WO2010066458A1 - Imaging radar sensor having digital beam forming and synthetic magnification of the antenna aperture - Google Patents

Imaging radar sensor having digital beam forming and synthetic magnification of the antenna aperture Download PDF

Info

Publication number
WO2010066458A1
WO2010066458A1 PCT/EP2009/008931 EP2009008931W WO2010066458A1 WO 2010066458 A1 WO2010066458 A1 WO 2010066458A1 EP 2009008931 W EP2009008931 W EP 2009008931W WO 2010066458 A1 WO2010066458 A1 WO 2010066458A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antennas
receiving antennas
received signals
dimensional fft
Prior art date
Application number
PCT/EP2009/008931
Other languages
German (de)
French (fr)
Inventor
Guenther Trummer
Richard Körber
Original Assignee
Astyx Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astyx Gmbh filed Critical Astyx Gmbh
Priority to DE112009004417T priority Critical patent/DE112009004417A5/en
Publication of WO2010066458A1 publication Critical patent/WO2010066458A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/422Simultaneous measurement of distance and other co-ordinates sequential lobing, e.g. conical scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4445Monopulse radar, i.e. simultaneous lobing amplitude comparisons monopulse, i.e. comparing the echo signals received by an antenna arrangement with overlapping squinted beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • Imaging radar sensor with digital beamforming and synthetic magnification of the antenna aperture
  • the invention relates to a method for increasing the angular resolution of imaging radar sensors with a limited available antenna aperture and a reduced number of receiving channels.
  • Millimeter wave radar sensors e.g. B. for automotive applications should have a compact and cost-effective design. This means that the available area for the antenna should be kept as small as possible and the number of high frequency components should be minimized.
  • the senor should have a high angular resolution, which, however, requires a large antenna area, so-called aperture.
  • the size of the radar sensors can be reduced almost by a factor of two.
  • the object movement usually causes aberrations, the echoes of nearby objects are superimposed, which can lead to false and ambiguous images.
  • the object of the invention is to provide a device, a method and a radar system, whereby the above-described aberrations are avoided.
  • the object is achieved according to the device with the features of claim 1, according to the method with the features of claim 7 and according to the radar system with the features of claim 6.
  • the device for determining a position of an object comprises at least two transmit antennas, a number of multiple receive antennas arranged in series, the transmit antennas being arranged in the direction of the object in each case behind receive antennas which are located at or in the vicinity of At least one processing unit for carrying out at least one linkage of the received signals emitted by the receiving antennas according to at least one processing unit for generating signals which are emitted from the transmitting antennas in time sequentially the method of digital beamforming for generating a collimated antenna beam and for performing a speed correction and / or removal correction by means of a two-dimensional FFT by comparing output signals of the superimposed antenna lines corresponding to the collimated antenna beam, and a display device for displaying the position of the object.
  • the method according to the invention for determining a position of an object comprises at least the method steps of receiving a sequence of received signals which are transmitted successively and reflected on the object by a number of multiple receiving antennas arranged in a row, the digitization of the received signals, the link the reception signals according to the method of digital beamforming into a collimated antenna beam, performing a speed correction and a distance correction by means of a two-dimensional FFT by comparing outputs of overlapping antenna lines which correspond to the collimated antenna beam, and the representation of the position of the object.
  • the invention has the advantages that in the representation of the position of the object image distortions and dummy targets and / or dummy objects are suppressed, which are caused by object movements, the modulation form and / or phase shifts functional modules. Furthermore, the angle determination and angular resolution for determining the position of the object is comparatively high.
  • the device has a number of 8, 16 or 32 receiving antennas.
  • the position of the object can be displayed by means of the display device via an antenna diagram.
  • a speed corrector is performed in addition to the distance correction.
  • the amplitudes of adjacent antenna beams are expediently evaluated (so-called sequential lobing).
  • a trapezoidal frequency modulation is expediently carried out, the falling frequency ramp being evaluated in a time-inverse manner.
  • a unique mapping of the velocity of the object becomes possible, i. in terms of both speed and direction.
  • a purely sawtooth-shaped frequency modulation of the millimeter-wave carrier signal can be carried out for carrying out the two-dimensional FFT, wherein alternately the left and the right transmitter are active during the frequency sweeps. In this case, the amount of speed becomes clear.
  • the invention relates to a frequency-modulated continuous wave radar (FMCW radar) according to FIG. 1, which monitors an area with the aid of digital beamforming.
  • the radar sensor consists of two transmitters and several z. B. 16 receivers.
  • Fig. 1 shows a frequency generator 2, a local oscillator 4, an adjoining distribution network 6, a left transmitter 8 with a left transmitting antenna 10 on an antenna line 12 and a right transmitter 14 with a right transmitting antenna 16 on the antenna line 12 and a 16-channel Receiver 18, with which the received signals are mixed down to a baseband.
  • the transmitting antennas 10, 16 are, as shown in FIG. 2, arranged on the same x-coordinate as the receiving antennas 20 which are respectively located on the extreme left and on the right. Both the transmit antennas and the receive antennas are designed in the embodiment shown in FIG. 2 as "microstrip patch" antennas.
  • the signals of the receivers are first digitized and then linked together using the "digital beamforming" method, so that a bundled antenna beam forms, which corresponds to an antenna array of 16 antenna lines Align the direction of the desired viewing angle. If the transmitters are now operated in chronological succession, a combination of the signals of the individual lines can be chosen such that it corresponds to an aperture that is almost twice as large, a so-called synthetic aperture.
  • Figures 3A and 3B and 3C show the real aperture and the synthetic arrangement, respectively.
  • a special feature of this arrangement is that each of the extreme left and right antenna lines on the x-axis come to lie one above the other. From this, the demand can be derived that these two antenna lines must receive the same signals.
  • the invention now consists in determining correction factors for the digital beam shaping from the superimposed receiving channels.
  • a trapezoidal frequency modulation of the millimeter-wave carrier signal is carried out, the left transmitter being active in the ascending trapezoidal ramp according to FIG. 4, and the right transmitter being active in the falling trapezoidal ramp.
  • the signals received during the ramps are digitized and stored separately according to increasing and decreasing modulation ramp in the memory of the arithmetic unit.
  • a purely sawtooth-shaped frequency modulation of the millimeter-wave carrier signal can be carried out, with the left and the right transmitter being active alternately during the frequency sweeps, as shown in FIG. 4a.
  • the unique speed range is doubled, but the information about the direction determination of the speed is omitted. This must then be determined as part of a signal post-processing on the change in location of the detected object.
  • Fig. 5 shows a flowchart of the following signal processing procedure.
  • FFT fast Fourier transform
  • a complex spectrum is first generated for each ramp 22, the frequency of which is proportional to the distance.
  • These temporally successive spectra are now arranged in a matrix to a so-called spectrogram, with each row of the matrix representing an FFT.
  • Moving objects cause a shift in the phases of the complex spectrum.
  • the frequency of this phase shift is directly proportional to the relative velocity between the object and the radar platform. If, therefore, one wishes to determine the velocity for each detected object, a second FFT is preferably calculated over the columns of this matrix, that is to say over the time-sequential spectra.
  • the method is also known as so-called "two-dimensional" FFT
  • the matrix thus transformed represents the distance, the velocity and the echo amplitude of each individual detected object in a three-dimensional view.
  • the line numbers in the diagram shown in FIG. 6 each represent a speed gate (x -Axis), the column number is a distance gate (y-axis) and the amount of complex matrix elements is the echo amplitude (z-axis) of an object. This calculation is performed for each individual receiving channel. After this processing step, there are therefore matrices for the rising ramp 24 (FIG. 4) and 16 matrices for the falling ramp 26 (FIG. 4) in the memory of the arithmetic unit 16.
  • phase correction matrix In preparation for the subsequent beam shaping, a so-called phase correction matrix is generated.
  • the phases of the complex matrix elements of the receiver No. 16 are subtracted from each other by reference number 26 in FIG. 3B of the rising ramp and that of the receiver No. 1 by reference number 28 in FIG. 3B of the falling ramp.
  • This phase correction matrix represents the signal distortion due to the different modulation form, the object movement and the phase shifts of the physical assemblies.
  • the matrices are now placed at the synthetic aperture, with the antenna line 1 to 15 being generated by the rising ramp matrices and the antenna lines 16 to 32 by the descending ramp matrices. Since antenna line 15 and 16 are superimposed, one of the two is eliminated for the following beam shaping.
  • the formation and alignment of the tightly bundled antenna beam is carried out according to the "digital beamforming" method known from the prior art: the complex elements of the individual matrices are weighted and phase-shifted.
  • FIGS. 7A and 7B show an uncorrected and a corrected antenna lobe in the detection of a moving object.
  • the sensor When used as a distance sensor in the automotive sector, the sensor is intended to monitor both the near to medium distance range up to typically 70 m and the distance range up to 200 m.
  • the arrangement of the functional modules as well as the antennas is to be optimized.
  • Figure 8a shows the functional block diagram for a typical implementation.
  • Figure 8b shows the associated antenna arrangement.
  • a 4-channel transmitter and four 4-channel receiver are used.
  • the two internal transmitters are active and the inner 10 individual lines.
  • the transmitting antennas are arranged so that they are exactly opposite the respective outer receiving antenna lines.
  • a wide antenna lobe of the receiver is advantageous.
  • only one transmitter is active, and the signal is received by 10 receive lines.
  • the two internal transmitters are alternately active.
  • the width of the antenna lobe is thus reduced by a factor of two according to the method of synthetic aperture enlargement described above.
  • a much narrower antenna lobe is required.
  • a typical half-width of the antenna lobe of 2 degrees is required. This is achieved by alternately activating the two outer transmission channels.
  • the outer antenna lines are grouped into groups of 3. The so-called phase centers of the outer receiving antenna groups as well as those of the outer transmitting antenna groups must be exactly opposite each other, so that a correction matrix can be calculated according to the method described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

