WO2010091925A1 - Fluorescence conversion solar cell and the production thereof using the plate casting method - Google Patents

Fluorescence conversion solar cell and the production thereof using the plate casting method Download PDF

Info

Publication number
WO2010091925A1
WO2010091925A1 PCT/EP2010/050702 EP2010050702W WO2010091925A1 WO 2010091925 A1 WO2010091925 A1 WO 2010091925A1 EP 2010050702 W EP2010050702 W EP 2010050702W WO 2010091925 A1 WO2010091925 A1 WO 2010091925A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
meth
acrylate
plastic molding
colored
Prior art date
Application number
PCT/EP2010/050702
Other languages
German (de)
French (fr)
Inventor
Hans Lichtenstein
Claudius Neumann
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2010091925A1 publication Critical patent/WO2010091925A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a combination of fluorescence conversion dyes in plastic moldings of polymethyl (nneth) acrylate, which are used to convert the natural solar radiation in usable for the solar cell light.
  • the plastic moldings are polymehsiert by casting.
  • Photovoltaic cells can only partially convert the incident sunlight into usable electrical energy, a large part of the energy is lost in the form of heat.
  • a silicon solar cell can absorb all photons that have an energy above the band edge of 1.1 eV of the crystalline silicon. This corresponds to a wavelength ⁇ 1100 nm. The excess energy of the absorbed photons is converted into heat and leads to a heating of the photocell, the efficiency of the photocell is lowered.
  • WO 2007/031446 (BASF AG) describes fluorescence conversion solar cells composed of one or more glass plates or polymer plates which are coated with a fluorescent dye.
  • a fluorescent dye dyes based on Terrylencarbonklahvaten or combinations of these dyes with used other fluorescent dyes.
  • the disadvantage here is the separately required step of coating the glass plates with the formulation containing the dye.
  • Optical systems based on lenses or mirrors for the concentration of light on the solar cells are known, concentration factors of up to 1,000 times are achieved.
  • a disadvantage of the optical solutions is that the entire electromagnetic spectrum of the light is concentrated, so that not only the effective light is concentrated, but also the photovoltaic ineffective light. This leads to an undesirable thermal load on the solar cells and a reduction in the efficiency. In order not to let the temperatures get too high, you can actively or passively cool the solar cells.
  • the lenses or the lens systems must be tracked consuming mechanically the position of the sun, they also can only reflect the directly incident light. Diffused light contributes little or no energy. (see US Patent 5,489,297)
  • the solution further comprises the solution of the dyes or the dye mixtures in a monomer mixture, which is then polymerized to a plastic molding.
  • the plastic mold body can be constructed in one or more layers and include layers containing the same or different dyes or dye mixtures.
  • the individual layers may e.g. be firmly bonded by gluing or by polymerization. This can e.g. by methods described in applications DE 10233684 and DE 10254276.
  • the layering can also be done by loose stacking of the individual plastic moldings.
  • the solution according to the invention offers the following advantages:
  • the irradiated sunlight is converted into optimal wavelengths for silicon photovoltaic cells,
  • the preparation of the fluorescence conversion solar cells can be carried out by known methods,
  • the plastic molding is easily adaptable to the geometric and static requirements of the solar cell
  • the plastic molding is lighter than a comparable arrangement of mineral glass
  • the plastic molding can be equipped impact resistant, so that the solar cell array is protected against hail.
  • a particularly preferred group of monomers are (meth) acrylates
  • Expression (meth) acrylates include methacrylates and acrylates as well as mixtures of both.
  • (Meth) acrylates derived from saturated alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, butoxymethyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, tetrahydrofurfuryl (meth ) acrylate, cyclohexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; (Meth) acrylates derived from unsaturated alcohols, such as o
  • sulfur-containing methacrylates such as, for example, ethylsulfinylethyl (meth)
  • These monomers may be used singly or as a mixture.
  • mixtures are particularly preferred which contain methacrylates and acrylic esters.
  • the polymerization is generally started with known free-radical initiators.
  • the preferred initiators include the well-known in the art azo initiators such as AIBN and IJ -Azobiscyclohexancarbonitril, and peroxy compounds such as methyl ethyl ketone peroxide, acetylacetone, Dilaurylperoxyd, tert-butyl per-2-ethylhexanoat, ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, dibenzoyl peroxide, tert Butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, 2,5-bis (2-ethylhexanoylperoxy) -2,5-dimethylhexane, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxy-3,5,5-trimethylhexan
  • Preferred impact-resistant castings which can be used to produce the polymethyl methacrylate molded body comprise 1% by weight to 30% by weight, preferably 2% by weight to 20% by weight, particularly preferably 3% by weight to 15% by weight %, in particular 5% by weight to 12% by weight, of an impact modifier which constitutes an elastomer phase of crosslinked polymer particles.
  • the impact modifier can be obtained in a manner known per se by bead polymerisation or by emulsion polymerisation.
  • Preferred impact modifiers are crosslinked particles having an average particle size in the range of 50 to 1,000 nm, preferably 60 to 500 nm and particularly preferably 80 to 120 nm.
  • Such particles can be obtained, for example, by the radical polymerization of mixtures which are generally at least 40% by weight, preferably 50% by weight to 70% by weight, of methyl methacrylate, 20% by weight to 80% by weight, preferably 25 wt .-% to 35 wt .-% butyl acrylate and 0.1 wt .-% to 2 wt .-%, preferably 0.5 wt .-% to 1 wt .-% of a crosslinking monomer, eg. B. a polyfunctional (meth) acrylate, such as.
  • a crosslinking monomer eg. B.
  • a polyfunctional (meth) acrylate such as.
  • allyl methacrylate and comonomers that can be copolymerized with the aforementioned vinyl compounds.
  • C 1 -C 4 -alkyl (meth) acrylates such as ethyl acrylate or butyl methacrylate, preferably methyl acrylate, or other vinylically polymerizable monomers, such as e.g. Styrene.
  • the mixtures for the preparation of the aforementioned particles may preferably comprise 0 wt .-% to 10 wt .-%, preferably 0.5 wt .-% to 5 wt .-% comonomers.
  • Particularly preferred toughening modifiers are polymerizate particles which have a two-layer, particularly preferably a three-layer core-shell structure.
  • core-shell polymers are described inter alia in EP-A 0 113 924, EP-A 0 522 351, EP-A 0 465 049 and EP-A 0 683 028.
  • Particularly preferred impact modifiers based on acrylate rubber have, inter alia, the following structure:
  • Core polymer with a methyl methacrylate content of at least 90
  • Wt .-% based on the weight of the core.
  • Shell 1 polymer having a butyl acrylate content of at least 80% by weight, based on the weight of the first shell.
  • Shell 2 polymer having a methyl methacrylate content of at least 90% by weight, based on the weight of the second shell.
  • the core and the shells may each contain other monomers in addition to the monomers mentioned. These have been previously set forth, with particularly preferred comonomers having a crosslinking effect.
  • a preferred acrylate rubber modifier may have the following structure:
  • the ratio of core to shell (s) of the acrylate rubber modifier can vary within wide limits.
  • the weight ratio of core to shell K / S is in the range from 20:80 to 80:20, preferably from 30:70 to 70:30 for modifiers with one shell or the ratio of core to shell 1 to shell 2 K / S1 / S2 in the range of 10:80:10 to 40:20:40, especially preferred from 20:60:20 to 30:40:30 for modifiers with two bowls.
  • the particle size of the core-shell modifier is usually in the range of 50 to 1000 nm, preferably 100 to 500 nm and more preferably from 150 to 450 nm, without this being a restriction.
  • the polymethyl (meth) acrylate molded body has an E-modulus of at least 2,800 N / mm 2 , preferably at least 3,300 N / mm 2 according to ISO 527/2.
  • the plastics molding may also be made of polycarbonate (PC), polystyrene (PS), polyamide (PA), polyester (PE), thermoplastic polyurethane (PU), polyethersulfone, polysulfones, vinyl polymers such as polyvinyl chloride (PVC).
  • PC polycarbonate
  • PS polystyrene
  • PA polyamide
  • PE polyester
  • PU polyethersulfone
  • polysulfones polysulfones
  • vinyl polymers such as polyvinyl chloride (PVC).
  • UV-A and / or UV-B absorbers are used as a light stabilizer UV-A and / or UV-B absorbers.
  • classes of substances which can be used are the HALS compounds.
  • HALS compounds are understood as meaning sterically hindered amines, as described, for example, in JP 0347856. This "hindered amine light stabilizers" catch the radicals from that form when radiation exposure. In the trade these products are brought 622 by Ciba under the trade name TINUVIN ® 123, Tinuvin ® 571, Tinuvin ® 770 and Tinuvin ®.
  • light stabilizers based on benzophenone derivatives can be used. These products are marketed by BASF under the brand UVINUL ® 5411. Benzotriazole based light stabilizers can also be used. In the trade, these products are made by Cytec under the brand CYASORB ® UV 5411 or Ciba under the trade name TINUVIN ® P, Tinuvin ® 571 and Tinuvin ® 234th
  • antioxidants sterically hindered phenols or phosphites or phosphonites can be used. In the trade, these products are made by Ciba under the trademarks Irganox ® and Irgafos ®.
  • suitable (meth) acrylic mixtures are placed in a mold and polymerized.
  • Such (meth) acrylic mixtures generally have the above-described (meth) acrylates, in particular methyl methacrylate.
  • the (meth) acrylic mixtures may contain the copolymers described above and, in particular for adjusting the viscosity, polymers, in particular poly (meth) acrylates.
  • the weight average molecular weight M w of the polymers prepared by cast-chamber processes is generally higher than the molecular weight of polymers used in molding compositions. This results in a number of known advantages. In general, the weight average molecular weight of polymers prepared by cast chamber processes is in the range of 500,000 to
  • photoconductive layers of the present invention can be produced by casting.
  • suitable acrylic resin mixtures are placed in a mold and polymerized.
  • a suitable acrylic resin includes, for example
  • the acrylic resin has the initiators necessary for the polymerization.
  • the components 1 to 4 and the initiators correspond to the compounds which are also used for the preparation of suitable polymethyl methacrylate molding compositions.
  • Gußsch For curing you can z.
  • Gußsch see, for example, DE 25 44 245, EP-B 570 782 or EP-A 656 548, apply, in which the polymerization of a plastic disc between two glass plates, which are sealed with a circulating string.
  • Preferred plastic substrates can be obtained from Evonik commercially under the trade name PLEXIGLAS ® GS.
  • the dimensions of the plastic substrates are for example (length X width X thickness) between 2 m length, 3 m width and the thickness can be between 1, 5 mm to 200 mm, preferably plates with the thickness range between 2 mm and 20 mm, particularly preferred are plates in the thickness range of 3 mm to 10 mm.
  • dyes dyes of the types perylene, terrylene and rylene derivatives can be prepared from the Lumogen ® - BASF, rhodamines, LDS ® row - number of exciton, substituted pyrans (such as DCM), coumarins (for example, Coumarin 30, Coumarin 1, Coumahn 102 etc.) oxazines (eg Nile Blue or also called Nile Blue A), pyridines, styryl derivatives, dioxazines, naphthalimides, thiazines, stilbenes and cyanines (eg DODCI) of e.g. B. Lambdachronne ® and Exciton ® are used.
  • the types of perylene, terrylene and rylene derivatives dyes are described in WO 2007/031446.
  • quantum dots e.g. based on cadmium selenide, cadmium sulfide, zinc sulfide, lead selenide, lead sulfide and the like. are suitable for it. Production and use of the Quantum Dots are described in US 2007/0132052, US 2007/0174939, WO 0229140, WO 2004022637, WO 2006065054 and WO 2007073467.
  • the photonic layer is arranged on the plastic molding, so that the sunlight must first penetrate this layer before the fluorescent dyes in the plastic molding can be excited to fluoresce
  • Interference filter stack filter, rugate filter, notch filter, etc.
  • notch filter e.g.
  • These are e.g. by depositing a plurality of thin dielectric layers having different refractive indices onto a substrate, (see Olaf Stenzel, "The Physics of Thin Film Optical Spectra", Springer-Verlag) and (N.Kaiser, HK Pulker, Optical Interference Coatings ", Springer-Verlag). Publishing company).
  • the layer thickness of the individual layer is generally smaller than the wavelength of light.
  • a further possibility is the use of photonic crystals which are described in the following applications (DE 10024466, DE 10204338, DE 10227071, DE 10228228, DE 102004055303, US Pat. No. 6,863,847, WO 0244301, DE 10357681, DE 102004009569, DE 102004032120, WO 2006045567, DE 10245848, DE 102006017163)
  • the individual spherical or hollow-spherical structures have the diameter of about 1/3 of the wavelength of light to be reflected (depending on the angle of incidence of the light and the distance of the balls).
  • an optically reflecting shaped body e.g. a mirror or a white foil or a plate.
  • the solar cell can be constructed of the usual materials, such as
  • c-Si Monocrystalline silicon
  • mc-Si multicrystalline silicon
  • a-Si amorphous silicon
  • Gallium arsenide GaAs
  • gallium indium phosphide GaInP
  • gallium indium arsenide GaInAs
  • gallium indium arsenic phosphide GaInAsP
  • gallium indium phosphide GaInP
  • gallium antimonide GaSb
  • tandem cells of gallium indium phosphide and gallium arsenide, of gallium indium arsenide and gallium indium arsenic phosphide, of gallium indium phosphide and gallium indium arsenide, of gallium arsenide and gallium antimonide or of gallium Arsenide and germanium or triple cells (triple solar cell) made of gallium indium phosphide, gallium arsenide and germanium or of gallium indium phosphide, gallium indium arsenide and gallium antimonide Il Vl semiconductor solar cells
  • Cadmium telluride CdTe
  • CdS cadmium sulfide
  • CIS cells copper indium diselenide (CulnSe2) or copper indium disulfide
  • CIGS cells copper indium gallium diselenide (CulnGaSe2)
  • the specified wavelength corresponds to the wavelength of the light which provides the energy equal to the energy of the energy gap of the semiconductor, ie with this light, the semiconductor works most effectively as a solar cell (the fluorescence conversion cell is tuned to this wavelength).
  • Example 1 Preparation of a homogeneously colored plate
  • Lumogen Yellow 083 0.15 part by weight Lumogen Yellow 083 (BASF) 0.16 part by weight Lumogen Orange 240 (BASF) 0.40 part by weight Lumogen Red 305 (BASF)
  • the final polymerization is carried out in a Temper Appendix Appendix at 115 ° C for about 4
  • Example 2 Device with three layers
  • the mixture is stirred vigorously, filled into a silicate glass chamber which is distanced with 3 mm thick cord and polymerized in a water bath at 45 ° C. for about 16 hours.
  • the final polymerization is carried out in a tempering at 115 ° C for about 4 hours.
  • the mixture is stirred vigorously, filled into a silicate glass chamber which is distanced with 3 mm thick cord and polymerized in a water bath at 45 ° C. for about 16 hours.
  • the final polymerization is carried out in a tempering at 115 ° C for about 4 hours.
  • the batch is stirred vigorously, filled into a 3mm thick cord spaced compartment formed of the green and red covers, and polymerized in the water bath at 45 ° C for about 16 hours.
  • the final polymerization is carried out in a tempering at 115 ° C for about 4 hours.

