WO2010075615A1 - Process for preparing thin or ultra-thin films and nanocomposites of metal oxide and/or metal nanoparticles for impregnating and/or coating glass, polymer, wood and metal substrates - Google Patents

Process for preparing thin or ultra-thin films and nanocomposites of metal oxide and/or metal nanoparticles for impregnating and/or coating glass, polymer, wood and metal substrates Download PDF

Info

Publication number
WO2010075615A1
WO2010075615A1 PCT/BR2009/000419 BR2009000419W WO2010075615A1 WO 2010075615 A1 WO2010075615 A1 WO 2010075615A1 BR 2009000419 W BR2009000419 W BR 2009000419W WO 2010075615 A1 WO2010075615 A1 WO 2010075615A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
wood
glass
substrates
temperature
Prior art date
Application number
PCT/BR2009/000419
Other languages
French (fr)
Portuguese (pt)
Inventor
Sergio Mazurek Tebcherani
Sergio Da Silva Cava
Silvana Souza Netto Mandalozzo
Danielle Berger
Jarem Raul Garcia
Karen Wohnrath
Original Assignee
Itajara Minérios Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itajara Minérios Ltda. filed Critical Itajara Minérios Ltda.
Publication of WO2010075615A1 publication Critical patent/WO2010075615A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Definitions

  • the present invention comprises a method for manufacturing thin or ultra-thin films and nanocomposites of metal oxide and / or metal nanoparticles in interaction with glass substrates or
  • polymers or woods, metals or any other substrate which may or may cause porosity on its surface by a process of impregnation and / or deposition of metal oxides and / or metals previously formed at a temperature below the glass transition or softening point or flash point or below any temperature that will result in a change in the physical state of the material when associated with the influence of the time at which the test is performed.
  • Thin films can be produced by saline deposition through the effect of temperature.
  • Ag + ion deposition films have already been prepared on the glass surface from Ag 2 S0 4 , CuS0 4 , Na 2 S0 4 solution in the presence of organic compounds dispersed in oil.
  • the treatment temperature was 300 ° C, 320 ° C and 350 ° C, with time ranging from 1 to 48 h.
  • Another way to obtain films is from the deposited by electrostatic spray, by method of sputtering method and followed by heat treatment.
  • the filtered cathode arc plasma and oxygen flow technique was also applied to deposit thin films of zinc oxide on glass surface and temperature of 200 ° C.
  • the methods described above may constitute the oxides to be obtained in the form of films only if they are mixed during the synthesis process of these materials.
  • the oxides are formed from precursor substances deposited on the substrates which, by treatment (usually thermal), form the oxide films to be obtained.
  • glassy materials when subjected to high temperatures reach a "softening" state which, by definition, is known as glass transition (Tg). This glass transition is often a limiting factor for film-making and particulate material impregnation methods on the glass surface, and if it is a polymeric substrate softening can be achieved and if it is a flash point wood and metal oxidation. , etc.
  • the present invention comprises a method for the manufacture of thin or ultra-thin films and metal oxide nanoparticle nanocomposites in interaction with glass or polymeric substrates or woods, metals or any other substrate which may or may generate porosity on its surface. by a process of impregnation and / or deposition of metal oxide powders previously formed at a temperature below the glass transition or
  • fig. 1 is a sequence of 3,000 X magnification scanning electron microscopy ranging from pure glass substrate until the deposition of the treated nanoparticulate Sn02 film at 485 ° C.
  • fig. 2 represents an example of cobalt oxide deposition by EV.
  • fig. 3 depicts an example of iron oxide III deposition by SEM.
  • fig. 4 depicts an example of SEM deposition of titanium oxide.
  • fig. 5 depicts an example of deposition of aluminum oxide by SEM.
  • fig. 6 depicts an example of copper oxide deposition by SEM.
  • the present invention comprises a process for fabricating metal oxide thin films from films at temperatures below the glass transition temperature, or the softening temperature, or the flash point, or the change in oxidation state depending on the substrate. pressure as a function of the test time.
  • the process consists of: (a) deposition of metal powders on the substrate surface, (b) application of high pressure cooled gas, (c) infiltration and / or deposition of powders on the substrate surface and (d) below heating temperature glass transition temperature (for glass), softening (for polymers), flash point (for wood) and oxidation (for metals) as a function of time.
  • FIG. 1 shows an example of thin film of metal oxides impregnated and / or deposited by high limit pressure (Pi.) On substrate.
  • Pi. high limit pressure
  • stage 3 can be reached if: the limit pressure is kept constant and the temperature of T 2 is raised to T3 or, if the time is increased from t 2 to t. 3 or raise both to T3 and respectively.
  • the same result is also achieved if the temperature at T 2 and the time at t 2 remain constant, but if the applied pressure is greater than the pressure exerted at stage (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

It seems that the title of the abstract needs to be brought into line with the title of the invention, according to PCT Rule 4.3 and to the modifications of the abstract according to PCT Rule 38.3. The title of the abstract will thus be the same as the title of the invention, as follows: process for preparing thin or ultra-thin films and nanocomposites of metal oxide and/or metal nanoparticles for impregnating and/or coating glass, polymer, wood and metal substrates.

