WO2009156317A1 - A viscous laundry product and packaging therefor - Google Patents

A viscous laundry product and packaging therefor Download PDF

Info

Publication number
WO2009156317A1
WO2009156317A1 PCT/EP2009/057522 EP2009057522W WO2009156317A1 WO 2009156317 A1 WO2009156317 A1 WO 2009156317A1 EP 2009057522 W EP2009057522 W EP 2009057522W WO 2009156317 A1 WO2009156317 A1 WO 2009156317A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
product according
laundry product
packaged
package
Prior art date
Application number
PCT/EP2009/057522
Other languages
French (fr)
Inventor
Nicola-Jane Morley
John Stephen Morris
Stephen John Singleton
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40983601&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009156317(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Priority to BRPI0914754A priority Critical patent/BRPI0914754B1/en
Priority to EP09769166.1A priority patent/EP2294174B1/en
Priority to ES09769166.1T priority patent/ES2625487T3/en
Priority to CN2009801243690A priority patent/CN102076840B/en
Publication of WO2009156317A1 publication Critical patent/WO2009156317A1/en
Priority to ZA2010/08967A priority patent/ZA201008967B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D35/00Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
    • B65D35/24Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor with auxiliary devices
    • B65D35/36Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor with auxiliary devices for applying contents to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/249Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes the closure being specifically formed for supporting the container
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38618Protease or amylase in liquid compositions only