Abstract

The invention relates to a combination of fluorescence conversion colorants in plastic molded bodies made of polymethyl(meth)acrylate that are used to convert natural solar radiation into light that can be used for the solar cells. The plastic molded bodies are polymerized using a casting method.

Description

FLUORESZENZKONVERSIONSSOLARZELLE UND DEREN HERSTELLUNG IM PLATTENGUSSVERFAHREN FLUORESCENCE CONVERSION SOLAR CELL AND THEIR PRODUCTION IN THE PLATEN CASTING METHOD
Gebiet der ErfindungField of the invention
Die Erfindung betrifft eine Kombination aus Fluoreszenzkonversionsfarbstoffen in Kunststoffformkörpern aus Polymethyl(nneth)acrylat, die dazu eingesetzt werden, die natürliche Sonneneinstrahlung in für die Solarzellen nutzbares Licht umzuwandeln. Die Kunststoffformkörper werden im Gußverfahren polymehsiert.The invention relates to a combination of fluorescence conversion dyes in plastic moldings of polymethyl (nneth) acrylate, which are used to convert the natural solar radiation in usable for the solar cell light. The plastic moldings are polymehsiert by casting.
Stand der TechnikState of the art
Photovoltaikzellen können das eingestrahlte Sonnenlicht nur zum Teil in nutzbare elektrische Energie umwandeln, ein großer Teil der Energie geht in Form von Wärme verloren. So kann beispielsweise eine Silizium-Solarzelle alle Photonen absorbieren, die eine Energie oberhalb der Bandkante von 1 ,1 eV des kristallinen Siliziums aufweisen. Dies entspricht einer Wellenlänge < 1.100 nm. Die überschüssige Energie der absorbierten Photonen wird in Wärme umgewandelt und führt zu einer Aufheizung der Photozelle, der Wirkungsgrad der Photozelle wird erniedrigt.Photovoltaic cells can only partially convert the incident sunlight into usable electrical energy, a large part of the energy is lost in the form of heat. For example, a silicon solar cell can absorb all photons that have an energy above the band edge of 1.1 eV of the crystalline silicon. This corresponds to a wavelength <1100 nm. The excess energy of the absorbed photons is converted into heat and leads to a heating of the photocell, the efficiency of the photocell is lowered.
Der Aufbau und die Wirkung von Fluoreszenzkonversionssolarzellen ist aus der US 4,110,123 (Fraunhofer) oder aus Appl. Phys. 14, 123 ff (1977) bekannt.The structure and the effect of fluorescence conversion solar cells is known from US 4,110,123 (Fraunhofer) or from Appl. Phys. 14, 123 ff (1977).
WO 2007/031446 (BASF AG) beschreibt Fluoreszenzkonversionssolarzellen, aufgebaut aus einer oder mehreren Glasplatten oder Polymerplatten, die mit einem Fluoreszenzfarbstoff beschichtet sind. Als Fluoreszenzfarbstoff werden Farbstoffe auf der Basis von Terrylencarbonsäuredehvaten oder Kombinationen dieser Farbstoffe mit anderen Fluoreszenzfarbstoffen verwendet. Nachteilig ist hier der gesondert erforderliche Schritt der Beschichtung der Glasplatten mit der Formulierung, die den Farbstoff enthält. WO 2007/031446 (BASF AG) describes fluorescence conversion solar cells composed of one or more glass plates or polymer plates which are coated with a fluorescent dye. As a fluorescent dye dyes based on Terrylencarbonsäuredehvaten or combinations of these dyes with used other fluorescent dyes. The disadvantage here is the separately required step of coating the glass plates with the formulation containing the dye.
Konzentrator-Systeme mit Linsen oder SpiegelnConcentrator systems with lenses or mirrors
Optische Systeme basierend auf Linsen oder Spiegeln zur Konzentration des Lichts auf die Solarzellen sind bekannt, es werden Konzentrationsfaktoren von bis zu 1.000-fach erreicht. Nachteilig bei den optischen Lösungen ist allerdings, daß das gesamte elektromagnetische Spektrum des Lichts konzentriert wird, so daß nicht nur das wirksame Licht konzentriert wird, sondern auch das das photovoltaisch unwirksame Licht. Dies führt zu einer unerwünschten thermischen Belastung der Solarzellen und zu einer Verringerung des Wirkungsgrads. Um die Temperaturen nicht zu hoch werden zu lassen, kann man die Solarzellen aktiv oder passiv kühlen. Darüber hinaus müssen die Linsen oder die Linsensysteme aufwendig mechanisch dem Sonnenstand nachgeführt werden, ferner können sie nur das direkt auftreffende Licht abbilden. Diffuses Licht trägt wenig oder gar nicht zur Energiegewinnung bei. (siehe US-PS 5,489,297)Optical systems based on lenses or mirrors for the concentration of light on the solar cells are known, concentration factors of up to 1,000 times are achieved. A disadvantage of the optical solutions, however, is that the entire electromagnetic spectrum of the light is concentrated, so that not only the effective light is concentrated, but also the photovoltaic ineffective light. This leads to an undesirable thermal load on the solar cells and a reduction in the efficiency. In order not to let the temperatures get too high, you can actively or passively cool the solar cells. In addition, the lenses or the lens systems must be tracked consuming mechanically the position of the sun, they also can only reflect the directly incident light. Diffused light contributes little or no energy. (see US Patent 5,489,297)
Aufgabetask
Es bestand angesichts des oben diskutierten Standes der Technik die Aufgabe, Konzentrationswege für die optische Strahlung der Sonne zu entwickeln, die in der Lage sind,In the light of the prior art discussed above, it has been the object to develop concentration paths for the optical radiation of the sun that are capable of
• diffuses Licht zu nutzen und daher ohne aufwendige Nachführmechanik auskommen,• to use diffused light and therefore manage without complicated tracking mechanism,
• ein auf das Absorptionsspektrum der verwendeten Solarzelle (beispielsweise Si oder GaAs) abgestimmtes Licht zu liefern,To provide a light tuned to the absorption spectrum of the solar cell used (for example Si or GaAs),
• einen den optischen Konzentratoren vergleichbaren Konzentrationsgrad zu erzielen, • einfach und preiswert hergestellt zu werden ,• achieve a concentration level comparable to the optical concentrators, • easy and inexpensive to manufacture
• die Wärmebelastung der Solarzellen und den damit verbundenen Wirkungsgradverlust zu verringern,• reduce the heat load on the solar cells and the associated loss of efficiency,
• die aktive Solarzellenfläche zu verringern,• reduce the active solar cell area,
• beständig gegen Witterungseinflüsse zu sein und im Laufe des Betriebs die optischen Eigenschaften praktisch nicht verändern,• be resistant to the effects of the weather and practically do not change the optical properties during operation,
Lösungsolution
Die Lösung der oben aufgeführten Aufgabe gelingt durch eine Verwendung verschiedener Fluoreszenzkonversionsfarbstoffe in Kunststofffformkörpern, deren Spektren so aufeinander abgestimmt sind, daß das eingestrahlte Licht gezielt mit solchen Wellenlängen abgestrahlt wird, die auf die jeweilige Solarzelle abgestimmt sind.The solution of the above-mentioned object is achieved by using different fluorescence conversion in Kunststofffformkörpern whose spectra are coordinated so that the incident light is emitted selectively with such wavelengths that are tailored to the respective solar cell.
Die Lösung umfaßt ferner die Lösung der Farbstoffe oder der Farbstoffgemische in einem Monomergemisch, das anschließend zu einem Kunststoffformkörper polymerisiert wird.The solution further comprises the solution of the dyes or the dye mixtures in a monomer mixture, which is then polymerized to a plastic molding.
Der Kunststoffform körper kann ein- oder mehrschichtig aufgebaut sein und Schichten umfassen, die gleiche oder unterschiedliche Farbstoffe oder Farbstoffgemische enthalten. Die einzelnen Schichten können z.B. durch Verkleben oder durch Polymerisation miteinander fest verbunden sein. Dies kann z.B. nach Verfahren, die in den Anmeldungen DE 10233684 und DE 10254276 beschrieben sind, erfolgen.The plastic mold body can be constructed in one or more layers and include layers containing the same or different dyes or dye mixtures. The individual layers may e.g. be firmly bonded by gluing or by polymerization. This can e.g. by methods described in applications DE 10233684 and DE 10254276.
Die Schichtung kann aber auch durch loses aufeinanderstapeln der einzelnen Kunststoffformkörper erfolgen. ungsgemäße Lösung bietet folgende Vorteile:The layering can also be done by loose stacking of the individual plastic moldings. The solution according to the invention offers the following advantages:
- Das eingestrahlte Sonnenlicht wird in für Silizium-Photovoltaikzellen optimale Wellenlängen umgewandelt,The irradiated sunlight is converted into optimal wavelengths for silicon photovoltaic cells,
- Die Herstellung der Fluoreszenzkonversionssolarzellen kann nach bekannten Verfahren erfolgen,The preparation of the fluorescence conversion solar cells can be carried out by known methods,
- Die Solarzellen werden vor Vandalismus geschützt,- The solar cells are protected against vandalism,
- die Konversionsraten sind überraschend hoch,- the conversion rates are surprisingly high,
- der Kunststoffformkörper ist einfach an die geometrischen und statischen Erfordernisse der Solarzelle anpassbar,the plastic molding is easily adaptable to the geometric and static requirements of the solar cell,
- der Kunststoffformkörper ist leichter als eine vergleichbare Anordnung aus Mineralglas,the plastic molding is lighter than a comparable arrangement of mineral glass,
