WO2009129217A2 - Methods for driving electro-optic displays - Google Patents

Methods for driving electro-optic displays Download PDF

Info

Publication number
WO2009129217A2
WO2009129217A2 PCT/US2009/040473 US2009040473W WO2009129217A2 WO 2009129217 A2 WO2009129217 A2 WO 2009129217A2 US 2009040473 W US2009040473 W US 2009040473W WO 2009129217 A2 WO2009129217 A2 WO 2009129217A2
Authority
WO
WIPO (PCT)
Prior art keywords
display
drive scheme
electro
fluid
optic
Prior art date
Application number
PCT/US2009/040473
Other languages
French (fr)
Other versions
WO2009129217A3 (en
Inventor
Theodore A. Sjodin
Original Assignee
E Ink Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation filed Critical E Ink Corporation
Priority to CN200980113104.0A priority Critical patent/CN102027528B/en
Priority to JP2011504241A priority patent/JP2011520137A/en
Publication of WO2009129217A2 publication Critical patent/WO2009129217A2/en
Publication of WO2009129217A3 publication Critical patent/WO2009129217A3/en
Priority to HK11106617.7A priority patent/HK1152582A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A bistable electro-optic display having a plurality of pixels each of which is capable of displaying at least three optical states, including two extreme optical states, is driven by the method comprising a first drive scheme capable of effecting transitions between all of the gray levels which can be displayed by the pixels; and a second drive scheme which contains only transitions ending at one of the extreme optical states of the pixels.