Definitions

  • the present invention concerns a viscous laundry product and packaging therefor.
  • An objective is to provide an improved pretreatment device for the precise pretreatment of laundry stains.
  • the present invention provides a packaged laundry product comprising a flowable laundry composition contained in a package, wherein
  • the flowable laundry composition has a viscosity of at least at least 100 Pa . s . preferably at least 500 Pa. s, when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant and at least one enzyme;
  • the package comprises a compressible container in which the flowable laundry composition is stored and a dispensing device which incorporates a fabric pretreatment device and is located at the base of the compressable container and is enclosed by a dosing closure device providing a supportive base of the package.
  • the advantage of the above arrangement is that it offers greater control in applying a high viscosity composition vis-a-vis stained areas. Dispensing controlled amounts of high viscosity fluids from hand-held products can be difficult ergonomically and many users resort to applying an impact force to the device (banging the base, or slapping the side) which interferes with accurate dosing and often results in over-dosing, spillage etc.
  • the arrangement of invention as a consequence of the dispensing/pretreatment part being positioned at the base of the reservoir, means the user does not need to invert the package to dose/pretreat or wait until the viscous fluid flows from the base to the top (where dispensing/pretreatment devices are normally located) .
  • gravity maintains the pretreatment device loaded with the composition.
  • the dispensing device need not involve complicated and expensive seal/valves as the dosing closure encloses the pretreatment device and provides the base: this affords the advantage that any drips of composition falling from the pretreatment device after use, are collected in the supportive base which can then be placed directly in the washing machine/receptacle which minimises waste.
  • the dispensing device may comprise a channel or duct providing fluid communication between the reservoir and pretreater.
  • the pretreater may comprise a device allowing mechanical cleaning, such as a body with multiple projections.
  • the projections may be flexible so that they move during cleaning providing a light cleaning action. Alternatively some or all of the projections may be semi-rigid or rigid so as to provide a harsher mechanical cleaning action.
  • the projections may be thin e.g. bristles to provide a brush-like device, or thicker so as to provide finger like projections.
  • the package may have a curved top to deter users from storing the bottle top-down. In this way the package is more likely to be stored in a pretreater - loading position i.e. with the flowable laundry composition accumulated by gravity in the base of the package .
  • the pretreater comprises a generally hemispherical body with multiple projections extending radially therefrom.
  • the composition is preferably a shear thinning gel-type composition.
  • the viscosity under shear stress may be less than 300 Pa. s, preferably less than 100 Pa. s and more preferably less than 5 Pa. s, even more preferably it is at most 1 Pa . s and most preferably it is at most 0.5 Pa. s.
  • Shear thinning compositions may comprise a polymer gum, e.g. Xanthan gum or other gum capable of forming stable continuous gum networks which can suspend particles.
  • a polymer gum e.g. Xanthan gum or other gum capable of forming stable continuous gum networks which can suspend particles.
  • external structurants e.g. hydrogenated castor oil, micro crystalline cellulose may be used.
  • compositions may comprise a soap or fatty acid in combination with sodium sulphate and one or more surfactants may be used to form a gelled structure by the formation of lamellar phases
  • the composition may comprise a lamellar phase dispersions from a micellar surfactant systems, and additionally a structurant for establishing the lamellar phase, whereby said structurant may be a fatty alcohol.
  • composition of invention contains one or more surfactants and/or optionally other ingredients such that the composition is fully functional as a laundry cleaning and/or care composition.
  • a composition of the invention may be provided in solid or liquid form. If in a solid form, the composition may be rehydrated and/or dissolved in a solvent, including water, before use. The composition may provided in a concentrated form to be diluted or may be a ready-to-use (in-use) composition.
  • the present invention is suitable for use in industrial or domestic fabric wash compositions.
  • the present invention can also be applied to industrial or domestic non-detergent based fabric care compositions.
  • contemplated ingredients including hydrotropes, preservatives, fillers, builders, complexing agents, polymers, stabilizers, perfumes per se, other conventional detergent ingredients, or combinations of one or more thereof are discussed below.
  • Fabric wash compositions according to the present invention comprise a fabric wash detergent material selected from non-soap anionic surfactant, nonionic surfactants, soap, amphoteric surfactants, zwitterionic surfactants and mixtures thereof.
  • Detergent compositions suitable for use in domestic or industrial automatic fabric washing machines generally contain anionic non- soap surfactant or nonionic surfactant, or combinations of the two in suitable ratio, as will be known to the person skilled in the art, optionally together with soap.
  • the surfactants may be present in the composition at a level of from 0.1% to 60% by weight.
  • Suitable anionic surfactants include alkyl benzene sulphonate, primary and secondary alkyl sulphates, particularly C 8 -Ci 5 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates, dialkyl sulphosuccinates; ether carboxylates; isethionates; sarcosinates; fatty acid ester sulphonates and mixtures thereof.
  • the sodium salts are generally preferred.
  • the composition When included therein the composition usually contains from about 1% to about 50%, preferably 10 wt%-40 wt% based on the fabric treatment composition of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate) , alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.
  • Preferred surfactants are alkyl ether sulphates and blends of alkoxylated alkyl nonionic surfactants with either alkyl sulphonates or alkyl ether sulphates .
  • Preferred alkyl ether sulphates are C8-C15 alkyl and have 2-10 moles of ethoxlation.
  • Preferred alkyl sulphates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of C 8 -Ci 5 .
  • the counter ion for anionic surfactants is typically sodium, although other counter-ions such as TEA or ammonium can be used. Suitable anionic surfactant materials are available in the marketplace as the ⁇ Genapol'TM range from Clariant.
  • Nonionic surfactants include primary and secondary alcohol ethoxylates, especially C 8 -C 7 aliphatic alcohol ethoxylated with an average of from 1 to 7 moles of ethylene oxide per mole of alcohol, and more especially the Ci 0 -Ci 5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide) . Mixtures of nonionic surfactant may be used.
  • the composition When included therein the composition usually contains from about 0.2% to about 40%, preferably 1 to 7 wt%, more preferably 5 to 15 wt% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”) .
  • a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”) .
  • Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 7 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the Ci 0 -Ci 5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol .
  • the one or more enzymes may be in any suitable. It is to be understood that enzyme variants (produced, for example, by recombinant techniques) are included within the meaning of the term "enzyme”. Examples of such enzyme variants are disclosed, e.g., in EP 251,446 (Genencor) , WO 91/00345 (Novo Nordisk) , EP 525,610 (Solvay) and WO 94/02618 (Gist-Brocades NV).
  • the types of enzymes which may appropriately be incorporated in granules of the invention include oxidoreductases, transferases hydrolases, lyases, isomerases and ligases, that is, respectively (EC 1. -.-.-), (EC 2.-.-.-), (EC 3.-.-.-), (EC 4.-.-.-), (EC 5.-.- .-), (EC 6.-.-.-), wherein such enzyme classification is in accordance with Recommendations (1992) of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, Academic Press, Inc., 1992.
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. Most preferred enzymes are proteases.
  • Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279) .
  • Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 and WO 94/25583.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S) , MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.) .
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ) , e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372,034), P.
  • lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578,WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM (Novozymes A/S) .
  • the method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Cutinases are enzymes which are able to degrade cutin.
  • the cutinase is derived from a strain of Aspergillus, in particular Aspergillus oryzae, a strain of Alternaria, in particular Alternaria brassiciola, a strain of Fusarium, in particular Fusarium solani, Fusarium solani pisi, Fusarium roseum culmorum, or Fusarium roseum sambucium, a strain of Helminthosporum, in particular Helminthosporum sativum, a strain of Humicola, in particular Humicola insolens, a strain of Pseudomonas, in particular Pseudomonas mendocina, or Pseudomonas putida, a strain of Rhizoctonia, in particular Rhizoctonia solani, a strain of Streptomyces, in particular Streptomyces scabies, or a strain of
  • the cutinase is derived from a strain of Humicola insolens, in particular the strain Humicola insolens DSM 1800.
  • Humicola insolens cutinase is described in WO 96/13580 which is herby incorporated by reference.
  • the cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502, which are hereby incorporated by reference.
  • Preferred cutinase variants include variants listed in Example 2 of WO 01/92502, which is hereby specifically incorporated by reference .
  • Preferred commercial cutinases include NOVOZYMTM 51032 (available from Novozymes A/S, Denmark) .
  • phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol .
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases Ai and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • phospholipase includes enzymes with phospholipase activity, e.g., phospholipase A (A 1 or A 2 ), phospholipase B activity, phospholipase C activity or phospholipase D activity.
  • phospholipase A used herein in connection with an enzyme of the invention is intended to cover an enzyme with Phospholipase A 1 and/or Phospholipase A 2 activity.
  • the phospholipase activity may be provided by enzymes having other activities as well, such as, e.g., a lipase with phospholipase activity.
  • the phospholipase activity may, e.g., be from a lipase with phospholipase side activity.
  • the phospholipase enzyme activity is provided by an enzyme having essentially only phospholipase activity and wherein the phospholipase enzyme activity is not a side activity.
  • the phospholipase may be of any origin, e.g., of animal origin (such as, e.g., mammalian), e.g. from pancreas (e.g., bovine or porcine pancreas), or snake venom or bee venom.
  • animal origin such as, e.g., mammalian
  • pancreas e.g., bovine or porcine pancreas
  • snake venom or bee venom e.g., from snake venom or bee venom.
  • the phospholipase may be of microbial origin, e.g., from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus, e.g., A. niger; Dictyostelium, e.g., D. discoideum;
  • Mucor e.g. M. javanicus, M. mucedo, M. subtilissimus; Neurospora, e.g. N. crassa; Rhizomucor, e.g., R. pusillus; Rhizopus, e.g. R. arrhizus, R. japonicus, R. stolonifer; Sclerotinia, e.g., S. libertiana; Trichophyton, e.g. T. rubrum; Whetzelinia, e.g., W. sclerotiorum; Bacillus, e.g., B. megaterium, B. subtilis;
  • Citrobacter e.g., C. freundii; Enterobacter, e.g., E. aerogenes, E. cloacae Edwardsiella, E. tarda; Erwinia, e.g., E. herbicola; Escherichia, e.g., E. coli; Klebsiella, e.g., K. pneumoniae; Proteus, e.g., P. vulgaris; Providencia, e.g., P. stuartii; Salmonella, e.g. S. typhimurium; Serratia, e.g., S. liquefasciens, S. marcescens; Shigella, e.g., S.
  • the phospholipase may be fungal, e.g., from the class Pyrenomycetes, such as the genus Fusarium, such as a strain of F. culmorum, F. heterosporum, F. solani, or a strain of F. oxysporum.
  • the phospholipase may also be from a filamentous fungus strain within the genus Aspergillus, such as a strain of Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger or Aspergillus oryzae.
  • Preferred phospholipases are derived from a strain of Humicola, especially Humicola lanuginosa.
  • the phospholipase may be a variant, such as one of the variants disclosed in WO 00/32758, which are hereby incorporated by reference.
  • Preferred phospholipase variants include variants listed in Example 5 of WO 00/32758, which is hereby specifically incorporated by reference.
  • the phospholipase is one described in WO 04/111216, especially the variants listed in the table in Example 1.
  • the phospholipase is derived from a strain of Fusarium, especially Fusarium oxysporum.
  • the phospholipase may be the one concerned in WO 98/026057 derived from Fusarium oxysporum DSM 2672, or variants thereof.
  • the phospholipase is a phospholipase A 1 (EC. 3.1.1.32). In another preferred embodiment of the invention the phospholipase is a phospholipase A 2 (EC.3.1.1.4.) .
  • Examples of commercial phospholipases include LECITASETM and LECITASETM ULTRA, YIELSMAX, or LIPOPAN F (available from Novozymes A/S, Denmark) .
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha- amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • amylases examples include the variants described in WO 94/02597, WO 94/18314, WO 96/23873, WO 97/43424, WO 01/066712, WO 02/010355, WO 02/031124 and PCT/DK2005/000469 (which references all incorporated by reference.