- der Kunststoffformkörper kann schlagzäh ausgerüstet sein, so daß die Solarzellenanordnung gegen Hagel geschützt ist. - The plastic molding can be equipped impact resistant, so that the solar cell array is protected against hail.
Die Herstellung des Kunststoffformkörpers Die MonomereThe production of the plastic molding The monomers
Die (Meth)acrylateThe (meth) acrylates
Eine besonders bevorzugte Gruppe von Monomeren stellen (Meth)acrylate dar. DerA particularly preferred group of monomers are (meth) acrylates
Ausdruck (Meth)acrylate umfaßt Methacrylate und Acrylate sowie Mischungen aus beiden.Expression (meth) acrylates include methacrylates and acrylates as well as mixtures of both.
Diese Monomere sind weithin bekannt. Zu diesen gehören unter anderemThese monomers are well known. These include, among others
(Meth)acrylate, die sich von gesättigten Alkoholen ableiten, wie beispielsweise Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, lsopropyl(meth)acrylat, n-Butyl(meth)acrylat, tert.-Butyl(meth)acrylat, Butoxymethyl(meth)acrylat, Pentyl(meth)acrylat, Hexyl(meth)acrylat, Heptyl(meth)acrylat, Octyl(meth)acrylat, lsooctyl(meth)acrylat, lsodecyl(meth)acrylat, Tetrahydrofurfuryl(meth)acrylat, Cyclohexyl(meth)acrylat und 2-Ethylhexyl(meth)acrylat; (Meth)acrylate, die sich von ungesättigten Alkoholen ableiten, wie beispielsweise Oleyl(meth)acrylat, 2-Propinyl(meth)acrylat, Allyl(meth)acrylat, Vinyl(meth)acrylat; Aryl(meth)acrylate, wie beispielsweise Benzyl(meth)acrylat oder Phenyl(meth)acrylat, wobei die Arylreste jeweils unsubstituiert oder bis zu vierfach substituiert sein können; Cycloalkyl(meth)acrylate, wie beispielsweise 3-Vinylcyclohexyl(meth)acrylat, Bornyl(meth)acrylat; lsobornyl(meth)acrylat, Hydroxylalkyl(meth)acrylate, wie beispielsweise 3-Hydroxypropyl(meth)acrylat, 3,4-Dihydroxybutyl(meth)acrylat, 2- Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat; Glycoldi(meth)acrylate, wie beispielsweise 1 ,4-Butandiol(meth)acrylat, (Meth)acrylate von Etheralkoholen, wie beispielsweise Tetrahydrofurfuryl(meth)acrylat, Vinyloxyethoxyethyl(meth)acrylat; Amide und Nitrile der (Meth)acrylsäure, wie beispielsweise(Meth) acrylates derived from saturated alcohols, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, butoxymethyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, isodecyl (meth) acrylate, tetrahydrofurfuryl (meth ) acrylate, cyclohexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; (Meth) acrylates derived from unsaturated alcohols, such as oleyl (meth) acrylate, 2-propynyl (meth) acrylate, allyl (meth) acrylate, vinyl (meth) acrylate; Aryl (meth) acrylates, such as benzyl (meth) acrylate or phenyl (meth) acrylate, wherein the aryl radicals may each be unsubstituted or substituted up to four times; Cycloalkyl (meth) acrylates such as 3-vinylcyclohexyl (meth) acrylate, bornyl (meth) acrylate; isobornyl (meth) acrylate, hydroxyalkyl (meth) acrylates such as 3-hydroxypropyl (meth) acrylate, 3,4-dihydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate; Glycol di (meth) acrylates such as 1,4-butanediol (meth) acrylate, (meth) acrylates of ether alcohols such as tetrahydrofurfuryl (meth) acrylate, vinyloxyethoxyethyl (meth) acrylate; Amides and nitriles of (meth) acrylic acid, such as
N-(3-Dimethylaminopropyl)(meth)acrylamid, N-(Diethylphosphono)(meth)acrylamid, 1 -Methacryloylamido-2-methyl-2-propanol; schwefelhaltige Methacrylate, wie beispielsweise Ethylsulfinylethyl(meth)acrylat, 4-Thiocyanatobutyl(meth)acrylat, Ethylsulfonylethyl(meth)acrylat, Thiocyanatomethyl(meth)acrylat, Methylsulfinylmethyl(meth)acrylat, Bis((meth)acryloyloxyethyl)sulfid; mehrwertige (Meth)acrylate, wie beispielsweise Trimethyloylpropantri(nneth)acrylat.N- (3-dimethylaminopropyl) (meth) acrylamide, N- (diethylphosphono) (meth) acrylamide, 1-methacryloylamido-2-methyl-2-propanol; sulfur-containing methacrylates, such as, for example, ethylsulfinylethyl (meth) acrylate, 4-thiocyanatobutyl (meth) acrylate, ethylsulfonylethyl (meth) acrylate, thiocyanatomethyl (meth) acrylate, Methylsulfinylmethyl (meth) acrylate, bis ((meth) acryloyloxyethyl) sulfide; polyvalent (meth) acrylates such as trimethyloylpropane tri (n-theth) acrylate.
Diese Monomere können einzeln oder als Mischung verwendet werden. Hierbei sind Mischungen besonders bevorzugt, die Methacrylate und Acrylsäureester enthalten.These monomers may be used singly or as a mixture. In this case, mixtures are particularly preferred which contain methacrylates and acrylic esters.
Die RadikalbildnerThe radical formers
Die Polymerisation wird im Allgemeinen mit bekannten Radikalinitiatoren gestartet. Zu den bevorzugten Initiatoren gehören unter anderem die in der Fachwelt weithin bekannten Azoinitiatoren, wie AIBN und I J -Azobiscyclohexancarbonitril, sowie Peroxyverbindungen, wie Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxyd, tert.-Butylper-2-ethylhexanoat, Ketonperoxid, Methylisobutylketonperoxid, Cyclohexanonperoxid, Dibenzoylperoxid, tert.- Butylperoxybenzoat, tert.-Butylperoxyisopropylcarbonat, 2,5-Bis(2-ethylhexanoyl- peroxy)-2,5-dimethylhexan, tert.-Butylperoxy-2-ethylhexanoat, tert.-Butylperoxy-3,5,5- trimethylhexanoat, Dicumylperoxid, 1 ,1 -Bis(tert.-butylperoxy)cyclohexan, 1 ,1 -Bis(tert.-butylperoxy)3,3,5-trimethylcyclohexan, Cumylhydroperoxid, tert.- Butylhydroperoxid, Bis(4-tert.-butylcyclohexyl)peroxydicarbonat, Mischungen von zwei oder mehr der vorgenannten Verbindungen miteinander sowie Mischungen der vorgenannten Verbindungen mit nicht genannten Verbindungen, die ebenfalls Radikale bilden können.The polymerization is generally started with known free-radical initiators. Among the preferred initiators include the well-known in the art azo initiators such as AIBN and IJ -Azobiscyclohexancarbonitril, and peroxy compounds such as methyl ethyl ketone peroxide, acetylacetone, Dilaurylperoxyd, tert-butyl per-2-ethylhexanoat, ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, dibenzoyl peroxide, tert Butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, 2,5-bis (2-ethylhexanoylperoxy) -2,5-dimethylhexane, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxy-3,5,5-trimethylhexanoate, Dicumyl peroxide, 1,1-bis (tert-butylperoxy) cyclohexane, 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, cumyl hydroperoxide, tert-butyl hydroperoxide, bis (4-tert-butylcyclohexyl) peroxydicarbonate, mixtures of two or more of the aforementioned compounds with one another and mixtures of the abovementioned compounds with unspecified compounds which can also form free radicals.
Diese Verbindungen werden häufig in einer Menge von 0,01 bis 1 ,0 Gew.-%, vorzugsweise von 0,05 bis 0,3 Gew.-%, bezogen auf das Gewicht der Monomeren, eingesetzt. Die SchlagzähmodifierThese compounds are often used in an amount of 0.01 to 1, 0 wt .-%, preferably from 0.05 to 0.3 wt .-%, based on the weight of the monomers. The impact modifiers
Bevorzugte schlagzähe Gußkörper, die zur Herstellung des Polymethylmethacrylat- Formkörper dienen können, enthalten 1 Gew.-% bis 30 Gew.-%, bevorzugt 2 Gew.-% bis 20 Gew.-%, besonders bevorzugt 3 Gew.-% bis 15 Gew.-%, insbesondere 5 Gew.- % bis 12 Gew.-% Gew.-% eines Schlagzähmodifizierungsmittels, welches eine Elastomerphase aus vernetzten Polymehsatteilchen darstellt.Preferred impact-resistant castings which can be used to produce the polymethyl methacrylate molded body comprise 1% by weight to 30% by weight, preferably 2% by weight to 20% by weight, particularly preferably 3% by weight to 15% by weight %, in particular 5% by weight to 12% by weight, of an impact modifier which constitutes an elastomer phase of crosslinked polymer particles.
Das Schlagzähmodifizierungsmittel kann in an sich bekannter Weise durch Perlpolymerisation oder durch Emulsionspolymehsation erhalten werden.The impact modifier can be obtained in a manner known per se by bead polymerisation or by emulsion polymerisation.
Bevorzugte Schlagzähmodifizierungsmittel stellen vernetzte Teilchen mit einer mittleren Teilchengröße im Bereich von 50 bis 1.000 nm, bevorzugt 60 bis 500 nm und besonders bevorzugt 80 bis 120 nm dar.Preferred impact modifiers are crosslinked particles having an average particle size in the range of 50 to 1,000 nm, preferably 60 to 500 nm and particularly preferably 80 to 120 nm.
Derartige Partikel können beispielsweise durch die radikalische Polymerisation von Mischungen erhalten werden, die in der Regel mindestens 40 Gew.-%, bevorzugt 50 Gew.-% bis 70 Gew.-% Methylmethacrylat, 20 Gew.-% bis 80 Gew.-%, bevorzugt 25 Gew.-% bis 35 Gew.-% Butylacrylat sowie 0,1 Gew.-% bis 2 Gew.-%, bevorzugt 0,5 Gew.-% bis 1 Gew.-% eines vernetzenden Monomeren, z. B. einem mehrfunktionellen (Meth)acrylat, wie z. B. Allylmethacrylat und Comonomeren, die mit den zuvor genannten Vinylverbindungen copolymerisiert werden können.Such particles can be obtained, for example, by the radical polymerization of mixtures which are generally at least 40% by weight, preferably 50% by weight to 70% by weight, of methyl methacrylate, 20% by weight to 80% by weight, preferably 25 wt .-% to 35 wt .-% butyl acrylate and 0.1 wt .-% to 2 wt .-%, preferably 0.5 wt .-% to 1 wt .-% of a crosslinking monomer, eg. B. a polyfunctional (meth) acrylate, such as. As allyl methacrylate and comonomers that can be copolymerized with the aforementioned vinyl compounds.
