WO2011007806A1 - Prosthetic bone model, method for forming a prosthetic bone, and simulation system for medical use - Google Patents

Prosthetic bone model, method for forming a prosthetic bone, and simulation system for medical use Download PDF

Info

Publication number
WO2011007806A1
WO2011007806A1 PCT/JP2010/061908 JP2010061908W WO2011007806A1 WO 2011007806 A1 WO2011007806 A1 WO 2011007806A1 JP 2010061908 W JP2010061908 W JP 2010061908W WO 2011007806 A1 WO2011007806 A1 WO 2011007806A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomographic image
region
color
bone model
area
Prior art date
Application number
PCT/JP2010/061908
Other languages
French (fr)
Japanese (ja)
Inventor
村瀬剛
五島誠
中尾良二
Original Assignee
Murase Tsuyoshi
Goto Makoto
Nakao Ryoji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murase Tsuyoshi, Goto Makoto, Nakao Ryoji filed Critical Murase Tsuyoshi
Priority to JP2011522837A priority Critical patent/JP5410525B2/en
Publication of WO2011007806A1 publication Critical patent/WO2011007806A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones

Definitions

  • the present invention cuts and separates a bone deformed into an abnormal mode, and corrects the normal positional relationship by changing the positional relationship of the separated bone fragment, so that the compensation is arranged between the separated bone fragments.
  • the present invention relates to a method for forming an artificial bone model, a medical simulation system, and a method for forming a replacement artificial bone.
  • the present invention also relates to a medical three-dimensional image acquisition method for acquiring a three-dimensional image of a desired part, and a medical simulation system using the three-dimensional image acquisition method.
  • osteotomy has been performed to correct a bone deformed into an abnormal form.
  • osteotomy is performed by cutting and separating deformed bones at locations determined based on doctors' empirical rules, and artificial bones created separately between the separated bone fragments. was carried out by embedding. Therefore, in the prior art, it cannot be said that osteotomy is performed in an ideal state, and there is a problem that the success or failure of the operation may be influenced by the doctor's rule of thumb.
  • the present inventors have developed a method, member, system, and program for bone correction as disclosed in Patent Document 1 below.
  • Patent Document 1 According to the method disclosed in the above-mentioned Patent Document 1, it is possible to specify a bone cutting position (cutting surface) and to separate the cut bone pieces (deformation amount) without using a doctor's empirical rule in advance before the treatment. It became possible to hit the treatment. With the provision of the method disclosed in Patent Document 1, an artificial bone model for filling between bone fragments cut and separated in a planning stage before surgery, and an artificial bone for replacement easily and accurately. It has become desirable to provide a method that can be formed.
  • DICOM Digital Imaging and Communication Communication in Medical
  • CT images obtained by X-ray CT (Computed Tomography) or the like is converted into a three-dimensional image.
  • volume data must be used in a preoperative simulation system or the like.
  • the conventional simulation system it takes a lot of time and labor to perform a simulation with movement and to create a preoperative planning, and the simulation system itself is impractical.
  • experienced doctors and specialized operators are required, and it is essential to use a computer with excellent information processing ability.
  • the present invention provides an artificial bone model for supplementation that is optimal for use in osteotomy, a formation method that can easily and accurately form an artificial bone for supplementation, and an osteotomy technique.
  • the purpose was to provide a medical simulation system that could be used for pre-planning.
  • the present invention requires less information processing capability than when using a conventional medical image processing technique, and can easily and accurately form a three-dimensional image of a desired part.
  • An object is to provide a medical three-dimensional image acquisition method and a medical simulation system using the three-dimensional image acquisition method.
  • the method for forming an artificial bone model for compensation of the present invention includes a pre-correction bone model acquisition step, a cutting plane derivation step, a vertex setting step, and a minimum distance data group construction step. And a maximum distance selection step, a start point selection step, and an STL data construction step.
  • the pre-correction bone model acquisition step is a step of acquiring a bone model representing the bone to be corrected as a pre-correction bone model
  • the cutting plane derivation step is formed by cutting and separating the pre-correction bone model. This is a step of deriving the cut surfaces a and b related to the bone fragments A and B.
  • the vertex setting step is a step of setting p vertices A (n) on the outer periphery of the cut surface a and setting q apexes B (m) on the outer periphery of the cut surface b.
  • a distance LA (n, m) between one point constituting p vertices A (n) and a part or all of each vertex B (m) is determined as each vertex B (m).
  • the minimum distance derivation operation A for each of the p vertices A (n) is performed for each of the p vertices A (n), and the minimum distance derivation operation A is selected from the derived distances LA (n, m) and selected as the minimum distance data LAmin (n, m).
  • the starting point selecting step is a step of selecting the maximum one of all or part of the data constituting the minimum distance data group.
  • the STL data construction step starts the vertices A (n) and B (m) forming the longest distance L (n, m) included in the distance data group derived in the distance data group construction step, respectively.
  • the vertex adjacent to the vertex A (n) in the circumferential direction of the cutting plane a is set as the vertex A (n + 1), and the cutting plane b is applied to the vertex B (m).
  • the vertex adjacent in the circumferential direction is the vertex B (m + 1)
  • the line connecting the vertices A (n) and B (m + 1) and the line connecting the vertices A (n + 1) and B (m) of these it is desirable that a line segment having a short distance is selected as a line segment constituting the STL data.
  • the distance LB () between one point constituting q vertices B (m) and a part or all of each vertex A (n). n, m) is derived for each vertex B (m), and the minimum distance deriving operation B is selected as the minimum distance LBmin (n, m) by selecting the smallest one from the derived distances LB (n, m). This is performed for some or all of the q vertices B (m), and the minimum distance data group is constructed to include the minimum distance data LAmin (n, m) and the minimum distance data LBmin (n, m). Is desirable.
  • a part of or all of the minimum distance data LAmin (n, m) forming the minimum distance data group is selected as the A-side maximum distance data LAmax (n, m).
  • the largest of some or all of the minimum distance data LBmin (n, m) forming the minimum distance data group is selected as the B side maximum distance data LBmax (n, m), and the A side maximum distance data LAmax (n, m) is selected. It is desirable that the larger one of m) and B-side maximum distance data LBmax (n, m) is selected as the maximum distance data Lmax (n, m).
  • the start point selection step described above selects the vertices A (n) and B (m) forming the maximum distance data Lmax (n, m) as start points.
  • the pre-correction bone model acquisition step the pre-correction bone model is acquired by constructing STL data representing the outer surface of the bone to be corrected by a plurality of triangle groups in the pre-correction bone model acquisition step of the present invention.
  • the vertex setting step the intersections of the sides constituting the triangle group constituting the STL data related to the pre-correction bone model and the cut planes a and b are set at the vertices A (n) and B (m), respectively.
  • the method for forming the artificial bone model for compensation acquires a bone model of a healthy bone that is in a plane-symmetrical positional relationship with a bone to be corrected and a bone model that is plane-symmetrical as a reference bone model. It is preferable that the cutting planes a and b are determined based on the reference bone model in the cutting plane derivation step.
  • the method for forming the artificial bone model for compensation of the present invention is characterized in that the artificial bone for replacement is formed by using the STL data obtained by the method for forming the artificial bone model for compensation of the present invention described above.
  • the medical simulation system of the present invention is characterized in that the three-dimensional image of the artificial bone for compensation is formed using the method for forming the artificial bone model for supplement of the present invention described above.
  • the medical three-dimensional image acquisition method of the present invention is characterized by having a binarization step, a region setting step, a region resetting step, and a three-dimensional step.
  • the binarization step is a step of converting a plurality of medical tomographic images into two-color tomographic images that are two-color images with a threshold set based on the CT value as a boundary.
  • the region setting step a region corresponding to a selection region set in one of the two-color tomographic images obtained in the binarization step is selected as a selection region in another two-color tomographic image. This is a step of setting an area.
  • the region resetting step is performed from a previously set region set as a selection region in the region setting step in one two-color tomographic image selected from each two-color tomographic image set in the region setting step.
  • This is a step of resetting a region excluding a part as a selection region and resetting a region corresponding to the reset selection region as a selection region in another two-color tomographic image.
  • the three-dimensionalization step is a step of forming a three-dimensional image by combining two-color tomographic images obtained through the region setting step and the region resetting step.
  • the method for acquiring a medical three-dimensional image according to the present invention can use a medical tomographic image composed of tomographic images in three directions of X, Y, and Z that intersect each other.
  • the present invention provides an X-directional tomographic image group consisting of tomographic images in the X direction, a Y-directional tomographic image group consisting of tomographic images in the Y direction, and a Z-directional tomographic image group consisting of tomographic images in the Z direction.
  • the tomographic image is converted into a two-color tomographic image in the binarization step to form an X-direction two-color tomographic image group, a Y-direction two-color tomographic image group, and a Z-direction two-color tomographic image group.
  • the medical three-dimensional image acquisition method of the present invention is the region setting step in which one of the X direction two-color tomographic image group, the Y direction two-color tomographic image group, and the Z direction two-color tomographic image group is selected.
  • An area corresponding to a selected area set in one two-color tomographic image included in the two-color tomographic image group is another two-color tomographic image included in the selected one-color tomographic image group, and is not selected. It is desirable to set a region as a selection region in a two-color tomographic image included in another two-color tomographic image group.
  • the medical three-dimensional image acquisition method of the present invention is a region selected from the X direction two-color tomographic image group, the Y direction two-color tomographic image group, and the Z direction two-color tomographic image group in the region resetting step.
  • An area excluding a part of the preset area set as the selection area in one two-color tomographic image included in the two-color tomographic image group is reset as the selection area, and the reset selection area is set as the selection area. It is desirable that the corresponding area is reset as a selection area in another two-color tomographic image.
  • the medical three-dimensional image acquisition method of the present invention preferably includes a surface forming step of forming a three-dimensional image by combining the two-color tomographic images of the regions set in the region setting step.
  • a medical simulation system capable of forming a three-dimensional image of a predetermined part included in a plurality of medical tomographic images can be provided.
  • the method for forming an artificial bone model for compensation of the present invention cutting of bone fragments A and B formed by cutting and separating the pre-correction bone model acquired in the pre-correction bone model acquisition step in the cutting plane derivation step It becomes possible to easily and accurately acquire STL data in which the outer surface of the artificial bone to be compensated between the surfaces a and b is expressed by a plurality of triangle groups. Specifically, the STL data acquired by the present invention crosses between the cut surfaces a and b between the vertices A (n) and B (m) set on the outer circumference of the cut surfaces a and b in the vertex setting step.
  • the length of a candidate for a segment for constructing STL data (hereinafter also referred to as “STL construction line”) is scrutinized, and an STL construction line is obtained.
  • STL construction line By using the vertices A (n) and B (m) that are long in the possible line segments as starting points, the accuracy of the STL data is improved, and the construction of the STL data is facilitated.
  • the shortest line segment connecting between A (n) and B (m) is the STL construction line.
  • the STL construction line is sequentially constructed, the STL construction line is constructed with the vertices A (n) and B (m) that are the largest among the candidates of the STL construction line as starting points. Therefore, it is considered that the error can be minimized. Therefore, in the present invention, the length of the STL construction line starting from each vertex A (n) is confirmed by performing the minimum distance derivation operation A for some or all of the p vertices A (n), The vertexes A (n) and B (m) that make the maximum in a part or all of the data constituting the minimum distance data group constructed by the minimum distance deriving operation A are selected as starting points. Therefore, according to the present invention, it is possible to improve the accuracy of STL data and to easily construct STL data.
  • an artificial bone model for compensation is constructed according to the present invention, an artificial bone shaped into an ideal shape and size before surgery can be provided, so that the time required for surgery is reduced and the burden on the patient is reduced. It becomes possible to contribute to.
  • the distance between the line segment connecting the vertices A (n) and B (m + 1) and the line segment connecting the vertices A (n + 1) and B (m) is calculated. Since the short line segment is selected as the line segment constituting the STL data, it is possible to accurately represent the triangle group composed of the STL construction line that forms the outer surface of the artificial bone for replacement.
  • the minimum distance data group construction step is to perform the minimum distance derivation operation B in addition to the minimum distance derivation operation A
  • the maximum distance selection step the A side maximum distance data LAmax (n, m) and If the B-side maximum distance data LBmax (n, m) is selected, and the larger one of these is selected as the maximum distance data Lmax (n, m), it is even more reliable between the cut surfaces a and b. It becomes possible to select vertices A (n) and B (m) having a positional relationship with an interval as a starting point. Therefore, according to the present invention, it is possible to construct the STL data that constitutes the artificial bone model for compensation more accurately.
  • the method for forming the artificial bone model for compensation according to the present invention includes each side constituting the triangle group forming the STL data acquired when the pre-correction bone model is constructed in the pre-correction bone model acquisition step. Intersections with the cutting planes a and b are set at vertices A (n) and B (m), respectively. Therefore, when the artificial bone model for compensation is formed according to the present invention, the STL construction lines forming the bone fragments A and B and the STL construction lines constituting the artificial bone model for compensation are the vertices A (n) and B (m). Will be shared. Therefore, according to the present invention, it is possible to easily obtain a three-dimensional image showing a state in which the artificial bone for replacement is embedded between the bone fragments A and B.
  • many of the bones that make up the human body have a plane-symmetric shape on the left and right, so when bone correction is performed by osteotomy, normal bones that are in a plane-symmetric positional relationship with the deformed bone If the position and shape of a simple bone are used as an index, the position to be cut can be set easily and appropriately, and the cut surfaces a and b can be formed.
  • a reference bone model acquisition step is provided, and a healthy bone that is in a plane-symmetrical positional relationship with the bone to be corrected is acquired as a reference bone model. Therefore, it is possible to easily and appropriately determine the bone cutting position with reference to the reference bone model in the cutting plane derivation step.
  • the artificial bone for compensation is formed by using the STL data obtained by the method for forming the artificial bone model for compensation as described above, like the method for forming the artificial bone model for supplement of the present invention, It is possible to easily and highly accurately form a supplemental artificial bone that is optimal for use.
  • a three-dimensional image of a replacement artificial bone model is formed using the above-described method for forming a replacement artificial bone model of the present invention, an operation by osteotomy is performed. It is possible to plan surgery and the like using a three-dimensional image of the artificial bone for replacement.
  • the medical tomographic image is converted into a two-color image in the binarization step.
  • the two-color imaging of the medical tomographic image in the binarization step is performed based on a threshold value set with reference to the CT value, the two-color tomographic image obtained in the binarization step is It becomes possible to easily separate into a region including a desired portion and a region including other portions.
  • the medical tomographic image is converted into a two-color image using the CT value which is a dimensionless number as an index, the density and color tone of the provided medical tomographic image, etc.
  • the CT value which is a dimensionless number as an index, the density and color tone of the provided medical tomographic image, etc.
  • the region setting step the region corresponding to the selected region set in one of the plurality of two-color tomographic images obtained by the binarization step
  • a portion corresponding to the selection region is also set as a selection region in another two-color tomographic image. Therefore, in the medical three-dimensional image acquisition method of the present invention, if a region including a portion to be converted into a three-dimensional image in any of a plurality of two-color tomographic images is set as a selection region, another two-color tomographic image is obtained. In this case, an area including a portion to be converted into a three-dimensional image is selected as a selection area, and setting of the selection area is extremely easy.
  • a region is set as a selection region, and a region corresponding thereto is set as a selection region in another two-color tomographic image;
  • an area resetting step is provided, and selection is performed by excluding a part from the already set areas set as the selection areas.
  • the area is reset, and the area corresponding to the reset selection area can be reset as a selection area in another two-color tomographic image. Therefore, according to the method for acquiring a medical three-dimensional image of the present invention, by combining the two-color tomographic images obtained through the region setting process and the region resetting process in the three-dimensionalization process, An original image can be reliably formed.
  • the medical three-dimensional image acquisition method of the present invention performs subsequent processing using the two-colored tomographic image after the binarization step, X crossing each other as a medical tomographic image. Even if an image composed of tomographic images in the three directions Y, Y, and Z is used, an excessive load is not applied to the computer for image processing, and image processing can be performed smoothly.
  • a medical tomographic image composed of tomographic images in three directions X, Y, and Z intersecting each other is converted into a medical three-dimensional image. It can be used for acquisition, and a more accurate three-dimensional image can be formed for a desired site.
  • one two-color tomographic image group selected from the two-color tomographic image group for each of the X, Y, and Z directions is included in the region setting step.
  • a region corresponding to the selected region set in the color tomographic image is included in another two-color tomographic image included in the selected two-color tomographic image group or another two-color tomographic image group that is not selected.
  • a region is set as a selection region in the color tomographic image.
  • the two-color tomographic image group selected from the two-color tomographic image group in each of the X, Y, and Z directions is included in one two-color tomographic image.
  • an area excluding a part from the already set area as the selection area is reset as the selection area, and the area corresponding to the reset selection area is the other two areas.
  • the color tomographic image is reset as the selected region.
  • the selection region is set or reset in one two-color tomographic image selected from a large number of two-color tomographic images forming an X, Y, Z two-color tomographic image group, other two colors existing in large numbers. Also in the tomographic image, an area corresponding to the selection area described above is set as the selection area in conjunction with this, and there is no need to perform area setting or resetting for each two-color tomographic image. Therefore, in the method for acquiring a medical three-dimensional image according to the present invention, a region including a part where a three-dimensional image is to be acquired is confirmed from three directions of X, Y, and Z directions, and is designated as a selection region or already designated.
  • the selected area By re-setting the selected area as an area that is partly excluded from the already set area, it is possible to reliably set the area that is difficult to confirm in other two-color tomographic images as the selected area. Is possible. Therefore, according to the medical three-dimensional image acquisition method of the present invention, it is possible to set the selected region more easily and accurately.
  • the medical three-dimensional image acquisition method of the present invention provides a surface forming step of forming a three-dimensional image by combining two-color tomographic images of the region set in the region setting step. It is easy to determine whether the area specified as the selection area in Fig. 2 includes an area that is not necessary for creating a 3D image, and where the unnecessary area is included in the two-color tomographic image. It becomes possible to judge and specify. Therefore, by providing the surface forming step, it is possible to improve the work efficiency of the region resetting step and obtain a medical three-dimensional image more easily and accurately.
  • (A) is explanatory drawing explaining the relationship of vertex A (n) and B (m) at the time of deriving distance LA (n, m), (b) derives distance LB (n, m). It is explanatory drawing explaining the relationship of the vertex A (n) and B (m) at the time.
  • FIG. It is a flowchart of the formation method of the artificial bone model for the compensation which concerns on one Embodiment of this invention. It is a block diagram which shows the structure of the medical simulation system which concerns on one Embodiment of this invention.
  • FIG. 1 It is a flowchart which concerns on the acquisition method of the medical three-dimensional image of this invention. It is a figure which shows the state which output the two-color tomographic image acquired in the binarization process on the output screen. It is a figure which shows the state by which the selection area
  • A) is a figure which shows an example of the two-color tomographic image acquired in a binarization process
  • (b) is a figure which shows the state by which the selection area
  • FIG. 16 is a diagram illustrating a state in which a part of a region is excluded from a selection region in the two-color tomographic image illustrated in FIG. It is a figure which shows an example of the three-dimensional image acquired in a three-dimensionalization process. It is a perspective view which shows an expansion
  • A) is the perspective view which demonstrated the formation method of the cutting plate typically
  • (b) is the perspective view which showed an example of the cutting plate.
  • the method for forming the artificial bone model for compensation of the present embodiment is performed using the simulation system 20.
  • the simulation system 20 is constructed by installing software including an execution program for executing the method for forming the artificial bone model for compensation according to the present embodiment on a conventionally known computer. As shown in FIG.
  • the simulation system 20 includes a pre-correction bone model acquisition unit 22, a reference bone model acquisition unit 24, a cutting plane deriving unit 26, a vertex setting unit 28, a distance deriving unit 30, and a minimum distance.
  • Data construction means 32, maximum distance selection means 34, start point selection means 36, and STL data construction means 38 are provided.
  • the pre-correction bone model acquisition means 22 acquires a three-dimensional model (hereinafter also referred to as “pre-correction bone model” X) of a bone to be corrected (hereinafter also referred to as “correction target bone”) that has been deformed into an abnormal state. Means.
  • the pre-correction bone model acquisition means 22 can extract an image relating to the bone to be corrected from DICOM (Digital Imaging and Communication in Medicine) data relating to a CT image obtained by, for example, so-called X-ray CT (Computed Tomography). It is.
  • DICOM Digital Imaging and Communication in Medicine
  • the pre-correction bone model acquisition means 22 can acquire STL data in which the outer surface of the correction target bone is expressed by a group of triangles formed using a plurality of line segments (STL construction lines). As shown in FIG. 2, the simulation system 20 can display the pre-correction bone model X on the output screen based on the STL data acquired by the pre-correction bone model acquisition means 22.
  • the reference bone model acquisition means 24 is a three-dimensional model (hereinafter referred to as “reference bone model”) of a mirror image of a normal bone (hereinafter also referred to as “normal bone”) of the same patient having a plane symmetry relationship with the bone to be corrected. "Also called” Y ").
  • the reference bone model acquisition means 24 extracts an image related to normal bone obtained by extracting from DICOM data related to a CT image obtained by X-ray CT or the like, similar to the above-mentioned pre-correction bone model acquisition means 22.
  • a mirror image of the three-dimensional model of normal bone can be acquired as the reference bone model Y.
  • the reference bone model acquisition means 24 can acquire STL data in which the outer surface of the reference bone is expressed by a plurality of triangle groups. As shown in FIG. 2, the simulation system 20 can display the reference bone model Y on the output screen based on the STL data acquired by the reference bone model 24.
  • the reference bone model Y is used for adjusting the position of the bone to be corrected (hereinafter also referred to as “bone cutting position”), and the interval and angle adjustment of the bone fragments A and B obtained by cutting the bone. Can be used as an indicator.
  • the cut surface deriving means 26 is a means for deriving the cut surfaces a and b of the bone fragments A and B formed when the pre-correction bone model X is cut at the above-described osteotomy position.
  • a virtual plane V can be displayed on the display screen, and the virtual plane V is arranged at an arbitrary osteotomy position on the pre-correction bone model X.
  • the cut planes a and b when the pre-correction bone model X is cut at this osteotomy position and angle can be derived.
  • the vertex setting means 28 sets a plurality (p) of vertices A (n) (n is a natural number from 1 to p) on the outer periphery of the cutting surface a derived by the cutting surface deriving means 26 described above, and cutting This is means for setting a plurality (q) of apexes B (m) (m is a natural number from 1 to q) on the outer periphery of the surface b.
  • the vertices A (n) and B (m) set by the vertex setting means 28 are respectively represented when the supplementary artificial bone model Z is expressed in the STL format that expresses the surface shape by a plurality of triangle groups. It is a vertex. In the present embodiment, as shown in FIG.
  • the vertex setting unit 28 includes the cutting planes a and b derived by the cutting plane deriving unit 26 and the pre-correction bone model X acquired by the pre-correction bone model acquisition unit 28. Intersections with the line segments constituting the STL data are vertices A (n) and B (m). Therefore, in this embodiment, the numbers p and q of the vertices A (n) and B (m) are the same.
  • the positions of the bone fragments A and B are adjusted along the reference bone model Y, respectively.
  • the bone model representing the bone fragments A and B has a positional relationship after correction by osteotomy, and a defect portion L to be compensated by the artificial bone for compensation occurs between the bone fragments A and B ( (See FIG. 5).
  • the distance deriving means 30 is for deriving the distance of the defect portion L, and by performing the minimum distance deriving operation A and the minimum distance deriving operation B, the line segment constituting the STL data of the artificial bone model Z for compensation It is possible to derive the distance of (STL construction line). Specifically, the minimum distance deriving operation A is performed between one point constituting p vertices A (n) provided on the outer periphery of the cutting surface a on the bone fragment A side and the cutting surface b on the bone fragment B side. A distance LA (n, m) to a part or all of each vertex B (m) provided on the outer periphery is derived for each vertex B (m) (see FIG.
  • the minimum distance data LAmin (n, m) derived by the minimum distance deriving operation A corresponds to the length when the STL construction line is formed starting from each vertex A (n).
  • a line segment connecting the vertices A (n) and B (m) forming the minimum distance data LAmin (n, m) is a candidate for a line segment (STL construction line) constituting the STL data of the artificial bone model Z for compensation. It will be.
  • the distance LB (n, m) between one point constituting q vertices B (m) and a part or all of each vertex A (n) is set to each vertex B ( This operation is derived every m) (see FIG. 6B), and the smallest one is selected as the minimum distance LBmin (n, m) from the derived distance LB (n, m).
  • the minimum distance data LBmin (n, m) derived by the minimum distance deriving operation B corresponds to the length when the STL construction line is formed starting from each vertex B (m).
  • the line segment connecting the vertices A (n) and B (m) forming the minimum distance data LBmin (n, m) is a line segment that is a candidate for the STL construction line of the artificial bone model Z for compensation.
  • the minimum distance data constructing means 32 is a means for constructing a minimum distance database LminDB in which the minimum distance data LAmin (n, m) and LBmin (n, m) derived by the distance deriving means 30 are databased.
  • the minimum distance database LminDB includes an A side minimum distance database LAminDB composed of minimum distance data LAmin (n, m) starting from the vertex A (n), and minimum distance data LBmin (starting from the vertex B (m). n, m) and the B-side minimum distance database LBminDB.
  • the maximum distance selection means 34 refers to the minimum distance database LminDB constructed by the minimum distance data construction means 32 and selects the one with the maximum distance. In the present embodiment, the maximum distance selection means 34 first selects the largest of the minimum distance data LAmin (n, m) included in the A side minimum distance database LAminDB as the A side maximum distance data LAmax (n, m). Select as. Similarly, the maximum distance selection means 34 selects the largest one from the minimum distance data LBmin (n, m) included in the B side minimum distance database LBminDB as B side maximum distance data LBmax (n, m). .
  • the maximum distance selection means 34 selects the larger one of the A side maximum distance data LAmax (n, m) and the B side maximum distance data LBmax (n, m) selected in this way as the maximum distance data Lmax (n, m). ) To select.
  • the start point selection means 36 is a means for selecting the vertices A (n) and B (m) that are the start points when constructing the STL data of the artificial bone model Z for compensation.
