WO2009147683A1 - Hybrid registration method - Google Patents

Hybrid registration method Download PDF

Info

Publication number
WO2009147683A1
WO2009147683A1 PCT/IL2009/000569 IL2009000569W WO2009147683A1 WO 2009147683 A1 WO2009147683 A1 WO 2009147683A1 IL 2009000569 W IL2009000569 W IL 2009000569W WO 2009147683 A1 WO2009147683 A1 WO 2009147683A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
probe
image
branched network
patient
Prior art date
Application number
PCT/IL2009/000569
Other languages
French (fr)
Inventor
Dorian Averbuch
Oded Zur
Oren Weingarten
Original Assignee
Superdimension Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Superdimension Ltd. filed Critical Superdimension Ltd.
Priority to EP09758027.8A priority Critical patent/EP2293839B1/en
Priority to EP18215857.6A priority patent/EP3485798B1/en
Publication of WO2009147683A1 publication Critical patent/WO2009147683A1/en
Priority to US13/875,685 priority patent/US9271803B2/en
Priority to US15/055,698 priority patent/US10285623B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/066Superposing sensor position on an image of the patient, e.g. obtained by ultrasound or x-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • A61B1/2676Bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00694Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
    • A61B2017/00699Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement caused by respiration, e.g. by triggering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • Breakthrough technology has emerged which allows the navigation of a catheter tip through a tortuous channel, such as those found in the pulmonary system, to a predetermined target.
  • This technology compares the real-time movement of a sensor against a three-dimensional digital map of the targeted area of the body (for purposes of explanation, the pulmonary airways of the lungs will be used hereinafter, though one skilled in the art will realize the present invention could be used in any body cavity or system: circulatory, digestive, pulmonary, to name a few).
  • CT images are two-dimensional slices of a portion of the patient. After taking several, parallel images, the images may be "assembled" by a computer to form a three-dimensional model, or "CT volume" of the lungs.
  • the CT volume is used during the procedure as a map to the target.
  • the physician navigates a steerable probe that has a trackable sensor at its distal tip.
  • the sensor provides the system with a real-time image of its location. However, because the image of the sensor location appears as a vector on the screen, the image has no context without superimposing the CT volume over the image provided by the sensor.
  • registration The act of superimposing the CT volume and the sensor image is known as "registration.”
  • point registration involves selecting a plurality of points, typically identifiable anatomical landmarks, inside the lung from the CT volume and then using the sensor (with the help of an endoscope) and "clicking" on each of the corresponding landmarks in the lung. Clicking on the landmarks refers to activating a record feature on the sensor that signifies the registration point should be recorded. The recorded points are then aligned with the points in the CT volume, such that registration is achieved.
  • This method works well for initial registration in the central area but as the sensor is navigated to the distal portions of the lungs, the registration becomes less accurate as the distal airways are smaller.
  • the point registration method matches a "snapshot" location of the landmarks to another “snapshot” (CT volume) of the lungs.
  • CT volume computed tomography
  • Each snapshot is taken at different times and, potentially, at different points in the breathing cycle. Due to the dynamic nature of the lungs, the shape of the lungs during the CT scan is likely not the same as the shape of those same lungs during the procedure.
  • the physician is "clicking" on the landmarks over the course of several breathing cycles, it is up to the physician to approximate the timing of his clicking so that it roughly matches the point in the breathing cycle at which the CT scan was taken. This leaves much room for error. Finally, it is time consuming for the physician to maneuver the sensor tip to the various landmarks.
  • FIG. 1 Another example of a registration method utilizing a trackable sensor involves recording a segment of an airway and shape-match that segment to a corresponding segment in the CT volume.
  • This method of registration suffers similar setbacks to the point registration method, though it can be used in more distal airways because an endoscope is not required.
  • the registration should be conducted more than once to keep the registration updated. It may be inconvenient or otherwise undesirable to require additional registration steps from a physician.
  • this method requires that a good image exists in the CT volume for any given airway occupied by the sensor. If for example, the CT scan resulted in an airway shadowed by a blood vessel, for example, the registration will suffer because the shape data on that airway is compromised.
  • Segmenting the BT involves converting the CT volume into a series of digitally-identified branches to develop, or "grow," a virtual model of the lungs.
  • Automatic segmentation works well on the well-defined, larger airways and smaller airways that were imaged well in the CT scans. However, as the airways get smaller, the CT scan gets “noisier” and makes continued automatic segmentation inaccurate. Noise results from poor image quality, small airways, or airways that are shadowed by other features such as blood vessels. Noise can cause the automatic segmentation process to generate false branches and/or loops — airways that rejoin, an occurrence not found in the actual lungs.
  • feature-based registration Another registration method is herein referred to as "feature-based registration.”
  • the CT machine records each image as a plurality of pixels.
  • voxels volumetric pixels
  • Each of the voxels is assigned a number based on the tissue density Housefield number. This density value can be associated with gray level or color using well known window-leveling techniques.
  • the sensing volume of the electromagnetic field of the sensor system is also voxelized by digitizing it into voxels of a specific size compatible with the CT volume.
  • Each voxel visited by the sensor can be assigned a value that correlates to the frequency with which that voxel is visited by the sensor.
  • the densities of the voxels in the CT volume are adjusted according to these values, thereby creating clouds of voxels in the CT volume having varying densities. These voxels clouds or clusters thus match the interior anatomical features of the lungs.
  • Some registration methods are used with systems that use a bronchoscope without a trackable sensor.
  • One of these registration methods compares an image taken by a video camera to a virtual model of the airways.
  • the virtual model includes surfaces, reflections and shadows. This method while herein be referred to as "virtual surface matching.”
  • a virtual camera is established to generate a viewpoint and a virtual light source is used to provide the reflections, shadows, and surface texture.
  • the virtual camera and light source are matched to the actual video camera and light source so that an "apples to apples" comparison can be performed.
  • the virtual model is a library of thousands of computer- generated images of the lungs, from various viewpoints.
  • the image taken by the video camera is compared against this large library, in the same way a fingerprint is lifted from a crime scene and compared against a large database of fingerprint images. Once the match is found, the camera is determined to be where the "virtual camera" was when the computer image was generated.
  • Another problem is lack of tracking. Without a sensor, there is no recorded history. Hence, even though the camera is moving and being registered, as soon as the camera encounters an area that matches more than one computer generated image, the registration is lost. The system has no capacity for "tracking" the movement of the camera. In other words, the system does not look at the previous matches to deduce which of the possible images is likely to be the correct one.
  • Yet another bronchoscope registration method involves terrain or skeletal surface-matching.
  • the virtual model of the lungs is left in a skeletal format, rather than filling the contours in with surfaces and reflections. This saves on initial processing time.
  • video images are captured of the actual lungs, they are converted into skeletal, digital images.
  • the "real" skeletal images are then matched against the virtual skeletal images.
  • This method requires more processing of the video images than the previously described "virtual surface geometery matching" method but the matching steps are accomplished much more quickly because each of the virtual images is smaller in terms of data.
  • this method present the risk that there may be more than one computer- generated image that closely matches the acquired image, such as when the camera is pointing at a wall.
  • each of the aforementioned registration methods has advantages and disadvantages over the others.
  • the methods using trackable sensors are more accurate than the image-based methods. More particularly, the methods using trackable sensors are more accurate "globally,” that is, they are more accurate when it comes to indicating the present position on a scan of the entire lungs.
  • Image- based methods can be more accurate "locally,” that is, they can be more accurate relative to a small area, if conditions are optimal.
  • the present invention provides several new or improved registration methods. Additionally, the present invention describes a concept whereby a most accurate registration is determined and utilized at any given time during a procedure, thereby utilizing the advantages of all of the aforementioned registration methods.
  • one aspect of the present invention provides a method of registering real-time sensor location data to previously acquired images of a branched network of body lumens.
  • This method involves placing a probe containing a sensor at a distal end thereof into a branched network of body lumens in a patient; performing an initial registration between a real-time sensor location and a previously acquired image selected a plurality of previously acquired images of said branched network; receiving data from said sensor to determine an approximate location of said sensor; using said approximate location of said sensor to create a subgroup of said plurality of images, said subgroup containing one or more previously acquired images corresponding to said approximate location; and selecting an image from said subgroup that most accurately corresponds to said approximate location to update said initial registration using an image-based registration technique.
  • Placing a probe containing a sensor at a distal end thereof may comprise placing a probe with a six degree of freedom sensor at a distal end thereof.
  • Performing an initial registration may comprise viewing a landmark through an endoscope; using data from said sensor to project a beam from a tip of said probe to said landmark; displaying said beam on a monitor; calculating and recording coordinates of . said beam location on said landmark; and using said coordinates as a registration point.
  • Receiving data from said sensor to determine a proximate location of said sensor may comprise receiving six degree of freedom data from said sensor.
  • Placing a probe containing a sensor at a distal end thereof into a branched network of body lumens may comprise placing a bronchoscope containing a sensor at a distal end thereof into said branched network of body lumens.
  • Selecting an image from said subgroup that most accurately corresponds to said approximate location to update said initial registration using an image-based registration technique may comprise selecting an image from said subgroup that most closely matches an image being viewed through said bronchoscope.
  • Performing an initial registration between a real-time sensor location and a previously acquired image selected a plurality of previously acquired images of said branched network may comprise performing an initial registration using a 4D registration technique.
  • Performing an initial registration using a 4D registration technique may comprise: recording an image of a landmark as it moves through at least one breathing cycle; recording concurrently a position of said sensor; recording concurrently positions of patient sensors, said patient sensor attached at various locations on said patient; saving said recordings as a data set for said landmark; and using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens.
  • Another aspect of the present invention provides method of navigating a probe through a branched network of lumens of a patient comprising: compiling a database of images of said branched network of lumens prior to a navigating procedure; placing a probe containing a sensor at a distal end thereof into said branched network; receiving probe location data from said sensor; and using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe.
  • Compiling a database of images of said branched network of lumens prior to a navigating procedure may comprise compiling a plurality of CT scans.
  • Placing a probe containing a sensor at a distal end thereof into said branched network may comprise placing a probe containing a six degree of freedom sensor at a distal end thereof into said branched network.
  • Placing a probe containing a sensor at a distal end thereof into said branched network may comprise placing an endoscope containing a sensor at a distal end thereof into said branched network.
  • Receiving probe location data from said sensor may comprise receiving said probe's location and orientation from said sensor.
  • Using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe may comprise using said probe location data to create a subgroup of images from said database, said subgroup containing only images that correspond to a vicinity of said probe location.
  • Placing a probe containing a sensor at a distal end thereof into said branched network may comprise placing an endoscope containing a sensor at a distal end thereof into said branched network.
  • Using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe further may comprise matching a real-time image from said endoscope to an image from said subgroup.
  • Another aspect of the present invention provides a method of registering real-time sensor location data to previously acquired images of a branched network of body lumens comprising: placing a probe containing a sensor at a distal end thereof in branched network of body lumens in a patient; placing a plurality of patient sensors on said patient; recording an image of an anatomical landmark in said patient as said landmark moves through at least one breathing cycle; recording concurrently a position of said sensor; recording concurrently positions of patient sensors, said patient sensor attached at various locations on said patient; saving said recordings as a data set for said landmark; and using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens.
  • Placing a plurality of patient sensors on said patient may comprise affixing said plurality of patient sensors to said patient's chest or affixing a plurality of patient sensors to said branched network.
  • Using said data set to correlate said position of said sensor to a previsouly acquired image of said branched network of body lumens may comprise using said data set to correlate said position of said sensor to a previously acquired CT image of said branched network of body lumens.
  • the sensor based and image-based registration methods described above are improved upon by combining the advantages of each.
  • the image-based registration techniques are improved upon through the use of a trackable sensor.
  • a database of virtual images may be appropriately parsed such that the matching algorithm has a significantly reduced number of iterations through which it must cycle to find a match.
  • the position of the sensor is thus used as filtering tool to determine which images are locally relevant.
  • the tracking of a tool tip or bronchoscope location will not be lost in cases of partial or complete obscurity of the video image or in cases when the bronchoscope is passing a bifurcation while the camera is pointed away from the bifurcation toward a wall. Due to the tracking capability provided by the trackable sensor, the number of matching images will typically be reduced to only one after the outliers are removed. Hence, not only is the matching procedure much quicker, it is also more accurate and less likely to provide incorrect matches.
  • image-based registration methods are further improved because the need for camera calibration is eliminated.
  • image-based registration methods require extensive camera calibration efforts, prior to each procedure, in order to obtain images that can be matched to the virtual images.
  • Factors such as camera angle and camera distortion must be corrected prior to the matching process.
  • calibration is much less crucial. In other words, despite forgoing the calibration step, a match is still likely to be found and accurate because the number of images the camera image is being compared to is greatly reduced.
  • the point registration method described above is also improved by the present invention.
  • the point registration method is comprised of two general steps: 1) finding a predetermined anatomical landmark using a bronchoscope and 2) "click" on the landmark by advancing the probe with the trackable sensor until it touches the landmark, then press a button that records the three-dimensional coordinates of the landmark.
  • the present invention obviates the need for the second step by utilizing the six degree of freedom data provided by the sensor once the landmark is being viewed through the bronchoscope. This data is used to project a virtual "beam" from the tip of the probe to the target. The virtual beam appears on the monitor and the physician is then able to record the coordinates of the landmark without actually having to maneuver the probe into physical contact with the landmark.
  • the present invention also provides a novel registration method, herein referred to as "4D registration.”
  • video registration involves recording an image of a landmark as it moves through at least one, preferably two or more, breathing cycles.
  • the recording of the landmark includes a recording of the position of the trackable sensor as well as the positions of the patient sensors. This way, rather than acquiring a single data coordinate for each landmark, an entire data set is recorded for each landmark over a period of time and including all or most of the possible lung positions. This way lung movement may be taken into account during the registration process.
  • the matching error will be minimized if an entire data set is used for each point, rather than a single, three-dimensional coordinate.

Abstract

Methods for registering a three-dimensional model of a body volume to a real-time indication of a sensor position that involve analyzing scanned and sensed voxels and using parameters or thresholds to identify said voxels as being either tissue or intraluminal fluid. Those voxels identified as fluid are then used to construct a real-time sensed three-dimensional model of the lumen which is then compared to a similarly constructed, but previously scanned model to establish and update registration.