Description

METHODS FOR DRIVING ELECTRO-OPTIC DISPLAYS
[Para 1] This application is related to:
(a) U.S. Patent No. 6,504,524;
(b) .U.S. Patent No. 6,512,354;
(c) U.S. Patent No. 6,531,997;
(d) U.S. Patent No. 6,995,550;
(e) U.S. Patents Nos. 7,012,600 and 7,312,794, and the related Patent Publications Nos. 2006/0139310 and 2006/0139311;
(f) U.S. Patent No. 7,034,783;
(g) U.S. Patent No. 7,193,625; (h) U.S. Patent No. 7,259,744;
(i) U.S. Patent Publication No. 2005/0024353;
G) U.S. Patent Publication No. 2005/0179642;
(k) U.S. Patent No. 7,492,339;
(1) U.S. Patent No. 7,327,511;
(m) U.S. Patent Publication No. 2005/0152018;
(n) U.S. Patent Publication No. 2005/0280626;
(o) U.S. Patent Publication No. 2006/0038772;
(p) U.S. Patent No. 7,453,445;
(q) U.S. Patent Publication No. 2008/0024482;
(r) U.S. Patent Publication No. 2008/0048969;
(s) U.S. Patent No. 7,119,772 and
(t) U.S. Patent Publication No. 2008/0129667.
[Para 2] The aforementioned patents and applications may hereinafter for convenience collectively be referred to as the "MEDEOD" (MEthods for Driving Electro-Optic Displays) applications.
[Para 3] The background nomenclature and state of the art regarding electro-optic displays is discussed at length in U.S. Patent No. 7,012,600 to which the reader is referred for further information. Accordingly, this nomenclature and state of the art will be briefly summarized below.
[Para 4] The present invention relates to methods for driving electro-optic displays, especially bistable electro-optic displays, and to apparatus for use in such methods. More specifically, this invention relates to driving methods which allow for rapid response of the display to user input. This invention is especially, but not exclusively, intended for use with particle-based electrophoretic displays in which one or more types of electrically charged particles are present in a fluid and are moved through the fluid under the influence of an electric field to change the appearance of the display.
[Para 5] The term "electro-optic", as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
[Para 6] The term "gray state" is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate "gray state" would actually be pale blue. Indeed, as already mentioned the transition between the two extreme states may not be a color change at all.
[Para 7] The terms "bistable" and "bistability" are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element.
[Para 8] The term "impulse" is used herein in its conventional meaning of the integral of voltage with respect to time. However, some bistable electro-optic media act as charge transducers, and with such media an alternative definition of impulse, namely the integral of current over time (which is equal to the total charge applied) may be used. The appropriate definition of impulse should be used, depending on whether the medium acts as a voltage- time impulse transducer or a charge impulse transducer. [Para 9] Much of the discussion below will focus on methods for driving one or more pixels of an electro-optic display through a transition from an initial gray level to a final gray level (which may or may not be different from the initial gray level). The term "waveform" will be used to denote the entire voltage against time curve used to effect the transition from one specific initial gray level to a specific final gray level. Typically such a waveform will comprise a plurality of waveform elements; where these elements are essentially rectangular (i.e., where a given element comprises application of a constant voltage for a period of time); the elements may be called "pulses" or "drive pulses". The term "drive scheme" denotes a set of waveforms sufficient to effect all possible transitions between gray levels for a specific display. [Para 10] Several types of electro-optic displays are known, for example:
(a) rotating bichromal member displays (see, for example, U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791);
(b) electrochromic displays (see, for example, O'Regan, B., et al., Nature 1991, 353, 737; Wood, D., Information Display, 18(3), 24 (March 2002); Bach, U., et al., Adv. Mater., 2002, 14(11), 845; and U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220);
(c) electro-wetting displays (see Hayes, R.A., et al., "Video-Speed Electronic Paper Based on Electrowetting", Nature, 425, 383-385 (25 September 2003) and U.S. Patent Publication No. 2005/0151709);
[Para 11] (d) particle-based electrophoretic displays, in which a plurality of charged particles move through a fluid under the influence of an electric field (see U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; and 6,130,774; U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2003/0011560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0014265; 2004/0075634; 2004/0094422; 2004/0105036; 2005/0062714; and 2005/0270261; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 Bl; and 1,145,072 Bl; and the other MIT and E Ink patents and applications discussed in the aforementioned U.S. Patent No. 7,012,600).
[Para 12] There are several different variants of electrophoretic media. Electrophoretic media can use liquid or gaseous fluids; for gaseous fluids see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4); U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. The media may be encapsulated, comprising numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes; see the aforementioned MIT and E Ink patents and applications. Alternatively, the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium may be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material; see for example, U.S. Patent No. 6,866,760. For purposes of the present application, such polymer- dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media. Another variant is a so-called "microcell electrophoretic display" in which the charged particles and the fluid are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film; see, for example, U.S. Patents Nos. 6,672,921 and 6,788,449.
[Para 13] An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word "printing" is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively. [Para 14] Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346.
[Para 15] The bistable or multi-stable behavior of particle-based electrophoretic displays, and other electro-optic displays displaying similar behavior (such displays may hereinafter for convenience be referred to as "impulse driven displays"), is in marked contrast to that of conventional liquid crystal ("LC") displays. Twisted nematic liquid crystals are not bi- or multi-stable but act as voltage transducers, so that applying a given electric field to a pixel of such a display produces a specific gray level at the pixel, regardless of the gray level previously present at the pixel. Furthermore, LC displays are only driven in one direction (from non-transmissive or "dark" to transmissive or "light"), the reverse transition from a lighter state to a darker one being effected by reducing or eliminating the electric field. Finally, the gray level of a pixel of an LC display is not sensitive to the polarity of the electric field, only to its magnitude, and indeed for technical reasons commercial LC displays usually reverse the polarity of the driving field at frequent intervals. In contrast, bistable electro-optic displays act, to a first approximation, as impulse transducers, so that the final state of a pixel depends not only upon the electric field applied and the time for which this field is applied, but also upon the state of the pixel prior to the application of the electric field. [Para 16] Whether or not the electro-optic medium used is bistable, to obtain a high- resolution display, individual pixels of a display must be addressable without interference from adjacent pixels. One way to achieve this objective is to provide an array of non-linear elements, such as transistors or diodes, with at least one non-linear element associated with each pixel, to produce an "active matrix" display. An addressing or pixel electrode, which addresses one pixel, is connected to an appropriate voltage source through the associated nonlinear element. Typically, when the non-linear element is a transistor, the pixel electrode is connected to the drain of the transistor, and this arrangement will be assumed in the following description, although it is essentially arbitrary and the pixel electrode could be connected to the source of the transistor. Conventionally, in high resolution arrays, the pixels are arranged in a two-dimensional array of rows and columns, such that any specific pixel is uniquely defined by the intersection of one specified row and one specified column. The sources of all the transistors in each column are connected to a single column electrode, while the gates of all the transistors in each row are connected to a single row electrode; again the assignment of sources to rows and gates to columns is conventional but essentially arbitrary, and could be reversed if desired. The row electrodes are connected to a row driver, which essentially ensures that at any given moment only one row is selected, i.e., that there is applied to the selected row electrode a voltage such as to ensure that all the transistors in the selected row are conductive, while there is applied to all other rows a voltage such as to ensure that all the transistors in these non-selected rows remain non-conductive. The column electrodes are connected to column drivers, which place upon the various column electrodes voltages selected to drive the pixels in the selected row to their desired optical states. (The aforementioned voltages are relative to a common front electrode which is conventionally provided on the opposed side of the electro-optic medium from the non-linear array and extends across the whole display.) After a pre-selected interval known as the "line address time" the selected row is deselected, the next row is selected, and the voltages on the column drivers are changed so that the next line of the display is written. This process is repeated so that the entire display is written in a row-by-row manner.