Description

Processo de Preparação de Filmes Finos Ou Ultra-finos e Nanocompósitos de Nanopartículas de Óxidos Metálicos e/ou Metais Impregnados e/ou Depositados em Substratos Vítreos, Poliméricos, Madeiras e Metais.  Process of Preparation of Thin or Ultra Thin Films and Nanocomposites of Metal Oxide and / or Metal Oxide Nanoparticles Impregnated and / or Deposited in Glassy, Polymeric, Wood and Metal Substrates.
A presente invenção compreende a um método para fabricação de filmes finos ou ultra-finos e nanocompósitos de nanopartículas de óxidos metálicos e/ou metais em interação com substratos de vidros ou The present invention comprises a method for manufacturing thin or ultra-thin films and nanocomposites of metal oxide and / or metal nanoparticles in interaction with glass substrates or
poliméricos ou madeiras, metais ou ainda qualquer outro substrato que apresente ou possa se gerar porosidade em sua superfície por meio de um processo de impregnação e/ou deposição de pós de óxidos metálicos e/ou metais previamente constituídos em temperatura abaixo da transição vítrea ou do amolecimento ou do ponto de fulgor ou ainda abaixo de qualquer temperatura que acarrete na mudança de estado físico do material quando associado a influência do tempo em que é processado o ensaio.  polymers or woods, metals or any other substrate which may or may cause porosity on its surface by a process of impregnation and / or deposition of metal oxides and / or metals previously formed at a temperature below the glass transition or softening point or flash point or below any temperature that will result in a change in the physical state of the material when associated with the influence of the time at which the test is performed.
É comum encontrar na literatura científica estudos referentes às propriedades de materiais relacionados à estrutura de superfície. As propriedades de superfície dos materiais podem ser modificadas a partir de diversas técnicas de deposição capazes de formar filmes finos, espessos ou ainda ultra-finos. Algumas dessas técnicas são descritas a seguir.  It is common to find in the scientific literature studies concerning the properties of materials related to surface structure. The surface properties of materials can be modified from various deposition techniques capable of forming thin, thick or even ultra thin films. Some of these techniques are described below.
Filmes finos podem ser produzidos por deposições de soluções salinas através do efeito da temperatura. Já se chegou a preparar filmes de com deposição de íons Ag+ na superfície de vidros a partir de solução de Ag2S04, CuS04, Na2S04, em presença de compostos orgânicos e dispersos em óleo. A temperatura de tratamento foi de 300 °C, 320 °C e 350 °C, com tempo que variou entre 1 e 48 h. Outra maneira de se obter filmes é a partir da depositaram por spray eletrostático, por método de método de pulverização catódica e seguidos de tratamento térmico. Thin films can be produced by saline deposition through the effect of temperature. Ag + ion deposition films have already been prepared on the glass surface from Ag 2 S0 4 , CuS0 4 , Na 2 S0 4 solution in the presence of organic compounds dispersed in oil. The treatment temperature was 300 ° C, 320 ° C and 350 ° C, with time ranging from 1 to 48 h. Another way to obtain films is from the deposited by electrostatic spray, by method of sputtering method and followed by heat treatment.
A técnica de plasma com arco catódico filtrado e fluxo de oxigénio também foi aplicada para depositar filmes finos de óxido de zinco em superfície vítrea e temperatura de 200 °C.  The filtered cathode arc plasma and oxygen flow technique was also applied to deposit thin films of zinc oxide on glass surface and temperature of 200 ° C.
Outra maneira ainda de se alterar as propriedades superficiais dos materiais está na adição direta de dopantes durante o processo de síntese que formam novos materiais com novas propriedades,  Yet another way to change the surface properties of materials is in the direct addition of dopants during the synthesis process that form new materials with new properties,
consequentemente, mudando também as propriedades superficiais. consequently also changing the surface properties.
Atualmente, 3 tipos de substratos são utilizados no  Currently 3 types of substrates are used in the
desenvolvimento de filmes finos: 1) Lâminas metálicas, utilizada para fabricação de filmes finos para capacitores em placas de circuito impresso por meio de recobrimentos como níquel ou cobre. 2) Substratos cerâmicos. 3) Bolachas de silício, para fabricação de filmes finos de óxidos metálicos. Sabe-se que uma condição básica para a seleção de um substrato para fabricação de filmes finos é baixa rugosidade superficial. development of thin films: 1) Metal foils, used for the manufacture of thin films for capacitors on printed circuit boards through coatings such as nickel or copper. 2) Ceramic substrates. 3) Silicon wafers for the manufacture of thin metal oxide films. It is known that a basic condition for the selection of a thin film substrate is low surface roughness.