According to the invention, a device and a method for determining a position of an object, in particular a moving object, are provided. The device comprises at least two transmitting antennas, a number of receiving antennas arranged in series, wherein the transmitting antennas are arranged downstream of the receiving antennas in the direction of the object and provided at or near the opposite series ends, a frequency generator for generating signals, which are emitted by the transmitting antennas in chronological succession, at least one processing unit for performing at least one linkage of the received signals emitted by the receiving antennas according to the method of digital beam forming in order to generate a bundled antenna beam and to perform a speed correction and/or a distance correction by means of a two-dimensional FFT by comparing output signals of the overlapping antenna rows, which correspond to the bundled antenna beam, and a playback device for displaying the position of the object. The invention also relates to a radar system for use of the device according to the invention.

Description

Beschreibung description
Abbildender Radarsensor mit digitaler Strahlformunq und synthetischer Vergrößerung der AntennenaperturImaging radar sensor with digital beamforming and synthetic magnification of the antenna aperture
Technisches AnwendungsgebietTechnical application
Die Erfindung betrifft ein Verfahren zur Erhöhung der Winkelauflösung von abbildenden Radarsensoren bei begrenzt verfügbarer Antennenapertur und einer reduzierten Anzahl von Empfangskanälen.The invention relates to a method for increasing the angular resolution of imaging radar sensors with a limited available antenna aperture and a reduced number of receiving channels.
Millimeterwellen-Radarsensoren, z. B. für automobile Anwendungen sollen eine kompakte und kostengünstige Bauweise vorweisen. Dies bedeutet, dass die verfügbare Fläche für die Antenne möglichst klein zu halten ist und die Anzahl der Hochfrequenz-Komponenten minimiert sein sollte.Millimeter wave radar sensors, e.g. B. for automotive applications should have a compact and cost-effective design. This means that the available area for the antenna should be kept as small as possible and the number of high frequency components should be minimized.
Andererseits sollte der Sensor eine hohe Winkelauflösung vorweisen, welche jedoch eine große Antennenfläche, sogenannte Apertur, erfordert.On the other hand, the sensor should have a high angular resolution, which, however, requires a large antenna area, so-called aperture.
Dieser Konflikt der Anforderungen wird durch die folgende Erfindung vorteilhaft gelöst. Die Baugröße der Radarsensoren kann dabei fast um den Faktor Zwei verkleinert werden.This conflict of requirements is advantageously solved by the following invention. The size of the radar sensors can be reduced almost by a factor of two.
Stand der TechnikState of the art
Aus der Dissertation von Dr. Winfried Mayer mit dem Titel „Abbildender Radarsensor mit sendeseitig geschalteter Gruppenantenne", Cuvillier Verlag, Göttingen 2008, ISBN 978-3-86727-565-1 ist ein Verfahren sowie eine Vorrichtung bekannt, welches mit der Technik der digitalen Strahlformung, bei denen ein Antennenarray mit mehreren Sendern und mehreren Empfängern eingesetzt wird, ein Gebiet überwacht. Durch den zeitlich aufeinanderfolgenden Einsatz der Sender, kann der Antennenöffnungswinkel verkleinert werden, ohne dass dabei die physikalische Größe der Empfangsantenne zunimmt.From the dissertation of Dr. med. Winfried Mayer entitled "Imaging radar sensor with transmitting side switched group antenna", Cuvillier Verlag, Göttingen 2008, ISBN 978-3-86727-565-1 a method and apparatus is known, which with the technique of digital beam forming, in which an antenna array is used with multiple transmitters and multiple receivers, one area monitored. By using the transmitters in chronological succession, the antenna opening angle can be reduced without increasing the physical size of the receiving antenna.
Bei Radarsensoren funktioniert dieses Verfahren gut, solange die zu detektierenden Objekte sich nicht bewegen und mehrere nahe beieinander liegende Objekte zu detektieren sind.In radar sensors, this method works well as long as the objects to be detected do not move and several nearby objects are detected.
Die Objektbewegung verursacht in der Regel Abbildungsfehler, die Echos nahe beieinander liegender Objekte überlagern sich, was zu falschen und mehrdeutigen Abbildungen führen kann.The object movement usually causes aberrations, the echoes of nearby objects are superimposed, which can lead to false and ambiguous images.
Darstellung der ErfindungPresentation of the invention
Die Aufgabe der Erfindung ist, eine Vorrichtung, ein Verfahren sowie ein Radarsystem zur Verfügung zu stellen, womit die oben beschriebenen Abbildungsfehler vermieden werden.The object of the invention is to provide a device, a method and a radar system, whereby the above-described aberrations are avoided.
Die Aufgabe wird vorrichtungsgemäß mit den Merkmalen des Anspruchs 1 , verfahrensgemäß mit den Merkmalen des Anspruchs 7 und gemäß dem Radarsystem mit den Merkmalen des Anspruchs 6 gelöst.The object is achieved according to the device with the features of claim 1, according to the method with the features of claim 7 and according to the radar system with the features of claim 6.
Dementsprechend umfasst die Vorrichtung zur Bestimmung einer Position eines Objekts, insbesondere eines sich bewegenden Objekts, mindestens zwei Sendeantennen, eine Anzahl mehrerer in Reihe angeordneter Empfangsantennen, wobei die Sendeantennen in Richtung zum Objekt jeweils hinter Empfangsantennen angeordnet sind, welche an den oder in der Nähe der gegenüberliegenden Reihenenden vorgesehen sind, einen Frequenzgenerator zur Erzeugung von Signalen, welche von den Sendeantennen zeitlich aufeinanderfolgend abgegeben werden, mindestens eine Verarbeitungseinheit zur Durchführung mindestens einer Verknüpfung der von den Empfangsantennen abgegebenen Empfangssignale nach der Methode der digitalen Strahlformung zur Erzeugung eines gebündelten Antennenstrahls und zur Durchführung einer Geschwindigkeitskorrektur und/oder einer Entfemungskorrektur mittels einer zweidimensionalen FFT durch Vergleich von Ausgangssignalen der, dem gebündelten Antennenstrahl entsprechenden, sich überlagernden Antennenzeilen, und eine Wiedergabeeinrichtung zur Darstellung der Position des Objekts.Accordingly, the device for determining a position of an object, in particular a moving object, comprises at least two transmit antennas, a number of multiple receive antennas arranged in series, the transmit antennas being arranged in the direction of the object in each case behind receive antennas which are located at or in the vicinity of At least one processing unit for carrying out at least one linkage of the received signals emitted by the receiving antennas according to at least one processing unit for generating signals which are emitted from the transmitting antennas in time sequentially the method of digital beamforming for generating a collimated antenna beam and for performing a speed correction and / or removal correction by means of a two-dimensional FFT by comparing output signals of the superimposed antenna lines corresponding to the collimated antenna beam, and a display device for displaying the position of the object.