[Para 17] It might at first appear that the ideal method for addressing such an impulse- driven electro-optic display would be so-called "general grayscale image flow" in which a controller arranges each writing of an image so that each pixel transitions directly from its initial gray level to its final gray level. However, inevitably there is some error in writing images on an impulse-driven display. Some such errors encountered in practice include:
(a) Prior State Dependence; With at least some electro-optic media, the impulse required to switch a pixel to a new optical state depends not only on the current and desired optical state, but also on the previous optical states of the pixel.
(b) Dwell Time Dependence; With at least some electro-optic media, the impulse required to switch a pixel to a new optical state depends on the time that the pixel has spent in its various optical states. The precise nature of this dependence is not well understood, but in general, more impulse is required the longer the pixel has been in its current optical state. (c) Temperature Dependence; The impulse required to switch a pixel to a new optical state depends heavily on temperature.
(d) Humidity Dependence; The impulse required to switch a pixel to a new optical state depends, with at least some types of electro-optic media, on the ambient humidity.
(e) Mechanical Uniformity; The impulse required to switch a pixel to a new optical state may be affected by mechanical variations in the display, for example variations in the thickness of an electro-optic medium or an associated lamination adhesive. Other types of mechanical non-uniformity may arise from inevitable variations between different manufacturing batches of medium, manufacturing tolerances and materials variations.
(f) Voltage Errors; The actual impulse applied to a pixel will inevitably differ slightly from that theoretically applied because of unavoidable slight errors in the voltages delivered by drivers.
[Para 18] General grayscale image flow suffers from an "accumulation of errors" phenomenon. For example, imagine that temperature dependence results in a 0.2 L* (where L* has the usual CIE definition:
L* = 116(R/Ro)1/3 - 16, where R is the reflectance and Ro is a standard reflectance value) error in the positive direction on each transition. After fifty transitions, this error will accumulate to 10 L*. Perhaps more realistically, suppose that the average error on each transition, expressed in terms of the difference between the theoretical and the actual reflectance of the display is ± 0.2 L*. After 100 successive transitions, the pixels will display an average deviation from their expected state of 2 L*; such deviations are apparent to the average observer on certain types of images.
[Para 19] This accumulation of errors phenomenon applies not only to errors due to temperature, but also to errors of all the types listed above. As described in the aforementioned U.S. Patent No. 7,012,600, compensating for such errors is possible, but only to a limited degree of precision. For example, temperature errors can be compensated by using a temperature sensor and a lookup table, but the temperature sensor has a limited resolution and may read a temperature slightly different from that of the electro-optic medium. Similarly, prior state dependence can be compensated by storing the prior states and using a multi-dimensional transition matrix, but controller memory limits the number of states that can be recorded and the size of the transition matrix that can be stored, placing a limit on the precision of this type of compensation.
[Para 20] Thus, general grayscale image flow requires very precise control of applied impulse to give good results, and empirically it has been found that, in the present state of the technology of electro-optic displays, general grayscale image flow is infeasible in a commercial display.
[Para 21] Under some circumstances, it may be desirable for a single display to make use of multiple drive schemes. For example, a display capable of more than two gray levels may make use of a gray scale drive scheme ("GSDS") which can effect transitions between all possible gray levels, and a monochrome drive scheme ("MDS") which effects transitions only between two gray levels, the MDS providing quicker rewriting of the display that the GSDS. The MDS is used when all the pixels which are being changed during a rewriting of the display are effecting transitions only between the two gray levels used by the MDS. For example, the aforementioned U.S. Patent No. 7,119,772 describes a display in the form of an electronic book or similar device capable of displaying gray scale images and also capable of displaying a monochrome dialogue box which permits a user to enter text relating to the displayed images. When the user is entering text, a rapid MDS is used for quick updating of the dialogue box, thus providing the user with rapid confirmation of the text being entered. On the other hand, when the entire gray scale image shown on the display is being changed, a slower GSDS is used.
[Para 22] More specifically, present electrophoretic displays have an update time of approximately 700-900 milliseconds in grayscale mode, and 200-300 milliseconds in monochrome mode. For updates of the display required by user input, it is desirable to have a fast update, especially for interactive applications, such as drawing on the display using a stylus and a touch sensor, typing on a keyboard, menu selection, and scrolling of text or a cursor. Prior at electrophoretic displays are thus limited in interactive applications. Accordingly, it is desirable to provide drive means and a corresponding driving method which provides a combination of drive schemes that allow a portion of the display (for example, the portion lying beneath the track of a stylus to be updated with a rapid drive scheme.
[Para 23] Accordingly, in one aspect this invention provides a method of driving a bistable electro-optic display having a plurality of pixels each of which is capable of displaying at least three optical states, including two extreme optical states, the method comprising: driving the electro-optic display using a first drive scheme capable of effecting transitions between all of the gray levels which can be displayed by the pixels; and driving the electro-optic display using a second drive scheme which contains only transitions ending at one of the extreme optical states of the pixels. [Para 24] This method of the present invention may hereinafter for convenience be called the "double drive scheme" or DDS method of the present invention. As will readily be apparent from the foregoing discussion, the second drive scheme in this method is intended to be invoked when the display is to accept input from a stylus, pen, keyboard, mouse or similar input device. The maximum transition time of the second drive scheme will be typically be substantially shorter than that of the first. The second drive scheme desirably comprises a "direct" drive scheme where the waveform for each (non-zero) transition of the second drive scheme is defined as the first impulse between the initial and final states as defined by the first drive scheme.
[Para 25] This invention extends to a display controller or display arranged to carry out the DDS method of the present invention. The second drive scheme may if desired be modified to include some transitions which do not end at one of the extreme optical states of the pixels. [Para 26] The displays of the present invention may make use of any of the types of bistable electro-optic media described above. Thus, for example, the displays may use a rotating bichromal member or electrochromic material, or an electrophoretic material comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid under the influence of an electric field. In such an electrophoretic material the electrically charged particles and the fluid are confined within a plurality of capsules or microcells. Alternatively, the electrically charged particles and the fluid may be present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material. The fluid may be liquid or gaseous. An electrophoretic medium may comprise a single type of electrophoretic in a dyed fluid, or two differing types of electrophoretic particles having differing electrophoretic mobilities in an undyed fluid. [Para 27] The displays of the present invention may be used in any application in which prior art electro-optic displays have been used. Thus, for example, the present displays may be used in electronic book readers, portable computers, tablet computers, cellular telephones, smart cards, signs, watches, shelf labels and flash drives.
