WO2010096553A1 - Mechanical axis alignment using mri imaging - Google Patents

Mechanical axis alignment using mri imaging Download PDF

Info

Publication number
WO2010096553A1
WO2010096553A1 PCT/US2010/024579 US2010024579W WO2010096553A1 WO 2010096553 A1 WO2010096553 A1 WO 2010096553A1 US 2010024579 W US2010024579 W US 2010024579W WO 2010096553 A1 WO2010096553 A1 WO 2010096553A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
sets
patient
relative
acquiring
Prior art date
Application number
PCT/US2010/024579
Other languages
French (fr)
Inventor
Nathan E. Belcher
Original Assignee
Biomet Manufacturing Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomet Manufacturing Corp. filed Critical Biomet Manufacturing Corp.
Priority to EP10705063.5A priority Critical patent/EP2398381B1/en
Publication of WO2010096553A1 publication Critical patent/WO2010096553A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints

Definitions

  • the present disclosure relates to medical imaging such as magnetic resonance imaging (MRI), and, more particularly, relates to a method for imaging a limb of a patient to determine characteristics of a bone or joint.
  • MRI magnetic resonance imaging
  • Anatomical imaging is often performed prior to surgical procedures.
  • MRI, CT or x-ray is often performed, for instance, before implantation of a prosthetic joint, such as a knee joint.
  • the MRI, CT or x-ray image illustrates the joint, allowing doctors to study the joint prior to surgery.
  • cut guides and/or anatomically matching instrumentation can be generated according to the images.
  • the components of the prosthetic device are more likely to be properly aligned, thereby improving comfort and performance for the patient, decreasing wear of the prosthetic components, and increasing longevity of the components.
  • the reconstructed knee it can be preferable for the reconstructed knee to fulfill a number of anatomical relationships.
  • the mechanical axis of the leg which extends from the center of the femoral head (i.e., the acetabulum head of the femur) to the center of the ankle, should pass through the middle of the knee joint.
  • the axis of the femur should be inclined at a predetermined "valgus" angle (e.g., 7 degrees) with the mechanical axis of the leg.
  • the axis of the tibia should be collinear with the mechanical axis of the leg.
  • the mechanical axis of the leg, the axis of the femur, and the axis of the tibia should lie in a common plane when the leg is straightened.
  • MRI, CT, x-ray or fluoroscopic imaging helps in analyzing the knee joint and to plan for surgery to repair the knee joint in order that the prosthesis achieves these and other relationships. More specifically, the MRI, CT, x-ray or fluoroscopic image can help in designing cut guides and planning other surgical procedures such that forces in the leg are transferred through the prosthetic components along the mechanical axis of the leg, from the center of the femoral head, through the middle of the knee joint, and to the ankle.
  • an MRI, CT, x-ray or fluoroscopic image is often taken of multiple areas of the leg. More specifically, an MRI, CT or fluoroscopic image is taken of the knee joint where the prosthetic components will be implanted. Separate images may be generated for areas spaced away from the knee joint as well. For instance, images are generated for the hip and/or the ankle in order to obtain a more complete analysis of the leg and to locate the centers of the hip joint and ankle joint.
  • this type of imaging can take a long time and can be a complex process.
  • the patient is positioned in an MRI system, an MRI imaging coil is placed over the target area of the body, and the MRI image is taken of that target area. Then, the body is moved to align the next target area of the body with the MRI imaging coil, and another MRI image is taken.
  • the knee, hip and ankle are imaged separately.
  • Several MRIs may be necessary, and if the patient moves, the images may be degraded.
  • a method of imaging a body part of a patient can include, locating a first anatomical reference area of the body part.
  • a second anatomical reference area of the body part can then be located.
  • a third anatomical reference area of the body part can be located, the second anatomical reference area being generally between the first and third anatomical reference areas.
  • a first, second and third set of image data from the first, second and third anatomical reference areas can be acquired.
  • the first, second and third sets of image data can then be compiled to produce a legend of the body part.
  • the map can have positional information of the first, second and third anatomical reference areas relative to each other.
  • Fourth, fifth and sixth sets of image data of the first, second and third body parts, respectively can be acquired.
  • the fourth, fifth and sixth sets of image data can have increased image information relative to the first, second and third sets of image data, respectively.
  • the locations of the fourth, fifth and sixth set of image data relative to the first, second and third sets of image data can be correlated using the map.
  • a characteristic of the body part can then be determined based on the correlation.
  • acquiring the first, second and third sets of image data can include acquiring only ten or less images for each of the first, second and third sets of image data.
  • a localizer scan is performed on each of the first, second and third anatomical reference areas prior to acquiring the first, second and third sets of image data.
  • the fifth set of image data is a bulk image scan of the second anatomical reference area comprising a greater quantity of image scans as compared to corresponding image scans acquired with the second set of image data.
  • the fourth and sixth set of image scans each comprise a greater quantity of image scans as compared to the image scans acquired with the first and third sets of image data, respectively.
  • the first, second and third anatomical reference areas can include an ankle, knee and hip respectively.
  • the patient can be secured to a table, such that the patient's first, second and third anatomical reference areas are immobilized relative to the table during the acquiring of the first, second and third sets of image data.
  • the patient can move relative to the table between the acquiring of the third and fourth sets of image data.
  • the patient is free to move relative to the table between the acquiring of the fourth and fifth sets of image data and the patient is free to move relative to the table between the acquiring of the fifth and sixth sets of image data.
  • FIG. 1 is a side perspective view of a patient and an exemplary
  • Fig. 2 is a lateral view of the patient's ankle joint, knee joint and hip joint;
  • FIG. 3 is a front perspective view of an exemplary work station used during acquisition of image data by the MRI system of Fig. 1 ;
  • Fig. 4 is a perspective pictorial representation of image data sets taken at the ankle joint, knee joint and hip joint of the patient of Fig. 1 ;
  • Fig. 5 is a perspective pictorial representation of detailed scans taken of the ankle joint, knee joint and hip joint of the patient of Fig. 1 ;
  • Fig. 6 is a pictorial representation of the detailed data sets taken in Fig. 5 and being correlated with the legend generated from the scans taken in Figure 4; and
  • Fig. 7 is an exemplary method of imaging a body part according to the present teachings.
  • the method according to the present teachings can be used for indicating features of a body part, such as a knee joint of a leg.
  • a body part such as a knee joint of a leg.
  • the present method will be described in the context of a leg 10 of a patient 12. It is appreciated that the following teachings are applicable to other body parts or joint axis, such as, but not limited to, an elbow joint of an arm.
  • a medical technician identifies a first anatomical reference area 14, a second anatomical reference area 16 and a third anatomical reference area 18.
  • the first, second and third anatomical reference areas 14, 16 and 18, correspond to an ankle joint 20, a knee joint 22 and a hip joint 24, respectively.
  • an initial localizer scan is performed for each of the first, second and third anatomical reference areas 14, 16 and 18, respectively.
  • a localizer scan can be used to determine structural information about the scanned reference area. Spatial locations of the respective ankle joint 20, knee joint 22 and hip joint 24 relative to each other can be determined, such that subsequent scans (as will be described) will be taken at the correct location.
  • a center point 30, 32 and 34 of each of the ankle joint 20, knee joint 22 and hip joint 24 can be determined prior to performing the localizer scans.
  • center point 32 of the knee joint 22 will coincide with the joint line of the knee, and thus by locating the center point 32 of the knee joint 22, the joint line of the knee can be located.
  • the center points 30 and 32 can also be marked on the patient's skin for future reference.
  • localizer scans can be performed at the first, second and third anatomical reference areas 14, 16 and 18, such as at the center points 30, 32 and 34 of the respective ankle joint 20, knee joint 22 and hip joint 24.
  • the localizer scans can be performed using an MRI system 40 (Fig. 1 ).
  • the ankle joint 20 can be positioned relative to the imaging coil 42.
  • An MRI emitter 44 can then be energized to acquire a localizer image or images of the ankle joint 20.
  • the knee joint 22 can be positioned relative to the imaging coil 42, the MRI emitter 44 energized, and a localizer image or images of the knee joint 22 can be acquired.
  • the hip joint 24 can be positioned relative to the imaging coil 42, the MRI emitter 44 energized, and a localizer image or images of the hip joint 24 can be acquired.
  • the MRI system 40 can comprise a single unit and the table 48 can be configured to move horizontally through the imaging coil 42, such that sequential images of the ankle joint 20, knee joint 22 and hip joint 24 can be acquired from one MRI system 40.
  • leg of the patient 12 should remain still relative to the table 48 during the entire sequence of conducting localizer scans of the ankle joint 20, knee joint 22 and hip joint 24.
  • the respective localizer scans can be sent to a work station 50.
  • the work station 50 can facilitate the display of localizer scan information 52 onto a display device 54.
  • a user interface 56 can be provided that allows a physician or medical technician to provide inputs to control the MRI system 40.
  • the localizer scan information 52 can be used to determine the spatial relationship between the respective ankle joint 20, knee joint 22 and hip joint 24. This information can be used to determine, for example, how far horizontally the table 48 must translate between the following scans that are performed of the ankle joint 20, knee joint 22 and hip joint 24.
  • the ankle joint 20 is positioned relative to the imaging coil 42, and the MRI emitter 44 energized while the patient 12 remains immobile relative to the table 48 to produce a first image data set 60 (Fig. 4) of the ankle joint 20 (i.e., at the first anatomical reference area 14).
  • the first image data set 60 can be a series of planar images or slices 62A, 62B each taken through an identified plane of the ankle joint 20.
  • the first image data set 60 can be a series of planar images taken through non- parallel planes (i.e., any combination of images through the axial, sagittal or coronal planes) of the ankle joint 20.
  • the first series of slices 62A, 62B can be a minimal amount of slices, such as less than ten slices for example. While only two slices are shown in Fig. 4 associated with the ankle joint 20, it is appreciated that additional or fewer slices may be acquired.
  • the knee joint 22 of the patient 12 is aligned with the imaging coil 42 and MRI emitter 44 while the patient 12 remains immobile relative to the table 48.
  • the MRI emitter 44 is energized to produce a second image data set 64 of the knee joint 22 (i.e., the second anatomical reference area 16).
  • the second image data set 64 can be a series of planar images or slices 66A, 66B, 66C and 66D.
  • the slices 66A and 66B can be taken through the tibia and the slices 66C and 66D can be taken through the femur.
  • the image slices 66A, 66B, 66C and 66D can comprise any combination of image slices taken through the axial, sagittal or coronal planes.
  • the second image data set 64 can be a series of planar images taken through non-parallel planes of the knee joint 22.
  • the second series of slices 66A, 66B, 66C and 66D can be a minimal amount of slices, such as less than ten slices for example. While only four slices are shown in Fig. 4, it is appreciated that additional or fewer slices may be acquired.
  • the hip joint 24 of the patient 12 is within the field of view of the imaging coil 42 and the MRI emitter 44. Again, the patient 12 is immobilized relative to the table 44.
  • the MRI emitter 44 is then energized to produce a third image data set 70 of the hip joint 24 (i.e., the third anatomical reference area 18).
  • the third image data set 70 can be a series of planar images or slices 72A and 72B, each taken through the axial plane of the hip joint 22 or any combination of the axial, sagittal or coronal planes. In this way, the third image data set can be a series of planar images taken through non-parallel planes of the hip joint 24.
  • the third series of slices 72A and 72B can be a minimal amount of slices, such as less than ten slices for example. While only two slices are shown in Fig. 4 at the hip joint 24, it is appreciated that additional or fewer slices may be acquired. Again, it will be understood that the patient 12 is immobilized through the entire sequence of acquisition of all the first, second and third image data sets 60, 64 and 70. Because only a minimal amount of image slices are taken to acquire the first, second and third image data sets 60, 64 and 70, the patient 12 is only required to remain still for a relatively short period of time. Once the scans have been completed, the patient 12 is now free to move from the table 48 if desired.
  • a medical technician can use the work station 50 to determine the location of the respective ankle joint 20, knee joint 22 and hip joint 24 relative to each other.
  • This information i.e., the first, second and third data sets 60, 64 and 70
  • the patient 12 returns to the table 48 for acquisition of a detail scan for one of the ankle joint 20, knee joint 22 or hip joint 24.
  • the imaging coil 42 of the MRI system 40 is aligned with the ankle joint 20 and a detail scan 74 (Fig. 5) is performed to create a fourth image data set 76 of the ankle joint 20.
  • the ankle detail scan 74 can comprise acquisition of a series of image slices (74A, 74B... 74X).
  • the fourth image data set 76 has more image slices and therefore increased image information relative to the first image data set 60.
  • the patient 12 is able to move relative to the table 48 if desired. Once it is time for the next image data acquisition, the patient 12 is immobilized relative to the table 48.
  • the knee joint 22 is aligned with the imaging coil 42 and MRI emitter 44.
  • the MRI emitter 44 is then energized to produce a high resolution knee detail scan 78 and a fifth image data set 80 of the knee joint 24.
  • the high resolution knee scan 78 can comprise acquisition of a series of image slices 78A, 78B... 78X.
  • a send/receive coil can be used to acquire the detail scan of the knee joint 22 (and/or the ankle joint 20, and/or the hip joint 24).
  • the patient 12 is again free to move relative to the table 48.
  • the patient 12 is immobilized relative to the table 48.
  • the hip joint 24 of the patient 12 is then aligned with the imaging coil 42 of the MRI emitter 44 and a hip detail scan 82 is performed to create a sixth image data set 84.
  • the hip detail scan 82 can comprise acquisition of a series of image slices 82A, 82B... 82X. Once acquisition of the hip detail scan 82 has been completed, the image scanning is completed and the patient 12 is then free to move away from the table 48.
  • a medical technician will be able to correlate the locations of the fourth, fifth and sixth set of image data 76, 80 and 84 of the respective ankle joint 20, knee joint 22, and hip joint 24 relative to the first image data set 60, second image data set 64 and third image data set 70, respectively.
  • the first, second and third image data sets 60, 64 and 70 are acquired when the ankle joint 20, knee joint 22 and hip joint 24 are all fixed relative to each other, the position of each of the ankle joint 20, knee joint 22 and hip joint 24 relative to each other is known.
  • the fourth, fifth and sixth image data sets 76, 80 and 84 can be related to the first, second and third image data sets 60, 64 and 70 independently.
  • the fourth image data set 76 can be compared to the first image data set 60 and since the second and third image data sets 60 and 64 were acquired while the knee joint 22 and hip joint 24 were fixed relative to the ankle joint 20, the positional relationship of the fourth image data set 76 relative to the second and third image data sets 64 and 70 is also known.
  • one exemplary method of imaging a body part of a patient 12 is shown and generally identified at reference numeral 100.
  • the legend or map 73 is created using the first, second and third image data sets 60, 64 and 70 to create a map of the patient's leg, including relative locations of the ankle joint 20, knee joint 22 and hip joint 24.
  • the patient 12 is allowed to move relative to the table 48 as much or as little as they need in block 104.
  • the ankle detail scan 74 is conducted. It is appreciated that the patient 12 is immobilized relative to the table 48 during acquisition of the ankle detail scan 74 in block 106.
  • the patient 12 again is free to move relative to the table 48 in block 108.
  • the knee detail scan 78 is performed in block 1 10. It is appreciated that the patient 12 remain immobilized relative to the table 48 during acquisition of the knee detail scan 78.
  • the patient 12, if desired, is again free to move in block 1 12.
  • a hip detail scan 82 is performed in block 1 14. Again, it is appreciated that the patient 12 remain immobilized relative to the table 48 during acquisition of the hip detail scan 82.
  • the respective ankle, knee and hip detail scans 74, 78 and 82 are compared to the legend 73 to determine the orientation of the ankle, knee and hip detail scans 74, 78 and 82 with respect to the legend 73.
  • the ankle, knee and hip detail scans 74, 78 and 82 are then compiled in block 118.
  • a characteristic of the limb is determined based on the compilation. Again, the characteristic can be any combination of joint or bone characteristics such as a mechanical axis of the leg, the axis of the femur, the axis of the tibia and others.