Das erfindungsgemäße Verfahren zur Bestimmung einer Position eines Objekts, insbesondere eines sich bewegenden Objekts, umfasst mindestens die Verfahrensschritte des Empfangs einer Folge von zeitlich aufeinanderfolgend gesendeten und am Objekt reflektierten Empfangssignalen durch eine Anzahl mehrerer in einer Reihe angeordneter Empfangsantennen, der Digitalisierung der Empfangssignale, der Verknüpfung der Empfangssignale nach der Methode der digitalen Strahlformung zu einem gebündelten Antennenstrahl, der Durchführung einer Geschwindigkeitskorrektur und einer Entfernungskorrektur mittels einer zweidimensionalen FFT durch Vergleich von Ausgangssignalen von sich überlagernden Antennenzeilen, welche dem gebündelten Antennenstrahl entsprechen, und der Darstellung der Position des Objekts.The method according to the invention for determining a position of an object, in particular of a moving object, comprises at least the method steps of receiving a sequence of received signals which are transmitted successively and reflected on the object by a number of multiple receiving antennas arranged in a row, the digitization of the received signals, the link the reception signals according to the method of digital beamforming into a collimated antenna beam, performing a speed correction and a distance correction by means of a two-dimensional FFT by comparing outputs of overlapping antenna lines which correspond to the collimated antenna beam, and the representation of the position of the object.
Die Erfindung weist unter anderem die Vorteile auf, dass bei der Darstellung der Position des Objekts Bildverzerrungen und Scheinziele und/oder Scheinobjekte unterdrückt werden, welche durch Objektbewegungen, die Modulationsform und/oder Phasenverschiebungen funktionaler Baugruppen hervorgerufen werden. Des Weiteren ist die Winkelbestimmung und Winkelauflösung zur Positionsbestimmung des Objekts vergleichsweise hoch. Durch die Anordnung der Sendeantennen jeweils gegenüberliegend zu den äußeren Empfangsantennen wird einerseits die Überlappung der äußerst rechts liegenden Empfangsantennenzeile und der äußerst links liegenden synthetischen Antennenzeile ermöglicht und andererseits die für die Funktionsfähigkeit der erfindungsgemäßen Vorrichtung notwendige Entkopplung zwischen dem Sender und Empfänger gewährleistet. Die in den Unteransprüchen aufgeführten Merkmale und der jeweils beanspruchte Gegenstand stellen vorteilhafte Weiterbildungen dar.Among other things, the invention has the advantages that in the representation of the position of the object image distortions and dummy targets and / or dummy objects are suppressed, which are caused by object movements, the modulation form and / or phase shifts functional modules. Furthermore, the angle determination and angular resolution for determining the position of the object is comparatively high. The arrangement of the transmitting antennas respectively opposite to the outer receiving antennas on the one hand, the overlapping of the far right receiving antenna line and the leftmost synthetic antenna line allows and on the other hand ensures the necessary for the functioning of the device according to the invention decoupling between the transmitter and receiver. The features listed in the dependent claims and the claimed subject matter represent advantageous developments.
Zweckmäßigerweise weist die Vorrichtung eine Anzahl von 8, 16 oder 32 Empfangsantennen auf.Conveniently, the device has a number of 8, 16 or 32 receiving antennas.
Gemäß vorteilhafter Weiterbildung ist die Position des Objekts mittels der Wiedergabeeinrichtung über ein Antennendiagramm darstellbar.According to an advantageous development, the position of the object can be displayed by means of the display device via an antenna diagram.
In zweckmäßiger Weiterbildung wird zusätzlich zur Entfernungskorrektur eine Geschwindigkeitskorrektor durchgeführt.In an expedient development, a speed corrector is performed in addition to the distance correction.
Zur Erzielung einer höheren Winkelauflösung in einem Beobachtungswinkelbereich werden zweckmäßigerweise die Amplituden benachbarter Antennenstrahlen ausgewertet (sog. Sequential lobing).To achieve a higher angular resolution in an observation angle range, the amplitudes of adjacent antenna beams are expediently evaluated (so-called sequential lobing).
Zur Erzielung einer höheren Winkelauflösung werden zweckmäßigerweise die Summe und Differenz zweier benachbarter Antennenstrahlen ausgewertet (sog. Monopuls).To achieve a higher angular resolution, the sum and difference of two adjacent antenna beams are expediently evaluated (so-called monopulse).
Zur Durchführung der zweidimensionalen FFT wird zweckmäßigerweise eine trapezförmige Frequenzmodulation durchgeführt, wobei die fallende Frequenzrampe zeitinvers ausgewertet wird. Somit wird bei der Durchführung der zweidimensionale FFT eine eindeutige Abbildung der Geschwindigkeit des Objekts möglich, d.h. sowohl im Betrag der Geschwindigkeit als auch hinsichtlich der Richtung.To carry out the two-dimensional FFT, a trapezoidal frequency modulation is expediently carried out, the falling frequency ramp being evaluated in a time-inverse manner. Thus, in performing the two-dimensional FFT, a unique mapping of the velocity of the object becomes possible, i. in terms of both speed and direction.
Zur Durchführung der zweidimensionalen FFT kann alternativ auch eine rein sägezahnförmige Frequenzmodulation des Millimeterwellen-Trägersignals durchgeführt werden, wobei abwechselnd der linke und der rechte Sender während der Frequenzsweeps aktiv sind. In diesem Fall wird der Betrag der Geschwindigkeit eindeutig.Alternatively, a purely sawtooth-shaped frequency modulation of the millimeter-wave carrier signal can be carried out for carrying out the two-dimensional FFT, wherein alternately the left and the right transmitter are active during the frequency sweeps. In this case, the amount of speed becomes clear.
- A - Ausführungsbeispiele:- A - EXAMPLES
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Einander entsprechende Teile sind in allen Figuren mit den gleich Bezugszeichen versehen.Embodiments of the invention will be explained in more detail with reference to a drawing. Corresponding parts are provided in all figures with the same reference numerals.
Die Erfindung betrifft ein frequenzmoduliertes Dauerstrich Radar (FMCW-Radar) nach Fig. 1 , welches ein Gebiet mit Hilfe der digitalen Strahlformung überwacht. Der Radarsensor besteht dabei aus zwei Sendern und mehreren z. B. 16 Empfängern. Fig. 1 zeigt einen Frequenzgenerator 2, einen Lokaloszillator 4, ein daran anschließendes Verteilernetzwerk 6, einen linken Sender 8 mit einer linken Sendeantenne 10 auf einer Antennenzeile 12 und einen rechten Sender 14 mit einer rechten Sendeantenne 16 auf der Antennenzeile 12 sowie einen 16-Kanal Empfänger 18, womit die Empfangssignale auf eine Basisband herabgemischt werden.The invention relates to a frequency-modulated continuous wave radar (FMCW radar) according to FIG. 1, which monitors an area with the aid of digital beamforming. The radar sensor consists of two transmitters and several z. B. 16 receivers. Fig. 1 shows a frequency generator 2, a local oscillator 4, an adjoining distribution network 6, a left transmitter 8 with a left transmitting antenna 10 on an antenna line 12 and a right transmitter 14 with a right transmitting antenna 16 on the antenna line 12 and a 16-channel Receiver 18, with which the received signals are mixed down to a baseband.
Die Sendeantennen 10, 16 sind dabei wie in Fig. 2 dargestellt auf der gleichen x- Koordinate wie die jeweils äußerst links bzw. rechts liegenden Empfangsantennen 20 angeordnet. Sowohl die Sendeantennen als auch die Empfangsantennen sind im in Fig. 2 gezeigten Ausführungsbeispiel als „microstrip patch" Antennen ausgeführt.The transmitting antennas 10, 16 are, as shown in FIG. 2, arranged on the same x-coordinate as the receiving antennas 20 which are respectively located on the extreme left and on the right. Both the transmit antennas and the receive antennas are designed in the embodiment shown in FIG. 2 as "microstrip patch" antennas.
