts of titanium such as titanium oxalate can be used. Of these various titanium compounds, titanium tetrachloride is preferred because it is particularly excellent in water solubility and no components other than titanium remain in the titanium oxide dispersion.
 また、四価チタンの化合物の溶液を使用する場合は、当該溶液の濃度は、水酸化チタンのゲルが形成できる範囲であれば特に制限されるものではないが、比較的希薄な溶液が好ましい。具体的には、四価チタンの化合物の溶液濃度は、5~0.01質量%が好ましく、0.9~0.3質量%がより好ましい。 Further, when a tetravalent titanium compound solution is used, the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but a relatively dilute solution is preferable. Specifically, the solution concentration of the tetravalent titanium compound is preferably 5 to 0.01% by mass, and more preferably 0.9 to 0.3% by mass.
 上記四価チタンの化合物と反応させる塩基は、四価チタンの化合物と反応して水酸化チタンを形成できるものであれば、各種のものが使用可能であり、それにはアンモニア、苛性ソーダ、炭酸ソーダ、苛性カリ等が例示できるが、アンモニアが最も好ましい。 As the base to be reacted with the tetravalent titanium compound, various bases can be used as long as they can react with the tetravalent titanium compound to form titanium hydroxide, and include ammonia, caustic soda, sodium carbonate, Although caustic potash and the like can be exemplified, ammonia is most preferable.
 また、上記の塩基の溶液を使用する場合は、当該溶液の濃度は、水酸化チタンのゲルが形成できる範囲であれば特に制限されるものではないが、比較的希薄な溶液が好ましい。具体的には、塩基溶液の濃度は、10~0.01質量%が好ましく、1.0~0.1質量%がより好ましい。特に、塩基溶液としてアンモニア水を使用した場合のアンモニアの濃度は、10~0.01質量%が好ましく、1.0~0.1質量%がより好ましい。 In addition, when the above base solution is used, the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but a relatively dilute solution is preferable. Specifically, the concentration of the base solution is preferably 10 to 0.01% by mass, and more preferably 1.0 to 0.1% by mass. In particular, when ammonia water is used as the base solution, the ammonia concentration is preferably 10 to 0.01% by mass, more preferably 1.0 to 0.1% by mass.
 更に異なる製法として、ゾル-ゲル法を用いる方法を挙げることができる。これは、チタンアルコキシドに、水、アルコール等の溶媒、酸又は塩基触媒を混合撹拌し、チタンアルコキシドを加水分解させ、超微粒子のチタン酸化物のゾル溶液を生成する。この加水分解の前後のいずれかに、銅、マンガン、ニッケル、コバルト、鉄、亜鉛又はそれらの化合物の少なくともいずれか1つが混合されても良い。なお、このようにして得られるチタン酸化物は、ペルオキソ基を有するアモルファス型である。 Further, as a different production method, a method using a sol-gel method can be mentioned. This is a mixture of titanium alkoxide with a solvent such as water and alcohol, an acid or base catalyst, and the titanium alkoxide is hydrolyzed to produce a sol solution of ultrafine titanium oxide. Either before or after the hydrolysis, at least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof may be mixed. The titanium oxide thus obtained is an amorphous type having a peroxo group.
 上記チタンアルコキシドとしては、一般式:Ti(OR′)(ただし、R′はアルキル基)で表示される化合物、又は上記一般式中の1つ或いは2つのアルコキシド基(OR′)がカルボキシル基或いはβ-ジカルボニル基で置換された化合物、或いは、それらの混合物が好ましい。 As the titanium alkoxide, a compound represented by the general formula: Ti (OR ′) 4 (where R ′ is an alkyl group), or one or two alkoxide groups (OR ′) in the general formula is a carboxyl group. Alternatively, a compound substituted with a β-dicarbonyl group or a mixture thereof is preferable.
 上記チタンアルコキシドの具体例としては、Ti(O-iso-C、Ti(O-n-C、Ti(O-CHCH(C)C、Ti(O-C1735、Ti(O-iso-C[CO(CH)CHCOCH、Ti(O-n-C[OCN(COH)、Ti(OH)[OCH(CH)COOH]、Ti(OCHCH(C)CH(OH)C、Ti(O-n-C(OCOC1735)等が挙げられる。 Specific examples of the titanium alkoxide include Ti (O—iso—C 3 H 7 ) 4 , Ti (On—C 4 H 9 ) 4 , Ti (O—CH 2 CH (C 2 H 5 ) C 4. H 9 ) 4 , Ti (O—C 17 H 35 ) 4 , Ti (O—iso—C 3 H 7 ) 2 [CO (CH 3 ) CHCOCH 3 ] 2 , Ti (On—C 4 H 9 ) 2 [OC 2 H 4 N (C 2 H 4 OH) 2 ] 2 , Ti (OH) 2 [OCH (CH 3 ) COOH] 2 , Ti (OCH 2 CH (C 2 H 5 ) CH (OH) C 3 H 7 ) 4 , Ti (On-C 4 H 9 ) 2 (OCOC 17 H 35 ) and the like.
 上述した銅、マンガン、ニッケル、コバルト、鉄又は亜鉛の化合物例としては、Ni化合物:Ni(OH)、NiCl、Co化合物:Co(OH)NO、Co(OH)、CoSO、CoCl、Cu化合物:Cu(OH)、Cu(NO、CuSO、CuCl、Cu(CHCOO)、Mn化合物:MnNO、MnSO、MnCl、Fe化合物:Fe(OH)、Fe(OH)、FeCl、Zn化合物:Zn(NO、ZnSO、ZnClなどを挙げることができる。 Examples of the compound of copper, manganese, nickel, cobalt, iron or zinc described above include Ni compound: Ni (OH) 2 , NiCl 2 , Co compound: Co (OH) NO 3 , Co (OH) 2 , CoSO 4 , CoCl 2 , Cu compound: Cu (OH) 2 , Cu (NO 3 ) 2 , CuSO 4 , CuCl 2 , Cu (CH 3 COO) 2 , Mn compound: MnNO 3 , MnSO 4 , MnCl 2 , Fe compound: Fe ( OH) 2, Fe (OH) 3, FeCl 3, Zn compounds: Zn (NO 3) 2, ZnSO 4, and the like ZnCl 2.
 また、銅、マンガン、ニッケル、コバルト、鉄、亜鉛の配合量については、チタンと金属成分とのモル比で、水性分散液の安定性から1:0.01~1:0.5が好ましく、1:0.03~1:0.1がより好ましい。 The blending amount of copper, manganese, nickel, cobalt, iron, and zinc is preferably 1: 0.01 to 1: 0.5 in terms of the stability of the aqueous dispersion in terms of the molar ratio of titanium to the metal component. A ratio of 1: 0.03 to 1: 0.1 is more preferable.
 本発明においては、前記調製した金属酸化物微粒子を界面活性剤又は分散剤の存在下、分散させた状態の分散液を調製し、塗布工程にて基材上に製膜する構成が好ましい。 In the present invention, it is preferable to prepare a dispersion in which the prepared metal oxide fine particles are dispersed in the presence of a surfactant or a dispersant, and form a film on a substrate in a coating process.
 塗布手段としては、例えば、スプレー塗布、ディップコーティング、フローコーティング、スピンコーティング、ダイコーティングなどの公知な塗布法や、スクリーン印刷、ロールスクリーン印刷、オフセット印刷、フレキソ印刷、グラビア印刷、インクジェット印刷等の公知な印刷法を用いて塗布することもできる。 Examples of the coating means include known coating methods such as spray coating, dip coating, flow coating, spin coating, and die coating, and screen printing, roll screen printing, offset printing, flexographic printing, gravure printing, inkjet printing, and the like. It can also be applied using any printing method.
 塗布製膜後は、基材にダメージを与えない様に、基材の軟化点以下で乾燥処理を行うことが本発明の特徴である。 It is a feature of the present invention that after the coating film formation, the drying treatment is performed below the softening point of the base material so as not to damage the base material.
 上記塗装膜の厚みは乾燥膜厚で0.01~100μmが好ましく、0.1~50μmがより好ましく、特に、0.5μm~10μmが好ましい。 The thickness of the coating film is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm, and particularly preferably 0.5 to 10 μm in terms of dry film thickness.
 界面活性剤又は分散剤としては、各種の有機ケイ素化合物を使用することができる。有機ケイ素化合物としては各種のシラン化合物並びに各種のシリコーンオイル、シリコーンゴム及びシリコーンレジンが使用可能であるが、分子中にアルキルシリケート構造やポリエーテル構造を有するもの、又はアルキルシリケート構造とポリエーテル構造の両方を有するものが望ましい。 As the surfactant or dispersant, various organosilicon compounds can be used. As the organosilicon compound, various silane compounds and various silicone oils, silicone rubbers and silicone resins can be used, but those having an alkyl silicate structure or a polyether structure in the molecule, or having an alkyl silicate structure and a polyether structure. It is desirable to have both.
 ここで、アルキルシリケート構造とは、シロキサン骨格のケイ素原子にアルキル基が結合した構造をさす。一方、ポリエーテル構造とは、これらに限定されるものではないが、具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイト、ポリテトラメチレンオキサイド、ポリエチレンオキサイド-ポリプロピレンオキサイドブロック共重合体、ポリエチレンポリテトラメチレングリコール共重合体、ポリテトラメチレングリコール-ポリプロピレンオキサイド共重合体等の分子構造が挙げられる。そのなかでも、ポリエチレンオキサイド-ポリプロピレンオキサイドブロック共重合体は、そのブロック度や分子量により、濡れ性を制御できる観点からもさらに好適である。 Here, the alkyl silicate structure refers to a structure in which an alkyl group is bonded to a silicon atom of a siloxane skeleton. On the other hand, the polyether structure is not limited to these, but specifically, polyethylene oxide, polypropylene oxide, polytetramethylene oxide, polyethylene oxide-polypropylene oxide block copolymer, polyethylene polytetramethylene glycol. Examples thereof include molecular structures such as a copolymer and a polytetramethylene glycol-polypropylene oxide copolymer. Among them, the polyethylene oxide-polypropylene oxide block copolymer is more preferable from the viewpoint of controlling the wettability depending on the block degree and molecular weight.
 分子中にアルキルシリケート構造とポリエーテル構造の双方を有する有機物質が特に好ましい。具体的には、ポリエーテル変性ポリジメチルシロキサン等のポリエーテル変性シリコーンが好適である。これは公知の方法で製造することができ、例えば、特開平4-242499号公報に記載の合成例1、2、3、4や、特開平9-165318号公報の参考例記載の方法等により製造することができる。特に、両末端メタリルポリエチレンオキサイド-ポリプロピレンオキサイドブロック共重合体とジヒドロポリジメチルシロキサンとを反応させて得られるポリエチレンオキサイド-ポリプロピレンオキサイドブロック共重合体変性ポリジメチルシロキサンが好適である。 An organic substance having both an alkyl silicate structure and a polyether structure in the molecule is particularly preferred. Specifically, polyether-modified silicone such as polyether-modified polydimethylsiloxane is suitable. This can be produced by a known method, for example, by the synthesis examples 1, 2, 3, 4 described in JP-A-4-242499, the method described in the reference example of JP-A-9-165318, etc. Can be manufactured. In particular, polyethylene oxide-polypropylene oxide block copolymer-modified polydimethylsiloxane obtained by reacting methallyl polyethylene oxide-polypropylene oxide block copolymer with dihydropolydimethylsiloxane is preferred.
 具体的には、TSF4445、TSF4446(GE東芝シリコーン株式会社製)、SH200(東レ・ダウコーニング・シリコーン株式会社製)、KPシリーズ(信越化学工業株式会社製)、並びに、DC3PA、ST869A、SH3746、SH3746M(東レ・ダウコーニング・シリコーン株式会社製)等を用いることができる。これらは塗料用添加剤であるが、その他、塗料用以外でも、これらの性能が付与できるものであれば適宜使用することができる。 Specifically, TSF4445, TSF4446 (manufactured by GE Toshiba Silicone Co., Ltd.), SH200 (manufactured by Toray Dow Corning Silicone Co., Ltd.), KP series (manufactured by Shin-Etsu Chemical Co., Ltd.), and DC3PA, ST869A, SH3746, SH3746M (Toray Dow Corning Silicone Co., Ltd.) can be used. Although these are additives for paints, they can be used as appropriate as long as they can provide these performances other than for paints.
 <透明基材>
 本発明のシート状構造体に用いられる透明基材としては、高い光透過性を有していればそれ以外に特に制限はない。例えば、基材としての硬度に優れ、またその表面への膜形成のし易さ等の点で、ガラス基板、樹脂基板、樹脂フィルムなどが好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが好ましい。
<Transparent substrate>
The transparent substrate used in the sheet-like structure of the present invention is not particularly limited as long as it has high light transmittance. For example, a glass substrate, a resin substrate, a resin film, etc. are preferably mentioned in terms of excellent hardness as a base material and ease of film formation on the surface, but from the viewpoint of lightness and flexibility It is preferable to use a transparent resin film.
 本発明で透明基材として好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 The transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones. For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin films, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 0 ~ 780 nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明において透明樹脂フィルムの屈折率は、1.50以上であることが好ましく、さらに1.60以上1.80以下であることが特に好ましい。本発明においては、金属酸化物微粒子による凹凸構造の屈折率と透明樹脂フィルムの屈折率差が小さいことが好ましく、その屈折率差が0.2以下であることが好ましく、さらに0.1以下であることが好ましい。 In the present invention, the refractive index of the transparent resin film is preferably 1.50 or more, more preferably 1.60 or more and 1.80 or less. In the present invention, the refractive index of the concavo-convex structure by the metal oxide fine particles and the refractive index difference of the transparent resin film are preferably small, the refractive index difference is preferably 0.2 or less, and further 0.1 or less. Preferably there is.
 本発明において透明樹脂フィルムの厚さは、50μm以上250μm以下であることが好ましく、さらに75μm以上200μm以下であることが特に好ましい。 In the present invention, the thickness of the transparent resin film is preferably from 50 μm to 250 μm, and more preferably from 75 μm to 200 μm.
 本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。樹脂フィルムには光散乱機能を付与する目的でフィラーを含有してもよく、そのフィラーの粒径は0.5~10μm程度が好ましい。また、透明基材の両面または片面にバリアコート層や、ハードコート層が予め形成されていてもよい。 Also, examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion. The resin film may contain a filler for the purpose of imparting a light scattering function, and the particle size of the filler is preferably about 0.5 to 10 μm. In addition, a barrier coat layer or a hard coat layer may be formed in advance on both surfaces or one surface of the transparent substrate.