Description

HYBRID REGISTRATION METHOD
RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application Serial No. 61/059,669 filed June 6, 2008 entitled Hybrid Registration Method, which is hereby incorporated herein by reference.
Background of the Invention
[0002] Breakthrough technology has emerged which allows the navigation of a catheter tip through a tortuous channel, such as those found in the pulmonary system, to a predetermined target. This technology compares the real-time movement of a sensor against a three-dimensional digital map of the targeted area of the body (for purposes of explanation, the pulmonary airways of the lungs will be used hereinafter, though one skilled in the art will realize the present invention could be used in any body cavity or system: circulatory, digestive, pulmonary, to name a few).
[0003] Such technology is described in U.S. Patents 6,188,355; 6,226,543; 6,558,333; 6,574,498; 6,593,884; 6,615,155; 6,702,780; 6,711,429; 6,833,814; 6,947,788; and 6,996,430, all to Gilboa or Gilboa et al.; and U.S. Published Applications Pub. Nos. 2002/0193686; 2003/0074011; 2003/0216639; 2004/0249267 to either Gilboa or Gilboa et al. All of these references are incorporated herein in ■their entireties.
[0004] Using this technology begins with recording a plurality of images of the applicable portion of the patient, for example, the lungs. These images are often recorded using CT technology. CT images are two-dimensional slices of a portion of the patient. After taking several, parallel images, the images may be "assembled" by a computer to form a three-dimensional model, or "CT volume" of the lungs.
[0005] The CT volume is used during the procedure as a map to the target. The physician navigates a steerable probe that has a trackable sensor at its distal tip. The sensor provides the system with a real-time image of its location. However, because the image of the sensor location appears as a vector on the screen, the image has no context without superimposing the CT volume over the image provided by the sensor. The act of superimposing the CT volume and the sensor image is known as "registration."
[0006] Sensor Probe-Based Registration Methods
[0007] There are various registration methods, some of which are described in the aforementioned references, and utilize a probe with a trackable sensor, as described above. For example, point registration involves selecting a plurality of points, typically identifiable anatomical landmarks, inside the lung from the CT volume and then using the sensor (with the help of an endoscope) and "clicking" on each of the corresponding landmarks in the lung. Clicking on the landmarks refers to activating a record feature on the sensor that signifies the registration point should be recorded. The recorded points are then aligned with the points in the CT volume, such that registration is achieved. This method works well for initial registration in the central area but as the sensor is navigated to the distal portions of the lungs, the registration becomes less accurate as the distal airways are smaller. Also, the point registration method matches a "snapshot" location of the landmarks to another "snapshot" (CT volume) of the lungs. Each snapshot is taken at different times and, potentially, at different points in the breathing cycle. Due to the dynamic nature of the lungs, the shape of the lungs during the CT scan is likely not the same as the shape of those same lungs during the procedure. Moreover, because the physician is "clicking" on the landmarks over the course of several breathing cycles, it is up to the physician to approximate the timing of his clicking so that it roughly matches the point in the breathing cycle at which the CT scan was taken. This leaves much room for error. Finally, it is time consuming for the physician to maneuver the sensor tip to the various landmarks.
[0008] Another example of a registration method utilizing a trackable sensor involves recording a segment of an airway and shape-match that segment to a corresponding segment in the CT volume. This method of registration suffers similar setbacks to the point registration method, though it can be used in more distal airways because an endoscope is not required. The registration should be conducted more than once to keep the registration updated. It may be inconvenient or otherwise undesirable to require additional registration steps from a physician. Additionally, this method requires that a good image exists in the CT volume for any given airway occupied by the sensor. If for example, the CT scan resulted in an airway shadowed by a blood vessel, for example, the registration will suffer because the shape data on that airway is compromised.
[0009] Another registration method tailored for trackable sensors is known as "Adaptive Navigation" and was developed and described in U.S. Published Application 2008/0118135 to Averbuch et al., incorporated by reference herein in its entirety. This registration technique operates on the assumption that the sensor remains in the airways at all times. The position of the sensor is recorded as the sensor is advanced, thus providing a shaped historical path of where the sensor has been. This registration method requires the development of a computer-generated and automatically or manually segmented "Bronchial Tree" (BT). The shape of the historical path is matched to a corresponding shape in the BT.
[0010] Segmenting the BT involves converting the CT volume into a series of digitally-identified branches to develop, or "grow," a virtual model of the lungs. Automatic segmentation works well on the well-defined, larger airways and smaller airways that were imaged well in the CT scans. However, as the airways get smaller, the CT scan gets "noisier" and makes continued automatic segmentation inaccurate. Noise results from poor image quality, small airways, or airways that are shadowed by other features such as blood vessels. Noise can cause the automatic segmentation process to generate false branches and/or loops — airways that rejoin, an occurrence not found in the actual lungs.
[0011] Another registration method is herein referred to as "feature-based registration." When the CT scans are taken, the CT machine records each image as a plurality of pixels. When the various scans are assembled together to form a CT volume, voxels (volumetric pixels) appear and can be defined as volume elements, representing values on a regular grid in three dimensional space. Each of the voxels is assigned a number based on the tissue density Housefield number. This density value can be associated with gray level or color using well known window-leveling techniques.
[0012] The sensing volume of the electromagnetic field of the sensor system is also voxelized by digitizing it into voxels of a specific size compatible with the CT volume. Each voxel visited by the sensor can be assigned a value that correlates to the frequency with which that voxel is visited by the sensor. The densities of the voxels in the CT volume are adjusted according to these values, thereby creating clouds of voxels in the CT volume having varying densities. These voxels clouds or clusters thus match the interior anatomical features of the lungs.
[0013] By using a voxel-based approach, registration is actually accomplished by comparing anatomical cavity features to cavity voxels, as opposed to anatomical shapes or locations to structure shapes or locations. An advantage of this approach is that air-filled cavities are of a predictable range of densities.
[0014] Image-Based Registration Methods
[0015] Some registration methods are used with systems that use a bronchoscope without a trackable sensor. One of these registration methods compares an image taken by a video camera to a virtual model of the airways. The virtual model includes surfaces, reflections and shadows. This method while herein be referred to as "virtual surface matching." A virtual camera is established to generate a viewpoint and a virtual light source is used to provide the reflections, shadows, and surface texture. The virtual camera and light source are matched to the actual video camera and light source so that an "apples to apples" comparison can be performed. Essentially, the virtual model is a library of thousands of computer- generated images of the lungs, from various viewpoints. Hence, the image taken by the video camera is compared against this large library, in the same way a fingerprint is lifted from a crime scene and compared against a large database of fingerprint images. Once the match is found, the camera is determined to be where the "virtual camera" was when the computer image was generated.
[0016] One problem with this method is that each time the camera moves, as it is being advanced toward the target, the images recorded by the camera are compared against the large library of computer generated images. This is time consuming and places a strain on the computer resources. It also presents the risk that there may be more than one computer-generated image that closely matches the actual image. For example, if the video camera is up against an airway wall, there may not be much on the image to distinguish it from other similar computer generated images of walls.
[0017] Another problem is lack of tracking. Without a sensor, there is no recorded history. Hence, even though the camera is moving and being registered, as soon as the camera encounters an area that matches more than one computer generated image, the registration is lost. The system has no capacity for "tracking" the movement of the camera. In other words, the system does not look at the previous matches to deduce which of the possible images is likely to be the correct one.
[0018] Yet another bronchoscope registration method involves terrain or skeletal surface-matching. The virtual model of the lungs is left in a skeletal format, rather than filling the contours in with surfaces and reflections. This saves on initial processing time. As video images are captured of the actual lungs, they are converted into skeletal, digital images. The "real" skeletal images are then matched against the virtual skeletal images. This method requires more processing of the video images than the previously described "virtual surface geometery matching" method but the matching steps are accomplished much more quickly because each of the virtual images is smaller in terms of data. Like the virtual surface matching method, this method present the risk that there may be more than one computer- generated image that closely matches the acquired image, such as when the camera is pointing at a wall.
[0019] Each of the aforementioned registration methods has advantages and disadvantages over the others. Generally, the methods using trackable sensors are more accurate than the image-based methods. More particularly, the methods using trackable sensors are more accurate "globally," that is, they are more accurate when it comes to indicating the present position on a scan of the entire lungs. Image- based methods, on the other hand, can be more accurate "locally," that is, they can be more accurate relative to a small area, if conditions are optimal. Thus, it would be advantageous to introduce a hybrid method that utilizes the advantages of all of the aforementioned methods.
Summary of the Invention
[0020] The present invention provides several new or improved registration methods. Additionally, the present invention describes a concept whereby a most accurate registration is determined and utilized at any given time during a procedure, thereby utilizing the advantages of all of the aforementioned registration methods.
[0021] More specifically, one aspect of the present invention provides a method of registering real-time sensor location data to previously acquired images of a branched network of body lumens. This method involves placing a probe containing a sensor at a distal end thereof into a branched network of body lumens in a patient; performing an initial registration between a real-time sensor location and a previously acquired image selected a plurality of previously acquired images of said branched network; receiving data from said sensor to determine an approximate location of said sensor; using said approximate location of said sensor to create a subgroup of said plurality of images, said subgroup containing one or more previously acquired images corresponding to said approximate location; and selecting an image from said subgroup that most accurately corresponds to said approximate location to update said initial registration using an image-based registration technique.
[0022] Placing a probe containing a sensor at a distal end thereof may comprise placing a probe with a six degree of freedom sensor at a distal end thereof.
[0023] Performing an initial registration may comprise viewing a landmark through an endoscope; using data from said sensor to project a beam from a tip of said probe to said landmark; displaying said beam on a monitor; calculating and recording coordinates of . said beam location on said landmark; and using said coordinates as a registration point.
[0024] Receiving data from said sensor to determine a proximate location of said sensor may comprise receiving six degree of freedom data from said sensor.
[0025] Placing a probe containing a sensor at a distal end thereof into a branched network of body lumens may comprise placing a bronchoscope containing a sensor at a distal end thereof into said branched network of body lumens.
[0026] Selecting an image from said subgroup that most accurately corresponds to said approximate location to update said initial registration using an image-based registration technique may comprise selecting an image from said subgroup that most closely matches an image being viewed through said bronchoscope.
[0027] Performing an initial registration between a real-time sensor location and a previously acquired image selected a plurality of previously acquired images of said branched network may comprise performing an initial registration using a 4D registration technique.
[0028] Performing an initial registration using a 4D registration technique may comprise: recording an image of a landmark as it moves through at least one breathing cycle; recording concurrently a position of said sensor; recording concurrently positions of patient sensors, said patient sensor attached at various locations on said patient; saving said recordings as a data set for said landmark; and using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens.
[0029] Another aspect of the present invention provides method of navigating a probe through a branched network of lumens of a patient comprising: compiling a database of images of said branched network of lumens prior to a navigating procedure; placing a probe containing a sensor at a distal end thereof into said branched network; receiving probe location data from said sensor; and using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe.
[0030] Compiling a database of images of said branched network of lumens prior to a navigating procedure may comprise compiling a plurality of CT scans.
[0031] Placing a probe containing a sensor at a distal end thereof into said branched network may comprise placing a probe containing a six degree of freedom sensor at a distal end thereof into said branched network.
[0032] Placing a probe containing a sensor at a distal end thereof into said branched network may comprise placing an endoscope containing a sensor at a distal end thereof into said branched network.
[0033] Receiving probe location data from said sensor may comprise receiving said probe's location and orientation from said sensor.
[0034] Using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe may comprise using said probe location data to create a subgroup of images from said database, said subgroup containing only images that correspond to a vicinity of said probe location.
[0035] Placing a probe containing a sensor at a distal end thereof into said branched network may comprise placing an endoscope containing a sensor at a distal end thereof into said branched network. [0036] Using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe further may comprise matching a real-time image from said endoscope to an image from said subgroup.
[0037] Another aspect of the present invention provides a method of registering real-time sensor location data to previously acquired images of a branched network of body lumens comprising: placing a probe containing a sensor at a distal end thereof in branched network of body lumens in a patient; placing a plurality of patient sensors on said patient; recording an image of an anatomical landmark in said patient as said landmark moves through at least one breathing cycle; recording concurrently a position of said sensor; recording concurrently positions of patient sensors, said patient sensor attached at various locations on said patient; saving said recordings as a data set for said landmark; and using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens.
[0038] Placing a plurality of patient sensors on said patient may comprise affixing said plurality of patient sensors to said patient's chest or affixing a plurality of patient sensors to said branched network.
[0039] Using said data set to correlate said position of said sensor to a previsouly acquired image of said branched network of body lumens may comprise using said data set to correlate said position of said sensor to a previously acquired CT image of said branched network of body lumens.
Description of the Invention
[0040] The sensor based and image-based registration methods described above are improved upon by combining the advantages of each. Put another way, the image-based registration techniques are improved upon through the use of a trackable sensor. By monitoring sensor data, an approximate position of the probe tip is easily determined. Hence, a database of virtual images may be appropriately parsed such that the matching algorithm has a significantly reduced number of iterations through which it must cycle to find a match. The position of the sensor is thus used as filtering tool to determine which images are locally relevant.
[0041] Additionally, the tracking of a tool tip or bronchoscope location will not be lost in cases of partial or complete obscurity of the video image or in cases when the bronchoscope is passing a bifurcation while the camera is pointed away from the bifurcation toward a wall. Due to the tracking capability provided by the trackable sensor, the number of matching images will typically be reduced to only one after the outliers are removed. Hence, not only is the matching procedure much quicker, it is also more accurate and less likely to provide incorrect matches.
[0042] The image-based registration methods are further improved because the need for camera calibration is eliminated. Presently, image-based registration methods require extensive camera calibration efforts, prior to each procedure, in order to obtain images that can be matched to the virtual images. Factors such as camera angle and camera distortion must be corrected prior to the matching process. Because the use of the trackable sensor as an additional modality greatly reduces the amount of data involved, calibration is much less crucial. In other words, despite forgoing the calibration step, a match is still likely to be found and accurate because the number of images the camera image is being compared to is greatly reduced.
[0043] The point registration method described above is also improved by the present invention. Recall that presently the point registration method is comprised of two general steps: 1) finding a predetermined anatomical landmark using a bronchoscope and 2) "click" on the landmark by advancing the probe with the trackable sensor until it touches the landmark, then press a button that records the three-dimensional coordinates of the landmark. The present invention obviates the need for the second step by utilizing the six degree of freedom data provided by the sensor once the landmark is being viewed through the bronchoscope. This data is used to project a virtual "beam" from the tip of the probe to the target. The virtual beam appears on the monitor and the physician is then able to record the coordinates of the landmark without actually having to maneuver the probe into physical contact with the landmark.
[0044] The present invention also provides a novel registration method, herein referred to as "4D registration." Rather than clicking on a landmark at an approximated point in the breathing cycle, video registration involves recording an image of a landmark as it moves through at least one, preferably two or more, breathing cycles. The recording of the landmark includes a recording of the position of the trackable sensor as well as the positions of the patient sensors. This way, rather than acquiring a single data coordinate for each landmark, an entire data set is recorded for each landmark over a period of time and including all or most of the possible lung positions. This way lung movement may be taken into account during the registration process. Furthermore, the matching error will be minimized if an entire data set is used for each point, rather than a single, three-dimensional coordinate.
[0045] For example, assume three registration areas are being monitored. The positions of all three are recorded over three separate intervals. The patient sensor positions are also being recorded during each of these intervals as well as the position of the trackable sensor and attached to each image frame. After the three registration points have been recorded over one or more breathing cycles, they are aligned using the patient sensor positions as an indication of the breathing cycle. Hence, for most of the positions of the patient sensors (extremes excepted), there will be a corresponding position of each of the sensors. Hence, the three intervals during which the recordings were taken are "superimposed" so to speak, as though they were all recorded simultaneously. Later, during the procedure, the patient sensor positions are used as an indication of breathing cycle and it can be determined at which phase of the breathing cycle the registration is most accurate. Moreover, this information can be utilized during navigation by giving the higher weight to sensor data acquired in a specific phase of breathing. [0046] Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims

CLAIMS:
1. A method of registering real-time sensor location data to previously acquired images of a branched network of body lumens comprising:
placing a probe containing a sensor at a distal end thereof into a branched network of body lumens in a patient;
performing an initial registration between a real-time sensor location and a previously acquired image selected a plurality of previously acquired images of said branched network;
receiving data from said sensor to determine an approximate location of said sensor;
using said approximate location of said sensor to create a subgroup of said plurality of images, said subgroup containing one or more previously acquired images corresponding to said approximate location; and,
selecting an image from said subgroup that most accurately corresponds to said approximate location to update said initial registration using an image-based registration technique.
2. The method of claim 1 wherein placing a probe containing a sensor at a distal end thereof comprises placing a probe with a six degree of freedom sensor at a distal end thereof.
3. The method of claim 2 wherein performing an initial registration comprises:
viewing a landmark through an endoscope;
using data from said sensor to project a beam from a tip of said probe to said landmark;
displaying said beam on a monitor; calculating and recording coordinates of said beam location on said landmark; and,
using said coordinates as a registration point.
4. The method of claim 1 wherein receiving data from said sensor to determine a proximate location of said sensor comprises receiving six degree of freedom data from said sensor.
5. The method of claim 1 wherein placing a probe containing a sensor at a distal end thereof into a branched network of body lumens comprises placing a bronchoscope containing a sensor at a distal end thereof into said branched network of body lumens.
6. The method of claim 5 wherein selecting an image from said subgroup that most accurately corresponds to said approximate location to update said initial registration using an image-based registration technique comprises selecting an image from said subgroup that most closely matches an image being viewed through said bronchoscope.
7. The method of claim 1 wherein performing an initial registration between a real-time sensor location and a previously acquired image selected a plurality of previously acquired images of said branched network comprises performing an initial registration using a 4D registration technique.
8. The method of claim 7 wherein performing an initial registration using a 4D registration technique comprises:
recording an image of a landmark as it moves through at least one breathing cycle;
recording concurrently a position of said sensor; recording concurrently positions of patient sensors, said patient sensor attached at various locations on said patient;
saving said recordings as a data set for said landmark; and,
using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens.
9. A method of navigating a probe through a branched network of lumens of a patient comprising:
compiling a database of images of said branched network of lumens prior to a navigating procedure;
placing a probe containing a sensor at a distal end thereof into said branched network;
receiving probe location data from said sensor; and,
using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe.
10. The method of claim 9 wherein compiling a database of images of said branched network of lumens prior to a navigating procedure comprises compiling a plurality of CT scans.
11. The method of claim 9 wherein placing a probe containing a sensor at a distal end thereof into said branched network comprises placing a probe containing a six degree of freedom sensor at a distal end thereof into said branched network.
12. The method of claim 9 wherein placing a probe containing a sensor at a distal end thereof into said branched network comprises placing an endoscope containing a sensor at a distal end thereof into said branched network.
13. The method of claim 9 wherein receiving probe location data from said sensor comprises receiving said probe's location and orientation from said sensor.
14. The method of claim 9 wherein using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe comprises using said probe location data to create a subgroup of images from said database, said subgroup containing only images that correspond to a vicinity of said probe location.
15. The method of claim 14 wherein placing a probe containing a sensor at a distal end thereof into said branched network comprises placing an endoscope containing a sensor at a distal end thereof into said branched network.
16. The method of claim 15 wherein using at least said probe location data to select an image from said database to display to a user navigating said probe, said image being representative of a location of said probe further comprises matching a real-time image from said endoscope to an image from said subgroup.
17. A method of registering real-time sensor location data to previously acquired images of a branched network of body lumens comprising:
placing a probe containing a sensor at a distal end thereof in branched network of body lumens in a patient;
placing a plurality of patient sensors on said patient;
recording an image of an anatomical landmark in said patient as said landmark moves through at least one breathing cycle;
recording concurrently a position of said sensor;
recording concurrently positions of patient sensors, said patient sensor attached at various locations on said patient; saving said recordings as a data set for said landmark; and,
using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens.
18. The method of claim 17 wherein placing a plurality of patient sensors on said patient comprises affixing said plurality of patient sensors to said patient's chest.
19. The method of claim 17 wherein placing a plurality of patient sensors on said patient comprises affixing a plurality of patient sensors to said branched network.
20. The method of claim 17 wherein using said data set to correlate said position of said sensor to a previously acquired image of said branched network of body lumens comprises using said data set to correlate said position of said sensor to a previously acquired CT image of said branched network of body lumens.
PCT/IL2009/000569 2008-06-06 2009-06-07 Hybrid registration method WO2009147683A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09758027.8A EP2293839B1 (en) 2008-06-06 2009-06-07 Hybrid registration system
EP18215857.6A EP3485798B1 (en) 2008-06-06 2009-06-07 Hybrid registration system
US13/875,685 US9271803B2 (en) 2008-06-06 2013-05-02 Hybrid registration method
US15/055,698 US10285623B2 (en) 2008-06-06 2016-02-29 Hybrid registration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5966908P 2008-06-06 2008-06-06
US61/059,669 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009147683A1 true WO2009147683A1 (en) 2009-12-10

Family

ID=41397785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2009/000569 WO2009147683A1 (en) 2008-06-06 2009-06-07 Hybrid registration method

Country Status (3)

Country Link
US (8) US8218847B2 (en)
EP (2) EP2293839B1 (en)
WO (1) WO2009147683A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173229A1 (en) 2012-05-14 2013-11-21 Intuitive Surgical Operations Systems and methods for deformation compensation using shape sensing
WO2014068106A1 (en) * 2012-11-05 2014-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Imaging system, operating device with the imaging system and method for imaging
EP3058889A1 (en) * 2011-05-13 2016-08-24 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
EP3081184A1 (en) * 2015-04-17 2016-10-19 Clear Guide Medical, Inc. System and method for fused image based navigation with late marker placement
CN106170265A (en) * 2014-02-04 2016-11-30 直观外科手术操作公司 The system and method for non-rigid deformation of tissue for the virtual navigation of intervention tool
WO2018085287A1 (en) * 2016-11-02 2018-05-11 Intuitive Surgical Operations, Inc. Systems and methods of continuous registration for image-guided surgery
EP3392835A1 (en) * 2017-04-21 2018-10-24 Biosense Webster (Israel) Ltd. Improving registration of an anatomical image with a position-tracking coordinate system based on visual proximity to bone tissue