Abstract

A method of imaging a body part of a patient can include acquiring a first, second and third sets of image data from a first, second and third anatomical reference areas. The first, second and third sets of image data can then be compiled to produce a legend of the body part. The legend can have positional information of the first, second and third anatomical reference areas. A fourth, fifth and sixth sets of image data of the first, second and anatomical reference areas can be acquired. The fourth, fifth and sixth sets of image data can have increased image information relative to the first, second and third sets of image data, respectively. The locations of the fourth, fifth and sixth sets of image data relative to the first, second and third sets of image data can be correlated using the legend to determine a characteristic of the body part.

Description

MECHANICAL AXIS ALIGNMENT USING MRI IMAGING
FIELD
[0001] The present disclosure relates to medical imaging such as magnetic resonance imaging (MRI), and, more particularly, relates to a method for imaging a limb of a patient to determine characteristics of a bone or joint.
BACKGROUND [0002] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
[0003] Anatomical imaging is often performed prior to surgical procedures. MRI, CT or x-ray is often performed, for instance, before implantation of a prosthetic joint, such as a knee joint. The MRI, CT or x-ray image illustrates the joint, allowing doctors to study the joint prior to surgery. Furthermore, cut guides and/or anatomically matching instrumentation can be generated according to the images. As such, the components of the prosthetic device are more likely to be properly aligned, thereby improving comfort and performance for the patient, decreasing wear of the prosthetic components, and increasing longevity of the components. [0004] In the case of a knee joint, it can be preferable for the reconstructed knee to fulfill a number of anatomical relationships. For instance, the mechanical axis of the leg, which extends from the center of the femoral head (i.e., the acetabulum head of the femur) to the center of the ankle, should pass through the middle of the knee joint. The axis of the femur should be inclined at a predetermined "valgus" angle (e.g., 7 degrees) with the mechanical axis of the leg. Furthermore, the axis of the tibia should be collinear with the mechanical axis of the leg. In addition, the mechanical axis of the leg, the axis of the femur, and the axis of the tibia should lie in a common plane when the leg is straightened. MRI, CT, x-ray or fluoroscopic imaging helps in analyzing the knee joint and to plan for surgery to repair the knee joint in order that the prosthesis achieves these and other relationships. More specifically, the MRI, CT, x-ray or fluoroscopic image can help in designing cut guides and planning other surgical procedures such that forces in the leg are transferred through the prosthetic components along the mechanical axis of the leg, from the center of the femoral head, through the middle of the knee joint, and to the ankle.
[0005] In the case of a knee joint prosthesis, an MRI, CT, x-ray or fluoroscopic image is often taken of multiple areas of the leg. More specifically, an MRI, CT or fluoroscopic image is taken of the knee joint where the prosthetic components will be implanted. Separate images may be generated for areas spaced away from the knee joint as well. For instance, images are generated for the hip and/or the ankle in order to obtain a more complete analysis of the leg and to locate the centers of the hip joint and ankle joint.
[0006] However, this type of imaging can take a long time and can be a complex process. Specifically, in the case of MRI, the patient is positioned in an MRI system, an MRI imaging coil is placed over the target area of the body, and the MRI image is taken of that target area. Then, the body is moved to align the next target area of the body with the MRI imaging coil, and another MRI image is taken. Thus, in the above examples, the knee, hip and ankle are imaged separately. Several MRIs may be necessary, and if the patient moves, the images may be degraded.
SUMMARY
[0007] A method of imaging a body part of a patient can include, locating a first anatomical reference area of the body part. A second anatomical reference area of the body part can then be located. A third anatomical reference area of the body part can be located, the second anatomical reference area being generally between the first and third anatomical reference areas. A first, second and third set of image data from the first, second and third anatomical reference areas can be acquired. The first, second and third sets of image data can then be compiled to produce a legend of the body part. The map can have positional information of the first, second and third anatomical reference areas relative to each other. Fourth, fifth and sixth sets of image data of the first, second and third body parts, respectively can be acquired. The fourth, fifth and sixth sets of image data can have increased image information relative to the first, second and third sets of image data, respectively. The locations of the fourth, fifth and sixth set of image data relative to the first, second and third sets of image data can be correlated using the map. A characteristic of the body part can then be determined based on the correlation. [0008] According to other features, acquiring the first, second and third sets of image data can include acquiring only ten or less images for each of the first, second and third sets of image data. In other features, a localizer scan is performed on each of the first, second and third anatomical reference areas prior to acquiring the first, second and third sets of image data. According to other features, the fifth set of image data is a bulk image scan of the second anatomical reference area comprising a greater quantity of image scans as compared to corresponding image scans acquired with the second set of image data. The fourth and sixth set of image scans each comprise a greater quantity of image scans as compared to the image scans acquired with the first and third sets of image data, respectively. The first, second and third anatomical reference areas can include an ankle, knee and hip respectively.
[0009] According to other features, the patient can be secured to a table, such that the patient's first, second and third anatomical reference areas are immobilized relative to the table during the acquiring of the first, second and third sets of image data. According to the present teachings, the patient can move relative to the table between the acquiring of the third and fourth sets of image data. Similarly, the patient is free to move relative to the table between the acquiring of the fourth and fifth sets of image data and the patient is free to move relative to the table between the acquiring of the fifth and sixth sets of image data.
[0010] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure. For example, the described method is not limited to solely the knee joint. DRAWINGS
[0011] The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. [0012] Fig. 1 is a side perspective view of a patient and an exemplary
MRI system;
[0013] Fig. 2 is a lateral view of the patient's ankle joint, knee joint and hip joint;
[0014] Fig. 3 is a front perspective view of an exemplary work station used during acquisition of image data by the MRI system of Fig. 1 ;
[0015] Fig. 4 is a perspective pictorial representation of image data sets taken at the ankle joint, knee joint and hip joint of the patient of Fig. 1 ;
[0016] Fig. 5 is a perspective pictorial representation of detailed scans taken of the ankle joint, knee joint and hip joint of the patient of Fig. 1 ; [0017] Fig. 6 is a pictorial representation of the detailed data sets taken in Fig. 5 and being correlated with the legend generated from the scans taken in Figure 4; and
[0018] Fig. 7 is an exemplary method of imaging a body part according to the present teachings.
DETAILED DESCRIPTION
[0019] The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. It will be appreciated that while specific reference is made to first, second, third, fourth, fifth and sixth scans, these terms do not necessarily refer to a predetermined sequence or number of events and that these scans may be performed in various sequential orders.
Furthermore, while the following discussion is directed to MRI imaging, other imaging such as, but not limited to, CT or X-ray imaging may be used.
[0020] As will be discussed, the method according to the present teachings can be used for indicating features of a body part, such as a knee joint of a leg. With initial reference to Figs. 1 and 2, the present method will be described in the context of a leg 10 of a patient 12. It is appreciated that the following teachings are applicable to other body parts or joint axis, such as, but not limited to, an elbow joint of an arm. At the outset, a medical technician identifies a first anatomical reference area 14, a second anatomical reference area 16 and a third anatomical reference area 18. In the present example, the first, second and third anatomical reference areas 14, 16 and 18, correspond to an ankle joint 20, a knee joint 22 and a hip joint 24, respectively.
[0021] Referring now to Figs. 1 -4, a method of imaging the knee joint 22 according to the present teachings will be described. In some embodiments of the present method, an initial localizer scan is performed for each of the first, second and third anatomical reference areas 14, 16 and 18, respectively. As is known in the art, a localizer scan can be used to determine structural information about the scanned reference area. Spatial locations of the respective ankle joint 20, knee joint 22 and hip joint 24 relative to each other can be determined, such that subsequent scans (as will be described) will be taken at the correct location. In one example, prior to performing the localizer scans, a center point 30, 32 and 34 of each of the ankle joint 20, knee joint 22 and hip joint 24 can be determined. It will be understood that the center point 32 of the knee joint 22 will coincide with the joint line of the knee, and thus by locating the center point 32 of the knee joint 22, the joint line of the knee can be located. The center points 30 and 32 can also be marked on the patient's skin for future reference.
[0022] Next, localizer scans can be performed at the first, second and third anatomical reference areas 14, 16 and 18, such as at the center points 30, 32 and 34 of the respective ankle joint 20, knee joint 22 and hip joint 24. The localizer scans can be performed using an MRI system 40 (Fig. 1 ). In one example, the ankle joint 20 can be positioned relative to the imaging coil 42. An MRI emitter 44 can then be energized to acquire a localizer image or images of the ankle joint 20. Next, the knee joint 22 can be positioned relative to the imaging coil 42, the MRI emitter 44 energized, and a localizer image or images of the knee joint 22 can be acquired. Next, the hip joint 24 can be positioned relative to the imaging coil 42, the MRI emitter 44 energized, and a localizer image or images of the hip joint 24 can be acquired. It will be understood that while the patient 12 has been illustrated in Fig. 1 resting on a table 48 and the MRI system 40 is shown as three distinct illustrations, it is appreciated that the MRI system 40 can comprise a single unit and the table 48 can be configured to move horizontally through the imaging coil 42, such that sequential images of the ankle joint 20, knee joint 22 and hip joint 24 can be acquired from one MRI system 40.
[0023] It will also be understood that the leg of the patient 12 should remain still relative to the table 48 during the entire sequence of conducting localizer scans of the ankle joint 20, knee joint 22 and hip joint 24.
[0024] As illustrated in Fig. 3, the respective localizer scans can be sent to a work station 50. The work station 50 can facilitate the display of localizer scan information 52 onto a display device 54. In some examples, a user interface 56 can be provided that allows a physician or medical technician to provide inputs to control the MRI system 40. Once the localizer scans have been performed, the localizer scan information 52 can be used to determine the spatial relationship between the respective ankle joint 20, knee joint 22 and hip joint 24. This information can be used to determine, for example, how far horizontally the table 48 must translate between the following scans that are performed of the ankle joint 20, knee joint 22 and hip joint 24.
[0025] With specific reference now to Figs. 1 , 2 and 4, creation of a legend or map of the leg 10 according to the present teachings will be described. The ankle joint 20 is positioned relative to the imaging coil 42, and the MRI emitter 44 energized while the patient 12 remains immobile relative to the table 48 to produce a first image data set 60 (Fig. 4) of the ankle joint 20 (i.e., at the first anatomical reference area 14). According to the present teachings, the first image data set 60 can be a series of planar images or slices 62A, 62B each taken through an identified plane of the ankle joint 20. While the image slices 62A and 62B are shown in the axial plane, image slices through other planes such as the sagittal plane or coronal plane may be acquired. In other examples, the first image data set 60 can be a series of planar images taken through non- parallel planes (i.e., any combination of images through the axial, sagittal or coronal planes) of the ankle joint 20. According to the present teachings, the first series of slices 62A, 62B can be a minimal amount of slices, such as less than ten slices for example. While only two slices are shown in Fig. 4 associated with the ankle joint 20, it is appreciated that additional or fewer slices may be acquired.
[0026] Next, the knee joint 22 of the patient 12 is aligned with the imaging coil 42 and MRI emitter 44 while the patient 12 remains immobile relative to the table 48. The MRI emitter 44 is energized to produce a second image data set 64 of the knee joint 22 (i.e., the second anatomical reference area 16). According to the present teachings, the second image data set 64 can be a series of planar images or slices 66A, 66B, 66C and 66D. In one example, the slices 66A and 66B can be taken through the tibia and the slices 66C and 66D can be taken through the femur. Again, as described above, the image slices 66A, 66B, 66C and 66D can comprise any combination of image slices taken through the axial, sagittal or coronal planes. In this way, the second image data set 64 can be a series of planar images taken through non-parallel planes of the knee joint 22. According to the present teachings, the second series of slices 66A, 66B, 66C and 66D can be a minimal amount of slices, such as less than ten slices for example. While only four slices are shown in Fig. 4, it is appreciated that additional or fewer slices may be acquired.
[0027] Next, the hip joint 24 of the patient 12 is within the field of view of the imaging coil 42 and the MRI emitter 44. Again, the patient 12 is immobilized relative to the table 44. The MRI emitter 44 is then energized to produce a third image data set 70 of the hip joint 24 (i.e., the third anatomical reference area 18). According to the present teachings, the third image data set 70 can be a series of planar images or slices 72A and 72B, each taken through the axial plane of the hip joint 22 or any combination of the axial, sagittal or coronal planes. In this way, the third image data set can be a series of planar images taken through non-parallel planes of the hip joint 24. According to the present teachings, the third series of slices 72A and 72B can be a minimal amount of slices, such as less than ten slices for example. While only two slices are shown in Fig. 4 at the hip joint 24, it is appreciated that additional or fewer slices may be acquired. Again, it will be understood that the patient 12 is immobilized through the entire sequence of acquisition of all the first, second and third image data sets 60, 64 and 70. Because only a minimal amount of image slices are taken to acquire the first, second and third image data sets 60, 64 and 70, the patient 12 is only required to remain still for a relatively short period of time. Once the scans have been completed, the patient 12 is now free to move from the table 48 if desired.
[0028] With the respective first, second and third image data sets 60, 64 and 70, a medical technician can use the work station 50 to determine the location of the respective ankle joint 20, knee joint 22 and hip joint 24 relative to each other. This information (i.e., the first, second and third data sets 60, 64 and 70) can be utilized collectively to create a legend or map 73 for a medical technician to correlate more detailed image scans that can be acquired subsequently as will be described. [0029] Once the legend 73 has been created, the patient 12 returns to the table 48 for acquisition of a detail scan for one of the ankle joint 20, knee joint 22 or hip joint 24. In one example, to acquire a detail scan, the imaging coil 42 of the MRI system 40 is aligned with the ankle joint 20 and a detail scan 74 (Fig. 5) is performed to create a fourth image data set 76 of the ankle joint 20. The ankle detail scan 74 can comprise acquisition of a series of image slices (74A, 74B... 74X). As can be appreciated, the fourth image data set 76 has more image slices and therefore increased image information relative to the first image data set 60. Once the fourth image data set 76 has been acquired, the patient 12 is able to move relative to the table 48 if desired. Once it is time for the next image data acquisition, the patient 12 is immobilized relative to the table 48. Next, the knee joint 22 is aligned with the imaging coil 42 and MRI emitter 44. The MRI emitter 44 is then energized to produce a high resolution knee detail scan 78 and a fifth image data set 80 of the knee joint 24. The high resolution knee scan 78 can comprise acquisition of a series of image slices 78A, 78B... 78X. According to one example of the present teachings, instead of using the imaging coil 42 and MRI emitter 44, a send/receive coil can be used to acquire the detail scan of the knee joint 22 (and/or the ankle joint 20, and/or the hip joint 24).
[0030] Once the high resolution knee detail scan 78 has been acquired, the patient 12 is again free to move relative to the table 48. Once it is time to acquire the next image data set, the patient 12 is immobilized relative to the table 48. The hip joint 24 of the patient 12 is then aligned with the imaging coil 42 of the MRI emitter 44 and a hip detail scan 82 is performed to create a sixth image data set 84. The hip detail scan 82 can comprise acquisition of a series of image slices 82A, 82B... 82X. Once acquisition of the hip detail scan 82 has been completed, the image scanning is completed and the patient 12 is then free to move away from the table 48.
[0031] Turning now to Fig. 6, using the work station 50, a medical technician will be able to correlate the locations of the fourth, fifth and sixth set of image data 76, 80 and 84 of the respective ankle joint 20, knee joint 22, and hip joint 24 relative to the first image data set 60, second image data set 64 and third image data set 70, respectively. Explained further, since the first, second and third image data sets 60, 64 and 70 are acquired when the ankle joint 20, knee joint 22 and hip joint 24 are all fixed relative to each other, the position of each of the ankle joint 20, knee joint 22 and hip joint 24 relative to each other is known. Because of this relationship between the first, second and third image data sets 60, 64 and 70, the fourth, fifth and sixth image data sets 76, 80 and 84 can be related to the first, second and third image data sets 60, 64 and 70 independently. For example, the fourth image data set 76 can be compared to the first image data set 60 and since the second and third image data sets 60 and 64 were acquired while the knee joint 22 and hip joint 24 were fixed relative to the ankle joint 20, the positional relationship of the fourth image data set 76 relative to the second and third image data sets 64 and 70 is also known.
[0032] Thus, by first creating the legend or map 73 of the patient's leg 10, subsequent scans (the fourth, fifth and sixth image data sets 76, 80 and 84) can be overlaid (Fig. 6) and placed in the proper location/orientation. This can allow movement of the patient 12 relative to the table 48 between scans (i.e., the fourth and fifth scans 74 and 78 and the fifth and sixth scans 78 and 82) and while only requiring the patient 12 to remain still for shorter separate periods of time (the time required during the entire sequence of acquisition of the first, second and third image data sets 60, 64 and 70 and the individual time needed for acquisition of the fourth, fifth and sixth image data sets 76, 80 and 84). [0033] With reference now to Fig. 7, one exemplary method of imaging a body part of a patient 12 is shown and generally identified at reference numeral 100. In block 102, the legend or map 73 is created using the first, second and third image data sets 60, 64 and 70 to create a map of the patient's leg, including relative locations of the ankle joint 20, knee joint 22 and hip joint 24. Once the legend 73 has been created in block 102, the patient 12 is allowed to move relative to the table 48 as much or as little as they need in block 104. In block 106, the ankle detail scan 74 is conducted. It is appreciated that the patient 12 is immobilized relative to the table 48 during acquisition of the ankle detail scan 74 in block 106. Once the ankle detail scan 74 has concluded, if desired, the patient 12 again is free to move relative to the table 48 in block 108. Next, the knee detail scan 78 is performed in block 1 10. It is appreciated that the patient 12 remain immobilized relative to the table 48 during acquisition of the knee detail scan 78. Once the knee detail scan 78 has concluded in block 1 10, the patient 12, if desired, is again free to move in block 1 12. Next, a hip detail scan 82 is performed in block 1 14. Again, it is appreciated that the patient 12 remain immobilized relative to the table 48 during acquisition of the hip detail scan 82. In block 1 16, the respective ankle, knee and hip detail scans 74, 78 and 82 are compared to the legend 73 to determine the orientation of the ankle, knee and hip detail scans 74, 78 and 82 with respect to the legend 73. The ankle, knee and hip detail scans 74, 78 and 82 are then compiled in block 118. In block 120, a characteristic of the limb is determined based on the compilation. Again, the characteristic can be any combination of joint or bone characteristics such as a mechanical axis of the leg, the axis of the femur, the axis of the tibia and others. [0034] Moreover, the foregoing discussion discloses and describes merely exemplary embodiments of the present disclosure. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations may be made therein without departing from the spirit and scope of the disclosure as defined in the following claims. For instance, the sequence of the blocks of the method described herein can be changed without departing from the scope of the present disclosure.