  • Commercially available amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S) , RapidaseTM and PurastarTM (from Genencor International Inc.) .
  • Suitable cellulases include those of bacterial or fungal origin.
  • Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • cellulases are the alkaline or neutral cellulases having color care benefits.
  • Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940.
  • Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.
  • cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S) .
  • pectate lyases examples include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis (Nasser et al . (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al . (1994) Biosci. Biotech. Biochem. 58:947-949) . Purification of pectate lyases with maximum activity in the pH range of 8-10 produced by Bacillus pumilus (Dave and Vaughn (1971) J. Bacterid.
  • B. polymyxa Nagel and Vaughn (1961) Arch. Biochem. Biophys . 93:344-352
  • B. stearothermophilus Karbassi and Vaughn (1980) Can. J. Microbiol. 26:377-384
  • Bacillus sp . Hasegawa and Nagel (1966) J. Food Sci. 31:838-845
  • Bacillus sp. RK9 (Kelly and Fogarty (1978) Can. J. Microbiol. 24:1164-1172) have also been described.
  • the pectate lyase comprises the amino acid sequence of a pectate lyase disclosed in Heffron et al., (1995) MoI. Plant-Microbe Interact. 8: 331-334 and Henrissat et al . , (1995) Plant Physiol. 107: 963-976.
  • pectatel lyases are disclosed in WO 99/27083 and WO 99/27084.
  • Other specifically contemplates pectate lyases derived from Bacillus licheniformis is disclosed in US patent no.
  • pectate lyase variants are disclosed in WO 02/006442, especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference) .
  • alkaline pectate lyases examples include BIOPREPTM and SCOURZYMETM L from Novozymes A/S, Denmark.
  • mannanases examples include mannanases of bacterial and fungal origin.
  • the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus (WO 94/25576) .
  • WO 93/24622 discloses a mannanase isolated from Trichoderma reseei. Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al . , Appl. Environ. Microbiol., Vol.56, No. 11, pp.
  • beta-mannanase derived from Bacillus stearothermophilus . Mendoza et al . , World J. Microbiol. Biotech., Vol. 10, No. 5, pp. 551-555 (1994) describes a beta-mannanase derived from Bacillus subtilis. JP-A-03047076 discloses a beta- mannanase derived from Bacillus sp . JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase.
  • JP-A- 63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta-mannosidase .
  • JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001.
  • a purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164.
  • WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active.
  • mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619.
  • Bacillus sp . mannanases concerned in the Examples in WO 99/64619 which document is hereby incorporated by reference.
  • mannanases examples include MannawayTM available from Novozymes A/S Denmark.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • Hydrotropes e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/
  • hydrotrope generally means a compound with the ability to increase the solubilities, preferably aqueous solubilities, of certain slightly soluble organic compounds.
  • hydrotropes include sodium xylene sulfonate, SCM.
  • the composition may comprise a solvent such as water or an organic solvent such as isopropyl alcohol or glycol ethers. Solvents may be present in liquid or gel compositions.
  • the composition may contain a metal chelating agent such as carbonates, bicarbonates, and sesquicarbonates .
  • the metal chelating agent can be a bleach stabiliser (i.e. heavy metal sequestrant) .
  • Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA) , diethylenetriamine pentaacetate (DTPA) , ethylenediamine disuccinate (EDDS) , and the polyphosphonates such as the Dequests (Trade Mark) , ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP) .
  • EDTA ethylenediamine tetraacetate
  • DTPA diethylenetriamine pentaacetate
  • EDDS ethylenediamine disuccinate
  • DETPMP diethylenetriamine pentamethylene phosphate
  • metal chelating agents will not be present in the part (a) of the composition as microbial function may be
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-O, 384, 070.
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-O, 384, 070.
  • the composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine- pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine- pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are bleach-stabilising agents by virtue of their ability to complex metal ions .
  • compositions may suitably contain less than 7%wt, preferably less than 10% by weight, and most preferably less than 10%wt of detergency builder.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula:
  • M is a monovalent cation, preferably sodium.
  • M a monovalent cation, preferably sodium.
  • These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • ⁇ phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst) .
  • carbonate including bicarbonate and sesquicarbonate
  • citrate may be employed as builders.
  • the composition may comprise one or more polymers.
  • polymers examples are carboxymethylcellulose, poly (vinylpyrrolidone) , poly (ethylene glycol), poly (vinyl alcohol), poly (vinylpyridine-N-oxide) , poly (vinylimidazole) , polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Modern detergent compositions typically employ polymers as so-called ⁇ dye-transfer inhibitors' . These prevent migration of dyes, especially during long soak times.
  • Any suitable dye-transfer inhibition agents may be used in accordance with the present invention.
  • such dye-transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese pthalocyanine, peroxidases, and mixtures thereof.
  • Nitrogen-containing, dye binding, DTI polymers are preferred. Of these polymers and co-polymers of cyclic amines such as vinyl pyrrolidone, and/or vinyl imidazole are preferred.
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structural formula: R-A x -P; wherein P is a polymerizable unit to which an N-O group can be attached or the N- 0 group can form part of the polymerizable unit;
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferably pKa ⁇ 6.
  • Any polymer backbone can be used provided the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamides, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N- oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N- oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferably 1,000 to 500,000; most preferably 5,000 to 100,000. This preferred class of materials is referred to herein as "PVNO".
  • a preferred polyamine N-oxide is poly (4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N- oxide ratio of about 1:4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred.
  • the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 70,000, and most preferably from 10,000 to 7,000, as determined by light scattering as described in Barth, et al . , Chemical Analysis, Vol. 113. "Modern Methods of Polymer Characterization".
  • the preferred PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N- vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched. Suitable PVPVI polymers include Sokalan (TM) HP56, available commercially from BASF, Ludwigshafen, Germany.
  • PVP polyvinylpyrrolidone polymers
  • PVP ' s are disclosed for example in EP-A-262,897 and EP-A-256, 696.
  • Suitable PVP polymers include Sokalan (TM) HP50, available commercially from BASF.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000.
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1, and more preferably from about 3:1 to about 10:1.
  • dye transfer inhibiting agents are those from the class of modified polyethyleneimine polymers, as disclosed for example in WO-A-0005334. These modified polyethyleneimine polymers are water-soluble or dispersible, modified polyamines.
  • Modified polyamines are further disclosed in US-A-4, 548, 744; US-A- 4,597,898; US-A- 4,877,896; US-A- 4,891, 160; US-A- 4,976,879; US-A-5,415,807; GB-A-I , 537 , 288 ; GB-A-I , 498, 57 ; DE-A-28 29022; and JP-A-06313271.
  • the composition according to the present invention comprises a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO) , polyvinyl pyrrolidone (PVP) , polyvinyl imidazole, N-vinylpyrrolidone and N-vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
  • a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO) , polyvinyl pyrrolidone (PVP) , polyvinyl imidazole, N-vinylpyrrolidone and N-vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
  • the amount of dye transfer inhibition agent in the composition according to the present invention will be from 0.01 to 10 %, preferably from 0.02 to 5 %, more preferably from 0.03 to 2 %, by weight of the composition.
  • composition may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors (anti-foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes .
  • fabric conditioners including clays, foam boosters, suds suppressors (anti-foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes .
  • FIG. 1 shows a packaged laundry product according to one embodiment of the invention.
  • a packaged laundry product 1 is shown.
  • the product 1 comprises a flowable laundry composition 3 contained in a package 5, the high viscosity laundry composition 3 according to Example A or B detailed below.
  • the package comprises a compressible container, in this example a plastic bottle 7 storing the flowable, high viscosity laundry gel 3 and a dispensing device 9 incorporating a fabric pretreatment device 11.
  • the dispensing device 9 is located at the base 13 of the container 7 and is enclosed by a dosing closure device 13.
  • the closure 13 comprises the supportive base 13 of the package 5.
  • the bottle 7 and dispensing device 9 (incorporating pretreater 11) are attached to each other by threaded connection.
  • the closure 13 is attached to the bottle also by a threaded connection. (Threaded connections not shown) .
  • the closure 13 is connected to the bottle 7 using a snap-on connection, which negates the requirement to rotate the bottle/closure to open shut.
  • the bottle 7 is fabricated from a flexible plastic material comprising polyethylene terephthalate .
  • the top 21 of the bottle is shown flat but in other embodiments it may be curved as shown in dotted line 22 to discourage storage top-down.
  • the closure 13 includes an enlarged (with respect to at least the neck region of the bottle) flat, generally planar bottom surface 15. By providing an enlarged flat top surface 15, the surface allows the closure 13 to function as a supportive base 13 with the bottle 7 in an inverted position thereby allowing the high viscosity gel 3 to accumulate (under gravity) during storage at the dispensing device 9.
  • the closure 13 includes a reservoir portion 17 in which the pretreater 11 is enclosed 26. The closure is taped outwardly toward the surface 15 to provide a stable base. The area of the surface 15 is greater than that of the top 21 of the device.
  • the dispensing device 9 comprises an orifice through which dispensing may occur.
  • the orifice includes a valve 21 in fluid communication via duct 23.
  • the valve 21 comprises a membrane extending across an orifice 25 in the dispensing part 9.
  • the membrane has an arcuate portion (not shown) directed toward the container 7.
  • the arcuate portion of the membrane is provided with a intersecting slits to define a plurality of generally triangular leaves.
  • the triangular leaves bend toward the open end of the orifice 25 allowing product to pass through the orifice 25.
  • the dispensing pressure is released, the triangular leaves spring back to their original position and operate to block passage of product through the orifice 25.
  • the leaves of the valve are sufficiently resilient that they do not bend open unless the applied pressure exceeds the hydraulic static head pressure generated by a full of condiment. In use, the fluid is pressurised to flow past and partially collect on the pretreater part 11 ready for cleaning.
  • any of the fluid which remains on the pretreater part 11, can drips from the pretreater 11 during storage and is collected in the reservoir portion 17 for use in the next wash. This reduces waste of product.
  • Exemplary Laundry Formulation A is
  • composition A is according to the invention
  • Borax Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups.
  • composition A The gel detergent composition exemplified by composition A was found to be shear thinning and stable. Furthermore, typical detergent particles of density between 0.8 and 0.9 g/cm3 and having a diameter up to 5000 microns could be stable suspended in this composition for more than 2 weeks without any observable net movement of the particles.
  • Viscosity was measured at varying shear rates from very low shear up to a shear regime in excess of 100 s '1 . Two situations are shown: the viscosity measured at relatively low shear (20 s -1 ) and that measured at much higher shear (100 s '1 ) . It can be seen that the viscosity of composition A at high shear is much lower than that obtained at low shear, whereas composition B shows almost equal viscosity's for high and low shear. In other words composition A is clearly shear thinning, whereas composition B is not .
  • This parameter represents the stress at which the material leaves the upper Newtonian plateau and thins under increasing shear.
  • Borax Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups
  • Sodium alcohol EO sulphate ethoxylated alcohol sulphate with on average 3 ethylene oxide groups.
  • Composition B was is a stable, transparent, pourable shear thinning liquid, capable of stable suspending typical detergent particles having a density of between 0.8 and 0.9 g/cm3 and a diameter of up to 5000 microns, for more than 2 weeks without any observable net movement of the particles.