[Para 28] Figure 1 illustrates a 3 -bit (8 gray level) grayscale drive scheme which can be used in the method of the present invention. [Para 29] Figure 2 illustrates the non-zero waveforms of a first 4-bit (16 gray level) direct update drive scheme which can be used in the method of the present invention. [Para 30] Figure 3 illustrates the non-zero waveforms of a second 4-bit (16 gray level) direct update drive scheme which can be used in the method of the present invention. [Para 31] Figure 4 illustrates a method of the present invention being used to draw black or white lines over an existing gray scale image.
[Para 32] Figures 5A and 5B illustrate the improvements in consistency of gray levels which can be achieved by incorporating balanced pulse pairs into a direct update drive scheme of the present invention.
[Para 33] Figure 6 illustrates the non-zero waveforms of a 3 -bit direct update drive scheme which can be used in the method of the present invention.
[Para 34] Figure 7 illustrates a 4-bit projection (as explained below) of the 3 -bit drive scheme of Figure 6.
[Para 35] As already indicated, this invention provides a method of driving a multi-pixel bistable electro-optic display. This method uses a first drive scheme capable of effecting transitions between all of the gray levels which can be displayed by the pixels; and a second drive scheme which contains only transitions ending at one of the extreme optical states of the pixels. The second drive scheme is intended to allow for rapid response of the display to user input, for example the user "writing" with a stylus on a display which incorporates a touch screen; note that such a touch screen may lie in front of or behind the electro-optic medium from the perspective of the user.
[Para 36] A standard gray scale drive scheme, such as may be used as the first drive scheme in this method, has an update time that is two to three times the length of a "saturation pulse" where a saturation pulse is defined as the pulse having the duration required to apply an impulse that will drive the display from one extreme optical state ("optical rail") to the other (i.e. black to white or white to black). The second, fast drive scheme can have an update time identical to the length of the saturation pulse. The fast drive scheme may consist of a "direct" drive scheme where, for each transition, a constant voltage is applied for a period sufficient to apply the direct impulse between the initial and final states as defined by the standard gray scale drive scheme.
[Para 37] However, it has been found that such a direct drive scheme produces large gray level errors (typically 3 to 10 L* units, where L* has the usual CIE definition) due the prior- state dependence of the electro-optic medium and other issues, as discussed in detail in the aforementioned MEDEOD applications. Adjusting the impulses for each waveform can reduce these errors. Adding find tuning of "FT" sequences as discussed in U.S. Patent Publication No. 2006/0232531, Paragraphs [0355] et seq. can further reduce the error. The length of such FT sequences should be shorter than the saturation pulse length plus the direct impulse length. The presently preferred drive schemes typically contain both adjusted impulse and FT sequences; an example is shown in Figure 1 of the accompanying drawings. Figure 1 shows a typical 3 -bit (8 gray level) drive scheme. Each waveform is 13 frames long, and each frame is 20 milliseconds long, giving the total update time of 260 ms. This is much faster than the standard gray scale update time, which is 780 ms. The leading diagonal elements contain only 0 V so pixels that do not change between initial and final states do not change optical reflectance, i.e., this is a local update drive scheme. This drive scheme is DC imbalanced, as can be seen by looking at simple closed loops such as 2 → 1 → 2; the net impulse applied during this closed loop is +4 frames. The Table below sets out the DC imbalance for single loops for each element of the drive scheme on a per frame basis. A DC balanced transition scheme has a net impulse of zero for any closed loop. It has been found that DC imbalanced driving has a negative impact on display reliability when used continuously and is recommended that DC imbalanced drive schemes be used only occasionally. [Para 38] Table
Figure imgf000012_0001
[Para 39] Figure 1 illustrates FT sequences in waveforms [8 → 5] and [8 → 6]. In waveform [8 → 5] an FT sequence of (+ -) has been added to the direct impulse sequence of (++). In waveform [8 → 6] an FT sequence of (-) has been added to (++). The FT sequences reduced gray level errors.
[Para 40] A preferred form of this invention consists of a suite of drive schemes where one is a standard gray scale drive scheme and other is a fast (typically about 260 ms) drive scheme, hereinafter called "direct update" or "DU" drive scheme or mode. It has been found that for a DC balanced drive scheme consisting of a direct impulse structure with FT sequence added to reduce gray tone error to less than 1 L* the longest waveforms are those for transitions between intermediate gray levels (i.e., gray levels other than black and white). The longest waveforms are typically much longer that the saturation pulse. This type of waveform is not desirable for interactive applications. Accordingly, it has been found advantageous to provide drive schemes that only contain transitions from all gray levels (including black and white) to black or white. In such DU drive schemes, all waveforms that do not have a final state of black or white (states 1 and 16 in 4-bit grayscale, states 1 and 8 in 3 -bit and states 1 and 4 in 2-bit) consist of only 0 frames, as illustrated in Figure 2, which shows a 4-bit DU drive scheme created by making, for each transitions ending in black or white, a direct waveform with impulses as defined by the standard gray level drive scheme. The drive scheme shown in Figure 2 is DC balanced with the standard gray level drive scheme. All waveforms with final state not white or black consist only of 0 V frames. This limits the application of the DU mode to apply to cases where the final states of all pixels are to be black or white. Examples of this including using a touch sensor to draw white or black lines over grayscale images, or mono text input over gray scale images. An illustration of such an application is shown in Figure 4, where in Sections 2 and 3 white and black lines are written over a gray scale image, and in Section 4, where the whole display is written to white. [Para 41] The DU drive scheme may also be varied by adding balanced pulse pairs (i.e., pairs of pulses of equal impulse but opposite polarity, as described in several of the aforementioned MEDEOD applications), for example ( +-) or (-+) at the start of the direct impulse. Examples of balanced pulse pairs are (+-, ++-- , +++— , etc.). The length of the balance pulse pairs and the direct impulse cannot exceed the length of the saturation pulse. An example of this type of DU drive scheme is shown in Figure 3. The addition of balanced pulse pairs has been shown to reduce gray level errors while preserving DC balance between the standard gray level drive scheme and the DU drive scheme, as shown in Figures 5A and 5B, where the same test as in Figure 4 has been applied in two cases, and a picture of the display at the end of the test is shown. In Figure 5A the test was conducted using the DU drive scheme as shown in Figure 2 and in Figure 5B the test was conducted using the drive scheme shown in Figure 3, with reduced gray level error compared with Figure 5 A. The DU drive scheme may also include periods of zero voltage between periods of non-zero voltage. [Para 42] Since most controllers are designed for 4-bit operation, it has been found advantageous to make 2-bit and 3 -bit gray level drive schemes and then project them into a 4- bit representation, as shown in Figures 6 and 7. A typical 3-bit DU transition scheme is shown in Figure 6. For controllers, where the look-up tables are 4-bit in size, we have found it advantageous to fill the 16 state lookup table using the following rule for states 3-bit [1 -8] to 4-bit [1—16]: fill states according to [1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8], and for 2-bit [1-4] to 4- bit [1-16], fill states according to [1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4]. An example of such filling for 3-bit is shown in Figure 7, which shows a 3-bit transition scheme in 4-bit projection. [Para 43] From the foregoing, it will be seen that the double drive scheme method of the present invention can provide faster updates for electro-optic, and especially electrophoretic, displays, and thus allows device designers to make more interactive applications, thus increasing the usefulness of devices containing such displays.