Die Signale der Empfänger werden zunächst digitalisiert und dann nach der Methode der „digitalen Strahlformung" miteinander verknüpft, sodass sich ein gebündelter Antennestrahl bildet, welcher einem Antennenarray von 16 Antennenzeilen entspricht. Durch geeignete Phasenverschiebung und Gewichtung der Empfangssignale der Einzelzeilen lässt sich dieser gebündelte Strahl in Richtung des gewünschten Beobachtungswinkel ausrichten. Werden nun die Sender zeitlich aufeinanderfolgend betrieben, so kann eine Verknüpfung der Signale der Einzelzeilen derart gewählt werden, dass diese einer fast doppelt so großen Apertur, einer sogenannten synthetischen Apertur, entspricht. Figuren 3A sowie 3B und 3C zeigen die reale Apertur bzw. die synthetische Anordnung.The signals of the receivers are first digitized and then linked together using the "digital beamforming" method, so that a bundled antenna beam forms, which corresponds to an antenna array of 16 antenna lines Align the direction of the desired viewing angle. If the transmitters are now operated in chronological succession, a combination of the signals of the individual lines can be chosen such that it corresponds to an aperture that is almost twice as large, a so-called synthetic aperture. Figures 3A and 3B and 3C show the real aperture and the synthetic arrangement, respectively.
Eine Besonderheit dieser Anordnung ist, dass die jeweils äußerst links bzw. rechts liegenden Antennenzeilen auf der x-Achse übereinander zum liegen kommen. Daraus lässt sich die Forderung ableiten, dass diese beiden Antennenzeilen die gleichen Signale empfangen müssen.A special feature of this arrangement is that each of the extreme left and right antenna lines on the x-axis come to lie one above the other. From this, the demand can be derived that these two antenna lines must receive the same signals.
Bei bewegten Objekten ist dies jedoch nicht der Fall, da diese bedingt durch den zeitlichen Versatz der beiden nacheinander empfangenen Signale unterschiedliche Positionen einnehmen können. Das gleiche gilt auch für unterschiedliche Modulationszustände und für Phasenverschiebungen, welche durch die physikalischen Eigenschaften der verwendeten funktionalen Baugruppen verursacht sein können. Diese Verschiebungen führen zu Verzerrungen und falschen Abbildungen im Radarbild.However, this is not the case with moving objects since they can assume different positions due to the time offset of the two successively received signals. The same applies to different modulation states and phase shifts, which may be caused by the physical properties of the functional assemblies used. These shifts lead to distortions and incorrect images in the radar image.
Die Erfindung besteht nun darin, aus den übereinander liegenden Empfangskanälen Korrekturfaktoren für die digitale Strahlformung zu ermitteln.The invention now consists in determining correction factors for the digital beam shaping from the superimposed receiving channels.
Es wird zunächst eine trapezförmige Frequenzmodulation des Millimeterwellen- Trägersignals durchgeführt, wobei nach Fig. 4 in der aufsteigenden Trapezrampe der linke Sender aktiv ist und in der fallenden Trapezrampe der rechte Sender. Die während der Rampen empfangenen Signale werden digitalisiert und getrennt nach steigender und fallender Modulationsrampe im Speicher der Recheneinheit abgelegt.First, a trapezoidal frequency modulation of the millimeter-wave carrier signal is carried out, the left transmitter being active in the ascending trapezoidal ramp according to FIG. 4, and the right transmitter being active in the falling trapezoidal ramp. The signals received during the ramps are digitized and stored separately according to increasing and decreasing modulation ramp in the memory of the arithmetic unit.
Bei bewegten Objekten entstehen beispielsweise dabei in den Signalen der steigenden Rampe positive Frequenzverschiebungen, sogenannteIn the case of moving objects, for example, positive frequency shifts occur in the signals of the rising ramp, so-called
Dopplerverschiebungen, in der fallenden Rampe aber negativeDoppler shifts, in the falling ramp but negative
Frequenzverschiebungen. Damit im Laufe der weiteren Signalverarbeitung keine Frequenzvermischung statt findet, werden die Signale aus den fallenden Modulationsrampen zeitlich invers abgelegt. Die Dopplerverschiebung entspricht also im Vorzeichen dem der steigenden Rampe.Frequency shifts. So that in the course of further signal processing no Frequency mixing takes place, the signals from the falling modulation ramps are stored inversely in time. The Doppler shift thus corresponds in sign to that of the rising ramp.
Alternativ kann auch eine rein sägezahnförmige Frequenzmodulation des Millimeterwellen-Trägersignals durchgeführt werden wobei nach Abbildung 4a abwechselnd der linke und der rechte Sender während der Frequenzsweeps aktiv sind. Gegenüber der dreiecksförmigen Frequenzmodulation wird dabei der eindeutige Geschwindigkeitsbereich verdoppelt, es entfällt jedoch die Information über die Richtungsbestimmung der Geschwindigkeit. Diese muss dann im Rahmen einer Signalnachverarbeitung über die Ortsänderung des detektierten Objekts ermittelt werden.Alternatively, a purely sawtooth-shaped frequency modulation of the millimeter-wave carrier signal can be carried out, with the left and the right transmitter being active alternately during the frequency sweeps, as shown in FIG. 4a. In contrast to the triangular frequency modulation, the unique speed range is doubled, but the information about the direction determination of the speed is omitted. This must then be determined as part of a signal post-processing on the change in location of the detected object.
Fig. 5 zeigt ein Flussdiagramm der nun folgenden Signalverarbeitungsprozedur. Mit Hilfe einer schnellen Fouriertransformation (FFT) wird zunächst für jede Rampe 22 ein komplexes Spektrum erzeugt, dessen Frequenz proportional zur Entfernung ist. Diese zeitlich aufeinanderfolgenden Spektren werden nun in einer Matrix zu einem sogenannten Spektrogramm angeordnet, wobei jede Zeile der Matrix eine FFT darstellt. Bewegte Objekte verursachen eine Verschiebung der Phasen des komplexen Spektrums. Die Frequenz dieser Phasenverschiebung, die sogenannte Dopplerfrequenz, ist direkt proportional zur relativen Geschwindigkeit zwischen Objekt und Radarplattform. Will man also die Geschwindigkeit für jedes detektierte Objekt ermitteln, so rechnet man bevorzugt eine zweite FFT über die Spalten dieser Matrix, also über die zeitlich aufeinanderfolgenden Spektren. Das Verfahren ist auch als sogenannte „zweidimensionale" FFT bekannt. Die so transformierte Matrix stellt in einer dreidimensionalen Ansicht die Entfernung, die Geschwindigkeit sowie die Echoamplitude jedes einzelnen detektierten Objekts dar. Die Zeilennummern im in Fig. 6 gezeigten Diagramm stellen jeweils ein Geschwindigkeitstor (x-Achse), die Spaltennummer ein Entfernungstor (y-Achse) und der Betrag der komplexen Matrixelemente die Echoamplitude (z-Achse) eines Objekts dar. Diese Berechnung wird für jeden einzelnen Empfangskanal durchgeführt. Nach diesem Verarbeitungsschritt liegen also im Speicher der Recheneinheit 16 Matrizen für die steigende Rampe 24 (Fig. 4) und 16 Matrizen für die fallende Rampe 26 (Fig. 4) vor.Fig. 5 shows a flowchart of the following signal processing procedure. Using a fast Fourier transform (FFT), a complex spectrum is first generated for each ramp 22, the frequency of which is proportional to the distance. These temporally successive spectra are now arranged in a matrix to a so-called spectrogram, with each row of the matrix representing an FFT. Moving objects cause a shift in the phases of the complex spectrum. The frequency of this phase shift, the so-called Doppler frequency, is directly proportional to the relative velocity between the object and the radar platform. If, therefore, one wishes to determine the velocity for each detected object, a second FFT is preferably calculated over the columns of this matrix, that is to say over the time-sequential spectra. The method is also known as so-called "two-dimensional" FFT The matrix thus transformed represents the distance, the velocity and the echo amplitude of each individual detected object in a three-dimensional view. The line numbers in the diagram shown in FIG. 6 each represent a speed gate (x -Axis), the column number is a distance gate (y-axis) and the amount of complex matrix elements is the echo amplitude (z-axis) of an object. This calculation is performed for each individual receiving channel. After this processing step, there are therefore matrices for the rising ramp 24 (FIG. 4) and 16 matrices for the falling ramp 26 (FIG. 4) in the memory of the arithmetic unit 16.