Entre os vários métodos existentes para fabricação de filmes finos, podemos citar: Pulverização Catódica (Sputtering), Deposição de Vapor Químico (CVD), Sol-Gel, Spray-pirólise, etc. Todos estes métodos possuem vantagens e desvantagens, mas em geral possuem dificuldades como alto custo, dificuldades em reproduzir resultados, trincas  Among the various methods for thin film manufacturing, we can mention: Sputtering, Chemical Vapor Deposition (CVD), Sol-Gel, Spray Pyrolysis, etc. All these methods have advantages and disadvantages, but in general they have difficulties such as high cost, difficulties in reproducing results, cracks.
superficiais e porosidades. surface and porosities.
Deve-se considerar também, que os métodos acima descritos, podem constituir os óxidos que se pretende obter na forma de filmes, somente se forem misturados durante o processo de síntese desses materiais. Para a formação de filmes em substratos já processados os óxidos se formam a partir de substâncias precursoras depositadas nos substratos que, por tratamento (normalmente térmico), formam os filmes de óxidos que se pretende obter. Cabe ressaltar que os materiais vítreos quando submetidos a temperaturas elevadas atingem um estado de "amolecimento" que, por definição, é conhecido como transição vítrea (Tg). Esta transição vítrea muitas vezes é fator limitante para os métodos de obtenção de filmes e impregnação de materiais particulados na superfície dos vidros e, se for substrato polimérico pode-se atingir o amolecimento e, se for madeira o ponto de fulgor e, metal a oxidação, etc. It should also be considered that the methods described above may constitute the oxides to be obtained in the form of films only if they are mixed during the synthesis process of these materials. For the formation of films on already processed substrates the oxides are formed from precursor substances deposited on the substrates which, by treatment (usually thermal), form the oxide films to be obtained. It is noteworthy that glassy materials when subjected to high temperatures reach a "softening" state which, by definition, is known as glass transition (Tg). This glass transition is often a limiting factor for film-making and particulate material impregnation methods on the glass surface, and if it is a polymeric substrate softening can be achieved and if it is a flash point wood and metal oxidation. , etc.
A presente invenção compreende a um método para fabricação de filmes finos ou ultra-finos e nanocompósitos de nanopartículas de óxidos metálicos em interação com substratos de vidros ou poliméricos ou madeiras, metais ou ainda qualquer outro substrato que apresente ou possa se gerar porosidade em sua superfície por meio de um processo de impregnação e/ou deposição de pós de óxidos metálicos previamente constituídos em temperatura abaixo da transição vítrea ou do  The present invention comprises a method for the manufacture of thin or ultra-thin films and metal oxide nanoparticle nanocomposites in interaction with glass or polymeric substrates or woods, metals or any other substrate which may or may generate porosity on its surface. by a process of impregnation and / or deposition of metal oxide powders previously formed at a temperature below the glass transition or
amolecimento ou do ponto de fulgor ou ainda abaixo de qualquer temperatura que acarrete na mudança de estado físico do material quando associado a influência do tempo em que é processado o ensaio. softening point or flash point or even below any temperature that results in a change in the physical state of the material when associated with the influence of the time at which the test is processed.
Os desenhos descritos a seguir referem-se a resultados na forma de exemplificação da invenção da metodologia para fabricação de filmes finos ou ultra-finos e nanocompósitos de nanopartículas de óxidos metálicos em interação com substratos de vidros ou poliméricos ou madeiras, metais ou ainda qualquer outro substrato que apresente ou possa se gerar porosidade em sua superfície por meio de um processo de impregnação e/ou deposição de pós de óxidos metálicos previamente constituídos em temperatura abaixo da transição vítrea ou do  The following drawings refer to results in exemplary form of the invention of the methodology for manufacturing thin or ultra thin films and metal oxide nanoparticle nanocomposites in interaction with glass or polymer substrates or wood, metals or any other substrate which may or may not be generated on its surface by a process of impregnation and / or deposition of metal oxides previously constituted at a temperature below the glass transition or