Claims

CLAIMS What is claimed is:
1. A method of imaging a body part of a patient, the method comprising: locating a first, a second and a third anatomical reference area of the body part, the second anatomical reference area disposed generally between the first and third anatomical reference areas; acquiring a first, a second and a third set of image data from the first, second and third anatomical reference areas, respectively; compiling the first, second and third sets of image datas to produce a legend having known positional information of the first, second and third anatomical reference areas relative to each other; acquiring a fourth, a fifth and a sixth set of image data of the first, second and third body parts, respectively, the fourth, the fifth and the sixth sets of image data having increased image information relative to the first, second and third sets of image data, respectively; correlating locations of the fourth, fifth and sixth sets of image data relative to the first, second and third sets of image data using the map; and determining a characteristic of the body part based on the correlating.
2. The method of claim 2 wherein acquiring the first, second and third set of image data comprises: acquiring only ten or less images for each of the first, second and third sets of image data.
3. The method of claim 2 wherein acquiring the first, second and third set of image data comprises: acquiring only five or less images for each of the first, second and third sets of image data.
4. The method of claim 2 wherein two of the only ten or less images from at least one of the first, second and third sets of image data are planar images on intersecting planes.
5. The method of claim 2, further comprising: performing a localizer scan on each of the first, second and third anatomical reference areas prior to acquiring the first, second and third sets of image data.
6. The method of claim 2 wherein the fifth set of image data is a bulk image scan of the second anatomical reference area comprising a greater quantity of image scans compared to corresponding image scans acquired with the second set of image data.
7. The method of claim 6 wherein the fourth and sixth set of image scans each comprise a greater quantity of image scans compared to the image scans acquired with the first and third sets of image data, respectively.
8. The method of claim 7 wherein the first, second and third anatomical reference areas are an ankle, knee and hip, respectively.
9. The method of claim 8 wherein the characteristic of the body part is a mechanical axis of a tibia and femur, respectively, relative to the knee.
10. The method of claim 1 , further comprising: ensuring the body part of the patient remains still during the acquiring of the first, second and third sets of image data.
1 1. The method of claim 10, further comprising: moving the patient relative to the table between the acquiring of the third and fourth set of image data.
12. The method of claim 10, further comprising at least one of: moving the patient relative to the table between the acquiring of the fourth and fifth set of image data; and moving the patient relative to the table between the acquiring of the fifth and sixth set of image data.
13. The method of claim 1 wherein acquiring the fifth set of image data comprises using a send/receive imaging coil.
14. A method of imaging a body part of a patient, the method comprising: acquiring a first, a second and a third set of image data from an ankle, knee and hip, respectively; compiling the first, second and third sets of image datas to produce a legend of the body part, the map having positional information of the ankle, knee and hip relative to each other, wherein each of the first, second and third sets of image data consists of less than five planar images for each of the first, second and third sets of image data; acquiring a fourth, a fifth and a sixth set of image data of the first, second and third body parts, respectively, the fourth, fifth and sixth sets of image data each having more image information relative to the first, second and third sets of image data, respectively; correlating locations of the fourth, fifth and sixth set of image data relative to the first, second and third sets of image data using the legend; and determining a characteristic of the body part based on the correlating.
15. The method of claim 14, further comprising: performing a localizer scan on each of the ankle, knee and hip prior to acquiring the first, second and third sets of image data.
16. The method of claim 14 wherein the fifth set of image data is a bulk image scan of the knee acquired with a send/receive imaging coil.
17. The method of claim 16 wherein the characteristic of the body part is a mechanical axis of a tibia and femur, respectively, relative to the knee.
18. The method of claim 14, further comprising at least one of: moving the patient relative to the table between the acquiring of the third and fourth set of image data; moving the patient relative to the table between the acquiring of the fourth and fifth set of image data; and moving the patient relative to the table between the acquiring of the fifth and sixth set of image data.
19. A method of imaging a body part of a patient, the method comprising: locating an ankle, knee and hip of the body part; securing the patient to a table and restraining the patient to the table, such that the patient's ankle, knee and hip are all immobilized relative to the table; acquiring a first, second and third sets of image data from the ankle, knee and hip, respectively; compiling the first, second and third sets of image data to produce a legend of the body part, the legend having known positional information of the first, second and third anatomical reference areas relative to each other; acquiring a fourth image data set of the ankle while the patient is immobilized relative to the table in a first position; allowing the patient to move relative to the table to a second position if desired; acquiring a fifth image data set of the knee while the patient is immobilized in a third position; allowing the patient to move to a fourth position relative to the table if desired; acquiring a sixth image data set of the hip while the patient is immobilized in a fifth position; moving the patient to a sixth position relative to the table; correlating locations of the fourth, fifth and sixth sets of image data relative to the first, second and third sets of image data using the map; and determining a mechanical axis of a tibia and femur, respectively, relative to the knee based on the correlating.
20. The method of claim 19 wherein the first and second positions are distinct, the third and fourth positions are distinct, and the fifth and sixth positions are distinct.
PCT/US2010/024579 2009-02-20 2010-02-18 Mechanical axis alignment using mri imaging WO2010096553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10705063.5A EP2398381B1 (en) 2009-02-20 2010-02-18 Mechanical axis alignment using mri imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/389,930 US8170641B2 (en) 2009-02-20 2009-02-20 Method of imaging an extremity of a patient
US12/389,930 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010096553A1 true WO2010096553A1 (en) 2010-08-26

Family

ID=42077886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/024579 WO2010096553A1 (en) 2009-02-20 2010-02-18 Mechanical axis alignment using mri imaging

Country Status (3)