Abstract

A packaged laundry product comprising a flowable laundry composition contained in a package, wherein (i) the flowable laundry composition has a viscosity of at least at least 100 Pa. s. preferably at least 500 Pa.s, when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant and at least one enzyme; and (i) the package comprises a compressible container in which the flowable laundry composition is stored and a dispensing device which incorporates a fabric pretreatment device and is located at the base of the compressable container and is enclosed by a dosing closure device providing a supportive base of the package.

Description

A VISCOUS LAUNDRY PRODUCT AND PACKAGING THEREFOR
The present invention concerns a viscous laundry product and packaging therefor.
An objective is to provide an improved pretreatment device for the precise pretreatment of laundry stains.
Accordingly, in a first aspect, the present invention provides a packaged laundry product comprising a flowable laundry composition contained in a package, wherein
(i) the flowable laundry composition has a viscosity of at least at least 100 Pa . s . preferably at least 500 Pa. s, when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant and at least one enzyme; and
(i) the package comprises a compressible container in which the flowable laundry composition is stored and a dispensing device which incorporates a fabric pretreatment device and is located at the base of the compressable container and is enclosed by a dosing closure device providing a supportive base of the package.
The advantage of the above arrangement is that it offers greater control in applying a high viscosity composition vis-a-vis stained areas. Dispensing controlled amounts of high viscosity fluids from hand-held products can be difficult ergonomically and many users resort to applying an impact force to the device (banging the base, or slapping the side) which interferes with accurate dosing and often results in over-dosing, spillage etc.
The arrangement of invention, as a consequence of the dispensing/pretreatment part being positioned at the base of the reservoir, means the user does not need to invert the package to dose/pretreat or wait until the viscous fluid flows from the base to the top (where dispensing/pretreatment devices are normally located) . With the present invention gravity maintains the pretreatment device loaded with the composition. The dispensing device need not involve complicated and expensive seal/valves as the dosing closure encloses the pretreatment device and provides the base: this affords the advantage that any drips of composition falling from the pretreatment device after use, are collected in the supportive base which can then be placed directly in the washing machine/receptacle which minimises waste.
The dispensing device may comprise a channel or duct providing fluid communication between the reservoir and pretreater.
The pretreater may comprise a device allowing mechanical cleaning, such as a body with multiple projections. The projections may be flexible so that they move during cleaning providing a light cleaning action. Alternatively some or all of the projections may be semi-rigid or rigid so as to provide a harsher mechanical cleaning action. The projections may be thin e.g. bristles to provide a brush-like device, or thicker so as to provide finger like projections.
The package may have a curved top to deter users from storing the bottle top-down. In this way the package is more likely to be stored in a pretreater - loading position i.e. with the flowable laundry composition accumulated by gravity in the base of the package .
In one embodiment the pretreater comprises a generally hemispherical body with multiple projections extending radially therefrom.
The composition is preferably a shear thinning gel-type composition. The viscosity under shear stress may be less than 300 Pa. s, preferably less than 100 Pa. s and more preferably less than 5 Pa. s, even more preferably it is at most 1 Pa . s and most preferably it is at most 0.5 Pa. s.
Shear thinning compositions may comprise a polymer gum, e.g. Xanthan gum or other gum capable of forming stable continuous gum networks which can suspend particles.
Other external structurants e.g. hydrogenated castor oil, micro crystalline cellulose may be used.
Another method useful is to change a non-gelled formulation so as to form an internal structure therein where the structure gives the desired properties to the thus-formed gel-type detergent. The composition may comprise a soap or fatty acid in combination with sodium sulphate and one or more surfactants may be used to form a gelled structure by the formation of lamellar phases
The composition may comprise a lamellar phase dispersions from a micellar surfactant systems, and additionally a structurant for establishing the lamellar phase, whereby said structurant may be a fatty alcohol.
The composition of invention contains one or more surfactants and/or optionally other ingredients such that the composition is fully functional as a laundry cleaning and/or care composition. A composition of the invention may be provided in solid or liquid form. If in a solid form, the composition may be rehydrated and/or dissolved in a solvent, including water, before use. The composition may provided in a concentrated form to be diluted or may be a ready-to-use (in-use) composition.
The present invention is suitable for use in industrial or domestic fabric wash compositions. The present invention can also be applied to industrial or domestic non-detergent based fabric care compositions.
Other contemplated ingredients including hydrotropes, preservatives, fillers, builders, complexing agents, polymers, stabilizers, perfumes per se, other conventional detergent ingredients, or combinations of one or more thereof are discussed below.
Surfactants:
Fabric wash compositions according to the present invention comprise a fabric wash detergent material selected from non-soap anionic surfactant, nonionic surfactants, soap, amphoteric surfactants, zwitterionic surfactants and mixtures thereof.
Detergent compositions suitable for use in domestic or industrial automatic fabric washing machines generally contain anionic non- soap surfactant or nonionic surfactant, or combinations of the two in suitable ratio, as will be known to the person skilled in the art, optionally together with soap.
The surfactants may be present in the composition at a level of from 0.1% to 60% by weight.
Suitable anionic surfactants include alkyl benzene sulphonate, primary and secondary alkyl sulphates, particularly C8-Ci5 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates, dialkyl sulphosuccinates; ether carboxylates; isethionates; sarcosinates; fatty acid ester sulphonates and mixtures thereof. The sodium salts are generally preferred. When included therein the composition usually contains from about 1% to about 50%, preferably 10 wt%-40 wt% based on the fabric treatment composition of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate) , alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap. Preferred surfactants are alkyl ether sulphates and blends of alkoxylated alkyl nonionic surfactants with either alkyl sulphonates or alkyl ether sulphates .
Preferred alkyl ether sulphates are C8-C15 alkyl and have 2-10 moles of ethoxlation. Preferred alkyl sulphates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of C8-Ci5. The counter ion for anionic surfactants is typically sodium, although other counter-ions such as TEA or ammonium can be used. Suitable anionic surfactant materials are available in the marketplace as the ΛGenapol'™ range from Clariant.
Nonionic surfactants include primary and secondary alcohol ethoxylates, especially C8-C7 aliphatic alcohol ethoxylated with an average of from 1 to 7 moles of ethylene oxide per mole of alcohol, and more especially the Ci0-Ci5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol. Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide) . Mixtures of nonionic surfactant may be used. When included therein the composition usually contains from about 0.2% to about 40%, preferably 1 to 7 wt%, more preferably 5 to 15 wt% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine ("glucamides") . Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C7 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the Ci0-Ci5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol .
Enzymes
The one or more enzymes may be in any suitable. It is to be understood that enzyme variants (produced, for example, by recombinant techniques) are included within the meaning of the term "enzyme". Examples of such enzyme variants are disclosed, e.g., in EP 251,446 (Genencor) , WO 91/00345 (Novo Nordisk) , EP 525,610 (Solvay) and WO 94/02618 (Gist-Brocades NV).
The types of enzymes which may appropriately be incorporated in granules of the invention include oxidoreductases, transferases hydrolases, lyases, isomerases and ligases, that is, respectively (EC 1. -.-.-), (EC 2.-.-.-), (EC 3.-.-.-), (EC 4.-.-.-), (EC 5.-.- .-), (EC 6.-.-.-), wherein such enzyme classification is in accordance with Recommendations (1992) of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, Academic Press, Inc., 1992.
Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. Most preferred enzymes are proteases.
Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279) . Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 and WO 94/25583.
Examples of useful proteases are the variants described in WO
92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101, 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S) , Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.) .
Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ) , e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422) . Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578,WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ (Novozymes A/S) .
The method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
Cutinases are enzymes which are able to degrade cutin. In a preferred embodiment, the cutinase is derived from a strain of Aspergillus, in particular Aspergillus oryzae, a strain of Alternaria, in particular Alternaria brassiciola, a strain of Fusarium, in particular Fusarium solani, Fusarium solani pisi, Fusarium roseum culmorum, or Fusarium roseum sambucium, a strain of Helminthosporum, in particular Helminthosporum sativum, a strain of Humicola, in particular Humicola insolens, a strain of Pseudomonas, in particular Pseudomonas mendocina, or Pseudomonas putida, a strain of Rhizoctonia, in particular Rhizoctonia solani, a strain of Streptomyces, in particular Streptomyces scabies, or a strain of Ulocladium, in particular Ulocladium consortiale. In a most preferred embodiment the cutinase is derived from a strain of Humicola insolens, in particular the strain Humicola insolens DSM 1800. Humicola insolens cutinase is described in WO 96/13580 which is herby incorporated by reference. The cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502, which are hereby incorporated by reference. Preferred cutinase variants include variants listed in Example 2 of WO 01/92502, which is hereby specifically incorporated by reference .