 バリアコート層やハードコート層を設ける場合、透明基材との屈折率が大きいと界面反射による光取出しの劣化が生じてしまうため、バリアコート層およびハードコート層の屈折率は透明樹脂フィルムの屈折率と同じかやや低いものであることが好ましい。例えば、ハードコート層として、平均粒子径が1nm以上400nm以下の微粒子を含有した樹脂を用いても良く、透明樹脂中にその樹脂よりも屈折率が高い微粒子を、平均粒子径が1~400nmで分散することにより、所望とする屈折率の透明なハードコート層を得ることができる。 When a barrier coat layer or a hard coat layer is provided, if the refractive index with the transparent substrate is large, the light extraction due to the interface reflection is deteriorated. Therefore, the refractive index of the barrier coat layer and the hard coat layer is the refractive index of the transparent resin film. The rate is preferably the same or slightly lower than the rate. For example, a resin containing fine particles having an average particle diameter of 1 nm or more and 400 nm or less may be used as the hard coat layer. Fine particles having a refractive index higher than that of the resin in the transparent resin have an average particle diameter of 1 to 400 nm. By dispersing, a transparent hard coat layer having a desired refractive index can be obtained.
 (外部刺激処理)
 本発明で用いることができる外部刺激処理としては、金属酸化物微粒子の集合体を凹凸構造に形成する方法であれば如何なる外部刺激処理も用いることができるが、本発明においては、フレキシブルな基板にダメージを与えないようにすることが必要である。
(External stimulus processing)
As the external stimulation treatment that can be used in the present invention, any external stimulation treatment can be used as long as it is a method of forming an aggregate of metal oxide fine particles in a concavo-convex structure. In the present invention, a flexible substrate is used. It is necessary to prevent damage.
 また、基板上に形成された微粒子からなる光取り出し層に対し、局所的なエネルギー付与が可能な方法を用いることが好ましい。 Further, it is preferable to use a method capable of locally applying energy to the light extraction layer made of fine particles formed on the substrate.
 本発明で用いることができる外部刺激処理の方法としては、例えば、プラズマ放電処理、マイクロ波照射処理、紫外線照射処理、電磁波照射処理、加圧処理、加熱処理などを挙げることができ、好ましくは、プラズマ放電処理、マイクロ波照射処理、紫外線照射処理であり、更に具体的には、酸素プラズマ処理、マイクロ波照射処理、紫外線照射オゾン処理、またはこれらの処理を複数組み合わせ処理することが好ましい。 Examples of the external stimulation treatment method that can be used in the present invention include plasma discharge treatment, microwave irradiation treatment, ultraviolet irradiation treatment, electromagnetic wave irradiation treatment, pressure treatment, and heat treatment. Plasma discharge treatment, microwave irradiation treatment, and ultraviolet irradiation treatment, and more specifically, oxygen plasma treatment, microwave irradiation treatment, ultraviolet irradiation ozone treatment, or a combination of these treatments is preferably performed.
 〔プラズマ放電処理〕
 本発明の実施において、好ましく用いる事ができるプラズマ処理装置について、以下説明するが、本発明はこれに限定されるものではない。尚、本発明では、プラズマ処理としてはフレームプラズマ処理、コロナ放電処理、大気圧プラズマ処理等を対象とするが、以下、大気圧プラズマ処理をプラズマ処理の代表として取り上げ説明する。
[Plasma discharge treatment]
A plasma processing apparatus that can be preferably used in the practice of the present invention will be described below, but the present invention is not limited to this. In the present invention, as the plasma processing, flame plasma processing, corona discharge processing, atmospheric pressure plasma processing, and the like are targeted. Hereinafter, atmospheric pressure plasma processing will be described as a representative of plasma processing.
 本発明に係るプラズマ処理工程は、大気圧またはそれに近い気圧下において行われる常圧プラズマ処理とすることが、続く塗布工程を速やかに行うことができるなど生産性の観点から好ましい。具体的な圧力としては70kPa~130kPaが好ましく、まったく減圧・加圧を行わない、大気圧であることが最も好ましい。 The plasma treatment step according to the present invention is preferably an atmospheric pressure plasma treatment performed at or near atmospheric pressure from the viewpoint of productivity because the subsequent coating step can be performed quickly. The specific pressure is preferably from 70 kPa to 130 kPa, and most preferably atmospheric pressure without any pressure reduction or pressurization.
 プラズマを発生させるためには、キャリアガスとして不活性ガスの雰囲気下で放電させる必要があるが、ここで不活性ガスとは、周期表の第18属元素、所謂希ガスと呼ばれる、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等や、更には窒素ガス雰囲気下で行うことが好ましく、アルゴンまたはヘリウムが特に好ましく用いられる。ただし、製造コスト的な観点からは窒素ガスを用いることが最も好ましい。 In order to generate plasma, it is necessary to discharge in an atmosphere of an inert gas as a carrier gas. Here, the inert gas refers to a group 18 element of the periodic table, so-called rare gas, helium, neon , Argon, krypton, xenon, radon or the like, and more preferably in a nitrogen gas atmosphere, and argon or helium is particularly preferably used. However, it is most preferable to use nitrogen gas from the viewpoint of manufacturing cost.
 本発明の好ましい態様として、不活性ガスと共に0.01%~30%(体積割合)の反応性ガスを含有させることが好ましく、更に好ましくは0.1%~20%、最も好ましくは1%~15%の反応性ガスを含有させることが本発明の実施においてより好ましい。 As a preferred embodiment of the present invention, it is preferable to contain 0.01% to 30% (volume ratio) of a reactive gas together with an inert gas, more preferably 0.1% to 20%, and most preferably 1% to It is more preferable in the practice of the present invention to contain 15% reactive gas.
 本発明で用いる反応性ガスは複数用いることが可能であるが、少なくとも1種類は、放電空間でプラズマ状態となり、対象物の表面を処理できる成分を含有するものが好ましい。 A plurality of reactive gases used in the present invention can be used, but at least one of them is preferably in a plasma state in the discharge space and containing a component capable of treating the surface of the object.
 反応性ガスの好ましい例としては、酸素、二酸化炭素、窒素(窒素雰囲気の場合を除く)、水素等のガスを含ませてもよい。また、表面を積極的に改質するため、メタン、アンモニア、各種有機金属化合物、フッ素化合物などを反応性ガスとして用いることも本発明において好ましい態様である。 As preferable examples of the reactive gas, a gas such as oxygen, carbon dioxide, nitrogen (except in the case of a nitrogen atmosphere), hydrogen, or the like may be included. Moreover, in order to positively modify the surface, it is also a preferred embodiment in the present invention to use methane, ammonia, various organometallic compounds, fluorine compounds, or the like as the reactive gas.
 本発明においては、上述した反応性ガスの内、酸素ガスを併用することによる酸素プラズマ処理が反応性の観点で最も好ましい。また更に、本発明のアモルファス型金属酸化物微粒子と併用することで、粒子間の固着が促進され、更に好ましい。 In the present invention, oxygen plasma treatment using oxygen gas in combination with the above-described reactive gas is most preferable from the viewpoint of reactivity. Furthermore, by using together with the amorphous metal oxide fine particles of the present invention, adhesion between particles is promoted, which is more preferable.
 大気圧下でプラズマ処理する場合は、開始電圧が上昇するのでこれを抑えるのに、放電極面に誘電体を挟むこと、雰囲気ガスがヘリウム、アルゴンまたは窒素であること、電源として交流や高周波を使用することが好ましい。 When plasma treatment is performed under atmospheric pressure, the starting voltage increases. To suppress this, a dielectric is sandwiched between the discharge electrode surfaces, the atmospheric gas is helium, argon, or nitrogen, and AC or high frequency is used as a power source. It is preferable to use it.
 周波数として、1kHz~1GHzが好ましい。印加する電力は、対象とする試料の組成、表面特性等によっても異なり、条件を最適化する必要があるが、0.01~10W/cmの範囲の電力を用いて0.1秒~数十秒の範囲で放電処理を行う。印加電力が高すぎると、表面の平滑性を損ね、放電による飛散物質汚染等の問題が発生することがあり注意が必要である。 The frequency is preferably 1 kHz to 1 GHz. Power to be applied, the composition of the sample of interest, also depends surface properties such as, it is necessary to optimize the conditions, 0.1 seconds number ~ with power in the range of 0.01 ~ 10 W / cm 2 Discharge treatment is performed in the range of 10 seconds. If the applied power is too high, the smoothness of the surface may be impaired and problems such as contamination of scattered substances due to discharge may occur.
 本発明に用いることのできる大気圧プラズマ処理装置の一例として、図2を用いて説明する。 An example of an atmospheric pressure plasma processing apparatus that can be used in the present invention will be described with reference to FIG.
 図2はフレキシブルなフィルム基材の搬送工程に適用できる、所謂ロールツーロールによるプラズマ処理の装置例である。図2中、大気圧プラズマ処理装置30は、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。 FIG. 2 shows an example of a so-called roll-to-roll plasma processing apparatus that can be applied to a flexible film substrate transport process. In FIG. 2, the atmospheric pressure plasma processing apparatus 30 is an apparatus having an electric field applying means 40 having two power sources, a gas supplying means 50, and an electrode temperature adjusting means 60.
 ロール電極(第1電極)35と複数の角筒型電極(第2電極)36との対向電極間(放電空間)32に、ガス供給手段50から供給された有機金属化合物のガスおよび/または酸素ガスと、例えば窒素のような放電ガスとの混合物Gが供給され、ここで活性化されて、基材F上に導入される。 Organometallic compound gas and / or oxygen supplied from the gas supply means 50 between the opposing electrodes (discharge space) 32 between the roll electrode (first electrode) 35 and the plurality of rectangular tube electrodes (second electrodes) 36. A mixture G of gas and a discharge gas such as nitrogen is supplied, activated here and introduced onto the substrate F.
 ロール回転電極(第1電極)35と角筒型電極(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω1、電界強度V1、電流I1の第1の高周波電界を、また角筒型電極(第2電極)36には第2電源42から周波数ω2、電界強度V2、電流I2の第2の高周波電界をかけるようになっている。 A discharge space (between the counter electrodes) 32 between the roll rotating electrode (first electrode) 35 and the square tube electrode (second electrode) 36 is connected to the roll rotating electrode (first electrode) 35 from the first power source 41. The first high-frequency electric field having the frequency ω1, the electric field strength V1, and the current I1 is supplied to the square tube electrode (second electrode) 36, and the second high-frequency electric field having the frequency ω2, the electric field strength V2, and the current I2 is supplied from the second power source 42. It comes to apply.
 ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型電極(第2電極)36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルタ44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。 A first filter 43 is installed between the roll rotation electrode (first electrode) 35 and the first power supply 41, and the first filter 43 easily passes a current from the first power supply 41 to the first electrode. The current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply is difficult to pass. Further, a second filter 44 is provided between the square tube electrode (second electrode) 36 and the second power source 42, and the second filter 44 is a current from the second power source 42 to the second electrode. It is designed to make it difficult to pass the current from the first power supply 41 to the second power supply by grounding the current from the first power supply 41.
 なお、本発明においては、ロール回転電極35を第2電極、また角筒型電極36を第1電極としてもよい。何れにしても第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V1>V2)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。 In the present invention, the roll rotating electrode 35 may be the second electrode, and the square tube electrode 36 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode. The first power source preferably applies a higher high-frequency electric field strength (V1> V2) than the second power source. Further, the frequency has the ability to satisfy ω1 <ω2.
 また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3~20mA/cm、さらに好ましくは1.0~20mA/cmである。また、第2の高周波電界の電流I2は、好ましくは10~100mA/cm、さらに好ましくは20~100mA/cmである。 The current is preferably I1 <I2. The current I1 of the first high-frequency electric field is preferably 0.3 to 20 mA / cm 2 , more preferably 1.0 to 20 mA / cm 2 . The current I2 of the second high frequency electric field is preferably 10 to 100 mA / cm 2 , more preferably 20 to 100 mA / cm 2 .
 ガス供給手段50において、ガス発生装置51で発生させた反応性ガスGは、流量を制御して給気口52より大気圧プラズマ処理容器31内に導入する。 In the gas supply means 50, the reactive gas G generated by the gas generator 51 is introduced into the atmospheric pressure plasma processing vessel 31 from the air supply port 52 while controlling the flow rate.
 基材Fを、図示されていない元巻きから巻きほぐして搬送されてくるか、または前工程から搬送されてきて、ガイドロール64を経てニップロール65で基材に同伴されてくる空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型電極36との間に移送し、ロール回転電極(第1電極)35と角筒型電極(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより処理される。基材Fは、ニップロール66、ガイドロール67を経て、次工程に移送する。 The base material F is unwound from the original winding (not shown) and conveyed, or is conveyed from the previous process, and the air entrained by the base material by the nip roll 65 via the guide roll 64 is blocked. While being in contact with the roll rotation electrode 35, it is transferred between the roll tube electrode 36 and the square tube electrode 36, and an electric field is generated from both the roll rotation electrode (first electrode) 35 and the square tube electrode (second electrode) 36. Then, discharge plasma is generated between the counter electrodes (discharge space) 32. The substrate F is treated with a plasma state gas while being wound while being in contact with the roll rotating electrode 35. The base material F is transferred to the next process through the nip roll 66 and the guide roll 67.
 放電処理済みの処理排気G′は排気口53より排出する。 The treated exhaust G ′ after the discharge treatment is discharged from the exhaust port 53.
 ロール回転電極(第1電極)35及び角筒型電極(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。 In order to heat or cool the roll rotating electrode (first electrode) 35 and the rectangular tube electrode (second electrode) 36, the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is passed through the pipe 61 by the liquid feed pump P. Send to both electrodes and adjust the temperature from inside the electrodes.
 なお、68及び69は大気圧プラズマ処理容器31と外界とを仕切る仕切板である。 In addition, 68 and 69 are partition plates which partition the atmospheric pressure plasma processing vessel 31 and the outside world.
 図2に示した各角筒型電極36は、円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。更に、図3に図示したように、金属母体36Aの表面に誘電体36Bを被覆して、角筒型電極36aとすることが大気圧下で放電させるためには好ましい。 Each square tube electrode 36 shown in FIG. 2 has an effect of widening the discharge range (discharge area) as compared with the cylindrical electrode, and thus is preferably used in the present invention. Further, as shown in FIG. 3, it is preferable to cover the surface of the metal base 36A with a dielectric 36B to form a rectangular tube electrode 36a for discharging at atmospheric pressure.
 対向する第1電極及び第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属母体表面との最短距離のことを言い、双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。 The distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metal base of the other electrode when a dielectric is provided on one of the electrodes. In other words, when a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces.
 電極間距離は、導電性の金属母体に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1~20mmが好ましく、特に好ましくは0.5~2mmである。 The distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metal matrix, the magnitude of the applied electric field strength, the purpose of using plasma, etc., but in any case, uniform discharge is performed. From the viewpoint, it is preferably 0.1 to 20 mm, particularly preferably 0.5 to 2 mm.
 大気圧プラズマ処理容器31は、パイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたはステンレススティールのフレームの内面にポリイミド樹脂等を張り付けてもよく、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。 The atmospheric pressure plasma processing container 31 is preferably a processing container made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes. For example, polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation.
 以下に、本発明に係る大気圧プラズマ処理装置に適用可能な高周波電源を例示する。 Hereinafter, a high-frequency power source applicable to the atmospheric pressure plasma processing apparatus according to the present invention will be exemplified.
