WO2009153380A1 - Hybrid polymer electrolyte membrane and use thereof - Google Patents

Hybrid polymer electrolyte membrane and use thereof Download PDF

Info

Publication number
WO2009153380A1
WO2009153380A1 PCT/ES2009/070237 ES2009070237W WO2009153380A1 WO 2009153380 A1 WO2009153380 A1 WO 2009153380A1 ES 2009070237 W ES2009070237 W ES 2009070237W WO 2009153380 A1 WO2009153380 A1 WO 2009153380A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
polymer
electrolyte
mold
siloxane
Prior art date
Application number
PCT/ES2009/070237
Other languages
Spanish (es)
French (fr)
Inventor
Juan Pablo Esquivel Bojorquez
María de les Neus SABATÉ VIZCARRA
Joaquín SANTANDER VALLEJO
Nuria Torres Herrero
Isabel GRÀCIA TORTADÈS
Carles Cané Ballart
Albert TARANCÓN RUBIO
Mª Cruz ACERO LEAL
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2009153380A1 publication Critical patent/WO2009153380A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is part of the scientific-technical area of Ia
  • Electrochemistry and Microelectronics within the sector of microsystems manufacturing and energy production.
  • MEMS electromechanical microsystems
  • IC integrated circuit technology
  • the fields of application of these devices are very diverse (automotive, food industry, safety, medicine %), where some of the most commercialized applications are for example the accelerometers used in systems of expulsion of air bags in cars (and lately also in electronic consumer devices), inkjet systems in printers, blood pressure sensors, video projectors, among others.
  • IC integrated circuit technology
  • Micro fuel cells currently deserve special interest due to their potential advantages over other approaches. These advantages include a high energy density, the possibility of working at room temperature, non-polluting emissions and Ia possibility of eliminating the moving parts associated with other types of devices (such as micromotors, microturbines, resonators, etc.), simplifying the manufacturing process and reducing the chances of failure.
  • fuel cells studied and developed for several decades for large-scale power generation, are currently being considered and evaluated by the scientific community having obtained excellent results in the field of portable systems power.
  • the use of manufacturing processes associated with microelectronic technology is promising given its reproducibility and mass production capacity (batch mode, where all components are completed in a workstation before moving on to the next) .
  • the use of microelectronic technology can increase the performance of the fuel cell since the reduction of the components of the microscale battery improves the efficiency of the transport mechanisms.
  • a fuel cell is basically formed by the following components: an electrolytic membrane, two electrodes (anode and cathode), two current collectors (one associated with the anode and another associated with the cathode) and the fluidic distribution structures of the different reagents and products (hydrogen, methanol, air, water, etc.).
  • Fuel cells can be classified according to the type of electrolyte (electrolytic membrane). Up to five different types are distinguished: polymer electrolyte fuel cells, alkaline fuel cells, phosphoric acid fuel cells, solid oxide fuel cells and molten carbonate fuel cells. Although all of them base their operation on the same electrochemical principle, they differ in the materials of their components, working temperatures, fuel tolerance and operating characteristics [1].
  • batteries based on polymer electrolyte are the ones that have the most advantageous physical-chemical characteristics for their miniaturization
  • PEM batteries use a thin membrane of a single polymeric type as an electrolyte and use hydrogen at the anode and oxygen at the cathode as reagents.
  • the protons derived from the decomposition of the hydrogen molecule are the carriers of the ionic charge, which after crossing it recombines with the oxygen molecules to generate water.
  • This type of batteries is very attractive due to its ability to operate at room temperature and the high density of energy generated.
  • they allow the possibility of using liquid fuel such as methanol (MeOH) that can increase the available energy density by several orders of magnitude.
  • MeOH methanol
  • This type of PEM battery is known as the direct methanol fuel cell (DMFC).
  • DMFC direct methanol fuel cell
  • the most commonly used material as a proton exchange membrane is the Nafion ® of the DuPont firm.
  • Nafion ® of the DuPont firm.
  • there are other different materials available in the market (Aciplex ® , Flemion ® , Dowex ® , Fumasep ® , etc.) and various research groups are developing alternatives that improve their efficiency and reduce cost.
  • Figures 1c and 1d show a microfabricated micropile where the current collectors have been made in a rigid polymer [6].
  • the device consists of a Nafion ® membrane as a proton exchange membrane assembled between two current collectors of Polydimethylmethacrylate polymer (PMMA), to which a gold coating or a silver metallic mesh is added to confer conductive properties. Again, the final assembly requires the placement of 4 screws at the ends of the structure.
  • Figures 1e and 1f show the scheme and the photograph of a micropile where the current collectors have been manufactured in silicon [7].
  • the device consists of a Nafion membrane assembled between two metallic silicon current collectors and attached to a piece of Pyrex ® that gives them robustness.
  • FIGS. 1g and 1 h show a micropile in which the current collectors are made of thin metal layers fixed on a polyamide, whereby the device has the quality of being flexible [13]. In this device it is necessary to incorporate adhesive materials to hold together the different elements of the micropile.
  • the present invention has been carried out to solve the problem existing in the development of micro fuel cells relating to the compatibility of materials, therefore the objective of the present invention is to obtain a hybrid polymer electrolyte membrane that can be integrated with components manufactured using microsystems technology, and their use in micro fuel cells and / or electrolysers as a source of energy for microsystems such as sensors or actuators, as well as for portable electronic devices such as personal communication devices or laptops DESCRIPTION OF THE INVENTION Brief Description
  • An aspect of the invention constitutes a hybrid polymer electrolyte membrane, hereinafter membrane of the invention, which comprises two different polymers spatially arranged such that both constitute a structure where one of the polymers, which is a siloxane polymer, makes perforated base so that the other polymer, which is a polymeric electrolyte, can be distributed in the perforations in the form of channels.
  • membrane of the invention constitutes the membrane of
  • polymer electrolyte is an ion exchange polymer belonging, by way of illustration and without limiting the scope of the invention, to the group of perfluorinated polymers with terminal chains of sulfonic acid and perfluorosulfonic acid.
  • ion exchange polymer belonging, by way of illustration and without limiting the scope of the invention, to the group of perfluorinated polymers with terminal chains of sulfonic acid and perfluorosulfonic acid.
  • Another particular aspect of the invention constitutes the membrane of
  • siloxane polymer is a polymer that has siloxane groups.
  • a particular embodiment of the invention constitutes a membrane of the invention where the siloxane polymer is polydimethylsiloxane (PDMS) and the ion exchange polymer is Naphion.
  • PDMS polydimethylsiloxane
  • Another particular aspect of the invention constitutes the membrane of the invention in which the perforations must have dimensions between 5 ⁇ m and 1000 ⁇ m in width and must be distanced in a range between 5 ⁇ m and 1000 ⁇ m, as well as have a height between 50 and 500 ⁇ m.
  • Another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane, hereinafter the method of the invention, which comprises: i) a first stage to provide a siloxane polymer membrane with a microperforation matrix (Figure 3), ii) the filling of the microperforations of i) with a polymeric electrolyte in the form of a liquid solution (see Figure 4a), and iii) plasma oxidation of the exposed surfaces of siloxane polymer on both sides, (see Figure 5a).
  • Another particular aspect of the invention constitutes the process of the invention in which the perforation of the siloxane polymer membrane is carried out by means of a process belonging, by way of illustration and without limiting the scope of the invention, to the following group: lithography soft, mechanical drilling, chemical attack or ablation; and especially by soft lithography.
  • a particular embodiment of the invention constitutes the process of the invention where stage a) is carried out by means of a soft lithography process comprising the following steps: a) Manufacture of a micromachined mold made of silicon, b) Pouring and curing of the siloxane polymer on the mold and c) Extraction of the polymer from the mold.
  • Another particular aspect of the invention constitutes the process of the invention in which the columns of the mold must be defined in a range between 5 ⁇ m and 1000 ⁇ m in width, must be distanced in a range between 5 ⁇ m and 1000 ⁇ m, as well as having a height in a range of 50 ⁇ m and 500 ⁇ m.
  • membrane of the invention comprising an ion exchange polymer in the manufacture of polymer electrolyte devices, such as, for example, fuel cells, electrolysers and microbial batteries.
  • Another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane where the electrolyte is a proton exchanger for use in fuel micropiles and in which between the stage ii) of filling and iii) of oxidation a stage of incorporating catalysts, if necessary, in the current collectors, in the membrane on both sides to function as a membrane-electrode assembly or in a diffuser layer that can be added between the membrane and the current collectors.
  • the present invention describes a new hybrid polymer electrolyte membrane, a method of manufacturing said membrane compatible with microelectronic technology and its use in devices based on polymer electrolytes, such as fuel micropiles.
  • the inventors have made a hybrid polymer electrolyte membrane consisting of two spatially distinct polymers so that both constitute a structure where one of the polymers is the basis for the other polymer to be distribute in it through perforated channels, which can be joined directly with materials such as silicon, glass or other polymers with the property of absorbing the volumetric expansion of the electrolyte upon hydration, thereby increasing the degree of miniaturization of the devices in Those who join.
  • one of the polymers should constitute a polymeric electrolyte and the other should be a siloxane polymer such as polydimethylsiloxane (PDMS) or another of similar physicochemical characteristics.
  • PDMS polydimethylsiloxane
  • This PDMS polymer is a silicone elastomer, viscoelastic and biocompatible that can be prepared from the mixture of a prepolymer and a curing agent. Despite having hydrophobic properties, its surface can be functionalized by oxygen plasma, becoming hydrophilic, which allows it to form covalent bonds by contacting it with materials such as silicon, glass or other polymers. The functionalization confers on the membrane the property of being able to join said materials.
  • the present invention involves multiple advantages with respect to the state of the art, among which are: - higher level of integration of the membrane with the rest of the components, which represents a reduction in the size of the devices when eliminating auxiliary elements such as external plates and screws;
  • one aspect of the invention constitutes a hybrid polymer electrolyte membrane, hereinafter membrane of the invention, which comprises two different polymers spatially arranged such that both constitute a structure where one of the polymers, which is a polymer of siloxane, it makes a perforated base so that the other polymer, which is a polymeric electrolyte, can be distributed in the perforations in the form of channels.
  • a particular aspect of the invention constitutes the membrane of
  • polymer electrolyte is an ion exchange polymer belonging, by way of illustration and without limiting the scope of the invention, to the group of perfluorinated polymers with terminal chains of sulfonic acid and perfluorosulfonic acid.
  • siloxane polymer is a polymer having siloxane groups.
  • a particular embodiment of the invention constitutes a membrane of the invention where the siloxane polymer is polydimethylsiloxane (PDMS) and the ion exchange polymer is Naphion.
  • PDMS polydimethylsiloxane
  • Another particular aspect of the invention constitutes the membrane of
  • the invention in which the perforations must have dimensions between 5 ⁇ m and 1000 ⁇ m in width and must be spaced in a range between 5 ⁇ m and 1000 ⁇ m, as well as have a height between 50 and 500 ⁇ m.