  • the STL data construction means 38 constructs STL data that forms the outer surface of the artificial bone for supplementation.
  • the STL data construction unit 38 uses the vertices A (1) and B (1) selected by the above-described start point selection unit 36 as a start point, and a section between the vertices A (n) and B (m) a, STL data representing the outer surface of the artificial bone for compensation is constructed by a plurality of triangle groups by connecting line segments sequentially across the region between b.
  • the STL data constructing means 38 first constructs a line segment for constructing the STL data of the artificial bone model Z for compensation (the line segment connecting the vertices A (1) and B (1) serving as the start points described above ( STL data construction line). Thereafter, the length L (1,2) of the line segment connecting the vertex B (2) and the vertex A (1) adjacent to the vertex B (1) in the circumferential direction of the cut surface b, and the vertex A (1 ) Is compared with the length L (2, 1) of the line segment connecting the vertex A (2) and the vertex B (1) adjacent to each other in the circumferential direction of the cut surface a, and the shorter line is compared. Minute is selected as the STL construction line.
  • L (1,2) when L (1,2) is shorter, it is compensated by a triangular area formed by connecting A (1), B (1), and B (2) with a line segment (STL construction line). A part of the outer surface of the artificial bone model Z is configured. If L (2,1) is shorter, it is compensated by a triangular area formed by connecting A (1), B (1), and A (2) with line segments (STL construction lines). A part of the outer surface of the artificial bone model Z is configured. Thereafter, similarly to this, among the line segment connecting the vertices A (n) and B (m + 1) and the line segment connecting the vertices A (n + 1) and B (m), the line segment having the short distance is sequentially STL.
  • the vertices A (n) and B (m) are connected by STL construction lines as shown in FIG. 7, and A (n), B (m), A (n + 1) are connected.
  • a part of the outer surface of the artificial bone model Z for replacement is sequentially formed by a triangular region formed by connecting the STL construction lines to each other or between A (n), B (m), and B (m + 1). Go.
  • the artificial bone model Z for compensation is formed in which the space formed between the cutting planes a and b is surrounded by the triangle group formed by the STL construction line over the entire circumference.
  • the STL data of the artificial bone model Z for supplement constructed by the STL data construction means 38 forms the artificial bone model Z for supplement in the simulation system 20, and the output screen of the artificial bone model Z alone for supplement as shown in FIG. It is possible to display in a state where it is displayed above or in a state where it is fitted in a defect portion L formed between the bone fragments A and B as shown in FIG. Further, if the STL data of the artificial bone model Z for compensation constructed by the STL data construction means 38 is used, it is possible to form the artificial bone 10 for compensation by a modeling method such as an optical modeling method.
  • the artificial bone model Z for compensation is constructed through the steps shown in Step 1-1 to Step 1-9 shown in FIG.
  • the pre-correction bone model acquisition step according to step 1-1 is a step of acquiring a three-dimensional model (pre-correction bone model X) of the bone to be corrected by the pre-correction bone model acquisition means 22 described above.
  • STL data related to the pre-correction bone model X is acquired, and the pre-correction bone model X is constructed based on the STL data.
  • the pre-correction bone model X acquired in step 1-1 is displayed on the output screen of the computer as shown in FIG.
  • the reference bone model acquisition step is a step of acquiring the reference bone model Y by the reference bone model acquisition means 24.
  • a reference bone model Y is obtained by creating a mirror image of a normal bone of the same patient having a plane symmetry relationship with the bone to be corrected and modeling it into a three-dimensional model.
  • the reference bone model Y acquired in step 1-2 is displayed side by side with the pre-correction bone model X on the output screen of the computer as shown in FIG.
  • the cutting plane deriving process according to step 1-3 is a process performed by the cutting plane deriving means 26 described above, and a cutting plane a formed when the pre-correction bone model X is cut at a specified osteotomy position. , B are derived.
  • the position and angle of the virtual plane V for derivation of the cutting plane displayed on the display screen using an input device such as a mouse or a keyboard are set as the reference bone model Y. It becomes possible to adjust suitably while comparing.
  • the pre-correction is performed at this position and angle.
  • the cut surfaces a and b formed when the bone model X is cut are derived.
  • step 1-4 the process proceeds to the vertex setting process in step 1-4.
  • a plurality (p, q) of vertices A (n) and B (m) are set on the outer peripheries of the cut surfaces a and b by the vertex setting means 28.
  • the intersection points of the cut planes a and b and the STL construction line constituting the pre-correction bone model X constructed in Step 1-1 are the vertices A (n) and B (m).
  • the process proceeds to the bone fragment position correcting process in step 1-5.
  • the positions and angles of the bone fragments A and B are adjusted along the reference bone model Y described above. Thereby, a defect portion L as shown in FIG. 5 is formed between the cut surfaces a and b formed in the bone fragments A and B.
  • the distance deriving step is performed by the distance deriving means 30.
  • the distance LA (n, m) from each vertex B (m) is derived for each of the p vertices A (n) by the minimum distance deriving operation A (see FIG. 6A). The smallest one is selected as the minimum distance data LAmin (n, m) from the obtained distance LA (n, m).
  • the distance LB (n, m) from each vertex A (n) is derived (see FIG.
  • the smallest one of LB (n, m) is selected as the minimum distance data LBmin (n, m).
  • the selected minimum distance data LAmin (n, m) and minimum distance data LBmin (n, m) are databased by the minimum distance data construction means 32, respectively, and the A side minimum distance database LAminDB and the minimum distance are selected.
  • a minimum distance database LminDB configured by the data LBmin (n, m) is constructed.
  • the minimum distance database LminDB is referred to by the maximum distance selection means 34, and the minimum distance data LAmin (n, m), LBmin (n, m) included in the A and B side minimum distance databases LAminDB and LBminDB. ) Is selected as A side maximum distance data LAmax (n, m) and B side maximum distance data LBmax (n, m). Thereafter, the maximum distance selection means 34 compares the A and B side maximum distance data LAmax (n, m) and LBmax (n, m), and selects the larger one as the maximum distance data Lmax (n, m). Is done. When the maximum distance data Lmax (n, m) is selected, the process proceeds to the start point selection process according to step 1-8.
  • the starting point selection means 36 selects a starting point for constructing STL data of the artificial bone model Z for compensation from a plurality of set vertices A (n) and B (m).
  • step 1-9 the STL data construction means 38 connects the vertices A (n) and B (m) with the STL construction line starting from the start points A (1) and B (1).
  • STL data representing the outer surface of the artificial bone for compensation expressed by a plurality of triangle groups is constructed.
  • the artificial bone model Z for supplementation is displayed by the simulation system 20 alone, It becomes a state which can be displayed in the state fitted in the missing part L between B.
  • a corrected bone model (
  • the STL data constructed by the STL data construction means 38 it becomes possible to prepare the artificial bone 10 for supplementation used for surgery using a modeling method such as an optical modeling method before the operation.
  • the length of what can be a candidate for the STL construction line forming the artificial bone model Z for compensation in the distance deriving step is set.
  • the longest one is selected in the maximum distance selection step (step 1-7), and the vertices A (n) and B (m) that make the longest are selected as the starting points A (1) and B Selected as (1) (step 1-8). Therefore, according to the above-described method for forming the artificial bone model Z for compensation, errors in the STL construction line forming the artificial bone model Z for compensation are unlikely to occur, and the artificial bone model Z for compensation can be constructed easily and with high accuracy. Is possible.
  • the distance LA (n, m) to each vertex B (m) is derived for each of the p vertices A (n), and each of the q vertices A (n) is derived.
  • the minimum distance data LAmin (n, m) and the minimum distance data LBmin (n, m) are derived by deriving the distance LB (n, m) from each vertex A (n). The invention is not limited to this.
  • a distance LA (n, m) between a part of p vertices A (n) and a part or all of each vertex B (m) is derived, and the derived distance LA ( The smallest one of n, m) may be selected as the minimum distance data LAmin (n, m).
  • a distance LB (n, m) between some of the q vertices B (m) and a part or all of each vertex A (n) is derived, and the derived distance LB (n, m The smallest of m) may be selected as the minimum distance data LBmin (n, m).
  • vertices A (n) and B in deriving the distances LA (n, m) and LB (n, m) from either the p vertices A (n) or q vertices B (m). It is good also as excluding from the candidate of (m).
  • the maximum one is selected from the minimum distance data LAmin (n, m) constituting the A side minimum distance database LAminDB, and the minimum constituting the B side minimum distance database LBminDB is selected.
  • this invention is not limited to this. Specifically, a part of the minimum distance data LAmin (n, m) and LBmin (n, m) constituting the A side minimum distance database LAminDB and the B side minimum distance database LBminDB is selected from the selection targets in the maximum distance derivation step. It is also possible to exclude.
  • the artificial bone model Z for supplementation is constructed by the above-described method for forming the artificial bone model Z for compensation and the simulation system 20, the artificial bone for supplementation is designed so as to have an optimum size and shape without depending on the doctor's rule of thumb. can do. Moreover, if the artificial bone model Z for supplementation is constructed by the above-described forming method and the simulation system 20, it becomes possible to prepare and prepare an artificial bone molded into an ideal shape and size before the operation. Therefore, the time required for the operation can be shortened and the burden on the patient can be reduced.
  • the intersections between the STL construction line and the cut planes a and b related to the pre-correction bone model are the vertices A (n) and B (m), respectively.
  • the vertices A (n), B are composed of the STL construction line forming the bone fragments A and B and the STL construction line constituting the artificial bone model Z for supplementation.
  • M is shared, and it is possible to easily acquire a three-dimensional image showing a state in which the artificial bone for replacement is embedded between the bone fragments A and B.
  • the bone fragment position correcting step (step 1-5), a three-dimensional model of a mirror image of a normal bone having a plane-symmetric positional relationship with the bone to be corrected that has been deformed into an abnormal mode
  • the positions and postures of the bone fragments A and B that have been cut and separated based on the reference bone model Y are adjusted, and the size and shape of the defect portion L formed between the cut surfaces a and b can be easily specified. .
  • a three-dimensional model of the artificial bone for replacement (artificial bone model Z for replacement) to be supplemented between the bone fragments A and B when performing osteotomy
  • the artificial bone for supplementation can be formed easily and accurately.
  • the position of the bone fragments A and B, the interval between the cut surfaces a and b, the osteotomy position, the bone based on the reference bone model Y acquired in the reference bone model acquisition step (step 1-2).
  • the positions of the bone fragments A and B, the interval between the cut surfaces a and b, the osteotomy position, the osteotomy angle, and the like are appropriately set, so It is good also as constructing the STL data concerning the bone model Z of the artificial bone 10 for the replacement to determine the arrangement and thereby to fill the defect portion L formed between the bone fragments A and B by the method described above.
  • the medical simulation system 110 is constructed by installing software having an execution program for executing the method for acquiring a medical three-dimensional image according to the present embodiment on a conventionally known computer. Is done.
  • the medical simulation system 110 includes an image acquisition unit 120, a binarization unit 122, a region setting unit 124, a surface forming unit 126, a region resetting unit 128, a three-dimensionalization unit 130, and three-dimensional image data.
  • Output means 132 is an image acquisition unit 120, a binarization unit 122, a region setting unit 124, a surface forming unit 126, a region resetting unit 128, a three-dimensionalization unit 130, and three-dimensional image data.
  • the image acquisition means 120 can read image data such as DICOM (Digital Imaging and Communication in Medicine) data relating to a CT image obtained by X-ray CT (Computed Tomography).
  • the image acquisition unit 120 is acquired as a tomographic image in three directions X, Y, and Z that intersect each other.
  • a tomographic image group consisting of tomographic images in the X direction is classified as constituting an X direction tomographic image group.
  • a tomographic image group consisting of tomographic images in the Y direction is classified as constituting a Y direction tomographic image group
  • a tomographic image group consisting of tomographic images in the Z direction constitutes a Z direction tomographic image group. being classified.
  • the binarizing means 122 is a threshold set with the medical tomographic images forming the X direction tomographic image group, Y direction tomographic image group, and Z direction tomographic image group acquired by the image acquiring means 120 as the CT value as a reference. Are classified into two gradations with a boundary as a two-color image. Specifically, the binarization unit 122 replaces the region having the gradation equal to or higher than the threshold value in each medical tomographic image with white, and replaces the region where the gradation is lower than the threshold value with black. Each medical tomographic image is converted into a two-color image.
  • two X-direction two-color tomographic image groups obtained by dichroizing the tomographic image in the X direction two Y-direction two-color tomographic image groups obtained by dichroizing the tomographic image in the Y direction, and two tomographic images in the Z direction. Colored Z-direction two-color tomographic image groups are respectively formed.
  • the region setting unit 124 is for selecting a region including a portion to be converted into a three-dimensional image from the two-color tomographic image obtained by binarization by the binarization unit 122 described above.
  • the region setting unit 124 corresponds to a selection region when the region is set as a selection region in one of a plurality of two-color tomographic images obtained by binarization by the binarization unit 122.
  • a certain region is selected as the selection region.
  • the region is set, a portion corresponding to the selected region in the other two-color tomographic images included in the selected two-color tomographic image group is set as a selected region.
  • the two-color cross-sectional images included in the image group different from the image group to which the two-color cross-sectional images used for region setting belong among the two-color tomographic image groups in the X, Y, and Z directions are also described above.
  • An area corresponding to the selected area is selected as a selected area and set.
  • the medical simulation system 110 it is possible to perform region setting by a segmentation method, and a portion such as a mouse is used to set a region to be set as a selection region in a two-color cross-sectional image displayed on the display screen. It can be specified using a device. Further, in the medical simulation system 110, it is possible to perform region setting by the region growing method. When a region in the region to be selected as a selection region is specified, it is assumed that the region belongs to the same region as the specified portion. The connected areas are expanded while being sequentially taken in and selected as the selection area.
  • the surface forming unit 126 has a function of forming a three-dimensional image by combining images related to the selected region set by the region setting unit 124. By forming the three-dimensional image by the surface forming unit 126, whether or not an unnecessary part is included in addition to the part where the three-dimensional image is to be acquired at the time when the region is set by the region setting unit 124. It becomes possible to confirm the position of the part.
  • the region resetting unit 128 excludes an unnecessary region (exclusion region) when acquiring a 3D image from the regions already set as the selection region by the region setting unit 124 and resets the selection region. Means.
  • the area resetting unit 128 resets the selected area in one two-color tomographic image selected from each of the two-color slice images set by the area setting unit 124, the area resetting unit 128 is already in the other two-color slice images.
  • An area that is designated as an area to be selected is set as an area that is excluded from an area that corresponds to the exclusion area from an already set area that has been set.
  • the region resetting unit 128 resets a region obtained by removing the excluded region from the selected region in the two-color tomographic image included in any of the two-color tomographic image group in the X, Y, and Z directions.
  • an area excluding the area corresponding to the excluded area can be reset as the selected area.
  • the medical simulation system 110 of the present embodiment it is possible to designate an unnecessary area (exclusion area) from the selected area by the segmentation method and reset the selected area. Specifically, in a two-color cross-sectional image that has already been set on the display area displayed on the display screen, by specifying a portion corresponding to the exclusion area using an input device such as a mouse, the exclusion area It is possible to reset the selection area by specifying.
  • the three-dimensionalization unit 130 forms a three-dimensional image by combining the two-color cross-sectional images of the selection region designated by the region designation unit 26 or the portion related to the selection region reset by the region resetting unit 128. It has the function to do.
  • the three-dimensional image formed by the three-dimensionalization unit 130 can be output by the three-dimensional image data output unit 132 in a data format such as STL data.
  • the medical three-dimensional image acquisition method of the present embodiment is carried out through steps related to Step 2-1 to Step 2-9.
  • the image acquisition step according to step 2-1 is a step of reading image data related to a CT image such as DICOM data by the image acquisition means 120 and acquiring it as a tomographic image in three directions of X, Y, and Z.
  • the tomographic image data read in step 2-1 is an image having a large number of gradations such as a so-called gray scale image, and has a large data capacity for image processing as it is or three-dimensionalization.
  • each tomographic image is converted into a two-color image.
  • the tomographic images in the three directions X, Y, and Z acquired by the image acquisition unit 120 are all based on a region corresponding to a CT value equal to or greater than a threshold value set based on the CT value, and the threshold value. Are also classified as small areas. In each tomographic image, an area that is equal to or greater than the threshold is replaced with white, and an area that is below the threshold is replaced with black. In this way, each tomographic image is converted into a two-color tomographic image.
  • the two-color tomographic images obtained by dichroizing the tomographic images in the X direction constitute an X-direction two-color tomographic image group.
  • each two-color tomographic image obtained by dichroizing the tomographic image in the Y direction constitutes a Y-direction two-color tomographic image group
  • each two-color tomographic image obtained by dichroizing the tomographic image in the Z direction is A Z-direction two-color tomographic image group is configured.
  • Each two-color tomographic image obtained in the dichroic process is displayed on an output screen of a computer in which the medical simulation system 110 is installed for each image group as shown in FIG.
  • the two-color tomographic image displayed on the output screen is changed from the displayed X, X, X by specifying or changing coordinates using an input device such as a mouse or keyboard connected to the computer.
  • the position can be appropriately changed to a position moved in each of the Y and Z directions. Therefore, it is possible to display a two-color tomographic image at an arbitrary position (coordinates) on the output screen by specifying or changing the coordinates using the input device.
  • each tomographic image is converted into a two-color image as described above, the process proceeds to each step related to Step 2-3 to Step 2-8, and is used when a three-dimensional image is constructed in each two-color tomographic image.
  • the image area is set. Specifically, when the process shifts to the area setting process according to step 2-3, among the two-color tomographic images obtained in the above-described binarization process, as a selection area in the appropriately selected two-color tomographic image. An area corresponding to the set area is selected as a selection area in other two-color tomographic images.
  • an area to be selected in the two-color cross-sectional image displayed on the output screen that is, It is possible to set a region that will correspond to the portion to be converted into a three-dimensional image.
  • the region can be set by both the segmentation method and the region growing method, and the three regions displayed on the output screen can be set by any method.
  • An area to be a selection area can be selected by specifying an input device such as a mouse in one of the two-color tomographic images in the X, Y, and Z directions.
  • the designated region is displayed as shown in FIG. A region colored with a color other than white and black is formed and distinguished from other regions.
  • the selected region is designated by the region growing method, for example, when a part of the region indicated by the stitch-shaped hatching in FIG. 13 is selected, the entire hatched region is continuous. And the area is set as the selected area.
  • the region is set by the segmentation method, the region is set as a selection region by operating and selecting an input device such as a mouse or a keyboard so as to fill the entire region hatched in FIG. It becomes a state.
  • the area corresponding to the selection area is also colored in the other two-color tomographic images displayed on the output screen. Furthermore, as for the other two-color sectional images that are not displayed on the output screen when the selection area is designated, the area corresponding to the selection area is selected as the selection area as described above. Therefore, after setting the selection area, if another two-color image is displayed on the output screen by operating the input device, the area corresponding to the selection area described above is displayed in a colored state.
  • step 2-4 it is confirmed whether or not surface image formation is necessary, that is, whether or not it is necessary to form a three-dimensional image by combining images related to the selected region set by the region setting unit 124. If it is confirmed in step 2-4 that surface image formation is necessary, the process proceeds to step 2-5. If it is confirmed that surface image formation is not necessary, the process proceeds to step 2-7.
  • the surface forming unit 126 When the process has proceeded to step 2-5, the surface forming unit 126 combines the images related to the selected region set by the region setting unit 124 to form a three-dimensional image. As shown in FIG. 14, the three-dimensional image formed by the surface forming means 126 is displayed on the output screen of the computer as a surface image. As a result, whether or not the selected area set in the area setting process in Step 2-3 includes an unnecessary part in addition to the part to be acquired as a three-dimensional image, the position of the unnecessary part, etc. You can check if it does not exist.
  • step 2-5 When the formation of the surface image is completed in step 2-5, the process proceeds to step 2-6, and whether there is an area to be excluded from the already selected area set as the selection area in step 2-3 described above. Whether or not it is necessary to reset the selected area is confirmed. Similarly, when it is determined in step 2-4 that surface image formation is unnecessary, it is confirmed in step 2-8 whether or not there is an area to be excluded from the area set as the selection area. Is done. If it is determined in step 2-6 and step 2-8 that there is an area to be excluded from the area set as the selection area, and it is determined that the selection area needs to be reset, the process proceeds to step 2-7. If it is determined that there is no area to be excluded and that it is not necessary to reset the selected area, the process proceeds to step 2-9.
  • an area (exclusion area) that does not need to be acquired as a 3D image is selected from the area set as the selection area in step 2-3 by the area resetting unit 128.
  • the excluded area is reset as the selected area.
  • one of the two white areas depicted in the two-color cross-sectional image illustrated in FIG. 15A is an area indicating a portion to be converted into a three-dimensional image, and the other is the other area.
  • the area setting unit 124 may recognize it as a series of areas, for example, because both areas appear together in other two-color cross-sectional images.
  • a position (coordinates) at which the excluded area can be determined is designated based on the above-described surface image or the like as shown in FIG.
  • an exclusion area By specifying an exclusion area by operating an input device such as a mouse while the color slice image is displayed on the output screen, the area that is left excluded from the selection area (indicated by mesh hatching in FIG. 16) Can be reset as the selected area.
  • the selected area is reset, the other two-color tomographic images displayed on the output screen are reset to the area that excludes the area corresponding to the excluded area from the selected area. Become.
  • the selection area is reset, the area that excludes the area corresponding to the exclusion area from the selection area is reset as the selection area for the other two-color images that are not displayed on the output screen. become.
  • step 2-9 the two-color cross-sectional images of the portion designated as the selection region are combined by the three-dimensionalizing means 130 and displayed on the output screen as a three-dimensional image as shown in FIG. Further, the three-dimensional image formed in step 2-9 can be output by the three-dimensional image data output means 132 in a data format such as STL data.
  • the medical tomographic image is binarized through the steps related to Step 2-1 to Step 2-3.
  • the data capacity of the image (two-color tomographic image) handled in the process after step 2-3 is extremely small, and the information processing capability required for the computer for image processing in the process after step 2-3 is minimized. Can be processed quickly.
  • the medical simulation system 110 uses a two-color tomographic image obtained by binarizing the medical tomographic image
  • the medical tomographic image is constituted by tomographic images in three directions of X, Y, and Z that intersect each other. Even if a new one is used, an excessive load is not applied to the computer due to the image processing in the steps after step 2-3, and the image processing can be performed smoothly.
  • each medical tomographic image is classified into two gradations based on the threshold value set with reference to the CT value in the binarization process according to step 2-2, and converted into a two-color tomographic image. Therefore, it is possible to accurately separate into a region including a desired portion and a region including other portions. Therefore, according to the medical simulation system 110 described above, it is possible to accurately acquire a three-dimensional image of a desired part.
  • the medical simulation system 110 designates and selects an area (exclusion area) to be excluded from the selection area in the two-color tomographic image displayed on the output screen in the area resetting process according to step 2-7. If the area is reset, the area corresponding to the excluded area in the other two-color tomographic images is also reset as the selected area.
  • the medical simulation system 110 by specifying or resetting an area to be set as a selection area in any two-color tomographic image displayed on the output screen, other two colors Even in the tomographic image, it is possible to reflect the result of area setting and resetting of the selected area, and it is not necessary to perform area setting and resetting of the selected area for each two-color tomographic image. Therefore, according to the medical simulation system 110, it is possible to easily set and reset the selected region without using a doctor or a specialized operator who has experienced operation, and easily and accurately obtain a three-dimensional image of a desired part. It is possible to get to.
  • the tomographic image group and the Z-direction two-color tomographic image group are used for acquiring a medical three-dimensional image in the processes after step 2-3. Therefore, according to the medical simulation system 110 described above, it is possible to set and reset the selected region based on the two-color tomographic image viewed from the three directions of X, Y, and Z, and the medical use with high accuracy. It is possible to easily create a three-dimensional image.
  • a medical three-dimensional image is created using a medical tomographic image composed of tomographic images in three directions of X, Y, and Z is illustrated, but the present invention is not limited to this.
  • the medical three-dimensional image may be created based on the tomographic image in any one or two directions of the X, Y, and Z directions.
  • the two-color tomographic image of the region set in the region setting step according to step 2-3 previously performed is obtained. It is possible to form a three-dimensional image (surface image) in combination. Therefore, by referring to the surface image, whether or not an area unnecessary for creating a 3D image is included in the preset area designated as the selection area in the area resetting process according to step 2-7. In addition, it is possible to easily determine and specify at which position an unnecessary region is included in the two-color tomographic image. Therefore, according to the medical simulation system 110 described above, it is possible to improve work efficiency in the region resetting process.
  • this invention is not limited to this, The surface formation process cannot be implemented without having the surface formation means 126. Is possible.
  • a three-dimensional model of an osteotomy guide member (hereinafter also referred to as “cutting plate” 150) is constructed. It is possible to form the cutting plate 150 having a minimum size based on the three-dimensional model.
  • a pre-correction bone model X corresponding to a bone in a state before correction by osteotomy is formed by the simulation system 20 or the like, and osteotomy is performed in the corrected bone model X.
  • Cut planes a and b indicating the part are set.
  • a model of a cut piece obtained by cutting the pre-correction bone model X at the cutting planes a and b is constructed, and the movement distance of the cut piece required to bring the bone into a normal state and the artificial bone inserted between the cut pieces
  • the shape, size, position for inserting a wire used during the operation hereinafter also referred to as “wire insertion position”), and the like are determined.
  • the bone model ⁇ (hereinafter also referred to as “expansion model” ⁇ ) as shown in FIG. 18 and FIG. 19 is constructed by expanding the surface of the pre-correction bone model X by a predetermined thickness t.
  • the pre-correction bone model X and the expansion model ⁇ are shown in a cylindrical shape for simplification of description.
  • the expanded bone model ⁇ is a cylindrical body having a thickness t that is formed along the outer surface of the pre-correction bone model X, and a portion corresponding to the correction bone model X is hollow.
  • the thickness t of the expanded bone model ⁇ is set according to the thickness of the cutting plate 150 to be created.
  • the cutting plate 150 is formed by modeling using a material such as resin based on the three-dimensional model of the cutting plate 150 obtained by the above-described method. Since the cutting plate 150 formed in this way is formed along the bone to be cut, it is easy to mount at an appropriate position and the bone can be cut at an appropriate position. In addition, according to the above-described method, the cutting plate 150 can be designed while assuming the usage method of the surgical instrument such as a bone saw or wire or the cutting plate 150 that is actually used for the operation at the time of simulation. This preoperative plan can be made more reliable and safe, and as a result, the patient burden can be greatly reduced.