amolecimento ou do ponto de fulgor ou ainda abaixo de qualquer temperatura que acarrete na mudança de estado físico associados a influência do tempo em que é submetido o ensaio, nos quais: softening point or flash point or below any temperature that results in a change in physical state associated with the influence of the time of the test, in which:
a fig. 1 representa uma sequência de micrografias por microscopia eletrônica de varredura com 3000 X de ampliação, que vai do substrato de vidro puro até a deposição do filme Sn02 nanoparticulado tratado à 485°C. fig. 1 is a sequence of 3,000 X magnification scanning electron microscopy ranging from pure glass substrate until the deposition of the treated nanoparticulate Sn02 film at 485 ° C.
a fig. 2 representa um exemplo de deposição de óxido de cobalto por EV.  fig. 2 represents an example of cobalt oxide deposition by EV.
a fig. 3 representa um exemplo de deposição de óxido de ferro III por MEV.  fig. 3 depicts an example of iron oxide III deposition by SEM.
a fig. 4 representa um exemplo de deposição de óxido de titânio por MEV.  fig. 4 depicts an example of SEM deposition of titanium oxide.
a fig. 5 representa um exemplo de deposição de óxido de alumínio por MEV.  fig. 5 depicts an example of deposition of aluminum oxide by SEM.
a fig. 6 representa um exemplo de deposição de óxido de cobre por MEV.  fig. 6 depicts an example of copper oxide deposition by SEM.
A presente invenção compreende um processo para fabricação de filmes finos de óxidos metálicos de filmes em temperaturas abaixo da temperatura de transição vítrea, ou da temperatura de amolecimento, ou do ponto de fulgor ou ainda da mudança no estado de oxidação, dependendo do substrato, alta pressão em função do tempo do ensaio. O processo consiste de: (a) deposição de pós metálicos na superfície de substrato, (b) aplicação de gás resfriado sob alta pressão, (c) infiltração e/ou deposição dos pós na superfície do substrato e (d) temperatura de aquecimento abaixo da temperatura de transição vítrea (para vidros), amolecimento (para polímeros), ponto de fulgor (para madeira) e oxidação (para metais) em função do tempo. Após a impregnação e/ou deposição, sob alta pressão, os óxidos metálicos formarão uma segunda fase, como em um compósito, que dependendo de fatores como constituição química do substrato, granulometria e área de superfície específica dos pós de óxidos metálicos, pressão de gás aplicada, tipo de gás, tempo de tratamento e temperatura, poderão estar em um estado amorfo ou nanocristalino, podendo, portanto formar um filme fino constituído ou não de matérias denominados de nanocompósito. A figura 1 compreende um exemplo de filme fino de óxidos metálicos impregnados e/ou depositados por alta pressão limite (Pi.) em substrato. Nesta figura 1 pode-se verificar que, mesmo a pressão P|_, no ponto (1) o substrato não sofre nenhum tratamento (temperatura T0=0 e tempo t0=0), consequentemente, o óxido metálico e/ou metal não é depositado. The present invention comprises a process for fabricating metal oxide thin films from films at temperatures below the glass transition temperature, or the softening temperature, or the flash point, or the change in oxidation state depending on the substrate. pressure as a function of the test time. The process consists of: (a) deposition of metal powders on the substrate surface, (b) application of high pressure cooled gas, (c) infiltration and / or deposition of powders on the substrate surface and (d) below heating temperature glass transition temperature (for glass), softening (for polymers), flash point (for wood) and oxidation (for metals) as a function of time. Following high pressure impregnation and / or deposition, the metal oxides will form a second phase, as in a composite, which depending on factors such as chemical substrate build-up, particle size and specific surface area of the metal oxide powders, gas pressure applied, type of gas, treatment time and temperature, may be in an amorphous or nanocrystalline state and may therefore form a thin film consisting or not of materials called nanocomposite. Figure 1 shows an example of thin film of metal oxides impregnated and / or deposited by high limit pressure (Pi.) On substrate. In Figure 1 it can be seen that even at the pressure P | _, at point (1) the substrate does not undergo any treatment (temperature T 0 = 0 and time t 0 = 0), consequently the metal oxide and / or metal is not deposited.
Com aplicação da pressão limite ou superior a PL, em um  With application of limit pressure or greater than PL, in
tratamento térmico a uma temperatura T-i>To e tempo ti>to pode-se perceber que começa a ocorrer à impregnação e/ou deposição do óxido metálico e/ou metal com o substrato levando ao ponto (2) da figura 1. heat treatment at a temperature T and a time it can be seen that impregnation and / or deposition of the metal oxide and / or metal with the substrate begins to occur leading to point (2) of Figure 1.