  • Another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane, hereinafter the method of the invention, which comprises: i) a first stage to provide a siloxane polymer membrane with a microperforation matrix (Figure 3), ii) the filling of the microperforations of i) with a polymeric electrolyte in the form of a liquid solution (see Figure 4a), and iii) plasma oxidation of the exposed surfaces of siloxane polymer on both sides, (see Figure 5a).
  • the soft lithography process It consists in the transfer of motifs to a polymer from a mold.
  • the mold is based on a mold that can be microfabricated in silicon. Sets of square or round base columns are defined in this mold, although other shapes can also be selected.
  • the dimensions of the columns must be defined in a range between 5 ⁇ m and 1000 ⁇ m in width with distances between the columns within the same micrometric range and height of up to 500 ⁇ m, in order to optimize the area ratio of the polymers and maintain the ionic conductivity of the electrolyte polymer at acceptable levels, since exceeding this height the membrane acquires thickness dimensions such that its ionic conduction capacity is seriously affected.
  • the wider the columns the greater the amount of electrolyte polymer can be introduced, which will favor a greater ionic conduction capacity per unit area.
  • siloxane polymer is poured over the micromachining mold, which flows between the columns by capillarity.
  • the amount of siloxane polymer poured into the mold is controlled so that it does not exceed the height of the columns.
  • Polymer cure time is performed based on the manufacturer's specifications, typically varying in a range of 24 hours for room temperature and 15 minutes for a temperature of 15O 0 C for PDMS.
  • the polymer Once the polymer has cured, it is extracted from the mold, so that the membrane is obtained with perforations of the desired size of the columns of the mold.
  • Another particular aspect of the invention constitutes the process of the invention in which the perforation of the siloxane polymer membrane is carried out by means of a process belonging, by way of illustration and without limiting the scope of the invention, to the following group: lithography soft, mechanical drilling, chemical attack or ablation; and especially by soft lithography.
  • a particular embodiment of the invention constitutes the process of the invention where stage a) is carried out by means of a soft lithography process comprising the following steps: a) Manufacture of a micromachined mold made of silicon, b) Pouring and curing of the siloxane polymer on the mold and c) Extraction of the polymer from the mold.
  • Another particular aspect of the invention constitutes the process of the invention in which the columns of the mold must be defined in a range between 5 ⁇ m and 1000 ⁇ m in width, must be distanced in a range between 5 ⁇ m and 1000 ⁇ m, as well as having a height in a range of 50 ⁇ m and 500 ⁇ m.
  • the inventors have observed that any polymer electrolyte can be used, the DuPont Nafion ® polymer being one of the most used due to its wide commercial availability, which is commercialized both in membrane form as in solution at different concentrations.
  • the third stage of the manufacturing method of the present invention after filling consists in the plasma oxidation of the exposed surfaces of siloxane polymer on both sides, so that said surfaces can adhere by means of chemical bonds to other elements such as example, electrodes and / or current collectors.
  • the above described hybrid membrane can be incorporated or manufactured devices based on polymer electrolytes, such as, for example, the manufacture of fuel micropiles, electrolysers, microbial batteries, etc.
  • the polymer electrolyte of the hybrid polymer electrolyte membrane be an ion exchange polymer.
  • the membrane of the invention comprising an ion exchange polymer in the manufacture of polymer electrolyte devices, such as, for example, fuel cells, electrolysers and microbial batteries.
  • the electrodes and current collectors must be coupled to the hybrid electrolyte membrane.
  • the structures of the electrodes that carry the reagents in the fuel cell and collect the produced electrons can be manufactured in a variety of materials compatible with microsystem technologies such as silicon, glass, rigid or flexible polymers. Therefore, another particular aspect of the invention constitutes the use of an electrode made of flexible polymers to obtain a fuel micropile with flexible characteristics.
  • the membrane of the invention can be used to manufacture any type of polymeric electrolyte micro fuel cell.
  • Most batteries need catalysts to be able to break fuel molecules.
  • said catalysts can be metals such as Pt, Ru, Pd, Sn or combinations thereof, as well as alternative materials such as ceramic oxides, enzymes or biocatalysts.
  • the assembly of the device would be illustrated according to Figure 5
  • the catalysts are incorporated in the surfaces of the perforated membrane of siloxane polymer and with holes filled with Polymeric electrolyte described in this invention, it can be used independently of the current collectors to form a membrane-electrode assembly, also called MEA by its acronym in English Membrane Electrode Assembly, for application in micro fuel cells (see Figure 4b).
  • the MEA is a structure composed of a layer of polymer electrolyte between two electrodes.
  • the typical method for the manufacture of MEAs is to make a catalytic ink from a mixture of catalyst, ionomer in solution and carbon particles. Then the electrolyte is coated on both sides by a layer of this catalytic ink to obtain the MEA.
  • a diffuser layer can also be added between the membrane and the current collectors to incorporate the catalysts in addition to improving the distribution of the reagents along the surface of the membrane.
  • an oxygen plasma is applied on both sides of the siloxane polymer membrane (see Figure 5), so that the chemical bonds of their surfaces are broken, causing the material to acquire hydrophilic properties and allow Ia formation of covalent bonds with the surface of other materials such as silicon, glass or other polymer.
  • the current collectors can be adhered on both sides of the membrane to form a compact micro fuel cell.
  • another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane where the electrolyte is a proton exchanger for use in fuel micropiles and in which between the stage ii) of filling and iii) of oxidation is includes a stage of incorporation of catalysts, if necessary, in the current collectors, in the membrane on both sides to function as a membrane-electrode assembly or in a diffuser layer that can be added between the membrane and the current collectors .
  • the plasma oxidation of the polymer membrane surfaces (step iii)) allows the adhesion by means of chemical bonds to the current collectors and that the membrane is integrated with the necessary components to form the fuel micropile by means of the compression of the membrane between the current collectors.
  • Figure 1. Examples of micropiles with different architectures.
  • Figure 2. Diagram of polymeric membrane with perforation matrix.
  • Figure 3. Polymer membrane manufacturing process with the soft lithography method, (a) micromachining mold with columns, (b) pouring and curing of polymer onto mold, (c) - (e) polymer extraction.
  • Figure 4. (a) Polymeric membrane with perforations filled with ion exchange polymer, (b) membrane-electrode assembly.
  • Figure 5. Example of assembling a hybrid membrane to current collectors for the manufacture of a micro fuel cell, (a) An oxygen plasma is applied on both sides of the hybrid membrane, (b) the membrane is pressed between Current collectors, (c) the micropile is formed.
  • Example 1 Manufacture of the hybrid polymer electrolyte membrane and silicon current collectors A PDMS membrane with a microperforation matrix, of
  • the PDMS solution is prepared by mixing the prepolymer and the curing agent in the proportion marked in the manufacturer's specifications. For a membrane of dimensions of 10 x 10 mm between 20 and 30 microliters of PDMS were added to the mold until a membrane height of 300 ⁇ m was achieved.
  • the mold with PDMS was placed in an oven to cure the polymer at a temperature of 15O 0 C for a time of 15 minutes. After this time the mold was removed with PDMS from the oven and the PDMS membrane was removed from the mold.
  • the perforations of the PDMS membrane were filled with 10 microliters of Nafion ® in solution form ( Figure 4a), which solidified at room temperature in 24 hours.
  • the surfaces of the hybrid membrane were oxidized by means of plasma for 30 seconds using a Hand-Held Laboratory Corona Treater model BD-20AC model of the Electro-Technic Products brand, to then be assembled between two current collectors based on chips Micromachining of silicon with micro channels to obtain the fuel micropile, as seen in Figure 5.
  • the chips have the double function of distributing the reagents in the battery and collecting the released electrons.
  • Example 2 Fuel micropila with hybrid polymer electrolyte membrane and glass current collectors A micro fuel cell is manufactured using the same method described in Example 1, except that the current collecting chips are micromachined on a glass substrate .
  • Example 3 Fuel micropila with hybrid polymer electrolyte membrane and rigid polymer current collectors
  • a micro fuel cell is manufactured using the same method described in Example 1, except that the current collecting chips are made on a polymeric polymethylmethacrylate (PMMA) substrate.
  • PMMA polymethylmethacrylate
  • Example 4 Fuel micropila with hybrid polymer electrolyte membrane and flexible polymer current collectors
  • a micro fuel cell is manufactured with the same method described in Example 1, except that the chips are formed in PDMS which has been provided with a metallic layer by sputtering to allow current conduction.
  • the micro fuel cell obtained by this method has flexible characteristics.
  • Example 5 Direct methanol fuel micropile with hybrid polymer electrolyte membrane and silicon current collectors
  • a PDMS membrane with a microperforation matrix is manufactured by the soft lithography method using as a mold a micromachined silicon wafer, as shown in Figure 3.
  • the PDMS solution is prepared by mixing the prepolymer and the curing agent in the proportion marked in the manufacturer's specifications.
  • For a membrane measuring 10 x 10 mm between 20 and 30 microliters of PDMS are added to the mold until a membrane thickness of 300 ⁇ m is achieved.
  • the PDMS mold is introduced into an oven for curing of the polymer at a temperature of 150 0 C for 15 min. After this time, the mold with PDMS is removed from the oven and the PDMS membrane is removed from the mold.
  • the perforations of the PDMS membrane are filled with 10 microliters of Nafion ® in solution form ( Figure 4a), which solidifies at room temperature in 24 hours.
  • Catalytic inks are produced from a mixture of catalyst, ionomer in solution (Nafion diluted in 10% water) and carbon particles. The mixture is stirred for 24 hours with a magnetic stirrer.
  • One side of the electrolyte of the membrane is covered with catalytic ink composed of Pt / C (at 20% by weight, of the E-TEK brand) as a catalyst for the cathodic reaction, the other side of the electrolyte of the membrane is covered with a Pt-Ru / C composite ink (at 20% by weight, of the brand E-TEK) for the reaction at the anode ( Figure 4b).
  • catalytic ink composed of Pt / C (at 20% by weight, of the E-TEK brand) as a catalyst for the cathodic reaction
  • Pt-Ru / C composite ink at 20% by weight, of the brand E-TEK
  • the exposed surfaces of the membrane PDMS were oxidized by means of plasma for 30 seconds using a Hand-Held Laboratory Corona Treater model BD- system.
  • Example 6 Direct methanol fuel micropile of alternative catalysts with hybrid polymer electrolyte membrane and silicon current collectors
  • a micro fuel cell is manufactured using the same method described in Example 5, except that the catalysts used consist of enzymatic compounds.
  • the micro fuel cell obtained by this method considerably reduces the cost of the device by dispensing with expensive metal catalysts such as Pt.
  • Example 7 Direct methanol fuel micropile of alternative catalysts with hybrid polymer electrolyte membrane manufactured by mechanical drilling and silicon current collectors
  • a micro fuel cell is manufactured with the same method described in Example 6, except that the manufacturing process of the perforated PDMS membrane is based on an automatic mechanical drilling process.
  • This method consists in the perforation of homogeneous membranes of PDMS cured by means of pressure indentation.
  • micro fuel cell obtained by this method allows to reduce the manufacturing costs of the device because this production process of the hybrid membranes can be easily adapted to mass production.