Abstract

Provided are a prosthetic bone model optimal for use in an osteotomy, a method that can form a prosthetic bone easily and with high precision, and a simulation system for medical use. The simulation system (20) sets p vertices (A(n)) and q vertices (B(m)) on the peripheries of the cut surfaces (a and b) of bone fragments (A and B) formed by cutting and separating a pre-correction bone model, which represents a bone to be corrected, at a prescribed cut location. The simulation system then derives the distances between vertices (A(n) and B(m)). From minimal distance data (LAmin(n, m) and LBmin(n, m)) derived for all vertices (A(n) and B(m)), the maxima are selected as A-side maximal distance data (LAmax(n, m)) and B-side maximal distance data (LBmax(n, m)). The vertices (A(n) and B(m)) that constitute the larger of these are used as start points, and STL construction lines that constitute STL data are formed.

Description

補填用人工骨モデル、補填用人工骨の形成方法、並びに医療用シミュレーションシステムArtificial bone model for compensation, method for forming artificial bone for compensation, and medical simulation system
 本発明は、異常態様に変形した骨を切断分離し、分離された骨片の位置関係を変更することにより正常な位置関係に矯正する際に、分離された骨片の間に配される補填用人工骨モデルの形成方法、医療用シミュレーションシステム、及び補填用人工骨の形成方法に関する。
 また、本発明は、所望の部位の三次元画像を取得するための医療用三次元画像の取得方法、及び前記三次元画像の取得方法を用いた医療用シミュレーションシステムに関する。
The present invention cuts and separates a bone deformed into an abnormal mode, and corrects the normal positional relationship by changing the positional relationship of the separated bone fragment, so that the compensation is arranged between the separated bone fragments. The present invention relates to a method for forming an artificial bone model, a medical simulation system, and a method for forming a replacement artificial bone.
The present invention also relates to a medical three-dimensional image acquisition method for acquiring a three-dimensional image of a desired part, and a medical simulation system using the three-dimensional image acquisition method.
 従来より、異常態様に変形した骨の矯正のために骨切り術と称される施術が行われている。従来より一般的に行われている骨切り術は、医師の経験則に基づいて決定された箇所において変形した骨を切断・分離し、分離された骨片同士の間に別途作成された人工骨を埋入することにより実施されていた。したがって、従来技術では、必ずしも理想的な状態で骨切り術が施術されているとは言えず、医師の経験則次第で施術の成否が左右されかねないという問題があった。かかる問題に鑑み、本発明者らは、下記特許文献1に開示されているような骨矯正のための方法や部材、システム及びプログラムを開発した。 Conventionally, a treatment called osteotomy has been performed to correct a bone deformed into an abnormal form. Traditionally, osteotomy is performed by cutting and separating deformed bones at locations determined based on doctors' empirical rules, and artificial bones created separately between the separated bone fragments. Was carried out by embedding. Therefore, in the prior art, it cannot be said that osteotomy is performed in an ideal state, and there is a problem that the success or failure of the operation may be influenced by the doctor's rule of thumb. In view of such problems, the present inventors have developed a method, member, system, and program for bone correction as disclosed in Patent Document 1 below.
特表2006-519636号公報JP 2006-519636 A
 上記特許文献1に開示された方法によれば、施術前に予め医師の経験則によることなく骨の切断箇所(切断面)の特定や、切断された骨片同士の分離の程度(変形量)などを決定し、施術に当たることが可能となった。上記特許文献1に開示されている方法の提供に伴い、手術前のプランニング段階において切断・分離された骨片同士の間に補填する人工骨の骨モデルや、補填用人工骨を容易かつ精度良く形成可能な方法の提供が望まれるようになっていた。 According to the method disclosed in the above-mentioned Patent Document 1, it is possible to specify a bone cutting position (cutting surface) and to separate the cut bone pieces (deformation amount) without using a doctor's empirical rule in advance before the treatment. It became possible to hit the treatment. With the provision of the method disclosed in Patent Document 1, an artificial bone model for filling between bone fragments cut and separated in a planning stage before surgery, and an artificial bone for replacement easily and accurately. It has become desirable to provide a method that can be formed.
 また、従来技術の医療画像処理技術では、骨表面モデルを作成するためにX線CT(Computed Tomography)などによって得られたCT画像に係るDICOM(Digital Imaging and Communication in Medicine)データを三次元画像化する場合は、骨表面の境界計算に膨大な工数が必要となり、術前シミュレーションシステムなどにおいてボリュームデータを使用せざるを得なかった。その結果、従来技術のシミュレーションシステムでは、動きを伴うシミュレーションを行ったり、術前プランニングを作成したりするために膨大な時間と労力を要し、シミュレーションシステムそのものが非実用的なものであった。また、ボリュームデータを活用するために、経験を積んだ医師や専門のオペレータが必要とされ、情報処理能力に優れたコンピュータを使用することが必須とされていた。 Also, in the conventional medical image processing technology, DICOM (Digital Imaging and Communication Communication in Medical) data related to CT images obtained by X-ray CT (Computed Tomography) or the like to create a bone surface model is converted into a three-dimensional image. When doing so, enormous man-hours are required to calculate the boundary of the bone surface, and volume data must be used in a preoperative simulation system or the like. As a result, in the conventional simulation system, it takes a lot of time and labor to perform a simulation with movement and to create a preoperative planning, and the simulation system itself is impractical. In addition, in order to utilize volume data, experienced doctors and specialized operators are required, and it is essential to use a computer with excellent information processing ability.
 そこで、かかる要望に対応すべく、本発明は骨切り術において使用するのに最適な補填用人工骨モデルや補填用人工骨を容易かつ高精度に形成可能な形成方法、及び骨切り術の術前プランニングなどのために使用可能な医療用シミュレーションシステムの提供を目的とした。またこれに加えて、本発明は、従来技術の医療画像処理技術を用いた場合に比べて要求される情報処理能力が低くて済み、所望の部位の三次元画像を容易かつ正確に形成可能な医療用三次元画像の取得方法、及び前記三次元画像の取得方法を用いた医療用シミュレーションシステムの提供を目的とした。 Accordingly, in order to meet such demands, the present invention provides an artificial bone model for supplementation that is optimal for use in osteotomy, a formation method that can easily and accurately form an artificial bone for supplementation, and an osteotomy technique. The purpose was to provide a medical simulation system that could be used for pre-planning. In addition to this, the present invention requires less information processing capability than when using a conventional medical image processing technique, and can easily and accurately form a three-dimensional image of a desired part. An object is to provide a medical three-dimensional image acquisition method and a medical simulation system using the three-dimensional image acquisition method.
 上述した課題を解決するために提供される本発明の補填用人工骨モデルの形成方法は、矯正前骨モデル取得工程と、切断面導出工程と、頂点設定工程と、最小距離データ群構築工程と、最大距離選択工程と、開始点選択工程と、STLデータ構築工程とを有することを特徴としている。本発明において、矯正前骨モデル取得工程は、矯正対象の骨を表す骨モデルを矯正前骨モデルとして取得する工程であり、切断面導出工程は、前記矯正前骨モデルを切断・分離して形成される骨片A,Bに係る切断面a,bを導出する工程である。また、頂点設定工程は、前記切断面aの外周上にp個の頂点A(n)を設定し、前記切断面bの外周上にq個の頂点B(m)を設定する工程である。最小距離データ群構築工程は、p個の頂点A(n)を構成する1点と、各頂点B(m)の一部又は全部との距離LA(n,m)を各頂点B(m)毎に導出し、導出された距離LA(n,m)から最小のものを選択して最小距離データLAmin(n,m)とする最小距離導出動作Aを、p個の頂点A(n)の一部又は全部について行い、最小距離データ群を構築する工程である。また、開始点選択工程は、前記最小距離データ群を構成するデータの一部又は全部において最大のものを選択する工程である。STLデータ構築工程は、前記距離データ群構築工程において導出された距離データ群に含まれる距離L(n,m)のうち最も長いものをなす頂点A(n),B(m)をそれぞれ開始点A(n),B(m)として選択し、前記開始点A(n),B(m)を起点として切断面a,bの周方向に並ぶ各頂点A(n),B(m)間を順次線分でつなぐことにより、切断面a,b間に補填する補填用人工骨の外表面を複数の三角形群で表現するSTLデータを構築する工程である。 The method for forming an artificial bone model for compensation of the present invention provided to solve the above-described problems includes a pre-correction bone model acquisition step, a cutting plane derivation step, a vertex setting step, and a minimum distance data group construction step. And a maximum distance selection step, a start point selection step, and an STL data construction step. In the present invention, the pre-correction bone model acquisition step is a step of acquiring a bone model representing the bone to be corrected as a pre-correction bone model, and the cutting plane derivation step is formed by cutting and separating the pre-correction bone model. This is a step of deriving the cut surfaces a and b related to the bone fragments A and B. The vertex setting step is a step of setting p vertices A (n) on the outer periphery of the cut surface a and setting q apexes B (m) on the outer periphery of the cut surface b. In the minimum distance data group construction step, a distance LA (n, m) between one point constituting p vertices A (n) and a part or all of each vertex B (m) is determined as each vertex B (m). The minimum distance derivation operation A for each of the p vertices A (n) is performed for each of the p vertices A (n), and the minimum distance derivation operation A is selected from the derived distances LA (n, m) and selected as the minimum distance data LAmin (n, m). This is a process for constructing a minimum distance data group by performing a part or all of them. The starting point selecting step is a step of selecting the maximum one of all or part of the data constituting the minimum distance data group. The STL data construction step starts the vertices A (n) and B (m) forming the longest distance L (n, m) included in the distance data group derived in the distance data group construction step, respectively. Select as A (n), B (m), and between the vertices A (n), B (m) aligned in the circumferential direction of the cutting planes a, b with the start points A (n), B (m) as the starting points Are sequentially connected by line segments to construct STL data that expresses the outer surface of the artificial bone to be compensated between the cut surfaces a and b by a plurality of triangle groups.
 本発明の補填用人工骨モデルの形成方法は、頂点A(n)に対して切断面aの周方向に隣接する頂点を頂点A(n+1)とし、頂点B(m)に対して切断面bの周方向に隣接する頂点を頂点B(m+1)とした場合に、頂点A(n),B(m+1)間をつなぐ線分と、頂点A(n+1),B(m)間をつなぐ線分のうち、距離の短い線分がSTLデータを構成する線分として選択されることが望ましい。 In the method for forming the artificial bone model for compensation of the present invention, the vertex adjacent to the vertex A (n) in the circumferential direction of the cutting plane a is set as the vertex A (n + 1), and the cutting plane b is applied to the vertex B (m). When the vertex adjacent in the circumferential direction is the vertex B (m + 1), the line connecting the vertices A (n) and B (m + 1) and the line connecting the vertices A (n + 1) and B (m) Of these, it is desirable that a line segment having a short distance is selected as a line segment constituting the STL data.
 上述した最小距離データ群構築工程は、最小距離導出動作Aに加えて、q個の頂点B(m)を構成する1点と、各頂点A(n)の一部又は全部との距離LB(n,m)を各頂点B(m)毎に導出し、導出された距離LB(n,m)から最小のものを選択して最小距離LBmin(n,m)とする最小距離導出動作Bをq個の頂点B(m)の一部又は全部について行い、最小距離データ群を最小距離データLAmin(n、m)及び最小距離データLBmin(n,m)を含むものとして構築するものであることが望ましい。また、上述した最大距離選択工程は、最小距離データ群をなす最小距離データLAmin(n、m)の一部又は全部において最大のものをA側最大距離データLAmax(n,m)として選択すると共に、最小距離データ群をなす最小距離データLBmin(n、m)の一部又は全部において最大のものをB側最大距離データLBmax(n,m)として選択し、A側最大距離データLAmax(n,m)及びB側最大距離データLBmax(n,m)のうち大きい方を最大距離データLmax(n,m)として選択するものであることが望ましい。さらに、上述した開始点選択工程は、最大距離データLmax(n,m)をなす頂点A(n),B(m)をそれぞれ開始点として選択するものであることが望ましい。 In the minimum distance data group construction step described above, in addition to the minimum distance derivation operation A, the distance LB () between one point constituting q vertices B (m) and a part or all of each vertex A (n). n, m) is derived for each vertex B (m), and the minimum distance deriving operation B is selected as the minimum distance LBmin (n, m) by selecting the smallest one from the derived distances LB (n, m). This is performed for some or all of the q vertices B (m), and the minimum distance data group is constructed to include the minimum distance data LAmin (n, m) and the minimum distance data LBmin (n, m). Is desirable. In the above-described maximum distance selection step, a part of or all of the minimum distance data LAmin (n, m) forming the minimum distance data group is selected as the A-side maximum distance data LAmax (n, m). , The largest of some or all of the minimum distance data LBmin (n, m) forming the minimum distance data group is selected as the B side maximum distance data LBmax (n, m), and the A side maximum distance data LAmax (n, m) is selected. It is desirable that the larger one of m) and B-side maximum distance data LBmax (n, m) is selected as the maximum distance data Lmax (n, m). Furthermore, it is desirable that the start point selection step described above selects the vertices A (n) and B (m) forming the maximum distance data Lmax (n, m) as start points.
 本発明の補填用人工骨モデルの形成方法は、矯正前骨モデル取得工程において、矯正対象の骨の外表面を複数の三角形群で表現するSTLデータを構築することにより矯正前骨モデルが取得され、頂点設定工程において、矯正前骨モデルに係るSTLデータをなす三角形群を構成する各辺と切断面a,bとの交点が、それぞれ頂点A(n),B(m)に設定されるものであることが望ましい。また、本発明の補填用人工骨モデルの形成方法は、矯正対象の骨と面対称の位置関係にある健常な骨の骨モデルと面対称な骨モデルを基準骨モデルとして取得する基準骨モデル取得工程を有し、切断面導出工程において、前記基準骨モデルを基準として切断面a,bが決定されることが好ましい。 In the pre-correction bone model acquisition step, the pre-correction bone model is acquired by constructing STL data representing the outer surface of the bone to be corrected by a plurality of triangle groups in the pre-correction bone model acquisition step of the present invention. In the vertex setting step, the intersections of the sides constituting the triangle group constituting the STL data related to the pre-correction bone model and the cut planes a and b are set at the vertices A (n) and B (m), respectively. It is desirable that Further, the method for forming the artificial bone model for compensation according to the present invention acquires a bone model of a healthy bone that is in a plane-symmetrical positional relationship with a bone to be corrected and a bone model that is plane-symmetrical as a reference bone model. It is preferable that the cutting planes a and b are determined based on the reference bone model in the cutting plane derivation step.
 また、本発明の補填用人工骨モデルの形成方法は、上述した本発明の補填用人工骨モデルの形成方法によって得られたSTLデータを用いて補填用人工骨を形成することを特徴としている。 The method for forming the artificial bone model for compensation of the present invention is characterized in that the artificial bone for replacement is formed by using the STL data obtained by the method for forming the artificial bone model for compensation of the present invention described above.
 本発明の医療用シミュレーションシステムは、上述した本発明の補填用人工骨モデルの形成方法を用いて補填用人工骨の三次元画像を形成することを特徴としている。 The medical simulation system of the present invention is characterized in that the three-dimensional image of the artificial bone for compensation is formed using the method for forming the artificial bone model for supplement of the present invention described above.
 また、本発明の医療用三次元画像の取得方法は、二値化工程と、領域設定工程と、領域再設定工程と、三次元化工程とを有することを特徴としている。本発明において、二値化工程は、複数の医療用断層画像を、CT値を基準として設定された閾値を境界として二色画像化した二色断層画像とする工程である。本発明において、前記領域設定工程は、前記二値化工程において得られた二色断層画像のうちの一つにおいて領域設定された選択領域に対応する領域を他の二色断層画像において選択領域として領域設定する工程である。また、前記領域再設定工程は、領域設定工程において領域設定された各二色断層画像から選ばれる一つの二色断層画像において、領域設定工程で選択領域として領域設定されている既設定の領域から一部が除外された領域を選択領域として再設定し、再設定された選択領域に対応する領域を他の二色断層画像において選択領域として再設定する工程である。前記三次元化工程は、前記領域設定工程及び領域再設定工程を経て得られた二色断層画像を組み合わせて三次元画像を形成する工程である。 The medical three-dimensional image acquisition method of the present invention is characterized by having a binarization step, a region setting step, a region resetting step, and a three-dimensional step. In the present invention, the binarization step is a step of converting a plurality of medical tomographic images into two-color tomographic images that are two-color images with a threshold set based on the CT value as a boundary. In the present invention, in the region setting step, a region corresponding to a selection region set in one of the two-color tomographic images obtained in the binarization step is selected as a selection region in another two-color tomographic image. This is a step of setting an area. Further, the region resetting step is performed from a previously set region set as a selection region in the region setting step in one two-color tomographic image selected from each two-color tomographic image set in the region setting step. This is a step of resetting a region excluding a part as a selection region and resetting a region corresponding to the reset selection region as a selection region in another two-color tomographic image. The three-dimensionalization step is a step of forming a three-dimensional image by combining two-color tomographic images obtained through the region setting step and the region resetting step.
 本発明の医療用三次元画像の取得方法は、医療用断層画像として、互いに交差するX,Y,Zの三方向に係る断層画像によって構成されたものを使用することが可能である。本発明は、X方向への断層画像からなるX方向断層画像群、Y方向への断層画像からなるY方向断層画像群、及びZ方向への断層画像からなるZ方向断層画像群をなす各医療用断層画像が、二値化工程において二色画像化され二色断層画像となり、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群が形成されるものとすることが可能である。また、本発明の医療用三次元画像の取得方法は、領域設定工程において、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群から選択された一の二色断層画像群に含まれる一の二色断層画像において領域設定された選択領域に対応する領域が、選択された一の二色断層画像群に含まれる他の二色断層画像、及び非選択である他の二色断層画像群に含まれる二色断層画像において選択領域として領域設定するものとすることが望ましい。また、本発明の医療用三次元画像の取得方法は、領域再設定工程において、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群から選択された一の二色断層画像群に含まれる一の二色断層画像において選択領域として領域設定されている既設定の領域から一部を除外した領域が選択領域として再設定され、再設定された選択領域に対応する領域が、他の二色断層画像において選択領域として再設定されるものであることが望ましい。 The method for acquiring a medical three-dimensional image according to the present invention can use a medical tomographic image composed of tomographic images in three directions of X, Y, and Z that intersect each other. The present invention provides an X-directional tomographic image group consisting of tomographic images in the X direction, a Y-directional tomographic image group consisting of tomographic images in the Y direction, and a Z-directional tomographic image group consisting of tomographic images in the Z direction. The tomographic image is converted into a two-color tomographic image in the binarization step to form an X-direction two-color tomographic image group, a Y-direction two-color tomographic image group, and a Z-direction two-color tomographic image group. Is possible. The medical three-dimensional image acquisition method of the present invention is the region setting step in which one of the X direction two-color tomographic image group, the Y direction two-color tomographic image group, and the Z direction two-color tomographic image group is selected. An area corresponding to a selected area set in one two-color tomographic image included in the two-color tomographic image group is another two-color tomographic image included in the selected one-color tomographic image group, and is not selected. It is desirable to set a region as a selection region in a two-color tomographic image included in another two-color tomographic image group. The medical three-dimensional image acquisition method of the present invention is a region selected from the X direction two-color tomographic image group, the Y direction two-color tomographic image group, and the Z direction two-color tomographic image group in the region resetting step. An area excluding a part of the preset area set as the selection area in one two-color tomographic image included in the two-color tomographic image group is reset as the selection area, and the reset selection area is set as the selection area. It is desirable that the corresponding area is reset as a selection area in another two-color tomographic image.
 本発明の医療用三次元画像の取得方法は、領域設定工程において領域設定された領域の二色断層画像を組み合わせることにより三次元画像を形成するサーフェス形成工程を有することが望ましい。 The medical three-dimensional image acquisition method of the present invention preferably includes a surface forming step of forming a three-dimensional image by combining the two-color tomographic images of the regions set in the region setting step.
 上述した本発明の医療用三次元画像の取得方法を用いれば、複数の医療用断層画像に含まれている所定の部位の三次元画像を形成可能な医療用シミュレーションシステムを提供しうる。 If the above-described method for acquiring a medical three-dimensional image of the present invention is used, a medical simulation system capable of forming a three-dimensional image of a predetermined part included in a plurality of medical tomographic images can be provided.
 本発明の補填用人工骨モデルの形成方法によれば、矯正前骨モデル取得工程において取得された矯正前骨モデルを切断面導出工程において切断・分離して形成される骨片A,Bの切断面a,b間に補填する人工骨の外表面を複数の三角形群で表現したSTLデータを容易かつ精度良く取得することが可能となる。具体的には、本発明によって取得するSTLデータは、頂点設定工程において切断面a,bの外周上に設定された頂点A(n),B(m)間を切断面a,b間を横断するように順次線分で繋ぐことにより全周を取り巻くように形成されるが、線分を形成する際の開始点となる頂点A(n),B(m)として適切なものを選択しなければ、最終的に形成されるSTLデータに誤差が生じてしまう可能性がある。また、適切な開始点を選択しなければ、前述した誤差を防止するためにSTLデータを何度も構築し直すなどの必要が生じ、STLデータの構築に相当の手間を要することになる。 According to the method for forming an artificial bone model for compensation of the present invention, cutting of bone fragments A and B formed by cutting and separating the pre-correction bone model acquired in the pre-correction bone model acquisition step in the cutting plane derivation step It becomes possible to easily and accurately acquire STL data in which the outer surface of the artificial bone to be compensated between the surfaces a and b is expressed by a plurality of triangle groups. Specifically, the STL data acquired by the present invention crosses between the cut surfaces a and b between the vertices A (n) and B (m) set on the outer circumference of the cut surfaces a and b in the vertex setting step. In this way, it is formed so as to surround the entire circumference by sequentially connecting the line segments, but an appropriate apex A (n), B (m) must be selected as the starting point when forming the line segments. In this case, an error may occur in the finally formed STL data. Further, unless an appropriate starting point is selected, it becomes necessary to reconstruct the STL data many times in order to prevent the above-described error, and it takes a considerable amount of time to construct the STL data.
 かかる知見に基づき、本発明の補填用人工骨モデルの形成方法では、STLデータを構築する線分(以下、「STL構築線」とも称す)の候補となるものの長さを精査し、STL構築線となりうる線分において長いものをなす頂点A(n),B(m)を開始点とすることによりSTLデータの精度の向上を図り、STLデータの構築を容易化している。具体的には、各A(n),B(m)間をつなぐ線分のうち最短のものがSTL構築線となる。また、STL構築線を順次構成していく場合は、STL構築線の候補となりうるもののうち最大のものをなす頂点A(n),B(m)を開始点としてSTL構築線を構築していくことにより誤差を最小限に抑制できるものと考えられる。そこで、本発明では、p個の頂点A(n)の一部又は全部について最小距離導出動作Aを行うことにより各頂点A(n)を起点とするSTL構築線の長さを確認すると共に、最小距離導出動作Aにより構築された最小距離データ群をなすデータの一部又は全部において最大のものをなす頂点A(n),B(m)を開始点として選択することとしている。したがって、本発明によれば、STLデータの精度を向上させると共に、STLデータを容易に構築することが可能となる。 Based on this knowledge, in the method for forming an artificial bone model for compensation according to the present invention, the length of a candidate for a segment for constructing STL data (hereinafter also referred to as “STL construction line”) is scrutinized, and an STL construction line is obtained. By using the vertices A (n) and B (m) that are long in the possible line segments as starting points, the accuracy of the STL data is improved, and the construction of the STL data is facilitated. Specifically, the shortest line segment connecting between A (n) and B (m) is the STL construction line. Further, when the STL construction line is sequentially constructed, the STL construction line is constructed with the vertices A (n) and B (m) that are the largest among the candidates of the STL construction line as starting points. Therefore, it is considered that the error can be minimized. Therefore, in the present invention, the length of the STL construction line starting from each vertex A (n) is confirmed by performing the minimum distance derivation operation A for some or all of the p vertices A (n), The vertexes A (n) and B (m) that make the maximum in a part or all of the data constituting the minimum distance data group constructed by the minimum distance deriving operation A are selected as starting points. Therefore, according to the present invention, it is possible to improve the accuracy of STL data and to easily construct STL data.
 本発明によれば、手術前のプランニング段階において、医師の経験則によることなく、補填用人工骨の最適な設計を行うことが可能となる。また、本発明によって補填用人工骨モデルを構築すれば、術前に理想的な形状、大きさに成形された人工骨を提供できるため、手術に要する時間の短縮や、患者に与える負担の軽減に資することが可能となる。 According to the present invention, it is possible to optimally design a replacement artificial bone without depending on a doctor's rule of thumb in the planning stage before surgery. In addition, if an artificial bone model for compensation is constructed according to the present invention, an artificial bone shaped into an ideal shape and size before surgery can be provided, so that the time required for surgery is reduced and the burden on the patient is reduced. It becomes possible to contribute to.
 本発明の補填用人工骨モデルの形成方法では、頂点A(n),B(m+1)間をつなぐ線分と、頂点A(n+1),B(m)間をつなぐ線分のうち、距離の短い線分がSTLデータを構成する線分として選択されるため、補填用人工骨の外表面をなすSTL構築線によって構成された三角形群により適確に表現することが可能となる。 In the method for forming the artificial bone model for compensation of the present invention, the distance between the line segment connecting the vertices A (n) and B (m + 1) and the line segment connecting the vertices A (n + 1) and B (m) is calculated. Since the short line segment is selected as the line segment constituting the STL data, it is possible to accurately represent the triangle group composed of the STL construction line that forms the outer surface of the artificial bone for replacement.
 上述したように、最小距離データ群構築工程を、最小距離導出動作Aに加えて最小距離導出動作Bを行うものとした場合、最大距離選択工程においてA側最大距離データLAmax(n,m)及びB側最大距離データLBmax(n,m)を選択し、これらのうち大きい方を最大距離データLmax(n,m)として選択することとすれば、より一層確実に切断面a,b間において最も間隔が開いた位置関係にある頂点A(n),B(m)を開始点として選択することが可能となる。したがって、本発明によれば、補填用人工骨モデルを構成するSTLデータをより一層精度良く構築することが可能となる。 As described above, when the minimum distance data group construction step is to perform the minimum distance derivation operation B in addition to the minimum distance derivation operation A, in the maximum distance selection step, the A side maximum distance data LAmax (n, m) and If the B-side maximum distance data LBmax (n, m) is selected, and the larger one of these is selected as the maximum distance data Lmax (n, m), it is even more reliable between the cut surfaces a and b. It becomes possible to select vertices A (n) and B (m) having a positional relationship with an interval as a starting point. Therefore, according to the present invention, it is possible to construct the STL data that constitutes the artificial bone model for compensation more accurately.
 上述したように、本発明の補填用人工骨モデルの形成方法は、矯正前骨モデル取得工程において、矯正前骨モデルを構築する際に取得されたSTLデータをなす三角形群を構成する各辺と切断面a,bとの交点が、それぞれ頂点A(n),B(m)に設定される。したがって、本発明により補填用人工骨モデルを形成すれば、骨片A,BをなすSTL構築線と、補填用人工骨モデルを構成するSTL構築線とが頂点A(n),B(m)を共用することになる。よって、本発明によれば、骨片A,Bの間に補填用人工骨を埋入した状態を示す三次元画像の取得などを容易に行うことができる。 As described above, the method for forming the artificial bone model for compensation according to the present invention includes each side constituting the triangle group forming the STL data acquired when the pre-correction bone model is constructed in the pre-correction bone model acquisition step. Intersections with the cutting planes a and b are set at vertices A (n) and B (m), respectively. Therefore, when the artificial bone model for compensation is formed according to the present invention, the STL construction lines forming the bone fragments A and B and the STL construction lines constituting the artificial bone model for compensation are the vertices A (n) and B (m). Will be shared. Therefore, according to the present invention, it is possible to easily obtain a three-dimensional image showing a state in which the artificial bone for replacement is embedded between the bone fragments A and B.
 ここで、例えば人体をなす骨の多くは左右で面対称の形状となっているため、骨切り術によって骨の矯正を行う場合は、異常態様に変形した骨と面対称の位置関係にある正常な骨の位置や形状を指標とすれば、切断すべき位置を容易かつ適切に設定し、切断面a,bを形成することが可能となる。本発明の補填用人工骨モデルの形成方法では、基準骨モデル取得工程を設け、矯正対象の骨と面対称の位置関係にある健常な骨と面対称な骨モデルを基準骨モデルとして取得することとしているため、切断面導出工程において前記基準骨モデルを基準として容易かつ適切に骨の切断位置を決定することが可能となる。 Here, for example, many of the bones that make up the human body have a plane-symmetric shape on the left and right, so when bone correction is performed by osteotomy, normal bones that are in a plane-symmetric positional relationship with the deformed bone If the position and shape of a simple bone are used as an index, the position to be cut can be set easily and appropriately, and the cut surfaces a and b can be formed. In the method for forming an artificial bone model for supplementation according to the present invention, a reference bone model acquisition step is provided, and a healthy bone that is in a plane-symmetrical positional relationship with the bone to be corrected is acquired as a reference bone model. Therefore, it is possible to easily and appropriately determine the bone cutting position with reference to the reference bone model in the cutting plane derivation step.
 本発明の補填用人工骨モデルの形成方法のように、上述した補填用人工骨モデルの形成方法によって得られたSTLデータを用いて補填用人工骨を形成することとすれば、骨切り術において使用するのに最適な補填用人工骨を容易かつ高精度に形成することが可能となる。 In the osteotomy, if the artificial bone for compensation is formed by using the STL data obtained by the method for forming the artificial bone model for compensation as described above, like the method for forming the artificial bone model for supplement of the present invention, It is possible to easily and highly accurately form a supplemental artificial bone that is optimal for use.
 本発明の医療用シミュレーションシステムのように、上述した本発明の補填用人工骨モデルの形成方法を用いて補填用人工骨の三次元画像を形成することとすれば、骨切り術による手術を行う前に補填用人工骨の三次元画像を用いて手術のプランニングなどを行うことが可能となる。 As in the medical simulation system of the present invention, if a three-dimensional image of a replacement artificial bone model is formed using the above-described method for forming a replacement artificial bone model of the present invention, an operation by osteotomy is performed. It is possible to plan surgery and the like using a three-dimensional image of the artificial bone for replacement.
 本発明の医療用三次元画像の取得方法では、二値化工程において医療用断層画像が二色画像化される。本発明では、二値化工程における医療用断層画像の二色画像化がCT値を基準として設定された閾値に基づいてなされているため、二値化工程において得られた二色断層画像を、所望の部位を含む領域とそれ以外の部位を含む領域とに容易に分離することが可能となる。 In the medical three-dimensional image acquisition method of the present invention, the medical tomographic image is converted into a two-color image in the binarization step. In the present invention, since the two-color imaging of the medical tomographic image in the binarization step is performed based on a threshold value set with reference to the CT value, the two-color tomographic image obtained in the binarization step is It becomes possible to easily separate into a region including a desired portion and a region including other portions.