Als Vorbereitung für die nun folgende Strahlformung wird eine sogenannte Phasen- Korrekturmatrix erzeugt. Dabei werden die Phasen der komplexen Matrixelemente der Empfänger Nr. 16 mit Bezugszeichen 26 in Fig. 3B der steigenden Rampe und die des Empfängers Nr. 1 mit Bezugszeichen 28 in Fig. 3B der fallenden Rampe voneinander subtrahiert. Diese Phasenkorrekturmatrix stellt die Signalverzerrung durch die unterschiedliche Modulationsform, die Objektbewegung und die Phasenverschiebungen der physikalischen Baugruppen dar.In preparation for the subsequent beam shaping, a so-called phase correction matrix is generated. In this case, the phases of the complex matrix elements of the receiver No. 16 are subtracted from each other by reference number 26 in FIG. 3B of the rising ramp and that of the receiver No. 1 by reference number 28 in FIG. 3B of the falling ramp. This phase correction matrix represents the signal distortion due to the different modulation form, the object movement and the phase shifts of the physical assemblies.
Die Matrizen werden nun zur synthetischen Apertur angeordnet, wobei die Antennenzeile 1 bis 15 durch die Matrizen der steigenden Rampe und die Antennenzeilen 16 bis 32 durch die Matrizen der fallenden Rampe erzeugt werden. Da Antennenzeile 15 und 16 übereinander liegen, wird für die nun folgende Strahlformung eine der beiden eliminiert.The matrices are now placed at the synthetic aperture, with the antenna line 1 to 15 being generated by the rising ramp matrices and the antenna lines 16 to 32 by the descending ramp matrices. Since antenna line 15 and 16 are superimposed, one of the two is eliminated for the following beam shaping.
Die Bildung und Ausrichtung des eng gebündelten Antennenstrahls erfolgt nach der aus dem Stand der Technik vorbekannten Methode des „Digital Beamforming". Die komplexen Elemente der einzelnen Matrizen werden dabei gewichtet und phasenverschoben.The formation and alignment of the tightly bundled antenna beam is carried out according to the "digital beamforming" method known from the prior art: the complex elements of the individual matrices are weighted and phase-shifted.
Den Matrixelementen, welche der fallenden Rampe zugeordnet werden, wird zusätzlich noch die Phasenverschiebung der Phasendifferenzmatrix-Elemente hinzuaddiert. Damit wird die oben erwähnte Signalverzerrung sowohl hinsichtlich der Entfernung als auch hinsichtlich der Objektgeschwindigkeit kompensiert. Zuletzt werden die einzelnen Matrizen zum gebündelten Antennenstrahl mit der bevorzugten Blickrichtung aufaddiert. Figuren 7A und 7B zeigen eine unkorrigierte und eine korrigierte Antennenkeule bei der Detektion eines bewegten Objekts dar.The matrix elements which are assigned to the falling ramp are additionally added to the phase shift of the phase difference matrix elements. Thus, the above-mentioned signal distortion is compensated for both the distance and the object speed. Finally, the individual matrices are added to the bundled antenna beam with the preferred viewing direction. Figures 7A and 7B show an uncorrected and a corrected antenna lobe in the detection of a moving object.
Bei der Anwendung als Abstandssensor im Automobilsektor soll der Sensor sowohl den nahen bis mittleren Entfernungsbereich bis typischerweise 70 m als auch den Fernbereich bis 200 m überwachen. Hierzu ist die Anordnung der funktionalen Baugruppen als auch die der Antennen zu optimieren. Abbildung 8a zeigt das funktionale Blockschaltbild für eine typische Ausführung. In Abbildung 8b ist die dazugehörige Antennenanordnung zu sehen.When used as a distance sensor in the automotive sector, the sensor is intended to monitor both the near to medium distance range up to typically 70 m and the distance range up to 200 m. For this purpose, the arrangement of the functional modules as well as the antennas is to be optimized. Figure 8a shows the functional block diagram for a typical implementation. Figure 8b shows the associated antenna arrangement.
Bei dieser Ausführung kommen ein 4-kanal Sender sowie vier 4-Kanal Empfänger zum Einatz. Im operativen Modus der Nahbereichsüberwachung sind die zwei innenliegenden Sender aktiv sowie die innenliegenden 10 Einzelzeilen. Die Sendeantennen sind so angeordnet, dass sie den jeweils äußeren Empfangsantennenzeilen exakt gegenüberliegen. Zur Überwachung des Nahbereichs ist eine breite Antennenkeule des Empfängers vorteilhaft. Hierzu ist nur ein Sender aktiv, und das Signal wird von 10 Empfangszeilen empfangen.In this version, a 4-channel transmitter and four 4-channel receiver are used. In the operating mode of short-range monitoring, the two internal transmitters are active and the inner 10 individual lines. The transmitting antennas are arranged so that they are exactly opposite the respective outer receiving antenna lines. For monitoring the near range, a wide antenna lobe of the receiver is advantageous. For this purpose, only one transmitter is active, and the signal is received by 10 receive lines.
Für den mittleren Entfernungsbereich sind die beiden innenliegenden Sender abwechselnd aktiv. Die Breite der Antennenkeule wird damit nach dem oben beschriebenen Verfahren der synthetischen Aperturvergrößerung um den Faktor zwei verkleinert. Für den Fernbereich ist eine weitaus schmälere Antennenkeule erforderlich. Um zwei Fahrzeuge auf unterschiedlichen Fahrspuren in 200 Metern Entfernung unterscheiden zu können, ist eine typische Halbwertsbreite der Antennenkeule von 2 Grad erforderlich. Dies wird dadurch erreicht, dass abwechselnd die beiden äußeren Sendekanäle aktiviert werden. Um die Anzahl der Empfangskanäle in Grenzen zu halten, werden die äußeren Antennenzeilen zu 3er- Gruppen zusammengefasst. Die sogenannen Phasenzentren der äußeren Empfangsantennengruppen sowie die der äußeren Sendeantennengruppen müssen dabei exakt einander gegenüber liegen, damit eine Korrekturmatrix nach dem oben beschriebenen Verfahren berechnet werden kann. For the middle distance range the two internal transmitters are alternately active. The width of the antenna lobe is thus reduced by a factor of two according to the method of synthetic aperture enlargement described above. For the far range, a much narrower antenna lobe is required. In order to be able to distinguish two vehicles on different lanes at a distance of 200 meters, a typical half-width of the antenna lobe of 2 degrees is required. This is achieved by alternately activating the two outer transmission channels. In order to limit the number of receive channels, the outer antenna lines are grouped into groups of 3. The so-called phase centers of the outer receiving antenna groups as well as those of the outer transmitting antenna groups must be exactly opposite each other, so that a correction matrix can be calculated according to the method described above.