Abstract

The invention relates to a hybrid polymer electrolyte membrane comprising two different polymers arranged such that both form a structure in which one of the polymers (a siloxane polymer) serves as a perforated base so that the other polymer (a polymer electrolyte) can be distributed therein through the channel-like perforations. This membrane can be used for the production of polymer electrolyte devices, such as fuel cells, electrolysers and microbial cells, enabling greater integration of the membrane with the other components, a reduction in the size of the devices and compatibility with stiff materials.

Description

MEMBRANA DE ELECTROLITO POLIMERICO HÍBRIDA Y SUS APLICACIONES HYBRID POLYMER ELECTROLYTE MEMBRANE AND ITS APPLICATIONS
SECTOR DE LA TÉCNICA La presente invención se enmarca en el área científico-técnica de IaSECTOR OF THE TECHNIQUE The present invention is part of the scientific-technical area of Ia
Electroquímica y Ia Microelectrónica, dentro del sector de Ia fabricación de microsistemas y Ia producción de energía.Electrochemistry and Microelectronics, within the sector of microsystems manufacturing and energy production.
ESTADO DE LA TÉCNICA La creciente presencia de microsistemas electromecánicos (MEMS, por sus siglas en inglés) en una amplia variedad de aplicaciones ha provocado una demanda progresiva de fuentes de alimentación que sean eficientes y ligeras. Estos dispositivos integran elementos mecánicos, sensores, actuadores y electrónica en un mismo sustrato por medio de procesos de microfabricación que parten de Ia tecnología de circuitos integrados (IC). Los campos de aplicación de estos dispositivos son muy diversos (automoción, industria alimentaria, seguridad, medicina...), en donde algunas de las aplicaciones más comercializadas son por ejemplo los acelerómetros utilizados en sistemas de expulsión de bolsas de aire en automóviles (y últimamente también en dispositivos electrónicos de consumo), sistemas de inyección de tinta en impresoras, sensores de presión sanguínea, proyectores de video, entre otros. Como solución idónea tanto desde el punto de vista de Ia funcionalidad como del coste, se requiere una mayor compactación de las fuentes de energía, Io que implica Ia compatibilización de diversas tecnologías de fabricación a fin de conseguir un sistema completamente integrado, de tamaño más reducido y con Ia mayor densidad de potencia posible.STATE OF THE TECHNIQUE The growing presence of electromechanical microsystems (MEMS) in a wide variety of applications has caused a progressive demand for power supplies that are efficient and light. These devices integrate mechanical elements, sensors, actuators and electronics in the same substrate through microfabrication processes that start from integrated circuit technology (IC). The fields of application of these devices are very diverse (automotive, food industry, safety, medicine ...), where some of the most commercialized applications are for example the accelerometers used in systems of expulsion of air bags in cars (and lately also in electronic consumer devices), inkjet systems in printers, blood pressure sensors, video projectors, among others. As an ideal solution both from the point of view of functionality and cost, greater compaction of energy sources is required, which implies the compatibility of various manufacturing technologies in order to achieve a fully integrated system, of smaller size and with the highest possible power density.
Las micro pilas de combustible merecen actualmente un interés especial debido a sus potenciales ventajas frente a otras aproximaciones. Entre estas ventajas destacan una alta densidad energética, posibilidad de trabajar a temperatura ambiente, emisiones no contaminantes y Ia posibilidad de eliminar las partes móviles asociadas a otro tipo de dispositivos (tales como micromotores, microturbinas, resonadores, etc.), simplificando el proceso de fabricación y reduciendo las posibilidades de fallo. Ante estas ventajas, las pilas de combustible, estudiadas y desarrolladas desde hace varias décadas para Ia generación de energía a gran escala, están siendo consideradas y evaluadas actualmente por Ia comunidad científica habiéndose obtenido excelentes resultados en el campo de Ia alimentación de sistemas portátiles . En este sentido, el uso de los procesos de fabricación asociados a Ia tecnología microelectrónica resultan prometedores dada su reproducibilidad y capacidad de producción en masa (modo batch, en donde todos los componentes son completados en una estación de trabajo antes de pasar a Ia siguiente). Asimismo, el uso de Ia tecnología microelectrónica puede aumentar el rendimiento de Ia pila de combustible puesto que Ia reducción de los componentes de Ia pila a microescala mejora Ia eficiencia de los mecanismos de transporte.Micro fuel cells currently deserve special interest due to their potential advantages over other approaches. These advantages include a high energy density, the possibility of working at room temperature, non-polluting emissions and Ia possibility of eliminating the moving parts associated with other types of devices (such as micromotors, microturbines, resonators, etc.), simplifying the manufacturing process and reducing the chances of failure. Given these advantages, fuel cells, studied and developed for several decades for large-scale power generation, are currently being considered and evaluated by the scientific community having obtained excellent results in the field of portable systems power. In this sense, the use of manufacturing processes associated with microelectronic technology is promising given its reproducibility and mass production capacity (batch mode, where all components are completed in a workstation before moving on to the next) . Likewise, the use of microelectronic technology can increase the performance of the fuel cell since the reduction of the components of the microscale battery improves the efficiency of the transport mechanisms.
Una pila de combustible está formada básicamente por los siguientes componentes: una membrana electrolítica, dos electrodos (ánodo y cátodo), dos colectores de corriente (uno asociado al ánodo y otro al cátodo) y las estructuras fluídicas de distribución de los distintos reactivos y productos (hidrógeno, metanol, aire, agua, etc.). Las pilas de combustible pueden ser clasificadas en función del tipo de electrolito (membrana electrolítica). Se distinguen hasta cinco tipos diferentes: pilas de combustible de electrolito polimérico, pilas de combustible alcalinas, pilas de combustible de ácido fosfórico, pilas de combustible de óxido sólido y pilas de combustible de carbonato fundido. Aunque todas ellas basan su funcionamiento en el mismo principio electroquímico, difieren en los materiales de sus componentes, las temperaturas de trabajo, su tolerancia al combustible y sus características de operación [1]. Entre todas ellas, las pilas basadas en electrolito polimérico (PEM) son las que poseen las características físico-químicas más ventajosas para su miniaturización. Las pilas PEM emplean una membrana delgada de un solo tipo polimérico como electrolito y utilizan como reactivos hidrógeno en el ánodo y oxígeno en el cátodo. En Ia membrana, los protones derivados de Ia descomposición de Ia molécula de hidrógeno son los portadores de Ia carga iónica, que después de atravesarla se recombinan con las moléculas de oxígeno para generar agua. Este tipo de pilas resulta muy atractivo debido a su capacidad para operar a temperatura ambiente y Ia elevada densidad de energía generada. Además, permiten Ia posibilidad de emplear combustible líquido como el metanol (MeOH) que puede aumentar varios órdenes de magnitud Ia densidad de energía disponible, a este tipo de pila PEM se Ie conoce como pila de combustible de metanol directo (DMFC). El material más comúnmente utilizado como membrana de intercambio protónico es el Nafion® de Ia firma DuPont. Sin embargo, existen otros materiales diferentes disponibles en el mercado (Aciplex®, Flemion®, Dowex®, Fumasep®, etc) y diversos grupos de investigación se encuentran desarrollando alternativas que mejoren su eficiencia y disminuyan el costo.A fuel cell is basically formed by the following components: an electrolytic membrane, two electrodes (anode and cathode), two current collectors (one associated with the anode and another associated with the cathode) and the fluidic distribution structures of the different reagents and products (hydrogen, methanol, air, water, etc.). Fuel cells can be classified according to the type of electrolyte (electrolytic membrane). Up to five different types are distinguished: polymer electrolyte fuel cells, alkaline fuel cells, phosphoric acid fuel cells, solid oxide fuel cells and molten carbonate fuel cells. Although all of them base their operation on the same electrochemical principle, they differ in the materials of their components, working temperatures, fuel tolerance and operating characteristics [1]. Among all of them, batteries based on polymer electrolyte (PEM) are the ones that have the most advantageous physical-chemical characteristics for their miniaturization PEM batteries use a thin membrane of a single polymeric type as an electrolyte and use hydrogen at the anode and oxygen at the cathode as reagents. In the membrane, the protons derived from the decomposition of the hydrogen molecule are the carriers of the ionic charge, which after crossing it recombines with the oxygen molecules to generate water. This type of batteries is very attractive due to its ability to operate at room temperature and the high density of energy generated. In addition, they allow the possibility of using liquid fuel such as methanol (MeOH) that can increase the available energy density by several orders of magnitude. This type of PEM battery is known as the direct methanol fuel cell (DMFC). The most commonly used material as a proton exchange membrane is the Nafion ® of the DuPont firm. However, there are other different materials available in the market (Aciplex ® , Flemion ® , Dowex ® , Fumasep ® , etc.) and various research groups are developing alternatives that improve their efficiency and reduce cost.
La investigación y desarrollo en el campo de las micro pilas de combustible ha focalizado sus esfuerzos en Ia mejora de los distintos elementos que componen el dispositivo resultando en una optimización de eficiencia y potencia producida. Los principales avances se han dado en Ia obtención de materiales que mejoran Ia conducción iónica y Ia catálisis de las reacciones, así como en el diseño de estructuras fluídicas que permiten optimizar Ia distribución de los reactivos a Io largo de Ia pila. Pese a que diversos trabajos han propuesto nuevas arquitecturas para miniaturizar los componentes, Ia integración de todas las partes sigue representando un reto tecnológico debido a Ia incompatibilidad de materiales, siendo necesario normalmente Ia incorporación de placas adicionales, tornillos o adhesivos para mantener unidas todas las partes dispositivo (ánodo, cátodo, colectores de corriente y membrana polimérica). Dicha incompatibilidad radica en el hecho de que las membranas poliméricas no permiten una adhesión directa con los materiales con los que son fabricados los colectores de corriente. Además el problema se agrava con Ia expansión volumétrica que sufren las membranas al humedecerse durante su funcionamiento. Esta expansión puede crear fracturas en Ia estructura rígida de los colectores, como puede ser silicio en el caso de microdispositivos integrados, provocando el fallo del sistema.Research and development in the field of micro fuel cells has focused its efforts on the improvement of the different elements that make up the device resulting in an optimization of efficiency and power produced. The main advances have been made in obtaining materials that improve ionic conduction and catalysis of the reactions, as well as in the design of fluidic structures that allow optimizing the distribution of reagents along the battery. Although several works have proposed new architectures to miniaturize the components, the integration of all the parts continues to represent a technological challenge due to the incompatibility of materials, being normally necessary the incorporation of additional plates, screws or adhesives to keep all the parts together device (anode, cathode, current collectors and polymeric membrane). This incompatibility lies in the fact that polymeric membranes do not allow direct adhesion with the materials with which the current collectors are manufactured. In addition, the problem is aggravated by the volumetric expansion that the membranes suffer when they become wet during operation. This expansion can create fractures in the rigid structure of the collectors, such as silicon in the case of integrated microdevices, causing the system to fail.
Es por esta razón que en todos los trabajos existentes en Ia literatura se precisa de un encapsulado que permita presionar las diferentes partes de Ia pila por medio de tornillos, "remaches" o adhesivos. Estos elementos auxiliares externos hacen que el dispositivo sea más voluminoso dificultando su miniaturización, así como su ensamblado usando procesos simples y automatizables.It is for this reason that in all the works existing in the literature, an encapsulation is required that allows the different parts of the stack to be pressed by means of screws, rivets or adhesives. These external auxiliary elements make the device more bulky, hindering its miniaturization, as well as its assembly using simple and automatable processes.