Zu den bevorzugten Comonomeren gehören unter anderem Ci - C4- Alkyl(meth)acrylaten, wie Ethylacrylat oder Butylmethacrylat, bevorzugt Methylacrylat, oder anderen vinylisch polymerisierbaren Monomeren wie z. B. Styrol. Die Mischungen zur Herstellung der zuvor genannten Partikel können vorzugsweise 0 Gew.-% bis 10 Gew.-%, bevorzugt 0,5 Gew.-% bis 5 Gew.-% Comonomere umfassen.Among the preferred comonomers are, inter alia, C 1 -C 4 -alkyl (meth) acrylates, such as ethyl acrylate or butyl methacrylate, preferably methyl acrylate, or other vinylically polymerizable monomers, such as e.g. Styrene. The mixtures for the preparation of the aforementioned particles may preferably comprise 0 wt .-% to 10 wt .-%, preferably 0.5 wt .-% to 5 wt .-% comonomers.
Besonders bevorzugte Schlagzähmodifizierungsmittel sind Polymerisatteilchen, die einen zwei-, besonders bevorzugt einen dreischichtigen Kern-Schale-Aufbau aufweisen. Derartige Kern-Schale-Polymerisate sind unter anderem in EP-A 0 113 924, EP-A 0 522 351 , EP-A 0 465 049 und EP-A 0 683 028 beschrieben.Particularly preferred toughening modifiers are polymerizate particles which have a two-layer, particularly preferably a three-layer core-shell structure. Such core-shell polymers are described inter alia in EP-A 0 113 924, EP-A 0 522 351, EP-A 0 465 049 and EP-A 0 683 028.
Besonders bevorzugte Schlagzäh-Modifier auf Basis von Acrylatkautschuk haben unter anderem folgenden Aufbau:Particularly preferred impact modifiers based on acrylate rubber have, inter alia, the following structure:
Kern: Polymerisat mit einem Methylmethacrylatanteil von mindestens 90Core: polymer with a methyl methacrylate content of at least 90
Gew.-%, bezogen auf das Gewicht des Kerns.Wt .-%, based on the weight of the core.
Schale 1 : Polymerisat mit einem Butylacrylatanteil von mindestens 80 Gew.-%, bezogen auf das Gewicht der ersten Schale.Shell 1: polymer having a butyl acrylate content of at least 80% by weight, based on the weight of the first shell.
Schale 2: Polymerisat mit einem Methylmethacrylatanteil von mindestens 90 Gew.-%, bezogen auf das Gewicht der zweiten Schale.Shell 2: polymer having a methyl methacrylate content of at least 90% by weight, based on the weight of the second shell.
Der Kern sowie die Schalen können neben den genannten Monomeren jeweils weitere Monomere enthalten. Diese wurden zuvor dargelegt, wobei besonders bevorzugte Comonomere vernetzend wirken.The core and the shells may each contain other monomers in addition to the monomers mentioned. These have been previously set forth, with particularly preferred comonomers having a crosslinking effect.
Beispielsweise kann ein bevorzugter Acrylatkautschuk-Modifier folgenden Aufbau aufweisen:For example, a preferred acrylate rubber modifier may have the following structure:
Kern: Copolymerisat aus Methylmethacrylat (95,7 Gew.-%), Ethylacrylat (4Core: copolymer of methyl methacrylate (95.7% by weight), ethyl acrylate (4
Gew.-%) und Allylmethacrylat (0,3 Gew.-%), S1 : Copolymerisat aus Butylacrylat (81 ,2 Gew.-%), Styrol (17,5 Gew.-%) undWt .-%) and allyl methacrylate (0.3 wt .-%), S1: copolymer of butyl acrylate (81, 2 wt .-%), styrene (17.5 wt .-%) and
Allylmethacrylat (1 ,3 Gew.-%), S2: Copolymerisat aus Methylmethacrylat (96 Gew.-%) und Ethylacrylat (4Allyl methacrylate (1, 3 wt .-%), S2: copolymer of methyl methacrylate (96 wt .-%) and ethyl acrylate (4
Gew.-%)Wt .-%)
Das Verhältnis von Kern zu Schale(n) der Acrylatkautschuk-Modifier kann in weiten Bereichen schwanken. Vorzugsweise liegt das Gewichtsverhältnis Kern zu Schale K/S im Bereich von 20:80 bis 80:20, bevorzugt von 30:70 zu 70:30 bei Modifiern mit einer Schale bzw. das Verhältnis von Kern zu Schale 1 zu Schale 2 K/S1/S2 im Bereich von 10:80:10 bis 40:20:40, besonders bevorzugt von 20:60:20 bis 30:40:30 bei Modifiern mit zwei Schalen.The ratio of core to shell (s) of the acrylate rubber modifier can vary within wide limits. Preferably, the weight ratio of core to shell K / S is in the range from 20:80 to 80:20, preferably from 30:70 to 70:30 for modifiers with one shell or the ratio of core to shell 1 to shell 2 K / S1 / S2 in the range of 10:80:10 to 40:20:40, especially preferred from 20:60:20 to 30:40:30 for modifiers with two bowls.
Die Partikelgröße der Kern-Schale-Modifier liegt üblich im Bereich von 50 bis 1.000 nm, vorzugsweise 100 bis 500 nm und besonders bevorzugt von 150 bis 450 nm, ohne daß hierdurch eine Beschränkung erfolgen soll.The particle size of the core-shell modifier is usually in the range of 50 to 1000 nm, preferably 100 to 500 nm and more preferably from 150 to 450 nm, without this being a restriction.
Gemäß einer besonderen Ausführungsform weist der Polymethyl(meth)acrylat- Formkörper ein E-Modul von mindestens 2.800 N/mm2, vorzugsweise mindestens 3.300 N/mm2 gemäß ISO 527/2 auf.According to a particular embodiment, the polymethyl (meth) acrylate molded body has an E-modulus of at least 2,800 N / mm 2 , preferably at least 3,300 N / mm 2 according to ISO 527/2.
Der Kunststoffformkörper kann auch aus Polycarbonat (PC), Polystyrol (PS), Polyamid (PA), Polyester (PE), thermoplastischem Polyurethan (PU), Polyethersulfon, Polysulfonen, Vinylpolymeren, wie beispielsweise Polyvinylchlorid (PVC), aufgebaut sein.The plastics molding may also be made of polycarbonate (PC), polystyrene (PS), polyamide (PA), polyester (PE), thermoplastic polyurethane (PU), polyethersulfone, polysulfones, vinyl polymers such as polyvinyl chloride (PVC).
LichtschutzmittelLight stabilizers
Als Lichtschutzmittel werden UV-A und/oder UV-B-Absorber eingesetzt. Als Beispiele für Stoffklassen, die eingesetzt werden können, seien die HALS-Verbindungen genannt. Unter HALS-Verbindungen werden sterisch gehinderte Amine verstanden, wie sie beispielsweise in der JP 0347856 beschrieben sind. Diese „hindered amine light stabilizers" fangen die Radikale ab, die sich bei Strahlenbelastung bilden. In den Handel werden diese Produkte durch Ciba unter der Marke TINUVIN® 123, TINUVIN® 571 , TINUVIN® 770 und TINUVIN® 622 gebracht.As a light stabilizer UV-A and / or UV-B absorbers are used. Examples of classes of substances which can be used are the HALS compounds. HALS compounds are understood as meaning sterically hindered amines, as described, for example, in JP 0347856. This "hindered amine light stabilizers" catch the radicals from that form when radiation exposure. In the trade these products are brought 622 by Ciba under the trade name TINUVIN ® 123, Tinuvin ® 571, Tinuvin ® 770 and Tinuvin ®.
Ferner können Lichtschutzmittel auf der Basis von Benzophenon-Dehvaten eingesetzt werden. In den Handel werden diese Produkte durch BASF unter der Marke UVINUL® 5411 gebracht. Lichtschutzmittel auf der Basis von Benzotriazolen können ebenfalls verwendet werden. In den Handel werden diese Produkte durch Cytec unter der Marke CYASORB® UV 5411 oder von Ciba unter der Marke TINUVIN® P, Tinuvin® 571 und TINUVIN® 234 gebracht.Furthermore, light stabilizers based on benzophenone derivatives can be used. These products are marketed by BASF under the brand UVINUL ® 5411. Benzotriazole based light stabilizers can also be used. In the trade, these products are made by Cytec under the brand CYASORB ® UV 5411 or Ciba under the trade name TINUVIN ® P, Tinuvin ® 571 and Tinuvin ® 234th
OxidationsschutzmittelAntioxidants
Als Oxidationsschutzmittel können sterisch gehinderte Phenole oder Phosphite oder Phosphonite eingesetzt werden. In den Handel werden diese Produkte durch Ciba unter den Marken Irganox® und Irgafos® gebracht.As an antioxidant sterically hindered phenols or phosphites or phosphonites can be used. In the trade, these products are made by Ciba under the trademarks Irganox ® and Irgafos ®.
Das GußverfahrenThe casting process
Für die Kunststoffsubstrate, die durch das Gusskammerverfahren erzeugt werden, werden beispielsweise geeignete (Meth)acrylmischungen in eine Form gegeben und polymerisiert. Derartige (Meth)acrylmischungen weisen im Allgemeinen die zuvor dargelegten (Meth)acrylate, insbesondere Methylmethacrylat auf. Des Weiteren können die (Meth)acrylmischungen die zuvor dargelegten Copolymere sowie, insbesondere zur Einstellung der Viskosität, Polymere, insbesondere Poly(meth)acrylate, enthalten. Das Gewichtsmittel des Molekulargewichts Mw der Polymere, die durch Gusskammerverfahren hergestellt werden, ist im Allgemeinen höher als das Molekulargewicht von Polymeren, die in Formmassen verwendet werden. Hierdurch ergeben sich eine Reihe bekannter Vorteile. Im Allgemeinen liegt das Gewichtsmittel des Molekulargewichts von Polymeren, die durch Gusskammerverfahren hergestellt werden im Bereich von 500 000 bisFor the plastic substrates produced by the cast-chamber method, for example, suitable (meth) acrylic mixtures are placed in a mold and polymerized. Such (meth) acrylic mixtures generally have the above-described (meth) acrylates, in particular methyl methacrylate. Furthermore, the (meth) acrylic mixtures may contain the copolymers described above and, in particular for adjusting the viscosity, polymers, in particular poly (meth) acrylates. The weight average molecular weight M w of the polymers prepared by cast-chamber processes is generally higher than the molecular weight of polymers used in molding compositions. This results in a number of known advantages. In general, the weight average molecular weight of polymers prepared by cast chamber processes is in the range of 500,000 to