Claims

Patentansprüche claims
1. Vorrichtung zur Bestimmung einer Position eines Objekts, insbesondere eines sich bewegenden Objekts, mit mindestens zwei Sendeantennen, einer Anzahl mehrerer in Reihe angeordneter Empfangsantennen, wobei die Sendeantennen in Richtung zum Objekt jeweils hinter Empfangsantennen angeordnet sind, welche an den oder in der Nähe der gegenüberliegenden Reihenenden vorgesehen sind, einem Frequenzgenerator zur Erzeugung von Signalen, welche von den Sendeantennen zeitlich aufeinanderfolgend abgegeben werden, mit mindestens einer Verarbeitungseinheit zur Durchführung mindestens einer Verknüpfung der von den Empfangsantennen abgegebenen Empfangssignale nach der Methode der digitalen Strahlformung zur Erzeugung eines gebündelten Antennenstrahls und zur Durchführung einer Geschwindigkeitskorrektur und/oder einer Entfernungskorrektur mittels einer zweidimensionalen FFT durch Vergleich von Ausgangssignalen der, dem gebündelten Antennenstrahl entsprechenden, sich überlagernden Antennenzeilen, und mit einer Wiedergabeeinrichtung zur Darstellung der Position des Objekts.Anspruch [en] A device for determining a position of an object, in particular a moving object, comprising at least two transmitting antennas, a number of multiple receiving antennas arranged in series, the transmitting antennas being arranged in the direction of the object in each case behind receiving antennas which are located at or in the vicinity of at least one processing unit for carrying out at least one combination of the output from the receiving antennas received signals according to the method of digital beam shaping for generating a collimated antenna beam and to carry out a frequency generator for generating signals which are emitted from the transmitting antennas in succession a speed correction and / or a distance correction by means of a two-dimensional FFT by comparison of output signals of the, the bundled antenna beam corresponding to overlapping antenna lines , and with a display device for displaying the position of the object.
2. Vorrichtung nach Anspruch 1 , gekennzeichnet durch eine Anzahl von 8, 16 oder 32 Empfangsantennen.2. Apparatus according to claim 1, characterized by a number of 8, 16 or 32 receiving antennas.
3. Vorrichtung nach Anspruch 1 oder 2, gekennzeichnet durch eine Anzahl von mindestens 2 oder 4 Sendekanälen für den Nah- und den Fernbereich. 3. Apparatus according to claim 1 or 2, characterized by a number of at least 2 or 4 transmission channels for the near and far range.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass für den Fernbereich sowohl Sende- als auch Empfangsantennen zu Antennengruppen zusammengefasst werden.4. Device according to one of claims 1 to 3, characterized in that for the long-range both transmitting and receiving antennas are combined to form antenna groups.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Position des Objekts mittels der Wiedergabeeinrichtung über ein Antennendiagramm darstellbar ist.5. Device according to one of claims 1 to 4, characterized in that the position of the object by means of the display device via an antenna pattern is displayed.
6. Radarsystem zur Verwendung einer Vorrichtung zur Bestimmung einer Position eines Objekts nach einem der Ansprüche 1 bis 5.6. Radar system for using a device for determining a position of an object according to one of claims 1 to 5.
7. Verfahren zur Bestimmung einer Position eines Objekts, insbesondere eines sich bewegenden Objekts, mit den Verfahrensschritten:7. A method for determining a position of an object, in particular a moving object, with the method steps:
Empfang einer Folge von zeitlich aufeinanderfolgend gesendeten und am Objekt reflektierten Empfangssignalen durch eine Anzahl mehrerer in einer Reihe angeordneter Empfangsantennen,Receiving a train of received signals successively transmitted and reflected on the object by a plurality of multiple receive antennas arranged in a row,
Digitalisierung der Empfangssignale,Digitization of the received signals,
Verknüpfung der Empfangssignale nach der Methode der digitalen Strahlformung zu einem gebündelten Antennenstrahl,Linking the received signals according to the method of digital beamforming into a bundled antenna beam,
Durchführung einer Geschwindigkeitskorrektur und einer Entfernungskorrektur mittels einer zweidimensionalen FFT durch Vergleich von Ausgangssignalen von sich überlagernden Antennenzeilen, welche dem gebündelten Antennenstrahl entsprechen, undPerforming a speed correction and a distance correction by means of a two-dimensional FFT by comparing outputs from overlapping antenna lines, which correspond to the collimated antenna beam, and
Darstellung der Position des Objekts.Representation of the position of the object.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass zusätzlich zur Entfernungskorrektur eine Geschwindigkeitskorrektur durchgeführt wird. 8. The method according to claim 7, characterized in that in addition to the distance correction, a speed correction is performed.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zur Erzielung einer höheren Winkelauflösung in einem Beobachtungswinkelbereich die Amplituden benachbarter Antennenstrahlen ausgewertet werden (sog. Sequential lobing).9. The method according to claim 7 or 8, characterized in that to achieve a higher angular resolution in an observation angle range, the amplitudes of adjacent antenna beams are evaluated (so-called sequential lobing).
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass zur Erzielung einer höheren Winkelauflösung die Summe und Differenz zweier benachbarter Antennenstrahlen ausgewertet werden (sog. Monopuls).10. The method according to any one of claims 7 to 9, characterized in that to achieve a higher angular resolution, the sum and difference of two adjacent antenna beams are evaluated (so-called monopulse).
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass zur Durchführung der zweidimensionalen FFT eine trapezförmige Frequenzmodulation durchgeführt wird, wobei die fallende Frequenzrampe zeitinvers ausgewertet wird.11. The method according to any one of claims 7 to 10, characterized in that for carrying out the two-dimensional FFT, a trapezoidal frequency modulation is performed, wherein the falling frequency ramp is evaluated time inverse.
12. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass zur Durchführung der zweidimensionalen FFT eine sägezahnförmige Frequenzmodulation durchgeführt wird.12. The method according to any one of claims 7 to 10, characterized in that for carrying out the two-dimensional FFT a sawtooth frequency modulation is performed.
13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Position des Objekts mittels eines Antennendiagramms dargestellt wird. 13. The method according to any one of claims 7 to 12, characterized in that the position of the object is represented by means of an antenna diagram.
PCT/EP2009/008931 2008-12-12 2009-12-14 Imaging radar sensor having digital beam forming and synthetic magnification of the antenna aperture WO2010066458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009004417T DE112009004417A5 (en) 2008-12-12 2009-12-14 ILLUSTRATING RADAR SENSOR WITH DIGITAL IRRADIATION AND SYNTHETIC ENLARGEMENT OF THE ANTENNA PENETURES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008061932A DE102008061932A1 (en) 2008-12-12 2008-12-12 Imaging radar sensor with digital beam shaping and synthetic magnification of the antenna aperture
DE102008061932.9 2008-12-12

Publications (1)

Publication Number Publication Date
WO2010066458A1 true WO2010066458A1 (en) 2010-06-17

Family

ID=42103877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/008931 WO2010066458A1 (en) 2008-12-12 2009-12-14 Imaging radar sensor having digital beam forming and synthetic magnification of the antenna aperture

Country Status (2)