Existen múltiples ejemplos de desarrollos en micro pilas de combustible en Ia literatura donde queda patente esta necesidad de introducir los elementos auxiliares anteriormente mencionados. La mayoría de las micro pilas descritas utilizan un sistema de sandwich donde emplazan un ensamblaje membrana-electrodo, también llamado MEA por sus siglas en inglés Membrane Electrode Assembly, entre dos colectores de corriente, que pueden ser de materiales diversos. Véase en las figuras 1a y 1 b el desarrollo propuesto por Shimizu et al. [2], donde se describe una micropila basada en una membrana de Nafion® ensamblada entre dos colectores de corriente de acero inoxidable micromecanizado. El dispositivo final consta también de sendas coberturas de metacrilato, usadas para dar consistencia a Ia estructura y distribuir el fuel y se mantiene unido mediante 4 tornillos situados en las esquinas. En Ia literatura pueden encontrarse trabajos con una aproximación similar a Ia descrita [3-5]. Las figuras 1c y 1d muestran una micropila microfabricada dónde los colectores de corriente se han realizado en un polímero rígido [6]. El dispositivo consta de una membrana de Nafion® como membrana de intercambio protónico ensamblada entre dos colectores de corriente de polímero polidimetilmetacrilato (PMMA), a los cuales se les añade un recubrimiento de oro o una malla metálica de plata para conferirles propiedades conductoras. Nuevamente, el montaje final requiere de Ia colocación de 4 tornillos en los extremos de Ia estructura. Las figuras 1e y 1f muestran el esquema y Ia fotografía de una micropila dónde los colectores de corriente se han fabricado en silicio [7]. El dispositivo consta de una membrana de Nafion ensamblada entre dos colectores de corriente de silicio metalizados y unidos a una pieza de Pyrex® que les confiere robustez. Se aprecia de nuevo que las distintas partes de Ia micropila se han ajustado mediante el uso de pequeños tornillos en los extremos del chip. En Ia literatura se pueden encontrar diversos dispositivos basados en silicio que usan este método de encapsulado [8-11]. Finalmente, las figuras 1g y 1 h muestran una micropila en Ia que los colectores de corriente están hechos de finas capas metálicas fijadas sobre una poliamida, por Io que el dispositivo tiene Ia cualidad de ser flexible [13]. En este dispositivo se hace necesaria Ia incorporación de materiales adhesivos para mantener unidos los diferentes elementos de Ia micropila.There are multiple examples of developments in micro fuel cells in the literature where this need to introduce the aforementioned auxiliary elements is evident. Most of the micro batteries described use a sandwich system where they place a membrane-electrode assembly, also called MEA for its acronym in English Membrane Electrode Assembly, between two current collectors, which can be of various materials. See Figures 1a and 1b for the development proposed by Shimizu et al. [2], which describes a micropile based on a Nafion ® membrane assembled between two current collectors of micromachined stainless steel. The final device also consists of two methacrylate covers, used to give consistency to the structure and distribute the fuel and is held together by 4 screws located in the corners. In the literature you can find works with an approach similar to that described [3-5]. Figures 1c and 1d show a microfabricated micropile where the current collectors have been made in a rigid polymer [6]. The device consists of a Nafion ® membrane as a proton exchange membrane assembled between two current collectors of Polydimethylmethacrylate polymer (PMMA), to which a gold coating or a silver metallic mesh is added to confer conductive properties. Again, the final assembly requires the placement of 4 screws at the ends of the structure. Figures 1e and 1f show the scheme and the photograph of a micropile where the current collectors have been manufactured in silicon [7]. The device consists of a Nafion membrane assembled between two metallic silicon current collectors and attached to a piece of Pyrex ® that gives them robustness. It can be seen again that the different parts of the micropile have been adjusted through the use of small screws at the ends of the chip. In the literature, various silicon-based devices that use this encapsulation method [8-11] can be found. Finally, Figures 1g and 1 h show a micropile in which the current collectors are made of thin metal layers fixed on a polyamide, whereby the device has the quality of being flexible [13]. In this device it is necessary to incorporate adhesive materials to hold together the different elements of the micropile.
Así pues, Ia presente invención ha sido realizada para solventar Ia problemática existente en el desarrollo de micro pilas de combustible referente a Ia compatibilidad de materiales, por Io tanto el objetivo de Ia presente invención es Ia obtención de una membrana de electrolito polimérico híbrida que pueda ser integrada con componentes fabricados mediante tecnología de microsistemas, y su utilización en micro pilas de combustible y/o electrolizadores como fuente de energía para microsistemas como sensores o actuadores, así como también para dispositivos electrónicos portátiles como pueden ser por ejemplo dispositivos de comunicación personales u ordenadores portátiles. DESCRIPCIÓN DE LA INVENCIÓN Descripción BreveThus, the present invention has been carried out to solve the problem existing in the development of micro fuel cells relating to the compatibility of materials, therefore the objective of the present invention is to obtain a hybrid polymer electrolyte membrane that can be integrated with components manufactured using microsystems technology, and their use in micro fuel cells and / or electrolysers as a source of energy for microsystems such as sensors or actuators, as well as for portable electronic devices such as personal communication devices or laptops DESCRIPTION OF THE INVENTION Brief Description
Un aspecto de Ia invención Io constituye una membrana de electrolito polimérico híbrida, en adelante membrana de Ia invención, que comprende dos polímeros distintos espacialmente dispuestos de tal forma que ambos constituyen una estructura donde uno de los polímeros, que es un polímero de siloxano, hace de base perforada para que el otro polímero, que es un electrolito polimérico, se pueda distribuir en él las perforaciones en forma de canales. Un aspecto particular de Ia invención Io constituye Ia membrana deAn aspect of the invention constitutes a hybrid polymer electrolyte membrane, hereinafter membrane of the invention, which comprises two different polymers spatially arranged such that both constitute a structure where one of the polymers, which is a siloxane polymer, makes perforated base so that the other polymer, which is a polymeric electrolyte, can be distributed in the perforations in the form of channels. A particular aspect of the invention constitutes the membrane of
Ia invención donde el electrolito polimérico es un polímero de intercambio iónico perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al grupo de los polímeros perfluorinados con cadenas terminales de ácido sulfónico y perfluorosulfónico. Otro aspecto particular de Ia invención Io constituye Ia membrana deThe invention where the polymer electrolyte is an ion exchange polymer belonging, by way of illustration and without limiting the scope of the invention, to the group of perfluorinated polymers with terminal chains of sulfonic acid and perfluorosulfonic acid. Another particular aspect of the invention constitutes the membrane of
Ia invención donde el polímero de siloxano es un polímero que tiene grupos siloxanos.The invention where the siloxane polymer is a polymer that has siloxane groups.
Una realización particular de Ia invención Io constituye una membrana de Ia invención donde el polímero de siloxano es el polidimetilsiloxano (PDMS) y el polímero de intercambio iónico es el Nafion.A particular embodiment of the invention constitutes a membrane of the invention where the siloxane polymer is polydimethylsiloxane (PDMS) and the ion exchange polymer is Naphion.
Otro aspecto particular de Ia invención Io constituye Ia membrana de Ia invención en el que las perforaciones deben tener unas dimensiones entre 5 μm y 1000 μm de ancho y deben estar distanciadas en un rango de entre 5 μm y 1000 μm, así como tener una altura de entre 50 y 500 μm.Another particular aspect of the invention constitutes the membrane of the invention in which the perforations must have dimensions between 5 μm and 1000 μm in width and must be distanced in a range between 5 μm and 1000 μm, as well as have a height between 50 and 500 μm.
Otro aspecto de Ia invención Io constituye el procedimiento de fabricación de Ia membrana de electrolito polimérico híbrida, en adelante procedimiento de Ia invención, que comprende: i) una primera etapa para dotar a una membrana de polímero de siloxano de una matriz de microperforaciones (Figura 3), ii) el relleno de las microperforaciones de i) con un electrolito polimérico en forma de disolución en estado líquido (ver Figura 4a), y iii) oxidación con plasma de las superficies expuestas de polímero siloxano por ambos lados, (ver Figura 5a).Another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane, hereinafter the method of the invention, which comprises: i) a first stage to provide a siloxane polymer membrane with a microperforation matrix (Figure 3), ii) the filling of the microperforations of i) with a polymeric electrolyte in the form of a liquid solution (see Figure 4a), and iii) plasma oxidation of the exposed surfaces of siloxane polymer on both sides, (see Figure 5a).
Otro aspecto particular de Ia invención Io constituye el procedimiento de Ia invención en el que Ia perforación Ia membrana de polímero siloxano se lleva a cabo mediante un procedimiento perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: litografía blanda, perforación mecánica, ataque químico o ablación; y especialmente mediante litografía blanda.Another particular aspect of the invention constitutes the process of the invention in which the perforation of the siloxane polymer membrane is carried out by means of a process belonging, by way of illustration and without limiting the scope of the invention, to the following group: lithography soft, mechanical drilling, chemical attack or ablation; and especially by soft lithography.
Una realización particular de Ia invención Io constituye el procedimiento de de Ia invención donde Ia etapa a) se lleva a cabo mediante de un procedimiento de litografía blanda que comprende las siguientes etapas: a) Fabricación de un molde micromecanizado fabricado con silicio, b) Vertido y curado del polímero siloxano sobre el molde y c) Extracción del polímero del molde.A particular embodiment of the invention constitutes the process of the invention where stage a) is carried out by means of a soft lithography process comprising the following steps: a) Manufacture of a micromachined mold made of silicon, b) Pouring and curing of the siloxane polymer on the mold and c) Extraction of the polymer from the mold.
Otro aspecto particular de Ia invención Io constituye el procedimiento de Ia invención en el que las columnas del molde deben estar definidas en un rango de entre 5 μm y 1000 μm de ancho, deben estar distanciadas en un rango de entre 5 μm y 1000 μm, así como tener una altura en un rango de 50 μm y 500 μm.Another particular aspect of the invention constitutes the process of the invention in which the columns of the mold must be defined in a range between 5 μm and 1000 μm in width, must be distanced in a range between 5 μm and 1000 μm, as well as having a height in a range of 50 μm and 500 μm.
Así, otro aspecto es el uso de Ia membrana de Ia invención que comprende un polímero de intercambio iónico en Ia fabricación de dispositivos de electrolitos poliméricos, como por ejemplo, las pilas de combustible, electrolizadores y pilas microbianas.Thus, another aspect is the use of the membrane of the invention comprising an ion exchange polymer in the manufacture of polymer electrolyte devices, such as, for example, fuel cells, electrolysers and microbial batteries.
Otro aspecto de Ia invención Io constituye el método de fabricación de Ia membrana de electrolito polimérico híbrida donde el electrolito es un intercambiador protónico para utilizarse en micropilas de combustible y en el que entre Ia etapa ii) de relleno y iii) de oxidación se incluye una etapa de incorporación de catalizadores, en caso de ser necesario, en los colectores de corriente, en Ia membrana por ambas caras para funcionar como ensamblaje membrana-electrodo o en una capa difusora que puede ser añadida entre Ia membrana y los colectores de corriente.Another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane where the electrolyte is a proton exchanger for use in fuel micropiles and in which between the stage ii) of filling and iii) of oxidation a stage of incorporating catalysts, if necessary, in the current collectors, in the membrane on both sides to function as a membrane-electrode assembly or in a diffuser layer that can be added between the membrane and the current collectors.
Descripción DetalladaDetailed description
La presente invención describe una nueva membrana de electrolito polimérico híbrida, un método de fabricación de dicha membrana compatible con tecnología microelectrónica y su utilización en dispositivos basados en electrolitos poliméricos, como por ejemplo las micropilas de combustible.The present invention describes a new hybrid polymer electrolyte membrane, a method of manufacturing said membrane compatible with microelectronic technology and its use in devices based on polymer electrolytes, such as fuel micropiles.