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066881A1 (en) 2005-09-13 2007-03-22 Edwards Jerome R Apparatus and method for image guided accuracy verification
WO2007033206A2 (en) 2005-09-13 2007-03-22 Veran Medical Technologies, Inc. Apparatus and method for image guided accuracy verification
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US8348856B1 (en) 2008-12-16 2013-01-08 Zanetta Malanowska-Stega Simultaneous multiple method out-patient uterus biopsy device and method
EP3407261A3 (en) 2010-02-01 2019-02-20 Covidien LP Region-growing algorithm
EP2605693B1 (en) 2010-08-20 2019-11-06 Veran Medical Technologies, Inc. Apparatus for four dimensional soft tissue navigation
EP2670292A4 (en) * 2011-02-04 2015-02-25 Penn State Res Found Global and semi-global registration for image-based bronchoscopy guidance
CA2841704C (en) 2011-07-11 2019-06-04 Elias Daher Endobronchial tube
US10912699B2 (en) 2012-01-10 2021-02-09 Alessio Pigazzi Method of securing a patient onto an operating table when the patient is in a position such as the trendelenburg position and apparatus therefor including a kit
EP2816966B1 (en) 2012-02-22 2023-10-25 Veran Medical Technologies, Inc. Steerable surgical catheter comprising a biopsy device at the distal end portion thereof
RU2686954C2 (en) 2012-06-28 2019-05-06 Конинклейке Филипс Н.В. Navigation by optical fiber sensor for visualization and monitoring of vessels
DE102012220116A1 (en) * 2012-06-29 2014-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mobile device, in particular for processing or observation of a body, and method for handling, in particular calibration, of a device
US9091628B2 (en) 2012-12-21 2015-07-28 L-3 Communications Security And Detection Systems, Inc. 3D mapping with two orthogonal imaging views
EP2754384B1 (en) 2013-01-10 2018-07-11 Ambu A/S Endobronchial tube with integrated image sensor and cleaning nozzle arrangement
US20150305612A1 (en) * 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter
US20150305650A1 (en) 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue
EP3164048B1 (en) 2014-07-02 2022-11-16 Covidien LP Real-time automatic registration feedback
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9974525B2 (en) 2014-10-31 2018-05-22 Covidien Lp Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same
US10080488B2 (en) 2014-12-12 2018-09-25 Medix3d LLC Cleaning device for cleaning a scope, laparoscope or microscope used in surgery or other medical procedures and a method of using the device during surgical or other medical procedures
US10674982B2 (en) 2015-08-06 2020-06-09 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US11419490B2 (en) 2016-08-02 2022-08-23 Covidien Lp System and method of using an endoscopic catheter as a port in laparoscopic surgery
JP6608111B2 (en) * 2016-09-28 2019-11-20 富士フイルム株式会社 MEDICAL IMAGE STORAGE / REPRODUCING DEVICE AND METHOD, AND PROGRAM
US11350995B2 (en) 2016-10-05 2022-06-07 Nuvasive, Inc. Surgical navigation systems and methods
WO2018098465A1 (en) 2016-11-28 2018-05-31 Inventio, Inc. Endoscope with separable, disposable shaft
JP7303748B2 (en) 2016-12-09 2023-07-05 マラノウスカ-ステガ,ザネッタ Brush biopsy device, kit and method
US10699448B2 (en) 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
US10905498B2 (en) 2018-02-08 2021-02-02 Covidien Lp System and method for catheter detection in fluoroscopic images and updating displayed position of catheter
AU2019200594B2 (en) 2018-02-08 2020-05-28 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US10872449B2 (en) 2018-05-02 2020-12-22 Covidien Lp System and method for constructing virtual radial ultrasound images from CT data and performing a surgical navigation procedure using virtual ultrasound images
US11944388B2 (en) 2018-09-28 2024-04-02 Covidien Lp Systems and methods for magnetic interference correction
US11877806B2 (en) 2018-12-06 2024-01-23 Covidien Lp Deformable registration of computer-generated airway models to airway trees
US11625825B2 (en) 2019-01-30 2023-04-11 Covidien Lp Method for displaying tumor location within endoscopic images
WO2020176717A1 (en) 2019-02-28 2020-09-03 Medix3d LLC Scope cleaning device configured to be removably connected to a surgical tool
US10881353B2 (en) * 2019-06-03 2021-01-05 General Electric Company Machine-guided imaging techniques
US11612440B2 (en) 2019-09-05 2023-03-28 Nuvasive, Inc. Surgical instrument tracking devices and related methods
US11596481B2 (en) 2019-12-24 2023-03-07 Biosense Webster (Israel) Ltd. 3D pathfinder visualization
US11446095B2 (en) 2019-12-24 2022-09-20 Biosense Webster (Israel) Ltd. 2D pathfinder visualization
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
WO2021194803A1 (en) * 2020-03-24 2021-09-30 Intuitive Surgical Operations, Inc. Systems and methods for registering an instrument to an image using point cloud data and endoscopic image data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086051A1 (en) * 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US20080118135A1 (en) * 2006-11-10 2008-05-22 Superdimension, Ltd. Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity

Family Cites Families (1007)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1735726A (en) 1929-11-12 bornhardt
US1576781A (en) 1924-04-22 1926-03-16 Herman B Philips Fluoroscopic fracture apparatus
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2650588A (en) 1950-12-29 1953-09-01 Drew Harry Guy Radcliffe Artificial femoral head having an x-ray marker
US2697433A (en) 1951-12-04 1954-12-21 Max A Zehnder Device for accurately positioning and guiding guide wires used in the nailing of thefemoral neck
US3073310A (en) 1957-08-05 1963-01-15 Zenon R Mocarski Surgical instrument positioning device
US3016899A (en) 1958-11-03 1962-01-16 Carl B Stenvall Surgical instrument
NL238272A (en) 1959-03-07 1900-01-01
US3017887A (en) 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3121228A (en) 1961-05-01 1964-02-11 Henry P Kalmus Direction indicator
US3109588A (en) 1962-01-26 1963-11-05 William L Polhemus Celestial computers
US3294083A (en) 1963-08-26 1966-12-27 Alderson Res Lab Inc Dosimetry system for penetrating radiation
US3367326A (en) 1965-06-15 1968-02-06 Calvin H. Frazier Intra spinal fixation rod
DE1238814B (en) 1966-02-23 1967-04-13 Merckle Flugzeugwerke G M B H Inductive angle encoder based on the transformer principle
US3577160A (en) 1968-01-10 1971-05-04 James E White X-ray gauging apparatus with x-ray opaque markers in the x-ray path to indicate alignment of x-ray tube, subject and film
GB1257034A (en) 1968-03-25 1971-12-15
US3605725A (en) 1968-08-07 1971-09-20 Medi Tech Inc Controlled motion devices
US3600625A (en) 1968-08-31 1971-08-17 Tokyo Shibaura Electric Co Projection picture tube with rotating fluorescent screen
US3519436A (en) 1969-05-09 1970-07-07 Grace W R & Co Method for making plastic low fat emulsion spread
SE336642B (en) 1969-10-28 1971-07-12 Astra Meditec Ab
US3644825A (en) 1969-12-31 1972-02-22 Texas Instruments Inc Magnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
US3704707A (en) 1971-04-06 1972-12-05 William X Halloran Orthopedic drill guide apparatus
US3702935A (en) 1971-10-13 1972-11-14 Litton Medical Products Mobile fluoroscopic unit for bedside catheter placement
US3821469A (en) 1972-05-15 1974-06-28 Amperex Electronic Corp Graphical data device
US3822697A (en) 1973-03-20 1974-07-09 Olympus Optical Co Envelope of an endoscope
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US4017858A (en) 1973-07-30 1977-04-12 Polhemus Navigation Sciences, Inc. Apparatus for generating a nutating electromagnetic field
US3941127A (en) 1974-10-03 1976-03-02 Froning Edward C Apparatus and method for stereotaxic lateral extradural disc puncture
US3983474A (en) 1975-02-21 1976-09-28 Polhemus Navigation Sciences, Inc. Tracking and determining orientation of object using coordinate transformation means, system and process
US4052620A (en) 1975-11-28 1977-10-04 Picker Corporation Method and apparatus for improved radiation detection in radiation scanning systems
US4054881A (en) 1976-04-26 1977-10-18 The Austin Company Remote object position locater
US4037592A (en) 1976-05-04 1977-07-26 Kronner Richard F Guide pin locating tool and method
US5291199A (en) 1977-01-06 1994-03-01 Westinghouse Electric Corp. Threat signal detection system
US4298874A (en) 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
DE2718804C3 (en) 1977-04-27 1979-10-31 Karlheinz Prof. Dr. 3000 Hannover Renner Device for positioning control of patients and / or radiation sources
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4182312A (en) 1977-05-20 1980-01-08 Mushabac David R Dental probe
NL7708012A (en) 1977-07-19 1979-01-23 Nedap Nv DETECTION SYSTEM.
US4135184A (en) 1977-08-31 1979-01-16 Knogo Corporation Electronic theft detection system for monitoring wide passageways
SU745505A1 (en) 1977-09-28 1980-07-05 Научно-Исследовательский Институт Экспериментальной Медицины Амн Ссср Method of guiding stereotaxic tool on target point
US4117337A (en) 1977-11-03 1978-09-26 General Electric Company Patient positioning indication arrangement for a computed tomography system
DE7805301U1 (en) 1978-02-22 1978-07-06 Howmedica International, Inc. Zweigniederlassung Kiel, 2300 Kiel Distal aiming device for locking nailing
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
USRE32619E (en) 1978-11-20 1988-03-08 Apparatus and method for nuclear magnetic resonance scanning and mapping
US4686695A (en) 1979-02-05 1987-08-11 Board Of Trustees Of The Leland Stanford Junior University Scanned x-ray selective imaging system
US4256112A (en) 1979-02-12 1981-03-17 David Kopf Instruments Head positioner
US4341220A (en) 1979-04-13 1982-07-27 Pfizer Inc. Stereotactic surgery apparatus and method
US4249167A (en) 1979-06-05 1981-02-03 Magnavox Government And Industrial Electronics Company Apparatus and method for theft detection system having different frequencies
FR2458838A1 (en) 1979-06-06 1981-01-02 Thomson Csf DEVICE FOR MEASURING THE RELATIVE ORIENTATION OF TWO BODIES AND CORRESPONDING STEERING SYSTEM
US4314251A (en) 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4287809A (en) 1979-08-20 1981-09-08 Honeywell Inc. Helmet-mounted sighting system
US4608977A (en) 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
US4419012A (en) 1979-09-11 1983-12-06 Elliott Brothers (London) Limited Position measuring system
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4319136A (en) 1979-11-09 1982-03-09 Jinkins J Randolph Computerized tomography radiograph data transfer cap
DE2950819A1 (en) 1979-12-17 1981-06-25 Siemens AG, 1000 Berlin und 8000 München RADIATION DIAGNOSTICS DEVICE FOR THE PRODUCTION OF LAYER IMAGES
US4341385A (en) 1980-01-24 1982-07-27 Doyle Holly Thomis Electronic board game apparatus
US4328548A (en) 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US4346384A (en) 1980-06-30 1982-08-24 The Austin Company Remote object position and orientation locator
EP0039206B1 (en) 1980-04-23 1984-10-10 Inoue-Japax Research Incorporated Magnetic treatment device
DE3022497A1 (en) 1980-06-14 1981-12-24 Philips Patentverwaltung Gmbh, 2000 Hamburg COUPLE AREA
US4688037A (en) 1980-08-18 1987-08-18 Mcdonnell Douglas Corporation Electromagnetic communications and switching system
US4339953A (en) 1980-08-29 1982-07-20 Aisin Seiki Company, Ltd. Position sensor
US4638798A (en) 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
US4328813A (en) 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
US4358856A (en) 1980-10-31 1982-11-09 General Electric Company Multiaxial x-ray apparatus
DE3042343A1 (en) 1980-11-10 1982-06-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Synthetic formation of defect-free images - by superimposed blurring images of defect on reconstituted multiple perspective images
US4425511A (en) 1981-02-09 1984-01-10 Amnon Brosh Planar coil apparatus employing a stationary and a movable board
US4394831A (en) 1981-02-12 1983-07-26 Honeywell Inc. Helmet metal mass compensation for helmet-mounted sighting system
AU7986682A (en) 1981-02-12 1982-08-19 New York University Apparatus for stereotactic surgery
NL8101722A (en) 1981-04-08 1982-11-01 Philips Nv CONTOUR METER.
US4710708A (en) 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
FI64282C (en) 1981-06-04 1983-11-10 Instrumentarium Oy DIAGNOSISPARATUR FOER BESTAEMMANDE AV VAEVNADERNAS STRUKTUR OC SAMMANSAETTNING
US4422041A (en) 1981-07-30 1983-12-20 The United States Of America As Represented By The Secretary Of The Army Magnet position sensing system
US4396945A (en) 1981-08-19 1983-08-02 Solid Photography Inc. Method of sensing the position and orientation of elements in space
US4447462A (en) 1981-11-04 1984-05-08 The Procter & Gamble Company Structural fat and method for making same
US4645343A (en) 1981-11-11 1987-02-24 U.S. Philips Corporation Atomic resonance line source lamps and spectrophotometers for use with such lamps
US4485815A (en) 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4506676A (en) 1982-09-10 1985-03-26 Duska Alois A Radiographic localization technique
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4584577A (en) 1982-10-20 1986-04-22 Brookes & Gatehouse Limited Angular position sensor
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
NL8300965A (en) 1983-03-17 1984-10-16 Nicolaas Roelof Snijder SYSTEM FOR EXAMINATION OF SKELETON PARTS OF THE BODY OF A LIVING ORIGIN, IN PARTICULAR THE SPIRIT OF THE HUMAN BODY.
US4651732A (en) 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
US4613866A (en) 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
NL8302228A (en) 1983-06-22 1985-01-16 Optische Ind De Oude Delft Nv MEASURING SYSTEM FOR USING A TRIANGULAR PRINCIPLE, CONTACT-FREE MEASURING A DISTANCE GIVEN BY A SURFACE CONTOUR TO AN OBJECTIVE LEVEL.
USRE33662E (en) 1983-08-25 1991-08-13 TV animation interactively controlled by the viewer
DE3332642A1 (en) 1983-09-09 1985-04-04 Ortopedia Gmbh, 2300 Kiel DEVICE FOR DETECTING CROSS HOLES INTRAMEDULLA IMPLANTS
US4618978A (en) 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
SE8306243L (en) 1983-11-14 1985-05-15 Cytex Medicinteknik Ab LOCATION METHODOLOGY
DE3342675A1 (en) 1983-11-25 1985-06-05 Fa. Carl Zeiss, 7920 Heidenheim METHOD AND DEVICE FOR CONTACTLESS MEASUREMENT OF OBJECTS
US4753528A (en) 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
US4549555A (en) 1984-02-17 1985-10-29 Orthothronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4841967A (en) 1984-01-30 1989-06-27 Chang Ming Z Positioning device for percutaneous needle insertion
US4704602A (en) 1984-02-15 1987-11-03 Intermodulation And Safety System Ab Method and system for detecting an indicating device
US4571834A (en) 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4583538A (en) 1984-05-04 1986-04-22 Onik Gary M Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4642786A (en) 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
DE8417428U1 (en) 1984-06-08 1984-09-13 Howmedica International, Inc. Zweigniederlassung Kiel, 2300 Kiel Target device
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
US4548208A (en) 1984-06-27 1985-10-22 Medtronic, Inc. Automatic adjusting induction coil treatment device
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4697595A (en) 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
JPS6149205A (en) 1984-08-16 1986-03-11 Seiko Instr & Electronics Ltd Robot control system
US4889526A (en) 1984-08-27 1989-12-26 Magtech Laboratories, Inc. Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain
US4617925A (en) 1984-10-01 1986-10-21 Laitinen Lauri V Adapter for definition of the position of brain structures
US4705395A (en) 1984-10-03 1987-11-10 Diffracto Ltd. Triangulation data integrity
US4821206A (en) 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4586491A (en) 1984-12-14 1986-05-06 Warner-Lambert Technologies, Inc. Bronchoscope with small gauge viewing attachment
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
DE3500605A1 (en) 1985-01-10 1986-07-10 Markus Dr. 5300 Bonn Hansen DEVICE FOR MEASURING THE POSITIONS AND MOVEMENTS OF THE LOWER JAW RELATIVE TO THE UPPER JAW
US4722336A (en) 1985-01-25 1988-02-02 Michael Kim Placement guide
DE3508730A1 (en) 1985-03-12 1986-09-18 Siemens AG, 1000 Berlin und 8000 München Measuring device for medical purposes
US4782239A (en) 1985-04-05 1988-11-01 Nippon Kogaku K. K. Optical position measuring apparatus
CH671873A5 (en) 1985-10-03 1989-10-13 Synthes Ag
US4838265A (en) 1985-05-24 1989-06-13 Cosman Eric R Localization device for probe placement under CT scanner imaging
US4737921A (en) 1985-06-03 1988-04-12 Dynamic Digital Displays, Inc. Three dimensional medical image display system
DE3520782A1 (en) 1985-06-10 1986-12-11 Siemens AG, 1000 Berlin und 8000 München Medicament metering device with reservoir and metering store
SE447848B (en) 1985-06-14 1986-12-15 Anders Bengtsson INSTRUMENTS FOR SEATING SURFACE TOPOGRAPHY
US4743771A (en) 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
US4805615A (en) 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4653509A (en) 1985-07-03 1987-03-31 The United States Of America As Represented By The Secretary Of The Air Force Guided trephine samples for skeletal bone studies
US4719419A (en) 1985-07-15 1988-01-12 Harris Graphics Corporation Apparatus for detecting a rotary position of a shaft
US4737032A (en) 1985-08-26 1988-04-12 Cyberware Laboratory, Inc. Surface mensuration sensor
US4705401A (en) 1985-08-12 1987-11-10 Cyberware Laboratory Inc. Rapid three-dimensional surface digitizer
IL76517A (en) 1985-09-27 1989-02-28 Nessim Igal Levy Distance measuring device
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
US4709156A (en) 1985-11-27 1987-11-24 Ex-Cell-O Corporation Method and apparatus for inspecting a surface
US4794262A (en) 1985-12-03 1988-12-27 Yukio Sato Method and apparatus for measuring profile of three-dimensional object
US4742356A (en) 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
DE3543867C3 (en) 1985-12-12 1994-10-06 Wolf Gmbh Richard Device for the spatial location and destruction of concrements in body cavities
US4742815A (en) 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
DE3704247A1 (en) 1986-02-14 1987-08-20 Olympus Optical Co ENDOSCOPE INSERTION DEVICE
JPS62192134A (en) 1986-02-17 1987-08-22 オリンパス光学工業株式会社 Curved part device for endoscope
US4722056A (en) 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
JP2685071B2 (en) 1986-03-10 1997-12-03 三菱電機株式会社 Numerical control unit
DE3608148A1 (en) 1986-03-12 1987-09-24 Schwab Technologieberatung ARRANGEMENT FOR MONITORING AND DISPLAYING CHESS PARTIES
SE469321B (en) 1986-04-14 1993-06-21 Joenkoepings Laens Landsting SET AND DEVICE TO MAKE A MODIFIED THREE-DIMENSIONAL IMAGE OF AN ELASTIC DEFORMABLE PURPOSE
US5002058A (en) 1986-04-25 1991-03-26 Intra-Sonix, Inc. Ultrasonic transducer
US4977655A (en) 1986-04-25 1990-12-18 Intra-Sonix, Inc. Method of making a transducer
US4862893A (en) 1987-12-08 1989-09-05 Intra-Sonix, Inc. Ultrasonic transducer
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US5078140A (en) 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4822163A (en) 1986-06-26 1989-04-18 Robotic Vision Systems, Inc. Tracking vision sensor
US4723544A (en) 1986-07-09 1988-02-09 Moore Robert R Hemispherical vectoring needle guide for discolysis
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4733969A (en) 1986-09-08 1988-03-29 Cyberoptics Corporation Laser probe for determining distance
US4743770A (en) 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US4761072A (en) 1986-09-30 1988-08-02 Diffracto Ltd. Electro-optical sensors for manual control
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
GB8625365D0 (en) 1986-10-23 1986-11-26 Radiodetection Ltd Positional information systems
US4750487A (en) 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
DE3703422A1 (en) 1987-02-05 1988-08-18 Zeiss Carl Fa OPTOELECTRONIC DISTANCE SENSOR
US4745290A (en) 1987-03-19 1988-05-17 David Frankel Method and apparatus for use in making custom shoes
US4804261A (en) 1987-03-27 1989-02-14 Kirschen David G Anti-claustrophobic glasses
JPH0685784B2 (en) 1987-03-30 1994-11-02 株式会社東芝 Surgical three-dimensional viewer system
US4875478A (en) 1987-04-10 1989-10-24 Chen Harry H Portable compression grid & needle holder
US4793355A (en) 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US4809694A (en) 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
DE3717871C3 (en) 1987-05-27 1995-05-04 Georg Prof Dr Schloendorff Method and device for reproducible visual representation of a surgical intervention
US4836778A (en) 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
DE3884800D1 (en) 1987-05-27 1993-11-11 Schloendorff Georg Prof Dr METHOD AND DEVICE FOR REPRODUCIBLE OPTICAL PRESENTATION OF A SURGICAL OPERATION.
US4845771A (en) 1987-06-29 1989-07-04 Picker International, Inc. Exposure monitoring in radiation imaging
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
FR2618211B1 (en) 1987-07-15 1991-11-15 Chardon Bernard FRONTAL LIGHTING DEVICE FOR OBSERVING NARROW AND DEEP CAVITIES.
WO1989000829A1 (en) 1987-07-23 1989-02-09 Terumo Kabushiki Kaisha Catheter tube
US4829373A (en) 1987-08-03 1989-05-09 Vexcel Corporation Stereo mensuration apparatus
US4797907A (en) 1987-08-07 1989-01-10 Diasonics Inc. Battery enhanced power generation for mobile X-ray machine
US4931056A (en) 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
JPS6472736A (en) 1987-09-14 1989-03-17 Toshiba Corp Mri apparatus
US4991579A (en) 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US4875165A (en) 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
US5079699A (en) 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US4869255A (en) 1987-12-04 1989-09-26 Ad-Tech Medical Instrument Corp. Electrical connection device
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
EP0326768A3 (en) 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4829250A (en) 1988-02-10 1989-05-09 Honeywell, Inc. Magnetic direction finding device with improved accuracy
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4869247A (en) 1988-03-11 1989-09-26 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
US4884566A (en) 1988-04-15 1989-12-05 The University Of Michigan System and method for determining orientation of planes of imaging
NL8801750A (en) 1988-07-11 1990-02-01 Philips Nv ROENTGEN RESEARCH DEVICE WITH A BALANCED TRIPOD.
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US4896673A (en) 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US4860331A (en) 1988-09-12 1989-08-22 Williams John F Image marker device
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
EP0359864B1 (en) 1988-09-23 1993-12-01 Siemens Aktiengesellschaft Apparatus and method for the measurement of weak magnetic fields dependent upon position and time
US5265611A (en) 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
US5088928A (en) 1988-11-15 1992-02-18 Chan James K Educational/board game apparatus
IT1227365B (en) 1988-11-18 1991-04-08 Istituto Neurologico Carlo Bes PROCEDURE AND EQUIPMENT PARTICULARLY FOR THE GUIDE OF NEUROSURGICAL OPERATIONS
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US5099846A (en) 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5143076A (en) 1988-12-23 1992-09-01 Tyrone L. Hardy Three-dimensional beam localization microscope apparatus for stereotactic diagnoses or surgery
US5023102A (en) 1988-12-30 1991-06-11 Nabisco Brands, Inc. Method and composition for inhibiting fat bloom in fat based compositions and hard butter
US5098426A (en) 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5197476A (en) 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
CN1049287A (en) 1989-05-24 1991-02-20 住友电气工业株式会社 The treatment conduit
US5301061A (en) 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5476100A (en) 1994-07-07 1995-12-19 Guided Medical Systems, Inc. Catheter steerable by directional jets with remotely controlled closures
US5024226A (en) 1989-08-17 1991-06-18 Critikon, Inc. Epidural oxygen sensor
US5104393A (en) 1989-08-30 1992-04-14 Angelase, Inc. Catheter
GB8920204D0 (en) 1989-09-07 1989-10-18 Saitek Ltd Sensory games
US5070462A (en) 1989-09-12 1991-12-03 Flowmole Corporation Device for locating a boring machine
US5285787A (en) 1989-09-12 1994-02-15 Kabushiki Kaisha Toshiba Apparatus for calculating coordinate data of desired point in subject to be examined
GB8920697D0 (en) 1989-09-13 1989-10-25 Isis Innovation Apparatus and method for aligning drilling apparatus in surgical procedures
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
IL91805A (en) 1989-09-27 1996-12-05 Elscint Ltd Quadrature surface coil
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
FR2652928B1 (en) 1989-10-05 1994-07-29 Diadix Sa INTERACTIVE LOCAL INTERVENTION SYSTEM WITHIN A AREA OF A NON-HOMOGENEOUS STRUCTURE.
DE68901599D1 (en) 1989-10-25 1992-06-25 Saitek Ltd ELECTRONIC PLAYER.
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
DE69026196T2 (en) 1989-11-08 1996-09-05 George S Allen Mechanical arm for an interactive, image-controlled, surgical system
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5188126A (en) 1989-11-16 1993-02-23 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
US5107862A (en) 1991-05-06 1992-04-28 Fabian Carl E Surgical implement detector utilizing a powered marker
US5190059A (en) 1989-11-16 1993-03-02 Fabian Carl E Surgical implement detector utilizing a powered marker
US5329944A (en) 1989-11-16 1994-07-19 Fabian Carl E Surgical implement detector utilizing an acoustic marker
US5308352A (en) 1989-11-17 1994-05-03 Koutrouvelis Panos G Stereotactic device
US5047036A (en) 1989-11-17 1991-09-10 Koutrouvelis Panos G Stereotactic device
CA2003497C (en) 1989-11-21 1999-04-06 Michael M. Greenberg Probe-correlated viewing of anatomical image data
EP0502069A1 (en) 1989-11-24 1992-09-09 Technomed International A method and apparatus for determining the position of a target relative to known co-ordinates
FR2655415B1 (en) 1989-12-01 1992-02-21 Sextant Avionique ELECTROMAGNETIC POSITION AND ORIENTATION DETECTOR.
US7033325B1 (en) 1989-12-19 2006-04-25 Scimed Life Systems, Inc. Guidewire with multiple radiopaque marker sections
US5916210A (en) 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US5254088A (en) 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
US5820591A (en) 1990-02-02 1998-10-13 E. P. Technologies, Inc. Assemblies for creating compound curves in distal catheter regions
US5013317A (en) 1990-02-07 1991-05-07 Smith & Nephew Richards Inc. Medical drill assembly transparent to X-rays and targeting drill bit
US5031203A (en) 1990-02-09 1991-07-09 Trecha Randal R Coaxial laser targeting device for use with x-ray equipment and surgical drill equipment during surgical procedures
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
JP2653210B2 (en) 1990-03-16 1997-09-17 天美 加藤 Stereotactic brain surgery support device
JP3034898B2 (en) 1990-04-04 2000-04-17 オリンパス光学工業株式会社 Endoscope device
FI89132C (en) 1990-04-06 1993-08-25 Orion Yhtymae Oy Method for fine-needle biopsy or for performing a tissue marker in conjunction with mammography and arrangements for performing the procedure
US5224049A (en) 1990-04-10 1993-06-29 Mushabac David R Method, system and mold assembly for use in preparing a dental prosthesis
US5253647A (en) 1990-04-13 1993-10-19 Olympus Optical Co., Ltd. Insertion position and orientation state pickup for endoscope
JP2750201B2 (en) 1990-04-13 1998-05-13 オリンパス光学工業株式会社 Endoscope insertion state detection device
US5107839A (en) 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5030222A (en) 1990-05-09 1991-07-09 James Calandruccio Radiolucent orthopedic chuck
US5295483A (en) 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5457641A (en) 1990-06-29 1995-10-10 Sextant Avionique Method and apparatus for determining an orientation associated with a mobile system, especially a line of sight inside a helmet visor
US5017139A (en) 1990-07-05 1991-05-21 Mushabac David R Mechanical support for hand-held dental/medical instrument
US5376795A (en) 1990-07-09 1994-12-27 Regents Of The University Of California Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data
GB9018660D0 (en) 1990-08-24 1990-10-10 Imperial College Probe system
US5193106A (en) 1990-08-28 1993-03-09 Desena Danforth X-ray identification marker
US5127408A (en) 1990-09-14 1992-07-07 Duke University Apparatus for intravascularly measuring oxidative metabolism in body organs and tissues
US5160337A (en) 1990-09-24 1992-11-03 Cosman Eric R Curved-shaped floor stand for use with a linear accelerator in radiosurgery
US5198877A (en) 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
DE69133603D1 (en) 1990-10-19 2008-10-02 Univ St Louis System for localizing a surgical probe relative to the head
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US5059789A (en) 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
FR2668359B1 (en) 1990-10-24 1998-02-20 Gen Electric Cgr MAMMOGRAPH PROVIDED WITH A PERFECTED NEEDLE HOLDER.
US5527292A (en) 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
JP2715762B2 (en) 1990-11-30 1998-02-18 富士写真光機株式会社 Ultrasonic inspection equipment
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5129654A (en) 1991-01-03 1992-07-14 Brehn Corporation Electronic game apparatus
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5947981A (en) 1995-01-31 1999-09-07 Cosman; Eric R. Head and neck localizer
US5480439A (en) 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5456254A (en) 1991-02-15 1995-10-10 Cardiac Pathways Corp Flexible strip assembly having insulating layer with conductive pads exposed through insulating layer and device utilizing the same
US5327889A (en) 1992-12-01 1994-07-12 Cardiac Pathways Corporation Mapping and ablation catheter with individually deployable arms and method
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
JPH04307024A (en) 1991-04-02 1992-10-29 Olympus Optical Co Ltd Electronic endoscope apparatus
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
JP2721041B2 (en) 1991-04-19 1998-03-04 ネクスター・フアーマシユーテイカルズ・インコーポレイテツド Pharmaceutical preparations and methods
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5203337A (en) 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
DE4116004C2 (en) 1991-05-16 1993-09-30 Fresenius Ag nutrient preparation
US5291889A (en) 1991-05-23 1994-03-08 Vanguard Imaging Ltd. Apparatus and method for spatially positioning images
FI93607C (en) 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5493517A (en) 1991-06-03 1996-02-20 Hughes Missile Systems Company Cargo container mapping system
US5187475A (en) 1991-06-10 1993-02-16 Honeywell Inc. Apparatus for determining the position of an object