Preferred commercial cutinases include NOVOZYM™ 51032 (available from Novozymes A/S, Denmark) .
The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids. Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol . Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
The term phospholipase includes enzymes with phospholipase activity, e.g., phospholipase A (A1 or A2), phospholipase B activity, phospholipase C activity or phospholipase D activity. The term "phospholipase A" used herein in connection with an enzyme of the invention is intended to cover an enzyme with Phospholipase A1 and/or Phospholipase A2 activity. The phospholipase activity may be provided by enzymes having other activities as well, such as, e.g., a lipase with phospholipase activity. The phospholipase activity may, e.g., be from a lipase with phospholipase side activity. In other embodiments of the invention the phospholipase enzyme activity is provided by an enzyme having essentially only phospholipase activity and wherein the phospholipase enzyme activity is not a side activity.
The phospholipase may be of any origin, e.g., of animal origin (such as, e.g., mammalian), e.g. from pancreas (e.g., bovine or porcine pancreas), or snake venom or bee venom. Preferably the phospholipase may be of microbial origin, e.g., from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus, e.g., A. niger; Dictyostelium, e.g., D. discoideum;
Mucor, e.g. M. javanicus, M. mucedo, M. subtilissimus; Neurospora, e.g. N. crassa; Rhizomucor, e.g., R. pusillus; Rhizopus, e.g. R. arrhizus, R. japonicus, R. stolonifer; Sclerotinia, e.g., S. libertiana; Trichophyton, e.g. T. rubrum; Whetzelinia, e.g., W. sclerotiorum; Bacillus, e.g., B. megaterium, B. subtilis;
Citrobacter, e.g., C. freundii; Enterobacter, e.g., E. aerogenes, E. cloacae Edwardsiella, E. tarda; Erwinia, e.g., E. herbicola; Escherichia, e.g., E. coli; Klebsiella, e.g., K. pneumoniae; Proteus, e.g., P. vulgaris; Providencia, e.g., P. stuartii; Salmonella, e.g. S. typhimurium; Serratia, e.g., S. liquefasciens, S. marcescens; Shigella, e.g., S. flexneri; Streptomyces, e.g., S. violeceoruber; Yersinia, e.g., Y. enterocolitica. Thus, the phospholipase may be fungal, e.g., from the class Pyrenomycetes, such as the genus Fusarium, such as a strain of F. culmorum, F. heterosporum, F. solani, or a strain of F. oxysporum. The phospholipase may also be from a filamentous fungus strain within the genus Aspergillus, such as a strain of Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger or Aspergillus oryzae.
Preferred phospholipases are derived from a strain of Humicola, especially Humicola lanuginosa. The phospholipase may be a variant, such as one of the variants disclosed in WO 00/32758, which are hereby incorporated by reference. Preferred phospholipase variants include variants listed in Example 5 of WO 00/32758, which is hereby specifically incorporated by reference. In another preferred embodiment the phospholipase is one described in WO 04/111216, especially the variants listed in the table in Example 1.
In another preferred embodiment the phospholipase is derived from a strain of Fusarium, especially Fusarium oxysporum. The phospholipase may be the one concerned in WO 98/026057 derived from Fusarium oxysporum DSM 2672, or variants thereof.
In a preferred embodiment of the invention the phospholipase is a phospholipase A1 (EC. 3.1.1.32). In another preferred embodiment of the invention the phospholipase is a phospholipase A2 (EC.3.1.1.4.) .
Examples of commercial phospholipases include LECITASE™ and LECITASE™ ULTRA, YIELSMAX, or LIPOPAN F (available from Novozymes A/S, Denmark) .
Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha- amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, WO 97/43424, WO 01/066712, WO 02/010355, WO 02/031124 and PCT/DK2005/000469 (which references all incorporated by reference. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S) , Rapidase™ and Purastar™ (from Genencor International Inc.) . Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
Especially suitable cellulases are the alkaline or neutral cellulases having color care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.
Commercially available cellulases include Celluzyme™, Carezyme™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation).
Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S) .
Examples of pectate lyases include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis (Nasser et al . (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al . (1994) Biosci. Biotech. Biochem. 58:947-949) . Purification of pectate lyases with maximum activity in the pH range of 8-10 produced by Bacillus pumilus (Dave and Vaughn (1971) J. Bacterid. 108:166-174), B. polymyxa (Nagel and Vaughn (1961) Arch. Biochem. Biophys . 93:344-352), B. stearothermophilus (Karbassi and Vaughn (1980) Can. J. Microbiol. 26:377-384), Bacillus sp . (Hasegawa and Nagel (1966) J. Food Sci. 31:838-845) and Bacillus sp. RK9 (Kelly and Fogarty (1978) Can. J. Microbiol. 24:1164-1172) have also been described. Any of the above, as well as divalent cation-independent and/or thermostable pectate lyases, may be used in practicing the invention. In preferred embodiments, the pectate lyase comprises the amino acid sequence of a pectate lyase disclosed in Heffron et al., (1995) MoI. Plant-Microbe Interact. 8: 331-334 and Henrissat et al . , (1995) Plant Physiol. 107: 963-976. Specifically contemplated pectatel lyases are disclosed in WO 99/27083 and WO 99/27084. Other specifically contemplates pectate lyases derived from Bacillus licheniformis is disclosed in US patent no. 6,284,524 (which document is hereby incorporated by reference) . Specifically contemplated pectate lyase variants are disclosed in WO 02/006442, especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference) .
Examples of commercially available alkaline pectate lyases include BIOPREP™ and SCOURZYME™ L from Novozymes A/S, Denmark.
Examples of mannanases (EC 3.2.1.78) include mannanases of bacterial and fungal origin. In a specific embodiment the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus (WO 94/25576) . WO 93/24622 discloses a mannanase isolated from Trichoderma reseei. Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al . , Appl. Environ. Microbiol., Vol.56, No. 11, pp. 3505-3510 (1990) describes a beta-mannanase derived from Bacillus stearothermophilus . Mendoza et al . , World J. Microbiol. Biotech., Vol. 10, No. 5, pp. 551-555 (1994) describes a beta-mannanase derived from Bacillus subtilis. JP-A-03047076 discloses a beta- mannanase derived from Bacillus sp . JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase. JP-A- 63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta-mannosidase . JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001. A purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164. WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active. Contemplated are the alkaline family 5 and 26 mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619. Especially contemplated are the Bacillus sp . mannanases concerned in the Examples in WO 99/64619 which document is hereby incorporated by reference.
Examples of commercially available mannanases include Mannaway™ available from Novozymes A/S Denmark.
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708. Hydrotropes :
The term "hydrotrope" generally means a compound with the ability to increase the solubilities, preferably aqueous solubilities, of certain slightly soluble organic compounds. Examples of hydrotropes include sodium xylene sulfonate, SCM.
Solvents :
The composition may comprise a solvent such as water or an organic solvent such as isopropyl alcohol or glycol ethers. Solvents may be present in liquid or gel compositions.
Metal chelation agents:
The composition may contain a metal chelating agent such as carbonates, bicarbonates, and sesquicarbonates . The metal chelating agent can be a bleach stabiliser (i.e. heavy metal sequestrant) . Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA) , diethylenetriamine pentaacetate (DTPA) , ethylenediamine disuccinate (EDDS) , and the polyphosphonates such as the Dequests (Trade Mark) , ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP) . In general metal chelating agents will not be present in the part (a) of the composition as microbial function may be impaired if metal ions are made unavailable.
Builders or Complexing agents:
Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid. Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-O, 384, 070.
The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine- pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are bleach-stabilising agents by virtue of their ability to complex metal ions .
Where builder is present, the compositions may suitably contain less than 7%wt, preferably less than 10% by weight, and most preferably less than 10%wt of detergency builder.
The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula:
0.8-1.5 M2O. Al2O3. 0.8-6 SiO2
where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term ^phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst) .
For low cost formulations carbonate (including bicarbonate and sesquicarbonate) and/or citrate may be employed as builders.
Polymers:
The composition may comprise one or more polymers. Examples are carboxymethylcellulose, poly (vinylpyrrolidone) , poly (ethylene glycol), poly (vinyl alcohol), poly (vinylpyridine-N-oxide) , poly (vinylimidazole) , polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
Modern detergent compositions typically employ polymers as so- called Λdye-transfer inhibitors' . These prevent migration of dyes, especially during long soak times. Any suitable dye-transfer inhibition agents may be used in accordance with the present invention. Generally, such dye-transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese pthalocyanine, peroxidases, and mixtures thereof.