De acuerdo con el primer objeto de esta invención, los inventores han realizado una membrana de electrolito polimérica híbrida constituida por dos polímeros distintos espacialmente dispuestos de tal forma que ambos constituyen una estructura donde uno de los polímeros hace de base para que el otro polímero se pueda distribuir en él a través de canales perforados, Ia cual puede unirse de directa con materiales como silicio, vidrio u otros polímeros con Ia propiedad de absorber Ia expansión volumétrica del electrolito al hidratarse, con Io que se aumenta el grado de miniaturización de los dispositivos en los que se incorpore. Los inventores han observado que uno de los polímeros Io debe constituir un electrolito polimérico y el otro debe ser un polímero siloxano tal como polidimetilsiloxano (PDMS) u otro de características fisicoquímicas similares. Este polímero PDMS es un elastómero de silicona, viscoelástico y biocompatible que puede ser preparado a partir de Ia mezcla de un prepolímero y un agente curante. A pesar de tener propiedades hidrofóbicas, su superficie puede ser funcionalizada mediante plasma de oxígeno pasando a ser hidrofílica Io que Ie permite formar enlaces covalentes al ponerlo en contacto con materiales como silicio, vidrio u otros polímeros. La funcionalización Ie confiere a Ia membrana Ia propiedad de poder unirse a dichos materiales. Cuando Ia membrana de Ia presente invención se incorpora en dispositivos basados en electrolitos poliméricos, esta capacidad para establecer enlaces covalentes presenta Ia ventaja, respecto a los sistemas descritos en el estado de Ia técnica, que se obtiene un mayor nivel de integración de Ia membrana con el resto de los componentes, y por tanto, permite una reducción en el tamaño de los dispositivos al eliminar elementos auxiliares como placas externas y tornillos.In accordance with the first object of this invention, the inventors have made a hybrid polymer electrolyte membrane consisting of two spatially distinct polymers so that both constitute a structure where one of the polymers is the basis for the other polymer to be distribute in it through perforated channels, which can be joined directly with materials such as silicon, glass or other polymers with the property of absorbing the volumetric expansion of the electrolyte upon hydration, thereby increasing the degree of miniaturization of the devices in Those who join. The inventors have observed that one of the polymers should constitute a polymeric electrolyte and the other should be a siloxane polymer such as polydimethylsiloxane (PDMS) or another of similar physicochemical characteristics. This PDMS polymer is a silicone elastomer, viscoelastic and biocompatible that can be prepared from the mixture of a prepolymer and a curing agent. Despite having hydrophobic properties, its surface can be functionalized by oxygen plasma, becoming hydrophilic, which allows it to form covalent bonds by contacting it with materials such as silicon, glass or other polymers. The functionalization confers on the membrane the property of being able to join said materials. When the membrane of Ia This invention is incorporated in devices based on polymer electrolytes, this ability to establish covalent bonds has the advantage, compared to the systems described in the state of the art, which results in a higher level of integration of the membrane with the rest of the components , and therefore, allows a reduction in the size of the devices by removing auxiliary elements such as external plates and screws.
Concretamente, Ia presente invención supone múltiples ventajas con respecto al estado de Ia técnica, entre las que se encuentran: - mayor nivel de integración de Ia membrana con el resto de los componentes, Io que representa una reducción en el tamaño de los dispositivos al eliminar elementos auxiliares como placas externas y tornillos;Specifically, the present invention involves multiple advantages with respect to the state of the art, among which are: - higher level of integration of the membrane with the rest of the components, which represents a reduction in the size of the devices when eliminating auxiliary elements such as external plates and screws;
- compatibilidad con materiales rígidos como silicio ya que Ia membrana soporta Ia expansión volumétrica del polímero de intercambio protónico al hidratarse; proceso de manufactura sencillo que puede desarrollarse a gran escala, con un coste reducido ya que el material de Ia membrana es de bajo coste y fácil de mecanizar y Ia cantidad de polímero conductor iónico necesaria es menor;- compatibility with rigid materials such as silicon since the membrane supports the volumetric expansion of the proton exchange polymer when hydrated; simple manufacturing process that can be developed on a large scale, with a reduced cost since the membrane material is low cost and easy to machine and the amount of ionic conductive polymer needed is smaller;
- posibilidad de incorporar catalizadores alternativos, como pueden ser enzimas o biocatalizadores, para Ia obtención de una micro pila completa de bajo coste; y posibilidad de obtener una micropila con características flexibles si los colectores de corriente son fabricados a su vez de material flexible.- Possibility of incorporating alternative catalysts, such as enzymes or biocatalysts, to obtain a complete low-cost micro stack; and the possibility of obtaining a micropile with flexible characteristics if the current collectors are made of flexible material.
Por Io tanto, un aspecto de Ia invención Io constituye una membrana de electrolito polimérico híbrida, en adelante membrana de Ia invención, que comprende dos polímeros distintos espacialmente dispuestos de tal forma que ambos constituyen una estructura donde uno de los polímeros, que es un polímero de siloxano, hace de base perforada para que el otro polímero, que es un electrolito polimérico, se pueda distribuir en él las perforaciones en forma de canales.Therefore, one aspect of the invention constitutes a hybrid polymer electrolyte membrane, hereinafter membrane of the invention, which comprises two different polymers spatially arranged such that both constitute a structure where one of the polymers, which is a polymer of siloxane, it makes a perforated base so that the other polymer, which is a polymeric electrolyte, can be distributed in the perforations in the form of channels.
Un aspecto particular de Ia invención Io constituye Ia membrana deA particular aspect of the invention constitutes the membrane of
Ia invención donde el electrolito polimérico es un polímero de intercambio iónico perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al grupo de los polímeros perfluorinados con cadenas terminales de ácido sulfónico y perfluorosulfónico.The invention where the polymer electrolyte is an ion exchange polymer belonging, by way of illustration and without limiting the scope of the invention, to the group of perfluorinated polymers with terminal chains of sulfonic acid and perfluorosulfonic acid.
Otro aspecto particular de Ia invención Io constituye Ia membrana de Ia invención donde el polímero de siloxano es un polímero que tiene grupos siloxanos.Another particular aspect of the invention constitutes the membrane of the invention where the siloxane polymer is a polymer having siloxane groups.
Una realización particular de Ia invención Io constituye una membrana de Ia invención donde el polímero de siloxano es el polidimetilsiloxano (PDMS) y el polímero de intercambio iónico es el Nafion. Otro aspecto particular de Ia invención Io constituye Ia membrana deA particular embodiment of the invention constitutes a membrane of the invention where the siloxane polymer is polydimethylsiloxane (PDMS) and the ion exchange polymer is Naphion. Another particular aspect of the invention constitutes the membrane of
Ia invención en el que las perforaciones deben tener unas dimensiones entre 5 μm y 1000 μm de ancho y deben estar distanciadas en un rango de entre 5 μm y 1000 μm, así como tener una altura de entre 50 y 500 μm.The invention in which the perforations must have dimensions between 5 μm and 1000 μm in width and must be spaced in a range between 5 μm and 1000 μm, as well as have a height between 50 and 500 μm.
Otro aspecto de Ia invención Io constituye el procedimiento de fabricación de Ia membrana de electrolito polimérico híbrida, en adelante procedimiento de Ia invención, que comprende: i) una primera etapa para dotar a una membrana de polímero de siloxano de una matriz de microperforaciones (Figura 3), ii) el relleno de las microperforaciones de i) con un electrolito polimérico en forma de disolución en estado líquido (ver Figura 4a), y iii) oxidación con plasma de las superficies expuestas de polímero siloxano por ambos lados, (ver Figura 5a).Another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane, hereinafter the method of the invention, which comprises: i) a first stage to provide a siloxane polymer membrane with a microperforation matrix (Figure 3), ii) the filling of the microperforations of i) with a polymeric electrolyte in the form of a liquid solution (see Figure 4a), and iii) plasma oxidation of the exposed surfaces of siloxane polymer on both sides, (see Figure 5a).
Para conseguir Ia matriz de microperforaciones se pueden utilizar procedimientos tales como litografía blanda, perforación mecánica, ataque químico o ablación. A título ilustrativo, el proceso de litografía blanda consiste en Ia transferencia de motivos a un polímero a partir de un molde. Para esta aplicación se parte de un molde que puede ser microfabricado en silicio. En este molde se definen conjuntos de columnas de base cuadrada o redonda, aunque otras formas también pueden seleccionarse. Los inventores han observado que las dimensiones de las columnas deben estar definidas en un rango entre 5 μm y 1000 μm de ancho con distancias entre las columnas dentro del mismo rango micrométrico y altura de hasta 500 μm, con el objeto de optimizar Ia relación de área de los polímeros y mantener Ia conductividad iónica del polímero electrolito en niveles aceptables, ya que sobrepasada esta altura Ia membrana adquiere unas dimensiones de grosor tales que su capacidad de conducción iónica se ve seriamente afectada. Asimismo, cuanto más anchas sean las columnas mayor cantidad de polímero de electrolito se podrá introducir con Io que favorecerá una mayor capacidad de conducción iónica por unidad de área. De forma concreta, para obtener Ia membrana polimérica perforada de lado a lado se vierte polímero siloxano sobre el molde micromecanizado, el cual fluye entre las columnas por capilaridad. La cantidad de polímero siloxano vertida en el molde se controla de forma que no supere Ia altura de las columnas. El tiempo de curado del polímero se realiza con base a las especificaciones del fabricante, variando típicamente en un rango de 24 horas para temperatura ambiente y 15 minutos para una temperatura de 15O0C para PDMS. Una vez se ha curado el polímero, se extrae del molde, con Io que se obtiene Ia membrana con perforaciones del tamaño deseado de las columnas del molde. Otro aspecto particular de Ia invención Io constituye el procedimiento de Ia invención en el que Ia perforación Ia membrana de polímero siloxano se lleva a cabo mediante un procedimiento perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: litografía blanda, perforación mecánica, ataque químico o ablación; y especialmente mediante litografía blanda. Una realización particular de Ia invención Io constituye el procedimiento de de Ia invención donde Ia etapa a) se lleva a cabo mediante de un procedimiento de litografía blanda que comprende las siguientes etapas: a) Fabricación de un molde micromecanizado fabricado con silicio, b) Vertido y curado del polímero siloxano sobre el molde y c) Extracción del polímero del molde.To achieve the microperforation matrix, procedures such as soft lithography, mechanical perforation, chemical attack or ablation can be used. By way of illustration, the soft lithography process It consists in the transfer of motifs to a polymer from a mold. For this application it is based on a mold that can be microfabricated in silicon. Sets of square or round base columns are defined in this mold, although other shapes can also be selected. The inventors have observed that the dimensions of the columns must be defined in a range between 5 μm and 1000 μm in width with distances between the columns within the same micrometric range and height of up to 500 μm, in order to optimize the area ratio of the polymers and maintain the ionic conductivity of the electrolyte polymer at acceptable levels, since exceeding this height the membrane acquires thickness dimensions such that its ionic conduction capacity is seriously affected. Likewise, the wider the columns, the greater the amount of electrolyte polymer can be introduced, which will favor a greater ionic conduction capacity per unit area. Specifically, to obtain the perforated polymer membrane from side to side, siloxane polymer is poured over the micromachining mold, which flows between the columns by capillarity. The amount of siloxane polymer poured into the mold is controlled so that it does not exceed the height of the columns. Polymer cure time is performed based on the manufacturer's specifications, typically varying in a range of 24 hours for room temperature and 15 minutes for a temperature of 15O 0 C for PDMS. Once the polymer has cured, it is extracted from the mold, so that the membrane is obtained with perforations of the desired size of the columns of the mold. Another particular aspect of the invention constitutes the process of the invention in which the perforation of the siloxane polymer membrane is carried out by means of a process belonging, by way of illustration and without limiting the scope of the invention, to the following group: lithography soft, mechanical drilling, chemical attack or ablation; and especially by soft lithography. A particular embodiment of the invention constitutes the process of the invention where stage a) is carried out by means of a soft lithography process comprising the following steps: a) Manufacture of a micromachined mold made of silicon, b) Pouring and curing of the siloxane polymer on the mold and c) Extraction of the polymer from the mold.