DE9107298U1 (en) 1991-06-13 1991-07-25 Howmedica Gmbh, 2314 Schoenkirchen, De
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5261404A (en) 1991-07-08 1993-11-16 Mick Peter R Three-dimensional mammal anatomy imaging system and method
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5520059A (en) 1991-07-29 1996-05-28 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
DE4227800C2 (en) 1991-08-21 1996-12-19 Toshiba Kawasaki Kk Thrombus-releasing treatment device
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
JP2735747B2 (en) 1991-09-03 1998-04-02 ゼネラル・エレクトリック・カンパニイ Tracking and imaging system
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
FR2680965B1 (en) 1991-09-05 1993-11-12 Gabriel Bernaz APPARATUS AND METHOD FOR TREATING SKIN.
US5190285A (en) 1991-09-30 1993-03-02 At&T Bell Laboratories Electronic game having intelligent game pieces
DE4134481C2 (en) 1991-10-18 1998-04-09 Zeiss Carl Fa Surgical microscope for computer-aided, stereotactic microsurgery
US5207688A (en) 1991-10-31 1993-05-04 Medco, Inc. Noninvasive head fixation method and apparatus
US5300080A (en) 1991-11-01 1994-04-05 David Clayman Stereotactic instrument guided placement
US5330485A (en) 1991-11-01 1994-07-19 Clayman David A Cerebral instrument guide frame and procedures utilizing it
US5704361A (en) 1991-11-08 1998-01-06 Mayo Foundation For Medical Education And Research Volumetric image ultrasound transducer underfluid catheter system
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5371778A (en) 1991-11-29 1994-12-06 Picker International, Inc. Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5178621A (en) 1991-12-10 1993-01-12 Zimmer, Inc. Two-piece radio-transparent proximal targeting device for a locking intramedullary nail
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
AU3321893A (en) 1991-12-23 1993-07-28 Pharmacia Deltec Inc. Guide wire apparatus with location sensing member
US5478341A (en) 1991-12-23 1995-12-26 Zimmer, Inc. Ratchet lock for an intramedullary nail locking bolt
US5233990A (en) 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
US5212720A (en) 1992-01-29 1993-05-18 Research Foundation-State University Of N.Y. Dual radiation targeting system
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
US5555883A (en) 1992-02-24 1996-09-17 Avitall; Boaz Loop electrode array mapping and ablation catheter for cardiac chambers
US5620734A (en) 1992-03-05 1997-04-15 Van Den Bergh Foods Co., Division Of Conopco, Inc. Spreads and other products including mesomorphic phases
US5306271A (en) 1992-03-09 1994-04-26 Izi Corporation Radiation therapy skin markers
DE4207632C2 (en) 1992-03-11 1995-07-20 Bodenseewerk Geraetetech Device and method for positioning a body part for treatment purposes
DE4207901C3 (en) 1992-03-12 1999-10-07 Aesculap Ag & Co Kg Method and device for displaying a work area in a three-dimensional structure
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5262722A (en) 1992-04-03 1993-11-16 General Electric Company Apparatus for near surface nondestructive eddy current scanning of a conductive part using a multi-layer eddy current probe array
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5299253A (en) 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5389101A (en) 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5359637A (en) 1992-04-28 1994-10-25 Wake Forest University Self-calibrated tomosynthetic, radiographic-imaging system, method, and device
JP3257640B2 (en) 1992-06-09 2002-02-18 オリンパス光学工業株式会社 Stereoscopic endoscope device
IL102218A (en) 1992-06-16 2003-06-24 Elbit Systems Ltd Tracker employing a rotating electromagnetic field
US5646525A (en) 1992-06-16 1997-07-08 Elbit Ltd. Three dimensional tracking system employing a rotating field
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
GB2280343A (en) 1993-07-08 1995-01-25 Innovative Care Ltd A laser targeting device for use with image intensifiers
US5307072A (en) 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
US5325873A (en) 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
US5197965A (en) 1992-07-29 1993-03-30 Codman & Shurtleff, Inc. Skull clamp pin assembly
DE4225112C1 (en) 1992-07-30 1993-12-09 Bodenseewerk Geraetetech Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit
FR2694881B1 (en) 1992-07-31 1996-09-06 Univ Joseph Fourier METHOD FOR DETERMINING THE POSITION OF AN ORGAN.
US5913820A (en) 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
EP0655138B1 (en) 1992-08-14 1998-04-29 BRITISH TELECOMMUNICATIONS public limited company Position location system
CA2143639C (en) 1992-09-01 2004-07-20 Edwin L. Adair Sterilizable endoscope with separable disposable tube assembly
US5643175A (en) 1992-09-01 1997-07-01 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5469847A (en) 1992-09-09 1995-11-28 Izi Corporation Radiographic multi-modality skin markers
US5368030A (en) 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5568384A (en) 1992-10-13 1996-10-22 Mayo Foundation For Medical Education And Research Biomedical imaging and analysis
US5364351A (en) 1992-11-13 1994-11-15 Ep Technologies, Inc. Catheter steering mechanism
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5309913A (en) 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5389073A (en) 1992-12-01 1995-02-14 Cardiac Pathways Corporation Steerable catheter with adjustable bend location
US5383852A (en) 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5305091A (en) 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
US5353795A (en) 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
US5427097A (en) 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
US5353800A (en) 1992-12-11 1994-10-11 Medtronic, Inc. Implantable pressure sensor lead
JPH06194639A (en) 1992-12-25 1994-07-15 Matsushita Electric Ind Co Ltd Liquid crystal display panel
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5333168A (en) 1993-01-29 1994-07-26 Oec Medical Systems, Inc. Time-based attenuation compensation
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5448610A (en) 1993-02-09 1995-09-05 Hitachi Medical Corporation Digital X-ray photography device
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5730130A (en) 1993-02-12 1998-03-24 Johnson & Johnson Professional, Inc. Localization cap for fiducial markers
US5799099A (en) 1993-02-12 1998-08-25 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
DE4304571A1 (en) 1993-02-16 1994-08-18 Mdc Med Diagnostic Computing Procedures for planning and controlling a surgical procedure
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5476495A (en) 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5636634A (en) 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
EP0615833B1 (en) 1993-03-19 1997-05-28 Vip Industries Limited A heat sealing method and luggage case
US5787886A (en) 1993-03-19 1998-08-04 Compass International Incorporated Magnetic field digitizer for stereotatic surgery
US5336222A (en) 1993-03-29 1994-08-09 Boston Scientific Corporation Integrated catheter for diverse in situ tissue therapy
US5357253A (en) 1993-04-02 1994-10-18 Earth Sounding International System and method for earth probing with deep subsurface penetration using low frequency electromagnetic signals
DE4310993A1 (en) 1993-04-03 1994-10-06 Philips Patentverwaltung MR imaging method and arrangement for carrying out the method
US5453686A (en) 1993-04-08 1995-09-26 Polhemus Incorporated Pulsed-DC position and orientation measurement system
US5435573A (en) 1993-04-13 1995-07-25 Visioneering International, Inc. Wireless remote control and position detecting system
JPH07508449A (en) 1993-04-20 1995-09-21 ゼネラル・エレクトリック・カンパニイ Computer graphics and live video systems to better visualize body structures during surgical procedures
AU6666894A (en) 1993-04-22 1994-11-08 Pixsys, Inc. System for locating relative positions of objects
EP0699050B1 (en) 1993-04-26 2004-03-03 St. Louis University Indicating the position of a probe
US5405346A (en) 1993-05-14 1995-04-11 Fidus Medical Technology Corporation Tunable microwave ablation catheter
US5325728A (en) 1993-06-22 1994-07-05 Medtronic, Inc. Electromagnetic flow meter
US5347289A (en) 1993-06-29 1994-09-13 Honeywell, Inc. Method and device for measuring the position and orientation of objects in the presence of interfering metals
CA2165829A1 (en) 1993-07-01 1995-01-19 John E. Abele Imaging, electrical potential sensing, and ablation catheters
IL116699A (en) 1996-01-08 2001-09-13 Biosense Ltd Method of constructing cardiac map
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US5545200A (en) 1993-07-20 1996-08-13 Medtronic Cardiorhythm Steerable electrophysiology catheter
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5397321A (en) 1993-07-30 1995-03-14 Ep Technologies, Inc. Variable curve electrophysiology catheter
IL106569A (en) 1993-08-02 1998-02-22 Elbit Systems Ltd Compensation of electromagnetic distortion caused by metal mass
US5398691A (en) 1993-09-03 1995-03-21 University Of Washington Method and apparatus for three-dimensional translumenal ultrasonic imaging
FR2709656B1 (en) 1993-09-07 1995-12-01 Deemed Int Sa Installation for computer-assisted microsurgery operation and methods implemented by said installation.
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
DE9314075U1 (en) 1993-09-17 1994-01-20 Dwl Elektron Systeme Gmbh Device for receiving at least one sonographic probe
DK110193A (en) 1993-09-30 1995-03-31 Per Baunsgaard Terminal device
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5446548A (en) 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
EP0649117A3 (en) 1993-10-15 1996-01-31 George S Allen Method for providing medical images.
US5545193A (en) 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5394875A (en) 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
DE69433213T2 (en) 1993-11-10 2004-05-06 Medtronic, Inc., Minneapolis Catheter with electrode arrangement
US5730127A (en) 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
JP2782316B2 (en) 1993-12-09 1998-07-30 東北リコー株式会社 Leakage magnetic flux detection device and switching power supply device
US5399146A (en) 1993-12-13 1995-03-21 Nowacki; Christopher Isocentric lithotripter
US5445144A (en) 1993-12-16 1995-08-29 Purdue Research Foundation Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body
JP3400835B2 (en) 1993-12-20 2003-04-28 テルモ株式会社 Secondary conduction path detector
WO1995020348A1 (en) 1994-01-28 1995-08-03 Ep Technologies, Inc. Matching electrical characteristics and propagation velocities to locate ablation sites
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
US5444756A (en) 1994-02-09 1995-08-22 Minnesota Mining And Manufacturing Company X-ray machine, solid state radiation detector and method for reading radiation detection information
US5571083A (en) 1994-02-18 1996-11-05 Lemelson; Jerome H. Method and system for cell transplantation
US5503416A (en) 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
US5596228A (en) 1994-03-10 1997-01-21 Oec Medical Systems, Inc. Apparatus for cooling charge coupled device imaging systems
US5426683A (en) 1994-03-14 1995-06-20 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
ATE180937T1 (en) 1994-03-15 1999-06-15 Siemens Ag METHOD FOR THE RECEIVING SIDE CLOCK SUPPLY FOR VIDEO SIGNALS TRANSMITTED DIGITALLY BY ATM IN FIBER/COAXIAL SUBSCRIBE NETWORKS
DK0673621T3 (en) 1994-03-18 1998-11-30 Schneider Europ Gmbh Magnetic resonance display system to follow a medical device
US5490196A (en) 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
US5447156A (en) 1994-04-04 1995-09-05 General Electric Company Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms
US6022578A (en) 1994-04-22 2000-02-08 Kraft Foods, Inc. Tablespread product containing liquid fat and process for preparing same
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
DE4417944A1 (en) 1994-05-21 1995-11-23 Zeiss Carl Fa Process for correlating different coordinate systems in computer-assisted, stereotactic surgery
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
US5672172A (en) 1994-06-23 1997-09-30 Vros Corporation Surgical instrument with ultrasound pulse generator
US5643286A (en) 1994-06-24 1997-07-01 Cytotherapeutics, Inc. Microdrive for use in stereotactic surgery
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
ATE242999T1 (en) 1994-07-14 2003-07-15 Washington Res Found DEVICE FOR DETECTING BARRETT METAPLASIA IN THE ESOPHAUS
US5619261A (en) 1994-07-25 1997-04-08 Oec Medical Systems, Inc. Pixel artifact/blemish filter for use in CCD video camera
EP0775001A4 (en) 1994-07-28 1999-09-01 Super Dimension Inc Computerized game board
CA2197986C (en) 1994-08-19 2008-03-18 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5999840A (en) 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US5701898A (en) 1994-09-02 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Method and system for Doppler ultrasound measurement of blood flow
WO1996007352A1 (en) 1994-09-06 1996-03-14 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5492131A (en) 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
DE4432891C2 (en) 1994-09-15 2003-11-06 Brainlab Ag Device and mask part set for non-invasive stereotactic immobilization in a reproducible position
DE4432890B4 (en) 1994-09-15 2004-02-19 Brainlab Ag Device for detecting the position of irradiation target points
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
EP0951874A3 (en) 1994-09-15 2000-06-14 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patients head
US5606975A (en) 1994-09-19 1997-03-04 The Board Of Trustees Of The Leland Stanford Junior University Forward viewing ultrasonic imaging catheter
DE4434519A1 (en) 1994-09-27 1996-03-28 Brainlab Med Computersyst Gmbh Fixing pin for fixing reference system in bone structure, esp. for head ring for neurosurgery
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
JP3492697B2 (en) 1994-10-07 2004-02-03 セントルイス ユニバーシティー Surgical guidance device with reference and localization frame
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5857997A (en) 1994-11-14 1999-01-12 Heart Rhythm Technologies, Inc. Catheter for electrophysiological procedures
US5611025A (en) 1994-11-23 1997-03-11 General Electric Company Virtual internal cavity inspection system
EP0714636B1 (en) 1994-11-28 2003-04-16 The Ohio State University Interventional medicine apparatus
US5583909C1 (en) 1994-12-20 2001-03-27 Oec Medical Systems Inc C-arm mounting structure for mobile x-ray imaging system
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
SE9500274D0 (en) 1995-01-26 1995-01-26 Siemens Elema Ab Device for locating port on medical implant
US5682890A (en) 1995-01-26 1997-11-04 Picker International, Inc. Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
US5971997A (en) 1995-02-03 1999-10-26 Radionics, Inc. Intraoperative recalibration apparatus for stereotactic navigators
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US6019724A (en) 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
WO1996025882A1 (en) 1995-02-22 1996-08-29 Groenningsaeter Aage Method for ultrasound guidance during clinical procedures
DE19506197A1 (en) 1995-02-23 1996-09-05 Aesculap Ag Method and device for determining the location of a body part
DE69615007T2 (en) 1995-02-27 2002-06-13 Medtronic Inc EXTERNAL REFERENCE PROBE FOR A PATIENT
JP2644208B2 (en) 1995-02-28 1997-08-25 機動建設工業株式会社 Magnetic measurement method and underground object detection method
US5636644A (en) 1995-03-17 1997-06-10 Applied Medical Resources Corporation Method and apparatus for endoconduit targeting
JP3307519B2 (en) 1995-03-24 2002-07-24 株式会社モリタ製作所 Medical X-ray equipment
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5868673A (en) 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
DE19515586A1 (en) 1995-04-27 1996-10-31 Siemens Ag HF antenna system for medical NMR device for human body investigation
US5741320A (en) 1995-05-02 1998-04-21 Heart Rhythm Technologies, Inc. Catheter control system having a pulley
US5566681A (en) 1995-05-02 1996-10-22 Manwaring; Kim H. Apparatus and method for stabilizing a body part
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US5640170A (en) 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5588033A (en) 1995-06-06 1996-12-24 St. Jude Children's Research Hospital Method and apparatus for three dimensional image reconstruction from multiple stereotactic or isocentric backprojections
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
EP0955860A1 (en) 1995-06-07 1999-11-17 Robert T. Chilcoat Articulated endospcope with specific advantages for laryngoscopy
US5713853A (en) 1995-06-07 1998-02-03 Interventional Innovations Corporation Methods for treating thrombosis
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5752513A (en) * 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5843076A (en) 1995-06-12 1998-12-01 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
UA54395C2 (en) 1995-06-16 2003-03-17 Баєр Акціенгезельшафт Phytobactericidal composition, a method of controlling and preventing plant diseases, a plant propagating material
JP3964471B2 (en) 1995-06-16 2007-08-22 東燃ゼネラル石油株式会社 Heat resistant lubricating oil composition
EP0749737B1 (en) 1995-06-19 1999-11-24 The Procter & Gamble Company Sanitary articles with dual layer topsheet having a selected distribution of large apertures
ES2164751T3 (en) 1995-06-19 2002-03-01 Procter & Gamble SUPERIOR DOUBLE SHEETS PERFORATED FOR ABSORBENT ITEMS.
WO1997000054A1 (en) 1995-06-19 1997-01-03 Sven Olerud An adjustable spacing device and a method of adjusting the distance between two vertebrae with the aid of said spacing device in spinal surgical operations
IT1280535B1 (en) 1995-07-05 1998-01-22 Reel Srl METHOD AND UNIT FOR THE SYNCHRONISM CONTROL OF COMPLEX MACHINES IN CASE OF ELECTRICAL POWER FAULTS
CA2226938A1 (en) 1995-07-16 1997-02-06 Yoav Paltieli Free-hand aiming of a needle guide
US5776050A (en) 1995-07-24 1998-07-07 Medical Media Systems Anatomical visualization system
US5810007A (en) 1995-07-26 1998-09-22 Associates Of The Joint Center For Radiation Therapy, Inc. Ultrasound localization and image fusion for the treatment of prostate cancer
US5627873B1 (en) 1995-08-04 2000-03-14 Oec Medical Systems Mini c-arm assembly for mobile x-ray imaging system
US5617462A (en) 1995-08-07 1997-04-01 Oec Medical Systems, Inc. Automatic X-ray exposure control system and method of use
US5642395A (en) 1995-08-07 1997-06-24 Oec Medical Systems, Inc. Imaging chain with miniaturized C-arm assembly for mobile X-ray imaging system
US5842986A (en) 1995-08-16 1998-12-01 Proton Sciences Corp. Ferromagnetic foreign body screening method and apparatus
US5696500A (en) 1995-08-18 1997-12-09 Motorola, Inc. Multi-media receiver and system therefor
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5713369A (en) 1995-09-13 1998-02-03 Vance Products Inc. Uterine endometrial tissue sample brush
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
DE19639861A1 (en) 1995-09-28 1997-04-10 Brainlab Med Computersyst Gmbh Laminar collimator for use in radiation treatment
US5715822A (en) 1995-09-28 1998-02-10 General Electric Company Magnetic resonance devices suitable for both tracking and imaging
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5980504A (en) 1996-08-13 1999-11-09 Oratec Interventions, Inc. Method for manipulating tissue of an intervertebral disc
US5744802A (en) 1995-10-25 1998-04-28 Adac Laboratories Image generation from limited projections in positron emission tomography using multi-slice rebinning
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
DE69634035T2 (en) 1995-11-24 2005-12-08 Koninklijke Philips Electronics N.V. SYSTEM FOR IMAGING BY MAGNETIC RESONANCE AND CATHETER FOR PROCEDURE PROCEDURE
US5944023A (en) 1995-12-07 1999-08-31 Sims Deltec, Inc. Systems and methods for determining the location of an implanted device including a magnet
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
DE19547977A1 (en) 1995-12-21 1997-06-26 Zeiss Carl Fa Touch probe for coordinate measuring machines
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
SE9504707L (en) 1995-12-29 1997-06-30 Alfa Laval Agri Ab activity Measurement
WO1997025101A2 (en) 1996-01-08 1997-07-17 Biosense Inc. Methods and apparatus for myocardial revascularization
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
WO1999037208A1 (en) 1996-02-01 1999-07-29 Biosense Inc. Intrabody measurement
AU706052B2 (en) * 1996-02-15 1999-06-10 Biosense, Inc. Movable transmit or receive coils for location system
WO1997029679A2 (en) * 1996-02-15 1997-08-21 Biosense Inc. Precise position determination of endoscopes
ES2251018T3 (en) 1996-02-15 2006-04-16 Biosense Webster, Inc. CATHETER WITH LUMEN.
ES2212079T3 (en) * 1996-02-15 2004-07-16 Biosense, Inc. POSITION MARKER PROBE.
IL119262A0 (en) 1996-02-15 1996-12-05 Biosense Israel Ltd Locatable biopsy needle
CA2246290C (en) 1996-02-15 2008-12-23 Biosense, Inc. Independently positionable transducers for location system
AU721034B2 (en) 1996-02-15 2000-06-22 Biosense, Inc. Catheter based surgery
JP3881029B2 (en) * 1996-02-15 2007-02-14 バイオセンス・インコーポレイテッド Medical probe with field transducer
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
IL125909A0 (en) * 1996-02-27 1999-04-11 Biosense Inc Location system with field actuation sequences
US5735278A (en) 1996-03-15 1998-04-07 National Research Council Of Canada Surgical procedure with magnetic resonance imaging
EP0796633B1 (en) 1996-03-18 2003-07-02 Hiroaki Ashiya Catheter assembly
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
CA2249982C (en) 1996-03-26 2008-10-14 Biosense, Inc. Mutual induction correction
JP2001505071A (en) 1996-03-27 2001-04-17 メドネティックス・アクチエンゲゼルシヤフト Apparatus and method for position measurement
US5865726A (en) 1996-03-27 1999-02-02 Asahi Kogaku Kogyo Kabushiki Kaisha Front end structure of side-view type endoscope
US5868749A (en) 1996-04-05 1999-02-09 Reed; Thomas M. Fixation devices
US5782765A (en) 1996-04-25 1998-07-21 Medtronic, Inc. Medical positioning system
JPH09294720A (en) 1996-04-30 1997-11-18 Nikon Corp Ophthalmologic instrument
AUPN958296A0 (en) 1996-05-01 1996-05-23 Golden Circle Limited Novel acc synthase genes from pineapple
US6077257A (en) 1996-05-06 2000-06-20 Vidacare, Inc. Ablation of rectal and other internal body structures
AU722748B2 (en) * 1996-05-06 2000-08-10 Biosense, Inc. Radiator calibration
US6019728A (en) 1996-05-08 2000-02-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Catheter and sensor having pressure detecting function
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
EP0904127B1 (en) 1996-05-17 2005-02-23 Biosense Webster, Inc. Self-aligning catheter
US5767699A (en) 1996-05-28 1998-06-16 Sun Microsystems, Inc. Fully complementary differential output driver for high speed digital communications
US6013087A (en) 1996-05-29 2000-01-11 U.S. Philips Corporation Image-guided surgery system
SE9602226D0 (en) 1996-06-05 1996-06-05 Astra Ab Biocompatible glue
EP0812568B1 (en) 1996-06-11 2003-10-22 Roke Manor Research Limited Catheter tracking system
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US5775322A (en) 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
CA2185485A1 (en) 1996-07-01 1998-01-02 William Stewart Wilson Process for producing chip food product and system therefor
IL118784A (en) 1996-07-03 1999-04-11 Eliav Medical Imaging Systems Method and apparatus for processing images for removal of artifacts
WO1998005004A1 (en) 1996-07-26 1998-02-05 Mirage Technologies Apparatus and method for representation of expression in a tissue-like system
US5823192A (en) 1996-07-31 1998-10-20 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for automatically positioning a patient for treatment/diagnoses
US5820553A (en) 1996-08-16 1998-10-13 Siemens Medical Systems, Inc. Identification system and method for radiation therapy
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5865842A (en) 1996-08-29 1999-02-02 Medtronic, Inc. System and method for anchoring brain stimulation lead or catheter
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
SE9603314D0 (en) 1996-09-12 1996-09-12 Siemens Elema Ab Method and apparatus for determining the location of a catheter within the body of a patient
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
DK0926997T3 (en) 1996-09-17 2005-03-29 Biosense Webster Inc Position Confirmation Device with Learning and Testing Functions
US5951571A (en) 1996-09-19 1999-09-14 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5891134A (en) 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
DE19639924C1 (en) 1996-09-27 1998-04-30 Siemens Ag Thermally insulating material transparent to high-frequency signals for magnetic resonance diagnosis
US5980535A (en) 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US6016439A (en) * 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US6096036A (en) 1998-05-05 2000-08-01 Cardiac Pacemakers, Inc. Steerable catheter with preformed distal shape and method for use
US5902239A (en) 1996-10-30 1999-05-11 U.S. Philips Corporation Image guided surgery system including a unit for transforming patient positions to image positions
US5919147A (en) 1996-11-01 1999-07-06 Jain; Krishna M. Method and apparatus for measuring the vascular diameter of a vessel
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
CA2271651C (en) 1996-11-29 2003-11-25 Life Imaging Systems Inc. System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments
US5810008A (en) 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