Country Link
US (1) US8170641B2 (en)
EP (1) EP2398381B1 (en)
WO (1) WO2010096553A1 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398646B2 (en) 2006-06-09 2013-03-19 Biomet Manufacturing Corp. Patient-specific knee alignment guide and associated method
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US8828087B2 (en) 2006-02-27 2014-09-09 Biomet Manufacturing, Llc Patient-specific high tibia osteotomy
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US8900244B2 (en) 2006-02-27 2014-12-02 Biomet Manufacturing, Llc Patient-specific acetabular guide and method
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9005297B2 (en) 2006-02-27 2015-04-14 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2007291A2 (en) 2006-02-15 2008-12-31 Otismed Corp. Arthroplasty jigs and related methods
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
CN102670275B (en) 2007-09-30 2016-01-20 德普伊产品公司 The patient-specific orthopaedic surgical instrumentation of customization
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
US8706285B2 (en) * 2007-12-11 2014-04-22 Universiti Malaya Process to design and fabricate a custom-fit implant
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8777875B2 (en) 2008-07-23 2014-07-15 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US8311306B2 (en) 2008-04-30 2012-11-13 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8715291B2 (en) 2007-12-18 2014-05-06 Otismed Corporation Arthroplasty system and related methods
US8221430B2 (en) 2007-12-18 2012-07-17 Otismed Corporation System and method for manufacturing arthroplasty jigs
US8737700B2 (en) 2007-12-18 2014-05-27 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8160345B2 (en) 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8734455B2 (en) 2008-02-29 2014-05-27 Otismed Corporation Hip resurfacing surgical guide tool
US8549888B2 (en) 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
US8617175B2 (en) 2008-12-16 2013-12-31 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US20100114315A1 (en) * 2008-10-31 2010-05-06 Manderson Easton L Intramedullary locked compression screw for stabilization and union of complex ankle and subtalar deformities
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
EP3451298A3 (en) 2011-12-14 2019-06-05 Stryker European Holdings I, LLC Technique for generating a bone plate design
US9402637B2 (en) 2012-10-11 2016-08-02 Howmedica Osteonics Corporation Customized arthroplasty cutting guides and surgical methods using the same
EP3003197B1 (en) * 2013-05-30 2022-09-28 EOS Imaging Method for designing a patient specific orthopaedic device
US9248002B2 (en) 2013-09-26 2016-02-02 Howmedica Osteonics Corp. Method for aligning an acetabular cup
US10136818B2 (en) * 2014-04-28 2018-11-27 Tel Hashomer Medical Research, Infrastructure And Services Ltd. High resolution intraoperative MRI images
US10321961B2 (en) 2015-11-05 2019-06-18 Howmedica Osteonics Corp. Patient specific implantation method for range of motion hip impingement
ES2877761T3 (en) 2016-03-02 2021-11-17 Nuvasive Inc Systems and Procedures for Spinal Correction Surgical Planning
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007840A1 (en) * 1987-04-15 1988-10-20 Cemax, Inc. Preoperative planning of bone cuts/joint replacement
US5871018A (en) * 1995-12-26 1999-02-16 Delp; Scott L. Computer-assisted surgical method
US20070015995A1 (en) * 1998-09-14 2007-01-18 Philipp Lang Joint and cartilage diagnosis, assessment and modeling