Otro aspecto particular de Ia invención Io constituye el procedimiento de Ia invención en el que las columnas del molde deben estar definidas en un rango de entre 5 μm y 1000 μm de ancho, deben estar distanciadas en un rango de entre 5 μm y 1000 μm, así como tener una altura en un rango de 50 μm y 500 μm.Another particular aspect of the invention constitutes the process of the invention in which the columns of the mold must be defined in a range between 5 μm and 1000 μm in width, must be distanced in a range between 5 μm and 1000 μm, as well as having a height in a range of 50 μm and 500 μm.
Con respecto a Ia segunda etapa del método de fabricación de Ia presente invención los inventores han observado que se puede usar cualquier electrolito polimérico, siendo el polímero Nafion® de DuPont uno de los más utilizados debido a su amplia disponibilidad comercial, el cual se comercializa tanto en forma de membrana como en solución a distintas concentraciones.With respect to the second stage of the manufacturing method of the present invention, the inventors have observed that any polymer electrolyte can be used, the DuPont Nafion ® polymer being one of the most used due to its wide commercial availability, which is commercialized both in membrane form as in solution at different concentrations.
La tercera etapa del método de fabricación de Ia presente invención tras el rellenado, consiste en Ia oxidación con plasma de las superficies expuestas de polímero siloxano por ambos lados, de tal forma que dichas superficies puedan adherirse por medio de enlaces químicos a otros elementos como por ejemplo, electrodos y/o colectores de corriente.The third stage of the manufacturing method of the present invention after filling, consists in the plasma oxidation of the exposed surfaces of siloxane polymer on both sides, so that said surfaces can adhere by means of chemical bonds to other elements such as example, electrodes and / or current collectors.
De acuerdo con otro aspecto de Ia presente invención, Ia arriba descrita membrana híbrida puede incorporarse o fabricar dispositivos basados en electrolitos poliméricos, como por ejemplo, Ia fabricación de micropilas de combustible, electrolizadores, pilas microbianas, etc.According to another aspect of the present invention, the above described hybrid membrane can be incorporated or manufactured devices based on polymer electrolytes, such as, for example, the manufacture of fuel micropiles, electrolysers, microbial batteries, etc.
Para el caso de utilizar Ia membrana de Ia invención para fabricar micropilas de combustible es necesario que el electrolito polimérico de Ia membrana de electrolito polimérico híbrida sea un polímero de intercambio iónico. Así, otro aspecto es el uso de Ia membrana de Ia invención que comprende un polímero de intercambio iónico en Ia fabricación de dispositivos de electrolitos poliméricos, como por ejemplo, las pilas de combustible, electrolizadores y pilas microbianas. Para Ia fabricación de una micropila de combustible deben acoplarse a Ia membrana de electrolito híbrida los electrodos y colectores de corriente. Las estructuras de los electrodos que llevan los reactivos en Ia pila de combustible y recogen los electrones producidos pueden ser fabricadas en una variedad de materiales compatibles con tecnologías de microsistemas como pueden ser silicio, vidrio, polímeros rígidos o flexibles. Con Io que otro aspecto particular de Ia invención Io constituye el uso de un electrodo fabricado con polímeros flexibles para obtener una micropila de combustible con características flexibles.In the case of using the membrane of the invention to manufacture fuel micropiles, it is necessary that the polymer electrolyte of the hybrid polymer electrolyte membrane be an ion exchange polymer. Thus, another aspect is the use of the membrane of the invention comprising an ion exchange polymer in the manufacture of polymer electrolyte devices, such as, for example, fuel cells, electrolysers and microbial batteries. For the manufacture of a fuel micropile, the electrodes and current collectors must be coupled to the hybrid electrolyte membrane. The structures of the electrodes that carry the reagents in the fuel cell and collect the produced electrons can be manufactured in a variety of materials compatible with microsystem technologies such as silicon, glass, rigid or flexible polymers. Therefore, another particular aspect of the invention constitutes the use of an electrode made of flexible polymers to obtain a fuel micropile with flexible characteristics.
La membrana de Ia invención puede ser utilizada para fabricar cualquier tipo de micro pila de combustible de electrolito polimérico. La mayoría de las pilas necesitan catalizadores para poder romper las moléculas de los combustibles. Dependiendo del principio de funcionamiento de Ia pila y el combustible utilizado, dichos catalizadores pueden ser metales tales como Pt, Ru, Pd, Sn o combinaciones de ellos, así como también materiales alternativos como óxidos cerámicos, enzimas o biocatalizadores. Sin embargo, también hay algunas pilas que no necesitan catalizadores, como las pilas de combustible microbianas.The membrane of the invention can be used to manufacture any type of polymeric electrolyte micro fuel cell. Most batteries need catalysts to be able to break fuel molecules. Depending on the principle of operation of the battery and the fuel used, said catalysts can be metals such as Pt, Ru, Pd, Sn or combinations thereof, as well as alternative materials such as ceramic oxides, enzymes or biocatalysts. However, there are also some batteries that do not need catalysts, such as microbial fuel cells.
En el caso de pilas de combustible en que sean necesario el uso de catalizadores, estos pueden ser incorporados en: 1. los colectores de corrienteIn the case of fuel cells in which the use of catalysts is necessary, these can be incorporated into: 1. the current collectors
2. las superficies de Ia membrana2. membrane surfaces
3. una capa difusora3. a diffuser layer
Si los catalizadores son incorporados en los colectores de corriente el ensamble del dispositivo estaría ilustrado conforme a Ia Figura 5 Si los catalizadores son incorporados en las superficies de Ia membrana perforada de polímero siloxano y con orificios rellenos de electrolito polimérico descrita en esta invención, ésta puede utilizarse independientemente de los colectores de corriente para formar un ensamblaje membrana-electrodo, también llamado MEA por sus siglas en inglés Membrane Electrode Assembly, para su aplicación en micro pilas de combustible (ver Figura 4b). La MEA es una estructura compuesta de una capa de electrolito polimérico entre dos electrodos. El método típico para Ia fabricación de MEAs consiste en hacer una tinta catalítica a partir de una mezcla de catalizador, ionómero en solución y partículas de carbono. Luego el electrolito es recubierto en ambas caras por una capa de esta tinta catalítica para obtener el MEA.If the catalysts are incorporated in the current collectors the assembly of the device would be illustrated according to Figure 5 If the catalysts are incorporated in the surfaces of the perforated membrane of siloxane polymer and with holes filled with Polymeric electrolyte described in this invention, it can be used independently of the current collectors to form a membrane-electrode assembly, also called MEA by its acronym in English Membrane Electrode Assembly, for application in micro fuel cells (see Figure 4b). The MEA is a structure composed of a layer of polymer electrolyte between two electrodes. The typical method for the manufacture of MEAs is to make a catalytic ink from a mixture of catalyst, ionomer in solution and carbon particles. Then the electrolyte is coated on both sides by a layer of this catalytic ink to obtain the MEA.
Una capa difusora, normalmente tela o papel de carbón, también puede ser añadida entre Ia membrana y los colectores de corriente para incorporar los catalizadores además de mejorar Ia distribución de los reactivos a Io largo de Ia superficie de Ia membrana. Para Ia integración de los componentes, un plasma de oxigeno es aplicado en ambas caras de Ia membrana de polímero siloxano (ver Figura 5), con Io que los enlaces químicos de sus superficies se rompen, haciendo que el material adquiera propiedades hidrofílicas y permita Ia formación de enlaces covalentes con Ia superficie de otros materiales como silicio, vidrio u otro polímero. De esta forma los colectores de corriente pueden ser adheridos en ambas caras de Ia membrana para formar una micro pila de combustible compacta.A diffuser layer, usually carbon cloth or paper, can also be added between the membrane and the current collectors to incorporate the catalysts in addition to improving the distribution of the reagents along the surface of the membrane. For the integration of the components, an oxygen plasma is applied on both sides of the siloxane polymer membrane (see Figure 5), so that the chemical bonds of their surfaces are broken, causing the material to acquire hydrophilic properties and allow Ia formation of covalent bonds with the surface of other materials such as silicon, glass or other polymer. In this way the current collectors can be adhered on both sides of the membrane to form a compact micro fuel cell.
Así, otro aspecto de Ia invención Io constituye el método de fabricación de Ia membrana de electrolito polimérico híbrida donde el electrolito es un intercambiador protónico para utilizarse en micropilas de combustible y en el que entre Ia etapa ii) de relleno y iii) de oxidación se incluye una etapa de incorporación de catalizadores, en caso de ser necesario, en los colectores de corriente, en Ia membrana por ambas caras para funcionar como ensamblaje membrana-electrodo o en una capa difusora que puede ser añadida entre Ia membrana y los colectores de corriente. De esta forma, Ia oxidación con plasma de las superficies de Ia membrana del polímero (etapa iii)) permite Ia adhesión por medio de enlaces químicos a los colectores de corrientes y que Ia membrana se integre con los componentes necesarios para formar Ia micropila de combustible mediante Ia compresión de Ia membrana entre los colectores de corriente.Thus, another aspect of the invention constitutes the method of manufacturing the hybrid polymer electrolyte membrane where the electrolyte is a proton exchanger for use in fuel micropiles and in which between the stage ii) of filling and iii) of oxidation is includes a stage of incorporation of catalysts, if necessary, in the current collectors, in the membrane on both sides to function as a membrane-electrode assembly or in a diffuser layer that can be added between the membrane and the current collectors . In this way, the plasma oxidation of the polymer membrane surfaces (step iii)) allows the adhesion by means of chemical bonds to the current collectors and that the membrane is integrated with the necessary components to form the fuel micropile by means of the compression of the membrane between the current collectors.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Figura 1.- Ejemplos de micropilas con diferentes arquitecturas. Figura 2.- Diagrama de membrana polimérica con matriz de perforaciones. Figura 3.- Proceso de fabricación de membrana polimérica con el método de litografía blanda, (a) molde micromecanizado con columnas, (b) vertido y curado de polímero sobre molde, (c)-(e) extracción de polímero. Figura 4.- (a) Membrana polimérica con perforaciones rellenas de polímero intercambiador iónico, (b) ensamblaje membrana-electrodo.Figure 1.- Examples of micropiles with different architectures. Figure 2.- Diagram of polymeric membrane with perforation matrix. Figure 3.- Polymer membrane manufacturing process with the soft lithography method, (a) micromachining mold with columns, (b) pouring and curing of polymer onto mold, (c) - (e) polymer extraction. Figure 4.- (a) Polymeric membrane with perforations filled with ion exchange polymer, (b) membrane-electrode assembly.
Figura 5.- Ejemplo de ensamblando de una membrana híbrida a colectores de corriente para Ia fabricación de una micro pila de combustible, (a) Se aplica un plasma de oxígeno en ambas caras de Ia membrana híbrida, (b) Ia membrana es presionada entre colectores de corriente, (c) se forma Ia micropila.Figure 5.- Example of assembling a hybrid membrane to current collectors for the manufacture of a micro fuel cell, (a) An oxygen plasma is applied on both sides of the hybrid membrane, (b) the membrane is pressed between Current collectors, (c) the micropile is formed.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNEXAMPLES OF EMBODIMENT OF THE INVENTION
Ejemplo 1.- Fabricación de Ia membrana de electrolito polimérico híbrida y colectores de corriente en silicio Una membrana de PDMS con una matriz de microperforaciones, deExample 1.- Manufacture of the hybrid polymer electrolyte membrane and silicon current collectors A PDMS membrane with a microperforation matrix, of