 本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
   メーカー      周波数      製品名
  神鋼電機      3kHz  SPG3-4500
  神鋼電機      5kHz  SPG5-4500
  春日電機     15kHz  AGI-023
  神鋼電機     50kHz  SPG50-4500
  ハイデン研究所 100kHz* PHF-6k
  パール工業   200kHz  CF-2000-200k
  パール工業   400kHz  CF-2000-400k
等の市販のものを挙げることが出来、何れも使用することが出来る。
As the first power source (high frequency power source) installed in the atmospheric pressure plasma discharge processing apparatus of the present invention,
Manufacturer Frequency Product name Shinko Electric 3kHz SPG3-4500
SHINKO ELECTRIC 5kHz SPG5-4500
Kasuga Electric 15kHz AGI-023
Shinko Electric 50kHz SPG50-4500
HEIDEN Research Laboratories 100kHz * PHF-6k
Pearl Industry 200kHz CF-2000-200k
Pearl Industry 400kHz CF-2000-400k
And the like, and any of them can be used.
 また、第2電源(高周波電源)としては、
  メーカー      周波数      製品名
  パール工業   800kHz  CF-2000-800k
  パール工業     2MHz  CF-2000-2M
  パール工業 13.56MHz  CF-5000-13M
  パール工業    27MHz  CF-2000-27M
  パール工業   150MHz  CF-2000-150M
等の市販のものを挙げることが出来、何れも好ましく使用出来る。
As the second power source (high frequency power source),
Manufacturer Frequency Product name Pearl Industry 800kHz CF-2000-800k
Pearl Industry 2MHz CF-2000-2M
Pearl Industry 13.56MHz CF-5000-13M
Pearl Industry 27MHz CF-2000-27M
Pearl Industry 150MHz CF-2000-150M
And the like, and any of them can be preferably used.
 なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。 Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode).
 それ以外は連続サイン波のみ印加可能な高周波電源である。 Other than that, it is a high frequency power supply that can apply only continuous sine wave.
 本発明においては、このような電界を印加して、均一で安定な放電状態を保つことができる電極を大気圧プラズマ処理装置に採用することが好ましい。 In the present invention, it is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma processing apparatus.
 本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、対象となる試料表面を処理する。 In the present invention, the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. The target sample surface is processed.
 第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.2W/cmである。なお、放電面積(cm)は、電極において放電が起こる範囲の面積のことを指す。 The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.2 W / cm 2 . In addition, discharge area (cm < 2 >) points out the area of the range which discharge occurs in an electrode.
 また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることができる。さらに好ましくは5W/cm以上である。また、第1電極に供給する電力の上限値は、好ましくは50W/cmである。 Further, by supplying power (output density) of 1 W / cm 2 or more to the first electrode (first high frequency electric field), the output density is improved while maintaining the uniformity of the second high frequency electric field. be able to. More preferably, it is 5 W / cm 2 or more. Moreover, the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
 これにより、さらなる均一高密度プラズマを生成でき、さらなる処理速度の向上と処理性の向上が両立できる。 This makes it possible to generate further uniform and high-density plasma, and to improve both the processing speed and the processing performance.
 ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより好ましい。 Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, an intermittent oscillation mode called ON / OFF intermittently called a pulse mode, and either of them may be adopted, but at least the second electrode side (second The high frequency electric field is more preferably a continuous sine wave.
 図2に示される大気圧プラズマ処理装置は電極温度調節手段60を有している装置である。 2 is an apparatus having an electrode temperature adjusting means 60. The atmospheric pressure plasma processing apparatus shown in FIG.
 本発明に係るプラズマ放電処理は、反応性の観点からできる限り高温で処理することが好ましいが、本発明においては、基材に対してダメージを与えないように、基材の軟化点以下で処理させることが好ましく、ロール回転電極(第1電極)の好ましい温度範囲としては、50℃以上100℃以下が最も好ましい。 The plasma discharge treatment according to the present invention is preferably performed at a temperature as high as possible from the viewpoint of reactivity, but in the present invention, the treatment is performed below the softening point of the base material so as not to damage the base material. The temperature range of the roll rotating electrode (first electrode) is preferably 50 ° C. or higher and 100 ° C. or lower.
 プラズマの照射時間は基材Fの搬送速度で制御することができ、照射時間に合わせて適宜調整される。好ましい照射時間は0.1秒~100秒であり、更に好ましくは0.2秒~30秒であり、最も好ましくは0.5秒~20秒である。長時間照射するほど本発明の効果を発揮しやすいが、生産性を考慮するとより短時間で処理することが好ましい。 The plasma irradiation time can be controlled by the conveyance speed of the substrate F, and is appropriately adjusted according to the irradiation time. A preferable irradiation time is 0.1 to 100 seconds, more preferably 0.2 to 30 seconds, and most preferably 0.5 to 20 seconds. Although the effect of the present invention is easily exhibited as the irradiation is continued for a long time, it is preferable to process in a shorter time in consideration of productivity.
 〈マイクロ波照射処理〉
 本発明で用いられる好ましいマイクロ波処理としては、0.3GHz~50GHzの周波数を持つマイクロ波を用いることが好ましく、携帯通信で用いられる0.8GHz及び1.5GHz帯、2GHz帯、アマチュア無線、航空機レーダー等で用いられる1.2GHz帯、電子レンジ、構内無線、VICS等で用いられる2.4GHz帯、船舶レーダー等に用いられる3GHz帯、その他ETCの通信に用いられる5.6GHz等は全て電磁波の範疇に入る電磁波等が好ましいが、更に好ましくは、マイクロ波(周波数0.3GHz~50GHz)であることが好ましい。
<Microwave irradiation treatment>
As a preferable microwave processing used in the present invention, it is preferable to use a microwave having a frequency of 0.3 GHz to 50 GHz, and 0.8 GHz and 1.5 GHz band, 2 GHz band, amateur radio, aircraft used in mobile communication. The 1.2 GHz band used for radar, 2.4 GHz band used for microwave ovens, local radio, VICS, 3 GHz band used for ship radar, etc., and 5.6 GHz used for other ETC communications are all electromagnetic waves. An electromagnetic wave or the like that falls within the category is preferable, but a microwave (frequency of 0.3 GHz to 50 GHz) is more preferable.
 最も一般的に用いられるマイクロ波としては、上述した内、2.45GHzのマイクロ波であり、例えば四国計測工業製のマイクロ波反応装置等を用いることで処理することができる。 The most commonly used microwave is 2.45 GHz among the above-mentioned microwaves, and can be processed by using, for example, a microwave reactor manufactured by Shikoku Keiki Kogyo.
 本発明においては更に、上述した金属酸化物微粒子に、電磁波吸収能を有する物質を複合化し、該物質が選択的にマイクロ波を吸収することで、局所的な加熱処理をすることができ、本発明において好ましい態様である。 In the present invention, a substance having electromagnetic wave absorption ability is combined with the metal oxide fine particles described above, and the substance selectively absorbs microwaves, whereby a local heat treatment can be performed. This is a preferred embodiment in the invention.
 マイクロ波照射処理のパワーとしては、300W~800Wが好ましく、より好ましくは400W~600Wである。照射時間は反応性によって任意に選べるが、好ましくは10分以内、より好ましくは2分以内に処理できることが好ましい。また、基材へのダメージを低減させるために、マイクロ波照射は間欠に行っても良く、その場合は照射を行っている総照射時間で処理することが好ましい。 The power of the microwave irradiation treatment is preferably 300 W to 800 W, more preferably 400 W to 600 W. The irradiation time can be arbitrarily selected depending on the reactivity, but preferably it can be processed within 10 minutes, more preferably within 2 minutes. Moreover, in order to reduce the damage to a base material, you may perform a microwave irradiation intermittently, In that case, it is preferable to process by the total irradiation time which has irradiated.
 前記の電磁波吸収能を持つ物質(電磁波を吸収する物質)は、前述した金属酸化物微粒子と同様に、光散乱を起こさない十分小さな粒子径の微粒子であることが更に好ましい。ミー散乱に代表される光散乱を抑える観点から、平均径は1~100nmの微粒子が好ましく、1nm~50nmの径が更に好ましい。 The substance having the ability to absorb electromagnetic waves (substance that absorbs electromagnetic waves) is more preferably fine particles having a sufficiently small particle diameter that does not cause light scattering, like the metal oxide fine particles described above. From the viewpoint of suppressing light scattering typified by Mie scattering, fine particles having an average diameter of 1 to 100 nm are preferable, and diameters of 1 nm to 50 nm are more preferable.
 上述した電磁波吸収能を持つ物質は、照射された電磁波を吸収し熱変換することで、当該物質自身が発熱して熱源となるため、基材にダメージを与えないように、誘電損失または抵抗損失が大きく効率よく発熱し、局所的な加熱が可能な材料を用いることが好ましい。 The above-mentioned substance having electromagnetic wave absorbing ability absorbs the irradiated electromagnetic wave and converts it into heat, so that the substance itself generates heat and becomes a heat source, so that dielectric loss or resistance loss is taken so as not to damage the substrate. It is preferable to use a material that is large and efficiently generates heat and can be locally heated.
 電磁波吸収能を持つ材料としては、金属酸化物または金属が好ましい。 As the material having electromagnetic wave absorbing ability, metal oxide or metal is preferable.
 金属酸化物としては、銅、ニッケル、亜鉛、錫、インジウムの酸化物が好ましい。また、酸素の存在下で電磁波を照射することにより酸化して金属酸化物となる場合には、金属原子を含む、金属塩、ハロゲン化物、有機金属化合物を用いることもできる。金属塩、金属酸化物、有機金属化合物、ハロゲン金属化合物、金属水素化合物の金属としては、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げることができる。それらのうち、銅、ニッケル、Zn(亜鉛)、Sn(錫)、In(インジウム)、のいずれかを含むことが好ましく、それらを併用して混合してもよい。 The metal oxide is preferably an oxide of copper, nickel, zinc, tin, or indium. In the case where a metal oxide is oxidized by irradiation with electromagnetic waves in the presence of oxygen, a metal salt, halide, or organometallic compound containing a metal atom can also be used. Metals of metal salts, metal oxides, organometallic compounds, halogen metal compounds, metal hydrides include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl , Pb, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like. Among them, it is preferable to contain any of copper, nickel, Zn (zinc), Sn (tin), and In (indium), and they may be used in combination.
 本発明で好ましく用いることができる電磁波吸収能を持つ金属としては、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等を用いることができる。 Examples of the metal having electromagnetic wave absorbing ability that can be preferably used in the present invention include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, Aluminum, ruthenium, germanium, molybdenum, tungsten, tin oxide / antimony, indium tin oxide (ITO), fluorine doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and carbon paste, lithium, beryllium, sodium, magnesium , Potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium / copper mixture, magnesium / Mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, can be used lithium / aluminum mixtures.
 〈紫外線照射処理〉
 本発明で好ましく用いることができる外部刺激処理として、紫外線照射処理を挙げることができる。紫外線照射の方法は、高圧水銀ランプ、キセノンランプ、重水素ランプ、LEDランプなど如何なる装置を用いても良いが、好ましくは紫外線の光の波長が150~400nm程度の光を照射できる装置を用いることが好ましく、より好ましくは、185~365nmの紫外光を照射できる装置が好ましい。
<Ultraviolet irradiation treatment>
Examples of the external stimulus treatment that can be preferably used in the present invention include an ultraviolet irradiation treatment. The ultraviolet irradiation method may be any device such as a high-pressure mercury lamp, a xenon lamp, a deuterium lamp, or an LED lamp, but preferably a device capable of irradiating light with a wavelength of ultraviolet light of about 150 to 400 nm is used. An apparatus capable of irradiating ultraviolet light of 185 to 365 nm is more preferable.
 紫外光照射と同時に、酸素が存在する雰囲気下で処理することで、紫外光により発生するオゾンが、過酸化された活性微粒子間の固着を促す効果があり、更に好ましい態様である。好ましい酸素濃度は、18~50%であり、より好ましくは20~30%である。 By treating in an atmosphere where oxygen is present simultaneously with ultraviolet light irradiation, ozone generated by ultraviolet light has an effect of promoting adhesion between peroxidized active fine particles, which is a more preferable embodiment. The preferable oxygen concentration is 18 to 50%, more preferably 20 to 30%.
 上述する照射処理では、紫外光照射とともにオゾンに暴露させ処理を行う。処理時間は1~30分が好ましく、より好ましくは2~15分程度である。 In the irradiation treatment described above, the treatment is performed by exposing to ozone together with ultraviolet light irradiation. The treatment time is preferably 1 to 30 minutes, more preferably about 2 to 15 minutes.
 〈加熱処理〉
 加熱処理としては、オーブンやホットプレートを用いる方法が上げられるが、樹脂基材を劣化させない温度での処理が必要であることから、加熱温度としては、110℃以上200℃以下であることが好ましく、さらに110℃以上150℃以下が好ましい。また、本発明において樹脂基材を劣化させない温度での加熱処理により、金属酸化物微粒子の集合体による凹凸構造を形成するためには、金属酸化物微粒子間の固着を促進させる化合物を用いることが好ましい。
<Heat treatment>
As the heat treatment, a method using an oven or a hot plate can be raised, but since a treatment at a temperature that does not deteriorate the resin base material is required, the heating temperature is preferably 110 ° C. or higher and 200 ° C. or lower. Furthermore, 110 degreeC or more and 150 degrees C or less are preferable. In addition, in the present invention, in order to form an uneven structure by an aggregate of metal oxide fine particles by heat treatment at a temperature that does not deteriorate the resin base material, a compound that promotes adhesion between the metal oxide fine particles should be used. preferable.
 加熱による金属酸化物微粒子間の固着を促進させる化合物としては、例えば一般式〔I〕で表されるウレア系化合物が好ましく使用できる。 As a compound that promotes adhesion between metal oxide fine particles by heating, for example, a urea compound represented by the general formula [I] can be preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記一般式〔I〕において、R、Rはアルキル基、アルケニル基、アリール基、ポリオキシアルキレン鎖を有する基、またポリエステル鎖を有する基を、R、Rはそれぞれ水素原子またはアルキル基を表す。R、Rはアルキレン基、アルケニレン基、アリーレン基、ポリエステル鎖を有する2価の基、また、ポリオキシアルキレン鎖を有する2価の基を表し、またnは1以上の整数を表す。R、Rの少なくとも1つはポリ(オキシアルキレン)鎖を有する2価の基である。また、R、Rの少なくとも1つがポリ(オキシアルキレン)鎖を有する場合、RまたはRのいずれかはポリオキシアルキレン鎖を有する基であることが好ましい。また、R、Rのうち1つは単なる結合手であってもよい。 In the general formula [I], R 1 and R 6 are an alkyl group, an alkenyl group, an aryl group, a group having a polyoxyalkylene chain, and a group having a polyester chain, and R 3 and R 4 are a hydrogen atom or an alkyl group, respectively. Represents a group. R 2 and R 5 represent an alkylene group, an alkenylene group, an arylene group, a divalent group having a polyester chain, or a divalent group having a polyoxyalkylene chain, and n represents an integer of 1 or more. At least one of R 2 and R 5 is a divalent group having a poly (oxyalkylene) chain. When at least one of R 2 and R 5 has a poly (oxyalkylene) chain, either R 1 or R 6 is preferably a group having a polyoxyalkylene chain. One of R 2 and R 5 may be a simple bond.