Nitrogen-containing, dye binding, DTI polymers are preferred. Of these polymers and co-polymers of cyclic amines such as vinyl pyrrolidone, and/or vinyl imidazole are preferred. Polyamine N-oxide polymers suitable for use herein contain units having the following structural formula: R-Ax-P; wherein P is a polymerizable unit to which an N-O group can be attached or the N- 0 group can form part of the polymerizable unit; A is one of the following structures: -NC(O)-, -C(O)O-, -S-, -0-, -N=; x is 0 or 1; and R is an aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic group or combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups, or the N-O group can be attached to both units. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof. The N-O group can be represented by the following general structures: N(O) (R') 0-3 , or =N(0) (R') o-i , wherein each R' independently represents an aliphatic, aromatic, heterocyclic or alicylic group or combination thereof; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the polyamine N-oxides has a pKa<10, preferably pKa<7, more preferably pKa<6.
Any polymer backbone can be used provided the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamides, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N- oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N- oxidation. The polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferably 1,000 to 500,000; most preferably 5,000 to 100,000. This preferred class of materials is referred to herein as "PVNO". A preferred polyamine N-oxide is poly (4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N- oxide ratio of about 1:4.
Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (as a class, referred to as "PVPVI") are also preferred. Preferably the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 70,000, and most preferably from 10,000 to 7,000, as determined by light scattering as described in Barth, et al . , Chemical Analysis, Vol. 113. "Modern Methods of Polymer Characterization". The preferred PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N- vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched. Suitable PVPVI polymers include Sokalan(TM) HP56, available commercially from BASF, Ludwigshafen, Germany.
Also preferred as dye transfer inhibition agents are polyvinylpyrrolidone polymers ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 700,000, and more preferably from about 5,000 to about 50,000. PVP ' s are disclosed for example in EP-A-262,897 and EP-A-256, 696. Suitable PVP polymers include Sokalan(TM) HP50, available commercially from BASF. Compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000. Preferably, the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1, and more preferably from about 3:1 to about 10:1. Also suitable as dye transfer inhibiting agents are those from the class of modified polyethyleneimine polymers, as disclosed for example in WO-A-0005334. These modified polyethyleneimine polymers are water-soluble or dispersible, modified polyamines. Modified polyamines are further disclosed in US-A-4, 548, 744; US-A- 4,597,898; US-A- 4,877,896; US-A- 4,891, 160; US-A- 4,976,879; US-A-5,415,807; GB-A-I , 537 , 288 ; GB-A-I , 498, 57 ; DE-A-28 29022; and JP-A-06313271.
Preferably the composition according to the present invention comprises a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO) , polyvinyl pyrrolidone (PVP) , polyvinyl imidazole, N-vinylpyrrolidone and N-vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
The amount of dye transfer inhibition agent in the composition according to the present invention will be from 0.01 to 10 %, preferably from 0.02 to 5 %, more preferably from 0.03 to 2 %, by weight of the composition.
Other Detergent ingredients:
The composition may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors (anti-foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes .
Various non-limiting embodiments of the invention will now be more particularly described with reference to the following figure in which:
Figure 1 shows a packaged laundry product according to one embodiment of the invention. Referring to the drawing, a packaged laundry product 1 is shown. The product 1 comprises a flowable laundry composition 3 contained in a package 5, the high viscosity laundry composition 3 according to Example A or B detailed below.
The package comprises a compressible container, in this example a plastic bottle 7 storing the flowable, high viscosity laundry gel 3 and a dispensing device 9 incorporating a fabric pretreatment device 11. The dispensing device 9 is located at the base 13 of the container 7 and is enclosed by a dosing closure device 13.
The closure 13 comprises the supportive base 13 of the package 5.
The bottle 7 and dispensing device 9 (incorporating pretreater 11) are attached to each other by threaded connection. The closure 13 is attached to the bottle also by a threaded connection. (Threaded connections not shown) . In a separate embodiment the closure 13 is connected to the bottle 7 using a snap-on connection, which negates the requirement to rotate the bottle/closure to open shut.
The bottle 7 is fabricated from a flexible plastic material comprising polyethylene terephthalate .
The top 21 of the bottle is shown flat but in other embodiments it may be curved as shown in dotted line 22 to discourage storage top-down.
The closure 13 includes an enlarged (with respect to at least the neck region of the bottle) flat, generally planar bottom surface 15. By providing an enlarged flat top surface 15, the surface allows the closure 13 to function as a supportive base 13 with the bottle 7 in an inverted position thereby allowing the high viscosity gel 3 to accumulate (under gravity) during storage at the dispensing device 9. In addition, the closure 13 includes a reservoir portion 17 in which the pretreater 11 is enclosed 26. The closure is taped outwardly toward the surface 15 to provide a stable base. The area of the surface 15 is greater than that of the top 21 of the device.
The dispensing device 9 comprises an orifice through which dispensing may occur. The orifice includes a valve 21 in fluid communication via duct 23. The valve 21 comprises a membrane extending across an orifice 25 in the dispensing part 9.
In one embodiment, the membrane has an arcuate portion (not shown) directed toward the container 7. The arcuate portion of the membrane is provided with a intersecting slits to define a plurality of generally triangular leaves. When contents of the container are pressurized for dispensing, the triangular leaves bend toward the open end of the orifice 25 allowing product to pass through the orifice 25. When the dispensing pressure is released, the triangular leaves spring back to their original position and operate to block passage of product through the orifice 25. The leaves of the valve are sufficiently resilient that they do not bend open unless the applied pressure exceeds the hydraulic static head pressure generated by a full of condiment. In use, the fluid is pressurised to flow past and partially collect on the pretreater part 11 ready for cleaning.
Any of the fluid which remains on the pretreater part 11, can drips from the pretreater 11 during storage and is collected in the reservoir portion 17 for use in the next wash. This reduces waste of product. Exemplary Laundry Formulation A.
The following gel laundry detergent compositions were prepared, of which composition A is according to the invention
Component : Wt %
Propylene glycol 8.0 sodium citrate 3.9
Borax 3.0 NaOH (50%) 1.1
Monoethanolamine 1.0
LAS-acid 4.4
Coconut fatty acid 1.5
Nonionic surfactant 11.1 Oleic acid 2.3
1-Dodecanol 5.0
Protease enzyme 0.3
Lipase enzyme 0.5
Perfume 0.2 Water balance to 100
wherein :
Borax : Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups.
The gel detergent composition exemplified by composition A was found to be shear thinning and stable. Furthermore, typical detergent particles of density between 0.8 and 0.9 g/cm3 and having a diameter up to 5000 microns could be stable suspended in this composition for more than 2 weeks without any observable net movement of the particles.
Figure imgf000026_0001
For obtaining the values shown in the above table, all rheological measurements were carried out at 25 0C using a Carrimed CSLlOO rheometer with a cone and plate geometry specially roughed to prevent slip.
Viscosity was measured at varying shear rates from very low shear up to a shear regime in excess of 100 s'1. Two situations are shown: the viscosity measured at relatively low shear (20 s-1) and that measured at much higher shear (100 s'1) . It can be seen that the viscosity of composition A at high shear is much lower than that obtained at low shear, whereas composition B shows almost equal viscosity's for high and low shear. In other words composition A is clearly shear thinning, whereas composition B is not .
In addition, the critical stress is shown. This parameter represents the stress at which the material leaves the upper Newtonian plateau and thins under increasing shear.
Also, "Eta 0"-values are shown, referring to the viscosity calculated for zero shear from creep flow measurements. Finally, "Tan delta" values are shown, referring to the ratio of loss over storage moduli (G' '/G') and reflecting the dominance of viscous over elastic properties such that materials giving very low "Tan delta"-values (tending to zero, such as composition A in the above table) , will be much more elastic than those giving higher "Tan delta" values (tending to 90) . Exemplary Laundry Formulation B
The following gel laundry detergent compositions were prepared of which composition C is according to the invention and composition D is a comparative composition according to the prior art:
Component: Wt %
Propylene glycol 4.75 sodium citrate 2.8 Borax 2.3
NaOH (50%) 0.43
Monoethanolamine 0.23
LAS-acid 6.0
Coconut fatty acid 0.77 Sodium alcohol EO sulphate 10.5
Nonionic surfactant 6.6
1-Decanol 6.0
Protease enzyme 0.45
Lipase enzyme 0.25 Perfume 0.2
Water balance to 100
wherein:
Borax : Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups
Sodium alcohol EO sulphate: ethoxylated alcohol sulphate with on average 3 ethylene oxide groups.
Composition B was is a stable, transparent, pourable shear thinning liquid, capable of stable suspending typical detergent particles having a density of between 0.8 and 0.9 g/cm3 and a diameter of up to 5000 microns, for more than 2 weeks without any observable net movement of the particles.
Critical rheological parameters for the two compositions are shown below.
Figure imgf000028_0001
For clarification of the rheological values shown in this table, reference is made to the description concerning the similar table shown in above example A.
It is of course to be understood that the invention is not intended to be restricted to the details of the above embodiment which are described by way of example only.