US5803084A (en) 1996-12-05 1998-09-08 Olson; Charles Three dimensional vector cardiographic display and method for displaying same
US5782828A (en) 1996-12-11 1998-07-21 Irvine Biomedical, Inc. Ablation catheter with multiple flexible curves
US5951461A (en) 1996-12-20 1999-09-14 Nyo; Tin Image-guided laryngoscope for tracheal intubation
EP1491139B1 (en) 1997-01-03 2007-08-29 Biosense Webster, Inc. Bend-responsive catheter
AU735196B2 (en) 1997-01-03 2001-07-05 Biosense, Inc. Conformal catheter
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US5935160A (en) 1997-01-24 1999-08-10 Cardiac Pacemakers, Inc. Left ventricular access lead for heart failure pacing
DE19703556A1 (en) 1997-01-31 1998-08-06 Philips Patentverwaltung Method and arrangement for determining the position in X-ray imaging
US7453490B2 (en) 1997-01-31 2008-11-18 Gyrus Acmi, Inc. Correction of image signals characteristic of non-uniform images in an endoscopic imaging system
US5919188A (en) 1997-02-04 1999-07-06 Medtronic, Inc. Linear ablation catheter
US5954796A (en) 1997-02-11 1999-09-21 Compaq Computer Corporation System and method for automatically and dynamically changing an address associated with a device disposed in a fire channel environment
US6380732B1 (en) 1997-02-13 2002-04-30 Super Dimension Ltd. Six-degree of freedom tracking system having a passive transponder on the object being tracked
EP0915675B1 (en) 1997-02-14 2008-10-29 Biosense Webster, Inc. X-ray guided surgical location system with extended mapping volume
US5928248A (en) * 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US6314310B1 (en) * 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US6580938B1 (en) * 1997-02-25 2003-06-17 Biosense, Inc. Image-guided thoracic therapy and apparatus therefor
US6346940B1 (en) 1997-02-27 2002-02-12 Kabushiki Kaisha Toshiba Virtualized endoscope system
US6006127A (en) 1997-02-28 1999-12-21 U.S. Philips Corporation Image-guided surgery system
EP1011424A1 (en) 1997-03-03 2000-06-28 Schneider Medical Technologies, Inc. Imaging device and method
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
WO1998041157A1 (en) 1997-03-17 1998-09-24 Boris Rubinsky Freezing method for controlled removal of fatty tissue by liposuction
DE19751761B4 (en) 1997-04-11 2006-06-22 Brainlab Ag System and method for currently accurate detection of treatment targets
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
DE19715202B4 (en) 1997-04-11 2006-02-02 Brainlab Ag Referencing device with a mouthpiece
US5944022A (en) 1997-04-28 1999-08-31 American Cardiac Ablation Co. Inc. Catheter positioning system
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US5907395A (en) 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
CA2240776C (en) 1997-07-18 2006-01-10 Image Guided Technologies, Inc. Improved optical tracking system
US6080151A (en) 1997-07-21 2000-06-27 Daig Corporation Ablation catheter
WO1999006112A1 (en) 1997-07-31 1999-02-11 Case Western Reserve University Electrolphysiological cardiac mapping system based on a non-contact non-expandable miniature multi-electrode catheter and method therefor
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US6246784B1 (en) 1997-08-19 2001-06-12 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
US6024739A (en) 1997-09-05 2000-02-15 Cordis Webster, Inc. Method for detecting and revascularizing ischemic myocardial tissue
DE69837826T2 (en) 1997-09-05 2008-01-31 Biosense Webster, Inc., Diamond Bar Controllable catheter for detection and revascularization of myocardial ischemic tissues
US6096050A (en) 1997-09-19 2000-08-01 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5909476A (en) 1997-09-22 1999-06-01 University Of Iowa Research Foundation Iterative process for reconstructing cone-beam tomographic images
US5930329A (en) 1997-09-22 1999-07-27 Siemens Corporate Research, Inc. Apparatus and method for detection and localization of a biopsy needle or similar surgical tool in a radiographic image
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6183444B1 (en) 1998-05-16 2001-02-06 Microheart, Inc. Drug delivery module
US6179809B1 (en) 1997-09-24 2001-01-30 Eclipse Surgical Technologies, Inc. Drug delivery catheter with tip alignment
US5951475A (en) 1997-09-25 1999-09-14 International Business Machines Corporation Methods and apparatus for registering CT-scan data to multiple fluoroscopic images
US5999837A (en) 1997-09-26 1999-12-07 Picker International, Inc. Localizing and orienting probe for view devices
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
US6086532A (en) 1997-09-26 2000-07-11 Ep Technologies, Inc. Systems for recording use of structures deployed in association with heart tissue
DE69738156T2 (en) 1997-09-27 2008-06-12 Brainlab Ag Method and device for taking a three-dimensional image of a body part
US6248074B1 (en) 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
US5923727A (en) 1997-09-30 1999-07-13 Siemens Corporate Research, Inc. Method and apparatus for calibrating an intra-operative X-ray system
US5978696A (en) 1997-10-06 1999-11-02 General Electric Company Real-time image-guided placement of anchor devices
US6201387B1 (en) * 1997-10-07 2001-03-13 Biosense, Inc. Miniaturized position sensor having photolithographic coils for tracking a medical probe
US6585763B1 (en) 1997-10-14 2003-07-01 Vascusense, Inc. Implantable therapeutic device and method
US6304769B1 (en) 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
DE19746092C2 (en) 1997-10-17 2002-09-05 Siemens Ag X-ray imaging device for 3D imaging
US6246899B1 (en) 1997-10-20 2001-06-12 Irvine Biomedical, Inc. Ultrasound locating system having ablation capabilities
US5954649A (en) 1997-10-20 1999-09-21 Irvine Biomedical, Inc. Catheter system having ultrasound locating capabilities
US6147480A (en) * 1997-10-23 2000-11-14 Biosense, Inc. Detection of metal disturbance
CA2249508A1 (en) 1997-10-24 1999-04-24 Unilever Plc Wax ester compositions
US5882304A (en) 1997-10-27 1999-03-16 Picker Nordstar Corporation Method and apparatus for determining probe location
DE19747427C2 (en) 1997-10-28 1999-12-09 Zeiss Carl Fa Device for bone segment navigation
US6461370B1 (en) 1998-11-03 2002-10-08 C. R. Bard, Inc. Temporary vascular filter guide wire
WO1999023956A1 (en) 1997-11-05 1999-05-20 Synthes Ag, Chur Virtual representation of a bone or a bone joint
US6014580A (en) 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
ES2180231T3 (en) 1997-11-14 2003-02-01 Continental Teves Ag & Co Ohg DEVICE FOR MULTIPLICATION OF THE BRAKING FORCE, IN PARTICULAR FOR CARS.
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6021343A (en) 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
US5967982A (en) 1997-12-09 1999-10-19 The Cleveland Clinic Foundation Non-invasive spine and bone registration for frameless stereotaxy
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
IL122578A (en) * 1997-12-12 2000-08-13 Super Dimension Ltd Wireless six-degree-of-freedom locator
US6070100A (en) 1997-12-15 2000-05-30 Medtronic Inc. Pacing system for optimizing cardiac output and determining heart condition
US6073043A (en) 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
WO1999033406A1 (en) 1997-12-31 1999-07-08 Surgical Navigation Technologies, Inc. Wireless probe system for use with a stereotactic surgical device
US5976127A (en) 1998-01-14 1999-11-02 Lax; Ronald Soft tissue fixation devices
JP4373605B2 (en) 1998-01-26 2009-11-25 ボストン サイエンティフィック リミテッド Catheter assembly with remote inductive coupler and embedded transmission path
WO1999038449A1 (en) 1998-01-28 1999-08-05 Cosman Eric R Optical object tracking system
US7749215B1 (en) 1998-02-05 2010-07-06 Biosense, Inc. Intracardiac cell delivery and cell transplantation
US6517534B1 (en) 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
US7165551B2 (en) 1998-02-19 2007-01-23 Curon Medical, Inc. Apparatus to detect and treat aberrant myoelectric activity
US6810281B2 (en) 2000-12-21 2004-10-26 Endovia Medical, Inc. Medical mapping system
US6289235B1 (en) 1998-03-05 2001-09-11 Wake Forest University Method and system for creating three-dimensional images using tomosynthetic computed tomography
US5966090A (en) 1998-03-16 1999-10-12 Mcewan; Thomas E. Differential pulse radar motion sensor
US5938585A (en) 1998-03-20 1999-08-17 Boston Scientific Corporation Anchoring and positioning device and method for an endoscope
US6115626A (en) 1998-03-26 2000-09-05 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in instruments in interior body regions
CA2325540C (en) * 1998-03-30 2007-09-18 Biosense Inc. Three-axis coil sensor
US6213998B1 (en) 1998-04-02 2001-04-10 Vanderbilt University Laser surgical cutting probe and system
EP1068607A4 (en) 1998-04-03 2009-07-08 Image Guided Technologies Inc Wireless optical instrument for position measurement and method of use therefor
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6273896B1 (en) 1998-04-21 2001-08-14 Neutar, Llc Removable frames for stereotactic localization
US6122545A (en) 1998-04-28 2000-09-19 Medtronic, Inc. Multiple channel sequential cardiac pacing method
US5902324A (en) 1998-04-28 1999-05-11 Medtronic, Inc. Bi-atrial and/or bi-ventricular sequential cardiac pacing systems
ATE272365T1 (en) 1998-05-28 2004-08-15 Orthosoft Inc INTERACTIVE AND COMPUTER-ASSISTED SURGICAL SYSTEM
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
DE19829230A1 (en) 1998-06-30 2000-03-23 Brainlab Med Computersyst Gmbh Method for detecting external contour of objects being treated; prepares flat image for section of area being treated while specifying external contour spots in image surface of section
DE19829224B4 (en) 1998-06-30 2005-12-15 Brainlab Ag Method for localizing treatment goals in the area of soft body parts
US6447504B1 (en) 1998-07-02 2002-09-10 Biosense, Inc. System for treatment of heart tissue using viability map
WO2000006701A1 (en) 1998-07-31 2000-02-10 Genzyme Corporation Improvement of cardiac function by mesenchymal stem cell transplantation
WO2000010456A1 (en) * 1998-08-02 2000-03-02 Super Dimension Ltd. Intrabody navigation system for medical applications
US20030074011A1 (en) * 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
WO2000016684A1 (en) 1998-09-24 2000-03-30 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
IL126333A0 (en) * 1998-09-24 1999-05-09 Super Dimension Ltd System and method of recording and displaying in context of an image a location of at least one point-of-interest in body during an intra-body medical procedure
US20040006268A1 (en) 1998-09-24 2004-01-08 Super Dimension Ltd Was Filed In Parent Case System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6061588A (en) 1998-09-29 2000-05-09 Advanced Cardiovascular Systems, Inc. Catheter apparatus for positioning a wire
US6373240B1 (en) * 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6319250B1 (en) 1998-11-23 2001-11-20 C.R. Bard, Inc Tricuspid annular grasp catheter
EP1140278B1 (en) 1998-12-14 2004-05-19 Tre Esse Progettazione Biomedica S.r.l Catheter system for performing intramyocardiac therapeutic treatment
US6117476A (en) 1999-01-04 2000-09-12 Shaul Eger Healthy food spreads
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US7068825B2 (en) 1999-03-08 2006-06-27 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
US6498477B1 (en) 1999-03-19 2002-12-24 Biosense, Inc. Mutual crosstalk elimination in medical systems using radiator coils and magnetic fields
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
DE19917867B4 (en) 1999-04-20 2005-04-21 Brainlab Ag Method and device for image support in the treatment of treatment objectives with integration of X-ray detection and navigation system
DE10022468A1 (en) 1999-05-10 2001-10-11 Shimadzu Corp X-ray computerized tomography apparatus for medical diagnosis, selects scanning type based on comparison result of visual field and image pick-up ranges of radiated X-ray
US6233476B1 (en) * 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7840252B2 (en) * 1999-05-18 2010-11-23 MediGuide, Ltd. Method and system for determining a three dimensional representation of a tubular organ
US8442618B2 (en) * 1999-05-18 2013-05-14 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US7343195B2 (en) 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US9572519B2 (en) 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US7778688B2 (en) * 1999-05-18 2010-08-17 MediGuide, Ltd. System and method for delivering a stent to a selected position within a lumen
US7386339B2 (en) * 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US9833167B2 (en) 1999-05-18 2017-12-05 Mediguide Ltd. Method and system for superimposing virtual anatomical landmarks on an image
US6192280B1 (en) 1999-06-02 2001-02-20 Medtronic, Inc. Guidewire placed implantable lead with tip seal
US6306097B1 (en) 1999-06-17 2001-10-23 Acuson Corporation Ultrasound imaging catheter guiding assembly with catheter working port
DE29910795U1 (en) 1999-06-21 1999-09-02 Wolf Gmbh Richard Electronic endoscope
US6246231B1 (en) 1999-07-29 2001-06-12 Ascension Technology Corporation Magnetic field permeable barrier for magnetic position measurement system
US6413981B1 (en) 1999-08-12 2002-07-02 Ortho-Mcneil Pharamceutical, Inc. Bicyclic heterocyclic substituted phenyl oxazolidinone antibacterials, and related compositions and methods
AU2344800A (en) 1999-08-16 2001-03-13 Super Dimension Ltd. Method and system for displaying cross-sectional images of body
US6213995B1 (en) 1999-08-31 2001-04-10 Phelps Dodge High Performance Conductors Of Sc And Ga, Inc. Flexible tubing with braided signal transmission elements
US6702780B1 (en) * 1999-09-08 2004-03-09 Super Dimension Ltd. Steering configuration for catheter with rigid distal device
US6574498B1 (en) * 1999-09-16 2003-06-03 Super Dimension Ltd. Linking of an intra-body tracking system to external reference coordinates
US6443894B1 (en) 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
DE19946948A1 (en) 1999-09-30 2001-04-05 Philips Corp Intellectual Pty Method and arrangement for determining the position of a medical instrument
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
AU1104901A (en) 1999-10-28 2001-05-08 Enterprise Medical Technology, Inc. Patient-shielding and coil system
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US7366562B2 (en) * 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US6172499B1 (en) 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
DE19953177A1 (en) 1999-11-04 2001-06-21 Brainlab Ag Method to position patient exactly for radiation therapy or surgery; involves comparing positions in landmarks in X-ray image and reconstructed image date, to determine positioning errors
DE19956814B4 (en) 1999-11-25 2004-07-15 Brainlab Ag Shape detection of treatment devices
US6437567B1 (en) 1999-12-06 2002-08-20 General Electric Company Radio frequency coil for open magnetic resonance imaging system
US6611700B1 (en) 1999-12-30 2003-08-26 Brainlab Ag Method and apparatus for positioning a body for radiation using a position sensor
AU2001224721A1 (en) * 2000-01-10 2001-08-07 Super Dimension Ltd. Methods and systems for performing medical procedures with reference to projective images and with respect to pre-stored images
DE10000937B4 (en) 2000-01-12 2006-02-23 Brainlab Ag Intraoperative navigation update
US6383144B1 (en) 2000-01-18 2002-05-07 Edwards Lifesciences Corporation Devices and methods for measuring temperature of a patient
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US7373197B2 (en) * 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
AU2001241008A1 (en) 2000-03-09 2001-09-17 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US6615155B2 (en) * 2000-03-09 2003-09-02 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
WO2001073461A2 (en) 2000-03-24 2001-10-04 Surgi-Vision Endoluminal mri probe
EP1142536B1 (en) 2000-04-05 2002-07-31 BrainLAB AG Patient referencing in a medical navigation system using projected light points
WO2001078010A2 (en) * 2000-04-07 2001-10-18 Aylward Stephen R Systems and methods for tubular object processing
US6490475B1 (en) 2000-04-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
DE10192161T1 (en) 2000-05-30 2002-09-05 Olympus Optical Co Medical guidewire
US6478802B2 (en) 2000-06-09 2002-11-12 Ge Medical Systems Global Technology Company, Llc Method and apparatus for display of an image guided drill bit
US6793664B2 (en) 2000-06-19 2004-09-21 Image-Guided Neurologics System and method of minimally-invasive exovascular aneurysm treatment
US6351513B1 (en) 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6484118B1 (en) * 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
ATE308935T1 (en) 2000-08-14 2005-11-15 Boston Scient Ltd DIRECTORABLE SPHINCTEROTOME
US6650927B1 (en) * 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
EP1314128A2 (en) 2000-08-28 2003-05-28 The United States of America, represented by the Administrator of the National Aeronautics and Space Administration (NASA) Multiple sensor system for tissue characterization
EP1190676B1 (en) 2000-09-26 2003-08-13 BrainLAB AG Device for determining the position of a cutting guide
JP2004538538A (en) 2000-10-05 2004-12-24 シーメンス コーポレイト リサーチ インコーポレイテツド Intraoperative image-guided neurosurgery and surgical devices with augmented reality visualization
US6473634B1 (en) 2000-11-22 2002-10-29 Koninklijke Philips Electronics N.V. Medical imaging at two temporal resolutions for tumor treatment planning
US6472372B1 (en) 2000-12-06 2002-10-29 Ortho-Mcneil Pharmaceuticals, Inc. 6-O-Carbamoyl ketolide antibacterials
ATE243473T1 (en) 2000-12-19 2003-07-15 Brainlab Ag METHOD AND DEVICE FOR NAVIGATION-ASSISTED DENTAL TREATMENT
US6620151B2 (en) 2001-03-01 2003-09-16 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US7371067B2 (en) 2001-03-06 2008-05-13 The Johns Hopkins University School Of Medicine Simulation method for designing customized medical devices
US7176936B2 (en) 2001-03-27 2007-02-13 Siemens Corporate Research, Inc. Augmented reality guided instrument positioning with modulated guiding graphics
WO2002082375A2 (en) 2001-04-06 2002-10-17 Stephen Solomon Cardiological mapping and navigation system
WO2002085188A2 (en) 2001-04-24 2002-10-31 Kaplan Edward J Deflectable implantation device and method for use
EP1260179B1 (en) 2001-05-22 2003-03-26 BrainLAB AG X-ray image registration device with a medical navigation system
US20030032898A1 (en) 2001-05-29 2003-02-13 Inder Raj. S. Makin Method for aiming ultrasound for medical treatment
WO2002097735A1 (en) 2001-05-31 2002-12-05 Kent Ridge Digital Labs System and method of anatomical modeling
US7607440B2 (en) 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
US20040254454A1 (en) 2001-06-13 2004-12-16 Kockro Ralf Alfons Guide system and a probe therefor
US7286868B2 (en) * 2001-06-15 2007-10-23 Biosense Inc. Medical device with position sensor having accuracy at high temperatures
US6577752B2 (en) 2001-06-15 2003-06-10 Arch Development Corporation Automated method and system for the delineation of the chest wall in computed tomography scans for the assessment of pleural disease
US6666864B2 (en) 2001-06-29 2003-12-23 Scimed Life Systems, Inc. Electrophysiological probes having selective element actuation and variable lesion length capability
US6796963B2 (en) 2001-07-10 2004-09-28 Myocardial Therapeutics, Inc. Flexible tissue injection catheters with controlled depth penetration
JP4602602B2 (en) 2001-07-19 2010-12-22 オリンパス株式会社 Medical instruments
US6706041B1 (en) 2001-08-15 2004-03-16 Peter Costantino Holders for ablation devices, surgical devices employing such holders, and methods of employing such surgical devices
ATE387892T1 (en) 2001-10-10 2008-03-15 Brainlab Ag MEDICAL INSTRUMENT WITH TOUCH SENSITIVE TIP
EP1450717A2 (en) 2001-10-10 2004-09-01 FABIAN, Carl E. Surgical implement detection system
US6735465B2 (en) 2001-10-24 2004-05-11 Scimed Life Systems, Inc. Systems and processes for refining a registered map of a body cavity
EP1306050B1 (en) 2001-10-24 2004-05-19 BrainLAB AG Microprobe with navigation system
US20030099390A1 (en) * 2001-11-23 2003-05-29 Xiaolan Zeng Lung field segmentation from CT thoracic images
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
ATE261274T1 (en) 2002-01-18 2004-03-15 Brainlab Ag METHOD AND DEVICE FOR ASSOCIATING DIGITAL IMAGE INFORMATION WITH THE NAVIGATION DATA OF A MEDICAL NAVIGATION SYSTEM
DE10203371A1 (en) 2002-01-29 2003-08-07 Siemens Ag Intravascular catheter with magnetic component in tip, allows magnetic field generated to be varied after introducing catheter into patient
US6814733B2 (en) 2002-01-31 2004-11-09 Biosense, Inc. Radio frequency pulmonary vein isolation
ATE415853T1 (en) 2002-02-05 2008-12-15 Kersten Zaar ENDOSCOPE WITH SIDE LOOK OPTICS
US6947786B2 (en) 2002-02-28 2005-09-20 Surgical Navigation Technologies, Inc. Method and apparatus for perspective inversion
JP4315638B2 (en) * 2002-04-16 2009-08-19 ソニー株式会社 Terminal device, remote control method of apparatus using terminal device, and program
JP2005522274A (en) * 2002-04-17 2005-07-28 スーパー ディメンション リミテッド Techniques for navigating to targets in endoscopic and bifurcated structures
US6887236B2 (en) 2002-05-03 2005-05-03 Pinhas Gilboa Multiple-electrode catheter assembly and method of operating such a catheter assembly
US6779456B2 (en) 2002-07-01 2004-08-24 Special Devices, Inc. Initiator with a bridgewire configured in an enhanced heat-sinking relationship
US7020510B2 (en) 2002-07-25 2006-03-28 Koninklijke Philips Electronics, N.V. Optimal view map V.0.01
CN100364479C (en) 2002-07-31 2008-01-30 奥林巴斯株式会社 Endoscope
EP1543765A4 (en) 2002-08-30 2009-01-07 Olympus Corp Medical treatment system, endoscope system, endoscope insert operation program, and endoscope device
US20070167804A1 (en) 2002-09-18 2007-07-19 Byong-Ho Park Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices
US7734332B2 (en) 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US20040086161A1 (en) 2002-11-05 2004-05-06 Radhika Sivaramakrishna Automated detection of lung nodules from multi-slice CT image data
US7881769B2 (en) * 2002-11-18 2011-02-01 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US6991605B2 (en) 2002-12-18 2006-01-31 Siemens Medical Solutions Usa, Inc. Three-dimensional pictograms for use with medical images
US7747307B2 (en) 2003-03-04 2010-06-29 Calypso Medical Technologies, Inc. Method and system for marker localization
US7505809B2 (en) * 2003-01-13 2009-03-17 Mediguide Ltd. Method and system for registering a first image with a second image relative to the body of a patient
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US6956369B2 (en) 2003-01-17 2005-10-18 Mednovus, Inc. Screening method and apparatus
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7399296B2 (en) 2003-02-26 2008-07-15 Medtronic Vascular, Inc. Catheter having highly radiopaque embedded segment
US7893840B2 (en) 2003-03-03 2011-02-22 Veroscan, Inc. Interrogator and interrogation system employing the same
US6987995B2 (en) 2003-03-12 2006-01-17 Biosense Webster, Inc. Multifunctional catheter handle
US8118732B2 (en) 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
US7570987B2 (en) 2003-04-04 2009-08-04 Brainlab Ag Perspective registration and visualization of internal areas of the body
EP1615554B1 (en) * 2003-04-15 2017-12-20 Philips Intellectual Property & Standards GmbH Method and arrangement for influencing magnetic particles and detecting interfering material
US7783441B2 (en) * 2003-04-17 2010-08-24 Northern Digital Inc. Eddy current detection and compensation
US20040215181A1 (en) 2003-04-25 2004-10-28 Medtronic, Inc. Delivery of fluid during transurethral prostate treatment
DE10323008A1 (en) 2003-05-21 2004-12-23 Siemens Ag Automatic fusion of 2D fluoroscopic C-frame X-ray images with preoperative 3D images using navigation markers, by use of a projection matrix based on a 2D fluoroscopy image and a defined reference navigation system
EP1628576A1 (en) 2003-06-02 2006-03-01 Deepbreeze Ltd. Method and system for analyzing cardiovascular sounds
US7321228B2 (en) * 2003-07-31 2008-01-22 Biosense Webster, Inc. Detection of metal disturbance in a magnetic tracking system
WO2005011790A1 (en) 2003-07-31 2005-02-10 Wilson-Cook Medical Inc. System for introducing multiple medical devices
US7697974B2 (en) 2003-10-10 2010-04-13 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for analysis of angiographic and other cyclical images
WO2005043319A2 (en) 2003-10-21 2005-05-12 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for intraoperative targeting
US7207989B2 (en) 2003-10-27 2007-04-24 Biosense Webster, Inc. Method for ablating with needle electrode
JP3820244B2 (en) 2003-10-29 2006-09-13 オリンパス株式会社 Insertion support system
US7397364B2 (en) * 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
US7901348B2 (en) 2003-12-12 2011-03-08 University Of Washington Catheterscope 3D guidance and interface system
US20050154282A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US7684849B2 (en) 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
US6995729B2 (en) * 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
ATE482664T1 (en) * 2004-01-20 2010-10-15 Koninkl Philips Electronics Nv DEVICE AND METHOD FOR NAVIGATING A CATHETER
DE502004009884D1 (en) 2004-02-03 2009-09-24 Brainlab Ag Device for determining the position of a cutting block
WO2005082247A1 (en) * 2004-02-18 2005-09-09 Philips Intellectual Property & Standards Gmbh Correction of measured values for a magnetic localization device
DE102004009237B3 (en) 2004-02-26 2005-09-22 Siemens Ag Device for introducing a stent into a hollow organ
US7311714B1 (en) * 2004-03-02 2007-12-25 Wascher Thomas M Marking catheter for placement using frameless stereotaxy and use thereof