 R、Rで表される、アルキル基、アルケニル基としては、炭素原子数1~30のアルキル基、アルケニル基を、好ましくは炭素原子数18以下のアルキル基、アルケニル基であり、より好ましいのは炭素原子数8以下のアルキル基、アルケニル基である。また、アリール基として好ましいのはフェニル基である。 The alkyl group or alkenyl group represented by R 1 or R 6 is preferably an alkyl group or alkenyl group having 1 to 30 carbon atoms, preferably an alkyl group or alkenyl group having 18 or less carbon atoms, more preferably. Is an alkyl group or alkenyl group having 8 or less carbon atoms. Also preferred as the aryl group is a phenyl group.
 これらの基はまた任意に置換されていてもよい。 These groups may also be optionally substituted.
 代表的な置換基としては、特に制限はなく、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、デシル基、ドデシル基等)、シクロアルキル基(例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、1-プロペニル基、ブテニル基、アリル基等)、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロ環基(例えば、フリル基、チエニル基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、沃素原子)、シアノ基、ヒドロキシル基、カルボキシル基、アルコキシ基(例えば前述のアルキル基と酸素原子を組み合わせてできるアルコキシ基)、アリールオキシ基(アリール基としては前述のアリール基として挙げたものと同義)、ヘテロ環オキシ基(ヘテロ環としては前述のヘテロ環基として挙げたものと同義)、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基(アルコキシ部位は前述のアルコキシ基と同義)、アリールオキシカルボニルオキシ基(アリール部位は前述のアリール基と同義)、アミノ基、アルキルおよびアリールアミノ基(アルキル部位、アリール部位としてはそれぞれ前述のアルキル基、アリール基として挙げたものと同義)、アニリノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基(アルコキシ部位は前述のアルコキシ基と同義)、アリールオキシカルボニルアミノ基(アリール部位は前述のアリール基として挙げたものと同義)、スルファモイルアミノ基、アルキルおよびアリールスルホニルアミノ基(アルキル部位、アリール部位としてはそれぞれ前述のアルキル基、アリール基として挙げたものと同義)、スルファモイル基、スルホ基、アルキルおよびアリールスルフィニル基、アルキルおよびアリールスルホニル基(アルキル部位、アリール部位としてはそれぞれ前述のアルキル基、アリール基として挙げたものと同義)、アシル基、アリールオキシカルボニル基(アリール部位は前述のアリール基として挙げたものと同義)、アルコキシカルボニル基(アルコキシ部位は前述のアルコキシ基と同義)、カルバモイル基、イミド基、ウレイド基、ボロン酸基、ホスファト基、スルファト基、等、またその他公知の置換基が挙げられる。 The typical substituent is not particularly limited, and may be an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, decyl group, dodecyl group, etc.), cycloalkyl group (for example, cyclohexane). Propyl group, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, 1-propenyl group, butenyl group, allyl group etc.), aryl group (eg phenyl group, naphthyl group etc.), heterocyclic group (eg , Furyl group, thienyl group, etc.), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, hydroxyl group, carboxyl group, alkoxy group (for example, alkoxy formed by combining the aforementioned alkyl group and oxygen atom) Group), an aryloxy group (the aryl group has the same meaning as the above-mentioned aryl group) A heterocyclic oxy group (the heterocyclic ring is as defined above for the heterocyclic group), an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group (the alkoxy moiety is as defined above for the alkoxy group), aryloxycarbonyloxy Groups (the aryl moiety is as defined above for the aryl group), amino groups, alkyl and arylamino groups (the alkyl moiety and the aryl moiety are as defined above for the alkyl group and aryl group, respectively), anilino group, and acylamino group , Aminocarbonylamino group, alkoxycarbonylamino group (alkoxy moiety is as defined above for alkoxy group), aryloxycarbonylamino group (aryl moiety is as defined for aryl group as described above), sulfamoylamino group, alkyl And Ally Sulfonylamino group (the alkyl moiety and aryl moiety are as defined above for alkyl group and aryl group, respectively), sulfamoyl group, sulfo group, alkyl and arylsulfinyl group, alkyl and arylsulfonyl group (alkyl moiety, aryl moiety) Are as defined above for the alkyl group and aryl group), acyl group, aryloxycarbonyl group (wherein the aryl moiety is as defined above for the aryl group), and alkoxycarbonyl group (where the alkoxy moiety is as described above). Synonymous with alkoxy group), carbamoyl group, imide group, ureido group, boronic acid group, phosphato group, sulfato group, and other known substituents.
 置換基としては、カルボキシル基、アリールオキシカルボニル基、アルコキシカルボニル基等が好ましい置換基として挙げられる。 Examples of the substituent include a carboxyl group, an aryloxycarbonyl group, an alkoxycarbonyl group, and the like.
 また、これらの置換基は複数個置換していてもよい。 Moreover, a plurality of these substituents may be substituted.
 R、Rで表される、ポリ(オキシアルキレン)鎖を有する基とは、例えば、
-(R″O)-R′
で表される基であり、ここにおいてR″は、炭素原子数2~4のアルキレン基、好ましくはエチレン、プロピレン等の基である。また、R′は水素原子或いは炭素原子数1~30のアルキル基、アルケニル基、また炭素原子数10以下のアリール基、また、炭素原子数22以下のアシル基、例えば、アセチル基、プロピオニル基等を、また、ベンゾイル基等を表す。また、mは1~16、好ましくは3~10の整数を表す。
Examples of the group represented by R 1 or R 6 and having a poly (oxyalkylene) chain include:
-(R "O) m -R '
Wherein R ″ is an alkylene group having 2 to 4 carbon atoms, preferably a group such as ethylene or propylene. R ′ is a hydrogen atom or a group having 1 to 30 carbon atoms. An alkyl group, an alkenyl group, an aryl group having 10 or less carbon atoms, an acyl group having 22 or less carbon atoms, such as an acetyl group or a propionyl group, and a benzoyl group, etc. m represents 1. Represents an integer of ˜16, preferably 3˜10.
 R′で表されるアルキル基、アルケニル基、アリール基、またアシル基は、それぞれ置換基を有していてもよく、置換基としては、前記の置換基が挙げられる。また、これらは複数個置換していてもよい。特に、カルボキシル基、アリールオキシカルボニル基、アルコキシカルボニル基等が好ましい置換基として挙げられる。 The alkyl group, alkenyl group, aryl group and acyl group represented by R ′ may each have a substituent, and examples of the substituent include the above-described substituents. A plurality of these may be substituted. In particular, preferred examples of the substituent include a carboxyl group, an aryloxycarbonyl group, and an alkoxycarbonyl group.
 R、Rで表される、ポリエステル鎖を有する基とは、エステル構造単位をその骨格中に有する一価の基であれば特に限定はない。ポリエステル鎖を有する基は、エステル構造単位をその中に1個以上10個程度有するものが好ましい。エステル構造単位としては、例えば、炭素原子数1~8のアルカンジオールと炭素原子数1~10のアルカンジカルボン酸またはベンゼンジカルボン酸(フタル酸)とのエステルからなる構造単位が好ましい。とからなるエステルが好ましい。例えば、エチレングリコールとコハク酸から構成されるエステル構造単位等が挙げられる。 The group having a polyester chain represented by R 1 and R 6 is not particularly limited as long as it is a monovalent group having an ester structural unit in its skeleton. The group having a polyester chain preferably has about 1 to about 10 ester structural units. As the ester structural unit, for example, a structural unit comprising an ester of an alkanediol having 1 to 8 carbon atoms and an alkanedicarboxylic acid or benzenedicarboxylic acid (phthalic acid) having 1 to 10 carbon atoms is preferable. An ester consisting of For example, an ester structural unit composed of ethylene glycol and succinic acid can be used.
 また、R、Rで表される、アルキレン基、アルケニレン基としては、それぞれ炭素原子数1~30のアルキレン基、アルケニレン基が挙げられ、炭素原子数1~18のアルキレン基、アルケニレン基が、更には炭素原子数1~8のアルキレン基、アルケニレン基が好ましい。これらは置換基を有していてもよい。また、アリーレン基としては、代表的には、フェニレン基が挙げられ、置換基を有していてもよい。これらの置換基としては前記の置換基が挙げられる。 Examples of the alkylene group and alkenylene group represented by R 2 and R 5 include an alkylene group and alkenylene group having 1 to 30 carbon atoms, respectively. An alkylene group and alkenylene group having 1 to 18 carbon atoms are exemplified. Further, an alkylene group having 1 to 8 carbon atoms and an alkenylene group are preferable. These may have a substituent. Moreover, as an arylene group, a phenylene group is mentioned typically and you may have a substituent. Examples of these substituents include those described above.
 また、R、Rで表される、ポリ(オキシアルキレン)鎖を有する2価の基としては、ポリ(オキシアルキレン)鎖を含む任意の基であって、ポリ(オキシアルキレン)構造単位がRおよび尿素構造単位の窒素原子と、またRおよび尿素構造単位の窒素原子と直接あるいは他の任意の二価の基を介して結合可能であればよい。二価の基としては、例えば、アルキレン基(炭素原子数1~22)、アリーレン基(例えばフェニレン基)、また、イミノ基、カルボニル基等の基が好ましく挙げられる。 The divalent group having a poly (oxyalkylene) chain represented by R 2 and R 5 is an arbitrary group containing a poly (oxyalkylene) chain, and the poly (oxyalkylene) structural unit is and the nitrogen atom of R 1 and urea structural units, and may, if possible attached via any divalent group directly or other nitrogen atoms of R 6 and urea structural units. Preferred examples of the divalent group include groups such as an alkylene group (having 1 to 22 carbon atoms), an arylene group (eg, a phenylene group), an imino group, and a carbonyl group.
 R、Rで表される、ポリ(オキシアルキレン)鎖を有する2価の基として好ましくは、例えば、
-(R″O)
で表される2価の基が挙げられ、R″については前記同様、炭素原子数2~4のアルキレン基、好ましくはエチレン、プロピレン等の基が挙げられる。また、ここで、mは、0~16、好ましくは3~10の整数を表す。
The divalent group having a poly (oxyalkylene) chain represented by R 2 and R 5 is preferably, for example,
-(R "O) m-
In the same manner as described above, R ″ is an alkylene group having 2 to 4 carbon atoms, preferably a group such as ethylene, propylene, etc. In addition, m is 0 Represents an integer of ˜16, preferably 3˜10.
 また、R、Rで表される、ポリエステル鎖を有する2価の基としては、それぞれエステル構造単位をその骨格中に有する2価の基であれば限定はなく、エステル構造単位が1個以上10個程度まで有する基であれば好ましい。ポリエステル構造単位は、Rおよび尿素構造単位の窒素原子と、また、Rおよび尿素構造単位の窒素原子と直接あるいは他の任意の二価の基を介して結合可能であればよい。ポリエステル構造単位としては、炭素原子数1~8のアルカンジオールと炭素原子数1~10のアルカンジカルボン酸又はベンゼンジカルボン酸(フタル酸)とのエステルからなる構造単位が好ましい。 The divalent group having a polyester chain represented by R 2 and R 5 is not limited as long as it is a divalent group having an ester structural unit in its skeleton, and one ester structural unit is present. A group having about 10 or more is preferable. The polyester structural unit may be bonded to the nitrogen atom of R 1 and the urea structural unit, and to the nitrogen atom of R 6 and the urea structural unit directly or through any other divalent group. The polyester structural unit is preferably a structural unit comprising an ester of an alkanediol having 1 to 8 carbon atoms and an alkanedicarboxylic acid or benzenedicarboxylic acid (phthalic acid) having 1 to 10 carbon atoms.
 これらR、Rで表される二価の基は、また、以上に挙げられた二価の基が連結して構成されてもよい。 These divalent groups represented by R 2 and R 5 may be formed by linking the divalent groups listed above.
 これらR、Rで表される基はそれぞれ異なっていてもよい。 These groups represented by R 2 and R 5 may be different from each other.
 R、Rは、それぞれ水素原子またはアルキル基を表すが、アルキル基としては炭素原子数1~6のアルキル基が挙げられる。好ましいのは水素原子である。 R 3 and R 4 each represent a hydrogen atom or an alkyl group, and examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms. Preferred is a hydrogen atom.
 また、R、R、またR、Rそれぞれの炭素原子数については、2~30の範囲が好ましく、4~18が更に好ましく、5~15が最も好ましい。 Further, the number of carbon atoms of each of R 1 , R 6 , R 3 and R 5 is preferably in the range of 2 to 30, more preferably 4 to 18, and most preferably 5 to 15.
 例えば末端基R、Rが同様の構造である場合でも、これらの炭素数は任意に異なってもよい。 For example, even when the terminal groups R 1 and R 6 have the same structure, these carbon numbers may be arbitrarily different.
 これらR、R、またR、Rで表される基は、前記一般式〔I〕で表される化合物が、金属酸化物微粒子分散液の溶媒に溶解すれば特に限定されることはないが、それぞれが任意に独立の構造を有することができる。これらの中でも、末端基R、Rは同じ構造単位を有することが好ましく、また、末端基R、Rと連結基R、Rが同じ構造単位を有することが更に好ましい。 The groups represented by R 1 , R 6 , and R 3 , R 5 are particularly limited as long as the compound represented by the general formula [I] is dissolved in the solvent of the metal oxide fine particle dispersion. Each can optionally have an independent structure. Among these, the terminal groups R 1 and R 6 preferably have the same structural unit, and the terminal groups R 1 and R 6 and the linking groups R 2 and R 5 more preferably have the same structural unit.
 また、R、Rのうち少なくとも1つはポリ(オキシアルキレン)鎖(或いはポリ(アルキレンオキシ)鎖)を有する構造であることが好ましく、更に、末端基R、Rの少なくとも1つと、R、Rの少なくとも1つがポリ(オキシアルキレン)鎖を共に有することが更に好ましい。最も好ましいのは、末端基R、Rと連結基であるRまたはRがポリ(オキシアルキレン)鎖(構造単位)を有することである。 It is preferable that at least one of R 1, R 6 is a structure having the poly (oxyalkylene) chain (or poly (alkyleneoxy) chain), further, at least one of the end groups R 1, R 6 More preferably, at least one of R 3 and R 5 has a poly (oxyalkylene) chain. Most preferably, the terminal groups R 1 and R 6 and the linking group R 2 or R 5 have a poly (oxyalkylene) chain (structural unit).