250 μm de ancho con 300 μm de alto, separadas entre ellas con una distancia de 250 μm, fue fabricada por el método de litografía blanda utilizando como molde una oblea de silicio micromecanizada, como se muestra en Ia Figura 3. La solución de PDMS se preparó mezclando el prepolímero y el agente curante en Ia proporción marcada en las especificaciones del fabricante. Para una membrana de dimensiones de 10 x 10 mm se añadieron entre 20 y 30 microlitros de PDMS al molde hasta conseguir una altura de membrana de 300 μm. El molde con PDMS se introdujo en un horno para realizar el curado del polímero a una temperatura de 15O0C durante un tiempo de 15 minutos. Pasado este tiempo se retiró el molde con PDMS del horno y Ia membrana de PDMS se extrajo del molde. A continuación, las perforaciones de Ia membrana de PDMS se rellenaron con 10 microlitros de Nafion® en forma de solución (Figura 4a), que solidificó a temperatura ambiente en 24 horas.250 μm wide with 300 μm high, separated from each other with a distance of 250 μm, was manufactured by the soft lithography method using as a mold a micromachined silicon wafer, as shown in Figure 3. The PDMS solution is prepared by mixing the prepolymer and the curing agent in the proportion marked in the manufacturer's specifications. For a membrane of dimensions of 10 x 10 mm between 20 and 30 microliters of PDMS were added to the mold until a membrane height of 300 μm was achieved. The mold with PDMS was placed in an oven to cure the polymer at a temperature of 15O 0 C for a time of 15 minutes. After this time the mold was removed with PDMS from the oven and the PDMS membrane was removed from the mold. Next, the perforations of the PDMS membrane were filled with 10 microliters of Nafion ® in solution form (Figure 4a), which solidified at room temperature in 24 hours.
Posteriormente, las superficies de Ia membrana híbrida fueron oxidadas por medio de plasma durante 30 segundos utilizando un sistema Hand-Held Laboratory Corona Treater modelo BD-20AC de Ia marca Electro-Technic Products, para seguidamente ser ensamblada entre dos colectores de corriente basados en chips micromecanizados de silicio con micro canales para obtener Ia micropila de combustible, como se observa en Ia Figura 5. Los chips tienen Ia doble función de distribuir los reactivos en Ia pila y colectar los electrones liberados.Subsequently, the surfaces of the hybrid membrane were oxidized by means of plasma for 30 seconds using a Hand-Held Laboratory Corona Treater model BD-20AC model of the Electro-Technic Products brand, to then be assembled between two current collectors based on chips Micromachining of silicon with micro channels to obtain the fuel micropile, as seen in Figure 5. The chips have the double function of distributing the reagents in the battery and collecting the released electrons.
Ejemplo 2.- Micropila de combustible con membrana de electrolito polimérico híbrida y colectores de corriente en vidrio Una micro pila de combustible se fabrica con el mismo método descrito en el Ejemplo 1 , excepto que los chips colectores de corriente son micromecanizados en un sustrato de vidrio.Example 2.- Fuel micropila with hybrid polymer electrolyte membrane and glass current collectors A micro fuel cell is manufactured using the same method described in Example 1, except that the current collecting chips are micromachined on a glass substrate .
Ejemplo 3.- Micropila de combustible con membrana de electrolito polimérico híbrida y colectores de corriente en polímero rígidoExample 3.- Fuel micropila with hybrid polymer electrolyte membrane and rigid polymer current collectors
Una micro pila de combustible se fabrica con el mismo método descrito en el Ejemplo 1 , excepto que los chips colectores de corriente son realizados en un sustrato polimérico de polimetilmetacrilato (PMMA).A micro fuel cell is manufactured using the same method described in Example 1, except that the current collecting chips are made on a polymeric polymethylmethacrylate (PMMA) substrate.
Ejemplo 4.- Micropila de combustible con membrana de electrolito polimérico híbrida y colectores de corriente en polímero flexible Una micro pila de combustible se fabrica con el mismo método descrito en el Ejemplo 1 , excepto que los chips están formados en PDMS el cual se ha dotado con una capa metálica por sputtering para permitir Ia conducción de corriente. La micro pila de combustible obtenida por este método presenta características flexibles.Example 4.- Fuel micropila with hybrid polymer electrolyte membrane and flexible polymer current collectors A micro fuel cell is manufactured with the same method described in Example 1, except that the chips are formed in PDMS which has been provided with a metallic layer by sputtering to allow current conduction. The micro fuel cell obtained by this method has flexible characteristics.
Ejemplo 5.- Micropila de combustible de metanol directo con membrana de electrolito polimérico híbrida y colectores de corriente en silicioExample 5.- Direct methanol fuel micropile with hybrid polymer electrolyte membrane and silicon current collectors
Una membrana de PDMS con una matriz de microperforaciones es fabricada por el método de litografía blanda utilizando como molde una oblea de silicio micromecanizada, como se muestra en Ia Figura 3. Se prepara Ia solución de PDMS mezclando el prepolímero y el agente curante en Ia proporción marcada en las especificaciones del fabricante. Para una membrana de dimensiones de 10 x 10 mm se añaden entre 20 y 30 microlitros de PDMS al molde hasta conseguir un grosor de membrana de 300 μm. El molde con PDMS se introduce en un horno para realizar el curado del polímero a una temperatura de 150 0C por un tiempo de 15 minutos. Pasado este tiempo se retira el molde con PDMS del horno y Ia membrana de PDMS se extrae del molde. A continuación las perforaciones de Ia membrana de PDMS son rellenadas con 10 microlitros de Nafion® en forma de solución (Figura 4a), que solidifica a temperatura ambiente en 24 horas. Se producen tintas catalíticas a partir de una mezcla de catalizador, ionómero en solución (Nafion diluido en agua al 10%) y partículas de carbono. La mezcla es agitada por 24 horas con un agitador magnético. Una cara del electrolito de Ia membrana es cubierta con tinta catalítica compuesta de Pt/C (al 20% en peso, de Ia marca E-TEK) como catalizador de Ia reacción catódica, Ia otra cara del electrolito de Ia membrana es cubierta con una tinta compuesta de Pt-Ru/C (al 20% en peso, de Ia marca E-TEK) para la reacción en el ánodo (Figura 4b). De esta forma se obtiene un ensamblaje electrodo-membrana capaz de utilizarse en una micro pila de combustible de metanol directo.A PDMS membrane with a microperforation matrix is manufactured by the soft lithography method using as a mold a micromachined silicon wafer, as shown in Figure 3. The PDMS solution is prepared by mixing the prepolymer and the curing agent in the proportion marked in the manufacturer's specifications. For a membrane measuring 10 x 10 mm, between 20 and 30 microliters of PDMS are added to the mold until a membrane thickness of 300 μm is achieved. The PDMS mold is introduced into an oven for curing of the polymer at a temperature of 150 0 C for 15 min. After this time, the mold with PDMS is removed from the oven and the PDMS membrane is removed from the mold. Next, the perforations of the PDMS membrane are filled with 10 microliters of Nafion ® in solution form (Figure 4a), which solidifies at room temperature in 24 hours. Catalytic inks are produced from a mixture of catalyst, ionomer in solution (Nafion diluted in 10% water) and carbon particles. The mixture is stirred for 24 hours with a magnetic stirrer. One side of the electrolyte of the membrane is covered with catalytic ink composed of Pt / C (at 20% by weight, of the E-TEK brand) as a catalyst for the cathodic reaction, the other side of the electrolyte of the membrane is covered with a Pt-Ru / C composite ink (at 20% by weight, of the brand E-TEK) for the reaction at the anode (Figure 4b). In this way an electrode-membrane assembly capable of being used in a direct micro methanol fuel cell is obtained.
Posteriormente, las superficies expuestas de PDMS de Ia membrana fueron oxidadas por medio de plasma durante 30 segundos utilizando un sistema Hand-Held Laboratory Corona Treater modelo BD-Subsequently, the exposed surfaces of the membrane PDMS were oxidized by means of plasma for 30 seconds using a Hand-Held Laboratory Corona Treater model BD- system.
20AC de Ia marca Electro-Technic Products, para seguidamente ser ensamblada entre dos colectores de corriente basados en chips micromecanizados de silicio con micro canales para obtener Ia micro pila de combustible de metanol directo, como se observa en Ia Figura 5. Los chips tienen Ia doble función de distribuir los reactivos en Ia pila y colectar los electrones liberados.20AC of the Electro-Technic Products brand, to then be assembled between two current collectors based on micromachined silicon chips with micro channels to obtain the direct micro methanol fuel cell, as seen in Figure 5. The chips have the double function of distributing the reagents in the battery and collecting the released electrons.
Ejemplo 6.- Micropila de combustible de metanol directo de catalizadores alternativos con membrana de electrolito polimérico híbrida y colectores de corriente en silicioExample 6.- Direct methanol fuel micropile of alternative catalysts with hybrid polymer electrolyte membrane and silicon current collectors
Una micro pila de combustible se fabrica con el mismo método descrito en el Ejemplo 5, excepto que los catalizadores utilizados consisten en compuestos enzimáticos. La micro pila de combustible obtenida por este método reduce considerablemente el coste del dispositivo al prescindir de los costosos catalizadores metálicos como Pt.A micro fuel cell is manufactured using the same method described in Example 5, except that the catalysts used consist of enzymatic compounds. The micro fuel cell obtained by this method considerably reduces the cost of the device by dispensing with expensive metal catalysts such as Pt.
Ejemplo 7.- Micropila de combustible de metanol directo de catalizadores alternativos con membrana de electrolito polimérico híbrida fabricada por perforación mecánica y colectores de corriente en silicioExample 7.- Direct methanol fuel micropile of alternative catalysts with hybrid polymer electrolyte membrane manufactured by mechanical drilling and silicon current collectors
Una micro pila de combustible se fabrica con el mismo método descrito en el Ejemplo 6, excepto que el proceso de fabricación de Ia membrana de PDMS perforada esta basado en un proceso automático de perforación mecánica. Este método consiste en Ia perforación de membranas homogéneas de PDMS curado por medio de indentación a presión.A micro fuel cell is manufactured with the same method described in Example 6, except that the manufacturing process of the perforated PDMS membrane is based on an automatic mechanical drilling process. This method consists in the perforation of homogeneous membranes of PDMS cured by means of pressure indentation.
La micro pila de combustible obtenida por este método permite reducir los costes de fabricación del dispositivo debido a que este proceso de producción de las membranas híbridas puede ser fácilmente adaptado a Ia producción en masa.The micro fuel cell obtained by this method allows to reduce the manufacturing costs of the device because this production process of the hybrid membranes can be easily adapted to mass production.
ReferenciasReferences
[I] R. O'Hayre, S.W. Cha, W. CoIeIIa and F. B. Prinz, Fuel CeII Fundamentáis, Ed. John Wiley & Sons, New York, USA, 2006[I] R. O'Hayre, S.W. Cha, W. CoIeIIa and F. B. Prinz, Fuel CeII Fundamentalis, Ed. John Wiley & Sons, New York, USA, 2006
[2] T. Shimizu et al., Journal of Power Sources 137 (2004) 277-283[2] T. Shimizu et al., Journal of Power Sources 137 (2004) 277-283
[3] S. K. Kamarudin et al., Journal of Power Sources 163 (2007) 743-754[3] S. K. Kamarudin et al., Journal of Power Sources 163 (2007) 743-754
[4] Y.H. Pan, Journal of Power Sources 161 (2006) 282-289[4] Y.H. Pan, Journal of Power Sources 161 (2006) 282-289
[5] J. G. Liu et al., Electrochemistry Communications 7 (2005) 288-294 [6] S. H. Chan, NT. Nguyen, Z. Xia and Z. Wu, J. Micromech. Microeng. 15 (2005) 231-236[5] J. G. Liu et al., Electrochemistry Communications 7 (2005) 288-294 [6] S. H. Chan, NT. Nguyen, Z. Xia and Z. Wu, J. Micromech. Microeng 15 (2005) 231-236
[7] J.-Y. Kim et al., Journal of Power Sources 161 (2006) 432-436 [8] SJ. Lee, A. Chang-Chien, S.W. Cha, R. O'Hayre, Y.l. Park, Y. Saito, F. B. Prinz, Journal of Power Sources 112 (2002) 410-418 [9] J. Yu, P. Cheng, Z. Ma, B. Yi, Journal of Power Sources 124 (2003) 40- 46[7] J.-Y. Kim et al., Journal of Power Sources 161 (2006) 432-436 [8] SJ. Lee, A. Chang-Chien, S.W. Cha, R. O'Hayre, Y.l. Park, Y. Saito, F. B. Prinz, Journal of Power Sources 112 (2002) 410-418 [9] J. Yu, P. Cheng, Z. Ma, B. Yi, Journal of Power Sources 124 (2003) 40-46
[10] K. Shah, W.C. Shin, R.S. Besser, Sens. Actuators B 97 (2004) 157- 167[10] K. Shah, W.C. Shin, R.S. Besser, Sens. Actuators B 97 (2004) 157-167
[I I] J. Yeom, R.S. Jayashree, C. Rastogi, M.A. Shannon, P.J.A. Kenis, Journal of Power Sources 160 (2006) 1058-1064.[I I] J. Yeom, R.S. Jayashree, C. Rastogi, M.A. Shannon, P.J.A. Kenis, Journal of Power Sources 160 (2006) 1058-1064.
[12] G.Q. Lu et al., Electrochimica Acta 49 (2004) 821-828[12] G.Q. Lu et al., Electrochimica Acta 49 (2004) 821-828
[13] R. Hahn, S. Wagner, A. Schmitz, H. Reichl, Journal of Power Sources[13] R. Hahn, S. Wagner, A. Schmitz, H. Reichl, Journal of Power Sources
131 (2004) 73-78 131 (2004) 73-78