Claims

1. A method of driving a bistable electro-optic display having a plurality of pixels each of which is capable of displaying at least three optical states, including two extreme optical states, the method comprising: driving the electro-optic display using a first drive scheme capable of effecting transitions between all of the gray levels which can be displayed by the pixels; and driving the electro-optic display using a second drive scheme which contains only transitions ending at one of the extreme optical states of the pixels.
2. A method according to claim 1 wherein, for each transition of the second drive scheme, a constant voltage is applied for a period sufficient to apply the direct impulse between the initial and final states of the pixel being driven.
3. A method according to claim 1 wherein at least one transition of the second waveform incorporates a pair of pulses of equal impulse but opposite polarity.
4. A method according to claim 1 wherein at least one transition of the second waveform incorporates a period of zero voltage between two periods of non-zero voltage.
5. A method according to claim 1 wherein the second drive scheme is DC balanced with the first drive scheme.
6. A method according to claim 1 wherein the second drive scheme is used to draw black or white lines or monochrome text input over grayscale images.
7. A display controller or display arranged to carry out the method of claim 1.
8. A display according to claim 7 having a touch sensor.
9. A display according to claim 7 comprising a rotating bichromal member or electrochromic material.
10. A display according to claim 7 comprising an electrophoretic material comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid under the influence of an electric field.
11. A display according to claim 10 wherein the electrically charged particles and the fluid are confined within a plurality of capsules or microcells.
12. A display according to claim 11 wherein the electrophoretic material comprises a single type of electrophoretic particles in a dyed fluid confined with microcells.
13. A electro-optic display according to claim 10 wherein the electrically charged particles and the fluid are present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material.
14. A display according to claim 10 wherein the fluid is gaseous.
15. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive incorporating a display according to claim 7.
PCT/US2009/040473 2008-04-14 2009-04-14 Methods for driving electro-optic displays WO2009129217A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980113104.0A CN102027528B (en) 2008-04-14 2009-04-14 Methods for driving electro-optic displays
JP2011504241A JP2011520137A (en) 2008-04-14 2009-04-14 Method for driving an electro-optic display
HK11106617.7A HK1152582A1 (en) 2008-04-14 2011-06-28 Methods for driving electro-optic displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4458408P 2008-04-14 2008-04-14
US61/044,584 2008-04-14

Publications (2)

Publication Number Publication Date
WO2009129217A2 true WO2009129217A2 (en) 2009-10-22
WO2009129217A3 WO2009129217A3 (en) 2010-02-25

Family

ID=41199680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/040473 WO2009129217A2 (en) 2008-04-14 2009-04-14 Methods for driving electro-optic displays

Country Status (5)

Country Link
US (1) US9672766B2 (en)
JP (4) JP2011520137A (en)
CN (1) CN102027528B (en)
HK (1) HK1152582A1 (en)
WO (1) WO2009129217A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531804A (en) * 2010-04-09 2013-08-08 イー インク コーポレイション Method for driving an electro-optic display
TWI474303B (en) * 2011-09-12 2015-02-21 Sipix Imaging Inc Driving system for electrophoretic displays
US9514667B2 (en) 2011-09-12 2016-12-06 E Ink California, Llc Driving system for electrophoretic displays