 また、一般式〔I〕中、nは1以上の整数を表し、具体的にはnは1以上1000以下を用いることが可能であるが、1以上100以下が好ましく、1以上50以下が更に好ましく、1以上10以下が最も好ましい。 In general formula [I], n represents an integer of 1 or more. Specifically, n can be 1 or more and 1000 or less, preferably 1 or more and 100 or less, and more preferably 1 or more and 50 or less. 1 or more and 10 or less are most preferable.
 次に、一般式〔I〕で表される化合物の具体的代表例を示すが、本発明はこれに限定されるものではない。 Next, specific representative examples of the compound represented by the general formula [I] are shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 これらの化合物は、公知の方法により調製することができる。 These compounds can be prepared by known methods.
 これら一般式〔I〕で表されるウレア系化合物の含有量としては特に限定は無いが、この化合物は少量でも効果を有しており、低温における焼失性、膜物性の観点から、比較的少量にて適用することが好ましい。具体的には、金属酸化物粒子に対して100質量%以下であることが好ましく、10質量%以上50質量%以下であることが更に好ましい。また、塗布液全体に対しては、20質量%以下であることが好ましく、1質量%以上10質量%以下であることが更に好ましい。 The content of the urea compound represented by the general formula [I] is not particularly limited, but this compound is effective even in a small amount, and is relatively small in terms of burnout at low temperatures and film properties. It is preferable to apply at. Specifically, it is preferably 100% by mass or less, more preferably 10% by mass or more and 50% by mass or less, based on the metal oxide particles. Moreover, it is preferable that it is 20 mass% or less with respect to the whole coating liquid, and it is still more preferable that it is 1 mass% or more and 10 mass% or less.
 本発明において、上記の通り形成されたシート状構造体は、面発光体の構成部材として使用することができる。本発明のシート状構造体が使用される場所は、面発光体の光取り出し効率が向上すればどこでも良く、例えば、液晶バックライト用の拡散フィルム、有機EL素子等の透明基板、有機ELやLED等の面発光素子の出射側表面に貼合する光取り出しシートとして使用できるが、特に透明基板、光取り出しシートとして使用されることが好ましい。 In the present invention, the sheet-like structure formed as described above can be used as a constituent member of a surface light emitter. The place where the sheet-like structure of the present invention is used may be anywhere as long as the light extraction efficiency of the surface light emitter is improved. For example, a diffusion film for a liquid crystal backlight, a transparent substrate such as an organic EL element, an organic EL or an LED It can be used as a light extraction sheet to be bonded to the emission side surface of a surface light emitting element such as a transparent substrate or a light extraction sheet.
 本発明のシート状構造体を透明基板として使用する場合には、凹凸構造を形成した面を発光側、出射側どちらの面に使用しても良く、例えば、微細な凹凸構造側に有機EL素子のような薄膜発光層を形成する場合には、凹凸構造の上にハードコート材料等の樹脂層を形成して平滑化して使用することもできる。 When the sheet-like structure of the present invention is used as a transparent substrate, the surface on which the concavo-convex structure is formed may be used on either the light-emitting side or the emission side. For example, an organic EL element on the fine concavo-convex structure side In the case of forming such a thin-film light emitting layer, a resin layer such as a hard coat material can be formed on the concavo-convex structure and smoothed for use.
 一方、本発明のシート状構造体を面発光素子の出射側表面に貼合し、光取り出しシートとして使用する場合においても、本発明のシート状構造体のどちらの面を面発光素子側にしても良く、オイルや接着剤を用いて密着させて使用することも、わざと空気を混入させて使用することもできる。 On the other hand, even when the sheet-like structure of the present invention is bonded to the surface on the emission side of the surface light emitting element and used as a light extraction sheet, either side of the sheet-like structure of the present invention is set to the surface light emitting element side. It can be used in close contact with oil or adhesive, or it can be used by intentionally mixing air.
 以下に本発明の面発光体の一例である有機EL素子の実施形態を詳細に説明するが、以下に記載する内容は、本発明の実施態様の代表例であり、本発明はその要旨を超えない限り、これらの内容に限定されない。 Embodiments of an organic EL device which is an example of a surface light emitter of the present invention will be described in detail below, but the contents described below are representative examples of embodiments of the present invention, and the present invention exceeds the gist thereof. As long as there is no, it is not limited to these contents.
 〔有機EL素子〕
 有機EL素子の層構成の好ましい具体例を以下に示す。
[Organic EL device]
Preferred specific examples of the layer structure of the organic EL element are shown below.
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 ここで、発光層は、少なくとも発光色の異なる2種以上の発光材料を含有していることが好ましく、単層でも複数の発光層からなる発光層ユニットを形成していてもよい。また、正孔輸送層には正孔注入層、電子阻止層も含まれる。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode Here, the light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer comprising a plurality of light emitting layers A unit may be formed. The hole transport layer also includes a hole injection layer and an electron blocking layer.
 《発光層》
 発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer.
 本発明に係る発光層は、含まれる発光材料が前記要件を満たしていれば、その構成には特に制限はない。 The structure of the light emitting layer according to the present invention is not particularly limited as long as the contained light emitting material satisfies the above requirements.
 また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。 Also, there may be a plurality of layers having the same emission spectrum or emission maximum wavelength.
 各発光層間には非発光性の中間層を有していることが好ましい。 It is preferable to have a non-light emitting intermediate layer between each light emitting layer.
 発光層の膜厚の総和は1~100nmの範囲にあることが好ましく、更に好ましくは、より低い駆動電圧を得ることができることから30nm以下である。なお、発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。 The total film thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained. Note that the total film thickness of the light emitting layer is a film thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers.
 個々の発光層の膜厚としては1~50nmの範囲に調整することが好ましく、更に好ましくは1~20nmの範囲に調整することである。青、緑、赤の各発光層の膜厚の関係については、特に制限はない。 The film thickness of each light emitting layer is preferably adjusted in the range of 1 to 50 nm, more preferably in the range of 1 to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.
 発光層の作製には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。 For the production of the light emitting layer, a light emitting material or a host compound, which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.
 各発光層には複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料を同一発光層中に混合して用いてもよい。 A plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
 本発明においては、発光層の構成として、ホスト化合物、発光材料(発光ドーパント化合物ともいう)を含有し、発光材料より発光させることが好ましい。 In the present invention, the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
 本発明に係る有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。更に好ましくは燐光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。 As the host compound contained in the light emitting layer of the organic EL device according to the present invention, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of luminescent material mentioned later, and can thereby obtain arbitrary luminescent colors.
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。 The host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 Specific examples of known host compounds include compounds described in the following documents. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
 次に、発光材料について説明する。 Next, the light emitting material will be described.
 発光材料としては、蛍光性化合物、燐光発光材料(燐光性化合物、燐光発光性化合物等ともいう)を用いる。 As the light-emitting material, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) is used.
 燐光発光材料とは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。 A phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent material emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 0.01 or more at 25 ° C. Although defined as a compound, the preferred phosphorescence quantum yield is 0.1 or more.
 上記燐光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光材料を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Lecture 4 of the 4th edition. The phosphorescence quantum yield in a solution can be measured using various solvents. However, when a phosphorescent material is used in the present invention, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
 燐光発光材料の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光材料に移動させることで燐光発光材料からの発光を得るというエネルギー移動型、もう一つは燐光発光材料がキャリアトラップとなり、燐光発光材料上でキャリアの再結合が起こり燐光発光材料からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光材料の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent material. In principle, the carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent material. Energy transfer type to obtain light emission from the phosphorescent light emitting material, and another one is that the phosphorescent light emitting material becomes a carrier trap, and recombination of carriers occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent material is required to be lower than the excited state energy of the host compound.
 燐光発光材料は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
 有機EL素子には、蛍光発光体を用いることもできる。蛍光発光体(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。 Fluorescent light emitters can also be used for the organic EL elements. Representative examples of fluorescent emitters (fluorescent dopants) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第00/70655号パンフレット、特開2002-280178号公報、同2001-181616号公報、同2002-280179号公報、同2001-181617号公報、同2002-280180号公報、同2001-247859号公報、同2002-299060号公報、同2001-313178号公報、同2002-302671号公報、同2001-345183号公報、同2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、同2002-50484号公報、同2002-332292号公報、同2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、同2002-338588号公報、同2002-170684号公報、同2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、同2002-100476号公報、同2002-173674号公報、同2002-359082号公報、同2002-175884号公報、同2002-363552号公報、同2002-184582号公報、同2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、同2002-226495号公報、同2002-234894号公報、同2002-235076号公報、同2002-241751号公報、同2001-319779号公報、同2001-319780号公報、同2002-62824号公報、同2002-100474号公報、同2002-203679号公報、同2002-343572号公報、同2002-203678号公報等が挙げられる。 Conventionally known dopants can also be used in the present invention. For example, International Publication No. 00/70655 pamphlet, JP-A Nos. 2002-280178, 2001-181616, 2002-280179, 2001 -181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, International Publication No. 02/15645, JP 2002-332291, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No. 2002-359082, No. 2002-17584, No. 2002-363552, No. 2002-184582, No. 2003-7469, No. 2002-525808. JP2003-7471, JP2002-525833A, JP2003-31366A, 2002-226495, 2002-234894, 2002-233506, 2002-2417. No. 1, No. 2001-319779, No. 2001-319780, No. 2002-62824, No. 2002-1000047, No. 2002-203679, No. 2002-343572, No. 2002-203678. Gazettes and the like.
 本発明においては、少なくとも一つの発光層に2種以上の発光材料を含有していてもよく、発光層における発光材料の濃度比が発光層の厚さ方向で変化していてもよい。 In the present invention, at least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.
 《中間層》
 各発光層間に非発光性の中間層(非ドープ領域等ともいう)を設ける場合について説明する。
《Middle layer》
A case where a non-light emitting intermediate layer (also referred to as an undoped region or the like) is provided between the light emitting layers will be described.
 非発光性の中間層とは、複数の発光層を有する場合、その発光層間に設けられる層である。 In the case of having a plurality of light emitting layers, the non-light emitting intermediate layer is a layer provided between the light emitting layers.
 非発光性の中間層の膜厚としては1~20nmの範囲にあるのが好ましく、更には3~10nmの範囲にあることが隣接発光層間のエネルギー移動等相互作用を抑制し、且つ素子の電流電圧特性に大きな負荷を与えないということから好ましい。 The film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 20 nm, and more preferably in the range of 3 to 10 nm to suppress interaction such as energy transfer between adjacent light emitting layers, and This is preferable because a large load is not applied to the voltage characteristics.
 この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。 The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
 非発光性の中間層は非発光層、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層-非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。更に、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。 The non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Including the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, and the case where the molecular structure of the host compound is the same, etc.) The barrier is reduced, and the effect of easily maintaining the injection balance of holes and electrons even when the voltage (current) is changed can be obtained. Furthermore, by using a host material having the same physical characteristics or the same molecular structure as the host compound contained in each light-emitting layer in the undoped light-emitting layer, device fabrication, which is a major problem in conventional organic EL device fabrication, is achieved. Complexity can also be eliminated.
 ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすいため、中間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ましい。 Since the host material is responsible for carrier transportation, a material having carrier transportation ability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
 また、一方では正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は後述する阻止層、即ち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。 On the other hand, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and their forefront of industrialization” (published by NTT Corporation on November 30, 1998). There is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 In a broad sense, the hole blocking layer has a function of an electron transport layer and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては好ましくは3~100nmであり、更に好ましくは5~30nmである。 On the other hand, the electron blocking layer, in a broad sense, has a function of a hole transport layer, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
 《正孔輸送層》
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 It is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be manufactured.
 《電子輸送層》
 電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Further, the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《対向電極》
 対向電極としては、前記透明導電層に対向する電極をいう。本発明においては、透明導電層を主に陽極として使用するため、対向電極としては以下に示す陰極を用いることができる。陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
《Counter electrode》
The counter electrode is an electrode facing the transparent conductive layer. In the present invention, since the transparent conductive layer is mainly used as an anode, the following cathode can be used as the counter electrode. As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the cathode after the metal is produced with a thickness of 1 nm to 20 nm on the cathode. An element in which both the anode and the cathode are transmissive can be manufactured.
 〔有機EL素子の作製方法〕
 有機EL素子は、透明基材上に透明導電層、有機エレクトロルミネッセンス層、対向電極を順次形成することにより作製できる。
[Method for producing organic EL element]
An organic EL element can be produced by sequentially forming a transparent conductive layer, an organic electroluminescence layer, and a counter electrode on a transparent substrate.
 《透明導電層の形成》
 透明基材上に、所望の電極物質を用いて透明導電層を形成することができる。例えば、電極物質としてITO(すずを添加した酸化インジウム)を用いる場合には、蒸着やスパッタリング等の方法により透明導電層を形成することができる。また、金属ナノワイヤや導電性ポリマーあるいは透明導電性金属酸化物を含む材料を、塗布法や印刷法などの液相成膜法を用いて透明導電層を形成することもできる。
<< Formation of transparent conductive layer >>
A transparent conductive layer can be formed on a transparent substrate using a desired electrode material. For example, when ITO (indium oxide added with tin) is used as the electrode material, the transparent conductive layer can be formed by a method such as vapor deposition or sputtering. In addition, a transparent conductive layer can be formed from a material containing metal nanowires, a conductive polymer, or a transparent conductive metal oxide by a liquid phase film forming method such as a coating method or a printing method.
 生産性の改善、平滑性や均一性などの電極品質の向上、環境負荷軽減の観点から、金属ナノワイヤを含有する透明導電層を塗布法や印刷法などの液相成膜法により形成することが好ましい。塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法などを用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法などを用いることができる。なお、必要に応じて、密着性・塗工性を向上させるための予備処理として、離型性基材表面にコロナ放電処理、プラズマ放電処理などの物理的表面処理を施すことができる。 From the viewpoint of improving productivity, improving electrode quality such as smoothness and uniformity, and reducing environmental impact, it is possible to form a transparent conductive layer containing metal nanowires by a liquid phase film-forming method such as a coating method or a printing method. preferable. As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used. As the printing method, a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used. In addition, as necessary, physical surface treatment such as corona discharge treatment or plasma discharge treatment can be applied to the surface of the releasable substrate as a preliminary treatment for improving the adhesion and coating properties.
 《有機エレクトロルミネッセンス層の形成》
 陽極バッファー層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層の全部または一部からなる、透明導電層と陰極の間に形成された層を有機エレクトロルミネッセンス層という。この有機エレクトロルミネッセンス層の作製方法の一例として、正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層からなる有機エレクトロルミネッセンス層の作製法について説明する。
<< Formation of organic electroluminescence layer >>
A layer formed between the transparent conductive layer and the cathode, consisting of all or part of the anode buffer layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, and cathode buffer layer is called an organic electroluminescence layer. . As an example of a method for producing this organic electroluminescence layer, a method for producing an organic electroluminescence layer comprising a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer will be described.
 透明導電層を形成した透明基材上に、有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。 An organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed on a transparent substrate on which a transparent conductive layer is formed.