10 000 000 g/mol, ohne dass hierdurch eine Beschränkung erfolgen soll. Des Weiteren können lichtleitende Schichten der vorliegenden Erfindung durch Gußverfahren hergestellt werden. Hierbei werden geeignete Acrylharzmischungen in eine Form gegeben und polymerisiert. Ein geeignetes Acrylharz umfaßt beispielsweise10 000 000 g / mol, without this being a restriction. Furthermore, photoconductive layers of the present invention can be produced by casting. Here, suitable acrylic resin mixtures are placed in a mold and polymerized. A suitable acrylic resin includes, for example
1. 40 bis 99,999 Gew.-% Methyl methacrylat,1. 40 to 99.999% by weight of methyl methacrylate,
2. O bis 59,999 Gew.-% Comonomere,2. O to 59.999% by weight of comonomers,
3. 0 bis 59,999 Gew.-% in (1 ) oder (2) lösliche Polymere,3. 0 to 59.999% by weight of (1) or (2) soluble polymers,
4. 0,001 bis 0,1 Gew.-% eines oder mehrer Fluoreszenzfarbstoffe, wobei die Komponenten 1 ) bis 4) zusammen 100 Gew.-% ergeben.4. 0.001 to 0.1 wt .-% of one or more fluorescent dyes, wherein the components 1) to 4) together give 100 wt .-%.
Darüber hinaus weist das Acrylharz die zur Polymerisation notwendigen Initiatoren auf. Die Komponenten 1 bis 4 sowie die Initiatoren entsprechen den Verbindungen, die auch zur Herstellung geeigneter Polymethylmethacrylat Formmassen eingesetzt werden.In addition, the acrylic resin has the initiators necessary for the polymerization. The components 1 to 4 and the initiators correspond to the compounds which are also used for the preparation of suitable polymethyl methacrylate molding compositions.
Zur Aushärtung kann man z. B. das sogenannte Gußkammerverfahren (s. z. B. die DE 25 44 245, EP-B 570 782 oder EP-A 656 548) anwenden, bei der die Polymerisation einer Kunststoffscheibe zwischen zwei Glasplatten erfolgt, die mit einer umlaufenden Schnur abgedichtet werden.For curing you can z. As the so-called Gußkammerverfahren (see, for example, DE 25 44 245, EP-B 570 782 or EP-A 656 548) apply, in which the polymerization of a plastic disc between two glass plates, which are sealed with a circulating string.
Bevorzugte Kunststoffsubstrate können von Evonik Röhm GmbH kommerziell unter dem Handelsnamen PLEXIGLAS® GS erhalten werden. Die Abmessungen der Kunststoffsubstrate betragen beispielsweise (Länge X Breite X Dicke) zwischen 2 m Länge, 3 m Breite und die Dicke kann zwischen 1 ,5 mm bis 200 mm betragen, bevorzugt sind Platten mit dem Dickenbereich zwischen 2 mm und 20 mm, besonders bevorzugt sind Platten im Dickenbereich von 3 mm bis 10 mm. Die verwendeten FarbstoffePreferred plastic substrates can be obtained from Evonik commercially under the trade name PLEXIGLAS ® GS. The dimensions of the plastic substrates are for example (length X width X thickness) between 2 m length, 3 m width and the thickness can be between 1, 5 mm to 200 mm, preferably plates with the thickness range between 2 mm and 20 mm, particularly preferred are plates in the thickness range of 3 mm to 10 mm. The dyes used
Fluoreszierende FarbstoffeFluorescent dyes
Als Farbstoffe können Farbstoffe der Typen Perylen-, Terrylen- und Rylenderivate aus der Lumogen ® - Reihe der BASF, Rhodamine, LDS ® - Reihe von Exciton, substituierte Pyrane (z.B. DCM), Coumarine (z.B. Coumarin 30, Coumarin 1 , Coumahn 102, usw.) Oxazine (z.B. Nilblau oder auch als Nilblau A bezeichnet), Pyridine, Styrylderivate, Dioxazine, Naphthalimide, Thiazine, Stilbene und Cyanine (z.B. DODCI) von z. B. Lambdachronne ® und Exciton ® eingesetzt werden. Die Typen der Perylen-, Terrylen- und Rylenderivate Farbstoffe sind in der WO 2007/031446 beschrieben.As dyes dyes of the types perylene, terrylene and rylene derivatives can be prepared from the Lumogen ® - BASF, rhodamines, LDS ® row - number of exciton, substituted pyrans (such as DCM), coumarins (for example, Coumarin 30, Coumarin 1, Coumahn 102 etc.) oxazines (eg Nile Blue or also called Nile Blue A), pyridines, styryl derivatives, dioxazines, naphthalimides, thiazines, stilbenes and cyanines (eg DODCI) of e.g. B. Lambdachronne ® and Exciton ® are used. The types of perylene, terrylene and rylene derivatives dyes are described in WO 2007/031446.
Auch Komplexverbindungen der Lanthanide sowie nanoskopische Halbleiterstrukturen, sogenannte Quantum Dots, z.B. auf Basis Cadmiumselenid, Cadmiumsulfid, Zinksulfid, Bleiselenid, Bleisulfid u.a. sind dafür geeignet. Herstellung und Verwendung der Quantum Dots sind in US 2007/0132052, US 2007/0174939, WO 0229140, WO 2004022637, WO 2006065054 und WO 2007073467 beschrieben.Also complex compounds of the lanthanides and nanoscopic semiconductor structures, so-called quantum dots, e.g. based on cadmium selenide, cadmium sulfide, zinc sulfide, lead selenide, lead sulfide and the like. are suitable for it. Production and use of the Quantum Dots are described in US 2007/0132052, US 2007/0174939, WO 0229140, WO 2004022637, WO 2006065054 and WO 2007073467.
Komplexverbindungen der Lanthanide sind in CA 20072589575, EP 0767912 und in WO 9839822 sowie in Appl. Phys. Lett. 91 , 051903 (2007), 23rd European Photovoltaic Solar Energy Conference, Valencia, 700 (2008), Am. Chem. Soc. (2007), DOI 10.1021/ja070058e beschrieben. Die photonische SchichtComplex compounds of the lanthanides are described in CA 20072589575, EP 0767912 and in WO 9839822 and in Appl. Phys. Lett. 91, 051903 (2007), 23 rd European Photovoltaic Solar Energy Conference, Valencia, 700 (2008), Am. Chem. Soc. (2007), DOI 10.1021 / ja070058e. The photonic layer
Die photonische Schicht ist auf den Kunststoffformkörper angeordnet, so daß das Sonnenlicht diese Schicht erst durchdringen muß, bevor die Fluoreszenzfarbstoffe im Kunststoffformkörper zur Fluoreszenz angeregt werden könnenThe photonic layer is arranged on the plastic molding, so that the sunlight must first penetrate this layer before the fluorescent dyes in the plastic molding can be excited to fluoresce
Als photonische Schicht bzw. wellenlängenabhängige Spiegel sind z.B. Interferenzfilter (Stack Filter, Rugate Filter, Notch Filter usw.), die als Bandpaßfilter oder Kantenfilter aufgebaut sein können, bekannt. Diese werden z.B. durch abscheiden mehrerer dünner dielektrischer Schichten mit verschiedenen Brechzahlen auf ein Substrat hergestellt, (s. Olaf Stenzel, "The Physics of Thin Film Optical Spectra", Springer-Verlag) und (N.Kaiser, H. K. Pulker, Optical Interference Coatings", Springer-Verlag).As photonic layer or wavelength dependent mirrors are e.g. Interference filter (stack filter, rugate filter, notch filter, etc.), which may be constructed as a band-pass filter or edge filter known. These are e.g. by depositing a plurality of thin dielectric layers having different refractive indices onto a substrate, (see Olaf Stenzel, "The Physics of Thin Film Optical Spectra", Springer-Verlag) and (N.Kaiser, HK Pulker, Optical Interference Coatings ", Springer-Verlag). Publishing company).
Die Schichtdicke der einzelnen Schicht ist dabei in der Regel kleiner als die Lichtwellenlänge.The layer thickness of the individual layer is generally smaller than the wavelength of light.
Eine weitere Möglichkeit ist die Verwendung von photonischen Kristallen, die in folgenden Anmeldungen beschrieben werden (DE 10024466, DE 10204338, DE 10227071 , DE 10228228, DE 102004055303,US 6,863,847, WO 0244301 , DE 10357681 , DE 102004009569, DE 102004032120, WO 2006045567, DE 10245848, DE 102006017163)A further possibility is the use of photonic crystals which are described in the following applications (DE 10024466, DE 10204338, DE 10227071, DE 10228228, DE 102004055303, US Pat. No. 6,863,847, WO 0244301, DE 10357681, DE 102004009569, DE 102004032120, WO 2006045567, DE 10245848, DE 102006017163)
Dabei handelt es sich um kleine transparente kugelförmige anorganische oder organische Körper, die in der dichtesten Kugelpackung angeordnet sind. Je nach Größe und Abstand der Kugeln reflektieren diese Licht in einer definierten Bandbreite und lassen das übrige Licht nahezu vollständig durch diese Schicht durch. Es können auch hohlkugelförmige Strukturen eingesetzt werden. Dann handelt es sich um inverse Opale. Die einzelnen kugelförmigen oder hohlkugelförmigen Strukturen haben dabei den Durchmesser von ca. 1/3 der zu reflektierenden Lichtwellenlänge (Abhängig vom Einfallswinkel des Lichtes und dem Abstand der Kugeln). Der ReflektorThese are small transparent spherical inorganic or organic bodies, which are arranged in the densest sphere packing. Depending on the size and spacing of the balls, they reflect light in a defined bandwidth and allow the remaining light to pass almost completely through this layer. Hollow-spherical structures can also be used. Then these are inverse opals. The individual spherical or hollow-spherical structures have the diameter of about 1/3 of the wavelength of light to be reflected (depending on the angle of incidence of the light and the distance of the balls). The reflector
Unter dem Kunststoffformkörper kann gegebenenfalls zur Ausbeuteerhöhung noch ein optisch reflektierender Formkörper, z.B. ein Spiegel oder eine weiße Folie oder eine Platte angeordnet sein.Optionally, to increase the yield, an optically reflecting shaped body, e.g. a mirror or a white foil or a plate.
Die SolarzellenThe solar cells
Die Solarzelle kann aus den üblichen Materialen aufgebaut sein, wie beispielsweiseThe solar cell can be constructed of the usual materials, such as
• Siliziumsolarzellen• silicon solar cells
Monokristallines Silizium (c-Si), multikristallines Silizium (mc-Si), amorphes Silizium (a-Si), ebenso Tandemzellen aus multikristallinem und amorphem SiliziumMonocrystalline silicon (c-Si), multicrystalline silicon (mc-Si), amorphous silicon (a-Si), as well as tandem cells made of multicrystalline and amorphous silicon