Family Cites Families (520)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1480285A (en) 1917-12-31 1924-01-08 Robert A Moore Portable sanding machine
US2181746A (en) 1939-02-04 1939-11-28 John R Siebrandt Combination bone clamp and adjustable drill guide
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2618913A (en) 1950-02-23 1952-11-25 George H Plancon Abrading machine shoe construction
US2910978A (en) 1955-03-28 1959-11-03 Marshall R Urist Hip socket means
US3840904A (en) 1973-04-30 1974-10-15 R Tronzo Acetabular cup prosthesis
GB1563334A (en) * 1977-05-30 1980-03-26 Charnley Surgical Inventions Acetabular proshesis
DE2834295B2 (en) * 1978-08-04 1980-05-29 Orthoplant Orthopaedische Implantate Gmbh & Co Kg, 2800 Bremen Device for producing a lateral surface that tapers conically from the frontal end section of a bone
AU7986682A (en) 1981-02-12 1982-08-19 New York University Apparatus for stereotactic surgery
US4524766A (en) 1982-01-07 1985-06-25 Petersen Thomas D Surgical knee alignment method and system
US4475549A (en) 1982-01-18 1984-10-09 Indong Oh Acetabular cup positioner and method
US4619658A (en) 1982-02-24 1986-10-28 Pappas Michael J Spherical kinematic joint
DE3213434C1 (en) 1982-04-10 1983-10-27 Günther Dr.med. 7400 Tübingen Aldinger Process for the production of individually designed endoprostheses or implants
US4436684A (en) * 1982-06-03 1984-03-13 Contour Med Partners, Ltd. Method of forming implantable prostheses for reconstructive surgery
DE3371487D1 (en) 1982-12-28 1987-06-19 Diffracto Ltd Apparatus and method for robot calibration
JPS59157715A (en) 1983-02-25 1984-09-07 Hitachi Ltd Direct teaching method of robot
US4506393A (en) * 1983-03-29 1985-03-26 Murphy Stephen B Method of prosthesis design
US4663720A (en) * 1984-02-21 1987-05-05 Francois Duret Method of and apparatus for making a prosthesis, especially a dental prosthesis
US4621630A (en) 1983-04-15 1986-11-11 Pfizer Hospital Products Group, Inc. Guide for femoral neck osteotomy
JPS60231208A (en) 1984-05-01 1985-11-16 Nippon Telegr & Teleph Corp <Ntt> Control method of automatic machine
US4778474A (en) 1984-11-16 1988-10-18 Homsy Charles A Acetabular prosthesis
DE3447365A1 (en) 1984-12-24 1986-07-03 Bernd Dr. 6000 Frankfurt Lammel Method and device for avoiding blurring in medical imaging techniques, caused by the patient's movement during image recording
US4632111A (en) 1985-03-21 1986-12-30 Minnesota Mining And Manufacturing Company Acetabular cup positioning apparatus
US4633862A (en) * 1985-05-30 1987-01-06 Petersen Thomas D Patellar resection sawguide
EP0243410A1 (en) 1985-10-28 1987-11-04 ROGER, Greogory James Method and apparatus for removing prosthetic cement
US4721104A (en) * 1985-12-02 1988-01-26 Dow Corning Wright Corporation Femoral surface shaping apparatus for posterior-stabilized knee implants
US4703751A (en) 1986-03-27 1987-11-03 Pohl Kenneth P Method and apparatus for resecting a distal femoral surface
DE3707518A1 (en) 1986-05-16 1987-11-26 Copf Franz PROSTHESE PART AND METHOD FOR THE PRODUCTION THEREOF
US4936862A (en) 1986-05-30 1990-06-26 Walker Peter S Method of designing and manufacturing a human joint prosthesis
US4822365A (en) * 1986-05-30 1989-04-18 Walker Peter S Method of design of human joint prosthesis
AT387711B (en) * 1986-07-15 1989-03-10 David Thomas BONE FIXATION PLATE
GB2197790B (en) 1986-11-17 1991-01-16 Jonathan Paul Beacon Apparatus for use in accurately inserting prostheses
US4821213A (en) * 1986-12-19 1989-04-11 General Electric Co. System for the simultaneous display of two or more internal surfaces within a solid object
EP0322766B1 (en) 1987-12-24 1994-09-07 Nec Corporation Carrier recovery circuit for offset QPSK demodulators
US4976737A (en) 1988-01-19 1990-12-11 Research And Education Institute, Inc. Bone reconstruction
EP0326768A3 (en) 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4893619A (en) * 1988-02-04 1990-01-16 Intermedics Orthopedics, Inc. Humeral osteotomy guide
US5007936A (en) * 1988-02-18 1991-04-16 Cemax, Inc. Surgical method for hip joint replacement
US4979949A (en) 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US4896663A (en) * 1988-10-14 1990-01-30 Boehringer Mannheim Corporation Self centering femoral drill jig
US4959066A (en) 1989-02-24 1990-09-25 Zimmer, Inc. Femoral osteotomy guide assembly
US4985037A (en) * 1989-05-22 1991-01-15 Petersen Thomas D Universal modular prosthesis stem extension
US4927422A (en) * 1989-08-31 1990-05-22 Boehringer Mannheim Corporation Elbow arthroplasty instrumentation and surgical procedure
US5041117A (en) 1989-08-31 1991-08-20 Boehringer Mannheim Corporation Elbow arthroplasty instrumentation and surgical procedure
US5053039A (en) 1989-09-14 1991-10-01 Intermedics Orthopedics Upper tibial osteotomy system
JPH0661691B2 (en) 1989-09-29 1994-08-17 オリンパス光学工業株式会社 Optical element polishing method and apparatus
EP0425714A1 (en) 1989-10-28 1991-05-08 Metalpraecis Berchem + Schaberg Gesellschaft Für Metallformgebung Mbh Process for manufacturing an implantable joint prosthesis
US5030221A (en) 1989-12-13 1991-07-09 Buechel Frederick F Prosthesis holding system
US5129908A (en) 1990-01-23 1992-07-14 Petersen Thomas D Method and instruments for resection of the patella
US5098383A (en) * 1990-02-08 1992-03-24 Artifax Ltd. Device for orienting appliances, prostheses, and instrumentation in medical procedures and methods of making same
US5133760A (en) 1990-02-12 1992-07-28 Alvarado Orthopedic Research, Inc. Universal modular prosthesis stem extension
FR2659226B1 (en) 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5108425A (en) 1990-05-30 1992-04-28 Hwang Ned H C Low turbulence heart valve
US5300077A (en) * 1990-07-16 1994-04-05 Arthrotek Method and instruments for ACL reconstruction
US6254604B1 (en) 1990-07-16 2001-07-03 Arthrotek, Inc. Tibial guide
US5274565A (en) 1990-10-03 1993-12-28 Board Of Regents, The University Of Texas System Process for making custom joint replacements
SE468198B (en) 1990-12-12 1992-11-23 Nobelpharma Ab PROCEDURE AND DEVICE FOR MANUFACTURE OF INDIVIDUALLY DESIGNED THREE-DIMENSIONAL BODIES USEFUL AS TENDERS, PROTESTES, ETC
US5206023A (en) 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
US5098436A (en) * 1991-03-07 1992-03-24 Dow Corning Wright Corporation Modular guide for shaping of femur to accommodate intercondylar stabilizing housing and patellar track of implant
US5438263A (en) * 1991-03-15 1995-08-01 Fonar Corporation Method of selectable resolution magnetic resonance imaging
US5899907A (en) 1991-06-27 1999-05-04 Johnson; Lanny L. Instrumentation for proximal femoral compaction broaching
US5677107A (en) 1991-10-02 1997-10-14 Spectra Group Limited, Inc. Production of three-dimensional objects
EP0535984B1 (en) * 1991-10-02 1998-08-19 Spectra Group Limited Inc Production of three-dimensional objects
US5344423A (en) 1992-02-06 1994-09-06 Zimmer, Inc. Apparatus and method for milling bone
GB9202561D0 (en) 1992-02-07 1992-03-25 Howmedica Orthopaedic instrument
US5507833A (en) 1992-02-10 1996-04-16 Kim-Med, Inc. Hip replacement system and method for implanting the same
US5520695A (en) 1992-02-14 1996-05-28 Johnson & Johnson Professional, Inc. Instruments for use in knee replacement surgery
US5342366A (en) 1992-02-19 1994-08-30 Biomet, Inc. Surgical instruments for hip revision
US5176684A (en) * 1992-02-20 1993-01-05 Dow Corning Wright Modular shaping and trial reduction guide for implantation of posterior-stabilized femoral prosthesis and method of using same
US5258032A (en) 1992-04-03 1993-11-02 Bertin Kim C Knee prosthesis provisional apparatus and resection guide and method of use in knee replacement surgery
US5261915A (en) 1992-04-16 1993-11-16 Scott M. Durlacher Femur bone rasp with adjustable handle
DE4213599A1 (en) 1992-04-24 1993-10-28 Klaus Draenert Prosthetic component and process for its manufacture
US5365996A (en) 1992-06-10 1994-11-22 Amei Technologies Inc. Method and apparatus for making customized fixation devices
DE4219939C2 (en) 1992-06-18 1995-10-19 Klaus Dipl Ing Radermacher Device for aligning, positioning and guiding machining tools, machining or measuring devices for machining a bony structure and method for producing this device
IT1256891B (en) 1992-07-24 1995-12-27 FEMORAL STEM FOR TOTAL HIP PROSTHESIS
US5370692A (en) 1992-08-14 1994-12-06 Guild Associates, Inc. Rapid, customized bone prosthesis
GB9322327D0 (en) 1993-10-29 1993-12-15 Howmedica Method and apparatus for implanting an acetabular cup
EP0667753B1 (en) 1992-11-09 2000-01-19 Ormco Corporation Custom orthodontic appliance forming method and apparatus
US5360446A (en) 1992-12-18 1994-11-01 Zimmer, Inc. Interactive prosthesis design system for implantable prosthesis
US5320625A (en) 1993-01-21 1994-06-14 Bertin Kim C Apparatus and method for implanting a prosthetic acetabular cup and then testing the stability of the implant
US5370699A (en) 1993-01-21 1994-12-06 Orthomet, Inc. Modular knee joint prosthesis
AU6103194A (en) 1993-02-10 1994-08-29 Southwest Research Institute Automated design and manufacture of artificial limbs
US5405395A (en) 1993-05-03 1995-04-11 Wright Medical Technology, Inc. Modular femoral implant
CA2126627C (en) 1993-07-06 2005-01-25 Kim C. Bertin Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment
US5474559A (en) 1993-07-06 1995-12-12 Zimmer, Inc. Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment
GB9322383D0 (en) * 1993-10-29 1993-12-15 Howmedica Method and apparatus for implanting an acetabular cup
US5658294A (en) 1993-12-02 1997-08-19 Sulzer Orthopedics Inc. Instrument for holding an acetabular cup
DE4341367C1 (en) 1993-12-04 1995-06-14 Harald Dr Med Dr Med Eufinger Process for the production of endoprostheses
NL9302200A (en) 1993-12-16 1995-07-17 Endocare Ag Elliptical acetabulum component for a hip prosthesis.
US5885298A (en) * 1994-02-23 1999-03-23 Biomet, Inc. Patellar clamp and reamer with adjustable stop
RU2125835C1 (en) 1994-03-02 1999-02-10 Владимир Беньевич Низковолос Stereotaxic system
BE1008128A3 (en) 1994-03-10 1996-01-23 Materialise Nv Method for supporting an object manufactured by stereo lithography or any rapid prototype manufacturing and method for manufacturing the taking used steunkonstruktie.
BE1008372A3 (en) 1994-04-19 1996-04-02 Materialise Nv METHOD FOR MANUFACTURING A perfected MEDICAL MODEL BASED ON DIGITAL IMAGE INFORMATION OF A BODY.
US5723331A (en) 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
DE4421153A1 (en) 1994-06-10 1995-12-14 Artos Med Produkte Prodn. of hip joint endoprosthesis insertable in bone cavity of patient
US5496324A (en) * 1994-06-20 1996-03-05 Zimmer, Inc. Proximal body milling apparatus
FR2721195B1 (en) 1994-06-21 1996-09-13 Jacques Afriat Device for placing a plate-blade for performing a re-orientation osteotomy in a bone area.
RU2083179C1 (en) 1994-07-08 1997-07-10 Михаил Петрович Лисицын Stereotaxic apparatus for locating and making bony canals during plastic operations on cruciform ligaments of knee joint
FR2722392A1 (en) 1994-07-12 1996-01-19 Biomicron APPARATUS FOR RESECTING KNEE CONDYLES FOR PLACING A PROSTHESIS AND METHOD FOR PLACING SUCH AN APPARATUS
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US6497727B1 (en) 2000-01-30 2002-12-24 Diamicron, Inc. Component for use in prosthetic hip, the component having a polycrystalline diamond articulation surface and a plurality of substrate layers
US6402787B1 (en) * 2000-01-30 2002-06-11 Bill J. Pope Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
DE4434539C2 (en) 1994-09-27 1998-06-04 Luis Dr Med Schuster Process for the production of an endoprosthesis as a joint replacement for knee joints
US5578037A (en) 1994-11-14 1996-11-26 Johnson & Johnson Professional, Inc. Surgical guide for femoral resection
US5560096B1 (en) 1995-01-23 1998-03-10 Smith & Nephew Richards Inc Method of manufacturing femoral knee implant
US5607431A (en) * 1995-02-09 1997-03-04 Howmedica Inc. Prosthetic hip implantation method and apparatus
US5879398A (en) * 1995-02-14 1999-03-09 Zimmer, Inc. Acetabular cup
US5702460A (en) 1995-02-15 1997-12-30 Smith & Nephew, Inc. Revision femoral trial prosthesis
IT1273952B (en) * 1995-02-22 1997-07-11 Francesco Caracciolo TOTAL ANATOMICAL PROSTHESIS OF THE HIP
US5620448A (en) * 1995-03-24 1997-04-15 Arthrex, Inc. Bone plate system for opening wedge proximal tibial osteotomy
SE9501828D0 (en) 1995-05-17 1995-05-17 Astra Ab Cutting guide
RU2113182C1 (en) 1995-05-22 1998-06-20 Лисицын Михаил Петрович Method for carrying out static stabilization of knee joint
JPH11505735A (en) 1995-05-26 1999-05-25 マチス メディツィナルテクニック アクチエンゲゼルシャフト Leg adjustment osteotomy instrument
US5634927A (en) 1995-07-06 1997-06-03 Zimmer, Inc. Sizing plate and drill guide assembly for orthopaedic knee instrumentation
US5716361A (en) * 1995-11-02 1998-02-10 Masini; Michael A. Bone cutting guides for use in the implantation of prosthetic joint components
US5704941A (en) 1995-11-03 1998-01-06 Osteonics Corp. Tibial preparation apparatus and method
ES2160256T3 (en) 1995-11-08 2001-11-01 Stratec Medical Ag ARTIFICIAL COTILOIDAL CAVITY.
DE29522352U1 (en) 1995-12-12 2002-07-18 Busch Dieter & Co Prueftech Position measuring probe for the mutual alignment of bodies
NZ331107A (en) 1996-02-13 2000-04-28 Gen Hospital Corp Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US5681354A (en) 1996-02-20 1997-10-28 Board Of Regents, University Of Colorado Asymmetrical femoral component for knee prosthesis
US5769092A (en) 1996-02-22 1998-06-23 Integrated Surgical Systems, Inc. Computer-aided system for revision total hip replacement surgery
HU219444B (en) 1996-02-26 2001-04-28 Gábor Krakovits Sliding surface for knee-joint prothesis
US5725376A (en) * 1996-02-27 1998-03-10 Poirier; Michel Methods for manufacturing a dental implant drill guide and a dental implant superstructure
US5824078A (en) 1996-03-11 1998-10-20 The Board Of Trustees Of The University Of Arkansas Composite allograft, press, and methods
US5722978A (en) 1996-03-13 1998-03-03 Jenkins, Jr.; Joseph Robert Osteotomy system
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US5779710A (en) * 1996-06-21 1998-07-14 Matsen, Iii; Frederick A. Joint replacement method and apparatus
US6126690A (en) 1996-07-03 2000-10-03 The Trustees Of Columbia University In The City Of New York Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis
US6066176A (en) 1996-07-11 2000-05-23 Oshida; Yoshiki Orthopedic implant system
US5762125A (en) 1996-09-30 1998-06-09 Johnson & Johnson Professional, Inc. Custom bioimplantable article
US6343987B2 (en) * 1996-11-07 2002-02-05 Kabushiki Kaisha Sega Enterprises Image processing device, image processing method and recording medium
US20070233269A1 (en) 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
DE69722961T2 (en) 1997-01-08 2004-05-13 Clynch Technologies, Inc., Calgary METHOD FOR PRODUCING INDIVIDUALLY ADAPTED MEDICAL DEVICES
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
WO1998032384A1 (en) 1997-01-28 1998-07-30 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Method and apparatus for femoral resection
US5824111A (en) 1997-01-31 1998-10-20 Prosthetic Design, Inc. Method for fabricating a prosthetic limb socket
US5976149A (en) 1997-02-11 1999-11-02 Medidea, Llc Method and apparatus for aligning a prosthetic element
US6205411B1 (en) 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
US5880976A (en) * 1997-02-21 1999-03-09 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
DE19709960A1 (en) 1997-03-11 1998-09-24 Aesculap Ag & Co Kg Method and device for preoperatively determining the position data of endoprosthesis parts
DE19755536A1 (en) 1997-12-13 1999-06-17 Ceramtec Ag Acetabular cup
US5792143A (en) 1997-04-21 1998-08-11 Biomet, Inc Neck length measuring device and method of using same for implanting a hip prosthesis
US6120544A (en) 1997-05-16 2000-09-19 Eska Implants Gmbh & Co. Femur endoprosthesis for articial hip joint
DE19731442A1 (en) 1997-07-22 1999-02-11 Plus Endoprothetik Ag Cup for a joint endoprosthesis
GB9717433D0 (en) 1997-08-19 1997-10-22 Univ Nottingham Biodegradable composites
FR2768916B1 (en) 1997-10-01 2000-02-25 Transysteme Sa TIBIAL OSTEOTOMY STAPLE
US5924987A (en) * 1997-10-06 1999-07-20 Meaney; James F. M. Method and apparatus for magnetic resonance arteriography using contrast agents
US5876456A (en) 1997-11-14 1999-03-02 Sulzer Orthopedics Inc. Implantable prosthesis having interference-locked hole plugs
US6161080A (en) 1997-11-17 2000-12-12 The Trustees Of Columbia University In The City Of New York Three dimensional multibody modeling of anatomical joints
GB9724280D0 (en) 1997-11-17 1998-01-14 Benoist Girard & Cie Device to pressurise cement when implanting an acetabular cup
US5967777A (en) 1997-11-24 1999-10-19 Klein; Michael Surgical template assembly and method for drilling and installing dental implants
ATE190212T1 (en) 1998-02-11 2000-03-15 Plus Endoprothetik Ag FEMORAL HIP JOINT PROSTHESIS
RU2138223C1 (en) 1998-02-19 1999-09-27 Иова Александр Сергеевич Device for stereotaxic guiding of surgical tool
US6258095B1 (en) 1998-03-28 2001-07-10 Stryker Technologies Corporation Methods and tools for femoral intermedullary revision surgery
SE9801168L (en) 1998-04-01 1999-07-12 Stig Lindequist Method and apparatus for determining the position of fixation means in hip fracture
ATE272365T1 (en) 1998-05-28 2004-08-15 Orthosoft Inc INTERACTIVE AND COMPUTER-ASSISTED SURGICAL SYSTEM
JP2002519093A (en) 1998-06-29 2002-07-02 プルス、エンドプロテーティク、アクチエンゲゼルシャフト Apparatus and method for inserting an artificial knee
US6327491B1 (en) 1998-07-06 2001-12-04 Neutar, Llc Customized surgical fixture
ATE439806T1 (en) 1998-09-14 2009-09-15 Univ Leland Stanford Junior DETERMINING THE CONDITION OF A JOINT AND PREVENTING DAMAGE
US7184814B2 (en) 1998-09-14 2007-02-27 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US6033415A (en) * 1998-09-14 2000-03-07 Integrated Surgical Systems System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system
US7239908B1 (en) 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
DE19843797A1 (en) 1998-09-24 2000-03-30 Gmt Medizinische Technik Gmbh Socket unit for an artificial hip joint comprises a raised section which partially surrounds the spherical joint head accommodated in the socket
US6156069A (en) 1999-02-04 2000-12-05 Amstutz; Harlan C. Precision hip joint replacement method
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US20070233272A1 (en) 1999-02-23 2007-10-04 Boyce Todd M Shaped load-bearing osteoimplant and methods of making same
US6696073B2 (en) * 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same
US6622567B1 (en) 1999-03-01 2003-09-23 Microstrain, Inc. Micropower peak strain detection system for remote interrogation
US6629999B1 (en) 1999-03-08 2003-10-07 Louis A. Serafin, Jr. Modular joint
US6203844B1 (en) 1999-04-01 2001-03-20 Joon B. Park Precoated polymeric prosthesis and process for making same
US6206927B1 (en) * 1999-04-02 2001-03-27 Barry M. Fell Surgically implantable knee prothesis
US6923831B2 (en) 1999-05-10 2005-08-02 Barry M. Fell Surgically implantable knee prosthesis having attachment apertures
DE19922279A1 (en) 1999-05-11 2000-11-16 Friedrich Schiller Uni Jena Bu Procedure for generating patient-specific implants
AU5025000A (en) 1999-05-20 2000-12-12 Boston University Polymer re-inforced anatomically accurate bioactive prostheses
US6391251B1 (en) 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US20050027361A1 (en) 1999-10-22 2005-02-03 Reiley Mark A. Facet arthroplasty devices and methods
US7013191B2 (en) 1999-11-30 2006-03-14 Orametrix, Inc. Interactive orthodontic care system based on intra-oral scanning of teeth
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
US6354011B1 (en) 2000-02-01 2002-03-12 Pruftechnik Dieter Busch Ag Orientation measuring device
US6591581B2 (en) 2000-03-08 2003-07-15 Arthrex, Inc. Method for preparing and inserting round, size specific osteochondral cores in the knee
US7682398B2 (en) * 2000-03-14 2010-03-23 Smith & Nephew, Inc. Variable geometry rim surface acetabular shell liner
AU2001243663B2 (en) 2000-03-14 2004-05-27 Smith & Nephew, Inc. Variable geometry rim surface acetabular shell liner
US6712856B1 (en) 2000-03-17 2004-03-30 Kinamed, Inc. Custom replacement device for resurfacing a femur and method of making the same
AU2001249935A1 (en) * 2000-04-05 2001-10-23 Therics, Inc. System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system
US6772026B2 (en) 2000-04-05 2004-08-03 Therics, Inc. System and method for rapidly customizing design, manufacture and/or selection of biomedical devices
US20040068187A1 (en) * 2000-04-07 2004-04-08 Krause Norman M. Computer-aided orthopedic surgery
US6701174B1 (en) * 2000-04-07 2004-03-02 Carnegie Mellon University Computer-aided bone distraction
US6711432B1 (en) * 2000-10-23 2004-03-23 Carnegie Mellon University Computer-aided orthopedic surgery
US6395005B1 (en) 2000-04-14 2002-05-28 Howmedica Osteonics Corp. Acetabular alignment apparatus and method
US6676706B1 (en) 2000-04-26 2004-01-13 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
EP2314257B9 (en) 2000-05-01 2013-02-27 ArthroSurface, Inc. System for joint resurface repair
US6379299B1 (en) * 2000-05-04 2002-04-30 German Borodulin Vaginal speculum with adjustable blades
SG92703A1 (en) 2000-05-10 2002-11-19 Nanyang Polytechnic Method of producing profiled sheets as prosthesis
DE10026172A1 (en) 2000-05-26 2001-11-29 Roche Diagnostics Gmbh Body fluid withdrawal system
US6258097B1 (en) 2000-06-02 2001-07-10 Bristol-Myers Squibb Co Head center instrument and method of using the same
DE10029585C2 (en) * 2000-06-15 2002-04-18 Siemens Ag Method for operating a magnetic resonance device with detection of changes in position
US20020082741A1 (en) 2000-07-27 2002-06-27 Jyoti Mazumder Fabrication of biomedical implants using direct metal deposition
DE10036987A1 (en) * 2000-07-29 2002-02-07 Klaus Draenert Modular pan replacement
US20020128872A1 (en) 2000-08-07 2002-09-12 Giammattei Charles P. Medical data recordation system
TW508860B (en) 2000-08-30 2002-11-01 Mitsui & Amp Co Ltd Paste-like thin electrode for battery, its manufacturing method, and battery
ATE426357T1 (en) 2000-09-14 2009-04-15 Univ Leland Stanford Junior ASSESSING THE CONDITION OF A JOINT AND PLANNING TREATMENT
US6799066B2 (en) 2000-09-14 2004-09-28 The Board Of Trustees Of The Leland Stanford Junior University Technique for manipulating medical images
DE60109541T2 (en) 2000-09-18 2006-02-16 Fuji Photo Film Co., Ltd., Minami-Ashigara System for selecting, displaying and storing artificial bone templates and record carriers therefor
WO2002036024A1 (en) 2000-11-03 2002-05-10 Hôpital Sainte-Justine Adjustable surgical templates
FR2816200A1 (en) 2000-11-06 2002-05-10 Praxim DETERMINING THE POSITION OF A KNEE PROSTHESIS
US6510334B1 (en) * 2000-11-14 2003-01-21 Luis Schuster Method of producing an endoprosthesis as a joint substitute for a knee joint
US6786930B2 (en) 2000-12-04 2004-09-07 Spineco, Inc. Molded surgical implant and method
RU2187975C1 (en) 2000-12-05 2002-08-27 ООО НПО "Остеомед" Method for setting knee joint prostheses
US6558391B2 (en) 2000-12-23 2003-05-06 Stryker Technologies Corporation Methods and tools for femoral resection in primary knee surgery
US6725077B1 (en) * 2000-12-29 2004-04-20 Ge Medical Systems Global Technology Company, Llc Apparatus and method for just-in-time localization image acquisition
EP1219239A1 (en) 2000-12-30 2002-07-03 Istituti Ortopedici Rizzoli Method and apparatus for simultaneous anatomical and functional mapping of a joint
US6589281B2 (en) * 2001-01-16 2003-07-08 Edward R. Hyde, Jr. Transosseous core approach and instrumentation for joint replacement and repair
US6427698B1 (en) 2001-01-17 2002-08-06 Taek-Rim Yoon Innominate osteotomy
US6780190B2 (en) 2001-01-23 2004-08-24 Depuy Orthopaedics, Inc. Method and apparatus for resecting a greater tubercle from a humerus of a patient during performance of a shoulder replacement procedure
ES2301618T3 (en) * 2001-01-25 2008-07-01 SMITH &amp; NEPHEW, INC. CONTAINMENT SYSTEM TO RESTRICT A PROTESTIC COMPONENT.
DE60226410D1 (en) 2001-01-29 2008-06-19 Acrobot Co Ltd ROBOT WITH ACTIVE RESTRICTIONS
WO2002061688A2 (en) 2001-01-29 2002-08-08 The Acrobot Company Limited Modelling for surgery
US6514259B2 (en) * 2001-02-02 2003-02-04 Carnegie Mellon University Probe and associated system and method for facilitating planar osteotomy during arthoplasty
US7547307B2 (en) 2001-02-27 2009-06-16 Smith & Nephew, Inc. Computer assisted knee arthroplasty instrumentation, systems, and processes
US20050113846A1 (en) 2001-02-27 2005-05-26 Carson Christopher P. Surgical navigation systems and processes for unicompartmental knee arthroplasty
WO2002067784A2 (en) 2001-02-27 2002-09-06 Smith & Nephew, Inc. Surgical navigation systems and processes for unicompartmental knee
US6750653B1 (en) 2001-04-03 2004-06-15 Usa Instruments, Inc. Knee/foot/ankle combination coil for MRI systems
AUPR457901A0 (en) * 2001-04-26 2001-05-24 Sekel, Ronald Acetabular prosthesis assembly
US7695521B2 (en) * 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
JP2005504563A (en) * 2001-05-25 2005-02-17 イメージング セラピューティクス,インコーポレーテッド Methods and compositions for resurfacing joints
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8951260B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Surgical cutting guide
US6990220B2 (en) * 2001-06-14 2006-01-24 Igo Technologies Inc. Apparatuses and methods for surgical navigation
US6482209B1 (en) 2001-06-14 2002-11-19 Gerard A. Engh Apparatus and method for sculpting the surface of a joint
US6840959B2 (en) 2001-07-05 2005-01-11 Howmedica Ostenics Corp. Pelvic prosthesis plus methods and tools for implantation
FR2826859B1 (en) * 2001-07-09 2003-09-19 Tornier Sa ANCILLARY OF LAYING OF A HUMERAL COMPONENT OF ELBOW PROSTHESIS
US20030011624A1 (en) 2001-07-13 2003-01-16 Randy Ellis Deformable transformations for interventional guidance
US7241315B2 (en) 2001-07-23 2007-07-10 Robert Evans Femoral head resurfacing apparatus and methods
US20040162619A1 (en) 2001-08-27 2004-08-19 Zimmer Technology, Inc. Tibial augments for use with knee joint prostheses, method of implanting the tibial augment, and associated tools
US7892288B2 (en) 2001-08-27 2011-02-22 Zimmer Technology, Inc. Femoral augments for use with knee joint prosthesis
JP2003070816A (en) 2001-08-30 2003-03-11 Pentax Corp Designing method for implant, and implant
US7353153B2 (en) 2001-10-17 2008-04-01 Maria-Grazia Ascenzi Method and system for modeling bone structure
FR2831794B1 (en) * 2001-11-05 2004-02-13 Depuy France METHOD FOR SELECTING KNEE PROSTHESIS ELEMENTS AND DEVICE FOR IMPLEMENTING SAME
AU2002348204A1 (en) 2001-11-28 2003-06-10 Wright Medical Technology, Inc. Instrumentation for minimally invasive unicompartmental knee replacement
US7141053B2 (en) 2001-11-28 2006-11-28 Wright Medical Technology, Inc. Methods of minimally invasive unicompartmental knee replacement
DE10162366A1 (en) 2001-12-18 2003-07-03 Herbert Hatzlhoffer Positioning aid for surgical tools
DE10200690B4 (en) 2002-01-10 2005-03-03 Intraplant Ag Aid for implantation of a hip joint endoprosthesis
US6709462B2 (en) 2002-01-11 2004-03-23 Mayo Foundation For Medical Education And Research Acetabular shell with screw access channels
US7819925B2 (en) 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
NO315217B1 (en) 2002-02-08 2003-07-28 Scandinavian Customized Prosth System and method for preparing and transferring specifications for patient-adapted dentures
US6711431B2 (en) * 2002-02-13 2004-03-23 Kinamed, Inc. Non-imaging, computer assisted navigation system for hip replacement surgery