 この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。 As a method for thinning the organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
 《陰極の形成》
 上記の有機エレクトロルミネッセンス層を形成後、その上に陰極用物質からなる薄膜を1μm以下好ましくは50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設ける。
<Formation of cathode>
After forming the above organic electroluminescence layer, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm. Is provided.
 以上の工程により所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 A desired organic EL element is obtained by the above steps. The organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の液晶表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 It is also possible to reverse the production order to produce a cathode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode in this order. When a DC voltage is applied to the multicolor liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 〔用途〕
 本発明に係る面発光体は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
[Use]
The surface light emitter according to the present invention can be used as a display device, a display, and various light sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
 〔照明装置〕
 本発明のシート状構造体は、面発光体の一つである有機EL素子に適用できる。有機EL素子としては、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
[Lighting device]
The sheet-like structure of the present invention can be applied to an organic EL element that is one of surface light emitters. As an organic EL element, a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光を発光する材料(発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを組み合わせたもののいずれでもよいが、本発明に係わる白色有機EL素子においては、発光ドーパントを複数組み合わせる方式が好ましい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a light emitting material that emits fluorescent or phosphorescent light, and the light emission. Any combination of a dye material that emits light from the material as excitation light may be used, but in the white organic EL device according to the present invention, a method of combining a plurality of light-emitting dopants is preferable.
 複数の発光色を得るための有機EL素子の層構成としては、複数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。 As a layer structure of the organic EL element for obtaining a plurality of emission colors, a method of having a plurality of emission dopants in one emission layer, a plurality of emission layers, and an emission wavelength of each emission layer. Examples thereof include a method in which different dopants are present, and a method in which minute pixels emitting light of different wavelengths are formed in a matrix.
 本発明に係わる白色有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。 In the white organic EL device according to the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
 発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the platinum complex according to the present invention is known so as to be suitable for the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined to be whitened.
 このように、白色有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような1種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。 Thus, in addition to the display device and the display, the white organic EL element is used as a liquid crystal display device as a kind of lamp such as various light emitting light sources and lighting devices, home lighting, interior lighting, and exposure light source. It is also useful for display devices such as backlights.
 その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。 In addition, backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
 以下、実施例を挙げて本発明を説明するが、本発明はこれに限定されない。 Hereinafter, although an example is given and the present invention is explained, the present invention is not limited to this.
 実施例1
 《アモルファス型酸化チタン分散液1の作製》
 水500mlに50%四塩化チタン溶液(住友シチックス(株)製)10gを添加し、純水を加え1000mlにした溶液を準備する。これに2.5%アンモニア水を滴下してpH6.9に調整し、水酸化チタンを沈殿させた。この沈殿物を純水で上澄み液中の導電率が0.8mS/m以下になるよう洗浄を継続し、導電率が0.738mS/mになったところで洗浄を終了すると、0.73質量%濃度の水酸化物の含有液が430g作製された。
Example 1
<< Preparation of amorphous titanium oxide dispersion 1 >>
10 g of 50% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) is added to 500 ml of water, and a solution made up to 1000 ml by adding pure water is prepared. 2.5% aqueous ammonia was added dropwise thereto to adjust the pH to 6.9, and titanium hydroxide was precipitated. The precipitate is continuously washed with pure water so that the electrical conductivity in the supernatant is 0.8 mS / m or less, and when the electrical conductivity is 0.738 mS / m, the washing is terminated, and then 0.73 mass%. 430 g of a hydroxide-containing liquid having a concentration was produced.
 次いで、この含有液を1~5℃に冷却しながら35%過酸化水素水を25g添加し、16時間攪拌すると淡黄褐色の0.86質量%濃度の分散液450gが得られた。これをアモルファス型酸化チタン分散液1とした。 Next, 25 g of 35% aqueous hydrogen peroxide was added while cooling this containing liquid to 1 to 5 ° C., and stirred for 16 hours to obtain 450 g of a pale yellowish brown 0.86 mass% concentration dispersion. This was designated as amorphous type titanium oxide dispersion 1.
 《アモルファス型酸化チタン分散液2の作製》
 水500mlに50%四塩化チタン溶液(住友シチックス(株)製)10gを添加し、純水を加え1000mlにした溶液を準備する。これに2.5%アンモニア水を滴下してpH6.9に調整し、水酸化チタンを沈殿させた。この沈殿物を純水で上澄み液中の導電率が0.8mS/m以下になるよう洗浄を継続し、導電率が0.738mS/mになったところで洗浄を終了すると、0.73質量%濃度の水酸化物の含有液が430g作製された。
<< Preparation of amorphous titanium oxide dispersion 2 >>
10 g of 50% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) is added to 500 ml of water, and a solution made up to 1000 ml by adding pure water is prepared. 2.5% aqueous ammonia was added dropwise thereto to adjust the pH to 6.9, and titanium hydroxide was precipitated. The precipitate is continuously washed with pure water so that the electrical conductivity in the supernatant is 0.8 mS / m or less, and when the electrical conductivity is 0.738 mS / m, the washing is terminated, and then 0.73 mass%. 430 g of a hydroxide-containing liquid having a concentration was produced.
 次いで、この含有液を室温下で35%過酸化水素水を25g添加し、16時間攪拌すると淡黄褐色の0.86質量%濃度の分散液450gが得られた。これをアモルファス型酸化チタン分散液2とした。 Next, 25 g of 35% hydrogen peroxide solution was added to this liquid mixture at room temperature and stirred for 16 hours to obtain 450 g of a pale yellowish brown 0.86 mass% dispersion. This was designated as amorphous type titanium oxide dispersion 2.
 《アモルファス型TiO-ZrO分散液の作製》
 50%四塩化チタン溶液(住友シチックス(株)製)20gに、ZrClO・8HO(塩化オキシジルコン)1.696gを完全に溶かした溶液に純水を加え2000mlにした溶液を作製した。これに2.5%アンモニア水を滴下してpH7.0に調整して、水酸化ジルコニウムと水酸化チタンの混合物を沈殿させた。この沈殿物を純水で上澄み液の導電率が0.8mS/m以下になるようデカンテーション洗浄を繰り返し、導電率が0.702mS/mになったところで洗浄を終了すると、0.79質量%濃度の水酸化物が626g作製された。
<< Preparation of Amorphous TiO 2 -ZrO 2 Dispersion >>
A solution in which pure water was added to a solution obtained by completely dissolving 1.696 g of ZrCl 2 O.8H 2 O (oxyzircon chloride) in 20 g of a 50% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) was prepared to make 2000 ml. . 2.5% aqueous ammonia was added dropwise thereto to adjust the pH to 7.0, and a mixture of zirconium hydroxide and titanium hydroxide was precipitated. When this precipitate is washed with pure water by decantation washing so that the conductivity of the supernatant liquid becomes 0.8 mS / m or less, and the washing is finished when the conductivity becomes 0.702 mS / m, 0.79 mass% A concentration of 626 g of hydroxide was produced.
 次いで、この含有液を室温下で35%過酸化水素水を56g添加し、16時間攪拌すると黄褐色の0.88質量%濃度の分散液680gが得られた。これをアモルファス型TiO-ZrO分散液とした。 Next, 56 g of 35% hydrogen peroxide solution was added to the liquid mixture at room temperature and stirred for 16 hours to obtain 680 g of a yellowish brown 0.88 mass% concentration dispersion. This was used as an amorphous TiO 2 —ZrO 2 dispersion.
 《塗布液1の調製》
 上記アモルファス型酸化チタン分散液1をそのまま塗布液1とした。
<< Preparation of coating solution 1 >>
The amorphous titanium oxide dispersion liquid 1 was used as the coating liquid 1 as it was.
 《塗布液2の調製》
 上記アモルファス型酸化チタン分散液2をそのまま塗布液2とした。
<< Preparation of coating liquid 2 >>
The amorphous titanium oxide dispersion 2 was used as the coating solution 2 as it was.
 《塗布液3の調製》
 上記アモルファス型TiO-ZrO分散液をそのまま塗布液3とした。
<< Preparation of coating solution 3 >>
The amorphous TiO 2 —ZrO 2 dispersion was used as coating solution 3 as it was.
 《塗布液4の調製》
 上記アモルファス型酸化チタン分散液1に、例示化合物1を2質量%添加、撹拌して塗布液4とした。
<< Preparation of coating solution 4 >>
2 mass% of Exemplified Compound 1 was added to the amorphous titanium oxide dispersion 1 and stirred to obtain a coating solution 4.
 《塗布液5の調製》
 酸化ニオブゾル(多木化学(株)製バイラールNb-G6000)に、例示化合物1を2質量%添加、撹拌して塗布液5とした。
<< Preparation of coating solution 5 >>
2% by weight of Exemplified Compound 1 was added to niobium oxide sol (Viral Nb-G6000, manufactured by Taki Chemical Co., Ltd.) and stirred to obtain Coating Solution 5.
 上記塗布液1~5を用いて光取り出し層を形成したシートを作製した。 A sheet on which a light extraction layer was formed using the coating solutions 1 to 5 was prepared.
 《シート1の作製》
 塗布液1を、厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚1μmになるように塗布し、80℃のオーブンで1分間乾燥させた。その後、下記条件でプラズマ処理を行い、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート状構造体を得た。得られたシートのほぼ中央部の断面のTEM観察、およびほぼ中央部の表面を1辺が80μmの視野のAFM測定をすることにより、平均粒径5nmの酸化チタン微粒子の集合体により、平均深さ50nmの凹凸構造が平均10nm周期で形成されていることを確認し、これをシート1とした。
<< Production of Sheet 1 >>
The coating solution 1 was applied to one side of a 100 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 μm, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, plasma treatment was performed under the following conditions to obtain a sheet-like structure having a concavo-convex structure formed by an aggregate of metal oxide fine particles on one side of the PEN film. By TEM observation of the cross section of the substantially central portion of the obtained sheet and AFM measurement of the surface of the substantially central portion with a field of view of 80 μm on one side, an aggregate of titanium oxide fine particles having an average particle size of 5 nm can be obtained. It was confirmed that uneven structures having a thickness of 50 nm were formed with an average period of 10 nm, and this was designated as sheet 1.
 (プラズマ処理条件)
 キャリアガス:窒素(大気圧下)
 反応性ガス:酸素(窒素に対して4体積%)
 第1電源電力:ハイデン研究所PHF-6k(100kHz)
 第2電源電力:パール工業CF-5000-13M(13.56MHz)
 印加出力:1.0W/cm
 電極部温度調節:80℃
 処理時間:20秒
 《シート2の作製》
 塗布液1を塗布液2に変更する以外は、シート1の作製と同様にして、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート2を得た。シート1と同様の方法で評価した結果、平均粒径35nmの酸化チタン微粒子の集合体により、平均深さ400nmの凹凸構造が平均100nm周期で形成されていることを確認した。
(Plasma treatment conditions)
Carrier gas: Nitrogen (under atmospheric pressure)
Reactive gas: Oxygen (4% by volume with respect to nitrogen)
1st power supply: HEIDEN Laboratory PHF-6k (100kHz)
Second power supply: Pearl Industrial CF-5000-13M (13.56MHz)
Applied output: 1.0 W / cm 2
Electrode temperature control: 80 ° C
Processing time: 20 seconds << Preparation of sheet 2 >>
Except for changing the coating liquid 1 to the coating liquid 2, a sheet 2 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film was obtained in the same manner as the production of the sheet 1. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that an uneven structure having an average depth of 400 nm was formed with an average period of 100 nm by an aggregate of titanium oxide fine particles having an average particle diameter of 35 nm.
 《シート3の作製》
 塗布液1を塗布液3に変更する以外は、シート1の作製と同様にして、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート3を得た。シート1と同様の方法で評価した結果、平均粒径20nmの酸化チタンと酸化ジルコニウムの複合微粒子の集合体により、平均深さ200nmの凹凸構造が平均200nm周期で形成されていることを確認した。
<< Production of Sheet 3 >>
Except for changing the coating liquid 1 to the coating liquid 3, a sheet 3 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film was obtained in the same manner as the production of the sheet 1. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that an uneven structure having an average depth of 200 nm was formed with an average period of 200 nm by an aggregate of composite fine particles of titanium oxide and zirconium oxide having an average particle diameter of 20 nm.
 《シート4の作製》
 シート3の作製方法において、透明樹脂フィルムを厚さ100μmの二軸延伸PETフィルム(帝人デュポン社製;屈折率1.65)に変更し、それ以外はシート3の作製と同様にしてPETフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート4を得た。シート1と同様の方法で評価した結果、平均粒径20nmの酸化チタンと酸化ジルコニウムの複合微粒子の集合体により、平均深さ250nmの凹凸構造が平均200nm周期で形成されていることを確認した。
<< Production of Sheet 4 >>
In the method for producing the sheet 3, the transparent resin film was changed to a biaxially stretched PET film having a thickness of 100 μm (manufactured by Teijin DuPont; refractive index: 1.65). A sheet 4 having a concavo-convex structure formed of an aggregate of metal oxide fine particles on one side was obtained. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that an uneven structure having an average depth of 250 nm was formed with an average period of 200 nm by an aggregate of composite fine particles of titanium oxide and zirconium oxide having an average particle diameter of 20 nm.
 《シート5の作製》
 塗布液3を、厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚1μmになるように塗布し、80℃のオーブンで1分間乾燥させた。その後、四国計測工業製のマイクロ波反応装置を用い、2.45GHzのマイクロ波を出力600Wで2分間照射し、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート5を得た。シート1と同様の方法で評価した結果、平均粒径20nmの酸化チタンと酸化ジルコニウムの複合微粒子の集合体により、平均深さ100nmの凹凸構造が平均150nm周期で形成されていることを確認した。
<< Production of Sheet 5 >>
The coating solution 3 was applied to one side of a 100 μm-thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 μm, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, using a microwave reactor manufactured by Shikoku Keikoku Kogyo Co., Ltd., a 2.45 GHz microwave was irradiated at an output of 600 W for 2 minutes, and a sheet 5 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film was formed. Obtained. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that an uneven structure having an average depth of 100 nm was formed with an average period of 150 nm by an aggregate of composite fine particles of titanium oxide and zirconium oxide having an average particle diameter of 20 nm.
 《シート6の作製》
 塗布液1を、厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚1μmになるように塗布し、80℃のオーブンで1分間乾燥させた。その後、高圧水銀ランプを用い、200W/cmの紫外光を15分間照射し、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート6を得た。シート1と同様の方法で評価した結果、平均粒径5nmの酸化チタン微粒子の集合体により、平均深さ5nmの凹凸構造が平均250nm周期で形成されていることを確認した。
<< Production of Sheet 6 >>
The coating solution 1 was applied to one side of a 100 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 μm, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, using a high-pressure mercury lamp, 200 W / cm 2 of ultraviolet light was irradiated for 15 minutes to obtain a sheet 6 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that an uneven structure having an average depth of 5 nm was formed with an average period of 250 nm by an aggregate of titanium oxide fine particles having an average particle diameter of 5 nm.