Claims

1. A packaged laundry product comprising a flowable laundry composition contained in a package, wherein (i) the flowable laundry composition has a viscosity of at least at least 100 Pa. s. preferably at least 500 Pa.s, when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant and at least one enzyme; and
(i) the package comprises a compressible container in which the flowable laundry composition is stored and a dispensing device which incorporates a fabric pretreatment device and is located at the base of the compressable container and is enclosed by a dosing closure device providing a supportive base of the package.
2. A packaged laundry product according to claim 1 wherein the dispensing device comprises a channel or duct providing fluid communication between the reservoir and pretreater.
3. A packaged laundry product according to any preceding claim wherein the pretreater comprises a device allowing mechanical cleaning, such as a body with multiple projections.
4. A packaged laundry product according to claim 3 wherein the projections are flexible so that they move during cleaning providing a light cleaning action.
5. A packaged laundry product according to claim 3 or 4 wherein some or all of the projections are semi-rigid or rigid so as to provide a harsher mechanical cleaning action.
6. A packaged laundry product according to any preceding claim wherein the package has a curved top.
7. A packaged laundry product according to any preceding claim wherein the pretreater comprises a generally hemispherical body with multiple projections extending radially therefrom.
8. A packaged laundry product according to any preceding claim wherein the composition is a shear thinning gel-type composition having viscosity under shear stress less than 300 Pa. s.
9. A packaged laundry product according to claim 8 wherein the composition is shear thinning with viscosity under stress less than 100 Pa.s, preferably less than 5 Pa. s.
PCT/EP2009/057522 2008-06-26 2009-06-17 A viscous laundry product and packaging therefor WO2009156317A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0914754A BRPI0914754B1 (en) 2008-06-26 2009-06-17 wash product packaging
EP09769166.1A EP2294174B1 (en) 2008-06-26 2009-06-17 A viscous laundry product and packaging therefor
ES09769166.1T ES2625487T3 (en) 2008-06-26 2009-06-17 A viscous laundry product and packaging thereof
CN2009801243690A CN102076840B (en) 2008-06-26 2009-06-17 A viscous laundry product and packaging therefor
ZA2010/08967A ZA201008967B (en) 2008-06-26 2010-12-13 A viscous laundry product and packaging therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08159115.8 2008-06-26
EP08159115 2008-06-26
EP08161637 2008-08-01
EP08161637.7 2008-08-01