 また、本発明の医療用三次元画像の取得方法では、無次元数であるCT値を指標として医療用断層画像を二色画像化しているため、提供された医療用断層画像の濃淡や色調などの影響を受けることなく、所望の部位を含む領域とそれ以外の部位とに容易かつ精度良く分離できる。したがって、本発明の医療用三次元画像の取得方法によれば、いかなるX線CT装置において撮像された医療用断層画像を用いても、所望の部位の三次元画像を精度良く取得することが可能となる。 Further, in the medical three-dimensional image acquisition method of the present invention, since the medical tomographic image is converted into a two-color image using the CT value which is a dimensionless number as an index, the density and color tone of the provided medical tomographic image, etc. Without being influenced by the above, it is possible to easily and accurately separate the region including the desired region from the other region. Therefore, according to the method for acquiring a medical three-dimensional image of the present invention, it is possible to accurately acquire a three-dimensional image of a desired part using a medical tomographic image captured by any X-ray CT apparatus. It becomes.
 上述したように、二色画像化することにより、三次元画像化するまでの過程において使用する画像のデータ容量を最小限に抑制できる。したがって、本発明の医療用三次元画像の取得方法では、画像処理のためにコンピュータに要求される情報処理能力が最小限で済み、迅速かつスムーズに画像処理することが可能である。 As described above, by forming a two-color image, it is possible to minimize the data capacity of the image used in the process until the three-dimensional image is formed. Therefore, in the medical three-dimensional image acquisition method of the present invention, the information processing capability required for the computer for image processing is minimized, and it is possible to perform image processing quickly and smoothly.
 また、本発明の医療用三次元画像の取得方法では、領域設定工程において、二値化工程によって得られた複数の二色断層画像のうちの一つにおいて領域設定された選択領域に対応する領域を他の二色断層画像において選択領域として領域設定することにより、他の二色断層画像においても前記選択領域に対応する部分が選択領域として領域設定された状態になる。したがって、本発明の医療用三次元画像の取得方法では、複数存在する二色断層画像のいずれかにおいて三次元画像化したい部分を含む領域を選択領域として領域設定すれば、他の二色断層画像においても三次元画像化したい部分を含む領域が選択領域として選択された状態になり、選択領域の設定が極めて容易である。 In the medical three-dimensional image acquisition method of the present invention, in the region setting step, the region corresponding to the selected region set in one of the plurality of two-color tomographic images obtained by the binarization step By setting a region as a selection region in another two-color tomographic image, a portion corresponding to the selection region is also set as a selection region in another two-color tomographic image. Therefore, in the medical three-dimensional image acquisition method of the present invention, if a region including a portion to be converted into a three-dimensional image in any of a plurality of two-color tomographic images is set as a selection region, another two-color tomographic image is obtained. In this case, an area including a portion to be converted into a three-dimensional image is selected as a selection area, and setting of the selection area is extremely easy.
 ここで、上述した領域設定工程において複数存在する二色断層画像のうちの一つにおいて選択領域として領域設定し、これに対応する領域を他の二色断層画像において選択領域として領域設定することとした場合、前記他の二色断層画像を参照すると三次元画像化を希望しない部分が選択領域に含まれてしまう可能性がある。そこで、かかる不都合を解消すべく、本発明の医療用三次元画像の取得方法では、領域再設定工程を設け、選択領域として領域設定されている既設定の領域から一部を除外することにより選択領域を再設定すると共に、再設定された選択領域に対応する領域を他の二色断層画像において選択領域として再設定できることとされている。したがって、本発明の医療用三次元画像の取得方法によれば、三次元化工程において領域設定工程や領域再設定工程を経て得られた二色断層画像を組み合わせることにより、所望の部位についての三次元画像を確実に形成することが可能となる。 Here, in one of a plurality of two-color tomographic images existing in the region setting step described above, a region is set as a selection region, and a region corresponding thereto is set as a selection region in another two-color tomographic image; In this case, when the other two-color tomographic image is referred to, there is a possibility that a portion that does not desire three-dimensional imaging is included in the selected region. Therefore, in order to eliminate such inconvenience, in the medical three-dimensional image acquisition method of the present invention, an area resetting step is provided, and selection is performed by excluding a part from the already set areas set as the selection areas. The area is reset, and the area corresponding to the reset selection area can be reset as a selection area in another two-color tomographic image. Therefore, according to the method for acquiring a medical three-dimensional image of the present invention, by combining the two-color tomographic images obtained through the region setting process and the region resetting process in the three-dimensionalization process, An original image can be reliably formed.
 上述したように、本発明の医療用三次元画像の取得方法は、二値化工程を経て二色化した断層画像を用いて以後の処理を行うため、医療用断層画像として、互いに交差するX,Y,Zの三方向に係る断層画像によって構成されたものを使用しても、画像処理のためにコンピュータに過剰な負荷がかからず、スムーズに画像処理することが可能となる。また、医療用断層画像を二色化した二色断層画像を用いることにより、互いに交差するX,Y,Zの三方向に係る断層画像によって構成された医療用断層画像を医療用三次元画像の取得のために使用することが可能となり、所望の部位についてより一層正確な三次元画像を形成することが可能となる。 As described above, since the medical three-dimensional image acquisition method of the present invention performs subsequent processing using the two-colored tomographic image after the binarization step, X crossing each other as a medical tomographic image. Even if an image composed of tomographic images in the three directions Y, Y, and Z is used, an excessive load is not applied to the computer for image processing, and image processing can be performed smoothly. In addition, by using a two-color tomographic image obtained by dichroizing a medical tomographic image, a medical tomographic image composed of tomographic images in three directions X, Y, and Z intersecting each other is converted into a medical three-dimensional image. It can be used for acquisition, and a more accurate three-dimensional image can be formed for a desired site.
 本発明の医療用三次元画像の取得方法では、領域設定工程において、X,Y,Zの各方向についての二色断層画像群から選択された一の二色断層画像群に含まれる一の二色断層画像において領域設定された選択領域に対応する領域が、選択された二色断層画像群に含まれる他の二色断層画像や、非選択である他の二色断層画像群に含まれる二色断層画像において選択領域として領域設定される。また、本発明の医療用三次元画像の取得方法では、領域再設定工程において、X,Y,Zの各方向についての二色断層画像群から選択された一の二色断層画像群に含まれる一の二色断層画像において既に選択領域として領域設定されている既設定の領域から一部を除外した領域が選択領域として再設定され、再設定された選択領域に対応する領域が、他の二色断層画像について選択領域として再設定される。 In the medical three-dimensional image acquisition method of the present invention, in the region setting step, one two-color tomographic image group selected from the two-color tomographic image group for each of the X, Y, and Z directions is included. A region corresponding to the selected region set in the color tomographic image is included in another two-color tomographic image included in the selected two-color tomographic image group or another two-color tomographic image group that is not selected. A region is set as a selection region in the color tomographic image. In the medical three-dimensional image acquisition method of the present invention, in the region resetting step, the two-color tomographic image group selected from the two-color tomographic image group in each of the X, Y, and Z directions is included. In one two-color tomographic image, an area excluding a part from the already set area as the selection area is reset as the selection area, and the area corresponding to the reset selection area is the other two areas. The color tomographic image is reset as the selected region.
 すなわち、X,Y,Z二色断層画像群をなす多数の二色断層画像から選ばれた一の二色断層画像において選択領域の設定や再設定が行われると、多数存在する他の二色断層画像においてもこれに連動して前述した選択領域に相当する領域が選択領域として設定されることになり、二色断層画像毎に領域設定や再設定を行う必要がない。したがって、本発明の医療用三次元画像の取得方法では、X,Y,Z方向の3方向から三次元画像を取得すべき部位を含む領域を確認し、選択領域として指定したり、既に指定されている領域設定されている既設定の領域から一部を除外した領域を選択領域として再設定することにより、他の二色断層画像においては確認しにくい部分を選択領域として確実に設定することが可能である。よって、本発明の医療用三次元画像の取得方法によれば、選択領域をより一層容易かつ正確に設定することが可能である。 That is, when the selection region is set or reset in one two-color tomographic image selected from a large number of two-color tomographic images forming an X, Y, Z two-color tomographic image group, other two colors existing in large numbers. Also in the tomographic image, an area corresponding to the selection area described above is set as the selection area in conjunction with this, and there is no need to perform area setting or resetting for each two-color tomographic image. Therefore, in the method for acquiring a medical three-dimensional image according to the present invention, a region including a part where a three-dimensional image is to be acquired is confirmed from three directions of X, Y, and Z directions, and is designated as a selection region or already designated. By re-setting the selected area as an area that is partly excluded from the already set area, it is possible to reliably set the area that is difficult to confirm in other two-color tomographic images as the selected area. Is possible. Therefore, according to the medical three-dimensional image acquisition method of the present invention, it is possible to set the selected region more easily and accurately.
 また、本発明の医療用三次元画像の取得方法は、領域設定工程において領域設定された領域の二色断層画像を組み合わせることにより三次元画像を形成するサーフェス形成工程を設けることにより、領域設定工程において選択領域として指定された領域に三次元画像を作成する上で不要な領域が含まれているか否かや、不要な領域がどの位置の二色断層画像に含まれているのかなどを容易に判断し特定することが可能となる。したがって、サーフェス形成工程を設けることにより、領域再設定工程の作業効率を向上させ、より一層容易かつ正確に医療用三次元画像を取得することが可能となる。 In addition, the medical three-dimensional image acquisition method of the present invention provides a surface forming step of forming a three-dimensional image by combining two-color tomographic images of the region set in the region setting step. It is easy to determine whether the area specified as the selection area in Fig. 2 includes an area that is not necessary for creating a 3D image, and where the unnecessary area is included in the two-color tomographic image. It becomes possible to judge and specify. Therefore, by providing the surface forming step, it is possible to improve the work efficiency of the region resetting step and obtain a medical three-dimensional image more easily and accurately.
 上述した本発明の医療用三次元画像の取得方法を用いれば、複数の医療用断層画像に含まれている所定の部位の三次元画像を形成可能であり、情報処理能力が過度に高いコンピュータによらなくてもスムーズに三次元画像を取得することが可能な医療用シミュレーションシステムを提供しうる。また、この医療用シミュレーションシステムは、上述した医療用三次元画像の取得方法を用いたものであるため、操作経験を積んだ医師や専門のオペレータによらなくても容易に正確な三次元画像を取得することが可能となる。 By using the above-described method for acquiring a medical three-dimensional image according to the present invention, it is possible to form a three-dimensional image of a predetermined part included in a plurality of medical tomographic images, and to a computer having an extremely high information processing capability. It is possible to provide a medical simulation system capable of acquiring a three-dimensional image smoothly without depending on it. In addition, since this medical simulation system uses the above-described method for acquiring a medical three-dimensional image, an accurate three-dimensional image can be easily obtained without relying on a doctor or a specialized operator who has experienced operation. It can be acquired.
本発明の一実施形態に係るシミュレーションシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the simulation system which concerns on one Embodiment of this invention. 矯正前骨モデル及び基準骨モデルの表示状態の一例を示す図である。It is a figure which shows an example of the display state of the bone model before correction | amendment, and a reference | standard bone model. 矯正前骨モデルの骨切り位置を決定する際に出力画面に表示される表示画面の一例を示す図である。It is a figure which shows an example of the display screen displayed on an output screen when determining the osteotomy position of the bone model before correction. 骨片A,Bの切断面a,bと、骨片のSTL構築線との関係を模式的に示した斜視図である。It is the perspective view which showed typically the relationship between the cut surfaces a and b of bone fragments A and B, and the STL construction line of bone fragments. 骨片位置矯正工程において各骨片A,Bの位置及び角度を調整した後の状態を模式的に示した斜視図である。It is the perspective view which showed typically the state after adjusting the position and angle of each bone piece A and B in a bone piece position correction process. (a)は距離LA(n,m)を導出する際の頂点A(n),B(m)の関係を説明する説明図であり、(b)は距離LB(n,m)を導出する際の頂点A(n),B(m)の関係を説明する説明図である。(A) is explanatory drawing explaining the relationship of vertex A (n) and B (m) at the time of deriving distance LA (n, m), (b) derives distance LB (n, m). It is explanatory drawing explaining the relationship of the vertex A (n) and B (m) at the time. 補填用人工骨モデルZを示す斜視図である。It is a perspective view which shows the artificial bone model Z for compensation. 補填用人工骨モデルZを骨片A,Bの間に嵌め込んだ状態を示す斜視図である。It is a perspective view which shows the state which fitted the artificial bone model Z for a compensation between the bone fragments A and B. FIG. 本発明の一実施形態に係る補填用人工骨モデルの形成方法のフローチャートである。It is a flowchart of the formation method of the artificial bone model for the compensation which concerns on one Embodiment of this invention. 本発明の一実施形態に係る医療用シミュレーションシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the medical simulation system which concerns on one Embodiment of this invention. 本発明の医療用三次元画像の取得方法に係るフローチャートである。It is a flowchart which concerns on the acquisition method of the medical three-dimensional image of this invention. 二値化工程において取得される二色断層画像を出力画面に出力した状態を示す図である。It is a figure which shows the state which output the two-color tomographic image acquired in the binarization process on the output screen. 領域設定工程において選択領域が設定された状態を示す図である。It is a figure which shows the state by which the selection area | region was set in the area | region setting process. サーフェス画像を示す図である。It is a figure which shows a surface image. (a)は二値化工程において取得される二色断層画像の一例を示す図であり、(b)は(a)に示す二色断層画像において選択領域が設定された状態を示す図である。(A) is a figure which shows an example of the two-color tomographic image acquired in a binarization process, (b) is a figure which shows the state by which the selection area | region was set in the two-color tomographic image shown to (a). . 図15(b)に示す二色断層画像において、選択領域から一部の領域を除外した状態を示す図である。FIG. 16 is a diagram illustrating a state in which a part of a region is excluded from a selection region in the two-color tomographic image illustrated in FIG. 三次元化工程において取得される三次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image acquired in a three-dimensionalization process. 膨張モデル及び切断面を示す斜視図である。It is a perspective view which shows an expansion | swelling model and a cut surface. (a)はカッティングプレートの形成方法を模式的に説明した斜視図であり、(b)はカッティングプレートの一例を示した斜視図である。(A) is the perspective view which demonstrated the formation method of the cutting plate typically, (b) is the perspective view which showed an example of the cutting plate.
≪補填用人工骨モデルの形成方法、補填用人工骨、及び医療用シミュレーションシステムについて≫
 続いて、本発明の一実施形態に係る補填用人工骨モデルの形成方法、及びこの方法によって形成された補填用人工骨10について図面を参照しつつ詳細に説明する。本実施形態の補填用人工骨モデルの形成方法は、シミュレーションシステム20を用いて実施される。シミュレーションシステム20は、従来公知のコンピュータに本実施形態に係る補填用人工骨モデルの形成方法を実行するための実行プログラムを備えたソフトウエアをインストールすることにより構築される。図1に示すように、シミュレーションシステム20は、矯正前骨モデル取得手段22と、基準骨モデル取得手段24と、切断面導出手段26と、頂点設定手段28と、距離導出手段30と、最小距離データ構築手段32と、最大距離選択手段34と、開始点選択手段36と、STLデータ構築手段38とを備えている。
≪Method of forming artificial bone model for supplement, artificial bone for supplement, and medical simulation system≫
Next, a method for forming a replacement artificial bone model according to an embodiment of the present invention and a replacement artificial bone 10 formed by this method will be described in detail with reference to the drawings. The method for forming the artificial bone model for compensation of the present embodiment is performed using the simulation system 20. The simulation system 20 is constructed by installing software including an execution program for executing the method for forming the artificial bone model for compensation according to the present embodiment on a conventionally known computer. As shown in FIG. 1, the simulation system 20 includes a pre-correction bone model acquisition unit 22, a reference bone model acquisition unit 24, a cutting plane deriving unit 26, a vertex setting unit 28, a distance deriving unit 30, and a minimum distance. Data construction means 32, maximum distance selection means 34, start point selection means 36, and STL data construction means 38 are provided.
 矯正前骨モデル取得手段22は、異常態様に変形した矯正を行うべき骨(以下、「矯正対象骨」とも称す)の三次元モデル(以下、「矯正前骨モデル」Xとも称する)を取得するための手段である。矯正前骨モデル取得手段22は、例えばいわゆるX線CT(Computed Tomography)などによって得られたCT画像に係るDICOM(Digital Imaging and Communication in Medicine)データから矯正対象骨に係る画像を抽出することが可能である。また、矯正前骨モデル取得手段22は、矯正対象骨の外表面を複数の線分(STL構築線)を用いて形成された三角形群で表現したSTLデータを取得することが可能である。図2に示すように、シミュレーションシステム20は、矯正前骨モデル取得手段22により取得されたSTLデータに基づき、矯正前骨モデルXを出力画面上に表示することが可能である。 The pre-correction bone model acquisition means 22 acquires a three-dimensional model (hereinafter also referred to as “pre-correction bone model” X) of a bone to be corrected (hereinafter also referred to as “correction target bone”) that has been deformed into an abnormal state. Means. The pre-correction bone model acquisition means 22 can extract an image relating to the bone to be corrected from DICOM (Digital Imaging and Communication in Medicine) data relating to a CT image obtained by, for example, so-called X-ray CT (Computed Tomography). It is. Further, the pre-correction bone model acquisition means 22 can acquire STL data in which the outer surface of the correction target bone is expressed by a group of triangles formed using a plurality of line segments (STL construction lines). As shown in FIG. 2, the simulation system 20 can display the pre-correction bone model X on the output screen based on the STL data acquired by the pre-correction bone model acquisition means 22.
 基準骨モデル取得手段24は、矯正対象骨と面対称の関係にある同一患者の正常な骨(以下、「正常骨」とも称す)の鏡像を三次元モデル化したもの(以下、「基準骨モデル」Yとも称す)を取得するための手段である。基準骨モデル取得手段24は、上述した矯正前骨モデル取得手段22と同様に、X線CTなどによって得られたCT画に係るDICOMデータから抽出して得られる正常骨に係る画像を抽出してなる正常骨の三次元モデルの鏡像を基準骨モデルYとして取得することができる。基準骨モデル取得手段24は、基準骨の外表面を複数の三角形群で表現したSTLデータを取得することが可能である。図2に示すように、シミュレーションシステム20は、基準骨モデル24により取得されたSTLデータに基づき、基準骨モデルYを出力画面上に表示することが可能である。基準骨モデルYは、矯正対象骨の骨切りを行うべき位置(以下、「骨切り位置」とも称す)や、骨切りして得られる骨片A,Bの間隔や角度調整などを行う上で指標として使用することができる。 The reference bone model acquisition means 24 is a three-dimensional model (hereinafter referred to as “reference bone model”) of a mirror image of a normal bone (hereinafter also referred to as “normal bone”) of the same patient having a plane symmetry relationship with the bone to be corrected. "Also called" Y "). The reference bone model acquisition means 24 extracts an image related to normal bone obtained by extracting from DICOM data related to a CT image obtained by X-ray CT or the like, similar to the above-mentioned pre-correction bone model acquisition means 22. A mirror image of the three-dimensional model of normal bone can be acquired as the reference bone model Y. The reference bone model acquisition means 24 can acquire STL data in which the outer surface of the reference bone is expressed by a plurality of triangle groups. As shown in FIG. 2, the simulation system 20 can display the reference bone model Y on the output screen based on the STL data acquired by the reference bone model 24. The reference bone model Y is used for adjusting the position of the bone to be corrected (hereinafter also referred to as “bone cutting position”), and the interval and angle adjustment of the bone fragments A and B obtained by cutting the bone. Can be used as an indicator.
 切断面導出手段26は、上述した骨切り位置において矯正前骨モデルXを切断した場合に形成される骨片A,Bの切断面a,bを導出する手段である。本実施形態のシミュレーションシステム20では、図3に示すように、表示画面上に仮想面Vを表示可能とされており、この仮想面Vを矯正前骨モデルX上において任意の骨切り位置に配置すると共に、仮想面Vの傾斜を調整することにより、この骨切り位置及び角度で矯正前骨モデルXを切断した場合の切断面a,bを導出することができる。 The cut surface deriving means 26 is a means for deriving the cut surfaces a and b of the bone fragments A and B formed when the pre-correction bone model X is cut at the above-described osteotomy position. In the simulation system 20 of the present embodiment, as shown in FIG. 3, a virtual plane V can be displayed on the display screen, and the virtual plane V is arranged at an arbitrary osteotomy position on the pre-correction bone model X. At the same time, by adjusting the inclination of the virtual plane V, the cut planes a and b when the pre-correction bone model X is cut at this osteotomy position and angle can be derived.
 頂点設定手段28は、上述した切断面導出手段26により導出された切断面aの外周上に複数(p個)の頂点A(n)(nは1からpの自然数)を設定すると共に、切断面bの外周上に複数(q個)の頂点B(m)(mは1からqの自然数)を設定する手段である。頂点設定手段28によって設定される頂点A(n)及び頂点B(m)は、それぞれ補填用人工骨モデルZを複数の三角形群によって表面形状を表現するSTL形式で表現する際に、各三角形の頂点をなすものである。本実施形態では、図4に示すように、頂点設定手段28は、切断面導出手段26によって導出された切断面a,bと、矯正前骨モデル取得手段28によって取得された矯正前骨モデルXのSTLデータを構成する各線分との交点が頂点A(n),B(m)とされる。したがって、本実施形態では、頂点A(n),B(m)の個数p,qは同一である。 The vertex setting means 28 sets a plurality (p) of vertices A (n) (n is a natural number from 1 to p) on the outer periphery of the cutting surface a derived by the cutting surface deriving means 26 described above, and cutting This is means for setting a plurality (q) of apexes B (m) (m is a natural number from 1 to q) on the outer periphery of the surface b. The vertices A (n) and B (m) set by the vertex setting means 28 are respectively represented when the supplementary artificial bone model Z is expressed in the STL format that expresses the surface shape by a plurality of triangle groups. It is a vertex. In the present embodiment, as shown in FIG. 4, the vertex setting unit 28 includes the cutting planes a and b derived by the cutting plane deriving unit 26 and the pre-correction bone model X acquired by the pre-correction bone model acquisition unit 28. Intersections with the line segments constituting the STL data are vertices A (n) and B (m). Therefore, in this embodiment, the numbers p and q of the vertices A (n) and B (m) are the same.
 上述したようにして仮想面Vの位置及び角度において矯正前骨モデルXを切断(分割)することにより骨片A,Bは、それぞれ基準骨モデルYに沿うように位置調整される。これにより、骨片A,Bを表す骨モデルは骨切り術により矯正を行った後の位置関係となり、骨片A,Bの間には補填用人工骨によって補填すべき欠損部分Lが生じる(図5参照)。 By cutting (dividing) the pre-correction bone model X at the position and angle of the virtual plane V as described above, the positions of the bone fragments A and B are adjusted along the reference bone model Y, respectively. As a result, the bone model representing the bone fragments A and B has a positional relationship after correction by osteotomy, and a defect portion L to be compensated by the artificial bone for compensation occurs between the bone fragments A and B ( (See FIG. 5).
 距離導出手段30は、上記欠損部分Lの距離を導出するものであり、最小距離導出動作A及び最小距離導出動作Bを実施することにより、補填用人工骨モデルZのSTLデータを構成する線分(STL構築線)の距離を導出することが可能である。具体的には、最小距離導出動作Aは、骨片A側の切断面aの外周に設けられたp個の頂点A(n)を構成する1点と、骨片B側の切断面bの外周に設けられた各頂点B(m)の一部又は全部との距離LA(n,m)を各頂点B(m)毎に導出し(図6(a)参照)、導出された距離LA(n,m)から最小のものを最小距離データLAmin(n,m)として選択する動作である。最小距離導出動作Aにより導出された最小距離データLAmin(n,m)は、各頂点A(n)を起点としてSTL構築線を形成した場合の長さに相当する。また、最小距離データLAmin(n,m)をなす頂点A(n),B(m)を繋ぐ線分は、補填用人工骨モデルZのSTLデータを構成する線分(STL構築線)の候補となるものである。 The distance deriving means 30 is for deriving the distance of the defect portion L, and by performing the minimum distance deriving operation A and the minimum distance deriving operation B, the line segment constituting the STL data of the artificial bone model Z for compensation It is possible to derive the distance of (STL construction line). Specifically, the minimum distance deriving operation A is performed between one point constituting p vertices A (n) provided on the outer periphery of the cutting surface a on the bone fragment A side and the cutting surface b on the bone fragment B side. A distance LA (n, m) to a part or all of each vertex B (m) provided on the outer periphery is derived for each vertex B (m) (see FIG. 6A), and the derived distance LA is derived. This is an operation of selecting the smallest one from (n, m) as the minimum distance data LAmin (n, m). The minimum distance data LAmin (n, m) derived by the minimum distance deriving operation A corresponds to the length when the STL construction line is formed starting from each vertex A (n). A line segment connecting the vertices A (n) and B (m) forming the minimum distance data LAmin (n, m) is a candidate for a line segment (STL construction line) constituting the STL data of the artificial bone model Z for compensation. It will be.
 同様に、最小距離導出動作Bは、q個の頂点B(m)を構成する1点と、各頂点A(n)の一部又は全部との距離LB(n,m)を各頂点B(m)毎に導出し(図6(b)参照)、導出された距離LB(n,m)から最小のものを最小距離LBmin(n,m)として選択する動作である。最小距離導出動作Bにより導出された最小距離データLBmin(n,m)は、各頂点B(m)を起点としてSTL構築線を形成した場合の長さに相当する。また、最小距離データLBmin(n,m)をなす頂点A(n),B(m)を繋ぐ線分は、補填用人工骨モデルZのSTL構築線の候補となる線分である。 Similarly, in the minimum distance deriving operation B, the distance LB (n, m) between one point constituting q vertices B (m) and a part or all of each vertex A (n) is set to each vertex B ( This operation is derived every m) (see FIG. 6B), and the smallest one is selected as the minimum distance LBmin (n, m) from the derived distance LB (n, m). The minimum distance data LBmin (n, m) derived by the minimum distance deriving operation B corresponds to the length when the STL construction line is formed starting from each vertex B (m). The line segment connecting the vertices A (n) and B (m) forming the minimum distance data LBmin (n, m) is a line segment that is a candidate for the STL construction line of the artificial bone model Z for compensation.
 最小距離データ構築手段32は、上述した距離導出手段30によって導出された最小距離データLAmin(n,m),LBmin(n,m)をデータベース化した最小距離データベースLminDBを構築する手段である。最小距離データベースLminDBは、頂点A(n)を起点とした最小距離データLAmin(n,m)によって構成されたA側最小距離データベースLAminDBと、頂点B(m)を起点とした最小距離データLBmin(n,m)によって構成されたB側最小距離データベースLBminDBとによって構成される。 The minimum distance data constructing means 32 is a means for constructing a minimum distance database LminDB in which the minimum distance data LAmin (n, m) and LBmin (n, m) derived by the distance deriving means 30 are databased. The minimum distance database LminDB includes an A side minimum distance database LAminDB composed of minimum distance data LAmin (n, m) starting from the vertex A (n), and minimum distance data LBmin (starting from the vertex B (m). n, m) and the B-side minimum distance database LBminDB.
 最大距離選択手段34は、最小距離データ構築手段32によって構築された最小距離データベースLminDBを参照し、最大距離のものを選択する手段である。本実施形態では、最大距離選択手段34は、先ずA側最小距離データベースLAminDBに含まれている最小距離データLAmin(n,m)のうち最大のものをA側最大距離データLAmax(n,m)として選択する。また同様に、最大距離選択手段34は、B側最小距離データベースLBminDBに含まれている最小距離データLBmin(n,m)から最大のものをB側最大距離データLBmax(n,m)として選択する。最大距離選択手段34は、このようにして選出されたA側最大距離データLAmax(n,m)及びB側最大距離データLBmax(n,m)のうち大きな方を最大距離データLmax(n,m)として選択する。 The maximum distance selection means 34 refers to the minimum distance database LminDB constructed by the minimum distance data construction means 32 and selects the one with the maximum distance. In the present embodiment, the maximum distance selection means 34 first selects the largest of the minimum distance data LAmin (n, m) included in the A side minimum distance database LAminDB as the A side maximum distance data LAmax (n, m). Select as. Similarly, the maximum distance selection means 34 selects the largest one from the minimum distance data LBmin (n, m) included in the B side minimum distance database LBminDB as B side maximum distance data LBmax (n, m). . The maximum distance selection means 34 selects the larger one of the A side maximum distance data LAmax (n, m) and the B side maximum distance data LBmax (n, m) selected in this way as the maximum distance data Lmax (n, m). ) To select.
 開始点選択手段36は、補填用人工骨モデルZのSTLデータを構築する際の開始点となる頂点A(n),B(m)を選択する手段である。開始点選択手段36は、上述した最大距離選択手段34によって選択された最大距離データLmax(n,m)をなす頂点A(n),B(m)を開始点A(1),B(1)(n=1,m=1)として選択する。 The start point selection means 36 is a means for selecting the vertices A (n) and B (m) that are the start points when constructing the STL data of the artificial bone model Z for compensation. The start point selection means 36 uses the vertices A (n) and B (m) forming the maximum distance data Lmax (n, m) selected by the maximum distance selection means 34 as the start points A (1) and B (1 ) (N = 1, m = 1).
 STLデータ構築手段38は、補填用人工骨の外表面をなすSTLデータを構築するものである。STLデータ構築手段38は、上述した開始点選択手段36によって選択された頂点A(1),B(1)を開始点とし、各頂点A(n),B(m)間を切断面a,b間の領域を横切るように順次線分を繋ぐことにより複数の三角形群によって補填用人工骨の外表面を表すSTLデータを構築する。 The STL data construction means 38 constructs STL data that forms the outer surface of the artificial bone for supplementation. The STL data construction unit 38 uses the vertices A (1) and B (1) selected by the above-described start point selection unit 36 as a start point, and a section between the vertices A (n) and B (m) a, STL data representing the outer surface of the artificial bone for compensation is constructed by a plurality of triangle groups by connecting line segments sequentially across the region between b.
 さらに詳細に説明すると、STLデータ構築手段38は、先ず上述した開始点となる頂点A(1),B(1)を繋ぐ線分を補填用人工骨モデルZのSTLデータを構築する線分(STLデータ構築線)とする。その後、頂点B(1)に対して切断面bの周方向に隣接する頂点B(2)と頂点A(1)とをつなぐ線分の長さL(1,2)と、頂点A(1)に対して切断面aの周方向に隣接する頂点A(2)と頂点B(1)とをつなぐ線分の長さL(2,1)との長さが比較され、短い方の線分がSTL構築線として選択される。ここでL(1,2)の方が短い場合は、A(1),B(1),B(2)間を線分(STL構築線)で結んで構成される三角形の領域によって補填用人工骨モデルZの外表面の一部が構成されることとなる。また、L(2,1)の方が短い場合は、A(1),B(1),A(2)間を線分(STL構築線)で結んで構成される三角形の領域によって補填用人工骨モデルZの外表面の一部が構成されることとなる。以降、これと同様に、頂点A(n),B(m+1)間をつなぐ線分と、頂点A(n+1),B(m)間をつなぐ線分のうち、距離の短い線分を順次STL構築線として選択していくことにより、図7に示すように各頂点A(n),B(m)間がSTL構築線によって繋がれ、A(n),B(m),A(n+1)間、あるいはA(n),B(m),B(m+1)間を互いにSTL構築線で結んで形成される三角形の領域によって補填用人工骨モデルZの外表面の一部が順次構成されていく。これにより、切断面a,b間に形成された空間が全周にわたってSTL構築線によって形成された三角形群によって取り囲まれた補填用人工骨モデルZが形成される。 More specifically, the STL data constructing means 38 first constructs a line segment for constructing the STL data of the artificial bone model Z for compensation (the line segment connecting the vertices A (1) and B (1) serving as the start points described above ( STL data construction line). Thereafter, the length L (1,2) of the line segment connecting the vertex B (2) and the vertex A (1) adjacent to the vertex B (1) in the circumferential direction of the cut surface b, and the vertex A (1 ) Is compared with the length L (2, 1) of the line segment connecting the vertex A (2) and the vertex B (1) adjacent to each other in the circumferential direction of the cut surface a, and the shorter line is compared. Minute is selected as the STL construction line. Here, when L (1,2) is shorter, it is compensated by a triangular area formed by connecting A (1), B (1), and B (2) with a line segment (STL construction line). A part of the outer surface of the artificial bone model Z is configured. If L (2,1) is shorter, it is compensated by a triangular area formed by connecting A (1), B (1), and A (2) with line segments (STL construction lines). A part of the outer surface of the artificial bone model Z is configured. Thereafter, similarly to this, among the line segment connecting the vertices A (n) and B (m + 1) and the line segment connecting the vertices A (n + 1) and B (m), the line segment having the short distance is sequentially STL. By selecting as construction lines, the vertices A (n) and B (m) are connected by STL construction lines as shown in FIG. 7, and A (n), B (m), A (n + 1) are connected. A part of the outer surface of the artificial bone model Z for replacement is sequentially formed by a triangular region formed by connecting the STL construction lines to each other or between A (n), B (m), and B (m + 1). Go. As a result, the artificial bone model Z for compensation is formed in which the space formed between the cutting planes a and b is surrounded by the triangle group formed by the STL construction line over the entire circumference.
 STLデータ構築手段38により構築された補填用人工骨モデルZのSTLデータは、シミュレーションシステム20において補填用人工骨モデルZを形成し、図7に示すように補填用人工骨モデルZ単独で出力画面上に表示したり、図8に示すように骨片A,B間に形成された欠損部分Lに嵌め込んだ状態で表示することが可能となる。また、STLデータ構築手段38によって構築された補填用人工骨モデルZのSTLデータを用いれば、例えば光造形法などの造形法により補填用人工骨10を形成することが可能である。 The STL data of the artificial bone model Z for supplement constructed by the STL data construction means 38 forms the artificial bone model Z for supplement in the simulation system 20, and the output screen of the artificial bone model Z alone for supplement as shown in FIG. It is possible to display in a state where it is displayed above or in a state where it is fitted in a defect portion L formed between the bone fragments A and B as shown in FIG. Further, if the STL data of the artificial bone model Z for compensation constructed by the STL data construction means 38 is used, it is possible to form the artificial bone 10 for compensation by a modeling method such as an optical modeling method.
 続いて、上述したシミュレーションシステム20を用いた補填用人工骨モデルZの形成方法、及び補填用人工骨10の形成方法について説明する。シミュレーションシステム20では、図9に示すステップ1-1~ステップ1-9に示す各工程を経て、補填用人工骨モデルZが構築される。具体的には、ステップ1-1に係る矯正前骨モデル取得工程は、上述した矯正前骨モデル取得手段22により矯正対象骨の三次元モデル(矯正前骨モデルX)を取得する工程である。ステップ1-1では、矯正前骨モデルXに係るSTLデータが取得され、このSTLデータに基づいて矯正前骨モデルXが構築される。ステップ1-1において取得された矯正前骨モデルXは、図2に示すように、コンピュータの出力画面上に表示される。 Subsequently, a method for forming the artificial bone model Z for compensation using the simulation system 20 and a method for forming the artificial bone 10 for compensation will be described. In the simulation system 20, the artificial bone model Z for compensation is constructed through the steps shown in Step 1-1 to Step 1-9 shown in FIG. Specifically, the pre-correction bone model acquisition step according to step 1-1 is a step of acquiring a three-dimensional model (pre-correction bone model X) of the bone to be corrected by the pre-correction bone model acquisition means 22 described above. In step 1-1, STL data related to the pre-correction bone model X is acquired, and the pre-correction bone model X is constructed based on the STL data. The pre-correction bone model X acquired in step 1-1 is displayed on the output screen of the computer as shown in FIG.
 上述したステップ1-1が完了すると、工程がステップ1-2に係る基準骨モデル取得工程に移行する。基準骨モデル取得工程は、基準骨モデル取得手段24によって基準骨モデルYを取得する工程である。ステップ1-2では、矯正対象骨と面対称の関係にある同一患者の正常骨の鏡像を作成し、三次元モデル化することにより基準骨モデルYが取得される。ステップ1-2において取得された基準骨モデルYは、図2に示すようにコンピュータの出力画面上に矯正前骨モデルXと並べて表示される。 When step 1-1 described above is completed, the process proceeds to a reference bone model acquisition process according to step 1-2. The reference bone model acquisition step is a step of acquiring the reference bone model Y by the reference bone model acquisition means 24. In step 1-2, a reference bone model Y is obtained by creating a mirror image of a normal bone of the same patient having a plane symmetry relationship with the bone to be corrected and modeling it into a three-dimensional model. The reference bone model Y acquired in step 1-2 is displayed side by side with the pre-correction bone model X on the output screen of the computer as shown in FIG.
 上述したステップ1-2において基準骨モデルYが取得されると、工程がステップ1-3に移行する。ステップ1-3に係る切断面導出工程は、上述した切断面導出手段26により実施される工程であり、指定された骨切り位置において矯正前骨モデルXを切断した場合に形成される切断面a,bが導出される。具体的には、工程がステップ1-3に進行すると、マウスやキーボードなどの入力デバイスを用いて表示画面上に表示された切断面導出用の仮想面Vの位置や角度を基準骨モデルYとを比較しながら適宜調整することが可能となる。仮想面Vの位置や角度を設定することにより、出力画面上に表示されている矯正前骨モデルXにおいて骨切り位置や骨切りを行う角度などが指定されると、この位置や角度で矯正前骨モデルXを切断した場合に形成される切断面a,bが導出される。 When the reference bone model Y is acquired in step 1-2 described above, the process proceeds to step 1-3. The cutting plane deriving process according to step 1-3 is a process performed by the cutting plane deriving means 26 described above, and a cutting plane a formed when the pre-correction bone model X is cut at a specified osteotomy position. , B are derived. Specifically, when the process proceeds to step 1-3, the position and angle of the virtual plane V for derivation of the cutting plane displayed on the display screen using an input device such as a mouse or a keyboard are set as the reference bone model Y. It becomes possible to adjust suitably while comparing. By setting the position and angle of the virtual plane V, when the osteotomy position and the angle for performing osteotomy are specified in the pre-correction bone model X displayed on the output screen, the pre-correction is performed at this position and angle. The cut surfaces a and b formed when the bone model X is cut are derived.
 ステップ1-3において切断面a,bが導出されると、工程がステップ1-4の頂点設定工程に移行する。頂点設定工程では、頂点設定手段28により切断面a,bの外周上に複数(p,q個)の頂点A(n),B(m)が設定される。本実施形態では、図4に示すように切断面a,bとステップ1-1において構築された矯正前骨モデルXを構成するSTL構築線との交点が頂点A(n),B(m)として設定される。 When the cut surfaces a and b are derived in step 1-3, the process proceeds to the vertex setting process in step 1-4. In the vertex setting step, a plurality (p, q) of vertices A (n) and B (m) are set on the outer peripheries of the cut surfaces a and b by the vertex setting means 28. In the present embodiment, as shown in FIG. 4, the intersection points of the cut planes a and b and the STL construction line constituting the pre-correction bone model X constructed in Step 1-1 are the vertices A (n) and B (m). Set as
 また、ステップ1-3及びステップ1-4において切断面a,bの導出及び頂点A(n),B(m)の設定が完了すると、工程がステップ1-5の骨片位置矯正工程に進む。骨片位置矯正工程では、上述した基準骨モデルYに沿うように骨片A,Bの位置や角度が調整される。これにより、骨片A,Bに形成された切断面a,bの間には図5に示すような欠損部分Lが形成される。 When the derivation of the cutting planes a and b and the setting of the vertices A (n) and B (m) are completed in steps 1-3 and 1-4, the process proceeds to the bone fragment position correcting process in step 1-5. . In the bone fragment position correcting step, the positions and angles of the bone fragments A and B are adjusted along the reference bone model Y described above. Thereby, a defect portion L as shown in FIG. 5 is formed between the cut surfaces a and b formed in the bone fragments A and B.
 ステップ1-5に係る骨片位置矯正工程が完了すると、工程がステップ1-6に係る距離導出工程に移行する。距離導出工程は、距離導出手段30により実施される。距離導出工程では、最小距離導出動作Aによりp個の頂点A(n)それぞれについて、各頂点B(m)との距離LA(n,m)が導出され(図6(a)参照)、導出された距離LA(n,m)から最小のものが最小距離データLAmin(n,m)として選出される。また、最小距離導出動作Bによりq個の頂点B(m)それぞれについて、各頂点A(n)との距離LB(n,m)が導出され(図6(b)参照)、導出された距離LB(n,m)から最小のものが最小距離データLBmin(n,m)として選出される。このようにして選出された最小距離データLAmin(n,m)及び最小距離データLBmin(n,m)は、それぞれ最小距離データ構築手段32によりデータベース化され、A側最小距離データベースLAminDB、及び最小距離データLBmin(n,m)によって構成された最小距離データベースLminDBが構築される。 When the bone fragment position correcting process according to step 1-5 is completed, the process proceeds to the distance deriving process according to step 1-6. The distance deriving step is performed by the distance deriving means 30. In the distance deriving step, the distance LA (n, m) from each vertex B (m) is derived for each of the p vertices A (n) by the minimum distance deriving operation A (see FIG. 6A). The smallest one is selected as the minimum distance data LAmin (n, m) from the obtained distance LA (n, m). Further, for each of the q vertices B (m) by the minimum distance derivation operation B, the distance LB (n, m) from each vertex A (n) is derived (see FIG. 6B), and the derived distance The smallest one of LB (n, m) is selected as the minimum distance data LBmin (n, m). The selected minimum distance data LAmin (n, m) and minimum distance data LBmin (n, m) are databased by the minimum distance data construction means 32, respectively, and the A side minimum distance database LAminDB and the minimum distance are selected. A minimum distance database LminDB configured by the data LBmin (n, m) is constructed.
 上述したようにしてステップ1-6において最小距離データベースLminDBが構築されると、制御フローがステップ1-7に係る最大距離選択工程に移行する。ステップ1-7では、最大距離選択手段34によって最小距離データベースLminDBが参照され、A,B側最小距離データベースLAminDB,LBminDBに含まれている最小距離データLAmin(n,m),LBmin(n,m)から最大のものがA側最大距離データLAmax(n,m)及びB側最大距離データLBmax(n,m)として選択される。その後、最大距離選択手段34により、A,B側最大距離データLAmax(n,m),LBmax(n,m)の大きさが比較され、大きな方が最大距離データLmax(n,m)として選択される。最大距離データLmax(n,m)が選択されると、工程はステップ1-8に係る開始点選択工程に移行する。 As described above, when the minimum distance database LminDB is constructed in step 1-6, the control flow proceeds to the maximum distance selection step in step 1-7. In step 1-7, the minimum distance database LminDB is referred to by the maximum distance selection means 34, and the minimum distance data LAmin (n, m), LBmin (n, m) included in the A and B side minimum distance databases LAminDB and LBminDB. ) Is selected as A side maximum distance data LAmax (n, m) and B side maximum distance data LBmax (n, m). Thereafter, the maximum distance selection means 34 compares the A and B side maximum distance data LAmax (n, m) and LBmax (n, m), and selects the larger one as the maximum distance data Lmax (n, m). Is done. When the maximum distance data Lmax (n, m) is selected, the process proceeds to the start point selection process according to step 1-8.
 ステップ1-8では、開始点選択手段36により、複数設定された頂点A(n),B(m)から補填用人工骨モデルZのSTLデータを構築するための開始点とすべきものが選択される。具体的には、ステップ1-8では、上記ステップ1-7において選択された最大距離データLmax(n,m)をなす頂点A(n),B(m)が開始点A(1),B(1)として選択される。 In step 1-8, the starting point selection means 36 selects a starting point for constructing STL data of the artificial bone model Z for compensation from a plurality of set vertices A (n) and B (m). The Specifically, in step 1-8, the vertices A (n) and B (m) forming the maximum distance data Lmax (n, m) selected in step 1-7 are used as start points A (1), B Selected as (1).
 開始点A(1),B(1)が選択されると、工程がステップ1-9に係るSTLデータ構築工程に移行し、補填用人工骨の外表面を表すSTL構築線が順次決定され、STLデータが構築される。具体的には、ステップ1-9では、STLデータ構築手段38により、開始点A(1),B(1)を起点として各頂点A(n),B(m)間をSTL構築線によって繋ぐことにより、複数の三角形群によって表現された補填用人工骨の外表面を表すSTLデータが構築される。 When the starting points A (1) and B (1) are selected, the process proceeds to the STL data construction process according to step 1-9, and the STL construction line representing the outer surface of the artificial bone for replacement is sequentially determined. STL data is constructed. Specifically, in step 1-9, the STL data construction means 38 connects the vertices A (n) and B (m) with the STL construction line starting from the start points A (1) and B (1). Thus, STL data representing the outer surface of the artificial bone for compensation expressed by a plurality of triangle groups is constructed.
 ステップ1-9において補填用人工骨に係るSTLデータが構築されると、図7や図8に示すように、シミュレーションシステム20により補填用人工骨モデルZを単独で表示したり、骨片A,B間の欠損部分Lに嵌め込んだ状態で表示可能な状態になる。また、矯正対象骨に係る矯正前骨モデルXを切断して形成された骨片A,Bを表す三次元モデルの間に補填用人工骨モデルZを嵌め込むことにより、矯正後の骨モデル(以下、矯正後骨モデルとも称す)を表示可能な状態になる。さらに、STLデータ構築手段38によって構築されたSTLデータを用いることにより、光造形法などの造形法を用いて手術に用いる補填用人工骨10を術前に準備することが可能となる。 When the STL data related to the artificial bone for compensation is constructed in step 1-9, as shown in FIGS. 7 and 8, the artificial bone model Z for supplementation is displayed by the simulation system 20 alone, It becomes a state which can be displayed in the state fitted in the missing part L between B. In addition, by inserting the artificial bone model Z for compensation between the three-dimensional models representing the bone fragments A and B formed by cutting the pre-correction bone model X related to the correction target bone, a corrected bone model ( Hereinafter, the post-correction bone model) can be displayed. Furthermore, by using the STL data constructed by the STL data construction means 38, it becomes possible to prepare the artificial bone 10 for supplementation used for surgery using a modeling method such as an optical modeling method before the operation.
 上述したように、本実施形態の補填用人工骨モデルZの形成方法では、距離導出工程(ステップ1-6)において補填用人工骨モデルZをなすSTL構築線の候補となりうるもののの長さを精査し、そのうちで最も長いものをなすものを最大距離選択工程(ステップ1-7)において選択し、最長のものをなす頂点A(n),B(m)を開始点A(1),B(1)として選択している(ステップ1-8)。したがって、上記した補填用人工骨モデルZの形成方法によれば、補填用人工骨モデルZをなすSTL構築線の誤差が生じにくく、補填用人工骨モデルZを容易かつ高精度に構築することが可能である。 As described above, in the method for forming the artificial bone model Z for compensation of the present embodiment, the length of what can be a candidate for the STL construction line forming the artificial bone model Z for compensation in the distance deriving step (step 1-6) is set. The longest one is selected in the maximum distance selection step (step 1-7), and the vertices A (n) and B (m) that make the longest are selected as the starting points A (1) and B Selected as (1) (step 1-8). Therefore, according to the above-described method for forming the artificial bone model Z for compensation, errors in the STL construction line forming the artificial bone model Z for compensation are unlikely to occur, and the artificial bone model Z for compensation can be constructed easily and with high accuracy. Is possible.
 上記実施形態では、距離導出工程において、p個の頂点A(n)のそれぞれについて各頂点B(m)との距離LA(n,m)を導出し、q個の頂点A(n)のそれぞれについて各頂点A(n)との距離LB(n,m)を導出することにより最小距離データLAmin(n,m)や最小距離データLBmin(n,m)を導出する例を例示したが、本発明はこれに限定されるものではない。具体的には、p個の頂点A(n)のうち一部のものと各頂点B(m)の一部又は全部との距離LA(n,m)を導出し、導出された距離LA(n,m)のうちから最小のものを最小距離データLAmin(n,m)として選択することとしてもよい。同様に、q個の頂点B(m)のうち一部のものと各頂点A(n)の一部又は全部との距離LB(n,m)を導出し、導出された距離LB(n,m)のうちから最小のものを最小距離データLBmin(n,m)として選択することとしてもよい。すなわち、p個の頂点A(n)あるいはq個の頂点B(m)のいずれかを、距離LA(n,m),LB(n,m)を導出する際の頂点A(n),B(m)の候補から除外することとしてもよい。 In the above embodiment, in the distance deriving step, the distance LA (n, m) to each vertex B (m) is derived for each of the p vertices A (n), and each of the q vertices A (n) is derived. In this example, the minimum distance data LAmin (n, m) and the minimum distance data LBmin (n, m) are derived by deriving the distance LB (n, m) from each vertex A (n). The invention is not limited to this. Specifically, a distance LA (n, m) between a part of p vertices A (n) and a part or all of each vertex B (m) is derived, and the derived distance LA ( The smallest one of n, m) may be selected as the minimum distance data LAmin (n, m). Similarly, a distance LB (n, m) between some of the q vertices B (m) and a part or all of each vertex A (n) is derived, and the derived distance LB (n, m The smallest of m) may be selected as the minimum distance data LBmin (n, m). That is, vertices A (n) and B in deriving the distances LA (n, m) and LB (n, m) from either the p vertices A (n) or q vertices B (m). It is good also as excluding from the candidate of (m).
 また、上記実施形態では、最大距離導出工程において、A側最小距離データベースLAminDBを構成する最小距離データLAmin(n,m)から最大のものを選択すると共に、B側最小距離データベースLBminDBを構成する最小距離データLBmin(n,m)から最大のものを選択する例を例示したが、本発明はこれに限定されるものではない。具体的には、A側最小距離データベースLAminDB及びB側最小距離データベースLBminDBを構成する最小距離データLAmin(n,m),LBmin(n,m)の一部を最大距離導出工程における選出の対象から除外することも可能である。 In the above embodiment, in the maximum distance derivation step, the maximum one is selected from the minimum distance data LAmin (n, m) constituting the A side minimum distance database LAminDB, and the minimum constituting the B side minimum distance database LBminDB is selected. Although the example which selects the largest thing from distance data LBmin (n, m) was illustrated, this invention is not limited to this. Specifically, a part of the minimum distance data LAmin (n, m) and LBmin (n, m) constituting the A side minimum distance database LAminDB and the B side minimum distance database LBminDB is selected from the selection targets in the maximum distance derivation step. It is also possible to exclude.
 上述した補填用人工骨モデルZの形成方法やシミュレーションシステム20により補填用人工骨モデルZを構築すれば、医師の経験則によることなく最適な大きさ及び形状となるように補填用人工骨を設計することができる。また、上述した形成方法やシミュレーションシステム20により補填用人工骨モデルZを構築すれば、術前に理想的な形状、大きさに成形された人工骨を作成し準備しておくことが可能となるため、手術に要する時間を短縮し、患者に与える負担を軽減することが可能となる。 If the artificial bone model Z for supplementation is constructed by the above-described method for forming the artificial bone model Z for compensation and the simulation system 20, the artificial bone for supplementation is designed so as to have an optimum size and shape without depending on the doctor's rule of thumb. can do. Moreover, if the artificial bone model Z for supplementation is constructed by the above-described forming method and the simulation system 20, it becomes possible to prepare and prepare an artificial bone molded into an ideal shape and size before the operation. Therefore, the time required for the operation can be shortened and the burden on the patient can be reduced.
 上述したように、本実施形態の補填用人工骨モデルの形成方法では、矯正前骨モデルに係るSTL構築線と切断面a,bとの交点が、それぞれ頂点A(n),B(m)に設定される。したがって、本実施形態により補填用人工骨モデルZを形成すれば、骨片A,BをなすSTL構築線と、補填用人工骨モデルZを構成するSTL構築線とで頂点A(n),B(m)が共用され、骨片A,Bの間に補填用人工骨を埋入した状態を示す三次元画像の取得などを容易に行うことができる。なお、上記実施形態では、矯正前骨モデルに係るSTL構築線と切断面a,bとの交点を頂点A(n),B(m)として設定する例を例示したが、本発明はこれに限定されるものではなく、頂点A(n),B(m)を矯正前骨モデルに係るSTL構築線とは関係なく、適宜設定することも可能である。 As described above, in the method for forming the artificial bone model for compensation according to the present embodiment, the intersections between the STL construction line and the cut planes a and b related to the pre-correction bone model are the vertices A (n) and B (m), respectively. Set to Therefore, if the artificial bone model Z for supplementation is formed according to the present embodiment, the vertices A (n), B are composed of the STL construction line forming the bone fragments A and B and the STL construction line constituting the artificial bone model Z for supplementation. (M) is shared, and it is possible to easily acquire a three-dimensional image showing a state in which the artificial bone for replacement is embedded between the bone fragments A and B. In the above-described embodiment, an example in which the intersections of the STL construction line and the cut planes a and b related to the pre-correction bone model are set as vertices A (n) and B (m) is exemplified. The vertexes A (n) and B (m) are not limited and can be appropriately set regardless of the STL construction line related to the pre-correction bone model.
 上述した補填用人工骨モデルの形成方法では、骨片位置矯正工程(ステップ1-5)において、異常態様に変形した矯正対象骨と面対称の位置関係にある正常骨の鏡像を三次元モデル化した基準骨モデルYを基準として切断・分離された骨片A,Bの位置や姿勢を整えることとしており、切断面a,b間に形成される欠損部分Lの大きさや形状を容易に特定できる。したがって、上述した補填用人工骨モデルの形成方法によれば、骨切り術を行う際に骨片A,B間に補填すべき補填用人工骨の三次元モデル(補填用人工骨モデルZ)や、補填用人工骨を容易かつ正確に形成できる。なお、上記実施形態では、基準骨モデル取得工程(ステップ1-2)において取得された基準骨モデルYを基準として骨片A,Bの位置や切断面a,bの間隔、骨切り位置、骨切り角度などを調整できる構成を例示したが、本発明はこれに限定されるものではない。すなわち、基準骨モデルYを取得せず、骨片A,Bの位置や切断面a,bの間隔、骨切り位置、骨切り角度などを適宜設定することにより手術後の骨片A,Bの配置を決定し、これにより骨片A,B間に形成される欠損部分Lに補填する補填用人工骨10の骨モデルZに係るSTLデータを上述した手法で構築することとしてもよい。 In the above-described method for forming the artificial bone model for compensation, in the bone fragment position correcting step (step 1-5), a three-dimensional model of a mirror image of a normal bone having a plane-symmetric positional relationship with the bone to be corrected that has been deformed into an abnormal mode The positions and postures of the bone fragments A and B that have been cut and separated based on the reference bone model Y are adjusted, and the size and shape of the defect portion L formed between the cut surfaces a and b can be easily specified. . Therefore, according to the above-described method for forming the artificial bone model for replacement, a three-dimensional model of the artificial bone for replacement (artificial bone model Z for replacement) to be supplemented between the bone fragments A and B when performing osteotomy, The artificial bone for supplementation can be formed easily and accurately. In the above embodiment, the position of the bone fragments A and B, the interval between the cut surfaces a and b, the osteotomy position, the bone, based on the reference bone model Y acquired in the reference bone model acquisition step (step 1-2). Although the structure which can adjust a cutting angle etc. was illustrated, this invention is not limited to this. That is, without acquiring the reference bone model Y, the positions of the bone fragments A and B, the interval between the cut surfaces a and b, the osteotomy position, the osteotomy angle, and the like are appropriately set, so It is good also as constructing the STL data concerning the bone model Z of the artificial bone 10 for the replacement to determine the arrangement and thereby to fill the defect portion L formed between the bone fragments A and B by the method described above.
≪医療用三次元画像の取得方法、及び医療用シミュレーションシステムについて≫
 続いて、本発明の一実施形態に係る医療用シミュレーションシステム110、及び医療用三次元画像の取得方法について、図面を参照しつつ詳細に説明する。図10に示すように、医療用シミュレーションシステム110は、従来公知のコンピュータに本実施形態に係る医療用三次元画像の取得方法を実行するための実行プログラムを備えたソフトウエアをインストールすることにより構築される。医療用シミュレーションシステム110は、画像取得手段120と、二値化手段122と、領域設定手段124と、サーフェス形成手段126と、領域再設定手段128と、三次元化手段130と、三次元画像データ出力手段132とを有する。
≪About medical 3D image acquisition method and medical simulation system≫
Next, a medical simulation system 110 and a medical three-dimensional image acquisition method according to an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 10, the medical simulation system 110 is constructed by installing software having an execution program for executing the method for acquiring a medical three-dimensional image according to the present embodiment on a conventionally known computer. Is done. The medical simulation system 110 includes an image acquisition unit 120, a binarization unit 122, a region setting unit 124, a surface forming unit 126, a region resetting unit 128, a three-dimensionalization unit 130, and three-dimensional image data. Output means 132.
 画像取得手段120は、X線CT(Computed Tomography)によって得られたCT画像に係るDICOM(Digital Imaging and Communication in Medicine)データなどの画像データを読み込むことができる。画像取得手段120は、互いに交差するX,Y,Zの三方向に係る断層画像として取得される。X方向への断層画像からなる断層画像群は、X方向断層画像群を構成するものとして分類される。同様に、Y方向への断層画像からなる断層画像群はY方向断層画像群を構成するものとして分類され、Z方向への断層画像からなる断層画像群はZ方向断層画像群を構成するものとして分類される。 The image acquisition means 120 can read image data such as DICOM (Digital Imaging and Communication in Medicine) data relating to a CT image obtained by X-ray CT (Computed Tomography). The image acquisition unit 120 is acquired as a tomographic image in three directions X, Y, and Z that intersect each other. A tomographic image group consisting of tomographic images in the X direction is classified as constituting an X direction tomographic image group. Similarly, a tomographic image group consisting of tomographic images in the Y direction is classified as constituting a Y direction tomographic image group, and a tomographic image group consisting of tomographic images in the Z direction constitutes a Z direction tomographic image group. being classified.
 二値化手段122は、画像取得手段120によって取得されたX方向断層画像群、Y方向断層画像群、及びZ方向断層画像群をなす各医療用断層画像をCT値を基準として設定された閾値を境界として2階調に分類し、二色画像化するものである。具体的には、二値化手段122は、各医療用断層画像において前述した閾値以上の階調である領域を白に置換し、階調が閾値を下回っている領域を黒に置換することにより、各医療用断層画像を二色画像化する。これにより、X方向への断層画像を二色化したX方向二色断層画像群、Y方向への断層画像を二色化したY方向二色断層画像群、及びZ方向への断層画像を二色化したZ方向二色断層画像群がそれぞれ形成される。 The binarizing means 122 is a threshold set with the medical tomographic images forming the X direction tomographic image group, Y direction tomographic image group, and Z direction tomographic image group acquired by the image acquiring means 120 as the CT value as a reference. Are classified into two gradations with a boundary as a two-color image. Specifically, the binarization unit 122 replaces the region having the gradation equal to or higher than the threshold value in each medical tomographic image with white, and replaces the region where the gradation is lower than the threshold value with black. Each medical tomographic image is converted into a two-color image. Thus, two X-direction two-color tomographic image groups obtained by dichroizing the tomographic image in the X direction, two Y-direction two-color tomographic image groups obtained by dichroizing the tomographic image in the Y direction, and two tomographic images in the Z direction. Colored Z-direction two-color tomographic image groups are respectively formed.
 領域設定手段124は、上述した二値化手段122によって二値化することにより得られた二色断層画像から、三次元画像化したい部分を含む領域を選択するためのものである。領域設定手段124は、二値化手段122により二値化することによって得られた複数の二色断層画像のうちの一つにおいて選択領域として領域設定された場合に、この選択領域に対応する領域を他の二色断層画像においても選択領域として領域指定する機能を有する。さらに詳細には、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群をなす各二色断面画像のうちの一つにおいて、一定の領域を選択領域として領域設定すると、選択された二色断層画像群に含まれる他の二色断層画像において前記した選択領域に相当する部分が選択領域として領域設定される。さらに、X,Y,Z方向二色断層画像群のうち、領域設定のために使用された二色断面画像が属する画像群と異なる画像群に含まれている二色断面画像においても、前述した選択領域に相当する領域が選択領域として選択され、領域設定される。 The region setting unit 124 is for selecting a region including a portion to be converted into a three-dimensional image from the two-color tomographic image obtained by binarization by the binarization unit 122 described above. The region setting unit 124 corresponds to a selection region when the region is set as a selection region in one of a plurality of two-color tomographic images obtained by binarization by the binarization unit 122. Has a function of designating a region as a selection region also in other two-color tomographic images. More specifically, in one of the two-color slice images forming the X-direction two-color tomographic image group, the Y-direction two-color tomographic image group, and the Z-direction two-color tomographic image group, a certain region is selected as the selection region. When the region is set, a portion corresponding to the selected region in the other two-color tomographic images included in the selected two-color tomographic image group is set as a selected region. Further, the two-color cross-sectional images included in the image group different from the image group to which the two-color cross-sectional images used for region setting belong among the two-color tomographic image groups in the X, Y, and Z directions are also described above. An area corresponding to the selected area is selected as a selected area and set.
 本実施形態の医療用シミュレーションシステム110では、セグメンテーション法による領域設定を行うことが可能とされており、表示画面上に表示された二色断面画像において選択領域として領域設定する部分をマウスなどの入力デバイスを用いて指定可能とされている。また、医療用シミュレーションシステム110では、リージョングローイング法による領域設定を行うことも可能であり、選択領域として選択しようとしている領域内の部位を指定すると、指定された部分と同一の領域に属すると想定される連結領域が順次取り込まれながら拡張され、選択領域として選択される。 In the medical simulation system 110 according to the present embodiment, it is possible to perform region setting by a segmentation method, and a portion such as a mouse is used to set a region to be set as a selection region in a two-color cross-sectional image displayed on the display screen. It can be specified using a device. Further, in the medical simulation system 110, it is possible to perform region setting by the region growing method. When a region in the region to be selected as a selection region is specified, it is assumed that the region belongs to the same region as the specified portion. The connected areas are expanded while being sequentially taken in and selected as the selection area.
 サーフェス形成手段126は、領域設定手段124によって領域設定された選択領域に係る画像を組み合わせることにより、三次元画像を形成する機能を有する。サーフェス形成手段126によって三次元画像を形成することにより、領域設定手段124によって領域設定された時点において、三次元画像を取得したい部位の他に不要な部分が含まれているか否かや、不要な部分の位置などを確認することが可能となる。 The surface forming unit 126 has a function of forming a three-dimensional image by combining images related to the selected region set by the region setting unit 124. By forming the three-dimensional image by the surface forming unit 126, whether or not an unnecessary part is included in addition to the part where the three-dimensional image is to be acquired at the time when the region is set by the region setting unit 124. It becomes possible to confirm the position of the part.
 領域再設定手段128は、領域設定手段124によって選択領域として既に設定されている領域から、三次元画像を取得する際に不要な領域(除外領域)を除外し、選択領域を再設定するための手段である。領域再設定手段128は、領域設定手段124により領域設定された各二色断面画像から選ばれる一つの二色断層画像において選択領域の再設定を行うと、他の二色断面画像においても、既に選択領域として領域指定されている領域設定されている既設定の領域から前記除外領域に対応する領域を除外した領域が選択領域として再設定される。したがって、領域再設定手段128は、X,Y,Z方向二色断層画像群のうちいずれかに含まれる二色断層画像において選択領域から除外領域を除いた領域を選択領域として再設定することにより、X,Y,Z方向二色断層画像群をなす各二色断面画像においても除外領域に該当する領域を除外した領域を選択領域として再設定することができる。 The region resetting unit 128 excludes an unnecessary region (exclusion region) when acquiring a 3D image from the regions already set as the selection region by the region setting unit 124 and resets the selection region. Means. When the area resetting unit 128 resets the selected area in one two-color tomographic image selected from each of the two-color slice images set by the area setting unit 124, the area resetting unit 128 is already in the other two-color slice images. An area that is designated as an area to be selected is set as an area that is excluded from an area that corresponds to the exclusion area from an already set area that has been set. Therefore, the region resetting unit 128 resets a region obtained by removing the excluded region from the selected region in the two-color tomographic image included in any of the two-color tomographic image group in the X, Y, and Z directions. In each of the two-color sectional images forming the two-color tomographic image group in the X, Y, and Z directions, an area excluding the area corresponding to the excluded area can be reset as the selected area.
 本実施形態の医療用シミュレーションシステム110では、セグメンテーション法により選択領域から不要な領域(除外領域)を指定し、選択領域を再設定することが可能である。具体的には、表示画面上に表示された既に選択領域の領域設定がなされている二色断面画像において、除外領域に該当する部分をマウスなどの入力デバイスを用いて指定することにより、除外領域を指定することにより選択領域を再設定することが可能とされている。 In the medical simulation system 110 of the present embodiment, it is possible to designate an unnecessary area (exclusion area) from the selected area by the segmentation method and reset the selected area. Specifically, in a two-color cross-sectional image that has already been set on the display area displayed on the display screen, by specifying a portion corresponding to the exclusion area using an input device such as a mouse, the exclusion area It is possible to reset the selection area by specifying.
 三次元化手段130は、上述した領域指定手段26により領域指定された選択領域、あるいは領域再設定手段128により再設定された選択領域に係る部分の二色断面画像を組み合わせて三次元画像を形成する機能を有する。三次元化手段130によって形成された三次元画像は、三次元画像データ出力手段132により、STLデータなどのデータ形式で出力することが可能である。 The three-dimensionalization unit 130 forms a three-dimensional image by combining the two-color cross-sectional images of the selection region designated by the region designation unit 26 or the portion related to the selection region reset by the region resetting unit 128. It has the function to do. The three-dimensional image formed by the three-dimensionalization unit 130 can be output by the three-dimensional image data output unit 132 in a data format such as STL data.
 続いて、上述した医療用シミュレーションシステム110の動作、及び医療用三次元画像の取得方法の実施方法について図面を参照しつつ説明する。図11に示すように、本実施形態の医療用三次元画像の取得方法は、ステップ2-1~ステップ2-9に係る工程を経て実施される。ステップ2-1に係る画像取得工程は、画像取得手段120により、DICOMデータなどのCT画像に係る画像データを読み込み、X,Y,Zの三方向に係る断層画像として取得する工程である。ステップ2-1において読み込まれた断層画像データは、いわゆるグレースケール画像などのように多数の階調からなる画像であり、このまま画像処理したり、三次元化するにはデータ容量が大きい。 Subsequently, the operation of the above-described medical simulation system 110 and the implementation method of the medical three-dimensional image acquisition method will be described with reference to the drawings. As shown in FIG. 11, the medical three-dimensional image acquisition method of the present embodiment is carried out through steps related to Step 2-1 to Step 2-9. The image acquisition step according to step 2-1 is a step of reading image data related to a CT image such as DICOM data by the image acquisition means 120 and acquiring it as a tomographic image in three directions of X, Y, and Z. The tomographic image data read in step 2-1 is an image having a large number of gradations such as a so-called gray scale image, and has a large data capacity for image processing as it is or three-dimensionalization.
 そこで、ステップ2-1の二値化工程において断層画像のデータが読み込まれると、各断層画像が二色画像化される。具体的には、画像取得手段120によって取得されたX,Y,Zの三方向に係る断層画像は、いずれもCT値を基準として設定された閾値以上のCT値に該当する領域と、閾値よりも小さな領域とに分類される。各断層画像において閾値以上である領域は白色に置換され、閾値を下回っている領域は黒色に置換される。このようにして各断層画像が二色断層画像に変換される。さらに詳細には、例えば断層画像中に含まれている骨の三次元画像を取得したい場合は、100程度のCT値に相当する閾値を設定することにより、骨を含む領域が白色に置換され、それ以外の領域が黒色に置換される。 Therefore, when the tomographic image data is read in the binarization process in step 2-1, each tomographic image is converted into a two-color image. Specifically, the tomographic images in the three directions X, Y, and Z acquired by the image acquisition unit 120 are all based on a region corresponding to a CT value equal to or greater than a threshold value set based on the CT value, and the threshold value. Are also classified as small areas. In each tomographic image, an area that is equal to or greater than the threshold is replaced with white, and an area that is below the threshold is replaced with black. In this way, each tomographic image is converted into a two-color tomographic image. More specifically, for example, when it is desired to obtain a three-dimensional image of a bone included in a tomographic image, by setting a threshold corresponding to a CT value of about 100, the region including the bone is replaced with white, Other areas are replaced with black.
 X方向への断層画像を二色化した各二色断層画像は、X方向二色断層画像群を構成する。同様に、Y方向への断層画像を二色化した各二色断層画像は、Y方向二色断層画像群を構成し、Z方向への断層画像を二色化した各二色断層画像は、Z方向二色断層画像群を構成する。二色化工程において得られた各二色断層画像は、図12に示すように各画像群毎に医療用シミュレーションシステム110がインストールされているコンピュータの出力画面上に表示される。また、出力画面上に表示されている二色断層画像は、コンピュータに接続されているマウスやキーボードなどの入力デバイスを用いて座標の指定や変更を行うことにより、表示されているものからX,Y,Zの各方向に移動した位置のものに適宜変更することが可能である。したがって、入力デバイスを用いて座標の指定や変更を行うことにより、出力画面上に任意の位置(座標)における二色断層画像を表示させることが可能である。 The two-color tomographic images obtained by dichroizing the tomographic images in the X direction constitute an X-direction two-color tomographic image group. Similarly, each two-color tomographic image obtained by dichroizing the tomographic image in the Y direction constitutes a Y-direction two-color tomographic image group, and each two-color tomographic image obtained by dichroizing the tomographic image in the Z direction is A Z-direction two-color tomographic image group is configured. Each two-color tomographic image obtained in the dichroic process is displayed on an output screen of a computer in which the medical simulation system 110 is installed for each image group as shown in FIG. Also, the two-color tomographic image displayed on the output screen is changed from the displayed X, X, X by specifying or changing coordinates using an input device such as a mouse or keyboard connected to the computer. The position can be appropriately changed to a position moved in each of the Y and Z directions. Therefore, it is possible to display a two-color tomographic image at an arbitrary position (coordinates) on the output screen by specifying or changing the coordinates using the input device.
 上記したようにして各断層画像が二色画像化されると、工程がステップ2-3~ステップ2-8に係る各工程に進み、各二色断層画像において三次元画像を構築する際に用いる画像領域の設定が行われる。具体的には、工程がステップ2-3に係る領域設定工程に移行すると、上述した二値化工程において得られた各二色断層画像のうち、適宜選択された二色断層画像において選択領域として領域設定された領域に対応する領域が、他の二色断層画像においても選択領域として選択される。 When each tomographic image is converted into a two-color image as described above, the process proceeds to each step related to Step 2-3 to Step 2-8, and is used when a three-dimensional image is constructed in each two-color tomographic image. The image area is set. Specifically, when the process shifts to the area setting process according to step 2-3, among the two-color tomographic images obtained in the above-described binarization process, as a selection area in the appropriately selected two-color tomographic image. An area corresponding to the set area is selected as a selection area in other two-color tomographic images.
 さらに具体的には、工程がステップ2-3に進行すると、マウスやキーボードなどの入力デバイスを操作することにより、出力画面上に表示されている二色断面画像において選択領域とすべき領域、すなわち三次元画像化しようとしている部分に該当するであろう領域を領域設定することが可能となる。上述したように、本実施形態ではセグメンテーション法及びリージョングローイング法の双方により領域設定を行うことができ、いずれの方法により領域設定を行う場合であっても、出力画面上に表示されている三つのX,Y,Z方向二色断層画像のうちの一つにおいてマウスなどの入力デバイスを用いて指定することにより、選択領域とすべき領域を選択できる。 More specifically, when the process proceeds to step 2-3, by operating an input device such as a mouse or a keyboard, an area to be selected in the two-color cross-sectional image displayed on the output screen, that is, It is possible to set a region that will correspond to the portion to be converted into a three-dimensional image. As described above, in this embodiment, the region can be set by both the segmentation method and the region growing method, and the three regions displayed on the output screen can be set by any method. An area to be a selection area can be selected by specifying an input device such as a mouse in one of the two-color tomographic images in the X, Y, and Z directions.
 出力画面上に表示されている三つのX,Y,Z方向二色断層画像のうちの一つにおいて選択領域とすべき領域が指定されると、図13に示すように、指定された領域が白及び黒以外の色で着色等された領域が形成され、他の領域と区別される。具体的には、リージョングローイング法により選択領域の指定を行う場合は、例えば図13において編み目状のハッチングで示された領域の一部を選択すると、ハッチングが付された領域全体がひと続きであると認識され、選択領域として領域設定された状態になる。一方、セグメンテーション法により領域設定を行う場合は、図13において網目状のハッチングが付された領域全体を塗りつぶすようにマウスやキーボードなどの入力デバイスを操作し選択することにより、選択領域として領域設定された状態になる。 When a region to be selected is designated in one of the three X, Y, and Z-direction two-color tomographic images displayed on the output screen, the designated region is displayed as shown in FIG. A region colored with a color other than white and black is formed and distinguished from other regions. Specifically, when the selected region is designated by the region growing method, for example, when a part of the region indicated by the stitch-shaped hatching in FIG. 13 is selected, the entire hatched region is continuous. And the area is set as the selected area. On the other hand, when the region is set by the segmentation method, the region is set as a selection region by operating and selecting an input device such as a mouse or a keyboard so as to fill the entire region hatched in FIG. It becomes a state.
 上述したようにして選択領域とすべき領域が指定されると、出力画面上に表示されている他の二色断層画像においても選択領域に該当する領域が着色された状態になる。さらに、選択領域の指定時に出力画面上に表示されていない他の二色断面画像についても、上述したように選択領域に対応する領域が選択領域として選択されている。よって、選択領域の設定後、入力デバイスを操作して別の二色画像を出力画面上に表示すると、前述した選択領域に対応する領域が着色された状態で表示される。 When the area to be the selection area is specified as described above, the area corresponding to the selection area is also colored in the other two-color tomographic images displayed on the output screen. Furthermore, as for the other two-color sectional images that are not displayed on the output screen when the selection area is designated, the area corresponding to the selection area is selected as the selection area as described above. Therefore, after setting the selection area, if another two-color image is displayed on the output screen by operating the input device, the area corresponding to the selection area described above is displayed in a colored state.
 上述したようにしてステップ2-3において領域設定がなされると、工程がステップ2-4に至る。ステップ2-4では、サーフェス画像形成の要否、すなわち領域設定手段124によって領域設定された選択領域に係る画像を組み合わせることにより三次元画像を形成する必要があるか否かが確認される。ステップ2-4においてサーフェス画像の形成が必要であることが確認された場合は、工程がステップ2-5に進み、不要であることが確認された場合はステップ2-7に進む。 When the area is set in step 2-3 as described above, the process reaches step 2-4. In step 2-4, it is confirmed whether or not surface image formation is necessary, that is, whether or not it is necessary to form a three-dimensional image by combining images related to the selected region set by the region setting unit 124. If it is confirmed in step 2-4 that surface image formation is necessary, the process proceeds to step 2-5. If it is confirmed that surface image formation is not necessary, the process proceeds to step 2-7.
 工程がステップ2-5に進行した場合は、サーフェス形成手段126により領域設定手段124によって領域設定された選択領域に係る画像を組み合わせられ、三次元画像が形成される。サーフェス形成手段126によって形成された三次元画像は、図14に示すように、サーフェス画像としてコンピュータの出力画面上に表示される。これにより、ステップ2-3に係る領域設定工程において領域設定された選択領域に、三次元画像として取得したい部位の他に不要な部分が含まれているか否かや、不要な部分の位置などが存在しないか確認できる。 When the process has proceeded to step 2-5, the surface forming unit 126 combines the images related to the selected region set by the region setting unit 124 to form a three-dimensional image. As shown in FIG. 14, the three-dimensional image formed by the surface forming means 126 is displayed on the output screen of the computer as a surface image. As a result, whether or not the selected area set in the area setting process in Step 2-3 includes an unnecessary part in addition to the part to be acquired as a three-dimensional image, the position of the unnecessary part, etc. You can check if it does not exist.
 ステップ2-5においてサーフェス画像の形成が完了すると、工程がステップ2-6に進み、上述したステップ2-3において選択領域として領域設定されている既選択の領域から除外すべき領域が存在するか否か、すなわち選択領域の再設定が必要か否かが確認される。同様に、ステップ2-4においてサーフェス画像の形成が不要であるとされた場合についても、ステップ2-8において、選択領域として領域設定された領域から除外すべき領域が存在するか否かが確認される。ステップ2-6及びステップ2-8において選択領域として領域設定されている領域から除外すべき領域が存在し、選択領域の再設定が必要であると判断された場合は、工程がステップ2-7に進められ、除外すべき領域が存在せず、選択領域の再設定が不要であると判断された場合は、工程がステップ2-9に進められる。 When the formation of the surface image is completed in step 2-5, the process proceeds to step 2-6, and whether there is an area to be excluded from the already selected area set as the selection area in step 2-3 described above. Whether or not it is necessary to reset the selected area is confirmed. Similarly, when it is determined in step 2-4 that surface image formation is unnecessary, it is confirmed in step 2-8 whether or not there is an area to be excluded from the area set as the selection area. Is done. If it is determined in step 2-6 and step 2-8 that there is an area to be excluded from the area set as the selection area, and it is determined that the selection area needs to be reset, the process proceeds to step 2-7. If it is determined that there is no area to be excluded and that it is not necessary to reset the selected area, the process proceeds to step 2-9.
 工程がステップ2-7に係る領域再設定工程に進行すると、領域再設定手段128により、ステップ2-3において選択領域として設定された領域から、三次元画像として取得不要な領域(除外領域)を除外した領域が選択領域として再設定される。具体的には、例えば図15(a)に示す二色断面画像に描かれている2箇所の白色の領域のうち、一方が三次元画像化したい部分を示す領域であり、他方がそれ以外の部分である場合において、他の二色断面画像において両方の領域が一体として現れているなどして領域設定手段124により一連の領域と認識されている場合がある。このような場合は、上述したステップ2-3に係る領域設定工程において図15(a)以外の他の二色断面画像を用いて選択領域を指定すると、図15(b)に網目状のハッチングで示すように、異なる部位を示す2箇所の白色の領域の双方が選択領域として指定されてしまうことがある。 When the process proceeds to the area resetting process related to step 2-7, an area (exclusion area) that does not need to be acquired as a 3D image is selected from the area set as the selection area in step 2-3 by the area resetting unit 128. The excluded area is reset as the selected area. Specifically, for example, one of the two white areas depicted in the two-color cross-sectional image illustrated in FIG. 15A is an area indicating a portion to be converted into a three-dimensional image, and the other is the other area. In the case of a partial area, the area setting unit 124 may recognize it as a series of areas, for example, because both areas appear together in other two-color cross-sectional images. In such a case, when a selection region is specified using a two-color cross-sectional image other than that in FIG. 15A in the region setting process in step 2-3 described above, a mesh-like hatching in FIG. As indicated by, both of two white areas indicating different parts may be designated as selection areas.
 そこで、選択領域から除外すべき領域が存在する場合は、上述したサーフェス画像などに基づいて図15(b)に示すように除外領域を判別可能な位置(座標)を指定し、この位置における二色断面画像を出力画面上に表示させた状態においてマウス等の入力デバイスの操作により除外領域を指定することにより、該当部分を選択領域から除外して残る領域(図16において網目状のハッチングで示した領域)を選択領域として再設定することが可能である。選択領域が再設定されると、出力画面上に表示されている他の二つの二色断層画像においても除外領域に該当する領域を選択領域から除外した領域が選択領域として再設定された状態になる。さらに、選択領域の再設定が行われると、出力画面上に表示されていない他の二色画像についても、除外領域に対応する領域を選択領域から除外した領域が選択領域として再設定された状態になる。 Therefore, when there is an area to be excluded from the selected area, a position (coordinates) at which the excluded area can be determined is designated based on the above-described surface image or the like as shown in FIG. By specifying an exclusion area by operating an input device such as a mouse while the color slice image is displayed on the output screen, the area that is left excluded from the selection area (indicated by mesh hatching in FIG. 16) Can be reset as the selected area. When the selected area is reset, the other two-color tomographic images displayed on the output screen are reset to the area that excludes the area corresponding to the excluded area from the selected area. Become. In addition, when the selection area is reset, the area that excludes the area corresponding to the exclusion area from the selection area is reset as the selection area for the other two-color images that are not displayed on the output screen. become.
 上述したようにしてステップ2-7に係る領域再設定工程が完了した場合や、ステップ2-6やステップ2-8において選択領域の再設定が不要であると判断された場合は、工程がステップ2-9に係る三次元化工程に進行する。ステップ2-9では、選択領域として領域指定されている部分の二色断面画像が三次元化手段130によって組み合わせられ、図17に示すように三次元画像として出力画面上に表示される。また、ステップ2-9において形成された三次元画像は、三次元画像データ出力手段132により、STLデータなどのデータ形式で出力することが可能とされる。 If the area resetting process according to step 2-7 is completed as described above, or if it is determined that the resetting of the selected area is unnecessary in step 2-6 or step 2-8, the process goes to step Proceed to the three-dimensional process according to 2-9. In step 2-9, the two-color cross-sectional images of the portion designated as the selection region are combined by the three-dimensionalizing means 130 and displayed on the output screen as a three-dimensional image as shown in FIG. Further, the three-dimensional image formed in step 2-9 can be output by the three-dimensional image data output means 132 in a data format such as STL data.
 上述したように、本実施形態で示した医療用シミュレーションシステム110、及び医療用三次元画像の取得方法では、ステップ2-1~ステップ2-3に係る各工程を経て医療用断層画像を二値化し、二色断層画像としている。したがって、ステップ2-3以降の工程において取り扱う画像(二色断層画像)のデータ容量が極めて小さく、ステップ2-3以降の工程における画像処理のためにコンピュータに要求される情報処理能力が最小限で済み、迅速に処理できる。 As described above, in the medical simulation system 110 and the medical three-dimensional image acquisition method shown in the present embodiment, the medical tomographic image is binarized through the steps related to Step 2-1 to Step 2-3. Into a two-color tomographic image. Therefore, the data capacity of the image (two-color tomographic image) handled in the process after step 2-3 is extremely small, and the information processing capability required for the computer for image processing in the process after step 2-3 is minimized. Can be processed quickly.
 また、医療用シミュレーションシステム110では、医療用断層画像を二値化した二色断層画像を用いるため、医療用断層画像として、互いに交差するX,Y,Zの三方向に係る断層画像によって構成されたものを使用しても、ステップ2-3以降の工程における画像処理のためにコンピュータに過剰な負荷がかからず、スムーズに画像処理することが可能となる。 In addition, since the medical simulation system 110 uses a two-color tomographic image obtained by binarizing the medical tomographic image, the medical tomographic image is constituted by tomographic images in three directions of X, Y, and Z that intersect each other. Even if a new one is used, an excessive load is not applied to the computer due to the image processing in the steps after step 2-3, and the image processing can be performed smoothly.
 また、上記実施形態では、ステップ2-2に係る二値化工程においてCT値を基準として設定された閾値に基づいて各医療用断層画像を2階調に分類し、二色断層画像化しているため、所望の部位を含む領域とそれ以外の部位を含む領域とに正確に分離することが可能となる。したがって、上記した医療用シミュレーションシステム110によれば、所望の部位についての三次元画像を正確に取得することが可能となる。 Further, in the above embodiment, each medical tomographic image is classified into two gradations based on the threshold value set with reference to the CT value in the binarization process according to step 2-2, and converted into a two-color tomographic image. Therefore, it is possible to accurately separate into a region including a desired portion and a region including other portions. Therefore, according to the medical simulation system 110 described above, it is possible to accurately acquire a three-dimensional image of a desired part.
 また、上記実施形態で示した医療用シミュレーションシステム110では、ステップ2-3に係る領域設定工程において出力画面上に表示されている二色断層画像において選択領域として領域設定すれば、他の二色断層画像において選択領域として領域設定された部分に該当する部分についても選択領域として領域設定された状態になる。同様に、医療用シミュレーションシステム110では、ステップ2-7に係る領域再設定工程において出力画面上に表示されている二色断層画像において選択領域から除外すべき領域(除外領域)を指定し、選択領域の再設定を行えば、他の二色断層画像においても除外領域に対応する領域を既設定の選択領域除外した領域が選択領域として再設定された状態になる。したがって、医療用シミュレーションシステム110では、出力画面上に表示されているいずれかの二色断層画像において選択領域として領域設定すべき領域を指定したり、再設定したりすることにより、他の二色断層画像においても選択領域の領域設定や再設定の結果を反映させることが可能であり、二色断層画像毎に選択領域の領域設定や再設定を行う必要がない。よって、医療用シミュレーションシステム110によれば、操作経験を積んだ医師や専門のオペレータによらなくても容易に選択領域の設定や再設定を行い、所望の部位についての三次元画像を容易かつ正確に取得することが可能である。 In the medical simulation system 110 shown in the above embodiment, if the region is set as the selection region in the two-color tomographic image displayed on the output screen in the region setting step according to step 2-3, the other two colors A portion corresponding to a portion set as a selection region in the tomographic image is also set as a selection region. Similarly, the medical simulation system 110 designates and selects an area (exclusion area) to be excluded from the selection area in the two-color tomographic image displayed on the output screen in the area resetting process according to step 2-7. If the area is reset, the area corresponding to the excluded area in the other two-color tomographic images is also reset as the selected area. Therefore, in the medical simulation system 110, by specifying or resetting an area to be set as a selection area in any two-color tomographic image displayed on the output screen, other two colors Even in the tomographic image, it is possible to reflect the result of area setting and resetting of the selected area, and it is not necessary to perform area setting and resetting of the selected area for each two-color tomographic image. Therefore, according to the medical simulation system 110, it is possible to easily set and reset the selected region without using a doctor or a specialized operator who has experienced operation, and easily and accurately obtain a three-dimensional image of a desired part. It is possible to get to.
 上述した医療用シミュレーションシステム110では、互いに交差するX,Y,Zの三方向に係る断層画像によって構成された医療用断層画像に基づいて作成されたX方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群がステップ2-3以降の工程において医療用三次元画像を取得するために使用される。したがって、上記した医療用シミュレーションシステム110によれば、X,Y,Z三方向から見た二色断層画像に基づいて選択領域の設定や再設定を行うことが可能であり、精度の高い医療用三次元画像を容易に作成することが可能である。なお、上記実施形態では、X,Y,Zの三方向に係る断層画像によって構成された医療用断層画像を用いて医療用三次元画像を作成する例を例示したが、本発明はこれに限定されるものではなく、X,Y,Z方向のいずれか一方向あるいは二方向に係る断層画像に基づいて医療用三次元画像を作成することとしてもよい。 In the medical simulation system 110 described above, an X-direction two-color tomographic image group and a Y-direction two-color image created based on a medical tomographic image composed of tomographic images in three directions X, Y, and Z that intersect each other. The tomographic image group and the Z-direction two-color tomographic image group are used for acquiring a medical three-dimensional image in the processes after step 2-3. Therefore, according to the medical simulation system 110 described above, it is possible to set and reset the selected region based on the two-color tomographic image viewed from the three directions of X, Y, and Z, and the medical use with high accuracy. It is possible to easily create a three-dimensional image. In the above-described embodiment, an example in which a medical three-dimensional image is created using a medical tomographic image composed of tomographic images in three directions of X, Y, and Z is illustrated, but the present invention is not limited to this. The medical three-dimensional image may be created based on the tomographic image in any one or two directions of the X, Y, and Z directions.
 本実施形態に示した医療用シミュレーションシステム110では、サーフェス形成工程(ステップ2-5)において、先に行われたステップ2-3に係る領域設定工程において領域設定された領域の二色断層画像を組み合わせ、三次元画像(サーフェス画像)を形成することが可能とされている。したがって、サーフェス画像を参照することにより、ステップ2-7に係る領域再設定工程において選択領域として指定されている既設定の領域に三次元画像を作成する上で不要な領域が含まれているか否かや、不要な領域がどの位置の二色断層画像に含まれているのかなどを容易に判断し、特定することが可能となる。よって、上述した医療用シミュレーションシステム110によれば、領域再設定工程における作業効率を向上させることが可能である。なお、上記実施形態では、サーフェス形成工程を実施可能な例を例示したが、本発明はこれに限定されるものではなく、サーフェス形成手段126を備えずサーフェス形成工程を実施できないものとすることが可能である。 In the medical simulation system 110 shown in the present embodiment, in the surface formation step (step 2-5), the two-color tomographic image of the region set in the region setting step according to step 2-3 previously performed is obtained. It is possible to form a three-dimensional image (surface image) in combination. Therefore, by referring to the surface image, whether or not an area unnecessary for creating a 3D image is included in the preset area designated as the selection area in the area resetting process according to step 2-7. In addition, it is possible to easily determine and specify at which position an unnecessary region is included in the two-color tomographic image. Therefore, according to the medical simulation system 110 described above, it is possible to improve work efficiency in the region resetting process. In addition, although the example which can implement a surface formation process was illustrated in the said embodiment, this invention is not limited to this, The surface formation process cannot be implemented without having the surface formation means 126. Is possible.
≪カッティングプレート、及びカッティングプレートの製造方法について≫
 上述したシミュレーションシステム20や医療用シミュレーションシステム110によれば、骨切り術による骨の矯正を予めシミュレーションし、骨切りを行う位置を適切に定めることが可能となる。骨切り術をさらに的確に実施可能とするためには、切開部分やボーンソーの差し込み方向など、術中に対応しなければならならい手術器械の使用方法などを考慮に入れ、術中に骨切り位置を確実かつ適切に定め得るガイドを準備することが好ましい。
≪About the cutting plate and the manufacturing method of the cutting plate≫
According to the simulation system 20 and the medical simulation system 110 described above, it is possible to simulate the bone correction by osteotomy in advance and appropriately determine the position to perform the osteotomy. In order to perform osteotomy more accurately, the use of surgical instruments that must be handled during the operation, such as the incision and the insertion direction of the bone saw, is taken into account, and the osteotomy position is ensured during the operation. It is preferable to prepare a guide that can be determined appropriately.
 上述したシミュレーションシステム20や医療用シミュレーションシステム110によって形成された矯正前骨モデルXを用いれば、骨切り用のガイド部材(以下、「カッティングプレート」150とも称す)の三次元モデルを構築し、この三次元モデルに基づいて最小限度の大きさのカッティングプレート150を形成することが可能である。 If the pre-correction bone model X formed by the simulation system 20 or the medical simulation system 110 described above is used, a three-dimensional model of an osteotomy guide member (hereinafter also referred to as “cutting plate” 150) is constructed. It is possible to form the cutting plate 150 having a minimum size based on the three-dimensional model.
 手順を追って具体的に説明すると、先ず、上述したシミュレーションシステム20などにより骨切り術により矯正する前の状態の骨に相当する矯正前骨モデルXが形成され、矯正骨モデルXにおいて骨切りを行う部分を示す切断面a,bが設定される。その後、矯正前骨モデルXを切断面a,bにおいて切断した切断片のモデルを構成し、骨を正常な状態とするために要する切断片の移動距離や、切断片間に挿入される人工骨の形状、大きさ、術中に使用されるワイヤーを刺し入れる位置(以下、「ワイヤー刺入位置」とも称す)などが決定される。このようにして切断面a,bやワイヤー刺入位置の情報が決定されると、この位置情報に基づいて演算がなされ、矯正骨モデルX上において切断面a,bやワイヤー刺入位置がいずれの位置になるのか導出される。 The procedure will be described in detail. First, a pre-correction bone model X corresponding to a bone in a state before correction by osteotomy is formed by the simulation system 20 or the like, and osteotomy is performed in the corrected bone model X. Cut planes a and b indicating the part are set. Thereafter, a model of a cut piece obtained by cutting the pre-correction bone model X at the cutting planes a and b is constructed, and the movement distance of the cut piece required to bring the bone into a normal state and the artificial bone inserted between the cut pieces The shape, size, position for inserting a wire used during the operation (hereinafter also referred to as “wire insertion position”), and the like are determined. When the information on the cutting planes a and b and the wire insertion position is determined in this way, the calculation is performed based on the position information, and the cutting planes a and b and the wire insertion position on the correction bone model X It is derived whether it becomes the position of.
 続いて、矯正前骨モデルXの表面から所定の厚みt分だけ膨張させることにより、図18や図19に示すような骨モデルα(以下、「膨張モデル」αとも称す)が構成される(図19では説明の簡略化のため、矯正前骨モデルX及び膨張モデルαを円筒状に示している。)。膨張骨モデルαは、矯正前骨モデルXの外面に沿うように形成され、矯正骨モデルXに相当する部分が中空とされた厚みtの筒状体である。膨張骨モデルαの厚みtは、作成するカッティングプレート150の厚みに応じて設定される。 Subsequently, the bone model α (hereinafter also referred to as “expansion model” α) as shown in FIG. 18 and FIG. 19 is constructed by expanding the surface of the pre-correction bone model X by a predetermined thickness t. In FIG. 19, the pre-correction bone model X and the expansion model α are shown in a cylindrical shape for simplification of description. The expanded bone model α is a cylindrical body having a thickness t that is formed along the outer surface of the pre-correction bone model X, and a portion corresponding to the correction bone model X is hollow. The thickness t of the expanded bone model α is set according to the thickness of the cutting plate 150 to be created.
 膨張モデルαにおいて、上述したようにして設定された切断面a,bやワイヤー刺入位置を含む領域δが設定されると、この領域δに相当する部分が切り出され、カッティングプレート150の三次元モデルが構築される。このようにして形成されたカッティングプレート150をなす面と切断面a,bとの交線部分には、ボーンソーなどの切断具を差し込むための切り込み口γ1,γ2が形成される。また、ワイヤー刺入位置を通る法線とカッティングプレート150の交点部分には、ワイヤーを挿通するための刺入孔φ(図中ではφ1~φ4)が形成される。 In the expansion model α, when the area δ including the cutting planes a and b and the wire insertion position set as described above is set, a portion corresponding to the area δ is cut out, and the three-dimensional shape of the cutting plate 150 is cut out. A model is built. Cut portions γ1 and γ2 for inserting a cutting tool such as a bone saw are formed at the intersections between the surfaces forming the cutting plate 150 and the cut surfaces a and b. In addition, insertion holes φ (φ1 to φ4 in the drawing) for inserting the wires are formed at the intersections between the normal passing through the wire insertion position and the cutting plate 150.
 上述した手法により得られたカッティングプレート150の三次元モデルに基づき樹脂などの素材を用いて造形することにより、カッティングプレート150が形成される。このようにして形成されたカッティングプレート150は、骨切りを行う骨に沿うように形成されているため、適切な位置に装着しやすく、適切な位置において骨切りを行うことができる。また、上述したような方法によれば、シミュレーション時に実際に手術に使用するボーンソーやワイヤーなどの手術器械やカッティングプレート150の使用方法を想定しつつカッティングプレート150を設計可能であるため、骨切り術の術前計画をより一層確実かつ安全なものとすることができ、その結果として患者負担を大幅に抑制することが可能となる。 The cutting plate 150 is formed by modeling using a material such as resin based on the three-dimensional model of the cutting plate 150 obtained by the above-described method. Since the cutting plate 150 formed in this way is formed along the bone to be cut, it is easy to mount at an appropriate position and the bone can be cut at an appropriate position. In addition, according to the above-described method, the cutting plate 150 can be designed while assuming the usage method of the surgical instrument such as a bone saw or wire or the cutting plate 150 that is actually used for the operation at the time of simulation. This preoperative plan can be made more reliable and safe, and as a result, the patient burden can be greatly reduced.
 10 補填用人工骨
 20 シミュレーションシステム(医療用シミュレーションシステム)
 22 矯正前骨モデル取得手段
 24 基準骨モデル取得手段
 26 切断面導出手段
 28 頂点設定手段
 30 距離導出手段
 32 最小距離データ構築手段
 34 最大距離選択手段
 36 開始点選択手段
 38 STLデータ構築手段
10 Artificial bone for replacement 20 Simulation system (medical simulation system)
22 Bone model acquisition means before correction 24 Reference bone model acquisition means 26 Cutting plane derivation means 28 Vertex setting means 30 Distance derivation means 32 Minimum distance data construction means 34 Maximum distance selection means 36 Start point selection means 38 STL data construction means