 《シート7の作製》
 塗布液4を、厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚1μmになるように塗布し、80℃のオーブンで1分間乾燥させた。その後、オーブンの温度を120℃に上げ、さらに5時間加熱処理を行い、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート7を得た。シート1と同様の方法で評価した結果、平均粒径5nmの酸化チタン微粒子の集合体により、平均深さ150nmの凹凸構造が平均30nm周期で形成されていることを確認した。
<< Production of Sheet 7 >>
The coating solution 4 was applied to one side of a 100 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 μm, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, the temperature of the oven was raised to 120 ° C., and a heat treatment was further performed for 5 hours to obtain a sheet 7 having a concavo-convex structure formed by an aggregate of metal oxide fine particles on one side of the PEN film. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that a concavo-convex structure having an average depth of 150 nm was formed with an average period of 30 nm by an aggregate of titanium oxide fine particles having an average particle diameter of 5 nm.
 《シート8の作製》
 塗布液5を、厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚1μmになるように塗布し、80℃のオーブンで1分間乾燥させた。その後、四国計測工業製のマイクロ波反応装置を用い、2.45GHzのマイクロ波を出力600Wで2分間照射し、PENフィルムの片面に金属酸化物微粒子の集合体による凹凸構造を形成したシート8を得た。シート1と同様の方法で評価した結果、平均粒径20nmの酸化ニオブの複合微粒子の集合体により、平均深さ400nmの凹凸構造が平均350nm周期で形成されていることを確認した。
<< Production of Sheet 8 >>
The coating solution 5 was applied to one side of a 100 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 μm, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, using a microwave reactor manufactured by Shikoku Keikoku Kogyo Co., Ltd., a 2.45 GHz microwave was irradiated at an output of 600 W for 2 minutes, and a sheet 8 having a concavo-convex structure formed of aggregates of metal oxide fine particles on one side of the PEN film was formed. Obtained. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that a concavo-convex structure having an average depth of 400 nm was formed with an average period of 350 nm by an aggregate of composite fine particles of niobium oxide having an average particle diameter of 20 nm.
 《シート9の作製》
 比較例として、樹脂による凹凸形状を形成したシート9を、特開2004-45471号を参考にした下記の方法で作製した。鉄芯表面にクロムメッキし、#250の液体サンドブラスト処理をした後に、再度クロムメッキ処理して作製した、表面に微細な凹凸形状を形成したロール凹版を用い、厚さ100μmの二軸延伸PETフィルム(帝人デュポン社製;屈折率1.65)の片面に、屈折率1.54の硬化性アクリル樹脂による凹凸形状を形成した。シート1と同様の方法で評価した結果、平均深さ1.2μmで、凸同士の間隔が0.5~2.0μmのランダムな凹凸形状が形成されていることを確認した。
<< Production of Sheet 9 >>
As a comparative example, a sheet 9 having a concavo-convex shape made of a resin was produced by the following method with reference to JP-A No. 2004-45471. Biaxially-stretched PET film with a thickness of 100 μm using a roll intaglio with fine concavo-convex shape formed on the surface after chromium plating on the iron core surface, # 250 liquid sand blasting treatment, and chrome plating treatment again A concavo-convex shape made of a curable acrylic resin having a refractive index of 1.54 was formed on one surface (manufactured by Teijin DuPont; refractive index 1.65). As a result of evaluation by the same method as that for the sheet 1, it was confirmed that a random uneven shape with an average depth of 1.2 μm and an interval between protrusions of 0.5 to 2.0 μm was formed.
 《シート10の作製》
 比較例として、微粒子を含有した樹脂による凹凸形状を形成したシート10を、下記の方法で作製した。シート9の作製方法において、用いる硬化性樹脂を、屈折率1.54のアクリル樹脂中に粒径200nmの酸化チタン微粒子を10質量%分散させた樹脂に変更した以外は、シート9の作製方法と同様にしてシート10を作製した。シート1と同様の方法で評価した結果、平均深さ1.0μmで、凸同士の間隔が0.1~1.5μmのランダムな凹凸形状が形成され、部分的に凸部の欠落が見られる形状であることを確認した。
<< Production of Sheet 10 >>
As a comparative example, a sheet 10 having a concavo-convex shape formed of a resin containing fine particles was produced by the following method. In the method for producing the sheet 9, except that the curable resin to be used is changed to a resin in which 10% by mass of titanium oxide fine particles having a particle diameter of 200 nm are dispersed in an acrylic resin having a refractive index of 1.54, Similarly, a sheet 10 was produced. As a result of evaluation by the same method as that for the sheet 1, a random uneven shape having an average depth of 1.0 μm and an interval between protrusions of 0.1 to 1.5 μm is formed, and the protrusions are partially missing. The shape was confirmed.
 《シート11の作製》
 比較例として、凹凸構造を有しない酸化チタン被膜を形成したシート11を、下記の方法で作製した。塗布液1を、厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚1μmになるように塗布し、80℃のオーブンで1分間乾燥させた。その後、オーブンの温度を100℃に上げ、さらに5時間加熱処理を行い、シート11を得た。シート1と同様の方法で評価した結果、金属酸化物微粒子の集合体による凹凸構造は形成されず、平均粒径5nmの酸化チタン微粒子による平滑な酸化チタン層が形成されていることを確認した。
<< Production of Sheet 11 >>
As a comparative example, a sheet 11 on which a titanium oxide film having no uneven structure was formed by the following method. The coating solution 1 was applied to one side of a 100 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 1 μm, and dried in an oven at 80 ° C. for 1 minute. . Thereafter, the temperature of the oven was raised to 100 ° C., and a heat treatment was further performed for 5 hours to obtain a sheet 11. As a result of evaluation by the same method as that for the sheet 1, it was confirmed that a concavo-convex structure due to the aggregate of metal oxide fine particles was not formed, and a smooth titanium oxide layer was formed with titanium oxide fine particles having an average particle diameter of 5 nm.
 《シート状構造体の評価》
 得られたシート1~11の評価を以下の方法で行った。
<Evaluation of sheet-like structure>
The obtained sheets 1 to 11 were evaluated by the following method.
 〔水蒸気透過率〕
 水蒸気透過率の評価は、モコン法を用い、MOCON社製PERMATRAN-W3/33を用いて、JIS規格のK7129法(温度40℃、湿度90%RH)に基づいて測定した。その結果、シート1~8については、モコン法の測定限界(0.01g/m/day)未満であり、シート9、10、11に対し防湿性が向上していることがわかった。結果を表1に水蒸気バリア性として記載する。
(Water vapor transmission rate)
The water vapor transmission rate was measured based on the JIS standard K7129 method (temperature 40 ° C., humidity 90% RH) using the MOCON method and PERMATRAN-W3 / 33 manufactured by MOCON. As a result, the sheets 1 to 8 were less than the measurement limit (0.01 g / m 2 / day) of the Mocon method, and it was found that the moisture resistance was improved with respect to the sheets 9, 10, and 11. The results are shown in Table 1 as water vapor barrier properties.
 〔光取り出し効率〕
 《有機EL素子1の作製》
 厚さ100μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)上にITO(インジウムチンオキシド;屈折率1.85)を100nm製膜しパターニングを行った後、このITO導電性層を設けた基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、基板表面温度200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
[Light extraction efficiency]
<< Production of Organic EL Element 1 >>
ITO (Indium Tin Oxide; refractive index: 1.85) is deposited on a 100-nm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) and patterned, and then the ITO conductivity is measured. The substrate provided with the layer was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water on this substrate was spin-coated at 3000 rpm for 30 seconds. After film formation by the method, the substrate was dried at a substrate surface temperature of 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
 この基板を、窒素雰囲気下、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。グローブボックス中にて正孔輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。この基板を、基板表面温度150℃で30分間加熱乾燥し正孔輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は20nmであった。 This substrate was transferred to a glove box in accordance with JIS B 9920 under a nitrogen atmosphere, with a measured cleanliness of class 100, a dew point temperature of −80 ° C. or lower, and an oxygen concentration of 0.8 ppm. A coating solution for a hole transport layer was prepared as follows in a glove box, and applied with a spin coater under conditions of 1500 rpm and 30 seconds. This substrate was dried by heating at a substrate surface temperature of 150 ° C. for 30 minutes to provide a hole transport layer. The film thickness was 20 nm when it apply | coated and measured on the conditions with the board | substrate prepared separately.
 (正孔輸送層用塗布液)
 モノクロロベンゼン                   100g
 ポリ-N,N′-ビス(4-ブチルフェニル)-N,N′-ビス(フェニル)ベンジジン(ADS254BE:アメリカン・ダイ・ソース社製)
                             0.5g
 次いで、発光層塗布液を下記のように調製し、スピンコーターにて、2000rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し発光層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は40nmであった。尚、下記発光層組成物のうち、最も低いTgを示したのはH-Aであり、132℃であった。
(Coating liquid for hole transport layer)
Monochlorobenzene 100g
Poly-N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine (ADS254BE: manufactured by American Die Source)
0.5g
Subsequently, the light emitting layer coating liquid was prepared as follows, and it apply | coated on 2000 rpm and the conditions for 30 seconds with the spin coater. Furthermore, it heated at the substrate surface temperature of 120 degreeC for 30 minutes, and provided the light emitting layer. When the coating was performed under the same conditions on a separately prepared substrate and measured, the film thickness was 40 nm. Of the following light emitting layer compositions, HA showed the lowest Tg, which was 132 ° C.
 (発光層用塗布液)
 酢酸ブチル                       100g
 H-A                           1g
 D-A                        0.11g
 D-B                       0.002g
 D-C                       0.002g
 次いで、電子輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し電子輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は30nmであった。
(Light emitting layer coating solution)
Butyl acetate 100g
HA 1g
DA 0.11g
DB 0.002g
DC 0.002g
Subsequently, the coating liquid for electron carrying layers was prepared as follows, and it apply | coated on the conditions of 1500 rpm and 30 seconds with a spin coater. Furthermore, it heated for 30 minutes at the substrate surface temperature of 120 degreeC, and provided the electron carrying layer. The film thickness was 30 nm when it applied and measured on the conditions prepared with the board | substrate prepared separately.
 (電子輸送層用塗布液)
 2,2,3,3-テトラフルオロ-1-プロパノール     100g
 ET-A                        0.75g
 次いで、電子輸送層まで設けた基板を、大気曝露せずに、蒸着機に移動し、4×10-4Paまで減圧した。尚、フッ化カリウムおよびアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
(Coating liquid for electron transport layer)
2,2,3,3-tetrafluoro-1-propanol 100g
ET-A 0.75g
Next, the substrate provided up to the electron transport layer was moved to a vapor deposition machine without being exposed to the atmosphere, and the pressure was reduced to 4 × 10 −4 Pa. Note that potassium fluoride and aluminum were each placed in a tantalum resistance heating boat and attached to a vapor deposition machine.
 先ず、フッ化カリウムの入った抵抗加熱ボートに通電し加熱し、基板上にフッ化カリウムからなる電子注入層を3nm設けた。続いて、アルミニウムの入った抵抗加熱ボートに通電加熱し、蒸着速度1~2nm/秒でアルミニウムからなる膜厚100nmの陰極を設けた。 First, a resistance heating boat containing potassium fluoride was energized and heated to provide a 3 nm electron injection layer made of potassium fluoride on the substrate. Subsequently, a resistance heating boat containing aluminum was energized and heated, and a cathode having a thickness of 100 nm made of aluminum was provided at a deposition rate of 1 to 2 nm / second.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 このようにして作製した有機EL素子1を構成する透明基板の有機EL層を形成したのと反対の面と、上記シート1~11の光取り出し層を形成していない面を、透明基板と同一の屈折率であるマッチングオイルを介して密着させた。その後、有機EL素子1に対し2.5mA/cm定電流を流して発光させ、シート1~11の評価を行った。なお、測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用い、シートなしの時の正面輝度および光取り出し効率を100とし、それぞれの相対値を求めた。得られた結果を表1に示した。 The surface opposite to the organic EL layer of the transparent substrate constituting the organic EL element 1 thus fabricated and the surface of the sheets 1 to 11 where the light extraction layer is not formed are the same as the transparent substrate. It was made to adhere through a matching oil having a refractive index of. Thereafter, the organic EL element 1 was caused to emit light by passing a constant current of 2.5 mA / cm 2 , and the sheets 1 to 11 were evaluated. For measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used, and the front luminance and light extraction efficiency without a sheet were set to 100, and relative values were obtained. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1より、本発明のシート状構造体は、光取り出し効率の向上効果が高く、しかも水蒸気バリア性に優れて耐久性が高いことがわかる。また、シート10の硬化性樹脂中に酸化チタン粒子を分散して凹凸形状を形成したものは、本発明の金属酸化物微粒子を結合させて形成したものに比べ、性能が劣ることがわかる。 From Table 1, it can be seen that the sheet-like structure of the present invention has a high effect of improving the light extraction efficiency, and has excellent water vapor barrier properties and high durability. Moreover, it turns out that the thing which disperse | distributed the titanium oxide particle in the curable resin of the sheet | seat 10 and formed uneven | corrugated shape is inferior to the thing formed by combining the metal oxide fine particle of this invention.
 実施例2
 《有機EL素子2~6の作製》
 基板として実施例1で作製したシート1、3、4、9、10を用い、有機EL素子1の作製と同様にして、光取り出し層を形成した反対面上に、ITO透明導電層、有機エレクトロルミネッセンス層、陰極を形成し、本発明のシート状構造体を基板として用いた有機EL素子2~4、および比較の有機EL素子5、6を作製した。
Example 2
<< Production of organic EL elements 2 to 6 >>
Using the sheets 1, 3, 4, 9, and 10 prepared in Example 1 as the substrate, the ITO transparent conductive layer and the organic electrolayer were formed on the opposite surface on which the light extraction layer was formed in the same manner as the organic EL element 1 was manufactured. A luminescence layer and a cathode were formed, and organic EL elements 2 to 4 using the sheet-like structure of the present invention as a substrate and comparative organic EL elements 5 and 6 were produced.
 《有機EL素子の評価》
 〔外部取り出し量子効率〕
 作製した有機EL素子に対し、2.5mA/cm定電流を流したときの外部取り出し量子効率(%)を不活性ガス雰囲気下で測定した。なお、測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。得られた結果を有機EL素子1の測定値を100としたときの相対値で表2に表した。
<< Evaluation of organic EL elements >>
[External extraction quantum efficiency]
With respect to the produced organic EL element, the external extraction quantum efficiency (%) when a constant current of 2.5 mA / cm 2 was passed was measured under an inert gas atmosphere. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used. The obtained results are shown in Table 2 as relative values when the measured value of the organic EL element 1 is 100.
 〔加熱耐久性試験〕
 作製した有機EL素子を100℃、40%RHの恒温槽中に24時間保管した後の発光状態を目視で観察し、下記のランクづけを行った。
[Heating durability test]
The produced organic EL elements were observed visually for 24 hours after being stored in a constant temperature bath at 100 ° C. and 40% RH, and the following ranking was performed.