Quando a pressão limite for mantida constante, pode-se melhorar a deposição e/ou impregnação do filme se elevar a temperatura de ΤΊ para T2 ou elevar o tempo de ti para t2 ou elevar a temperatura e o tempo para T2 e t2 respectivamente. Porém, mantendo-se constante a temperatura em Ti e o tempo em t-i, mas, elevando-se a pressão em valor superior a PL também é possível atingir um filme indicado pelo estágio (3) da figura 1. When the limit pressure is kept constant, film deposition and / or impregnation can be improved by raising the temperature from ΤΊ to T 2 or increasing the time from ti to t 2 or raising the temperature and time to T 2 and t 2. respectively. However, by keeping the temperature in Ti and the time constant in Ti, but by raising the pressure above PL it is also possible to achieve a film indicated by stage (3) of Figure 1.
Analogamente, ainda na figura 1, pode-se atingir o estágio 3 se: a pressão limite for mantida constante e a temperatura de T2 for elevada para T3 ou ainda, se o tempo for acrescido de t2 para t.3 ou elevar ambos para T3 e respectivamente. Neste mesmo exemplo, também se chega ao mesmo resultado se manter constante a temperatura em T2 e o tempo em t2, mas, se a pressão aplicada for superior a pressão exercida no estágio (2). Similarly, still in figure 1, stage 3 can be reached if: the limit pressure is kept constant and the temperature of T 2 is raised to T3 or, if the time is increased from t 2 to t. 3 or raise both to T3 and respectively. In this same example, the same result is also achieved if the temperature at T 2 and the time at t 2 remain constant, but if the applied pressure is greater than the pressure exerted at stage (2).
Desta forma, comprova-se que aplicando-se uma pressão bastante elevada, e uma temperatura Tn (onde n é um valor superior a zero) que varia para, temperatura abaixo da temperatura de transição vítrea quando o substrato for vidro, temperatura abaixo da temperatura de Thus, it is proved that by applying a very high pressure, and a temperature T n (where n is greater than zero) which varies to, temperature below the glass transition temperature when the substrate is glass, temperature below temperature of
amolecimento quando o substrato for polímero, temperatura abaixo do ponto de fulgor quando o substrato for madeira e temperatura abaixo da temperatura de oxidação para metais e um tempo tm (onde m é um valor superior a zero) pode-se ter uma metodologia diferenciada da obtenção de filmes finos ou ultra-finos e nanocompósitos de nanopartículas de óxidos metálicos e/ou metais em interação com substratos de vidros ou poliméricos ou madeiras, metais ou ainda qualquer outro substrato que apresente ou possa se gerar porosidade em sua superfície por meio de um processo de impregnação e/ou deposição da elevada pressão função do tempo softening when substrate is polymer, temperature below flash point when substrate is wood and temperature below oxidation temperature for metals and a time t m (where m is a value greater than zero) one can have a different methodology for obtaining thin or ultra thin films and nanocomposites of metal oxide and / or metal nanoparticles in interaction with glass or polymer substrates or woods, metals or any other substrate presenting or porosity may be generated on its surface by a process of impregnation and / or deposition of the high pressure as a function of time.
Por sua vez, as figuras que vão desde a figura 2 até a figura 6 demonstram a possibilidade de se aplicar diferentes óxidos constituídos em substratos quando se aplica uma pressão igual ou superior a P(_, uma temperatura Ti ou superior a ela e um tempo de seja de no mínimo ti.  In turn, the figures from figure 2 to figure 6 demonstrate the possibility of applying different substrate oxides when applying a pressure equal to or greater than P (- a temperature Ti or above and a time at least be you.
Ainda referente às figuras já mencionadas e, de acordo com a proposta deste processo de preparação de filmes em substratos, pode-se verificar a possibilidades de se impregnar e/ou depositar óxido de cobalto (figura 2), óxido de ferro III (figura 3), óxido de titânio (figura 4), óxido de alumínio (figura 5), óxido de cobre (figura 6) ou qualquer outro tipo de óxido metálico e/ou metal, nos substratos de vidro, polímero, madeira ou metal, desde que se respeite as condições de pressão, temperatura e tempo proposto neste processo inventivo.  Still referring to the figures already mentioned and, according to the proposal of this process of preparing films on substrates, it is possible to verify the possibility of impregnating and / or depositing cobalt oxide (figure 2), iron oxide III (figure 3 ), titanium oxide (figure 4), aluminum oxide (figure 5), copper oxide (figure 6) or any other type of metal and / or metal oxide on glass, polymer, wood or metal substrates, provided the pressure, temperature and time conditions proposed in this inventive process are respected.