Country Link
DE (2) DE102008061932A1 (en)
WO (1) WO2010066458A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034281A1 (en) * 2011-09-09 2013-03-14 Astyx Gmbh Imaging radar sensor with narrow antenna lobe and wide angle-detection range
WO2013034282A1 (en) * 2011-09-09 2013-03-14 Astyx Gmbh Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
WO2016055455A1 (en) * 2014-10-06 2016-04-14 Astyx Gmbh Imaging radar sensor with horizontal digital beam forming and vertical object measurement by phase comparison in mutually offset transmitters
DE102015222884A1 (en) 2015-11-19 2017-05-24 Conti Temic Microelectronic Gmbh Radar system with interleaved serial transmission and parallel reception
US10403983B2 (en) * 2016-11-28 2019-09-03 Mando Corporation Radar apparatus and antenna apparatus therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200383A1 (en) 2017-01-11 2018-07-12 Astyx Gmbh Radar sensor with two-dimensional beam tilting and L, U or T-shaped structure for installation in the front radiator area of the automobile
DE102018203333A1 (en) * 2018-03-06 2019-09-12 Autocruise S.A.S Method for unambiguously determining the speed of an object on a RADAR measuring system
US10281572B1 (en) * 2018-05-24 2019-05-07 Delphi Technologies, Llc Phase correction for object detection including TDMA
DE102018211610A1 (en) * 2018-07-12 2020-01-16 Astyx Gmbh Polarimetric radar and a suitable use and method therefor
DE102018209131A1 (en) * 2018-06-08 2019-12-12 Astyx Gmbh Polarimetric radar, and a suitable use and method therefor
CN112513664A (en) 2018-06-08 2021-03-16 阿斯泰克斯有限责任公司 Polarized radar and suitable applications and methods for the same
DE102018116378A1 (en) 2018-07-06 2020-01-09 Valeo Schalter Und Sensoren Gmbh Method for determining at least one object information of at least one target object that is detected with a radar system, in particular a vehicle, radar system and driver assistance system
DE102019201138A1 (en) * 2019-01-30 2020-07-30 Zf Friedrichshafen Ag Sensor system for detecting an object in an environment of a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1720H (en) * 1997-03-31 1998-04-07 Chen; Victor C. Time frequency processor for radar imaging of moving targets
US6025799A (en) * 1998-03-06 2000-02-15 Mark Iv Industries Limited Short range position locating system for transponder
DE19906149A1 (en) * 1999-02-13 2000-09-07 Forschungsgesellschaft Fuer An System improving performance of moving target discovery for moving phase array radar with several reception channels
EP1326091A1 (en) * 2001-12-14 2003-07-09 Thales Method for improving the quality of a radar image
US6781541B1 (en) * 2003-07-30 2004-08-24 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1720H (en) * 1997-03-31 1998-04-07 Chen; Victor C. Time frequency processor for radar imaging of moving targets
US6025799A (en) * 1998-03-06 2000-02-15 Mark Iv Industries Limited Short range position locating system for transponder
DE19906149A1 (en) * 1999-02-13 2000-09-07 Forschungsgesellschaft Fuer An System improving performance of moving target discovery for moving phase array radar with several reception channels
EP1326091A1 (en) * 2001-12-14 2003-07-09 Thales Method for improving the quality of a radar image
US6781541B1 (en) * 2003-07-30 2004-08-24 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817110B2 (en) 2011-09-09 2017-11-14 Astyx Gmbh Imaging radar sensor with narrow antenna lobe and wide angle detection range
WO2013034282A1 (en) * 2011-09-09 2013-03-14 Astyx Gmbh Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
WO2013034281A1 (en) * 2011-09-09 2013-03-14 Astyx Gmbh Imaging radar sensor with narrow antenna lobe and wide angle-detection range
KR20140077155A (en) * 2011-09-09 2014-06-23 아스틱스 게엠베하 Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
CN104067138A (en) * 2011-09-09 2014-09-24 阿斯泰克斯有限责任公司 Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
CN104067143A (en) * 2011-09-09 2014-09-24 阿斯泰克斯有限责任公司 Imaging radar sensor with narrow antenna lobe and wide angle-detection range
JP2014529076A (en) * 2011-09-09 2014-10-30 アスティックス ゲゼルシャフト ミット ベシュレンクテル ハフツング Imaging radar sensor with synthetic aperture expansion and two-dimensional beam sweep
CN108845295A (en) * 2011-09-09 2018-11-20 阿斯泰克斯有限责任公司 For determining the equipment, method and radar system of object's position
KR102274657B1 (en) * 2011-09-09 2021-07-07 아스틱스 게엠베하 An imaging radar sensor with an improved angular resolution and a positioning method using the same
US10852407B2 (en) 2011-09-09 2020-12-01 Astyx Gmbh Imaging radar sensor with narrow antenna lobe and wide angle-detection range
KR101890974B1 (en) 2011-09-09 2018-08-22 아스틱스 게엠베하 Imaging radar sensor with narrow antenna lobe and wide angle detection range
KR20200056467A (en) * 2011-09-09 2020-05-22 아스틱스 게엠베하 An imaging radar sensor with an improved angular resolution and a positioning method using the same
KR20140063720A (en) * 2011-09-09 2014-05-27 아스틱스 게엠베하 Imaging radar sensor with narrow antenna lobe and wide angle detection range
KR102111905B1 (en) * 2011-09-09 2020-05-18 아스틱스 게엠베하 An imaging radar sensor with an improved angular resolution and a positioning method using the same
US10816641B2 (en) 2011-09-09 2020-10-27 Astyx Gmbh Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