 ○:輝点あるいは黒点がみられるが、安定した発光が見られる
 △:輝点あるいは黒点がみられ、発光輝度が不安定である
 ×:発光しない
 得られた結果を表2に表した。
O: Bright spots or black spots are observed, but stable light emission is observed. Δ: Bright spots or black spots are observed, and the emission luminance is unstable. X: No light emission The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2より、本発明の構成である有機EL素子は、外部取り出し量子効率が高く、しかも加熱に対する耐久性に優れていることが分かる。 From Table 2, it can be seen that the organic EL device having the configuration of the present invention has high external extraction quantum efficiency and excellent durability against heating.
 実施例3
 実施例1で作製した本発明の有機EL素子1の光出射面側にシート3を貼付けた後、透明バリヤフィルム(二酸化ケイ素膜で被覆された透明樹脂フィルム)で覆い、フレキシブルな面発光体とした。本発明に係る面発光体は多少の屈曲動作に対しても高い発光効率を維持し、発光寿命の長い白色光を発する薄型の照明装置として使用することが出来た。
Example 3
After sticking the sheet | seat 3 to the light-projection surface side of the organic EL element 1 of this invention produced in Example 1, it covers with a transparent barrier film (transparent resin film coat | covered with the silicon dioxide film), and a flexible surface light emitter and did. The surface light emitter according to the present invention can be used as a thin illuminating device that emits white light having a long light emission life while maintaining high light emission efficiency even with a slight bending motion.
 30 大気圧プラズマ処理装置
 31 大気圧プラズマ処理容器
 32 放電空間
 36 角筒型電極
 40 電界印加手段
 41 第1電源
 42 第2電源
 43 第1フィルタ
 44 第2フィルタ
 50 ガス供給手段
 51 ガス発生装置
 52 給気口
 53 排気口
 60 電極温度調節手段
 64 ガイドロール
 65 ニップロール
 68、69 仕切板
 F 基材
 G′ 処理排気口
 36a 角筒型電極
 36A 金属母体
 36B 誘電体被覆層
DESCRIPTION OF SYMBOLS 30 Atmospheric pressure plasma processing apparatus 31 Atmospheric pressure plasma processing container 32 Discharge space 36 Rectangular tube electrode 40 Electric field application means 41 1st power supply 42 2nd power supply 43 1st filter 44 2nd filter 50 Gas supply means 51 Gas generator 52 Supply Air outlet 53 Air outlet 60 Electrode temperature adjusting means 64 Guide roll 65 Nip roll 68, 69 Partition plate F Substrate G 'Processing exhaust port 36a Square tube electrode 36A Metal base 36B Dielectric coating layer

Claims (9)

  1.  透明基材上に、金属酸化物微粒子の集合体からなる凹凸構造を有する光取り出し層が設けられたことを特徴とするシート状構造体。 A sheet-like structure characterized in that a light extraction layer having a concavo-convex structure made of an aggregate of metal oxide fine particles is provided on a transparent substrate.
  2.  該透明基材が透明樹脂フィルムであることを特徴とする請求項1に記載のシート状構造体。 The sheet-like structure according to claim 1, wherein the transparent substrate is a transparent resin film.
  3.  該凹凸構造が、平均深さが5nm以上300nm以下で、平均周期が10nm以上300nm以下の周期性凹凸構造であることを特徴とする請求項1または2に記載のシート状構造体。 The sheet-like structure according to claim 1 or 2, wherein the uneven structure is a periodic uneven structure having an average depth of 5 nm to 300 nm and an average period of 10 nm to 300 nm.
  4.  該金属酸化物微粒子が、平均粒子径1nm以上30nm以下のアモルファス型金属酸化物微粒子であることを特徴とする請求項1~3のいずれか1項に記載のシート状構造体。 4. The sheet-like structure according to claim 1, wherein the metal oxide fine particles are amorphous metal oxide fine particles having an average particle diameter of 1 nm or more and 30 nm or less.
  5.  該金属酸化物微粒子が、4族または5族の元素でなる酸化物微粒子もしくは4族と5族の元素でなる複合酸化物微粒子であることを特徴とする請求項1~4のいずれか1項に記載のシート状構造体。 5. The metal oxide fine particles are oxide fine particles composed of Group 4 or Group 5 elements or composite oxide fine particles composed of Group 4 and Group 5 elements. The sheet-like structure according to 1.
  6.  請求項1~5のいずれか1項に記載のシート状構造体の製造方法において、透明基材の少なくとも片面に、金属酸化物微粒子を含む分散液を塗布する工程と、基材の軟化点温度以下で乾燥する工程と、外部刺激処理によって該金属酸化物微粒子の集合体からなる凹凸構造を形成する工程により製造されたことを特徴とするシート状構造体の製造方法。 The method for producing a sheet-like structure according to any one of claims 1 to 5, wherein a step of applying a dispersion containing metal oxide fine particles to at least one surface of the transparent substrate, and a softening point temperature of the substrate A method for producing a sheet-like structure, which is produced by a step of drying below and a step of forming an uneven structure comprising an aggregate of the metal oxide fine particles by an external stimulus treatment.
  7.  前記外部刺激処理が、プラズマ放電処理、マイクロ波照射処理、紫外線照射処理から選ばれる処理であることを特徴とする請求項6に記載のシート状構造体の製造方法。 The method for producing a sheet-like structure according to claim 6, wherein the external stimulation treatment is a treatment selected from plasma discharge treatment, microwave irradiation treatment, and ultraviolet irradiation treatment.
  8.  請求項1~5のいずれか1項に記載のシート状構造体を、透明基板として用いたことを特徴とする面発光体。 A surface light emitter using the sheet-like structure according to any one of claims 1 to 5 as a transparent substrate.
  9.  請求項1~5のいずれか1項に記載のシート状構造体を、光の出射側の表面に貼合することを特徴とする面発光体。 A surface light emitter comprising the sheet-like structure according to any one of claims 1 to 5 bonded to a surface on a light emission side.
PCT/JP2010/061877 2009-07-23 2010-07-14 Sheet-like structural body, method for manufacturing sheet-like structural body, and surface-emitting body using sheet-like structural body WO2011010582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523614A JP5673535B2 (en) 2009-07-23 2010-07-14 Sheet-like structure, method for producing the same, and surface light emitter using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-172038 2009-07-23
JP2009172038 2009-07-23

Publications (1)

Publication Number Publication Date
WO2011010582A1 true WO2011010582A1 (en) 2011-01-27

Family

ID=43499055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061877 WO2011010582A1 (en) 2009-07-23 2010-07-14 Sheet-like structural body, method for manufacturing sheet-like structural body, and surface-emitting body using sheet-like structural body

Country Status (2)

Country Link
JP (2) JP5673535B2 (en)
WO (1) WO2011010582A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227146A (en) * 2011-04-18 2012-11-15 Samsung Corning Precision Materials Co Ltd Light extraction substrate for electroluminescent device and manufacturing method thereof
JP2013074787A (en) * 2011-09-28 2013-04-22 Samsung Electro-Mechanics Co Ltd Laminated core and fabrication method thereof
WO2014021088A1 (en) * 2012-07-31 2014-02-06 三菱レイヨン株式会社 Light extraction film for el elements, surface light emitting body, and method for producing light extraction film for el elements
WO2014133135A1 (en) * 2013-03-01 2014-09-04 富士フイルム株式会社 Uneven structure body and manufacturing method therefor
JP2015179584A (en) * 2014-03-19 2015-10-08 パイオニア株式会社 Light emitting element
JPWO2015145533A1 (en) * 2014-03-24 2017-04-13 パイオニア株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
WO2019222233A1 (en) * 2018-05-15 2019-11-21 Corning Incorporated Coating solution for light extraction layer of organic light-emitting device and method of manufacturing light extraction substrate of organic light-emitting device by using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069003A (en) * 2015-09-29 2017-04-06 日東電工株式会社 Flexible light-emitting device, illumination device, and image display device
JP6918342B2 (en) * 2017-05-08 2021-08-11 国立大学法人広島大学 Electric field enhancement board
KR102418724B1 (en) * 2017-12-05 2022-07-08 삼성디스플레이 주식회사 Display device and mehthod for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037580A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness enhancement of emissive displays
WO2002037568A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness and contrast enhancement of direct view emissive displays
JP2004127942A (en) * 2002-10-01 2004-04-22 Eastman Kodak Co High light abstraction type organic light emitting diode (oled) device
JP2004296429A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Organic electroluminescent element and surface light source and display using it
JP2004296423A (en) * 2002-11-26 2004-10-21 Nitto Denko Corp Organic electroluminescent element, surface light source, and display
JP2005279807A (en) * 2004-03-29 2005-10-13 Toshiba Corp Projecting and recessed pattern forming method and projecting and recessed pattern forming member
JP2007207633A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Light emitting element and display device
JP2008051108A (en) * 2006-08-25 2008-03-06 Waertsilae Schweiz Ag Pressure fluid supply system
JP2008507809A (en) * 2004-07-23 2008-03-13 ノヴァレッド・アクチエンゲゼルシャフト Top emission electroluminescent component comprising at least one organic layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310995B2 (en) * 2002-11-11 2009-08-12 パナソニック電工株式会社 Organic electroluminescence device
DE102004041371B4 (en) * 2004-08-25 2007-08-02 Novaled Ag Component based on an organic light emitting diode device and method for manufacturing
JP4253302B2 (en) * 2005-01-06 2009-04-08 株式会社東芝 Organic electroluminescence device and method for producing the same
KR101307400B1 (en) * 2006-06-30 2013-09-11 동우 화인켐 주식회사 Curable Resin Composition, Coating Film, Polarizing Plate and Display Device having the Same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037580A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness enhancement of emissive displays
WO2002037568A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness and contrast enhancement of direct view emissive displays
JP2004127942A (en) * 2002-10-01 2004-04-22 Eastman Kodak Co High light abstraction type organic light emitting diode (oled) device
JP2004296423A (en) * 2002-11-26 2004-10-21 Nitto Denko Corp Organic electroluminescent element, surface light source, and display
JP2004296429A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Organic electroluminescent element and surface light source and display using it
JP2005279807A (en) * 2004-03-29 2005-10-13 Toshiba Corp Projecting and recessed pattern forming method and projecting and recessed pattern forming member
JP2008507809A (en) * 2004-07-23 2008-03-13 ノヴァレッド・アクチエンゲゼルシャフト Top emission electroluminescent component comprising at least one organic layer
JP2007207633A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Light emitting element and display device
JP2008051108A (en) * 2006-08-25 2008-03-06 Waertsilae Schweiz Ag Pressure fluid supply system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAZAKI, T. ET AL.: "Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium", APPLIED PHYSICS LETTERS, vol. 76, no. 10, 6 March 2000 (2000-03-06), pages 1243 - 1245 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227146A (en) * 2011-04-18 2012-11-15 Samsung Corning Precision Materials Co Ltd Light extraction substrate for electroluminescent device and manufacturing method thereof
JP2013074787A (en) * 2011-09-28 2013-04-22 Samsung Electro-Mechanics Co Ltd Laminated core and fabrication method thereof
US9903986B2 (en) 2012-07-31 2018-02-27 Mitsubishi Chemical Corporation Light extraction film for EL elements, surface light emitting body, and method for producing light extraction film for EL elements
WO2014021088A1 (en) * 2012-07-31 2014-02-06 三菱レイヨン株式会社 Light extraction film for el elements, surface light emitting body, and method for producing light extraction film for el elements
JP5474263B1 (en) * 2012-07-31 2014-04-16 三菱レイヨン株式会社 EL device light extraction film, surface light emitter, and EL device light extraction film manufacturing method
KR101479456B1 (en) * 2012-07-31 2015-01-05 미쯔비시 레이온 가부시끼가이샤 Light extraction film for el elements, surface light emitting body, and method for producing light extraction film for el elements
WO2014133135A1 (en) * 2013-03-01 2014-09-04 富士フイルム株式会社 Uneven structure body and manufacturing method therefor
CN105189629A (en) * 2013-03-01 2015-12-23 富士胶片株式会社 Uneven structure body and manufacturing method therefor
JP5930564B2 (en) * 2013-03-01 2016-06-08 富士フイルム株式会社 Uneven structure and manufacturing method thereof
JP2015179584A (en) * 2014-03-19 2015-10-08 パイオニア株式会社 Light emitting element
JPWO2015145533A1 (en) * 2014-03-24 2017-04-13 パイオニア株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
US9978987B2 (en) 2014-03-24 2018-05-22 Pioneer Corporation Light emitting device and method of manufacturing a light emitting device
WO2019222233A1 (en) * 2018-05-15 2019-11-21 Corning Incorporated Coating solution for light extraction layer of organic light-emitting device and method of manufacturing light extraction substrate of organic light-emitting device by using the same
JP2021523416A (en) * 2018-05-15 2021-09-02 コーニング インコーポレイテッド A coating solution for the light extraction layer of an organic light emitting device and a method for manufacturing a light extraction substrate of an organic light emitting device by using it.

Also Published As

Publication number Publication date
JPWO2011010582A1 (en) 2012-12-27
JP2015092500A (en) 2015-05-14
JP5673535B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5673535B2 (en) Sheet-like structure, method for producing the same, and surface light emitter using the same
JP5163491B2 (en) Method for producing gas barrier film, resin base material for organic electroluminescence, and organic electroluminescence device using the same
JP5527329B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE USING THE SAME
JP5655795B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5835216B2 (en) Light extraction sheet, organic electroluminescence element and lighting device
JP6274199B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5434931B2 (en) Organic electroluminescence element and lighting device using the same
JP2006299145A (en) Gas barrier film, resin substrate using gas barrier film and used for organic electroluminescence and organic electroluminescent element
JP2007083644A (en) Gas-barrier film, resin base material for organic electroluminescence, and organic electroluminescent device using the resin base material
JP2011108392A (en) Light diffusion sheet, method of manufacturing the same, and organic electroluminescent element
JP4835031B2 (en) Method for producing gas barrier film, method for producing organic electroluminescence resin substrate, and method for producing organic electroluminescence element
JP6592915B2 (en) Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device
JP5126162B2 (en) Surface light emitter substrate and organic electroluminescence device using the same
JP2015099636A (en) Organic electroluminescent element
JP2006305752A (en) Gas barrier film, resin base material for organic electroluminescence and organic electroluminescence element
JP5056827B2 (en) Organic electroluminescence element and lighting device using the same
JP2011039375A (en) Light-scattering substrate and method of manufacturing the same, and organic electroluminescent element
WO2014185392A1 (en) Organic electroluminescence element
WO2014196329A1 (en) Organic electroluminescence element
JP2013114761A (en) Electroluminescent lighting system and method for manufacturing electroluminescent lighting system
WO2015178245A1 (en) Organic electroluminescent element
CN108293279B (en) Light emitting device
WO2014148595A1 (en) Organic electroluminescent element and lighting device
JP2011171093A (en) Surface light-emitting body
JP2011222385A (en) Organic electroluminescent element manufacturing method and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523614

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802202

Country of ref document: EP

Kind code of ref document: A1