Claims

Reivindicações Claims
1. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA-1. PROCESS FOR PREPARING FINE OR ULTRA MOVIES
FINOS E NANOCOMPÓSITOS DE NANOPARTÍCULAS DE ÓXIDOS METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMÉRICOS, MADEIRAS, METAISFINE AND NANOCOMPOSITES OF METALLIC AND / OR METAL OXIDE NANOParticles, and / or deposited in GLASS, POLYMERIC, WOOD, METAL SUBSTRATES
E OUTROS compreendendo as etapas de: seleção pós de óxidos metálicos e/ou metais; deposição dos pós de óxidos metálicos e/ou metais na superfície do substrato de vidro, polímero, madeira, metais ou composição destes; infiltração e/ou deposição dos pós de óxidos metálicos e/ou metais no substrato por meio da ação de alta pressão de gás e da temperatura inferior a: temperatura de transição vítrea para vidros, temperatura de amolecimento para polímeros, ponto de fulgor para madeira.temperatura de mudança de estado de oxidação parra metais em dado tempo formando uma fina camada de óxidos metálicos e/ou metal infiltrado e/ou depositado no substrato. AND OTHER comprising the steps of: selection of metal oxide and / or metal powders; deposition of metal oxide and / or metal powders on the surface of the glass, polymer, wood, metal substrate or composition thereof; infiltration and / or deposition of metal oxide and / or metal powders on the substrate by the action of high gas pressure and temperature below: glass transition temperature for glass, softening temperature for polymers, flash point for wood. oxidation state change temperature for metals at a given time forming a thin layer of metal oxides and / or metal infiltrated and / or deposited on the substrate.
2. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA- 2. PROCESS FOR PREPARING FINE OR ULTRA MOVIES
FINOS E NANOCOMPÓSITOS DE NANOPARTÍCULAS DE ÓXIDOS METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMÉRICOS, MADEIRAS, METAIS E OUTROS, conforme reivindicação , onde os pós de óxidos metálicos e/ou metais são materiais selecionados de um grupo constituído a partir da definição de óxidos cerâmicos puros ou de misturas entre eles ou pela definição de ligação metálica para metais compreendendo todos elementos naturais constantes na tabela periódica mesmo que em diferentes proporções. FINES AND NANOCOMPOSITS OF IMPREGNED METAL AND / OR METAL OXIDE NANOParticles, AND / OR DEPOSITED IN GLASS, POLYMER, WOOD, METAL AND OTHER SUBSTRATES, as claimed, where the selected metal oxide and / or metal oxide powders are selected from one another. from the definition of pure ceramic oxides or mixtures thereof or from the definition of metal bonding to metals comprising all natural elements listed in the periodic table even in different proportions.
3. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA- 3. PROCESS FOR PREPARING FINE OR ULTRA MOVIES
FINOS E NANOCOMPÓSITOS DE NANOPARTÍCULAS DE ÓXIDOS METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMÉRICOS, MADEIRAS, METAIS E OUTROS, conforme reivindicação 1 , onde o substrato pode ser de qualquer composição química desde que seja classificado como: vidro, polímero, madeira, metal ou, puros ou de misturas entre eles de diferentes proporções. FINES AND NANOCOMPOSITS OF IMPREGNED METAL AND / OR METAL OXIDE NANOParticles, AND / OR DEPOSITED IN GLASS, POLYMER, WOOD, METAL AND OTHER SUBSTRATES, as claimed in claim 1, where the substrate may be of any chemical composition provided that it is classified as: glass, polymer, wood, metal or, pure or mixtures of different proportions.
4. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA- FINOS E NANOCOMPOSITOS DE NANOPARTICULAS DE ÓXIDOS 4. PROCESS FOR PREPARING FINE OR ULTRA FILMS AND OXIDE NANOPARTICULATE NANOCOMPOSITS
METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMÉRICOS, MADEIRAS, METAIS E OUTROS, conforme reivindicação 1 , onde a pressão aplicada nos pós de óxidos metálicos e/ou metais contra a superfície do substrato é de 1-200 bar, ou mais preferencialmente, entre 5-50 bar, ou mais preferencialmente ainda entre 15-25 bar. METALS AND / OR METALS IMPREGNED AND / OR DEPOSITED IN GLASS, POLYMERIC, WOOD, METAL AND OTHERS SUBSTRATES, according to claim 1, where the pressure applied to the metal oxide and / or metal powders against the substrate surface is 1-200 bar. or more preferably between 5-50 bar, or more preferably between 15-25 bar.
5. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA- 5. PROCESS FOR PREPARING FINE OR ULTRA MOVIES
FINOS E NANOCOMPOSITOS DE NANOPARTICULAS DE ÓXIDOS METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMÉRICOS, MADEIRAS, METAISFINES AND NANOCOMPOSITS OF METAL AND / OR METAL OXIDE NANOPARTICULES IMPREGNED AND / OR DEPOSITED IN GLASS, POLYMERIC, WOOD, METAL SUBSTRATES
E OUTROS onde a temperatura é controlada em temperatura superior a temperatura ambiente desde que, necessária a deposição e/ou impregnação de óxidos metálicos e ou metais e abaixo da temperatura de: transição vítrea para substratos de vidro, AND OTHER where the temperature is controlled at a temperature above room temperature provided that deposition and / or impregnation of metal and / or metal oxides is required and below the temperature of: glass transition to glass substrates,
amolecimento para substratos de polímeros, ponto de fulgor para substratos de madeira e temperatura de mudança do estado de oxidação e, em caso da composição deste, que seja respeitada a temperatura mais baixa.  softening for polymer substrates, flash point for wood substrates and oxidation state change temperature and, if the composition thereof, the lowest temperature is respected.
6. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA- FINOS E NANOCOMPOSITOS DE NANOPARTICULAS DE ÓXIDOS 6. PROCESS FOR PREPARING FINE OR ULTRA FILMS AND OXIDE NANOPARTICULATE NANOCOMPOSITS
METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMÉRICOS, MADEIRAS, METAIS E OUTROS, onde o gás sob alta pressão é selecionado de um grupo constituído de ar atmosférico, atmosferas neutras, redutoras ou oxidantes e suas combinações em quaisquer proporções. METALS AND / OR METALS IMPREGNED AND / OR DEPOSITED IN GLASS, POLYMERIC, WOOD, METAL AND OTHER SUBSTRATES, where high pressure gas is selected from a group consisting of atmospheric air, neutral, reducing or oxidizing atmospheres and their combinations in any proportion .
7. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA-7. PROCESS FOR PREPARING FINE OR ULTRA MOVIES
FINOS E NANOCOMPOSITOS DE NANOPARTÍCULAS DE ÓXIDOS METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMERICOS, MADEIRAS, METAIS E OUTROS, onde a espessura do filme obtido, depende da granulometria dos óxidos de pós metálicos e/ou metais, constituição do substrato, pressão aplicada e temperatura e tempo de tratamento térmico. FINES AND NANOCOMPOSITS OF METAL AND / OR METAL OXIDE NANOParticles, AND / OR DEPOSITED IN GLASS, POLYMERIC, WOOD, METAL AND OTHER SUBSTRATES, where the thickness of the film obtained depends on the particle size and / or metal oxide particle size. substrate, applied pressure and temperature and heat treatment time.
8. PROCESSO DE PREPARAÇÃO DE FILMES FINOS OU ULTRA- FINOS É NANOCOMPÓSITOS DE NANOPARTÍCULAS DE ÓXIDOS 8. PROCESS FOR PREPARING FINE OR ULTRA FILMS IS NANOOCOMPOSITES OF OXID NANOParticles
METÁLICOS E/OU METAIS IMPREGNADOS E/OU DEPOSITADOS EM SUBSTRATOS VÍTREOS, POLIMERICOS, MADEIRAS, METAIS E OUTROS, onde o filme originário é constituído a partir dos óxidos metálicos e/ou metais depositados em conjunto com o substrato. METALS AND / OR METALS IMPREGNED AND / OR DEPOSITED IN GLASS, POLYMERIC, WOOD, METAL AND OTHER SUBSTRATES, where the originating film is made from metallic oxides and / or metals deposited together with the substrate.
PCT/BR2009/000419 2008-12-29 2009-12-23 Process for preparing thin or ultra-thin films and nanocomposites of metal oxide and/or metal nanoparticles for impregnating and/or coating glass, polymer, wood and metal substrates WO2010075615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0806015-0 2008-12-29
BRPI0806015 BRPI0806015A2 (en) 2008-12-29 2008-12-29 process for the preparation of thin or ultra thin films and nanocomposites of metal oxide and / or metal oxide nanoparticles impregnated and / or deposited on glassy, polymeric, wood, metal and other substrates