EP1725179A1 (en) * 2004-03-03 2006-11-29 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Incremental real time recording of tracked instruments in tubular organ structures inside the human body
US7811294B2 (en) * 2004-03-08 2010-10-12 Mediguide Ltd. Automatic guidewire maneuvering system and method
EP1731093B1 (en) * 2004-03-29 2013-01-09 Olympus Corporation System for detecting position in examinee
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US7197354B2 (en) * 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
JP2008505712A (en) 2004-07-09 2008-02-28 フィッシャー イメイジング コーポレイション Diagnostic system for multi-modality mammography
US7599535B2 (en) 2004-08-02 2009-10-06 Siemens Medical Solutions Usa, Inc. System and method for tree-model visualization for pulmonary embolism detection
US7634122B2 (en) 2004-08-25 2009-12-15 Brainlab Ag Registering intraoperative scans
US7373271B1 (en) * 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
US8233681B2 (en) * 2004-09-24 2012-07-31 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for hierarchical registration between a blood vessel and tissue surface model for a subject and a blood vessel and tissue surface image for the subject
US8515527B2 (en) 2004-10-13 2013-08-20 General Electric Company Method and apparatus for registering 3D models of anatomical regions of a heart and a tracking system with projection images of an interventional fluoroscopic system
US7636595B2 (en) 2004-10-28 2009-12-22 Medtronic Navigation, Inc. Method and apparatus for calibrating non-linear instruments
WO2006057786A1 (en) 2004-11-05 2006-06-01 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Access system
US7720520B2 (en) 2004-12-01 2010-05-18 Boston Scientific Scimed, Inc. Method and system for registering an image with a navigation reference catheter
US7551759B2 (en) 2004-12-07 2009-06-23 Siemens Medical Solutions Usa, Inc. Target identification using time-based data sets
US20060241396A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multi-modal detection of surgical sponges and implements
US7420468B2 (en) 2005-02-10 2008-09-02 Fabian Carl E Surgical implement detector
US20060241399A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multiplex system for the detection of surgical implements within the wound cavity
JP2008529639A (en) 2005-02-11 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Inspection apparatus, image processing device, method of inspecting target object with inspection apparatus, computer-readable medium, and program element
US7236567B2 (en) * 2005-03-24 2007-06-26 Siemens Aktiengesellschaft Method and apparatus for synchronizing operation of an x-ray system and a magnetic system
US20080188749A1 (en) * 2005-04-11 2008-08-07 Koninklijke Philips Electronics N.V. Three Dimensional Imaging for Guiding Interventional Medical Devices in a Body Volume
EP2727547B1 (en) 2005-04-21 2020-11-18 Boston Scientific Scimed, Inc. Devices for energy delivery
US7517318B2 (en) * 2005-04-26 2009-04-14 Biosense Webster, Inc. Registration of electro-anatomical map with pre-acquired image using ultrasound
JP4418400B2 (en) * 2005-05-20 2010-02-17 オリンパスメディカルシステムズ株式会社 Image display device
US7782189B2 (en) 2005-06-20 2010-08-24 Carestream Health, Inc. System to monitor the ingestion of medicines
DE102005028873B4 (en) 2005-06-22 2014-07-24 Siemens Aktiengesellschaft Method for conducting an examination and diagnostic device therefor
US7324915B2 (en) * 2005-07-14 2008-01-29 Biosense Webster, Inc. Data transmission to a position sensor
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
DE102005044405A1 (en) 2005-09-16 2007-03-22 Siemens Ag Method of producing an image of a medical instrument at least partly inserted into an object or patient under examination using vectors
US7835785B2 (en) * 2005-10-04 2010-11-16 Ascension Technology Corporation DC magnetic-based position and orientation monitoring system for tracking medical instruments
US7301332B2 (en) * 2005-10-06 2007-11-27 Biosense Webster, Inc. Magnetic sensor assembly
JP4450786B2 (en) 2005-11-15 2010-04-14 ザイオソフト株式会社 Image processing method and image processing program
US20070167806A1 (en) * 2005-11-28 2007-07-19 Koninklijke Philips Electronics N.V. Multi-modality imaging and treatment
US8303505B2 (en) * 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
US20070167714A1 (en) 2005-12-07 2007-07-19 Siemens Corporate Research, Inc. System and Method For Bronchoscopic Navigational Assistance
US8225794B2 (en) 2006-01-13 2012-07-24 Olympus Medical Systems Corp. Overtube
US20070232898A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Telescoping Catheter With Electromagnetic Coils for Imaging and Navigation During Cardiac Procedures
US8948845B2 (en) * 2006-03-31 2015-02-03 Koninklijke Philips N.V. System, methods, and instrumentation for image guided prostate treatment
US9055906B2 (en) 2006-06-14 2015-06-16 Intuitive Surgical Operations, Inc. In-vivo visualization systems
US8023703B2 (en) 2006-07-06 2011-09-20 The United States of America as represented by the Secretary of the Department of Health and Human Services, National Institues of Health Hybrid segmentation of anatomical structure
US7688064B2 (en) 2006-07-11 2010-03-30 Biosense Webster Inc. Probe for assessment of metal distortion
US8888697B2 (en) * 2006-07-24 2014-11-18 Webmd, Llc Method and system for enabling lay users to obtain relevant, personalized health related information
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
US8150497B2 (en) * 2006-09-08 2012-04-03 Medtronic, Inc. System for navigating a planned procedure within a body
US7996060B2 (en) * 2006-10-09 2011-08-09 Biosense Webster, Inc. Apparatus, method, and computer software product for registration of images of an organ using anatomical features outside the organ
DE502006003472D1 (en) 2006-10-20 2009-05-28 Brainlab Ag Marker navigation device, in particular for medical purposes
IL187667A (en) * 2006-11-27 2011-12-29 Mediguide Ltd System and method for navigating a surgical needle toward an organ of the body of a patient
US8320991B2 (en) * 2006-12-01 2012-11-27 Medtronic Navigation Inc. Portable electromagnetic navigation system
JP2008142199A (en) 2006-12-07 2008-06-26 Olympus Corp Endoscope and curve operation device of endoscope
US20080139915A1 (en) * 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating and/or Mapping Apparatus and Methods
US7831076B2 (en) * 2006-12-08 2010-11-09 Biosense Webster, Inc. Coloring electroanatomical maps to indicate ultrasound data acquisition
US7879004B2 (en) * 2006-12-13 2011-02-01 University Of Washington Catheter tip displacement mechanism
US20080154172A1 (en) 2006-12-20 2008-06-26 Medtronic Vascular, Inc. Low Profile Catheters and Methods for Treatment of Chronic Total Occlusions and Other Disorders
US9220573B2 (en) * 2007-01-02 2015-12-29 Medtronic Navigation, Inc. System and method for tracking positions of uniform marker geometries
IL188262A (en) * 2007-01-10 2011-10-31 Mediguide Ltd System and method for superimposing a representation of the tip of a catheter on an image acquired by a moving imager
JP5089999B2 (en) 2007-01-24 2012-12-05 オリンパス株式会社 Position detection circuit and its application device
EP2129284A4 (en) * 2007-03-08 2012-11-28 Sync Rx Ltd Imaging and tools for use with moving organs
EP2117436A4 (en) * 2007-03-12 2011-03-02 David Tolkowsky Devices and methods for performing medical procedures in tree-like luminal structures
US8270693B2 (en) 2007-04-03 2012-09-18 M2S Anatomical visualization and measurement system
US8463006B2 (en) * 2007-04-17 2013-06-11 Francine J. Prokoski System and method for using three dimensional infrared imaging to provide detailed anatomical structure maps
DE102007024910B4 (en) 2007-05-29 2009-04-09 Siemens Ag Arrangement for magnetic field measurement
IL184151A0 (en) 2007-06-21 2007-10-31 Diagnostica Imaging Software Ltd X-ray measurement method
US8335359B2 (en) 2007-07-20 2012-12-18 General Electric Company Systems, apparatus and processes for automated medical image segmentation
US7912662B2 (en) 2007-09-24 2011-03-22 General Electric Company System and method for improving the distortion tolerance of an electromagnetic tracking system
US20090082665A1 (en) 2007-09-26 2009-03-26 General Electric Company System and method for tracking medical device
US8285367B2 (en) * 2007-10-05 2012-10-09 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation associated with a reservoir
US7652578B2 (en) 2007-10-29 2010-01-26 Motorola, Inc. Detection apparatus and method for near field communication devices
US7942829B2 (en) * 2007-11-06 2011-05-17 Eigen, Inc. Biopsy planning and display apparatus
US7623081B2 (en) 2008-01-25 2009-11-24 Mitsubishi Electric Research Laboratories, Inc. Wireless UWB connection for rotating RF antenna array
US8926511B2 (en) 2008-02-29 2015-01-06 Biosense Webster, Inc. Location system with virtual touch screen
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US20090318797A1 (en) 2008-06-19 2009-12-24 Vision-Sciences Inc. System and method for deflecting endoscopic tools
US20180009767A9 (en) 2009-03-19 2018-01-11 The Johns Hopkins University Psma targeted fluorescent agents for image guided surgery
US10004387B2 (en) 2009-03-26 2018-06-26 Intuitive Surgical Operations, Inc. Method and system for assisting an operator in endoscopic navigation
EP3427687A1 (en) 2009-05-14 2019-01-16 Covidien LP Automatic registration technique
US8706184B2 (en) 2009-10-07 2014-04-22 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying enhanced imaging data on a clinical image
US8625869B2 (en) 2010-05-21 2014-01-07 Siemens Medical Solutions Usa, Inc. Visualization of medical image data with localized enhancement
US8827934B2 (en) 2011-05-13 2014-09-09 Intuitive Surgical Operations, Inc. Method and system for determining information of extrema during expansion and contraction cycles of an object
US8900131B2 (en) 2011-05-13 2014-12-02 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
EP3488803B1 (en) 2012-02-03 2023-09-27 Intuitive Surgical Operations, Inc. Steerable flexible needle with embedded shape sensing
EP2849668B1 (en) 2012-05-14 2018-11-14 Intuitive Surgical Operations Inc. Systems and methods for registration of a medical device using rapid pose search
EP3524184B1 (en) 2012-05-14 2021-02-24 Intuitive Surgical Operations Inc. Systems for registration of a medical device using a reduced search space
US20130303945A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Electromagnetic tip sensor
EP3470003A3 (en) 2012-05-14 2019-04-24 Intuitive Surgical Operations Inc. Systems for deformation compensation using shape sensing
US10039473B2 (en) 2012-05-14 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for navigation based on ordered sensor records
US9429696B2 (en) 2012-06-25 2016-08-30 Intuitive Surgical Operations, Inc. Systems and methods for reducing measurement error in optical fiber shape sensors
US9801551B2 (en) 2012-07-20 2017-10-31 Intuitive Sugical Operations, Inc. Annular vision system
JP6074587B2 (en) 2012-08-06 2017-02-08 株式会社Joled Display panel, display device and electronic device
KR102301021B1 (en) 2012-08-14 2021-09-13 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods for registration of multiple vision systems
CN104736085B (en) 2012-10-12 2018-01-30 直观外科手术操作公司 Determine position of the medicine equipment in branch's anatomical structure
US10588597B2 (en) 2012-12-31 2020-03-17 Intuitive Surgical Operations, Inc. Systems and methods for interventional procedure planning
WO2014150509A1 (en) 2013-03-15 2014-09-25 Intuitive Surgical Operations, Inc. Shape sensor systems for tracking interventional instruments and methods of use
CN114343608A (en) 2013-07-29 2022-04-15 直观外科手术操作公司 Shape sensor system with redundant sensing
JP6562919B2 (en) 2013-08-15 2019-08-21 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for medical treatment confirmation
JP6785656B2 (en) 2013-08-15 2020-11-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Graphical user interface for catheter positioning and insertion
WO2015061756A1 (en) 2013-10-24 2015-04-30 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
KR102337440B1 (en) 2013-12-09 2021-12-10 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods for device-aware flexible tool registration
AU2015204201B2 (en) 2014-01-06 2019-11-28 Body Vision Medical Ltd. Surgical devices and methods of use thereof
JP6688557B2 (en) 2014-01-07 2020-04-28 キヤノンメディカルシステムズ株式会社 X-ray CT system
EP3979210A1 (en) 2014-02-04 2022-04-06 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US20150223765A1 (en) 2014-02-07 2015-08-13 Intuitive Surgical Operations, Inc. Systems and methods for using x-ray field emission to determine instrument position and orientation
WO2015142800A1 (en) 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Surgical system including a non-white light general illuminator
US10912523B2 (en) 2014-03-24 2021-02-09 Intuitive Surgical Operations, Inc. Systems and methods for anatomic motion compensation
JP6359312B2 (en) 2014-03-27 2018-07-18 キヤノンメディカルシステムズ株式会社 X-ray diagnostic equipment
US10555788B2 (en) 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
CN106714724B (en) 2014-07-28 2019-10-25 直观外科手术操作公司 System and method for planning multiple intervention programs
WO2016018646A1 (en) 2014-07-28 2016-02-04 Intuitive Surgical Operations, Inc. Systems and methods for intraoperative segmentation
CN106794011B (en) 2014-08-23 2020-11-27 直观外科手术操作公司 System and method for displaying pathology data in an image-guided procedure
US10373719B2 (en) 2014-09-10 2019-08-06 Intuitive Surgical Operations, Inc. Systems and methods for pre-operative modeling
US10314513B2 (en) 2014-10-10 2019-06-11 Intuitive Surgical Operations, Inc. Systems and methods for reducing measurement error using optical fiber shape sensors
CN110811488B (en) 2014-10-17 2023-07-14 直观外科手术操作公司 System and method for reducing measurement errors using fiber optic shape sensors
WO2016067092A2 (en) 2014-10-20 2016-05-06 Averbuch, Dorian Surgical devices and methods of use thereof
US20170325896A1 (en) 2014-11-13 2017-11-16 Intuitive Surgical Operations, Inc. Systems and methods for filtering localization data
WO2016106114A1 (en) 2014-12-22 2016-06-30 Intuitive Surgical Operations, Inc. Flexible electromagnetic sensor
CN107690302B (en) 2015-04-06 2019-12-24 直观外科手术操作公司 System and method for registration compensation in image-guided surgery
JP6797834B2 (en) 2015-05-22 2020-12-09 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Alignment systems and methods for image-guided surgery
EP3334325A4 (en) 2015-08-14 2019-05-01 Intuitive Surgical Operations Inc. Systems and methods of registration for image-guided surgery
EP3334324B1 (en) 2015-08-14 2021-01-06 Intuitive Surgical Operations Inc. Systems and methods of registration for image-guided surgery
CN108024693B (en) 2015-09-10 2021-07-09 直观外科手术操作公司 System and method for utilizing tracking in image guided medical procedures
JP6824967B2 (en) 2015-09-18 2021-02-03 オーリス ヘルス インコーポレイテッド Tubular net navigation
US10405753B2 (en) 2015-11-10 2019-09-10 Intuitive Surgical Operations, Inc. Pharmaceutical compositions of near IR closed chain, sulfo-cyanine dyes
CN108351295B (en) 2015-12-14 2021-06-29 直观外科手术操作公司 Apparatus and method for generating three-dimensional data of an anatomical target using fiber optic shape sensing
US9996361B2 (en) 2015-12-23 2018-06-12 Intel Corporation Byte and nibble sort instructions that produce sorted destination register and destination index mapping
EP4049612B1 (en) 2016-02-12 2024-04-10 Intuitive Surgical Operations, Inc. System and computer-readable medium storing instructions for registering fluoroscopic images in image-guided surgery
WO2017139591A1 (en) 2016-02-12 2017-08-17 Intuitive Surgical Operations, Inc. Systems and methods of pose estimation and calibration of perspective imaging system in image guided surgery
US10674970B2 (en) 2016-03-10 2020-06-09 Body Vision Medical Ltd. Methods and systems for using multi view pose estimation
US10702137B2 (en) 2016-03-14 2020-07-07 Intuitive Surgical Operations, Inc.. Endoscopic instrument with compliant thermal interface
US20170296679A1 (en) 2016-04-18 2017-10-19 Intuitive Surgical Operations, Inc. Compositions of Near IR Closed Chain, Sulfo-Cyanine Dyes and Prostate Specific Membrane Antigen Ligands
US11266387B2 (en) 2016-06-15 2022-03-08 Intuitive Surgical Operations, Inc. Systems and methods of integrated real-time visualization
EP4238490A3 (en) 2016-06-30 2023-11-01 Intuitive Surgical Operations, Inc. Graphical user interface for displaying guidance information during an image-guided procedure
KR102607065B1 (en) 2016-06-30 2023-11-29 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Graphical user interface for displaying guidance information in a plurality of modes during an image-guided procedure
EP3500150B1 (en) 2016-08-16 2021-10-06 Intuitive Surgical Operations, Inc. Augmented accuracy using large diameter shape fiber
CN109561934B (en) 2016-08-23 2022-03-08 直观外科手术操作公司 System and method for monitoring patient motion during a medical procedure
EP3515281A4 (en) 2016-09-21 2020-05-27 Intuitive Surgical Operations Inc. Systems and methods for instrument buckling detection
EP3518807A4 (en) 2016-09-30 2020-05-27 Intuitive Surgical Operations Inc. Systems and methods for entry point localization
EP3529579B1 (en) 2016-10-21 2021-08-25 Intuitive Surgical Operations, Inc. Shape sensing with multi-core fiber sensor
KR20230031371A (en) 2016-11-02 2023-03-07 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods of continuous registration for image-guided surgery
CN116421309A (en) 2016-12-08 2023-07-14 直观外科手术操作公司 System and method for navigation in image guided medical procedures
WO2018107119A1 (en) 2016-12-09 2018-06-14 Intuitive Surgical Operations, Inc. System and method for distributed heat flux sensing of body tissue
WO2018129532A1 (en) 2017-01-09 2018-07-12 Intuitive Surgical Operations, Inc. Systems and methods for registering elongate devices to three dimensional images in image-guided procedures
US11517184B2 (en) 2017-02-01 2022-12-06 Intuitive Surgical Operations, Inc. Systems and methods of registration for image-guided procedures
CN117717416A (en) 2017-02-01 2024-03-19 直观外科手术操作公司 Registration system and method for image guided surgery
EP3576662A4 (en) 2017-02-01 2020-12-23 Intuitive Surgical Operations Inc. Systems and methods for data filtering of passageway sensor data
WO2018183727A1 (en) 2017-03-31 2018-10-04 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
WO2018195221A1 (en) 2017-04-18 2018-10-25 Intuitive Surgical Operations, Inc. Graphical user interface for planning a procedure
EP3612121A4 (en) 2017-04-18 2021-04-07 Intuitive Surgical Operations, Inc. Graphical user interface for monitoring an image-guided procedure
EP3629882A4 (en) 2017-05-24 2021-05-19 Body Vision Medical Ltd. Methods for using radial endobronchial ultrasound probes for three-dimensional reconstruction of images and improved target localization
EP3641686A4 (en) 2017-06-23 2021-03-24 Intuitive Surgical Operations, Inc. Systems and methods for navigating to a target location during a medical procedure
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
JP7317723B2 (en) 2017-06-28 2023-07-31 オーリス ヘルス インコーポレイテッド Electromagnetic field distortion detection
US11395703B2 (en) 2017-06-28 2022-07-26 Auris Health, Inc. Electromagnetic distortion detection
KR102616535B1 (en) 2017-08-16 2023-12-27 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods for monitoring patient movement during medical procedures
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
EP3684281A4 (en) 2017-12-08 2021-10-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
JP7322026B2 (en) 2017-12-14 2023-08-07 オーリス ヘルス インコーポレイテッド System and method for instrument localization
WO2019125964A1 (en) 2017-12-18 2019-06-27 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
US10885630B2 (en) 2018-03-01 2021-01-05 Intuitive Surgical Operations, Inc Systems and methods for segmentation of anatomical structures for image-guided surgery
US20190298451A1 (en) 2018-03-27 2019-10-03 Intuitive Surgical Operations, Inc. Systems and methods for delivering targeted therapy
US10827913B2 (en) 2018-03-28 2020-11-10 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
CN110891469B (en) 2018-03-28 2023-01-13 奥瑞斯健康公司 System and method for registration of positioning sensors
CN114601559A (en) 2018-05-30 2022-06-10 奥瑞斯健康公司 System and medium for location sensor based branch prediction
EP3801189A4 (en) 2018-05-31 2022-02-23 Auris Health, Inc. Path-based navigation of tubular networks
MX2020012904A (en) 2018-05-31 2021-02-26 Auris Health Inc Image-based airway analysis and mapping.
JP2021529637A (en) 2018-08-01 2021-11-04 ソニー・インタラクティブエンタテインメント エルエルシー Player-triggered counterbalance of loads on characters in virtual environment
US11080902B2 (en) 2018-08-03 2021-08-03 Intuitive Surgical Operations, Inc. Systems and methods for generating anatomical tree structures
JP2021533906A (en) 2018-08-13 2021-12-09 ボディ・ビジョン・メディカル・リミテッドBody Vision Medical Ltd. Methods and systems for multi-view attitude estimation using digital computer tomography
US11896316B2 (en) 2018-08-23 2024-02-13 Intuitive Surgical Operations, Inc. Systems and methods for generating anatomic tree structures using backward pathway growth
US11637378B2 (en) 2018-11-02 2023-04-25 Intuitive Surgical Operations, Inc. Coiled dipole antenna
US11633623B2 (en) 2019-04-19 2023-04-25 University Of Maryland, Baltimore System and method for radiation therapy using spatial-functional mapping and dose sensitivity of branching structures and functional sub-volumes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086051A1 (en) * 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US20080118135A1 (en) * 2006-11-10 2008-05-22 Superdimension, Ltd. Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3058889A1 (en) * 2011-05-13 2016-08-24 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
US11678813B2 (en) 2012-05-14 2023-06-20 Intuitive Surgical Operations, Inc. Systems and methods for deformation compensation using shape sensing
KR20150017327A (en) * 2012-05-14 2015-02-16 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods for deformation compensation using shape sensing
CN104427952A (en) * 2012-05-14 2015-03-18 直观外科手术操作公司 Systems and methods for deformation compensation using shape sensing
EP2849669A4 (en) * 2012-05-14 2016-08-10 Intuitive Surgical Operations Systems and methods for deformation compensation using shape sensing
WO2013173229A1 (en) 2012-05-14 2013-11-21 Intuitive Surgical Operations Systems and methods for deformation compensation using shape sensing
KR102171520B1 (en) * 2012-05-14 2020-10-29 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods for deformation compensation using shape sensing
US11026594B2 (en) 2012-05-14 2021-06-08 Intuitive Surgical Operations, Inc. Systems and methods for deformation compensation using shape sensing
CN104427952B (en) * 2012-05-14 2018-06-12 直观外科手术操作公司 For the deformation-compensated system and method that shape is used to sense
US10085671B2 (en) 2012-05-14 2018-10-02 Intuitive Surgical Operations, Inc. Systems and methods for deformation compensation using shape sensing
WO2014068106A1 (en) * 2012-11-05 2014-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Imaging system, operating device with the imaging system and method for imaging
US11786311B2 (en) 2014-02-04 2023-10-17 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US11376075B2 (en) 2014-02-04 2022-07-05 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US10314656B2 (en) 2014-02-04 2019-06-11 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US10966790B2 (en) 2014-02-04 2021-04-06 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US10499993B2 (en) 2014-02-04 2019-12-10 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
CN106170265B (en) * 2014-02-04 2020-06-30 直观外科手术操作公司 System and method for non-rigid deformation of tissue for virtual navigation of interventional tools
CN106170265A (en) * 2014-02-04 2016-11-30 直观外科手术操作公司 The system and method for non-rigid deformation of tissue for the virtual navigation of intervention tool
EP3081184A1 (en) * 2015-04-17 2016-10-19 Clear Guide Medical, Inc. System and method for fused image based navigation with late marker placement
US11065059B2 (en) 2016-11-02 2021-07-20 Intuitive Surgical Operations, Inc. Systems and methods of continuous registration for image-guided surgery
US11583353B2 (en) 2016-11-02 2023-02-21 Intuitive Surgical Operations, Inc. Systems and methods of continuous registration for image-guided surgery
WO2018085287A1 (en) * 2016-11-02 2018-05-11 Intuitive Surgical Operations, Inc. Systems and methods of continuous registration for image-guided surgery
US11864856B2 (en) 2016-11-02 2024-01-09 Intuitive Surgical Operations, Inc. Systems and methods of continuous registration for image-guided surgery
US10314658B2 (en) 2017-04-21 2019-06-11 Biosense Webster (Israel) Ltd. Registration of an anatomical image with a position-tracking coordinate system based on visual proximity to bone tissue
CN108720924A (en) * 2017-04-21 2018-11-02 韦伯斯特生物官能(以色列)有限公司 Based on improving being registrated for anatomic image and position tracking coordinate system to the vision degree of approach of bone tissue
EP3392835A1 (en) * 2017-04-21 2018-10-24 Biosense Webster (Israel) Ltd. Improving registration of an anatomical image with a position-tracking coordinate system based on visual proximity to bone tissue