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
AU5094699A (en) 1998-07-08 2000-02-01 E-Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US7030854B2 (en) 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7223672B2 (en) 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
TWI484273B (en) 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US9390661B2 (en) 2009-09-15 2016-07-12 E Ink California, Llc Display controller system
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US20130271813A1 (en) 2012-04-17 2013-10-17 View, Inc. Controller for optically-switchable windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US10690540B2 (en) 2015-10-06 2020-06-23 View, Inc. Multi-sensor having a light diffusing element around a periphery of a ring of photosensors
US9620066B2 (en) 2010-02-02 2017-04-11 E Ink Corporation Method for driving electro-optic displays
EP2553522B1 (en) 2010-04-02 2016-03-23 E-Ink Corporation Electrophoretic media
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
KR101721889B1 (en) 2010-08-06 2017-03-31 삼성전자주식회사 Active matrix organic light-emitting diode display device, and display control method thereof
US8705162B2 (en) 2012-04-17 2014-04-22 View, Inc. Controlling transitions in optically switchable devices
US11054792B2 (en) 2012-04-13 2021-07-06 View, Inc. Monitoring sites containing switchable optical devices and controllers
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
GB201117268D0 (en) * 2011-10-06 2011-11-16 Samsung Lcd Nl R & D Ct Bv Display device
CN106930675B (en) 2011-10-21 2019-05-28 唯景公司 Mitigate the thermal shock in pigmentable window
CA2863425C (en) 2012-02-01 2021-02-16 E Ink Corporation Methods for driving electro-optic displays
US11030936B2 (en) 2012-02-01 2021-06-08 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
JP5982927B2 (en) 2012-03-26 2016-08-31 セイコーエプソン株式会社 Electro-optical device control method, electro-optical device control device, electro-optical device, and electronic apparatus
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
EP2837205B1 (en) 2012-04-13 2017-02-15 View, Inc. Applications for controlling optically switchable devices
US11300848B2 (en) 2015-10-06 2022-04-12 View, Inc. Controllers for optically-switchable devices
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US9513743B2 (en) * 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
US10282033B2 (en) 2012-06-01 2019-05-07 E Ink Corporation Methods for updating electro-optic displays when drawing or writing on the display
JP6019882B2 (en) 2012-07-25 2016-11-02 セイコーエプソン株式会社 Electro-optical device control method, electro-optical device control device, electro-optical device, and electronic apparatus
US10037735B2 (en) 2012-11-16 2018-07-31 E Ink Corporation Active matrix display with dual driving modes
CN103824540B (en) * 2012-11-19 2017-06-27 联想(北京)有限公司 A kind of display methods and electronic equipment
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US9721495B2 (en) 2013-02-27 2017-08-01 E Ink Corporation Methods for driving electro-optic displays
CN105190740B (en) 2013-03-01 2020-07-10 伊英克公司 Method for driving electro-optic display
TWI554814B (en) 2013-05-14 2016-10-21 電子墨水股份有限公司 Colored electrophoretic displays
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US9620048B2 (en) * 2013-07-30 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
ES2946753T3 (en) 2013-07-31 2023-07-25 E Ink Corp Methods for driving electro-optical displays
US10726760B2 (en) 2013-10-07 2020-07-28 E Ink California, Llc Driving methods to produce a mixed color state for an electrophoretic display
TWI550332B (en) 2013-10-07 2016-09-21 電子墨水加利福尼亞有限責任公司 Driving methods for color display device
US10380931B2 (en) 2013-10-07 2019-08-13 E Ink California, Llc Driving methods for color display device
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
CN112627704A (en) 2014-03-05 2021-04-09 唯景公司 Monitoring a site containing a switchable optical device and a controller
US10657869B2 (en) 2014-09-10 2020-05-19 E Ink Corporation Methods for driving color electrophoretic displays
KR102061435B1 (en) 2014-09-10 2019-12-31 이 잉크 코포레이션 Colored electrophoretic displays
KR102229488B1 (en) 2014-09-26 2021-03-17 이 잉크 코포레이션 Color sets for low resolution dithering in reflective color displays
CA2963561A1 (en) 2014-11-07 2016-05-12 E Ink Corporation Applications of electro-optic displays
US10197883B2 (en) 2015-01-05 2019-02-05 E Ink Corporation Electro-optic displays, and methods for driving same
KR102046289B1 (en) 2015-01-05 2019-12-02 이 잉크 코포레이션 Electro-optic displays, and methods for driving same
CN107111990B (en) 2015-01-30 2020-03-17 伊英克公司 Font control for electro-optic displays and related devices and methods
EP3254275B1 (en) 2015-02-04 2023-07-12 E Ink Corporation Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods
WO2016126771A1 (en) * 2015-02-04 2016-08-11 E Ink Corporation Electro-optic displays with reduced remnant voltage, and related apparatus and methods
CN112750407B (en) 2015-04-27 2023-11-07 伊英克公司 Electro-optic display
US10997930B2 (en) 2015-05-27 2021-05-04 E Ink Corporation Methods and circuitry for driving display devices
US10040954B2 (en) 2015-05-28 2018-08-07 E Ink California, Llc Electrophoretic medium comprising a mixture of charge control agents
TWI746446B (en) 2015-07-07 2021-11-21 美商唯景公司 Viewcontrol methods for tintable windows
US11087644B2 (en) 2015-08-19 2021-08-10 E Ink Corporation Displays intended for use in architectural applications
US10388233B2 (en) 2015-08-31 2019-08-20 E Ink Corporation Devices and techniques for electronically erasing a drawing device
US10803813B2 (en) 2015-09-16 2020-10-13 E Ink Corporation Apparatus and methods for driving displays
US11657774B2 (en) 2015-09-16 2023-05-23 E Ink Corporation Apparatus and methods for driving displays
JP6871241B2 (en) 2015-09-16 2021-05-12 イー インク コーポレイション Devices and methods for driving displays
PT3359622T (en) 2015-10-06 2021-03-04 E Ink Corp Improved low-temperature electrophoretic media
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US10062337B2 (en) 2015-10-12 2018-08-28 E Ink California, Llc Electrophoretic display device
JP7024947B2 (en) 2015-10-29 2022-02-24 ビュー, インコーポレイテッド Controller for optically switchable devices
CN108350279B (en) 2015-11-11 2020-03-17 伊英克公司 Functionalized quinacridone pigments
KR102250640B1 (en) 2015-11-18 2021-05-10 이 잉크 코포레이션 Electro-optical displays
WO2017139323A1 (en) 2016-02-08 2017-08-17 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
US10593272B2 (en) 2016-03-09 2020-03-17 E Ink Corporation Drivers providing DC-balanced refresh sequences for color electrophoretic displays
CN113823232B (en) 2016-03-09 2024-01-19 伊英克公司 Method for driving electro-optic display
EP3449300B1 (en) 2016-04-29 2022-09-07 View, Inc. Calibration of electrical parameters in optically switchable windows
EP3465628B1 (en) 2016-05-24 2020-07-08 E Ink Corporation Method for rendering color images
WO2017210069A1 (en) 2016-05-31 2017-12-07 E Ink Corporation Backplanes for electro-optic displays
RU2754814C2 (en) 2017-03-03 2021-09-07 Е Инк Корпорэйшн Electrical-optical displays and their switching methods
CN110392911B (en) 2017-03-06 2021-09-24 伊英克公司 Method and apparatus for presenting color image
US10444592B2 (en) 2017-03-09 2019-10-15 E Ink Corporation Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays
KR102531228B1 (en) 2017-04-04 2023-05-10 이 잉크 코포레이션 Methods for driving electro-optic displays
US11513412B2 (en) 2017-04-26 2022-11-29 View, Inc. Displays for tintable windows
TWI752233B (en) 2017-05-30 2022-01-11 美商電子墨水股份有限公司 Electro-optic displays and method for discharging remnant voltage from an electro-optic display
US11404013B2 (en) 2017-05-30 2022-08-02 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
US11721295B2 (en) 2017-09-12 2023-08-08 E Ink Corporation Electro-optic displays, and methods for driving same
CN111133501A (en) 2017-09-12 2020-05-08 伊英克公司 Method for driving electro-optic display
TWI691361B (en) 2017-10-18 2020-04-21 美商電子墨水股份有限公司 Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing
CN116243504A (en) 2017-12-19 2023-06-09 伊英克公司 Application of electro-optic display
WO2019126623A1 (en) 2017-12-22 2019-06-27 E Ink Corporation Electro-optic displays, and methods for driving same
CN111615724B (en) 2018-01-22 2023-01-31 伊英克公司 Electro-optic display and method for driving an electro-optic display
CN108615506B (en) * 2018-04-19 2020-04-21 深圳市国华光电科技有限公司 Electrophoresis electronic paper display and display control method thereof
KR102609672B1 (en) 2018-07-17 2023-12-05 이 잉크 코포레이션 Electro-optical displays and driving methods
WO2020033789A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Switchable light-collimating layer with reflector
US11397366B2 (en) 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
CN112470066A (en) 2018-08-10 2021-03-09 伊英克加利福尼亚有限责任公司 Drive waveform for switchable light collimating layer comprising a bistable electrophoretic fluid
US11353759B2 (en) 2018-09-17 2022-06-07 Nuclera Nucleics Ltd. Backplanes with hexagonal and triangular electrodes
CN112839700B (en) 2018-10-15 2023-05-02 伊英克公司 Digital micro-fluidic conveying device
KR102542696B1 (en) 2018-11-30 2023-06-13 이 잉크 캘리포니아 엘엘씨 Electro-optical displays and driving methods
US11460722B2 (en) 2019-05-10 2022-10-04 E Ink Corporation Colored electrophoretic displays
WO2021097179A1 (en) 2019-11-14 2021-05-20 E Ink Corporation Methods for driving electro-optic displays
US11257445B2 (en) 2019-11-18 2022-02-22 E Ink Corporation Methods for driving electro-optic displays
TW202206925A (en) 2020-03-26 2022-02-16 美商視野公司 Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
EP4158614A1 (en) 2020-05-31 2023-04-05 E Ink Corporation Electro-optic displays, and methods for driving same
CA3177451A1 (en) 2020-06-11 2021-12-16 E Ink Corporation Electro-optic displays, and methods for driving same
JP2023541267A (en) 2020-09-15 2023-09-29 イー インク コーポレイション Improved drive voltages for advanced color electrophoretic displays and displays with improved drive voltages
CN116157727A (en) 2020-09-15 2023-05-23 伊英克公司 Four-particle electrophoretic medium providing fast, high contrast optical state switching
US11846863B2 (en) 2020-09-15 2023-12-19 E Ink Corporation Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
CN116097343A (en) 2020-10-01 2023-05-09 伊英克公司 Electro-optic display and method for driving an electro-optic display
US11620959B2 (en) 2020-11-02 2023-04-04 E Ink Corporation Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays
JP2023545278A (en) 2020-11-02 2023-10-27 イー インク コーポレイション Driving sequence for removing previous state information from color electrophoretic displays
KR20240025039A (en) 2020-11-02 2024-02-26 이 잉크 코포레이션 Method and apparatus for rendering color images
EP4260312A1 (en) 2020-12-08 2023-10-18 E Ink Corporation Methods for driving electro-optic displays
US11935495B2 (en) 2021-08-18 2024-03-19 E Ink Corporation Methods for driving electro-optic displays
WO2023043714A1 (en) 2021-09-14 2023-03-23 E Ink Corporation Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
US11830448B2 (en) 2021-11-04 2023-11-28 E Ink Corporation Methods for driving electro-optic displays
WO2023081410A1 (en) 2021-11-05 2023-05-11 E Ink Corporation Multi-primary display mask-based dithering with low blooming sensitivity
US11922893B2 (en) 2021-12-22 2024-03-05 E Ink Corporation High voltage driving using top plane switching with zero voltage frames between driving frames
US20230197024A1 (en) 2021-12-22 2023-06-22 E Ink Corporation Methods for driving electro-optic displays
US11854448B2 (en) 2021-12-27 2023-12-26 E Ink Corporation Methods for measuring electrical properties of electro-optic displays
WO2023129692A1 (en) 2021-12-30 2023-07-06 E Ink California, Llc Methods for driving electro-optic displays
WO2023132958A1 (en) 2022-01-04 2023-07-13 E Ink Corporation Electrophoretic media comprising electrophoretic particles and a combination of charge control agents
WO2023211867A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Color displays configured to convert rgb image data for display on advanced color electronic paper
WO2024044119A1 (en) 2022-08-25 2024-02-29 E Ink Corporation Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212747A1 (en) * 2004-03-26 2005-09-29 E Ink Corporation Methods for driving bistable electro-optic displays
JP2007163987A (en) * 2005-12-15 2007-06-28 Nec Lcd Technologies Ltd Electrophoretic display
US20070146306A1 (en) * 2004-03-01 2007-06-28 Koninklijke Philips Electronics, N.V. Transition between grayscale an dmonochrome addressing of an electrophoretic display
JP2008026851A (en) * 2006-07-19 2008-02-07 Prime View Internatl Co Ltd Driver for bistable display and driving method thereof