Publications (1)

Publication Number Publication Date
WO2010075615A1 true WO2010075615A1 (en) 2010-07-08

Family

ID=42309733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2009/000419 WO2010075615A1 (en) 2008-12-29 2009-12-23 Process for preparing thin or ultra-thin films and nanocomposites of metal oxide and/or metal nanoparticles for impregnating and/or coating glass, polymer, wood and metal substrates

Country Status (2)

Country Link
BR (1) BRPI0806015A2 (en)
WO (1) WO2010075615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056900A1 (en) 2016-09-20 2018-03-29 Agency For Science, Technology And Research Redox active metal/metal oxide composites for antimicrobial applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399388A (en) * 1994-02-28 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Method of forming thin films on substrates at low temperatures
US6635554B1 (en) * 1999-09-03 2003-10-21 The Trustees Of Columbia University In The City Of New York Systems and methods using sequential lateral solidification for producing single or polycrystalline silicon thin films at low temperatures
DE10312658A1 (en) * 2003-03-21 2004-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for coating flexible substrates, e.g. polymer films, with aluminum comprises coating the substrate with a thin aluminum oxide layer before applying the aluminum
EP1731219A1 (en) * 2005-06-11 2006-12-13 TuTech Innovation GmbH Process for encapsulating organic substances in particle form by spraying an inert, supercritical carrier gas together with the coating material for the organic substance into a high pressure fluidised bed contained in an autoclave
WO2008060358A2 (en) * 2006-09-29 2008-05-22 Massachusetts Institute Of Technology System and method for providing the capability of peeling thin polymer films from a substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399388A (en) * 1994-02-28 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Method of forming thin films on substrates at low temperatures
US6635554B1 (en) * 1999-09-03 2003-10-21 The Trustees Of Columbia University In The City Of New York Systems and methods using sequential lateral solidification for producing single or polycrystalline silicon thin films at low temperatures
DE10312658A1 (en) * 2003-03-21 2004-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for coating flexible substrates, e.g. polymer films, with aluminum comprises coating the substrate with a thin aluminum oxide layer before applying the aluminum
EP1731219A1 (en) * 2005-06-11 2006-12-13 TuTech Innovation GmbH Process for encapsulating organic substances in particle form by spraying an inert, supercritical carrier gas together with the coating material for the organic substance into a high pressure fluidised bed contained in an autoclave
WO2008060358A2 (en) * 2006-09-29 2008-05-22 Massachusetts Institute Of Technology System and method for providing the capability of peeling thin polymer films from a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056900A1 (en) 2016-09-20 2018-03-29 Agency For Science, Technology And Research Redox active metal/metal oxide composites for antimicrobial applications
EP3516091A4 (en) * 2016-09-20 2020-04-01 Agency for Science, Technology and Research Redox active metal/metal oxide composites for antimicrobial applications

Also Published As

Publication number Publication date
BRPI0806015A2 (en) 2010-09-14

Similar Documents

Publication Publication Date Title
Choukourov et al. Structured Ti/hydrocarbon plasma polymer nanocomposites produced by magnetron sputtering with glancing angle deposition
EP3040442B1 (en) Functional thin films comprising an hybrid organic/inorganic thin films and method of manufacturing same
Hora et al. Inorganic thin film deposition and application on organic polymer substrates
Kim et al. Fluorocarbon thin films fabricated using carbon nanotube/polytetrafluoroethylene composite polymer targets via mid-frequency sputtering
KR20120127400A (en) Porous materials
Bishal et al. Room temperature TiO2 atomic layer deposition on collagen membrane from a titanium alkylamide precursor
US20220142021A1 (en) Method of manufacturing an electromagnetic wave shielding film comprising an electromagnetic wave shielding layer
Abu-Thabit et al. Fundamental of smart coatings and thin films: Synthesis, deposition methods, and industrial applications
Shearer et al. Composite SiO2/TiO2 and amine polymer/TiO2 nanoparticles produced using plasma-enhanced chemical vapor deposition
Lin et al. Self-regulating homogenous growth of high-quality graphene on Co–Cu composite substrate for layer control
Kylián et al. Core@ shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in‐flight plasma polymer coating
Shishkovsky et al. Chemical and physical vapor deposition methods for nanocoatings
Lu Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing
JP2000096212A (en) Photocatalyst film coated member and its production
Akkopru‐Akgun et al. MnO2 thin film electrodes for enhanced reliability of thin glass capacitors
Varnagiris et al. Incorporation of SiO2 and TiO2 additives into expanded polystyrene foam using physical vapour deposition technique
JP4243687B2 (en) Organic-inorganic hybrid thin film and method for producing the same
WO2019031263A1 (en) Gas barrier laminate
WO2010075615A1 (en) Process for preparing thin or ultra-thin films and nanocomposites of metal oxide and/or metal nanoparticles for impregnating and/or coating glass, polymer, wood and metal substrates
JP5376500B2 (en) Oxygen ion conductive ceramic membrane material and manufacturing method thereof
KR101858233B1 (en) A method for manufacturing special nanostructure use evaporation and sputtering
Kobayashi et al. Low-temperature synthesis of single-phase barium strontium titanate thin film with a nm-seeding technique and its dielectric properties
JP5104273B2 (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and manufacturing method thereof, gas barrier sheet and manufacturing method thereof
EP1624087B1 (en) A method for depositing thin layers of titanium dioxide on support surfaces
Tetsi et al. Ba0. 6Sr0. 4TiO3 thin films deposited by spray coating for high capacitance density capacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835919

Country of ref document: EP

Kind code of ref document: A1