• Ill-V-Halbleiter Solarzellen• Ill-V semiconductor solar cells
Galliumarsenid (GaAs), Gallium-Indium-Phosphid (GaInP), Gallium-Indium- Arsenid (GaInAs), Gallium-Indium-Arsen-Phosphid (GaInAsP), Gallium-Indium- Phosphid (GaInP), Galliumantimonid (GaSb)Gallium arsenide (GaAs), gallium indium phosphide (GaInP), gallium indium arsenide (GaInAs), gallium indium arsenic phosphide (GaInAsP), gallium indium phosphide (GaInP), gallium antimonide (GaSb)
Ebenso Tandemzellen (Mehrfachsolarzelle) aus Gallium-Indium-Phosphid und Galliumarsenid, aus Gallium-Indium-Arsenid und Gallium-Indium-Arsen- Phosphid, aus Gallium-Indium-Phosphid und Gallium-Indium-Arsenid , aus Galliumarsenid und Galliumantimonid oder aus Gallium-Arsenid und Germanium bzw. Tripelzellen (3-fach Solarzelle) aus Gallium-Indium-Phosphid, Galliumarsenid und Germanium oder aus Gallium-Indium-Phosphid, Gallium- Indium-Arsenid und Galliumantimonid Il-Vl-Halbleiter SolarzellenLikewise tandem cells (multiple solar cell) of gallium indium phosphide and gallium arsenide, of gallium indium arsenide and gallium indium arsenic phosphide, of gallium indium phosphide and gallium indium arsenide, of gallium arsenide and gallium antimonide or of gallium Arsenide and germanium or triple cells (triple solar cell) made of gallium indium phosphide, gallium arsenide and germanium or of gallium indium phosphide, gallium indium arsenide and gallium antimonide Il Vl semiconductor solar cells
Cadmiumtellurid (CdTe), Cadmiumsulfid (CdS)Cadmium telluride (CdTe), cadmium sulfide (CdS)
I-Ill-V-Halbleiter SolarzellenI-III V-Semiconductor Solar Cells
CIS-Zellen: Kupfer-Indium-Diselenid (CulnSe2) bzw. Kupfer-Indium-DisulfidCIS cells: copper indium diselenide (CulnSe2) or copper indium disulfide
(CulnS2)(CuInS 2)
CIGS-Zellen: Kupfer-Indium-Gallium-Diselenid (CulnGaSe2)CIGS cells: copper indium gallium diselenide (CulnGaSe2)
Kupfer-Gallium-Diselenid (CuGaSe2), Kupfer-Gallium-Disulfid (CuGaS2)Copper Gallium Diselenide (CuGaSe2), Copper Gallium Disulfide (CuGaS2)
Außerdem gibt es noch neuere Entwicklungen von Solarzellen auf der Basis von organischen Werkstoffen.There are also recent developments of solar cells based on organic materials.
Die folgende Tabelle zeigt einige Beispiele von Halbleitern für Solarzellen. Die angegebene Wellenlänge entspricht der Wellenlänge des Lichtes, das die Energie liefert, die gleich der Energie der Energielücke des Halbleiters ist, d.h. mit diesem Licht arbeitet der Halbleiter als Solarzelle am effektivsten (Die Fluoreszenzkonversionszelle wird auf diese Wellenlänge abgestimmt). The following table shows some examples of semiconductors for solar cells. The specified wavelength corresponds to the wavelength of the light which provides the energy equal to the energy of the energy gap of the semiconductor, ie with this light, the semiconductor works most effectively as a solar cell (the fluorescence conversion cell is tuned to this wavelength).
Figure imgf000019_0001
Figure imgf000019_0001
Durchführung der ErfindungImplementation of the invention
BeispieleExamples
Beschreibung der Herstellung von lumineszierenden SolarkonzentratorenDescription of the production of luminescent solar concentrators
Beispiel 1 : Herstellung einer homogen eingefärbten PlatteExample 1: Preparation of a homogeneously colored plate
In 1.000 Gewichts-Teilen präpolymerem Metylmethacrylat-Sirup (Viskosität ca. 1.000 cP) wird 1 Gewichts-Teil 2, 2'-Azobis-(2,4-dimethylvaleronitril) gelöst.In 1,000 weight parts of Prepolymer Metylmethacrylat syrup (viscosity about 1000 cP) is dissolved 1 part by weight 2, 2 'azobis (2,4-dimethylvaleronitrile).
Anschließend wird eine Mischung, bestehend ausSubsequently, a mixture consisting of
0,15 Gewichts-Teilen Lumogen Gelb 083 (BASF) 0,16 Gewichts-Teilen Lumogen Orange 240 (BASF) 0,40 Gewichts-Teilen Lumogen Rot 305 (BASF)0.15 part by weight Lumogen Yellow 083 (BASF) 0.16 part by weight Lumogen Orange 240 (BASF) 0.40 part by weight Lumogen Red 305 (BASF)
hinzugefügt.added.
Der Ansatz wird intensiv gerührt, in eine mit 10mm dicken Schnur distanziertenThe mixture is stirred intensively, in a 10mm thick string distanced
Silikatglaskammer gefüllt und im Wasserbad bei 45°C etwa 16 Stunden lang polymerisiert. Die Endpolymerisation erfolgt im Temperschrank bei 115°C für etwa 4Silicate glass filled and polymerized in a water bath at 45 ° C for about 16 hours. The final polymerization is carried out in a Temperschrank at 115 ° C for about 4
Stunden.Hours.
Man erhält eine homogene rot fluoreszierende Platte von 10 mm Dicke. Beispiel 2 : Vorrichtung mit drei SchichtenThis gives a homogeneous red fluorescent plate of 10 mm thickness. Example 2: Device with three layers
Grüne Abdeckung:Green cover:
InI OOO Gewichts-Teilen präpolymerem Metylmethacrylat-Sirup (Viskosität ca. 1.000 cP) wird 1 Gewichts-Teil 2,2'-Azobis-(2,4-dimethylvaleronitril) gelöst.InI OOO weight parts of Prepolymer Metylmethacrylat syrup (viscosity about 1000 cP) is 2,2 'azobis dissolved (2,4-dimethylvaleronitrile), 1 weight part.
Anschließend werdenThen be
0,15 Gewichts-Teile Lumogen Gelb 083 (BASF)0.15 parts by weight of Lumogen Yellow 083 (BASF)
hinzugefügt.added.
Der Ansatz wird intensiv gerührt, in eine mit 3mm dicken Schnur distanzierten Silikatglaskammer gefüllt und im Wasserbad bei 45°C etwa 16 Stunden lang polymerisiert. Die Endpolymerisation erfolgt im Temperschrank bei 115°C für etwa 4 Stunden.The mixture is stirred vigorously, filled into a silicate glass chamber which is distanced with 3 mm thick cord and polymerized in a water bath at 45 ° C. for about 16 hours. The final polymerization is carried out in a tempering at 115 ° C for about 4 hours.
Rote Abdeckung:Red cover:
In 1000 Gewichts-Teilen präpolymerem Metylmethacrylat-Sirup (Viskosität ca. 1000 cP) wird 1 Gewichts-Teil 2,2'-Azobis-(2,4-dimethylvaleronitril) gelöst.In 1000 weight parts of Prepolymer Metylmethacrylat syrup (viscosity about 1000 cP) is 1 weight part of 2,2 'azobis dissolved (2,4-dimethylvaleronitrile).
Anschließend werdenThen be
0,40 Gewichts-Teile Lumogen Rot 305 (BASF)0.40 parts by weight Lumogen Red 305 (BASF)
hinzugefügt. Der Ansatz wird intensiv gerührt, in eine mit 3mm dicken Schnur distanzierten Silikatglaskammer gefüllt und im Wasserbad bei 45°C etwa 16 Stunden lang polymerisiert. Die Endpolymerisation erfolgt im Temperschrank bei 115°C für etwa 4 Stunden.added. The mixture is stirred vigorously, filled into a silicate glass chamber which is distanced with 3 mm thick cord and polymerized in a water bath at 45 ° C. for about 16 hours. The final polymerization is carried out in a tempering at 115 ° C for about 4 hours.
Innenschicht:Inside:
In 1.000 Gewichts-Teilen präpolymerem Metylmethacrylat-Sirup (Viskosität ca. 1.000 cP) wird 1 Gewichts-Teil 2, 2'-Azobis-(2,4-dimethylvaleronitril) gelöst.In 1,000 weight parts of Prepolymer Metylmethacrylat syrup (viscosity about 1000 cP) is dissolved 1 part by weight 2, 2 'azobis (2,4-dimethylvaleronitrile).
Anschließend werdenThen be
0,16 Gewichts-Teile Lumogen Orange 240 (BASF)0.16 parts by weight of Lumogen Orange 240 (BASF)
hinzugefügt.added.
Der Ansatz wird intensiv gerührt, in eine mit 3mm dicken Schnur distanzierten Kammer gefüllt, welche aus der grünen und der roten Abdeckung gebildet ist, und im Wasserbad bei 45°C etwa 16 Stunden lang polymerisiert. Die Endpolymerisation erfolgt im Temperschrank bei 115°C für etwa 4 Stunden.The batch is stirred vigorously, filled into a 3mm thick cord spaced compartment formed of the green and red covers, and polymerized in the water bath at 45 ° C for about 16 hours. The final polymerization is carried out in a tempering at 115 ° C for about 4 hours.
Man erhält eine dreischichtige fluoreszierende Platte mit der Gesamtdicke 9 mm. ErgebnisA three-layered fluorescent plate with a total thickness of 9 mm is obtained. Result
Von den Versuchen nach Bsp.1 und 2 wurden Proben in den Abmessungen von ca. 10x10mnn geschnitten und an allen Kanten poliert. Anschließend wurde die Fluoreszenzintensität an einem Fluoreszenz Spektralphotometer LS-55 (Perkin Eimer) vermessen. Zur Anregung wurde eine tageslichtähnliche Xenonlichtquelle eingesetzt.From the experiments according to Ex.1 and 2 samples were cut in the dimensions of about 10x10mnn and polished on all edges. Subsequently, the fluorescence intensity was measured on a fluorescence spectrophotometer LS-55 (Perkin Elmer). For excitation, a daylight-like xenon light source was used.
Die maximalen Intensitäten und die zugehörigen Wellenlängen sind in Tab. 1 erfasst.The maximum intensities and the associated wavelengths are recorded in Tab.
Tabelle 1Table 1
Figure imgf000023_0001
Figure imgf000023_0001
Der Versuch nach Bsp 2 zeigt eine deutlich höhere Intensität. The experiment according to Ex 2 shows a much higher intensity.
Figurenbeschreibungfigure description
1 photonische Schicht1 photonic layer
2 Homogen eingefärbte lumineszierender Fluoreszenzkollektor2 Homogeneously colored luminescent fluorescence collector
21 , 22, 23 mehrschichtig eingefärbte lumineszierender Fluoreszenzkollektor21, 22, 23 multi-layered luminescent fluorescent collector
3 Reflektor, z. B. Spiegel oder weiße Platte3 reflector, z. Mirror or white plate
4, 41 , 42, 43 an Fluoreszenzkollektor angepasste Solarzellen4, 41, 42, 43 adapted to fluorescence collector solar cells
3.1 Lichtquelle3.1 light source
3.2 Oberfläche der Probe3.2 Surface of the sample
3.3 Kante der Probe3.3 edge of the sample
3.4 Detektor 3.4 detector