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
JPS6064395A (en) 1983-09-20 1985-04-12 セイコーエプソン株式会社 Integrated circuit substrate for active panel
US5745094A (en) 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US7327511B2 (en) 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US8089453B2 (en) 1995-07-20 2012-01-03 E Ink Corporation Stylus-based addressing structures for displays
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
KR100365816B1 (en) * 1995-09-20 2003-02-20 가부시끼가이샤 히다치 세이사꾸쇼 Image display device
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6055091A (en) 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
WO1998035267A1 (en) 1997-02-06 1998-08-13 University College Dublin Electrochromic system
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6054071A (en) 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6445489B1 (en) 1998-03-18 2002-09-03 E Ink Corporation Electrophoretic displays and systems for addressing such displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
AU3767899A (en) 1998-04-27 1999-11-16 E-Ink Corporation Shutter mode microencapsulated electrophoretic display
WO1999059101A2 (en) * 1998-05-12 1999-11-18 E-Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US20030102858A1 (en) 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
WO2000003349A1 (en) 1998-07-08 2000-01-20 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
US6184856B1 (en) 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US7119772B2 (en) 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6504524B1 (en) 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
JP3934420B2 (en) 1999-10-11 2007-06-20 ユニバーシティ・カレッジ・ダブリン Electrochromic element
US6672921B1 (en) 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
AU2002230520A1 (en) * 2000-11-29 2002-06-11 E-Ink Corporation Addressing circuitry for large electronic displays
US7023409B2 (en) * 2001-02-09 2006-04-04 Kent Displays, Incorporated Drive schemes for gray scale bistable cholesteric reflective displays utilizing variable frequency pulses
US7030854B2 (en) 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
ATE324615T1 (en) 2001-04-02 2006-05-15 E Ink Corp ELECTROPHOREASE MEDIUM WITH IMPROVED IMAGE STABILITY
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US6982178B2 (en) 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
WO2003027764A1 (en) 2001-09-19 2003-04-03 Bridgestone Corporation Particles and device for displaying image
JP2003150100A (en) * 2001-11-09 2003-05-21 Konica Corp Sheet type display medium
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US7528822B2 (en) 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
WO2003050606A1 (en) 2001-12-10 2003-06-19 Bridgestone Corporation Image display
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
KR100639547B1 (en) 2002-02-15 2006-10-30 가부시키가이샤 브리지스톤 Image display unit
KR100639546B1 (en) 2002-03-06 2006-10-30 가부시키가이샤 브리지스톤 Image displaying apparatus and method
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
WO2003088495A1 (en) 2002-04-17 2003-10-23 Bridgestone Corporation Image display unit
KR100896167B1 (en) 2002-04-24 2009-05-11 이 잉크 코포레이션 Electronic displays
CN1324392C (en) 2002-04-26 2007-07-04 株式会社普利司通 Particle for image display and its apparatus
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
JP4651383B2 (en) * 2002-06-13 2011-03-16 イー インク コーポレイション Method for driving electro-optic display device
US20060087479A1 (en) 2002-06-21 2006-04-27 Bridgestone Corporation Image display and method for manufacturing image display
AU2003252656A1 (en) 2002-07-17 2004-02-02 Bridgestone Corporation Image display
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US7495819B2 (en) 2002-12-17 2009-02-24 Bridgestone Corporation Method of manufacturing image display panel, method of manufacturing image display device, and image display device
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
JP4384991B2 (en) 2002-12-24 2009-12-16 株式会社ブリヂストン Image display device
WO2004077140A1 (en) 2003-02-25 2004-09-10 Bridgestone Corporation Image displaying panel and image display unit
JPWO2004079442A1 (en) 2003-03-06 2006-06-08 株式会社ブリヂストン Image display device manufacturing method and image display device
JP4599349B2 (en) * 2003-03-31 2010-12-15 イー インク コーポレイション Method for driving a bistable electro-optic display
US7236291B2 (en) 2003-04-02 2007-06-26 Bridgestone Corporation Particle use for image display media, image display panel using the particles, and image display device
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
EP2698784B1 (en) 2003-08-19 2017-11-01 E Ink Corporation Electro-optic display
WO2005029458A1 (en) 2003-09-19 2005-03-31 E Ink Corporation Methods for reducing edge effects in electro-optic displays
KR20060090681A (en) 2003-10-03 2006-08-14 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic display unit
EP1671304B1 (en) 2003-10-08 2008-08-20 E Ink Corporation Electro-wetting displays
CN1886776A (en) 2003-11-25 2006-12-27 皇家飞利浦电子股份有限公司 A display apparatus with a display device and a cyclic rail-stabilized method of driving the display device
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
WO2005054933A2 (en) * 2003-11-26 2005-06-16 E Ink Corporation Electro-optic displays with reduced remnant voltage
JP4103814B2 (en) * 2004-02-02 2008-06-18 株式会社デンソー Constant speed travel control device
KR20070006727A (en) * 2004-02-02 2007-01-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic display panel
TW200601217A (en) * 2004-03-30 2006-01-01 Koninkl Philips Electronics Nv An electrophoretic display with reduced cross talk
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20050253777A1 (en) 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
CN100557474C (en) 2004-07-27 2009-11-04 伊英克公司 Electro-optic displays
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
CN101826304B (en) * 2004-08-13 2012-03-14 伊英克公司 Methods and apparatus for driving electro-optic displays
US7453445B2 (en) 2004-08-13 2008-11-18 E Ink Corproation Methods for driving electro-optic displays
JP4718859B2 (en) 2005-02-17 2011-07-06 セイコーエプソン株式会社 Electrophoresis apparatus, driving method thereof, and electronic apparatus
JP4690079B2 (en) 2005-03-04 2011-06-01 セイコーエプソン株式会社 Electrophoresis apparatus, driving method thereof, and electronic apparatus
EP1911016B1 (en) * 2005-08-01 2016-03-02 E Ink Corporation Methods for driving electro-optic displays
TWI380114B (en) 2005-12-15 2012-12-21 Nlt Technologies Ltd Electrophoretic display device and driving method for same
JP2007279106A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Display device
US20080024429A1 (en) 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
JP6064395B2 (en) 2012-07-06 2017-01-25 セイコーエプソン株式会社 Recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146306A1 (en) * 2004-03-01 2007-06-28 Koninklijke Philips Electronics, N.V. Transition between grayscale an dmonochrome addressing of an electrophoretic display
US20050212747A1 (en) * 2004-03-26 2005-09-29 E Ink Corporation Methods for driving bistable electro-optic displays
JP2007163987A (en) * 2005-12-15 2007-06-28 Nec Lcd Technologies Ltd Electrophoretic display
JP2008026851A (en) * 2006-07-19 2008-02-07 Prime View Internatl Co Ltd Driver for bistable display and driving method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531804A (en) * 2010-04-09 2013-08-08 イー インク コーポレイション Method for driving an electro-optic display
KR101533490B1 (en) * 2010-04-09 2015-07-02 이 잉크 코포레이션 Methods for driving electro-optic displays
TWI474303B (en) * 2011-09-12 2015-02-21 Sipix Imaging Inc Driving system for electrophoretic displays
US9514667B2 (en) 2011-09-12 2016-12-06 E Ink California, Llc Driving system for electrophoretic displays