Also Published As

Publication number Publication date
EP3485798A3 (en) 2019-10-16
US11931141B2 (en) 2024-03-19
EP2293839A1 (en) 2011-03-16
US20100034449A1 (en) 2010-02-11
EP2293839A4 (en) 2017-03-01
US8218847B2 (en) 2012-07-10
EP3485798A2 (en) 2019-05-22
US8452068B2 (en) 2013-05-28
US9271803B2 (en) 2016-03-01
US20120044334A1 (en) 2012-02-23
US10478092B2 (en) 2019-11-19
US20160174874A1 (en) 2016-06-23
US8467589B2 (en) 2013-06-18
EP2293839B1 (en) 2019-01-30
US10674936B2 (en) 2020-06-09
US20190223760A1 (en) 2019-07-25
US20190388005A1 (en) 2019-12-26
EP3485798B1 (en) 2023-12-27
US10285623B2 (en) 2019-05-14
US20200268277A1 (en) 2020-08-27
US20130245432A1 (en) 2013-09-19
US20120050513A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US11931141B2 (en) Hybrid registration method
US11783498B2 (en) Feature-based registration method
CN102843972B (en) For the image registration based on instrument that image and tubular structure are merged
US20220092791A1 (en) Methods for the Segmentation of Lungs, Lung Vasculature and Lung Lobes from CT Data and Clinical Applications
KR20140096919A (en) Method and Apparatus for medical image registration
EP4271305A1 (en) Systems for image-based registration and associated methods
US20240050160A1 (en) Systems for dynamic image-based localization and associated methods
US20230000461A1 (en) Ultrasound slice enhancement
CN117015803A (en) Image-based seeding for registration and related systems and methods
WO2023232678A1 (en) Navigation in hollow anatomical structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009758027

Country of ref document: EP