Claims

Patentansprüche claims
1. Kunststoffformkörper aus Polymethyl(nneth)acrylat,1. Plastic moldings of polymethyl (nneth) acrylate,
dadurch gekennzeichnet, daßcharacterized in that
er mit mindestens einem Fluoreszenzfarbstoff eingefärbt ist.it is colored with at least one fluorescent dye.
2. Mehrschichtiger Kunststoffformkörper aus Polymethyl(meth)acrylat,2. multilayer plastic molded article of polymethyl (meth) acrylate,
dadurch gekennzeichnet, daßcharacterized in that
er mit mindestens einem Fluoreszenzfarbstoff eingefärbt ist.it is colored with at least one fluorescent dye.
3. Kunststoffformkörper aus Polymethyl(meth)acrylat nach Anspruch 2,3. plastic moldings of polymethyl (meth) acrylate according to claim 2,
dadurch gekennzeichnet, daßcharacterized in that
er aus mehreren einzelnen Kunststoffformkörpern, die mit mindestens einem Fluoreszenzfarbstoff eingefärbt sind, aufgebaut ist.it is composed of several individual plastic moldings, which are colored with at least one fluorescent dye.
4. Kunststoffformkörper aus Polymethyl(meth)acrylat nach Anspruch 2,4. plastic molding of polymethyl (meth) acrylate according to claim 2,
dadurch gekennzeichnet, daßcharacterized in that
er aus einzelnen verklebten Kunststoffformkörpern, die mit mindestens einem Fluoreszenzfarbstoff eingefärbt sind, aufgebaut ist. it is composed of individual bonded plastic moldings, which are colored with at least one fluorescent dye.
5. Kunststoffformkörper aus Polymethyl(nneth)acrylat nach Anspruch 2,5. plastic moldings of polymethyl (nneth) acrylate according to claim 2,
dadurch gekennzeichnet, daßcharacterized in that
er aus mehreren Kunststoffformkörpern, die durch Polymerisation einer oder mehrer Kunststoffformkörper, die mit mindestens einem Fluoreszenzfarbstoff eingefärbt sind, zwischen zwei weiteren Kunstoffformkörpern, die mit mindestens einem Fluoreszenzfarbstoff eingefärbt sind, entstanden sind, aufgebaut ist.it is composed of a plurality of plastic moldings, which are formed by polymerization of one or more plastic moldings, which are colored with at least one fluorescent dye, between two further Kunstoffformkörpern which are colored with at least one fluorescent dye.
6. Kunststoffformkörper aus Polymethyl(meth)acrylat nach Anspruch 2,6. plastic moldings of polymethyl (meth) acrylate according to claim 2,
dadurch gekennzeichnet, daßcharacterized in that
er aus mehreren Kunststoffformkörpern, die durch Polymerisation einer oder mehrer Kunststoffformkörper, die mit mindestens einem Fluoreszenzfarbstoff eingefärbt sind, zwischen zwei weiteren Kunstoffformkörpern, die mit mindestens einem anderen Fluoreszenzfarbstoff eingefärbt sind, entstanden sind, aufgebaut ist.it is composed of a plurality of plastic moldings, which are formed by polymerization of one or more plastic moldings, which are colored with at least one fluorescent dye, between two further Kunstoffformkörpern which are colored with at least one other fluorescent dye.
7. Kunststoffformkörper aus Polymethyl(meth)acrylat nach einem der vorstehenden Ansprüche,7. plastic moldings of polymethyl (meth) acrylate according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
er mit mindestens einem organischen Fluoreszenzfarbstoff gefärbt ist. it is colored with at least one organic fluorescent dye.
8. Kunststoffformkörper aus Polymethyl(nneth)acrylat nach einem der vorstehenden Ansprüche,8. Plastic molding of polymethyl (nneth) acrylate according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
er mit mindestens einem organische Fluoreszenzfarbstoff auf der Basis von Rylen, Perylen, Terrylen und/oder Quaterrylen gefärbt ist.it is colored with at least one organic fluorescent dye based on rylene, perylene, terrylene and / or quaterrylene.
9. Kunststoffformkörper aus Polymethyl(meth)acrylat nach einem der vorstehenden Ansprüche,9. plastic molding of polymethyl (meth) acrylate according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
er mit mindestens einem Farbstoff auf Basis komplexer Lanthanoidverbindungen gefärbt ist.it is colored with at least one dye based on complex lanthanoid compounds.
10. Kunststoffformkörper aus Polymethyl(meth)acrylat nach einem der vorstehenden Ansprüche,10. plastic molding of polymethyl (meth) acrylate according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
er mit mindestens einem Farbstoff auf Basis nanoskopischer Halbleiterstrukturen (Quantum Dots) gefärbt ist. it is colored with at least one dye based on nanoscopic semiconductor structures (quantum dots).
11.Verfahren zur Herstellung eines Kunststoffformkörpers aus Polymethyl(meth)acrylat nach Anspruch 1 ,11.A method for producing a plastic molding of polymethyl (meth) acrylate according to claim 1,
dadurch gekennzeichnet, daßcharacterized in that
er in einem Gußverfahren hergestellt wird, welches folgende Schritte umfaßt: Lösung der Farbstoffe oder der Farbstoffmischung in einem Monomergemisch, überführen des Monomergemischs in eine Kammer und anschließendes Polymerisieren durch Temperaturerhöhung.it is prepared in a casting process, comprising the steps of: dissolving the dyes or the dye mixture in a monomer mixture, transferring the monomer mixture into a chamber, and then polymerizing by raising the temperature.
12. Anordnung aus einem Kunststoffformkörper nach Anspruch 2 und einer Solarzelle.12. Arrangement of a plastic molding according to claim 2 and a solar cell.
13. Anordnung nach Anspruch 12,13. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht auf dem Kunststoffformkörper angeordnet ist.a photonic layer is arranged on the plastic molding.
14. Anordnung nach Anspruch 12,14. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht aus einem dielektrischen Interferenzfilter auf dem Kunststoffformkörper angeordnet ist. a photonic layer of a dielectric interference filter is arranged on the plastic molding.
15. Anordnung nach Anspruch 12,15. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht aus einem dielektrischen Interferenzfilter, der als Kantenfilter ausgebildet ist, auf dem Kunststoffformkörper angeordnet ista photonic layer of a dielectric interference filter, which is designed as an edge filter, is arranged on the plastic molding
16. Anordnung nach Anspruch 12,16. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht aus einem dielektrischen Interferenzfilter, der als Bandpaßfilter ausgebildet ist, auf dem Kunststoffformkörper angeordnet ista photonic layer of a dielectric interference filter, which is designed as a band-pass filter, is arranged on the plastic molding
17. Anordnung nach Anspruch 12,17. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht, die aus photonischen Kristallen aufgebaut ist, auf dem Kunststoffformkörper angeordnet ista photonic layer, which is composed of photonic crystals, is arranged on the plastic molding
18. Anordnung nach Anspruch 12,18. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht, die als inverser Opal ausgebildet ist, auf dem Kunststoffformkörper angeordnet ist a photonic layer, which is formed as an inverse opal, is arranged on the plastic molded body
19. Anordnung nach Anspruch 12,19. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
ein flächiger Reflektor unter dem Kunststoffformkörper angeordnet ist.a planar reflector is arranged under the plastic molding.
20. Anordnung nach Anspruch 12,20. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
als Reflektor ein Spiegel unter dem Kunststoffformkörper angeordnet ist.as a reflector, a mirror is arranged under the plastic molding.
21. Anordnung nach Anspruch 12,21. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
als Reflektor eine weiße Folie oder Platte unter dem Kunststoffformkörper angeordnet istas a reflector, a white film or plate is arranged under the plastic molding
22. Anordnung nach Anspruch 12,22. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht auf dem Kunststoffformkörper und ein Reflektor unter dem Kunststoffformkörper angeordnet sind. a photonic layer on the plastic molding and a reflector under the plastic molding are arranged.
23. Anordnung nach Anspruch 12,23. Arrangement according to claim 12,
dadurch gekennzeichnet, daßcharacterized in that
eine photonische Schicht nach Anspruch 13 bis 17 auf dem Kunststoffformkörper und ein Reflektor nach Anspruch 19 oder 20 unter dem Kunststoffformkörper angeordnet sind.a photonic layer according to claim 13 to 17 are arranged on the plastic molding and a reflector according to claim 19 or 20 under the plastic molding.
24. Verwendung eines Kunststoffformkörpers nach einem der Patentansprüche 1 bis 10 zur Herstellung von Solarkollektoren.24. Use of a plastic molding according to one of the claims 1 to 10 for the production of solar collectors.
25. Verwendung einer Anordnung nach einem der Patentansprüche 12 bis 23 zur Herstellung von Solarkollektoren. 25. Use of an arrangement according to one of the claims 12 to 23 for the production of solar collectors.
PCT/EP2010/050702 2009-02-12 2010-01-22 Fluorescence conversion solar cell and the production thereof using the plate casting method WO2010091925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009000813A DE102009000813A1 (en) 2009-02-12 2009-02-12 Fluorescence conversion solar cell I Production by the plate casting method
DE102009000813.6 2009-02-12

Publications (1)

Publication Number Publication Date
WO2010091925A1 true WO2010091925A1 (en) 2010-08-19

Family

ID=42060644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050702 WO2010091925A1 (en) 2009-02-12 2010-01-22 Fluorescence conversion solar cell and the production thereof using the plate casting method

Country Status (3)

Country Link
DE (1) DE102009000813A1 (en)
TW (1) TW201043681A (en)
WO (1) WO2010091925A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013455A1 (en) * 2010-07-30 2012-02-02 Evonik Röhm Gmbh Polymethyl (meth)acrylate mouldings for fluorescence conversion, production of these by the sheet casting process and use in solar collectors
US20220122781A1 (en) * 2018-08-17 2022-04-21 Eni S.P.A. Photovoltaic devices comprising luminescent solar concentrators and perovskite-based photovoltaic cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008837C2 (en) * 2012-05-16 2013-11-20 Novopolymers N V Solar panel.

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2544245A1 (en) 1975-10-03 1977-04-14 Roehm Gmbh INFRARED REFLECTIVE GLAZING MATERIAL
US4110123A (en) 1976-05-06 1978-08-29 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus for converting light energy into electrical energy
DE2737847A1 (en) * 1977-08-23 1979-03-08 Fraunhofer Ges Forschung Solar energy electric or thermal energy converter - has stacked concentrators with fluorescence centres and solar cells each converting part of incident light
EP0113924A2 (en) 1983-01-10 1984-07-25 Röhm Gmbh Impact-strength modifier
JPH0347856A (en) 1989-04-18 1991-02-28 Kuraray Co Ltd Methacrylic resin having excellent light resistance
EP0465049A2 (en) 1990-07-03 1992-01-08 Rohm And Haas Company Clear impact-resistant plastics
EP0522351A1 (en) 1991-06-29 1993-01-13 Röhm Gmbh Impact modifier
EP0656548A2 (en) 1993-12-01 1995-06-07 Röhm GmbH Light guide plates with uniform light transmission
EP0683028A1 (en) 1994-05-19 1995-11-22 Röhm GmbH Method of dehydrating a water containing resin melt in a twin screw extruder
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
EP0570782B1 (en) 1992-05-16 1996-09-04 Röhm Gmbh Light-scattering polymethacrylate mouldings with high temperature and weather resistance
EP0767912A1 (en) 1994-06-29 1997-04-16 The Regents Of The University Of California Luminescent lanthanide chelates and methods of use
WO1998039822A1 (en) 1997-03-03 1998-09-11 Akzo Nobel N.V. Polymeric optical waveguide doped with a lanthanide-sensitizer complex
DE10024466A1 (en) 2000-05-18 2001-11-22 Merck Patent Gmbh Highly stable opal-structured pigments useful in e.g. lacquers, paints, inks, plastics or cosmetics are obtained from monodisperse spheres, e.g. of silica, metal oxides such as titanium dioxide or polymer
WO2002029140A1 (en) 2000-10-04 2002-04-11 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
WO2002044301A2 (en) 2000-11-30 2002-06-06 Merck Patent Gmbh Particles with opalescent effect
DE10228228A1 (en) 2001-09-14 2003-04-03 Merck Patent Gmbh Shaped body made of core-shell particles
DE10204338A1 (en) 2002-02-01 2003-08-14 Merck Patent Gmbh Shaped body made of core-shell particles
DE10227071A1 (en) 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
DE10233684A1 (en) 2002-07-24 2004-02-12 Röhm GmbH & Co. KG Method for bonding at least two plastic sheets and apparatus for carrying out the method
WO2004022637A2 (en) 2002-09-05 2004-03-18 Nanosys, Inc. Nanocomposites
DE10245848A1 (en) 2002-09-30 2004-04-01 Merck Patent Gmbh Process for the production of inverse opal structures
DE10254276A1 (en) 2002-11-20 2004-06-03 Röhm GmbH & Co. KG Process for producing a plastic plate with a layered structure
US6863847B2 (en) 2000-06-15 2005-03-08 Em Industries, Inc. Method for producing sphere-based crystals
DE10357681A1 (en) 2003-12-10 2005-07-21 Merck Patent Gmbh Use of core-shell particles
DE102004009569A1 (en) 2004-02-25 2005-09-15 Merck Patent Gmbh Use of core-shell particles
DE102004032120A1 (en) 2004-07-01 2006-02-09 Merck Patent Gmbh Diffractive colorants for cosmetics
WO2006045567A2 (en) 2004-10-25 2006-05-04 Merck Patent Gmbh Use of moulding bodies made of core-shell particles
DE102004055303A1 (en) 2004-11-16 2006-05-18 Röhm GmbH & Co. KG Core-shell particles
WO2006065054A1 (en) 2004-12-13 2006-06-22 Nanosquare Co., Ltd Method for synthesizing semiconductor quantom dots
DE102005043572A1 (en) * 2005-09-12 2007-03-15 Basf Ag Fluorescence conversion solar cells based on terrylene fluorescent dyes
US20070132052A1 (en) 2005-01-07 2007-06-14 Edward Sargent Electronic and optoelectronic devices with quantum dot films
US20070137696A1 (en) * 2005-12-21 2007-06-21 Hans-Joachim Krokoszinski Solar panels, methods of manufacture thereof and articles comprising the same
WO2007073467A1 (en) 2005-12-16 2007-06-28 The Trustees Of Princeton University Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix
US20070174939A1 (en) 2005-01-07 2007-07-26 Edward Sargent Methods of making quantum dot films
DE102006017163A1 (en) 2006-04-12 2007-10-18 Merck Patent Gmbh Preparing inverse opal with adjustable canal diameter, comprises arranging and partially fusing template sphere, increasing temperature, soaking sphere space with wall material precursor, forming wall material and removing template sphere
WO2008110567A1 (en) * 2007-03-13 2008-09-18 Basf Se Photovoltaic modules with improved quantum efficiency
CA2589575A1 (en) 2007-05-22 2008-11-22 Valorbec Societe En Commandite Lanthanide-doped nayf4 nanocrystals, method of preparing and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2833914C2 (en) * 1978-08-02 1981-10-15 Siemens AG, 1000 Berlin und 8000 München Device for collecting light and method of making such a device
US5920429A (en) * 1995-09-29 1999-07-06 Minnesota Mining And Manufacturing Company Fluorescent dye blends
DE102005005208A1 (en) * 2005-02-03 2006-08-10 Röhm GmbH & Co. KG Translucent UV-transparent panel with IR-reflective effect