Also Published As

Publication number Publication date
US20090195568A1 (en) 2009-08-06
JP6284564B2 (en) 2018-02-28
US9672766B2 (en) 2017-06-06
JP2014199466A (en) 2014-10-23
JP2013057975A (en) 2013-03-28
CN102027528A (en) 2011-04-20
JP2011520137A (en) 2011-07-14
JP5904931B2 (en) 2016-04-20
HK1152582A1 (en) 2012-03-02
JP2016106280A (en) 2016-06-16
WO2009129217A3 (en) 2010-02-25
CN102027528B (en) 2014-08-27

Similar Documents

Publication Publication Date Title
US9672766B2 (en) Methods for driving electro-optic displays
US7453445B2 (en) Methods for driving electro-optic displays
US9620048B2 (en) Methods for driving electro-optic displays
US8314784B2 (en) Methods for driving electro-optic displays
US9620067B2 (en) Methods for driving electro-optic displays
EP1911016B1 (en) Methods for driving electro-optic displays
US20230120212A1 (en) Color electrophoretic displays incorporating methods for reducing image artifacts during partial updates
US10726798B2 (en) Methods for operating electro-optic displays
WO2023129692A1 (en) Methods for driving electro-optic displays

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113104.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731955

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011504241

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731955

Country of ref document: EP

Kind code of ref document: A2