Claims

REIVINDICACIONES
1.- Membrana de electrolito polimérico híbrida caracterizada porque comprende dos polímeros distintos espacialmente dispuestos de tal forma que ambos constituyen una estructura donde uno de los polímeros, que es un polímero de siloxano, hace de base perforada para que el otro polímero, que es un electrolito polimérico, se pueda distribuir en las perforaciones en forma de canales (Figura 2).1.- Hybrid polymer electrolyte membrane characterized in that it comprises two spatially different polymers arranged in such a way that both constitute a structure where one of the polymers, which is a siloxane polymer, acts as a perforated base so that the other polymer, which is a polymer electrolyte, can be distributed in the perforations in the form of channels (Figure 2).
2.- Membrana según Ia reivindicación 1 caracterizada porque el electrolito polimérico es un polímero de intercambio iónico perteneciente al grupo de los polímeros perfluorinados con cadenas terminales de ácido sulfónico y perfluorosulfónico.2. Membrane according to claim 1 characterized in that the polymer electrolyte is an ion exchange polymer belonging to the group of perfluorinated polymers with terminal chains of sulfonic acid and perfluorosulfonic acid.
3.- Membrana según Ia reivindicación 1 caracterizada porque el polímero de siloxano es un polímero que tiene grupos siloxanos.3. Membrane according to claim 1 characterized in that the siloxane polymer is a polymer having siloxane groups.
4.- Membrana según Ia reivindicación 1 caracterizada porque el polímero de siloxano es el polidimetilsiloxano (PDMS) y el polímero de intercambio iónico es el Nafion.4. Membrane according to claim 1 characterized in that the siloxane polymer is polydimethylsiloxane (PDMS) and the ion exchange polymer is Nafion.
5.- Membrana según Ia reivindicación 1 caracterizada porque las perforaciones presentan unas dimensiones entre 5 μm y 1000 μm de ancho y están distanciadas en un rango de entre 5 μm y 1000 μm, así como tener una altura de entre 50 y 500 μm.5. Membrane according to claim 1 characterized in that the perforations have dimensions between 5 μm and 1000 μm wide and are spaced in a range between 5 μm and 1000 μm, as well as having a height between 50 and 500 μm.
6.- Procedimiento de fabricación de Ia membrana según las reivindicaciones 1 a Ia 5 caracterizado porque comprende: i) una primera etapa para dotar a una membrana de polímero de siloxano de una matriz de microperforaciones (Figura 3), ii) el relleno de las microperforaciones de i) con un electrolito polimérico en forma de disolución en estado líquido (Figura 4a), y iii) oxidación con plasma de las superficies expuestas de polímero siloxano por ambos lados. (Figura 5a).6. Method of manufacturing the membrane according to claims 1 to 5, characterized in that it comprises: i) a first stage to provide a siloxane polymer membrane with a microperforation matrix (Figure 3), ii) the filling of the microperforations of i) with a polymeric electrolyte in the form of a liquid state solution (Figure 4a), and iii) plasma oxidation of the exposed surfaces of siloxane polymer on both sides. (Figure 5a).
7.- Procedimiento según Ia reivindicación 6 caracterizado porque Ia perforación Ia membrana de polímero siloxano de i) se lleva a cabo mediante un procedimiento perteneciente al siguiente grupo: litografía blanda, perforación mecánica, ataque químico o ablación, y preferentemente mediante litografía blanda.7. Method according to claim 6, characterized in that the perforation of the siloxane polymer membrane of i) is carried out by means of a procedure belonging to the following group: soft lithography, mechanical perforation, chemical attack or ablation, and preferably by soft lithography.
8.- Procedimiento según Ia reivindicación 6 caracterizado porque Ia etapa a) se lleva a cabo mediante de un procedimiento de litografía blanda que comprende las siguientes etapas: a) Fabricación de un molde micromecanizado fabricado con silicio, b) Vertido y curado del polímero siloxano sobre el molde y c) Extracción del polímero del molde.8. Method according to claim 6, characterized in that step a) is carried out by means of a soft lithography process comprising the following steps: a) Manufacture of a micromachining mold made of silicon, b) Pouring and curing of the siloxane polymer on the mold and c) Extraction of the polymer from the mold.
9.- Procedimiento según Ia reivindicación 6 caracterizado porque las columnas/perforaciones del molde están definidas en un rango de entre 5 μm y 1000 μm de ancho, están distanciadas en un rango de entre 5 μm y 1000 μm, así como tienen una altura en un rango de 50 μm y 500 μm.9. Method according to claim 6 characterized in that the columns / perforations of the mold are defined in a range between 5 μm and 1000 μm wide, are spaced in a range between 5 μm and 1000 μm, as well as have a height in a range of 50 μm and 500 μm.
10.- Procedimiento según Ia reivindicación 6 caracterizado porque el electrolito es un intercambiador protónico, Ia membrana se va a utilizar en una micropila de combustible y porque en el que entre Ia etapa ii) de relleno y iii) de oxidación se incluye una etapa de incorporación de catalizadores en Ia membrana por ambas caras para funcionar como ensamblaje membrana-electrodo o en una capa difusora que puede ser añadida entre Ia membrana y los colectores de corriente. 10. Method according to claim 6 characterized in that the electrolyte is a proton exchanger, the membrane is to be used in a fuel micropile and in which between the stage ii) of filling and iii) of oxidation a step of including incorporation of catalysts in the membrane on both sides to function as a membrane-electrode assembly or in a diffuser layer that can be added between the membrane and the current collectors.
11.- Uso de Ia membrana según las reivindicaciones 1 a Ia 5 en Ia fabricación de dispositivos de electrolitos poliméricos, como por ejemplo, las pilas de combustible, electrolizadores y pilas microbianas.11. Use of the membrane according to claims 1 to 5 in the manufacture of polymer electrolyte devices, such as, for example, fuel cells, electrolysers and microbial batteries.
12.- Uso de Ia membrana según Ia reivindicación 11 caracterizado porque comprende un polímero de intercambio iónico. 12. Use of the membrane according to claim 11 characterized in that it comprises an ion exchange polymer.
PCT/ES2009/070237 2008-06-19 2009-06-18 Hybrid polymer electrolyte membrane and use thereof WO2009153380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200801838A ES2336750B1 (en) 2008-06-19 2008-06-19 HYBRID POLYMER ELECTROLYTE MEMBRANE AND ITS APPLICATIONS.
ESP200801838 2008-06-19

Publications (1)

Publication Number Publication Date
WO2009153380A1 true WO2009153380A1 (en) 2009-12-23

Family

ID=41433734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070237 WO2009153380A1 (en) 2008-06-19 2009-06-18 Hybrid polymer electrolyte membrane and use thereof

Country Status (2)

Country Link
ES (1) ES2336750B1 (en)
WO (1) WO2009153380A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127093A1 (en) * 2011-04-14 2014-05-08 Sogang University Research Foundation Hydrogen ion transport membrane, membrane for generating hydrogen, and method for manufacturing same
US10333157B2 (en) 2014-11-25 2019-06-25 Johnson Matthey Fuel Cells Limited Membrane-seal assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050249994A1 (en) * 2004-05-04 2005-11-10 Angstrom Power Incorporated Membranes and electrochemical cells incorporating such membranes
US20060003214A1 (en) * 2004-06-30 2006-01-05 Hee-Tak Kim Polymer electrolyte membrane for fuel cell and method for preparing the same
US20060068258A1 (en) * 2003-04-17 2006-03-30 Asahi Glass Company Limited Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
US20060183011A1 (en) * 2004-09-29 2006-08-17 Mittelsteadt Cortney K Solid polymer electrolyte composite membrane comprising porous ceramic support
US20060234097A1 (en) * 2003-03-18 2006-10-19 Daimlerchrysler Ag Self-healing membrane for a fuel cell
US20070202373A1 (en) * 2004-04-13 2007-08-30 Nobuhiko Hojo Proton Conductor, Electrolyte Membrane, Electrode And Fuel Cell
EP1909347A1 (en) * 2005-07-19 2008-04-09 Toyota Jidosha Kabushiki Kaisha Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060234097A1 (en) * 2003-03-18 2006-10-19 Daimlerchrysler Ag Self-healing membrane for a fuel cell
US20060068258A1 (en) * 2003-04-17 2006-03-30 Asahi Glass Company Limited Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
US20070202373A1 (en) * 2004-04-13 2007-08-30 Nobuhiko Hojo Proton Conductor, Electrolyte Membrane, Electrode And Fuel Cell
US20050249994A1 (en) * 2004-05-04 2005-11-10 Angstrom Power Incorporated Membranes and electrochemical cells incorporating such membranes
US20060003214A1 (en) * 2004-06-30 2006-01-05 Hee-Tak Kim Polymer electrolyte membrane for fuel cell and method for preparing the same
US20060183011A1 (en) * 2004-09-29 2006-08-17 Mittelsteadt Cortney K Solid polymer electrolyte composite membrane comprising porous ceramic support
EP1909347A1 (en) * 2005-07-19 2008-04-09 Toyota Jidosha Kabushiki Kaisha Composite porous membrane, method for production thereof, solid polymer electrolyte membrane, and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127093A1 (en) * 2011-04-14 2014-05-08 Sogang University Research Foundation Hydrogen ion transport membrane, membrane for generating hydrogen, and method for manufacturing same
US9186621B2 (en) * 2011-04-14 2015-11-17 Sogang University Research Foundation Hydrogen ion transport membrane, membrane for generating hydrogen, and method for manufacturing same
US10333157B2 (en) 2014-11-25 2019-06-25 Johnson Matthey Fuel Cells Limited Membrane-seal assembly

Also Published As

Publication number Publication date
ES2336750B1 (en) 2011-06-13
ES2336750A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
Nguyen et al. Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review
Pichonat et al. Recent developments in MEMS-based miniature fuel cells
Yao et al. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development
Morse Micro‐fuel cell power sources
CN101821891B (en) Fuel cell stack and fuel cell system
EP1646102B1 (en) Fuel cell device
JP5713335B2 (en) POLYSULFONE POLYMER, POLYMER ELECTROLYTE MEMBRANE CONTAINING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME, FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE POLYMER
CA2498794A1 (en) Method of fabricating fuel cells and membrane electrode assemblies
Li et al. A laser-micromachined polymeric membraneless fuel cell
US20070134531A1 (en) Fuel cell and method for fabricating same
Jiang et al. Design, fabrication and testing of a silicon-based air-breathing micro direct methanol fuel cell
Velisala et al. Review on challenges of direct liquid fuel cells for portable application
KR101714061B1 (en) Method for manufacturing electrode for fuel cell
Chen et al. Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application
D’Urso et al. Development of a planar μDMFC operating at room temperature
US8080345B2 (en) High capacity micro fuel cell system
ES2336750B1 (en) HYBRID POLYMER ELECTROLYTE MEMBRANE AND ITS APPLICATIONS.
Stanley et al. A hybrid sequential deposition fabrication technique for micro fuel cells
JP2004127524A (en) Direct methanol type fuel cell and manufacturing method of the same
Zhu et al. Integrated micro-power source based on a micro-silicon fuel cell and a micro electromechanical system hydrogen generator
US20210075023A1 (en) Flexible, planar, double sided air breathing microscale fuel cell
Pichonat MEMS-based micro fuel cells as promising power sources for portable electronics
CN1996650B (en) Microfuel cell with anchoring element reinforced electrolytic membrane and process for the manufacture thereof
US20070207369A1 (en) Miniature fuel cells comprised of miniature carbon fluidic plates
Gautier et al. Porous Silicon in Micro-Fuel Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09765953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09765953

Country of ref document: EP

Kind code of ref document: A1