AU2003217551B2 (en) 2002-02-20 2008-10-16 Smucker, Donald M Knee arthroplasty prosthesis and method
US7172596B2 (en) 2002-03-05 2007-02-06 Coon Thomas M Minimally invasive total knee arthroplasty method and instrumentation
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US6942475B2 (en) 2002-03-13 2005-09-13 Ortho Development Corporation Disposable knee mold
WO2003079940A2 (en) 2002-03-19 2003-10-02 The Board Of Trustees Of The University Of Illinois System and method for prosthetic fitting and balancing in joints
US6945976B2 (en) 2002-03-29 2005-09-20 Depuy Products, Inc. Method and apparatus for resecting bone from an ulna in preparation for prosthetic implantation
US7275218B2 (en) 2002-03-29 2007-09-25 Depuy Products, Inc. Method, apparatus, and program for analyzing a prosthetic device
US6695883B2 (en) 2002-04-11 2004-02-24 Theodore W. Crofford Femoral neck fixation prosthesis
EP1501438B1 (en) 2002-04-30 2011-11-16 Orthosoft Inc. Determining femoral cuts in knee surgery
US7255702B2 (en) 2002-05-09 2007-08-14 Serra Michael A Bone milling instrument
US7048741B2 (en) 2002-05-10 2006-05-23 Swanson Todd V Method and apparatus for minimally invasive knee arthroplasty
US8801720B2 (en) 2002-05-15 2014-08-12 Otismed Corporation Total joint arthroplasty system
AU2003238805A1 (en) 2002-05-30 2003-12-19 Osteotech, Inc. Method and apparatus for machining a surgical implant
US7651501B2 (en) 2004-03-05 2010-01-26 Wright Medical Technology, Inc. Instrument for use in minimally invasive hip surgery
US6749829B2 (en) * 2002-07-23 2004-06-15 Bp Corporation North America Inc. Hydrogen to steam reforming of natural gas to synthesis gas
GB2393625B (en) 2002-09-26 2004-08-18 Internet Tech Ltd Orthopaedic surgery planning
CN1728976A (en) 2002-10-07 2006-02-01 康复米斯公司 Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
EP1555962B1 (en) 2002-10-07 2011-02-09 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
AU2003287190A1 (en) 2002-10-23 2004-05-13 Alastair J. T. Clemow Modular femoral component for a total knee joint replacement for minimally invasive implantation
JP2006505366A (en) 2002-11-07 2006-02-16 コンフォーミス・インコーポレイテッド Method of determining meniscus size and shape and devised treatment
US20040102852A1 (en) 2002-11-22 2004-05-27 Johnson Erin M. Modular knee prosthesis
US6749638B1 (en) 2002-11-22 2004-06-15 Zimmer Technology, Inc. Modular knee prosthesis
US7318827B2 (en) 2002-12-02 2008-01-15 Aesculap Ag & Co. Kg Osteotomy procedure
WO2004051301A2 (en) 2002-12-04 2004-06-17 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
US20040122439A1 (en) 2002-12-20 2004-06-24 Dwyer Kimberly A. Adjustable biomechanical templating & resection instrument and associated method
US20040143336A1 (en) 2003-01-22 2004-07-22 Brian Burkinshaw Two-piece modular patellar prosthetic system
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7309339B2 (en) 2003-02-04 2007-12-18 Howmedica Osteonics Corp. Apparatus for aligning an instrument during a surgical procedure
WO2004071310A1 (en) 2003-02-10 2004-08-26 Smith & Nephew, Inc. Acetabular reamer
US20040158254A1 (en) 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
JP4664274B2 (en) 2003-02-28 2011-04-06 マテリアライズ・デンタル・ナムローゼ・フエンノートシャップ Method for placing and manufacturing a dental superstructure, method for placing an implant, and accessories used thereby
US20040243133A1 (en) 2003-03-05 2004-12-02 Therics, Inc. Method and system for manufacturing biomedical articles, such as using biomedically compatible infiltrant metal alloys in porous matrices
US6960216B2 (en) 2003-03-21 2005-11-01 Depuy Acromed, Inc. Modular drill guide
US7527631B2 (en) 2003-03-31 2009-05-05 Depuy Products, Inc. Arthroplasty sizing gauge
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
US7102626B2 (en) 2003-04-25 2006-09-05 Hewlett-Packard Development Company, L.P. Multi-function pointing device
US8518051B2 (en) 2003-05-16 2013-08-27 Mazor Robotics Ltd. Robotic total/partial knee arthroplastics
US7601155B2 (en) 2003-05-20 2009-10-13 Petersen Thomas D Instruments and method for minimally invasive surgery for total hips
US8057482B2 (en) 2003-06-09 2011-11-15 OrthAlign, Inc. Surgical orientation device and method
US7559931B2 (en) 2003-06-09 2009-07-14 OrthAlign, Inc. Surgical orientation system and method
GB0313445D0 (en) 2003-06-11 2003-07-16 Midland Medical Technologies L Hip resurfacing
WO2004110309A2 (en) 2003-06-11 2004-12-23 Case Western Reserve University Computer-aided-design of skeletal implants
US20050027303A1 (en) 2003-06-17 2005-02-03 Lionberger David R. Pelvic waypoint clamp assembly and method
US7104997B2 (en) 2003-06-19 2006-09-12 Lionberger Jr David R Cutting guide apparatus and surgical method for use in knee arthroplasty
CA2531624A1 (en) 2003-07-09 2005-01-27 D4D Technologies, Lp Assemblage of mill blanks
US7218232B2 (en) 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
US7427272B2 (en) 2003-07-15 2008-09-23 Orthosoft Inc. Method for locating the mechanical axis of a femur
JP4865550B2 (en) 2003-07-24 2012-02-01 サン−テック サージカル ソシエテ ア レスポンサビリテ リミテ Positioning device for a surgical instrument
US7419507B2 (en) * 2003-08-21 2008-09-02 The Curators Of The University Of Missouri Elbow arthroplasty system
US8484001B2 (en) * 2003-08-26 2013-07-09 Voyant Health Ltd. Pre-operative medical planning system and method for use thereof
US20050055024A1 (en) 2003-09-08 2005-03-10 James Anthony H. Orthopaedic implant and screw assembly
GB0321582D0 (en) * 2003-09-15 2003-10-15 Benoist Girard Sas Prosthetic acetabular cup and prosthetic femoral joint incorporating such a cup
US6944518B2 (en) * 2003-09-18 2005-09-13 Depuy Products, Inc. Customized prosthesis and method of designing and manufacturing a customized prosthesis by utilizing computed tomography data
GB0322084D0 (en) 2003-09-22 2003-10-22 Depuy Int Ltd A drill guide assembly
US20050070897A1 (en) 2003-09-29 2005-03-31 Petersen Thomas D. Laser triangulation of the femoral head for total knee arthroplasty alignment instruments and surgical method
US8388690B2 (en) 2003-10-03 2013-03-05 Linvatec Corporation Osteotomy system
US7364580B2 (en) 2003-10-08 2008-04-29 Biomet Manufacturing Corp. Bone-cutting apparatus
WO2005037135A2 (en) 2003-10-14 2005-04-28 The University Of Iowa Research Foundation Ankle prosthesis and method for implanting ankle prosthesis
US7392076B2 (en) 2003-11-04 2008-06-24 Stryker Leibinger Gmbh & Co. Kg System and method of registering image data to intra-operatively digitized landmarks
DE602004023422D1 (en) 2003-11-18 2009-11-12 Smith & Nephew Inc OPERATIVE TECHNIQUE AND INSTRUMENTS FOR MINIMAL INCISION HIP ARTHOPLASTY SURGERY
JP2007511331A (en) 2003-11-19 2007-05-10 ゼネラル・エレクトリック・カンパニイ Phased array knee coil
WO2005051209A1 (en) 2003-11-20 2005-06-09 Wright Medical Technology, Inc. Guide clamp for guiding placement of a guide wire in a femur
US20050137708A1 (en) 2003-12-23 2005-06-23 Ron Clark Device and method of arthroscopic knee joint resurfacing
US7282054B2 (en) 2003-12-26 2007-10-16 Zimmer Technology, Inc. Adjustable cut block
US8175683B2 (en) 2003-12-30 2012-05-08 Depuy Products, Inc. System and method of designing and manufacturing customized instrumentation for accurate implantation of prosthesis by utilizing computed tomography data
US8535383B2 (en) * 2004-01-12 2013-09-17 DePuy Synthes Products, LLC Systems and methods for compartmental replacement in a knee
CN1972646B (en) 2004-01-12 2010-05-26 德普伊产品公司 Systems and methods for compartmental replacement in a knee
CN1981210A (en) 2004-01-13 2007-06-13 光谱动力学有限责任公司 Multi-dimensional image reconstruction
US7815645B2 (en) * 2004-01-14 2010-10-19 Hudson Surgical Design, Inc. Methods and apparatus for pinplasty bone resection
US20050171545A1 (en) 2004-01-30 2005-08-04 Howmedica Osteonics Corp. Knee computer-aided navigation instruments
US20050267353A1 (en) 2004-02-04 2005-12-01 Joel Marquart Computer-assisted knee replacement apparatus and method
US20050177245A1 (en) 2004-02-05 2005-08-11 Leatherbury Neil C. Absorbable orthopedic implants
FR2865928B1 (en) 2004-02-10 2006-03-17 Tornier Sa SURGICAL DEVICE FOR IMPLANTATION OF A TOTAL HIP PROSTHESIS
GB0404345D0 (en) 2004-02-27 2004-03-31 Depuy Int Ltd Surgical jig and methods of use
US7383164B2 (en) 2004-03-05 2008-06-03 Depuy Products, Inc. System and method for designing a physiometric implant system
US20050245934A1 (en) 2004-03-09 2005-11-03 Finsbury (Development) Limited Tool
US20050203540A1 (en) 2004-03-09 2005-09-15 Broyles Joseph E. Pelvis level
WO2005087116A2 (en) 2004-03-11 2005-09-22 Branch Thomas P Method and apparatus for aligning a knee for surgery or the like
US20060089621A1 (en) * 2004-03-18 2006-04-27 Mike Fard Bone mill and template
JP4436835B2 (en) 2004-03-23 2010-03-24 株式会社ビー・アイ・テック Manufacturing method of artificial joint stem using composite material
US20050245936A1 (en) 2004-04-20 2005-11-03 Finsbury (Development) Limited Tool
US20050251147A1 (en) 2004-05-07 2005-11-10 Novak Vincent P Open wedge osteotomy system and surgical method
US7333013B2 (en) 2004-05-07 2008-02-19 Berger J Lee Medical implant device with RFID tag and method of identification of device
NO322674B1 (en) 2004-05-18 2006-11-27 Scandinavian Customized Prosth Patient-adapted cutting template for accurate cutting of the cervix in a total hip replacement surgery
US7169185B2 (en) * 2004-05-26 2007-01-30 Impact Science And Technology, Inc. Canine acetabular cup
US7294133B2 (en) 2004-06-03 2007-11-13 Zimmer Technology, Inc. Method and apparatus for preparing a glenoid surface
US7632273B2 (en) 2004-06-29 2009-12-15 Depuy Products, Inc. Minimally invasive bone broach
US7198628B2 (en) * 2004-06-30 2007-04-03 Depuy Products, Inc. Adjustable humeral cutting guide
US20060004284A1 (en) * 2004-06-30 2006-01-05 Frank Grunschlager Method and system for generating three-dimensional model of part of a body from fluoroscopy image data and specific landmarks
US7458435B2 (en) 2004-08-05 2008-12-02 Yamaha Hatsudoki Kabushiki Kaisha Vehicle control unit and vehicle
US8353965B2 (en) * 2004-09-03 2013-01-15 Seitz Jr William H Small joint orthopedic implants and their manufacture
GB0420346D0 (en) 2004-09-13 2004-10-13 Finsbury Dev Ltd Tool
GB0422666D0 (en) 2004-10-12 2004-11-10 Benoist Girard Sas Prosthetic acetabular cups
US20060100832A1 (en) 2004-11-08 2006-05-11 Bowman Gerald D Method a designing, engineering modeling and manufacturing orthotics and prosthetics integrating algorithm generated predictions
US20060111722A1 (en) 2004-11-19 2006-05-25 Hacene Bouadi Surgical cutting tool
US7766913B2 (en) 2004-12-07 2010-08-03 Depuy Products, Inc. Bone shaping instrument and method for using the same
US20060210644A1 (en) 2004-12-16 2006-09-21 Bruce Levin Materials, methods, and devices for treatment of arthropathies and spondylopathies
US20060136058A1 (en) 2004-12-17 2006-06-22 William Pietrzak Patient specific anatomically correct implants to repair or replace hard or soft tissue
CA2591977C (en) 2004-12-21 2013-07-30 Smith & Nephew, Inc. Distal femoral trial with removable cutting guide
US7896921B2 (en) * 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
WO2006074549A1 (en) 2005-01-14 2006-07-20 National Research Council Of Canada Tie layer and method for forming thermoplastics
US20060161167A1 (en) 2005-01-18 2006-07-20 Reese Myers Acetabular instrument alignment guide
US7935119B2 (en) 2005-01-31 2011-05-03 Ibalance Medical, Inc. Method for performing an open wedge, high tibial osteotomy
US20060172263A1 (en) 2005-02-01 2006-08-03 D4D Technologies, Lp Mill blank
US20060178497A1 (en) 2005-02-04 2006-08-10 Clemson University And Thordon Bearings, Inc. Implantable biomedical devices including biocompatible polyurethanes
AU2006214249B8 (en) 2005-02-18 2011-11-17 Komistek, Richard D Smart joint implant sensors
US8055487B2 (en) 2005-02-22 2011-11-08 Smith & Nephew, Inc. Interactive orthopaedic biomechanics system
US20060190086A1 (en) 2005-02-22 2006-08-24 Mako Surgical Corporation Knee implant
GB0504172D0 (en) * 2005-03-01 2005-04-06 King S College London Surgical planning
CA2603400C (en) * 2005-04-01 2015-11-24 Ibalance Medical, Inc. Method and apparatus for performing an open wedge, high tibial osteotomy
US20060226570A1 (en) * 2005-04-12 2006-10-12 Zimmer Technology, Inc. Method for making a metal-backed acetabular implant
US7474223B2 (en) 2005-04-18 2009-01-06 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
WO2006127486A2 (en) 2005-05-20 2006-11-30 Smith & Nephew, Inc. Patello-femoral joint implant and instrumentation
US20060276797A1 (en) 2005-05-24 2006-12-07 Gary Botimer Expandable reaming device
US7695477B2 (en) 2005-05-26 2010-04-13 Zimmer, Inc. Milling system and methods for resecting a joint articulation surface
WO2006129087A1 (en) 2005-06-02 2006-12-07 Depuy International Ltd Surgical system and method
EP1885295B1 (en) * 2005-06-03 2013-12-11 DePuy (Ireland) Instrument for use in a joint replacement procedure
GB0511847D0 (en) 2005-06-13 2005-07-20 Smith & Nephew Medical apparatus
US9301845B2 (en) 2005-06-15 2016-04-05 P Tech, Llc Implant for knee replacement
US9058812B2 (en) 2005-07-27 2015-06-16 Google Technology Holdings LLC Method and system for coding an information signal using pitch delay contour adjustment
US7983777B2 (en) 2005-08-19 2011-07-19 Mark Melton System for biomedical implant creation and procurement
US7643862B2 (en) * 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
US7582091B2 (en) * 2005-09-19 2009-09-01 Zimmer Technology, Inc. Osteotomy guide
US20070066917A1 (en) * 2005-09-20 2007-03-22 Hodorek Robert A Method for simulating prosthetic implant selection and placement
EP1928359A4 (en) 2005-09-30 2010-10-13 Conformis Inc Joint arthroplasty devices
WO2007045000A2 (en) 2005-10-14 2007-04-19 Vantus Technology Corporation Personal fit medical implants and orthopedic surgical instruments and methods for making
GB0521173D0 (en) 2005-10-18 2005-11-23 Finsbury Dev Ltd Tool
US7371260B2 (en) 2005-10-26 2008-05-13 Biomet Sports Medicine, Inc. Method and instrumentation for the preparation and transplantation of osteochondral allografts
AU2006308865B2 (en) 2005-10-31 2012-10-25 Depuy Products, Inc. Modular fixed and mobile bearing prosthesis system
US20070118055A1 (en) 2005-11-04 2007-05-24 Smith & Nephew, Inc. Systems and methods for facilitating surgical procedures involving custom medical implants
EP1951158A4 (en) * 2005-11-21 2010-03-31 Vertegen Inc Devices and methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints
WO2007062103A1 (en) 2005-11-23 2007-05-31 Conformis, Inc. Implant grasper
US8198080B2 (en) 2005-12-14 2012-06-12 The Invention Science Fund I, Llc Bone delivery device
US20080058947A1 (en) 2005-12-15 2008-03-06 Zimmer, Inc. Distal femoral knee prostheses
GB0525637D0 (en) 2005-12-16 2006-01-25 Finsbury Dev Ltd Tool
US7578851B2 (en) 2005-12-23 2009-08-25 Howmedica Osteonics Corp. Gradient porous implant
US20070156066A1 (en) 2006-01-03 2007-07-05 Zimmer Technology, Inc. Device for determining the shape of an anatomic surface
GB0601803D0 (en) 2006-01-30 2006-03-08 Finsbury Dev Ltd Tool
WO2007092841A2 (en) 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP2007291A2 (en) 2006-02-15 2008-12-31 Otismed Corp. Arthroplasty jigs and related methods
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
US7780672B2 (en) 2006-02-27 2010-08-24 Biomet Manufacturing Corp. Femoral adjustment device and associated method
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US20110046735A1 (en) 2006-02-27 2011-02-24 Biomet Manufacturing Corp. Patient-Specific Implants
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US20080257363A1 (en) 2007-04-17 2008-10-23 Biomet Manufacturing Corp. Method And Apparatus For Manufacturing An Implant
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8337426B2 (en) 2009-03-24 2012-12-25 Biomet Manufacturing Corp. Method and apparatus for aligning and securing an implant relative to a patient
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8608748B2 (en) * 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US8167823B2 (en) 2009-03-24 2012-05-01 Biomet Manufacturing Corp. Method and apparatus for aligning and securing an implant relative to a patient
US7704253B2 (en) 2006-03-06 2010-04-27 Howmedica Osteonics Corp. Single use resection guide
WO2007108933A1 (en) 2006-03-13 2007-09-27 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
WO2007106172A1 (en) 2006-03-14 2007-09-20 Mako Surgical Corporation Prosthetic device and system and method for implanting prosthetic device
US20070219640A1 (en) 2006-03-16 2007-09-20 Active Implants Corporation Ceramic-on-ceramic prosthetic device coupled to a flexible bone interface
US8231634B2 (en) 2006-03-17 2012-07-31 Zimmer, Inc. Methods of predetermining the contour of a resected bone surface and assessing the fit of a prosthesis on the bone
US8075627B2 (en) 2006-04-07 2011-12-13 Depuy Products, Inc. System and method for transmitting orthopaedic implant data
US8015024B2 (en) 2006-04-07 2011-09-06 Depuy Products, Inc. System and method for managing patient-related data
US8246663B2 (en) 2006-04-10 2012-08-21 Scott Lovald Osteosynthesis plate, method of customizing same, and method for installing same
WO2007123861A2 (en) 2006-04-18 2007-11-01 University Of Florida Prosthetic device
JP5408783B2 (en) * 2006-04-19 2014-02-05 ブレーム ペーター Modular lumbar implant
US7623702B2 (en) 2006-04-27 2009-11-24 Mako Surgical Corp. Contour triangulation system and method
US8461992B2 (en) 2006-05-12 2013-06-11 Solstice Medical, Llc RFID coupler for metallic implements
US7385498B2 (en) 2006-05-19 2008-06-10 Delphi Technologies, Inc. Wristband reader apparatus for human-implanted radio frequency identification device
US8635082B2 (en) 2006-05-25 2014-01-21 DePuy Synthes Products, LLC Method and system for managing inventories of orthopaedic implants
EP2029059A2 (en) 2006-05-25 2009-03-04 Spinemedica Corporation Patient-specific spinal implants and related systems and methods
WO2007137327A1 (en) 2006-05-26 2007-12-06 Ellysian Ltd Hip resurfacing clamp
EP2032087A1 (en) 2006-06-19 2009-03-11 IGO Technologies Inc. Joint placement methods and apparatuses
US8372078B2 (en) * 2006-06-30 2013-02-12 Howmedica Osteonics Corp. Method for performing a high tibial osteotomy
WO2008005941A2 (en) * 2006-06-30 2008-01-10 Hodge Biomotion Technologies, Llc Precision acetabular machining system and resurfacing acetabular implant
US20080021299A1 (en) * 2006-07-18 2008-01-24 Meulink Steven L Method for selecting modular implant components
US20080021567A1 (en) * 2006-07-18 2008-01-24 Zimmer Technology, Inc. Modular orthopaedic component case
AU2007281000A1 (en) * 2006-08-03 2008-02-07 Orthosoft Inc. Computer-assisted surgery tools and system
US7594933B2 (en) * 2006-08-08 2009-09-29 Aesculap Ag Method and apparatus for positioning a bone prosthesis using a localization system
EP2083758B1 (en) 2006-08-18 2017-11-01 Smith & Nephew, Inc. Systems and methods for designing, analyzing and using orthopaedic devices
US20080062183A1 (en) 2006-09-11 2008-03-13 Bart Swaelens Hybrid data structures for graphics programs
US7604665B2 (en) 2006-09-20 2009-10-20 Depuy Products, Inc. Glenoid component for shoulder arthroplasty
US8641771B2 (en) 2006-09-29 2014-02-04 DePuy Synthes Products, LLC Acetabular cup having a wireless communication device
GB2442441B (en) 2006-10-03 2011-11-09 Biomet Uk Ltd Surgical instrument
GB0620359D0 (en) 2006-10-13 2006-11-22 Symmetry Medical Inc Medical devices
US20090234360A1 (en) 2006-12-12 2009-09-17 Vladimir Alexander Laser assisted total joint arthroplasty
US8214016B2 (en) 2006-12-12 2012-07-03 Perception Raisonnement Action En Medecine System and method for determining an optimal type and position of an implant
US20080146969A1 (en) 2006-12-15 2008-06-19 Kurtz William B Total joint replacement component positioning as predetermined distance from center of rotation of the joint using pinless navigation
US8460302B2 (en) 2006-12-18 2013-06-11 Otismed Corporation Arthroplasty devices and related methods
US20080195099A1 (en) 2007-02-13 2008-08-14 The Brigham And Women's Hospital, Inc. Osteotomy system
EP2114262A1 (en) 2007-02-13 2009-11-11 Orthogroup, Inc. Drill system for acetabular cup implants
EP2111175A2 (en) 2007-02-14 2009-10-28 Smith & Nephew, Inc. Method and system for computer assisted surgery for bicompartmental knee replacement
US8600478B2 (en) 2007-02-19 2013-12-03 Medtronic Navigation, Inc. Automatic identification of instruments used with a surgical navigation system
DE102007011093B3 (en) 2007-02-28 2008-06-19 Aesculap Ag & Co. Kg Surgical data carrier for implantation system for marking medical implants, particularly surgical plate for fixing of bones or bone fragments, has actuating device, which is actuated by user
EP2129317B1 (en) 2007-03-06 2014-11-05 The Cleveland Clinic Foundation Method for preparing for a surgical procedure
EP2124764B1 (en) 2007-03-14 2017-07-19 ConforMIS, Inc. Surgical tools for arthroplasty
US8313490B2 (en) 2007-03-16 2012-11-20 Zimmer Technology, Inc. Single plane anatomic referencing tissue preparation
US7794462B2 (en) 2007-03-19 2010-09-14 Zimmer Technology, Inc. Handpiece calibration device
GB2447702A (en) 2007-03-23 2008-09-24 Univ Leeds Surgical bone cutting template
MX2009010707A (en) 2007-04-04 2010-03-26 Alexandria Res Technologies Llc Apparatus and method for sculpting the surface of a joint.
US8357205B2 (en) 2007-04-10 2013-01-22 Mohamed Naushad Rahaman Femoral head and method of manufacture thereof
WO2008140748A1 (en) 2007-05-09 2008-11-20 Ibalance Medical, Inc. Method and apparatus for reconstructing a ligament and/or repairing cartilage, and for performing an open wedge, high tibial osteotomy
AU2008250951B2 (en) 2007-05-14 2014-06-05 Queen's University At Kingston Patient-specific surgical guidance tool and method of use
US7780740B2 (en) 2007-05-21 2010-08-24 Active Implants Corporation Methods, systems, and apparatus for implanting prosthetic devices into cartilage
JP2010527706A (en) 2007-05-21 2010-08-19 アクティブ インプランツ コーポレーション Acetabular prosthesis
EP2166992B1 (en) 2007-06-07 2016-10-12 Sam Hakki Apparatus and method of determining acetabular center axis
JP2009000518A (en) 2007-06-14 2009-01-08 Precimed Sa Resurfacing reamer with cutting struts
GB0712290D0 (en) 2007-06-25 2007-08-01 Depuy Orthopaedie Gmbh Surgical instrument
GB0712247D0 (en) 2007-06-25 2007-08-01 I J Smith & Nephew Ltd Medical device
DE102007032583B3 (en) * 2007-07-09 2008-09-18 Eska Implants Gmbh & Co.Kg Set for creating an offset resurfacing hip joint implant
EP2182893B1 (en) * 2007-07-11 2017-12-20 Smith & Nephew, Inc. Apparatus for determining pin placement during hip surgery
US8382765B2 (en) 2007-08-07 2013-02-26 Stryker Leibinger Gmbh & Co. Kg. Method of and system for planning a surgery
US8831302B2 (en) 2007-08-17 2014-09-09 Mohamed Rashwan Mahfouz Implant design analysis suite
DE102007045885B4 (en) 2007-09-25 2014-12-31 Zimmer Gmbh One-piece medical foot implant as well as system
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
CN102670275B (en) 2007-09-30 2016-01-20 德普伊产品公司 The patient-specific orthopaedic surgical instrumentation of customization
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
US7916033B2 (en) 2007-10-12 2011-03-29 Solstice Medical, Llc Small gamma shielded shorted patch RFID tag
WO2009061792A2 (en) 2007-11-05 2009-05-14 Stefan Kreuzer Apparatus and method for aligning a guide pin for joint re-surfacing
US20090149977A1 (en) 2007-11-06 2009-06-11 Schendel Stephen A Methods, systems, and computer program products for shaping medical implants directly from virtual reality models
US10582934B2 (en) 2007-11-27 2020-03-10 Howmedica Osteonics Corporation Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs
CN106037872B (en) 2007-12-06 2020-01-07 史密夫和内修有限公司 System and method for determining a mechanical axis of a femur
EP2231072B1 (en) 2007-12-10 2019-05-22 Mako Surgical Corp. A prosthetic device and system for preparing a bone to receive a prosthetic device
CA2747560C (en) 2007-12-18 2015-11-24 The Royal Institution For The Advancement Of Learning/Mcgill University Orthopaedic implants
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8221430B2 (en) 2007-12-18 2012-07-17 Otismed Corporation System and method for manufacturing arthroplasty jigs
US8715291B2 (en) 2007-12-18 2014-05-06 Otismed Corporation Arthroplasty system and related methods
US8545509B2 (en) 2007-12-18 2013-10-01 Otismed Corporation Arthroplasty system and related methods
US8311306B2 (en) 2008-04-30 2012-11-13 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8777875B2 (en) 2008-07-23 2014-07-15 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US9665686B2 (en) 2008-02-20 2017-05-30 Mako Surgical Corp. Implant planning using corrected captured joint motion information
US8734455B2 (en) 2008-02-29 2014-05-27 Otismed Corporation Hip resurfacing surgical guide tool
US8273090B2 (en) 2008-03-07 2012-09-25 Traiber, S.L. Tibial plateau and/or femoral condyle resection system for prosthesis implantation
EP2268215B1 (en) 2008-03-25 2018-05-16 Orthosoft Inc. Method for planning and system for planning/guiding alterations to a bone
US8114156B2 (en) 2008-05-30 2012-02-14 Edwin Burton Hatch Flexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints
GB0813093D0 (en) 2008-07-17 2008-08-27 Invibio Ltd Polymeric materials
US8702805B2 (en) 2008-07-21 2014-04-22 Harutaro Trabish Acetabulum surgical resurfacing aid
US20100023030A1 (en) 2008-07-24 2010-01-28 Leonard Remia Surgical fastener devices and methods for their manufacture and use
AU2009273863B2 (en) 2008-07-24 2014-12-18 OrthAlign, Inc. Systems and methods for joint replacement
EP2358310B1 (en) 2008-09-10 2019-07-31 OrthAlign, Inc. Hip surgery systems
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US8257357B2 (en) 2008-09-23 2012-09-04 Edwin Burton Hatch Combination of a motor driven oscillating orthopedic reshaping and resurfacing tool and a surface-matching sheet metal prosthesis
US8992538B2 (en) 2008-09-30 2015-03-31 DePuy Synthes Products, Inc. Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
US20100105011A1 (en) 2008-10-29 2010-04-29 Inpronto Inc. System, Method And Apparatus For Tooth Implant Planning And Tooth Implant Kits
GB0822078D0 (en) 2008-12-03 2009-01-07 Finsbury Dev Ltd Tool
US20100185202A1 (en) 2009-01-16 2010-07-22 Lester Mark B Customized patient-specific patella resectioning guide
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US20100217270A1 (en) 2009-02-25 2010-08-26 Conformis, Inc. Integrated Production of Patient-Specific Implants and Instrumentation
WO2010120346A1 (en) 2009-04-13 2010-10-21 George John Lian Custom radiographically designed cutting guides and instruments for use in total ankle replacement surgery
US20100274253A1 (en) 2009-04-23 2010-10-28 Ure Keith J Device and method for achieving accurate positioning of acetabular cup during total hip replacement
AU2010245705A1 (en) 2009-05-07 2011-11-24 Smith & Nephew, Inc. Patient specific alignment guide for a proximal femur
GB0922339D0 (en) 2009-12-21 2010-02-03 Mcminn Derek J W Acetabular cup prothesis and introducer thereof
US20110151027A1 (en) 2009-12-21 2011-06-23 Theodore D Clineff Strontium-doped calcium phosphate bone graft materials
US20110190901A1 (en) 2010-02-03 2011-08-04 Active Implants Corporation Acetabular Prosthetic Devices and Associated Methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007840A1 (en) * 1987-04-15 1988-10-20 Cemax, Inc. Preoperative planning of bone cuts/joint replacement
US5871018A (en) * 1995-12-26 1999-02-16 Delp; Scott L. Computer-assisted surgical method
US20070015995A1 (en) * 1998-09-14 2007-01-18 Philipp Lang Joint and cartilage diagnosis, assessment and modeling