WO2016055455A1 (en) * 2014-10-06 2016-04-14 Astyx Gmbh Imaging radar sensor with horizontal digital beam forming and vertical object measurement by phase comparison in mutually offset transmitters
KR101957617B1 (en) * 2014-10-06 2019-03-12 아스틱스 게엠베하 Imaging radar sensor with horizontal digital beam forming and vertical object measurement by phase comparison in mutually offset transmitters
CN107209253A (en) * 2014-10-06 2017-09-26 阿斯泰克斯有限责任公司 With level numeral Wave beam forming and by entering the imaging radar sensor that the more caused perpendicular objects of line phase are measured in the case of the emitter offset one from another
US10871562B2 (en) 2014-10-06 2020-12-22 Astyx Gmbh Imaging radar sensor with horizontal digital beam forming and vertical object measurement by phase comparison in mutually offset transmitters
KR20170049574A (en) * 2014-10-06 2017-05-10 아스틱스 게엠베하 Imaging radar sensor with horizontal digital beam forming and vertical object measurement by phase comparison in mutually offset transmitters
JP2019500593A (en) * 2015-11-19 2019-01-10 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングConti Temic microelectronic GmbH Radar system with nested serial transmission and parallel reception
CN108291959B (en) * 2015-11-19 2022-07-29 康蒂-特米克微电子有限公司 Method and radar system for environmental detection of a motor vehicle
WO2017084661A1 (en) 2015-11-19 2017-05-26 Conti Temic Microelectronic Gmbh Radar system having interleaved serial transmitting and parallel receiving
US10823836B2 (en) 2015-11-19 2020-11-03 Conti Temic Microelectronic Gmbh Radar system having interleaved serial transmitting and parallel receiving
DE102015222884A1 (en) 2015-11-19 2017-05-24 Conti Temic Microelectronic Gmbh Radar system with interleaved serial transmission and parallel reception
CN108291959A (en) * 2015-11-19 2018-07-17 康蒂-特米克微电子有限公司 Radar system with staggeredly serial transmission and parallel receive capabilities
US10403983B2 (en) * 2016-11-28 2019-09-03 Mando Corporation Radar apparatus and antenna apparatus therefor

Also Published As

Publication number Publication date
DE102008061932A1 (en) 2010-07-01
DE112009004417A5 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2010066458A1 (en) Imaging radar sensor having digital beam forming and synthetic magnification of the antenna aperture
EP2753950B1 (en) Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
EP2756329B1 (en) Imaging radar sensor with narrow antenna lobe and wide angle-detection range
EP3204788B1 (en) Imaging radar sensor with horizontal digital beam forming and vertical object measurement by phase comparison, while having mutually offset transmitters
DE602004002713T2 (en) radar device
EP3673292B1 (en) Imaging radar system having a receiving array for determining the angle of objects in two dimensions by means of a spread arrangement of the receiving antennas in one dimension
EP3538922A1 (en) Radar sensor for motor vehicles
DE102011083756A1 (en) Radar apparatus and method for generating a group characteristic of a radar
DE102009057191A1 (en) Method for uniquely determining a distance and / or a relative speed of an object, driver assistance device and motor vehicle
DE112017002559T5 (en) Speed detection device
EP3752858B1 (en) Angle-resolving broadband radar sensor for motor vehicles
WO2018137835A1 (en) Method for determining at least one piece of object information about at least one object sensed by means of a radar system, in particular of a vehicle, radar system, and driver assistance system
WO2020069831A1 (en) 360° mimo radar system having multiple radar sensors and phase calibration via overlapping virtual tx and rx antennas of adjacent radar sensors
DE102016205227A1 (en) Method and device for tracking objects, in particular moving objects, in the three-dimensional space of imaging radar sensors
WO2011101225A1 (en) Device and method for measuring distance and speed
DE102013216461A1 (en) Synthetic aperture radar method for remote sensing of surface of earth through radar system, involves generating sub-pulses in respective pulse repetition interval such that sub-pulses have different, non-overlapping frequency ranges
DE102015221163A1 (en) Method and device for tracking objects, in particular moving objects, in the three-dimensional space of imaging radar sensors
WO2017072048A1 (en) Method and device for tracking objects, in particular moving objects, in the three-dimensional space of imaging radar sensors
EP2225582B1 (en) Monostatic multibeam radar sensor, and method therefor
DE112018004001T5 (en) RADAR DEVICE AND AUTOMOTIVE WITH THE SAME
DE102020119934A1 (en) Method for operating a radar system, radar system and vehicle with at least one radar system
EP1521098A1 (en) Method and apparatus according to the principle of FMCW radar
DE102019219649A1 (en) Cooperative radar sensor system with angle-resolving radar sensors
WO2019158250A1 (en) Estimation of cartesian velocity of extended radar objects with a radar sensor
EP2270539A2 (en) Antenna control for a radar sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799027

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1120090044174

Country of ref document: DE

Ref document number: 112009004417

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09799027

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009004417

Country of ref document: DE

Effective date: 20120628