Publications (1)

Publication Number Publication Date
WO2009156317A1 true WO2009156317A1 (en) 2009-12-30

Family

ID=40983601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057522 WO2009156317A1 (en) 2008-06-26 2009-06-17 A viscous laundry product and packaging therefor

Country Status (8)

Country Link
EP (1) EP2294174B1 (en)
CN (1) CN102076840B (en)
AR (1) AR072322A1 (en)
BR (1) BRPI0914754B1 (en)
CL (1) CL2010001541A1 (en)
ES (1) ES2625487T3 (en)
WO (1) WO2009156317A1 (en)
ZA (1) ZA201008967B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115681A1 (en) * 2010-03-19 2011-09-22 S. C. Johnson & Son, Inc. Laundry pretreatment compositions containing fatty alcohols
US8828920B2 (en) 2011-06-23 2014-09-09 The Procter & Gamble Company Product for pre-treatment and laundering of stained fabric
WO2014206712A1 (en) * 2013-06-27 2014-12-31 Unilever Plc Stain treatment device and process
EP3088504A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3511405A1 (en) 2018-01-16 2019-07-17 The Procter & Gamble Company Cleaning product comprising an inverted assembly and a viscoelastic cleaning composition
EP3511402A1 (en) 2018-01-16 2019-07-17 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning compositon
EP3766954A1 (en) 2019-07-15 2021-01-20 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning compositon

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106697605B (en) * 2013-01-25 2020-10-30 王畅游 Quantitative taking method
US11021835B2 (en) * 2016-11-01 2021-06-01 Koninklijke Philips N.V. Portable stain removal kit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122158A (en) * 1981-07-16 1992-06-16 Kao Corporation Process for cleaning clothes
WO1998016148A1 (en) * 1996-10-15 1998-04-23 The Procter & Gamble Company Hand-held container for predissolving detergent composition
US6048368A (en) * 1995-11-27 2000-04-11 The Proctor & Gamble Company Cleaning method for textile fabrics
EP1069180A1 (en) * 1999-07-12 2001-01-17 The Procter & Gamble Company Fabric treatment applicator
US6233771B1 (en) * 1996-01-26 2001-05-22 The Procter & Gamble Company Stain removal device
WO2002079366A1 (en) * 2001-04-02 2002-10-10 Unilever N.V. Fabric cleaner
WO2002079369A1 (en) * 2001-04-02 2002-10-10 Unilever N.V. Fabric cleaning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1328244C (en) 1988-01-22 1994-04-05 John Van Arman Combined container with head and applicator
GB9909440D0 (en) * 1999-04-23 1999-06-23 Unilever Plc Package for dispensing a flowable cosmetic composition and product
BR0314962A (en) 2002-11-06 2005-08-02 Unilever Nv Gel detergent composition, transparent, shear thinner for washing, and use of fatty alcohol
GB0415905D0 (en) 2004-07-16 2004-08-18 Reckitt Benckiser Nv Enzymes as active oxygen generators in cleaning compositions
DE102005055519A1 (en) 2005-11-18 2007-08-30 Beiersdorf Ag Optically attractive antiperspirant formulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122158A (en) * 1981-07-16 1992-06-16 Kao Corporation Process for cleaning clothes
US6048368A (en) * 1995-11-27 2000-04-11 The Proctor & Gamble Company Cleaning method for textile fabrics
US6233771B1 (en) * 1996-01-26 2001-05-22 The Procter & Gamble Company Stain removal device
WO1998016148A1 (en) * 1996-10-15 1998-04-23 The Procter & Gamble Company Hand-held container for predissolving detergent composition
EP1069180A1 (en) * 1999-07-12 2001-01-17 The Procter & Gamble Company Fabric treatment applicator
WO2002079366A1 (en) * 2001-04-02 2002-10-10 Unilever N.V. Fabric cleaner
WO2002079369A1 (en) * 2001-04-02 2002-10-10 Unilever N.V. Fabric cleaning

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883709B2 (en) 2010-03-19 2014-11-11 S.C. Johnson & Son, Inc. Laundry pretreatment compositions containing fatty alcohols
WO2011115681A1 (en) * 2010-03-19 2011-09-22 S. C. Johnson & Son, Inc. Laundry pretreatment compositions containing fatty alcohols
US8828920B2 (en) 2011-06-23 2014-09-09 The Procter & Gamble Company Product for pre-treatment and laundering of stained fabric
WO2014206712A1 (en) * 2013-06-27 2014-12-31 Unilever Plc Stain treatment device and process
CN105308166A (en) * 2013-06-27 2016-02-03 荷兰联合利华有限公司 Stain treatment device and process
US10125447B2 (en) 2013-06-27 2018-11-13 Conopco, Inc. Stain treatment device and process
EP3674387A1 (en) 2015-04-29 2020-07-01 The Procter & Gamble Company Method of treating a fabric
EP3088504A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
WO2016176296A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of laundering a fabric
EP3511405A1 (en) 2018-01-16 2019-07-17 The Procter & Gamble Company Cleaning product comprising an inverted assembly and a viscoelastic cleaning composition
WO2019143653A1 (en) 2018-01-16 2019-07-25 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition
EP3511402A1 (en) 2018-01-16 2019-07-17 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning compositon
US10844336B2 (en) 2018-01-16 2020-11-24 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition
US10934510B2 (en) 2018-01-16 2021-03-02 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscoelastic cleaning composition
US11427793B2 (en) 2018-01-16 2022-08-30 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition
EP3766954A1 (en) 2019-07-15 2021-01-20 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning compositon
US11555169B2 (en) 2019-07-15 2023-01-17 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition

Also Published As

Publication number Publication date
ES2625487T3 (en) 2017-07-19
EP2294174A1 (en) 2011-03-16
BRPI0914754A2 (en) 2016-07-26
ZA201008967B (en) 2012-02-29
CN102076840B (en) 2012-11-21
BRPI0914754B1 (en) 2018-12-04
CN102076840A (en) 2011-05-25
CL2010001541A1 (en) 2011-06-24
AR072322A1 (en) 2010-08-18
EP2294174B1 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
EP2294174B1 (en) A viscous laundry product and packaging therefor
WO2010012552A1 (en) A viscous laundry product and packaging therefor
WO2010028941A1 (en) Dispenser and pretreater for viscous liquids
US8628765B2 (en) Bacteria cultures and compositions comprising bacteria cultures
EP3146033B1 (en) Aqueous liquid detergent formulation comprising enzyme particles
AU2012358647B2 (en) Isotropic liquid detergents comprising soil release polymer
WO2009153184A1 (en) Improvements relating to fabric cleaning
EP2202290A1 (en) A flowable laundry composition and packaging therefor
US20190136162A1 (en) Laundry products
EP2173845B1 (en) Sequential enzyme delivery system
WO2010069799A1 (en) A flowable laundry composition and packaging therefor
US20160145791A1 (en) Stain treatment device and process
WO2009019076A1 (en) Enzyme delivery device
WO2019038187A1 (en) Improvements relating to fabric cleaning
WO2019038186A1 (en) Improvements relating to fabric cleaning

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124369.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769166

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2009769166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009769166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2693/MUMNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0914754

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 020100120569 DE 27/12/2010 E COMPROVE, CASO NECESSARIO, QUE TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENP Entry into the national phase

Ref document number: PI0914754

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101227