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2544245A1 (en) 1975-10-03 1977-04-14 Roehm Gmbh INFRARED REFLECTIVE GLAZING MATERIAL
US4110123A (en) 1976-05-06 1978-08-29 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus for converting light energy into electrical energy
DE2737847A1 (en) * 1977-08-23 1979-03-08 Fraunhofer Ges Forschung Solar energy electric or thermal energy converter - has stacked concentrators with fluorescence centres and solar cells each converting part of incident light
EP0113924A2 (en) 1983-01-10 1984-07-25 Röhm Gmbh Impact-strength modifier
JPH0347856A (en) 1989-04-18 1991-02-28 Kuraray Co Ltd Methacrylic resin having excellent light resistance
EP0465049A2 (en) 1990-07-03 1992-01-08 Rohm And Haas Company Clear impact-resistant plastics
EP0522351A1 (en) 1991-06-29 1993-01-13 Röhm Gmbh Impact modifier
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
EP0570782B1 (en) 1992-05-16 1996-09-04 Röhm Gmbh Light-scattering polymethacrylate mouldings with high temperature and weather resistance
EP0656548A2 (en) 1993-12-01 1995-06-07 Röhm GmbH Light guide plates with uniform light transmission
EP0683028A1 (en) 1994-05-19 1995-11-22 Röhm GmbH Method of dehydrating a water containing resin melt in a twin screw extruder
EP0767912A1 (en) 1994-06-29 1997-04-16 The Regents Of The University Of California Luminescent lanthanide chelates and methods of use
WO1998039822A1 (en) 1997-03-03 1998-09-11 Akzo Nobel N.V. Polymeric optical waveguide doped with a lanthanide-sensitizer complex
DE10024466A1 (en) 2000-05-18 2001-11-22 Merck Patent Gmbh Highly stable opal-structured pigments useful in e.g. lacquers, paints, inks, plastics or cosmetics are obtained from monodisperse spheres, e.g. of silica, metal oxides such as titanium dioxide or polymer
US6863847B2 (en) 2000-06-15 2005-03-08 Em Industries, Inc. Method for producing sphere-based crystals
WO2002029140A1 (en) 2000-10-04 2002-04-11 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
WO2002044301A2 (en) 2000-11-30 2002-06-06 Merck Patent Gmbh Particles with opalescent effect
DE10228228A1 (en) 2001-09-14 2003-04-03 Merck Patent Gmbh Shaped body made of core-shell particles
DE10204338A1 (en) 2002-02-01 2003-08-14 Merck Patent Gmbh Shaped body made of core-shell particles
DE10227071A1 (en) 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
DE10233684A1 (en) 2002-07-24 2004-02-12 Röhm GmbH & Co. KG Method for bonding at least two plastic sheets and apparatus for carrying out the method
WO2004022637A2 (en) 2002-09-05 2004-03-18 Nanosys, Inc. Nanocomposites
DE10245848A1 (en) 2002-09-30 2004-04-01 Merck Patent Gmbh Process for the production of inverse opal structures
DE10254276A1 (en) 2002-11-20 2004-06-03 Röhm GmbH & Co. KG Process for producing a plastic plate with a layered structure
DE10357681A1 (en) 2003-12-10 2005-07-21 Merck Patent Gmbh Use of core-shell particles
DE102004009569A1 (en) 2004-02-25 2005-09-15 Merck Patent Gmbh Use of core-shell particles
DE102004032120A1 (en) 2004-07-01 2006-02-09 Merck Patent Gmbh Diffractive colorants for cosmetics
WO2006045567A2 (en) 2004-10-25 2006-05-04 Merck Patent Gmbh Use of moulding bodies made of core-shell particles
DE102004055303A1 (en) 2004-11-16 2006-05-18 Röhm GmbH & Co. KG Core-shell particles
WO2006065054A1 (en) 2004-12-13 2006-06-22 Nanosquare Co., Ltd Method for synthesizing semiconductor quantom dots
US20070132052A1 (en) 2005-01-07 2007-06-14 Edward Sargent Electronic and optoelectronic devices with quantum dot films
US20070174939A1 (en) 2005-01-07 2007-07-26 Edward Sargent Methods of making quantum dot films
DE102005043572A1 (en) * 2005-09-12 2007-03-15 Basf Ag Fluorescence conversion solar cells based on terrylene fluorescent dyes
WO2007031446A2 (en) 2005-09-12 2007-03-22 Basf Se Fluorescent solar conversion cells based on fluorescent terylene dyes
WO2007073467A1 (en) 2005-12-16 2007-06-28 The Trustees Of Princeton University Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix
US20070137696A1 (en) * 2005-12-21 2007-06-21 Hans-Joachim Krokoszinski Solar panels, methods of manufacture thereof and articles comprising the same
DE102006017163A1 (en) 2006-04-12 2007-10-18 Merck Patent Gmbh Preparing inverse opal with adjustable canal diameter, comprises arranging and partially fusing template sphere, increasing temperature, soaking sphere space with wall material precursor, forming wall material and removing template sphere
WO2008110567A1 (en) * 2007-03-13 2008-09-18 Basf Se Photovoltaic modules with improved quantum efficiency
CA2589575A1 (en) 2007-05-22 2008-11-22 Valorbec Societe En Commandite Lanthanide-doped nayf4 nanocrystals, method of preparing and uses thereof

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"23rd European Photovoltaic Solar Energy Conference", 23RD EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, vol. 700, 2008, Retrieved from the Internet <URL:23rd European Photovoltaic Solar Energy Conference>
AM. CHEM. SOC., 2007
APPL. PHYS. LETT., vol. 91, 2007, pages 051903
APPL. PHYS., vol. 14, 1977, pages 123 FF
GALLAGHER ET AL: "Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices", SOLAR ENERGY, PERGAMON PRESS. OXFORD, GB LNKD- DOI:10.1016/J.SOLENER.2006.09.011, vol. 81, no. 6, 11 May 2007 (2007-05-11), pages 813 - 821, XP022071340, ISSN: 0038-092X *
GERDA GLAESER AND UWE RAU: "Collection and conversion properties of photovoltaic fluorescent collectors with photonic band stop filters", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING - PHOTONICS FOR SOLAR ENERGY SYSTEMS, vol. 6197, 12 May 2006 (2006-05-12), pages 61970L-1 - 61970L-11, XP040223753, ISSN: 0277-786X, ISBN: 978-0-8194-6253-4, DOI: 10.1117/12.669638 *
GOETZBERGER A ET AL: "SOLAR ENERGY CONVERSION WITH FLUORESCENT COLLECTORS", APPLIED PHYSICS, SPRINGER VERLAG. HEIDELBERG; DE LNKD- DOI:10.1007/BF00883080, vol. 14, 1 October 1977 (1977-10-01), pages 123 - 139, XP009082077, ISSN: 0340-3793 *
PETERS M ET AL: "The effect of photonic structures on the light guiding efficiency of fluorescent concentrators", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US LNKD- DOI:10.1063/1.2996081, vol. 105, no. 1, 13 January 2009 (2009-01-13), pages 14909 - 14909, XP012119526, ISSN: 0021-8979 *
ROWAN B C ET AL: "Advanced Material Concepts for Luminescent Solar Concentrators", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US LNKD- DOI:10.1109/JSTQE.2008.920282, vol. 14, no. 5, 1 September 2008 (2008-09-01), pages 1312 - 1322, XP011227052, ISSN: 1077-260X *
TRUPKE T ET AL: "Improving solar cell efficiencies by down-conversion of high-energy photons", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US LNKD- DOI:10.1063/1.1492021, vol. 92, no. 3, 1 August 2002 (2002-08-01), pages 1668 - 1674, XP012057015, ISSN: 0021-8979 *
TRUPKE T ET AL: "Improving solar cell efficiencies by up-conversion of sub-band-gap light", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US LNKD- DOI:10.1063/1.1505677, vol. 92, no. 7, 1 October 2002 (2002-10-01), pages 4117 - 4122, XP012057396, ISSN: 0021-8979 *
WILFRIED G J H M VAN SARK: "Luminescent Solar Concentrators A review of recent results", OPTICS EXPRESS, OSA (OPTICAL SOCIETY OF AMERICA), WASHINGTON DC, (US) LNKD- DOI:10.1364/OE.16.021773, vol. 16, no. 26, 22 December 2008 (2008-12-22), pages 21773 - 21792, XP007907393, ISSN: 1094-4087 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013455A1 (en) * 2010-07-30 2012-02-02 Evonik Röhm Gmbh Polymethyl (meth)acrylate mouldings for fluorescence conversion, production of these by the sheet casting process and use in solar collectors
CN102958988A (en) * 2010-07-30 2013-03-06 赢创罗姆有限公司 Polymethyl (meth)acrylate mouldings for fluorescence conversion, production of these by the sheet casting process and use in solar collectors
US20220122781A1 (en) * 2018-08-17 2022-04-21 Eni S.P.A. Photovoltaic devices comprising luminescent solar concentrators and perovskite-based photovoltaic cells

Also Published As

Publication number Publication date
TW201043681A (en) 2010-12-16
DE102009000813A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
DE102010038685A1 (en) Fluorescence Conversion Solar Cell Manufactured by plate casting
US11168225B2 (en) Colorless luminescent solar concentrators using colloidal semiconductor nanocrystals
WO2010118920A1 (en) Fluorescence conversion solar cell – production by an injection molding method
US20170218264A1 (en) Luminescent solar concentrators comprising semiconductor nanocrystals
US20200056092A1 (en) Composition and method comprising overcoated quantum dots
EP2557137A1 (en) Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same
DE112008000551T5 (en) PV module and a process for making the PV module
DE102008052043A1 (en) Fluorescence collector and its use
DE102008043713A1 (en) Production of solar cell modules
WO2010054906A1 (en) Molding compounds for the production of solar cell modules
KR101383532B1 (en) Wavelength-converting resin composition for solar cell, and solar cell module
DE102008006955A1 (en) Production and application of multifunctional optical modules for photovoltaic power generation and lighting purposes
WO2010091925A1 (en) Fluorescence conversion solar cell and the production thereof using the plate casting method
EP3034567B1 (en) Cover net systems for encapsulation films comprising ethylene glycoldi(meth)acrylate compounds
DE102009027431A1 (en) Fluorescence conversion solar cell - Production by extrusion or coextrusion
US20170253726A1 (en) Encapsulant composition for solar cell, solar cell encapsulant layer produced therewith, and solar cell module produced therewith
CA2972947C (en) Colourless luminescent solar concentrator, free of heavy metals, based on at least ternary chalcogenide semiconductor nanocrystals with absorption extending to the near infrared region
DE102010028186A1 (en) Plastic molded body made from a transparent, thermoplastic polymer, useful in an arrangement for producing a collector of solar cell, comprises coatings, which are colored with fluorescent dye, and are applied by roll coating method
EP3034526B1 (en) Cover net systems for encapsulation films
DE102010028180A1 (en) Plastic molding useful for manufacturing solar panels, comprises polymethyl(meth)acrylate coated with a film made of several individual layers, which are dyed with a fluorescent dye
JP2017025334A (en) Sealing material composition for solar cell, sealing material layer for solar cell using the same, and solar cell module
JP2016025108A (en) Wavelength conversion type sealing layer and solar battery module using the same
CN115295657A (en) Light conversion film and preparation method and application thereof
DE102008043720A1 (en) Molding compounds for the production of solar cell modules
DE102008043707A1 (en) Production of solar cell modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10701012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10701012

Country of ref document: EP

Kind code of ref document: A1