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828087B2 (en) 2006-02-27 2014-09-09 Biomet Manufacturing, Llc Patient-specific high tibia osteotomy
US10206695B2 (en) 2006-02-27 2019-02-19 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US11534313B2 (en) 2006-02-27 2022-12-27 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9913734B2 (en) 2006-02-27 2018-03-13 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9700329B2 (en) 2006-02-27 2017-07-11 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8900244B2 (en) 2006-02-27 2014-12-02 Biomet Manufacturing, Llc Patient-specific acetabular guide and method
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9005297B2 (en) 2006-02-27 2015-04-14 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US10743937B2 (en) 2006-02-27 2020-08-18 Biomet Manufacturing, Llc Backup surgical instrument system and method
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10507029B2 (en) 2006-02-27 2019-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US10426492B2 (en) 2006-02-27 2019-10-01 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US10390845B2 (en) 2006-02-27 2019-08-27 Biomet Manufacturing, Llc Patient-specific shoulder guide
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8398646B2 (en) 2006-06-09 2013-03-19 Biomet Manufacturing Corp. Patient-specific knee alignment guide and associated method
US10206697B2 (en) 2006-06-09 2019-02-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US11576689B2 (en) 2006-06-09 2023-02-14 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US10893879B2 (en) 2006-06-09 2021-01-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9993344B2 (en) 2006-06-09 2018-06-12 Biomet Manufacturing, Llc Patient-modified implant
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US11554019B2 (en) 2007-04-17 2023-01-17 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9839433B2 (en) 2009-08-13 2017-12-12 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US10052110B2 (en) 2009-08-13 2018-08-21 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US11324522B2 (en) 2009-10-01 2022-05-10 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US10893876B2 (en) 2010-03-05 2021-01-19 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US10098648B2 (en) 2010-09-29 2018-10-16 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US11234719B2 (en) 2010-11-03 2022-02-01 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9743935B2 (en) 2011-03-07 2017-08-29 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US10251690B2 (en) 2011-04-19 2019-04-09 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US9743940B2 (en) 2011-04-29 2017-08-29 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8903530B2 (en) 2011-06-06 2014-12-02 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9687261B2 (en) 2011-06-13 2017-06-27 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US11253269B2 (en) 2011-07-01 2022-02-22 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US9668747B2 (en) 2011-07-01 2017-06-06 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9603613B2 (en) 2011-08-31 2017-03-28 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9439659B2 (en) 2011-08-31 2016-09-13 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US11406398B2 (en) 2011-09-29 2022-08-09 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US10456205B2 (en) 2011-09-29 2019-10-29 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9936962B2 (en) 2011-10-27 2018-04-10 Biomet Manufacturing, Llc Patient specific glenoid guide
US10426493B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US11298188B2 (en) 2011-10-27 2022-04-12 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US10842510B2 (en) 2011-10-27 2020-11-24 Biomet Manufacturing, Llc Patient specific glenoid guide
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
US11602360B2 (en) 2011-10-27 2023-03-14 Biomet Manufacturing, Llc Patient specific glenoid guide
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US10426549B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9827106B2 (en) 2012-02-02 2017-11-28 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9597201B2 (en) 2012-12-11 2017-03-21 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US10441298B2 (en) 2013-03-11 2019-10-15 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US11617591B2 (en) 2013-03-11 2023-04-04 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9700325B2 (en) 2013-03-12 2017-07-11 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US10376270B2 (en) 2013-03-13 2019-08-13 Biomet Manufacturing, Llc Universal acetabular guide and associated hardware
US11191549B2 (en) 2013-03-13 2021-12-07 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10426491B2 (en) 2013-03-13 2019-10-01 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US11026699B2 (en) 2014-09-29 2021-06-08 Biomet Manufacturing, Llc Tibial tubercule osteotomy
US10335162B2 (en) 2014-09-29 2019-07-02 Biomet Sports Medicine, Llc Tibial tubercle osteotomy
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10925622B2 (en) 2015-06-25 2021-02-23 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US11801064B2 (en) 2015-06-25 2023-10-31 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method