Claims (9)

  1.  矯正対象の骨を表す骨モデルを矯正前骨モデルとして取得する矯正前骨モデル取得工程と、
     前記矯正前骨モデルを切断・分離して形成される骨片A,Bに係る切断面a,bを導出する切断面導出工程と、
     前記切断面aの外周上にp個の頂点A(n)(nは1からpの自然数)を設定し、前記切断面bの外周上にq個の頂点B(m)(mは1からqの自然数)を設定する頂点設定工程と、
     p個の頂点A(n)を構成する1点と、各頂点B(m)の一部又は全部との距離LA(n,m)を導出し、導出された距離LA(n,m)から最小のものを選択して最小距離データLAmin(n,m)とする最小距離導出動作Aを、p個の頂点A(n)の一部又は全部について行い、最小距離データ群を構築する最小距離データ群構築工程と、
     前記最小距離データ群を構成するデータの一部又は全部において最大のものを選択する最大距離選択工程と、
     最大距離選択工程において選択されたデータなす頂点A(n),B(m)をそれぞれ開始点として選択する開始点選択工程と、
     前記開始点として選択された頂点A(n),B(m)を起点として切断面a,bの周方向に並ぶ各頂点A(n),B(m)間を、前記切断面a,b間の領域を横断するように順次線分でつなぐことにより、切断面a,b間の領域に補填される補填用人工骨の外表面を複数の三角形群で表現したSTLデータを構築するSTLデータ構築工程とを有することを特徴とする補填用人工骨モデルの形成方法。
    A pre-correction bone model acquisition step of acquiring a bone model representing a bone to be corrected as a pre-correction bone model;
    A cutting plane deriving step for deriving cutting planes a and b related to bone fragments A and B formed by cutting and separating the pre-correction bone model;
    P vertices A (n) (n is a natural number from 1 to p) are set on the outer periphery of the cut surface a, and q vertices B (m) (m is 1 from the outer periphery of the cut surface b). vertex setting step for setting (natural number of q),
    A distance LA (n, m) between one point constituting p vertices A (n) and a part or all of each vertex B (m) is derived, and the derived distance LA (n, m) is derived. Minimum distance for selecting the smallest one and performing minimum distance derivation operation A as minimum distance data LAmin (n, m) for a part or all of p vertices A (n) to construct a minimum distance data group Data group construction process,
    A maximum distance selection step of selecting a maximum in a part or all of the data constituting the minimum distance data group;
    A starting point selecting step of selecting vertices A (n) and B (m) made by the data selected in the maximum distance selecting step as starting points;
    Between the vertices A (n) and B (m) arranged in the circumferential direction of the cut surfaces a and b starting from the vertices A (n) and B (m) selected as the start points, the cut surfaces a and b STL data that constructs STL data that expresses the outer surface of the artificial bone for replacement to be filled in the area between the cutting planes a and b by a plurality of triangle groups by sequentially connecting line segments so as to cross the area between them. A method for forming an artificial bone model for compensation.
  2.  頂点A(n)に対して切断面aの周方向に隣接する頂点を頂点A(n+1)とし、頂点B(m)に対して切断面bの周方向に隣接する頂点を頂点B(m+1)とした場合に、
     頂点A(n),B(m+1)間をつなぐ線分と、頂点A(n+1),B(m)間をつなぐ線分のうち、距離の短い線分がSTLデータを構成する線分として選択されることを特徴とする請求項1に記載の補填用人工骨モデルの形成方法。
    A vertex adjacent to the vertex A (n) in the circumferential direction of the cut surface a is a vertex A (n + 1), and a vertex adjacent to the vertex B (m) in the circumferential direction of the cut surface b is a vertex B (m + 1). If
    Of the line segment connecting the vertices A (n) and B (m + 1) and the line segment connecting the vertices A (n + 1) and B (m), the line segment with a short distance is selected as the line segment constituting the STL data. The method for forming an artificial bone model for compensation according to claim 1.
  3.  最小距離データ群構築工程が、
     最小距離導出動作Aに加えて、
     q個の頂点B(m)を構成する1点と、各頂点A(n)の一部又は全部との距離LB(n,m)を各頂点B(m)毎に導出し、導出された距離LB(n,m)から最小のものを選択して最小距離LBmin(n,m)とする最小距離導出動作Bをq個の頂点B(m)の一部又は全部について行い、
     最小距離データ群を最小距離データLAmin(n、m)及び最小距離データLBmin(n,m)を含むものとして構築するものであり、
     最大距離選択工程が、
     最小距離データ群をなす最小距離データLAmin(n、m)の一部又は全部において最大のものをA側最大距離データLAmax(n,m)として選択すると共に、
     最小距離データ群をなす最小距離データLBmin(n、m)の一部又は全部において最大のものをB側最大距離データLBmax(n,m)として選択し、
     A側最大距離データLAmax(n,m)及びB側最大距離データLBmax(n,m)のうち大きい方を最大距離データLmax(n,m)として選択するものであり、
     開始点選択工程が、最大距離データLmax(n,m)をなす頂点A(n),B(m)をそれぞれ開始点として選択するものであることを特徴とする請求項1又は2に記載の補填用人工骨モデルの形成方法。
    The minimum distance data group construction process
    In addition to the minimum distance derivation operation A,
    A distance LB (n, m) between one point constituting q vertices B (m) and a part or all of each vertex A (n) is derived for each vertex B (m). A minimum distance derivation operation B is performed for some or all of the q vertices B (m) by selecting the smallest one from the distances LB (n, m) and setting the minimum distance LBmin (n, m).
    The minimum distance data group is constructed as including the minimum distance data LAmin (n, m) and the minimum distance data LBmin (n, m).
    The maximum distance selection process is
    Selecting the largest of some or all of the minimum distance data LAmin (n, m) forming the minimum distance data group as the A-side maximum distance data LAmax (n, m);
    Selecting the largest of some or all of the minimum distance data LBmin (n, m) forming the minimum distance data group as the B-side maximum distance data LBmax (n, m);
    The larger one of the A side maximum distance data LAmax (n, m) and the B side maximum distance data LBmax (n, m) is selected as the maximum distance data Lmax (n, m).
    3. The start point selection step is to select vertices A (n) and B (m) forming the maximum distance data Lmax (n, m) as start points, respectively. 3. A method for forming an artificial bone model for filling.
  4.  矯正前骨モデル取得工程において、矯正対象の骨の外表面を複数の三角形群で表現するSTLデータを構築することにより矯正前骨モデルが取得され、
     頂点設定工程において、矯正前骨モデルに係るSTLデータをなす三角形群を構成する各辺と切断面a,bとの交点が、それぞれ頂点A(n),B(m)として設定されることを特徴とする請求項1~3のいずれかに記載の補填用人工骨モデルの形成方法。
    In the pre-correction bone model acquisition step, the pre-correction bone model is acquired by constructing STL data representing the outer surface of the bone to be corrected by a plurality of triangle groups,
    In the vertex setting step, the intersections of the sides constituting the triangle group constituting the STL data related to the pre-correction bone model and the cut surfaces a and b are set as vertices A (n) and B (m), respectively. The method for forming an artificial bone model for compensation according to any one of claims 1 to 3.
  5.  矯正対象の骨と面対称の位置関係にある健常な骨の骨モデルと面対称な骨モデルを基準骨モデルとして取得する基準骨モデル取得工程を有し、
     切断面導出工程において、前記基準骨モデルを基準として切断面a,bが決定されることを特徴とする請求項1~4のいずれかに記載の補填用人工骨モデルの形成方法。
    A reference bone model acquisition step of acquiring a bone model of a healthy bone that is in a plane-symmetrical positional relationship with a bone to be corrected and a plane model that is plane-symmetric, as a reference bone model;
    5. The method for forming an artificial bone model for compensation according to claim 1, wherein the cutting planes a and b are determined based on the reference bone model in the cutting plane derivation step.
  6.  請求項1~5のいずれかに記載の補填用人工骨モデルの形成方法によって得られたSTLデータを用いて補填用人工骨を形成することを特徴とする補填用人工骨の形成方法。 A method for forming a replacement artificial bone, comprising forming the replacement artificial bone using the STL data obtained by the method for forming a replacement artificial bone model according to any one of claims 1 to 5.
  7.  請求項1~5に係る補填用人工骨モデルの形成方法を用いて補填用人工骨の三次元画像を形成することを特徴とする医療用シミュレーションシステム。 A medical simulation system characterized in that a three-dimensional image of a replacement artificial bone is formed using the method for forming a replacement artificial bone model according to claims 1 to 5.
  8.  複数の医療用断層画像を、CT値を基準として設定された閾値を境界として二色画像化した二色断層画像とする二値化工程と、
     前記二値化工程において得られた二色断層画像のうちの一つにおいて領域設定された選択領域に対応する領域を他の二色断層画像において選択領域として領域設定する領域設定工程と、
     領域設定工程において領域設定された各二色断層画像から選ばれる一つの二色断層画像において、領域設定工程において選択領域として領域設定されている既設定の領域から一部を除外した領域を選択領域として再設定し、再設定された選択領域に対応する領域を他の二色断層画像において選択領域として再設定する領域再設定工程と、
     前記領域設定工程及び領域再設定工程を経て得られた二色断層画像を組み合わせて三次元画像を形成する三次元化工程とを有し、
     前記医療用断層画像が、互いに交差するX,Y,Zの三方向に係る断層画像によって構成されており、
     X方向への断層画像からなるX方向断層画像群、Y方向への断層画像からなるY方向断層画像群、及びZ方向への断層画像からなるZ方向断層画像群をなす各医療用断層画像が、二値化工程において二色画像化され二色断層画像となり、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群が形成され、
     領域設定工程では、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群から選択された一の二色断層画像群に含まれる一の二色断層画像において領域設定された選択領域に対応する領域が、選択された一の二色断層画像群に含まれる他の二色断層画像、及び非選択である他の二色断層画像群に含まれる二色断層画像において選択領域として領域設定され、
     領域再設定工程では、X方向二色断層画像群、Y方向二色断層画像群、及びZ方向二色断層画像群から選択された一の二色断層画像群に含まれる一の二色断層画像において選択領域として領域設定されている既設定の領域から一部を除外した領域が選択領域として再設定され、再設定された選択領域に対応する領域が、他の二色断層画像について選択領域として再設定されることを特徴とする医療用三次元画像の取得方法。
    A binarization step for converting a plurality of medical tomographic images into a two-color tomographic image obtained by forming a two-color image with a threshold set based on a CT value as a boundary;
    A region setting step of setting a region corresponding to a selection region set in one of the two-color tomographic images obtained in the binarization step as a selection region in another two-color tomographic image;
    In one two-color tomographic image selected from each two-color tomographic image set in the region setting step, a region obtained by excluding a part from the preset region set as a selection region in the region setting step An area resetting step in which the area corresponding to the reset selection area is reset as a selection area in another two-color tomographic image;
    A three-dimensional process for forming a three-dimensional image by combining the two-color tomographic images obtained through the region setting step and the region resetting step,
    The medical tomographic image is composed of tomographic images in three directions of X, Y, and Z intersecting each other,
    Each medical tomographic image forming an X-direction tomographic image group consisting of a tomographic image in the X direction, a Y-directional tomographic image group consisting of a tomographic image in the Y direction, and a Z-directional tomographic image group consisting of a tomographic image in the Z direction. In the binarization step, a two-color image is formed into a two-color tomographic image, and an X-direction two-color tomographic image group, a Y-direction two-color tomographic image group, and a Z-direction two-color tomographic image group are formed,
    In the region setting step, in one two-color tomographic image included in one two-color tomographic image group selected from the X-direction two-color tomographic image group, the Y-direction two-color tomographic image group, and the Z-direction two-color tomographic image group. The area corresponding to the selected selection area is the other two-color tomographic image included in the selected two-color tomographic image group, and the two-color tomographic image included in the other two-color tomographic image group that is not selected. The area is set as the selection area in the image,
    In the region resetting step, one two-color tomographic image included in one two-color tomographic image group selected from the X-direction two-color tomographic image group, the Y-direction two-color tomographic image group, and the Z-direction two-color tomographic image group In this case, a region excluding a part of the preset region that is set as the selection region is reset as the selection region, and the region corresponding to the reset selection region is selected as the selection region for the other two-color tomographic images. A method for acquiring a medical three-dimensional image, characterized by being reset.
  9.  複数の医療用断層画像を、CT値を基準として設定された閾値を境界として二色画像化した二色断層画像とする二値化工程と、
     前記二値化工程において得られた二色断層画像のうちの一つにおいて領域設定された選択領域に対応する領域を他の二色断層画像において選択領域として領域設定する領域設定工程と、
     領域設定工程において領域設定された各二色断層画像から選ばれる一つの二色断層画像において、領域設定工程において選択領域として領域設定されている既設定の領域から一部を除外した領域を選択領域として再設定し、再設定された選択領域に対応する領域を他の二色断層画像において選択領域として再設定する領域再設定工程と、
     前記領域設定工程及び領域再設定工程を経て得られた二色断層画像を組み合わせて三次元画像を形成する三次元化工程とを有し、
     領域設定工程において領域設定された領域の二色断層画像を組み合わせることにより三次元画像を形成するサーフェス形成工程を有することを特徴とする医療用三次元画像の取得方法。
    A binarization step for converting a plurality of medical tomographic images into a two-color tomographic image obtained by forming a two-color image with a threshold set based on a CT value as a boundary;
    A region setting step of setting a region corresponding to a selection region set in one of the two-color tomographic images obtained in the binarization step as a selection region in another two-color tomographic image;
    In one two-color tomographic image selected from each two-color tomographic image set in the region setting step, a region obtained by excluding a part from the preset region set as a selection region in the region setting step An area resetting step in which the area corresponding to the reset selection area is reset as a selection area in another two-color tomographic image;
    A three-dimensional process for forming a three-dimensional image by combining the two-color tomographic images obtained through the region setting step and the region resetting step,
    A method for acquiring a medical three-dimensional image, comprising: a surface forming step of forming a three-dimensional image by combining two-color tomographic images of regions set in the region setting step.
PCT/JP2010/061908 2009-07-15 2010-07-14 Prosthetic bone model, method for forming a prosthetic bone, and simulation system for medical use WO2011007806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522837A JP5410525B2 (en) 2009-07-15 2010-07-14 Artificial bone model for compensation, method for forming artificial bone for compensation, and medical simulation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009167020 2009-07-15
JP2009-167019 2009-07-15
JP2009167019 2009-07-15
JP2009-167020 2009-07-15

Publications (1)

Publication Number Publication Date
WO2011007806A1 true WO2011007806A1 (en) 2011-01-20

Family

ID=43449414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061908 WO2011007806A1 (en) 2009-07-15 2010-07-14 Prosthetic bone model, method for forming a prosthetic bone, and simulation system for medical use

Country Status (2)

Country Link
JP (1) JP5410525B2 (en)
WO (1) WO2011007806A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198546A (en) * 2012-03-23 2013-10-03 Toyota Keeramu:Kk Medical support system, medical support method and medical support program
JP2014529314A (en) * 2011-07-20 2014-11-06 スミス アンド ネフュー インコーポレーテッド System and method for optimizing the fit of an implant to an anatomical structure
CN104510474A (en) * 2014-12-22 2015-04-15 北京大学第三医院 Three-dimensional measurement method and system for patella osteotomy
JP2017526471A (en) * 2014-09-11 2017-09-14 リマコルポラテ・エッセ・ピ・アLimacorporate S.P.A. Guiding device for femoral resection
US10467752B2 (en) 2013-06-11 2019-11-05 Atsushi Tanji Bone cutting support system, information processing apparatus, image processing method, and image processing program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522995A (en) * 1999-08-23 2003-07-29 ビル,ジェイムズ,エイ. セイント Manufacturing system and manufacturing method
US6711432B1 (en) * 2000-10-23 2004-03-23 Carnegie Mellon University Computer-aided orthopedic surgery
US20060094951A1 (en) * 2003-06-11 2006-05-04 David Dean Computer-aided-design of skeletal implants
JP2006519636A (en) * 2003-02-12 2006-08-31 剛 村瀬 Method, member, system and program for bone correction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701174B1 (en) * 2000-04-07 2004-03-02 Carnegie Mellon University Computer-aided bone distraction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522995A (en) * 1999-08-23 2003-07-29 ビル,ジェイムズ,エイ. セイント Manufacturing system and manufacturing method
US6711432B1 (en) * 2000-10-23 2004-03-23 Carnegie Mellon University Computer-aided orthopedic surgery
JP2006519636A (en) * 2003-02-12 2006-08-31 剛 村瀬 Method, member, system and program for bone correction
US20060094951A1 (en) * 2003-06-11 2006-05-04 David Dean Computer-aided-design of skeletal implants

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529314A (en) * 2011-07-20 2014-11-06 スミス アンド ネフュー インコーポレーテッド System and method for optimizing the fit of an implant to an anatomical structure
US10102309B2 (en) 2011-07-20 2018-10-16 Smith & Nephew, Inc. Systems and methods for optimizing fit of an implant to anatomy
US10922448B2 (en) 2011-07-20 2021-02-16 Smith & Nephew, Inc. Systems and methods for optimizing fit of an implant to anatomy
US11868681B2 (en) 2011-07-20 2024-01-09 Smith & Nephew, Inc. Systems and methods for optimizing fit of an implant to anatomy
JP2013198546A (en) * 2012-03-23 2013-10-03 Toyota Keeramu:Kk Medical support system, medical support method and medical support program
US10467752B2 (en) 2013-06-11 2019-11-05 Atsushi Tanji Bone cutting support system, information processing apparatus, image processing method, and image processing program
US11302005B2 (en) 2013-06-11 2022-04-12 Atsushi Tanji Bone cutting support system, information processing apparatus, image processing method, and image processing program
JP2017526471A (en) * 2014-09-11 2017-09-14 リマコルポラテ・エッセ・ピ・アLimacorporate S.P.A. Guiding device for femoral resection
CN104510474A (en) * 2014-12-22 2015-04-15 北京大学第三医院 Three-dimensional measurement method and system for patella osteotomy

Also Published As

Publication number Publication date
JP5410525B2 (en) 2014-02-05
JPWO2011007806A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US11963889B2 (en) System for designing and fabricating a customised device
JP5684702B2 (en) A method for image segmentation in generating a computer model of a joint undergoing arthroplasty
KR20190049733A (en) System and method for computer aided orthognathic surgery planning
CN211484515U (en) Mobile linked implant diagnostic system
US20040102866A1 (en) Modelling for surgery
CN107951538B (en) Manufacturing method of 3D printing fibula reconstruction jaw bone surgical tool combining bone resection and titanium plate positioning
JP5410525B2 (en) Artificial bone model for compensation, method for forming artificial bone for compensation, and medical simulation system
US20030109784A1 (en) Method of producing profiled sheets as prosthesis
TWI633874B (en) Image generation system for implant diagnosis and generation method thereof
JP2010017421A (en) Method for creating living body data model and its device and data structure of living body data model, and data storing device of living body data model and method for dispersing load of three-dimensional data model and its device
US20180318011A1 (en) Automated generation of bone treatment means
JP2001092950A (en) Prosthetic artificial bone design system and production of prosthetic artificial bone using the same
US20170325909A1 (en) Method for facilitating a tooth repositioning dental treatment
TW201814657A (en) Image generation system for implant diagnosis and generation method thereof
US20100094308A1 (en) Artificial joint replacement assisting device, artificial joint replacement assisting method using same, and assisting system
JP5487264B2 (en) Biological data model creation method and apparatus
RU2551304C2 (en) Method of modelling individual implants for osteosynthesis of fractures of long tubular bones
WO2008129360A1 (en) A method for the manufacturing of a reproduction of an encapsulated three-dimensional physical object and objects obtained by the method
JP2001087258A (en) Filling artificial bone designing system and manufacturing method of filling artificial bone using the system
JP2001087291A (en) Filling artificial bone designing system and manufacture of filling artificial bone using the system
TWI809660B (en) Optimal midline setting method for surgical planning and navigation system
KR102456703B1 (en) Method for creating nerve tube line and dental implant surgery planning device therefor
KR20220087874A (en) Method and apparatus for superimposition of medical images
Gabrovski et al. Computer Aided Design of Customized Implants Based on CT-Scan Data and Virtual Prototypes
EP3476361A1 (en) A method for facilitating a tooth repositioning dental treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799864

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011522837

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799864

Country of ref document: EP

Kind code of ref document: A1