Also Published As

Publication number Publication date
EP2398381A1 (en) 2011-12-28
US8170641B2 (en) 2012-05-01
US20100217109A1 (en) 2010-08-26
EP2398381B1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US8170641B2 (en) Method of imaging an extremity of a patient
US11779347B2 (en) System for forming a patient specific surgical guide mount
US10786307B2 (en) Patient-matched surgical component and methods of use
US20200405180A1 (en) System And Process Of Utilizing Image Data To Place A Member
Nolte et al. A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation
JP4815054B2 (en) System and method for performing an image-directed robotic orthopedic procedure without utilizing a trust criteria system
KR101837301B1 (en) Surgical navigation system
CN113842214B (en) Surgical robot navigation positioning system and method
US20070066917A1 (en) Method for simulating prosthetic implant selection and placement
US20150148807A1 (en) Method for femur resection alignment approximation in hip replacement procedures
JP5216949B2 (en) Surgery support device
GB2382777A (en) Referencing marker for use in computer assisted surgery
Bucholz et al. Automated rejection of contaminated surface measurements for improved surface registration in image guided neurosurgery
US20050288574A1 (en) Wireless (disposable) fiducial based registration and EM distoration based surface registration
Joskowicz et al. Computer integrated revision total hip replacement surgery: Preliminary report
US20230140951A1 (en) System for generating images for a fluoroscopy-based navigation system
US20230106438A1 (en) Method and system for registration of 2d or 3d images
KR20140002968A (en) Patient-specific registration guide and method using the same
Plaskos et al. Robotic-assisted knee replacement surgery
WO2022259017A1 (en) Method and device for reproducing position and orientation of (long) bone fragments
Marcacci et al. Computer-Aided Surgery in Orthopaedics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10705063

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010705063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010705063

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE