WO2009107761A1 - Optical integrated circuit device - Google Patents

Optical integrated circuit device Download PDF

Info

Publication number
WO2009107761A1
WO2009107761A1 PCT/JP2009/053639 JP2009053639W WO2009107761A1 WO 2009107761 A1 WO2009107761 A1 WO 2009107761A1 JP 2009053639 W JP2009053639 W JP 2009053639W WO 2009107761 A1 WO2009107761 A1 WO 2009107761A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
cores
integrated circuit
light
circuit device
Prior art date
Application number
PCT/JP2009/053639
Other languages
French (fr)
Japanese (ja)
Inventor
石 勉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010500757A priority Critical patent/JP5257710B2/en
Publication of WO2009107761A1 publication Critical patent/WO2009107761A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to an optical integrated circuit device, and more particularly to an optical integrated circuit device that transmits and receives data between a plurality of cores via light.
  • the microprocessor does not increase the operating speed of a single processing unit to improve processing performance, but integrates a plurality of processing units on a single chip to improve processing performance while suppressing power consumption. Is becoming mainstream.
  • SoC system on chip
  • MPSoC Multi-Processor SoC
  • the number of cores (processors) on a chip is expected to continue to increase in order to further improve chip performance, and it is desired to realize an on-chip bus that connects these cores so that information can be transmitted efficiently.
  • transmission lines (wiring) that constitute a bus that mediates communication are required to have low wiring delay, low power consumption, and high transmission rate characteristics.
  • Japanese Patent Application Laid-Open No. 2004-191390 discloses an on-chip optical interconnection circuit that can increase the signal transmission speed and can be easily miniaturized and can be easily manufactured.
  • the intra-chip optical interconnection circuit includes a plurality of circuit blocks provided on one integrated circuit chip and an optical waveguide provided on the integrated circuit chip so as to optically connect the circuit blocks.
  • Data transmission using light is inherently broadband compared to electricity, and increases the possibility of realizing data transmission with low delay and low loss.
  • the number of cores that can be efficiently connected can be increased by changing from a bus to a network.
  • Japanese Patent Laid-Open No. 2000-151559 discloses a communication method using sub-carrier analog optical transmission, in which only one optical fiber line is provided without affecting the RF signal to be originally transmitted.
  • An optical communication system capable of transmitting data signals such as baseband signals used for monitoring, control, etc., and voice band signals for communication between base stations and relay stations between maintenance personnel at the time of maintenance is disclosed.
  • the transmitting side modulates a carrier wave with a signal having a frequency outside the occupied band of the RF signal to be originally transmitted, and originally transmits the data signal filtered by the low-pass filter and filtered by the high-pass filter.
  • the RF signal to be processed is combined with an RF combining circuit, and the combined electric signal is converted into an analog optical signal by an electro-optical conversion element for transmission.
  • the analog optical signal transmitted from the transmitting side is converted into an electric signal by a photoelectric conversion element, this electric signal is separated into an RF signal and a modulated data signal by an RF distribution circuit, and an RF signal obtained by the separation Is filtered by a high-pass filter, the modulated signal obtained by the separation is filtered by a low-pass filter, and demodulated to extract the original data signal.
  • Japanese Patent Application Laid-Open No. 2001-148684 discloses an optical signal distribution device that has a simple circuit configuration and does not require a request signal from a reception side circuit to a transmission side circuit.
  • the optical signal distribution device includes a transmission side circuit and a reception side circuit connected to the output side of the transmission side circuit via a first optical fiber.
  • the receiving circuit multiplexes the receiving circuits of a plurality of circuits each having a laser diode that outputs light having different wavelengths, and the optical signals having different wavelengths output from the laser diodes of the receiving circuits as multiplexed optical signals. And an output optical multiplexer.
  • a transmission side circuit modulates a multiplexed optical signal transmitted from the optical combiner of the receiving side circuit via the second optical fiber with a signal such as a video signal, an audio signal, or a data signal, and outputs it as a multiplexed modulated optical signal.
  • a signal such as a video signal, an audio signal, or a data signal
  • the receiving circuit has a laser diode that separates the multiplexed modulated optical signal transmitted from the optical external modulator of the transmitting circuit via the first optical fiber for each wavelength and outputs light of the same wavelength.
  • an optical demultiplexer that distributes to each other.
  • the signal wiring length in the semiconductor chip is effectively shortened, the size of the logic circuit cell is reduced to increase the number of mounted gates, and the length of the signal wiring and the load are small or large. Accordingly, a semiconductor integrated circuit capable of setting a logic circuit cell having an appropriate driving capability is disclosed.
  • the semiconductor integrated circuit is arranged on a main surface of the semiconductor chip in a grid pattern, a logic circuit formation region partitioned by the main power path and arranged in a matrix, and a peripheral portion of the semiconductor chip. Power supply and input / output signal connection pads, and input / output gates provided adjacent to the main power supply bus on the inner periphery of the pads.
  • a transistor and a resistor for logic circuit formation are arranged, and a collective cell region having a small current logic circuit cell for light load and a large current logic circuit cell for heavy load is provided.
  • a signal connection wiring region between the assembly cell regions is provided on the outer periphery of the assembly cell region of the logic circuit formation region.
  • Japanese Patent Application Laid-Open No. 07-131471 discloses a signal transmission method that enables low power consumption and high speed.
  • a termination voltage is supplied to both ends using one of a pair of wires arranged in parallel as a signal transmission path via a termination resistor matched to the characteristic impedance.
  • the other end of the pair of wires is used as a reference voltage transmission line, and a termination voltage or a circuit ground potential is supplied to both ends via a termination resistor matched to the characteristic impedance.
  • the transmission side is provided between the ground potential and the output terminal.
  • a signal is sent out by the driven transistor, and a reference voltage is generated by an offset voltage set to about 1/2 of the termination voltage on the receiving side, and an amplification transistor to which the termination voltage is supplied and an amplification transistor to which an input signal is supplied
  • the signals are received by performing a differential operation.
  • Japanese Patent Laid-Open No. 64-02222 discloses a light distribution system that distributes light from a single light source to a desired position by a waveguide-type light distributor.
  • An optical modulator is installed at each end of the waveguide type optical distributor, and the distributed light is modulated to transmit data.
  • an equal amount of light is constantly distributed, and the light use efficiency is not high.
  • Japanese Patent Application Laid-Open No. 08-51395 discloses an optical outlet capable of constructing an optical distribution system that does not waste optical output of an optical transmitter.
  • the optical outlet includes a variable light quantity splitter that distributes the light input at an arbitrary ratio of light quantity, a fixed light quantity splitter that distributes the branched light output branched by this variable light quantity splitter at a constant ratio of light quantity, and this fixed And a control circuit that measures the light amount of the branched light output branched by the light amount branching unit and controls the light amount branching ratio of the variable light amount branching unit so that the light amount becomes a preset light amount. If this technology is applied, light can be distributed only to the modulator that transmits data, and efficient light distribution is possible. However, in this case, it is necessary to newly install an optical switch, and power consumption and the footprint of the optical switch may become a problem.
  • the present invention provides an optical integrated circuit device in which utilization efficiency of light used for data transmission / reception between a plurality of cores arranged in one chip is improved.
  • the present invention also provides an optical integrated circuit device capable of realizing efficient optical distribution without waste even if the optical distribution system is not variable in an optical wiring system that performs high-throughput data communication between a plurality of cores. .
  • An optical integrated circuit device includes a plurality of cores and a plurality of optical transmitters.
  • Each of the plurality of cores transmits an electrical signal indicating information transmitted to another core of the plurality of cores to one optical transmitter of the plurality of optical transmitters.
  • the one optical transmitter transmits an optical signal indicating the information to the optical signal line network based on the electrical signal.
  • the optical signal line network transmits the information to other cores based on the optical signal.
  • the number of the plurality of cores is larger than the number of optical wirings connecting the plurality of optical transmitters to the optical signal line network.
  • one of optical wirings connecting a plurality of optical transmitters to an optical signal line network is shared by a plurality of cores, and data communication is performed between a plurality of cores in one chip. Therefore, it is possible to achieve efficient and efficient light distribution without making the light distribution system variable, and it is possible to improve the utilization efficiency of light used when data is transmitted within the chip.
  • FIG. 1 is a block diagram showing an embodiment of an optical integrated circuit chip according to the present invention.
  • FIG. 2 is a block diagram illustrating the optical transmitter.
  • FIG. 3 is a graph showing the frequency with which the optical transmitter transmits data to the optical signal line network.
  • FIG. 4 is a block diagram showing another embodiment of the optical integrated circuit chip according to the present invention.
  • FIG. 5 is a block diagram showing still another embodiment of the optical integrated circuit chip according to the present invention.
  • FIG. 6 is a block diagram showing another optical transmitter.
  • the optical integrated circuit device 1 includes a plurality of optical distribution lines 2-1 to 2-9, a plurality of optical transmitters 3-1 to 3-9, and a plurality of cores 5-1. 5-36.
  • the plurality of cores 5-1 to 5-36 are arranged in a tile shape of 6 rows and 6 columns on the substrate. The columns are the first to sixth columns, and the row includes the first to sixth rows.
  • Each of the plurality of optical transmitters 3-1 to 3-9 is provided for the corresponding group of the plurality of cores 5-1 to 5-36, and each of the cores 5-1 to 5-36 is provided. Is electrically connected to any one of the plurality of optical transmitters 3-1 to 3-9 so that information can be transmitted.
  • Each of the plurality of optical distribution lines 2-1 to 2-9 includes an optical fiber.
  • the optical distribution line 2-i transmits the light generated by the light source 6 to the optical transmitter 3-i.
  • Each of the plurality of optical transmitters 3-1 to 3-9 is formed on a substrate.
  • Each of the optical transmitters 3-i of the plurality of optical transmitters 3-1 to 3-9 is electrically connected to four cores of the plurality of cores 5-1 to 5-36 so that information can be transmitted. Yes.
  • FIG. 2 shows the optical transmitter 3-i.
  • the optical transmitter 3-i includes a control circuit 7 and an optical modulator 8.
  • the control circuit 7 is connected to four of the plurality of cores 5-1 to 5-36 through the electrical wirings 11-1 to 11-4 so that information can be transmitted.
  • the control circuit 7 of the optical transmitter 3-1 is connected to the core 5-1 in the first row and first column via the electric wiring 11-1 so as to be able to transmit information, and is connected via the electric wiring 11-2. It is connected to the core 5-2 in the first row and the second column so as to be able to transmit information, and is connected to the core 5-3 in the second row and the first column via the electrical wiring 11-3 so as to be able to transmit information.
  • the control circuit 7 is further electrically connected to the optical modulator 8 via the electric wiring 12 so as to be able to transmit information.
  • the optical modulator 8 is connected to the light source 6 through the optical distribution line 2-i and connected to the optical signal line network 15 through the optical fiber 14 so that information can be transmitted.
  • the optical fiber 14 and the optical signal line network 15 are provided separately from the optical distribution lines 2-1 to 2-9.
  • the optical modulator 8 generates an optical signal by intensity-modulating the light supplied from the light source 6 via the optical distribution line 2-i based on the information output from the control circuit 7, and via the optical fiber 14.
  • the optical signal is output to the optical signal line network 15.
  • the optical integrated circuit device 1 further includes a plurality of optical receivers not shown.
  • Each of the plurality of optical receivers is connected to the optical signal line network 15 via an optical wiring so as to be able to receive an optical signal from the optical signal line network 15, and is electrically connected to the plurality of cores 5-1 to 5-36. Are connected to the plurality of cores 5-1 to 5-36 via electric wiring.
  • the control circuit 7 of the optical transmitter 3-i sequentially outputs the data indicated by the electrical signals output from the four cores connected to the optical transmitter 3-i to the optical modulator 8.
  • the light source 6 supplies light to the plurality of optical transmitters 3-1 to 3-9 through the plurality of optical distribution lines 2-1 to 2-9.
  • the optical modulator 8 modulates the intensity of light supplied from the light source 6 via the optical distribution line 2-i to generate an optical signal.
  • the optical signal indicates data output from the control circuit 7.
  • the optical modulator 8 outputs the optical signal to the optical signal line network 15 through the optical fiber 14.
  • the optical signal line network 15 transmits the optical signal received from the optical transmitter 3-i to one of the optical receivers, and the optical receiver indicates the optical signal output from the optical signal line network 15
  • An electrical signal indicating data is output to one of the plurality of cores 5-1 to 5-36.
  • Such an optical signal line network 15 is well known. Disclosed in “On the Design of a Photonic Network-on-Chip” by Shacham (disclosed in Proceeding of the First International Symposium on Network-on-Chip, 2007).
  • FIG. 3 shows the effective operating rate of the optical transmitter 3-i.
  • the effective operation rate is such that the optical transmitter 3-i transmits one data to the optical signal line network 15 via the optical signal, and the optical transmitter 3-i transmits the optical signal line via the optical signal per unit time.
  • the frequency at which data is transmitted to the network 15 is shown. That is, the effective operating rate is shared by the average transmission frequency ⁇ at which one core transmits information per unit time and one optical wiring connecting the optical transmitter 3-i to the optical signal line network 15.
  • the number n of cores to be used is expressed by the following formula: ⁇ ⁇ n.
  • the effective operating rate indicates that it is 1 or less when the number n of cores is 3, and when the number n of cores is 4 1 and 1 or more when the number n of cores is 5. That is, the effective operation rate indicates that the light use efficiency is lowered when the average transmission frequency ⁇ is 0.25 and the number of cores is less than four.
  • the effective operation rate further indicates that when the average transmission frequency ⁇ is 0.25 and the number n of cores is more than 4, a so-called congestion state occurs and a delay occurs during data transmission. That is, when the average transmission frequency ⁇ is 0.25, the effective utilization rate is such that when one optical wiring is shared by four cores, the light utilization efficiency does not decrease and congestion occurs.
  • the effective operation rate further indicates that the value is appropriate when the number n of shared cores is about the reciprocal of the average transmission frequency ⁇ . That is, in the optical integrated circuit chip 1, when data is transmitted and received between a plurality of cores, the number of cores sharing one optical wiring is set to be approximately the reciprocal of the average data transmission frequency of the plurality of cores. . For this reason, the optical integrated circuit chip 1 has an opportunity for data transmission in any of the plurality of cores sharing the optical wiring, and can efficiently and efficiently distribute the light source without making the light source distribution system variable. Become.
  • FIG. 4 shows an optical integrated circuit device according to the second embodiment of the present invention.
  • the optical integrated circuit chip 21 includes an optical distribution line 22, a plurality of optical transmitters 23-1 to 23-9, a plurality of fixed light amount branching units 24-1 to 24-8, and a plurality of cores 25-1 to 25-36. And.
  • the plurality of cores 25-1 to 25-36 are arranged in a 6-row and 6-column tile shape on the substrate in the same manner as the plurality of cores 5-1 to 5-36 in the first embodiment described above.
  • the column is composed of a first column to a sixth column. The row is formed from the first row to the sixth row.
  • Each of the plurality of cores 25-1 to 25-36 is electrically connected to any one of the plurality of optical transmitters 23-1 to 23-9 so that information can be transmitted.
  • the optical distribution line 22 is formed from an optical fiber.
  • the optical distribution line 22 is arranged so as to circulate a plurality of optical transmitters 23-1 to 23-9 on the optical integrated circuit device, and an end thereof is connected to a light source 26 outside the substrate, and the other end Are connected to a plurality of optical transmitters 23-9.
  • a plurality of fixed light quantity branching devices 24-1 to 24-8 are interposed in the middle of the optical distribution line 22.
  • the fixed light quantity splitter 24-1 separates the light supplied from the light source 26 into two lights having a light quantity of 1: 8, and outputs the light having a light quantity of 1 to the light distribution line 22-1. 8 is output to the fixed light quantity splitter 24-2.
  • the fixed light amount branching device 24-2 separates the light supplied from the fixed light amount branching device 24-1 into two lights having a light amount of 1: 7, and the light having the light amount of 1 is separated into the light distribution line 22-2 ( (Not shown), and the light having the light quantity of 7 is outputted to the fixed light quantity splitter 24-3.
  • the fixed light quantity splitter 24-3 separates the light supplied from the fixed light quantity splitter 24-2 into two lights having a light quantity of 1: 6, and the light having a light quantity of 1 is supplied to the optical distribution line 22-3. The light having a light amount of 6 is output to the fixed light amount branching device 24-6.
  • the fixed light amount branching device 24-6 separates the light supplied from the fixed light amount branching device 24-3 into two lights having a light amount of 1: 5, and the light having the light amount 1 is supplied to the light distribution line 22-6.
  • the light having a light quantity of 5 is outputted to the fixed light quantity splitter 24-5.
  • the fixed light amount branching device 24-5 separates the light supplied from the fixed light amount branching device 24-6 into two lights having a light amount of 1: 4, and the light having the light amount of 1 is divided into the light distribution lines 22-4 ( (Not shown), and the light having the light quantity of 4 is outputted to the fixed light quantity splitter 24-4.
  • the fixed light quantity splitter 24-4 separates the light supplied from the fixed light quantity splitter 24-5 into two lights having a light quantity of 1: 3, and the light having a light quantity of 1 is supplied to the optical distribution line 22-4.
  • the light having the light amount of 3 is output to the fixed light amount branching device 24-7.
  • the fixed light quantity splitter 24-7 separates the light supplied from the fixed light quantity splitter 24-4 into two lights having a light quantity of 1: 2, and the light having a light quantity of 1 is supplied to the optical distribution line 22-7.
  • the light having a light quantity of 2 is outputted to the fixed light quantity splitter 24-8.
  • the fixed light quantity splitter 24-8 separates the light supplied from the fixed light quantity splitter 24-7 into two lights having a light quantity of 1: 1, and separates one light into an optical distribution line 22-8 (not shown). ) And another light is output to the optical distribution line 22-9.
  • the configuration of the plurality of optical transmitters 23-1 to 23-9 is the same as that of the plurality of optical transmitters 3-1 to 3-9 in the first embodiment described above, and is formed on the substrate.
  • Each of the optical transmitters 23-i of the plurality of optical transmitters 23-1 to 23-9 is electrically transmitted so that information can be transmitted to four adjacent cores of the plurality of cores 25-1 to 25-36. It is connected.
  • the optical integrated circuit device 21 operates in the same manner as the optical integrated circuit device 1 in the first embodiment described above. That is, in the optical integrated circuit device 21, when one core of the plurality of cores 25-1 to 25-36 generates information to be transmitted to the other cores of the plurality of cores 25-1 to 25-36, the information And an electrical signal indicating information identifying other cores are output to the optical transmitter 23-i.
  • the light source 26 and the plurality of fixed light quantity dividers 24-1 to 24-8 supply light to the plurality of optical transmitters 23-1 to 23-9.
  • the optical transmitter 23-i sequentially generates an optical signal indicating the data indicated by the electrical signals output from the four cores connected to the optical transmitter 23-i, and the optical signal is transmitted to the optical signal line network 15 Output to.
  • the optical signal line network 15 transmits the optical signal received from the optical transmitter 23-i to one of the optical receivers, and the optical receiver indicates the optical signal output from the optical signal line network 15.
  • An electrical signal indicating data is output to one of the plurality of cores 25-1 to 25-36.
  • the optical integrated circuit device 21 can achieve efficient and efficient light distribution without making the optical distribution system variable. That is, such an optical wiring system is also applied to an optical integrated circuit device 21 that generates an optical signal by intensity-modulating light into a plurality of light beams divided by using a plurality of fixed light amount branching units 24-1 to 24-8. can do.
  • FIG. 5 shows a third embodiment of the optical integrated circuit device according to the present invention.
  • the optical integrated circuit device 31 includes a plurality of optical distribution lines 32-1 to 32-8, a plurality of optical distribution lines 33-1 to 33-8, a plurality of optical transmitters 34-1 to 34-8, and a plurality of cores. 37-1 to 37-64.
  • the plurality of cores 37-1 to 37-64 are arranged in a tile shape of 8 rows and 8 columns on the substrate.
  • Each of the plurality of cores 37-1 to 37-64 is electrically connected to any one of the plurality of optical transmitters 34-1 to 34-8 so that information can be transmitted.
  • the plurality of optical distribution lines 32-1 to 32-8 are each formed from an optical fiber.
  • the optical distribution line 32-j transmits the light generated by the light source 35 to the optical transmitter 34-j.
  • the plurality of optical distribution lines 33-1 to 33-8 are each formed from an optical fiber.
  • the optical distribution line 33-j transmits the light generated by the light source 36 to the optical transmitter 34-j.
  • the light generated by the light source 36 has a wavelength different from that of the light generated by the light source 35.
  • the plurality of optical transmitters 34-1 to 34-8 are each formed on a substrate. Each optical transmitter 34-j is electrically connected to eight of the plurality of cores 37-1 to 37-64 so as to be able to transmit information.
  • FIG. 6 shows the optical transmitter 34-j.
  • the optical transmitter 34-j includes a control circuit 47, an optical modulator 38, and an optical modulator 39.
  • the control circuit 47 is electrically connected to eight of the plurality of cores 37-1 to 37-64 via the electric wirings 41-1 to 41-8 so that information can be transmitted.
  • the control circuit 47 of the optical transmitter 34-1 is electrically connected to the core in the first row and the first column via the electric wiring 41-1 so as to be able to transmit information, and is connected via the electric wiring 41-2 to the first circuit.
  • It is electrically connected to the core of the first row and the second column so as to be able to transmit information, and is electrically connected to the core of the first row and the third column via the electric wiring 41-3 so as to be able to transmit information.
  • It is electrically connected to the core of the second row and the second column via the wiring 41-6 so as to be able to transmit information, and electrically connected to the core of the second row and the third column via the electric wiring 41-7. It is connected and electrically connected to the core in the second row and the fourth column via the electric wiring 41-8 so that information can be transmitted.
  • the control circuit 47 is further electrically connected to the optical modulator 38 via the electric wiring 42 so that information can be transmitted. It is electrically connected to the optical modulator 39 through the electrical wiring 43 so as to be able to transmit information. The control circuit 47 transmits the data output from the eight cores to the optical modulator 38 via the electrical wiring 42 or transmits it to the optical modulator 39 via the electrical wiring 43.
  • the optical modulator 38 is connected to the light source 35 through an optical distribution line 32-j, and is connected to an optical signal line network 46 through an optical fiber 44 so that information can be transmitted.
  • the optical fiber 44 and the optical signal line network 46 are provided separately from the optical distribution lines 32-1 to 32-8 and the optical distribution lines 33-1 to 33-9.
  • the optical modulator 38 Based on the information output from the control circuit 47, the optical modulator 38 modulates the intensity of light supplied from the light source 35 via the optical distribution line 32-j and generates an optical signal.
  • the optical modulator 38 outputs the optical signal to the optical signal line network 46 via the optical fiber 44.
  • the optical modulator 39 is connected to the light source 36 via an optical distribution line 33-j and connected to an optical signal line network 46 via an optical fiber 45 so as to be able to transmit information.
  • the optical fiber 45 is provided separately from the optical distribution lines 32-1 to 32-8 and the optical distribution lines 33-1 to 33-9.
  • the optical modulator 39 Based on the information output from the control circuit 47, the optical modulator 39 modulates the intensity of light supplied from the light source 36 via the optical distribution line 33-j to generate an optical signal.
  • the optical modulator 39 outputs the optical signal to the optical signal line network 46 through the optical fiber 45.
  • the optical integrated circuit device 31 further includes a plurality of optical receivers not shown.
  • the optical signal line network 46 transmits the optical signal received from the optical transmitter 34-j to one of the plurality of optical receivers, and the optical receiver outputs the optical signal output from the optical signal line network 46.
  • An electrical signal indicating information indicated by the signal is generated, and the electrical signal is output to one of the plurality of cores 37-1 to 37-64.
  • the control circuit 47 of the optical transmitter 34-j sequentially outputs the data indicated by the electrical signals output from the eight cores connected to the optical transmitter 34-j to the optical modulator 38 or the optical modulator 39. .
  • the optical modulator 38 modulates the intensity of light supplied from the light source 35 via the optical distribution line 32-j to generate an optical signal.
  • the optical signal indicates data output from the control circuit 47.
  • the optical modulator 38 outputs the optical signal to the optical signal line network 46 via the optical fiber 44.
  • the optical modulator 39 modulates the intensity of light supplied from the light source 36 via the optical distribution line 33-j and generates an optical signal.
  • the optical signal indicates data output from the control circuit 47.
  • the optical modulator 39 outputs the optical signal to the optical signal line network 46 through the optical fiber 45.
  • the optical signal line network 46 transmits the optical signal received from the optical transmitter 34-j to one of the optical receivers, and the optical receiver indicates the optical signal output from the optical signal line network 46.
  • An electrical signal indicating data is output to one of the plurality of cores 37-1 to 37-64.
  • the optical integrated circuit device 31 realizes efficient and efficient light distribution even if the optical distribution system is not variable, in the same manner as the optical integrated circuit device 1 in the first embodiment. be able to. Further, the optical integrated circuit device 31 has the same throughput (transmission capacity) per core as that of the optical integrated circuit device 1 or the optical integrated circuit device 21 in the above-described embodiment, but has two different wavelengths as data carriers. Since light is used, transmission within the same link can be permitted in the optical signal line network 46 (wavelength multiplexing), and there is an advantage that the degree of freedom in route selection is increased. In the present embodiment, the case where the number of light sources is up to two has been described. However, more light sources may be integrated within a range allowed by power consumption and element footprint.

Abstract

An optical integrated circuit device is provided with a plurality of cores and a plurality of optical transmitters. Each of the cores transmits an electric signal showing information to be transmitted to another core out of the cores to a corresponding optical transmitter out of the optical transmitters. The corresponding optical transmitter transmits an optical signal showing the information to an optical signal line network on the basis of the electric signal. On the basis of the optical signal, the optical signal line network transmits the information to another core described above. In the case, the number of the cores is larger than that of optical wirings which connect the optical transmitters to the optical signal line network.

Description

光集積回路装置Optical integrated circuit device
 本発明は、光集積回路装置に関し、特に、光を介して複数のコア間でデータを送受信する光集積回路装置に関する。 The present invention relates to an optical integrated circuit device, and more particularly to an optical integrated circuit device that transmits and receives data between a plurality of cores via light.
 マイクロプロセッサの世界では、処理性能を高めるように開発が行われている。そのマイクロプロセッサでは、単一の処理ユニットの動作速度を上げて処理性能を高めるのではなく、複数の処理ユニットを1チップに集積し、電力消費を抑制しながら処理性能を向上させる、いわゆるマルチコアプロセッサが主流となりつつある。また、1つのチップ上にプロセッサやメモリ、機能モジュールを実装するシステムオンチップ(SoC:System on Chip)の世界でも、マルチプロセッサ構成のSoC(MPSoC:Multi-Processor SoC)が検討されている。チップ上のコア(プロセッサ)の数は、チップ性能をさらに向上させるために、さらに増え続けるものと予想され、それらのコアを効率的に情報伝達可能につなぐオンチップバスの実現が望まれている。コア間の通信がチップ性能のボトルネックとならぬよう、その通信を媒介するバスを構成する伝送路(配線)には、低配線遅延、低消費電力、高伝送レート特性が要求されている。 Developed in the world of microprocessors to improve processing performance. The microprocessor does not increase the operating speed of a single processing unit to improve processing performance, but integrates a plurality of processing units on a single chip to improve processing performance while suppressing power consumption. Is becoming mainstream. In the world of system on chip (SoC) in which a processor, a memory, and a functional module are mounted on one chip, a multiprocessor SoC (MPSoC: Multi-Processor SoC) is also being studied. The number of cores (processors) on a chip is expected to continue to increase in order to further improve chip performance, and it is desired to realize an on-chip bus that connects these cores so that information can be transmitted efficiently. . In order to prevent communication between cores from becoming a bottleneck in chip performance, transmission lines (wiring) that constitute a bus that mediates communication are required to have low wiring delay, low power consumption, and high transmission rate characteristics.
 特開2004-191390号公報には、信号伝達速度を高速化することができるとともに容易に微細化することができ、簡易に製造することができるチップ内光インターコネクション回路が開示されている。そのチップ内光インターコネクション回路は、1つの集積回路チップ上に設けられた複数の回路ブロックと、回路ブロック同士を光学的に接続するように集積回路チップ上に設けられた光導波路とを有する。光を用いたデータ伝送は、電気に比べ本質的に広帯域であり、また低遅延、低損失なデータ伝送の実現の可能性を増す。また、一般には、バスからネットワークに変えることで、効率よく接続できるコア数を増やすことができると考えられる。 Japanese Patent Application Laid-Open No. 2004-191390 discloses an on-chip optical interconnection circuit that can increase the signal transmission speed and can be easily miniaturized and can be easily manufactured. The intra-chip optical interconnection circuit includes a plurality of circuit blocks provided on one integrated circuit chip and an optical waveguide provided on the integrated circuit chip so as to optically connect the circuit blocks. Data transmission using light is inherently broadband compared to electricity, and increases the possibility of realizing data transmission with low delay and low loss. In general, the number of cores that can be efficiently connected can be increased by changing from a bus to a network.
 A.Shachamによる“On the Design of a Photonic Network-on-Chip”(Proceeding of the First International Symposium on Network-on-Chip(2007)」には、光配線を用いたオンチップネットワーク回路が開示されている。このようなオンチップネットワーク回路は、トーラス型の光配線ネットワークと、低消費電力光スイッチにより、チップ消費電力の低減を可能としている。 A. “On the Design of a Photonic Network-on-Chip” by Shacham (Procedure of the First International Symposium on Network-on-Chip is used for the circuit, and the optical circuit is used in 2007) Such an on-chip network circuit can reduce chip power consumption by a torus type optical wiring network and a low power consumption optical switch.
 特開2000-151559号公報には、副搬送波アナログ光伝送を用いた通信方式に於いて、本来伝送されるべきRF信号に影響を及ぼさずに、1本の光ファイバ回線を設けるだけで装置間の監視、制御等に用いるベースバンド信号や、保守時の保守員同士による基地局・中継局間通話用の音声帯域信号等のデータ信号を伝送する事の出来る光通信方式が開示されている。その光通信方式では、送信側は、本来伝送されるべきRF信号の占有帯域外の周波数を持つ信号で搬送波を変調し、ローパスフィルタでろ波されたデータ信号を、ハイパスフィルタでろ波された本来伝送されるべきRF信号と、RF合成回路において合成し、この合成された電気信号を電気-光変換素子によってアナログ光信号に変換して伝送を行う。受信側では、送信側から伝送されたアナログ光信号を光電変換素子によって電気信号に変換し、この電気信号をRF分配回路によってRF信号と変調されたデータ信号に分離し、分離により得たRF信号をハイパスフィルタでろ波し、分離により得た変調信号をローパスフィルタでろ波し、復調することによって元のデータ信号を取り出している。 Japanese Patent Laid-Open No. 2000-151559 discloses a communication method using sub-carrier analog optical transmission, in which only one optical fiber line is provided without affecting the RF signal to be originally transmitted. An optical communication system capable of transmitting data signals such as baseband signals used for monitoring, control, etc., and voice band signals for communication between base stations and relay stations between maintenance personnel at the time of maintenance is disclosed. In the optical communication method, the transmitting side modulates a carrier wave with a signal having a frequency outside the occupied band of the RF signal to be originally transmitted, and originally transmits the data signal filtered by the low-pass filter and filtered by the high-pass filter. The RF signal to be processed is combined with an RF combining circuit, and the combined electric signal is converted into an analog optical signal by an electro-optical conversion element for transmission. On the receiving side, the analog optical signal transmitted from the transmitting side is converted into an electric signal by a photoelectric conversion element, this electric signal is separated into an RF signal and a modulated data signal by an RF distribution circuit, and an RF signal obtained by the separation Is filtered by a high-pass filter, the modulated signal obtained by the separation is filtered by a low-pass filter, and demodulated to extract the original data signal.
 特開2001-148684号公報には、回路構成が簡単で、受信側回路から送信側回路に対してリクエスト信号を必要としない光信号分配装置が開示されている。その光信号分配装置は、送信側回路と、第1光ファイバを介して送信側回路の出力側に接続された受信側回路とを備えている。受信側回路が、それぞれ、互いに波長の異なる光を出力するレーザダイオードを有する複数回路の受信回路と、各受信回路のレーザダイオードから出力された互いに波長の異なる光信号を多重化し、多重光信号として出力する光合波器とを備えている。送信側回路が、受信側回路の光合成器から第2光ファイバを介して伝送された多重光信号をビデオ信号、オーディオ信号、データ信号等の信号によって変調し、多重変調光信号として出力する光外部変調器を有する。更に、受信側回路が、送信側回路の光外部変調器から第1光ファイバを介して伝送された多重変調光信号を波長毎に分離し、同じ波長の光を出力するレーザダイオードを有する受信回路に分配する光分波器を有している。 Japanese Patent Application Laid-Open No. 2001-148684 discloses an optical signal distribution device that has a simple circuit configuration and does not require a request signal from a reception side circuit to a transmission side circuit. The optical signal distribution device includes a transmission side circuit and a reception side circuit connected to the output side of the transmission side circuit via a first optical fiber. The receiving circuit multiplexes the receiving circuits of a plurality of circuits each having a laser diode that outputs light having different wavelengths, and the optical signals having different wavelengths output from the laser diodes of the receiving circuits as multiplexed optical signals. And an output optical multiplexer. A transmission side circuit modulates a multiplexed optical signal transmitted from the optical combiner of the receiving side circuit via the second optical fiber with a signal such as a video signal, an audio signal, or a data signal, and outputs it as a multiplexed modulated optical signal. Has a modulator. Furthermore, the receiving circuit has a laser diode that separates the multiplexed modulated optical signal transmitted from the optical external modulator of the transmitting circuit via the first optical fiber for each wavelength and outputs light of the same wavelength. And an optical demultiplexer that distributes to each other.
 特開平01-204444号公報には、半導体チップ内の信号配線長を実効的に短縮し、論理回路セルの寸法を縮減して搭載ゲート数を増加し、且つ、信号配線の長さや負荷の大小に応じて適切な駆動能力の論理回路セルを設定できる半導体集積回路が開示されている。その半導体集積回路は、半導体チップの一主面に格子状に設けられた主幹電源パスと、主幹電源パスにより区画され行列状に配置された論理回路形成領域と、半導体チップの周縁部に配置された電源及び入出力信号接続用パッドと、パッドの内周の主幹電源バスに隣接して設けられた入出力用ゲートとを有する。論理回路形成領域の中央部には、論理回路形成用のトランジスタ及び抵抗が配置され、且つ軽負荷用の小電流論理回路セルと重負荷用の大電流論理回路セルとを有する集合セル領域が設けられ、論理回路形成領域の集合セル領域外周には集合セル領域間の信号接続用配線領域が設けられている。 In Japanese Patent Laid-Open No. 01-204444, the signal wiring length in the semiconductor chip is effectively shortened, the size of the logic circuit cell is reduced to increase the number of mounted gates, and the length of the signal wiring and the load are small or large. Accordingly, a semiconductor integrated circuit capable of setting a logic circuit cell having an appropriate driving capability is disclosed. The semiconductor integrated circuit is arranged on a main surface of the semiconductor chip in a grid pattern, a logic circuit formation region partitioned by the main power path and arranged in a matrix, and a peripheral portion of the semiconductor chip. Power supply and input / output signal connection pads, and input / output gates provided adjacent to the main power supply bus on the inner periphery of the pads. In the central portion of the logic circuit formation region, a transistor and a resistor for logic circuit formation are arranged, and a collective cell region having a small current logic circuit cell for light load and a large current logic circuit cell for heavy load is provided. In addition, a signal connection wiring region between the assembly cell regions is provided on the outer periphery of the assembly cell region of the logic circuit formation region.
 特開平07-131471号公報には、低消費電力化と高速化を可能にした信号伝送方法が開示されている。その信号伝送方法では、並走するように配置された一対の配線の一方を信号の伝送路として両端に、その特性インピーダンスに整合した終端抵抗を介して終端電圧が供給されている。その一対の配線の他方を基準電圧の伝送路として両端にその特性インピーダンスに整合した終端抵抗を介して終端電圧又は回路の接地電位が供給され、送信側からは接地電位と出力端子の間に設けられた駆動トランジスタにより信号が送出され、受信側では終端電圧の約1/2に設定されたオフセット電圧により基準電圧が発生され、終端電圧が供給された増幅トランジスタと入力信号が供給された増幅トランジスタとが差動動作を行うことにより信号受信が行われている。 Japanese Patent Application Laid-Open No. 07-131471 discloses a signal transmission method that enables low power consumption and high speed. In the signal transmission method, a termination voltage is supplied to both ends using one of a pair of wires arranged in parallel as a signal transmission path via a termination resistor matched to the characteristic impedance. The other end of the pair of wires is used as a reference voltage transmission line, and a termination voltage or a circuit ground potential is supplied to both ends via a termination resistor matched to the characteristic impedance. The transmission side is provided between the ground potential and the output terminal. A signal is sent out by the driven transistor, and a reference voltage is generated by an offset voltage set to about 1/2 of the termination voltage on the receiving side, and an amplification transistor to which the termination voltage is supplied and an amplification transistor to which an input signal is supplied The signals are received by performing a differential operation.
 上記の技術が提案されているが、オンチップの光配線ネットワークの実現には、光源モジュールから分配される光を有効利用することが望まれている。例えば、データを伝送するコアがそれぞれに別個の光源モジュールを搭載すると、消費電力、実装面積がコア数に比例して増大してしまう。したがって、限られた数の光源を、それよりも多い複数のコアで共有し、データ通信を行うほうが一般に効率的である。 Although the above technology has been proposed, it is desired to effectively use the light distributed from the light source module in order to realize an on-chip optical wiring network. For example, if each of the cores transmitting data has a separate light source module, the power consumption and the mounting area increase in proportion to the number of cores. Accordingly, it is generally more efficient to perform a data communication by sharing a limited number of light sources among a plurality of more cores.
 特開昭64-023222号公報には、単一の光源からの光を導波路型の光分配器により所用の位置に振分ける光分配系が開示されている。その導波路型光分配器の終端には、それぞれ光変調器が設置され、分配された光を変調してデータ送信を行う。ところが、この構成では、それぞれの変調器に対しデータ送信を行わない場合にも、絶えず等量の光分配を行うことになり、光の利用効率が高くない。この問題を解決するために、データ送信を行うコアと結合した変調器のみに光を分配する、可変の光分配系が構築することが望まれている。 Japanese Patent Laid-Open No. 64-02222 discloses a light distribution system that distributes light from a single light source to a desired position by a waveguide-type light distributor. An optical modulator is installed at each end of the waveguide type optical distributor, and the distributed light is modulated to transmit data. However, in this configuration, even when data transmission is not performed to each modulator, an equal amount of light is constantly distributed, and the light use efficiency is not high. In order to solve this problem, it is desired to construct a variable optical distribution system that distributes light only to a modulator coupled to a core that performs data transmission.
 特開平08-51395号公報には、光送信器の光出力に無駄が生じない光分配系を構築できる光コンセントが開示されている。その光コンセントは、光入力を任意の比率の光量で分配する可変光量分岐器と、この可変光量分岐器で分岐された分岐光出力を一定比率の光量で分配する固定光量分岐器と、この固定光量分岐器で分岐された分岐光出力の光量を測定し、この光量があらかじめ設定された光量となるように可変光量分岐器の光量分岐比を制御する制御回路とを備えている。この技術を応用すれば、データを送信する変調器のみに光を分配することが可能となり、効率的な光分配が可能となる。しかしながら、この場合は、新たに光スイッチを設置する必要があり、消費電力や光スイッチのフットプリントが問題となる可能性がある。 Japanese Patent Application Laid-Open No. 08-51395 discloses an optical outlet capable of constructing an optical distribution system that does not waste optical output of an optical transmitter. The optical outlet includes a variable light quantity splitter that distributes the light input at an arbitrary ratio of light quantity, a fixed light quantity splitter that distributes the branched light output branched by this variable light quantity splitter at a constant ratio of light quantity, and this fixed And a control circuit that measures the light amount of the branched light output branched by the light amount branching unit and controls the light amount branching ratio of the variable light amount branching unit so that the light amount becomes a preset light amount. If this technology is applied, light can be distributed only to the modulator that transmits data, and efficient light distribution is possible. However, in this case, it is necessary to newly install an optical switch, and power consumption and the footprint of the optical switch may become a problem.
 本発明は、1つのチップ内に配置される複数のコア間のデータ送受信に利用される光の利用効率が向上させられた光集積回路装置を提供する。
 また、本発明は、複数のコア間で高スループットのデータ通信を行う光配線方式において、光分配系を可変としなくても無駄のない効率的な光分配を実現できる光集積回路装置を提供する。
The present invention provides an optical integrated circuit device in which utilization efficiency of light used for data transmission / reception between a plurality of cores arranged in one chip is improved.
The present invention also provides an optical integrated circuit device capable of realizing efficient optical distribution without waste even if the optical distribution system is not variable in an optical wiring system that performs high-throughput data communication between a plurality of cores. .
 本発明による光集積回路装置は、複数のコアと複数の光送信器とを備えている。その複数のコアの各々は、その複数のコアのうちの他のコアに伝送される情報を示す電気信号をその複数の光送信器のうちの1つの光送信器に送信する。その1つの光送信器は、その電気信号に基づいてその情報を示す光信号を光信号線網に伝送する。その光信号線網は、その光信号に基づいてその情報をその他のコアに伝送する。このとき、その複数のコアの個数は、その複数の光送信器をその光信号線網に接続する光配線の個数より多い。 An optical integrated circuit device according to the present invention includes a plurality of cores and a plurality of optical transmitters. Each of the plurality of cores transmits an electrical signal indicating information transmitted to another core of the plurality of cores to one optical transmitter of the plurality of optical transmitters. The one optical transmitter transmits an optical signal indicating the information to the optical signal line network based on the electrical signal. The optical signal line network transmits the information to other cores based on the optical signal. At this time, the number of the plurality of cores is larger than the number of optical wirings connecting the plurality of optical transmitters to the optical signal line network.
 本発明による光集積回路チップは、複数の光送信器を光信号線網に接続する光配線の1つが複数のコアに共有され、1つのチップ内の複数のコア間でデータ通信を行うときに、光分配系を可変としないで無駄のない効率的な光分配を実現することができ、チップ内でデータ送信するときに利用される光の利用効率を向上させることができる。 In an optical integrated circuit chip according to the present invention, one of optical wirings connecting a plurality of optical transmitters to an optical signal line network is shared by a plurality of cores, and data communication is performed between a plurality of cores in one chip. Therefore, it is possible to achieve efficient and efficient light distribution without making the light distribution system variable, and it is possible to improve the utilization efficiency of light used when data is transmitted within the chip.
 本願の上記の主題・特徴は添付の図面に関連して説明される例示的実施形態から理解されよう。ここで、それらの図面は、以下の通りである。
図1は、本発明による光集積回路チップの実施の形態を示すブロック図である。 図2は、光送信器を示すブロック図である。 図3は、光送信器が光信号線網にデータを送信する頻度を示すグラフである。 図4は、本発明による光集積回路チップの実施の他の形態を示すブロック図である。 図5は、本発明による光集積回路チップの実施のさらに他の形態を示すブロック図である。 図6は、他の光送信器を示すブロック図である。
The above subject matter and features of the present application will be understood from the exemplary embodiments described in connection with the accompanying drawings. Here, the drawings are as follows.
FIG. 1 is a block diagram showing an embodiment of an optical integrated circuit chip according to the present invention. FIG. 2 is a block diagram illustrating the optical transmitter. FIG. 3 is a graph showing the frequency with which the optical transmitter transmits data to the optical signal line network. FIG. 4 is a block diagram showing another embodiment of the optical integrated circuit chip according to the present invention. FIG. 5 is a block diagram showing still another embodiment of the optical integrated circuit chip according to the present invention. FIG. 6 is a block diagram showing another optical transmitter.
 以下に添付図面を参照して、本発明による光集積回路装置について説明する。
 その光集積回路装置1は、図1に示されているように、複数の光分配線2-1~2-9と複数の光送信器3-1~3-9と複数のコア5-1~5-36とを備えている。複数のコア5-1~5-36は、基板上に6行6列のタイル状に配置されている。その列は、第1列~第6列であり、その行は、第1行~第6行を備えている。複数の光送信器3-1~3-9の各々は、コア5-1~5-36の複数のグループの対応するものに対して設けられており、コア5-1~5-36の各々は、複数の光送信器3-1~3-9のいずれか1個に情報伝達可能に電気的に接続されている。
Hereinafter, an optical integrated circuit device according to the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the optical integrated circuit device 1 includes a plurality of optical distribution lines 2-1 to 2-9, a plurality of optical transmitters 3-1 to 3-9, and a plurality of cores 5-1. 5-36. The plurality of cores 5-1 to 5-36 are arranged in a tile shape of 6 rows and 6 columns on the substrate. The columns are the first to sixth columns, and the row includes the first to sixth rows. Each of the plurality of optical transmitters 3-1 to 3-9 is provided for the corresponding group of the plurality of cores 5-1 to 5-36, and each of the cores 5-1 to 5-36 is provided. Is electrically connected to any one of the plurality of optical transmitters 3-1 to 3-9 so that information can be transmitted.
 複数の光分配線2-1~2-9は、それぞれ、光ファイバを備えている。複数の光分配線2-1~2-9の各光分配線2-i(i=1,2,3,…,9)は、端部がその基板の外部の光源6と接続され、もう一方の端部が複数の光送信器3-1~3-9のうちの1つの光送信器3-iに接続されている。光分配線2-iは、光源6により生成された光を光送信器3-iに伝送する。
 複数の光送信器3-1~3-9は、それぞれ、基板上に形成されている。複数の光送信器3-1~3-9の各光送信器3-iは、複数のコア5-1~5-36のうちの4個のコアに情報伝達可能に電気的に接続されている。
Each of the plurality of optical distribution lines 2-1 to 2-9 includes an optical fiber. Each of the light distribution lines 2-i (i = 1, 2, 3,..., 9) of the plurality of light distribution lines 2-1 to 2-9 is connected to the light source 6 outside the substrate, One end is connected to one optical transmitter 3-i among the plurality of optical transmitters 3-1 to 3-9. The optical distribution line 2-i transmits the light generated by the light source 6 to the optical transmitter 3-i.
Each of the plurality of optical transmitters 3-1 to 3-9 is formed on a substrate. Each of the optical transmitters 3-i of the plurality of optical transmitters 3-1 to 3-9 is electrically connected to four cores of the plurality of cores 5-1 to 5-36 so that information can be transmitted. Yes.
 図2は、光送信器3-iを示している。光送信器3-iは、制御回路7と光変調器8とを備えている。制御回路7は、電気配線11-1~11-4を介して複数のコア5-1~5-36のうちの4個のコアに情報伝達可能に接続されている。たとえば、光送信器3-1の制御回路7は、電気配線11-1を介して第1行第1列のコア5-1に情報伝達可能に接続され、電気配線11-2を介して第1行第2列のコア5-2に情報伝達可能に接続され、電気配線11-3を介して第2行第1列のコア5-3に情報伝達可能に接続され、電気配線11-4を介して第1行第2列のコア5-4に情報伝達可能に接続されている。制御回路7は、さらに、電気配線12を介して光変調器8に情報伝達可能に電気的に接続されている。 FIG. 2 shows the optical transmitter 3-i. The optical transmitter 3-i includes a control circuit 7 and an optical modulator 8. The control circuit 7 is connected to four of the plurality of cores 5-1 to 5-36 through the electrical wirings 11-1 to 11-4 so that information can be transmitted. For example, the control circuit 7 of the optical transmitter 3-1 is connected to the core 5-1 in the first row and first column via the electric wiring 11-1 so as to be able to transmit information, and is connected via the electric wiring 11-2. It is connected to the core 5-2 in the first row and the second column so as to be able to transmit information, and is connected to the core 5-3 in the second row and the first column via the electrical wiring 11-3 so as to be able to transmit information. To the core 5-4 in the first row and the second column through the communication. The control circuit 7 is further electrically connected to the optical modulator 8 via the electric wiring 12 so as to be able to transmit information.
 光変調器8は、光分配線2-iを介して光源6に接続され、光ファイバ14を介して光信号線網15に情報伝達可能に接続されている。光ファイバ14と光信号線網15とは、光分配線2-1~2-9と別個に設けられている。光変調器8は、制御回路7から出力される情報に基づいて光分配線2-iを介して光源6から供給される光を強度変調して光信号を生成し、光ファイバ14を介してその光信号を光信号線網15に出力する。 The optical modulator 8 is connected to the light source 6 through the optical distribution line 2-i and connected to the optical signal line network 15 through the optical fiber 14 so that information can be transmitted. The optical fiber 14 and the optical signal line network 15 are provided separately from the optical distribution lines 2-1 to 2-9. The optical modulator 8 generates an optical signal by intensity-modulating the light supplied from the light source 6 via the optical distribution line 2-i based on the information output from the control circuit 7, and via the optical fiber 14. The optical signal is output to the optical signal line network 15.
 光集積回路装置1は、さらに、図示されていない複数の光受信機を備えている。その複数の光受信機は、それぞれ、光信号線網15から光信号を受信可能に、光配線を介して光信号線網15に接続され、複数のコア5-1~5-36に電気信号を送信可能に、電気配線を介して複数のコア5-1~5-36に接続されている。 The optical integrated circuit device 1 further includes a plurality of optical receivers not shown. Each of the plurality of optical receivers is connected to the optical signal line network 15 via an optical wiring so as to be able to receive an optical signal from the optical signal line network 15, and is electrically connected to the plurality of cores 5-1 to 5-36. Are connected to the plurality of cores 5-1 to 5-36 via electric wiring.
 複数のコア5-1~5-36の1つのコアは、複数のコア5-1~5-36の他のコアに伝達すべき情報を生成すると、その情報とその他のコアを識別する情報とを示す電気信号を光送信器3-iに出力する。光送信器3-iの制御回路7は、光送信器3-iに接続される4個のコアから出力された電気信号が示すデータを順次に光変調器8に出力する。光源6は、複数の光分配線2-1~2-9を介して複数の光送信器3-1~3-9に光を供給している。光変調器8は、光分配線2-iを介して光源6から供給される光を強度変調して光信号を生成する。その光信号は、制御回路7から出力されるデータを示している。光変調器8は、光ファイバ14を介してその光信号を光信号線網15に出力する。光信号線網15は、光送信器3-iから受信した光信号を光受信機のうちの1つに送信し、その光受信機は、光信号線網15から出力される光信号が示すデータを示す電気信号を複数のコア5-1~5-36のうちの1個のコアに出力する。このような光信号線網15は、周知であり、たとえば、A.Shachamによる“On the Design of a Photonic Network-on-Chip” (Proceeding of the First International Symposium on Network-on-Chip, 2007)に開示されている。 When one core of the plurality of cores 5-1 to 5-36 generates information to be transmitted to the other cores of the plurality of cores 5-1 to 5-36, the information and information for identifying other cores Is output to the optical transmitter 3-i. The control circuit 7 of the optical transmitter 3-i sequentially outputs the data indicated by the electrical signals output from the four cores connected to the optical transmitter 3-i to the optical modulator 8. The light source 6 supplies light to the plurality of optical transmitters 3-1 to 3-9 through the plurality of optical distribution lines 2-1 to 2-9. The optical modulator 8 modulates the intensity of light supplied from the light source 6 via the optical distribution line 2-i to generate an optical signal. The optical signal indicates data output from the control circuit 7. The optical modulator 8 outputs the optical signal to the optical signal line network 15 through the optical fiber 14. The optical signal line network 15 transmits the optical signal received from the optical transmitter 3-i to one of the optical receivers, and the optical receiver indicates the optical signal output from the optical signal line network 15 An electrical signal indicating data is output to one of the plurality of cores 5-1 to 5-36. Such an optical signal line network 15 is well known. Disclosed in “On the Design of a Photonic Network-on-Chip” by Shacham (disclosed in Proceeding of the First International Symposium on Network-on-Chip, 2007).
 図3は、光送信器3-iの実効稼働率を示している。その実効稼働率は、光送信器3-iが光信号を介して光信号線網15に1つのデータを送信する単位時間当たりに、光送信器3-iが光信号を介して光信号線網15にデータを送信する頻度を示している。すなわち、その実効稼働率は、その単位時間当たりに1つのコアが情報を送信する平均送信頻度αと、光送信器3-iを光信号線網15に接続する光配線の1本あたりに共有されるコアの数nとを用いて、次式:α×nにより表現される。 FIG. 3 shows the effective operating rate of the optical transmitter 3-i. The effective operation rate is such that the optical transmitter 3-i transmits one data to the optical signal line network 15 via the optical signal, and the optical transmitter 3-i transmits the optical signal line via the optical signal per unit time. The frequency at which data is transmitted to the network 15 is shown. That is, the effective operating rate is shared by the average transmission frequency α at which one core transmits information per unit time and one optical wiring connecting the optical transmitter 3-i to the optical signal line network 15. The number n of cores to be used is expressed by the following formula: α × n.
 その実効稼働率は、平均送信頻度αが0.25である場合で、コアの数nが3個であるときに1以下であることを示し、コアの数nが4個であるときに概ね1であることを示し、コアの数nが5個であるときに1以上であることを示している。すなわち、その実効稼働率は、平均送信頻度αが0.25である場合で、コアの数が4個より少ない場合に光の利用効率が低下することを示している。その実効稼働率は、さらに、平均送信頻度αが0.25である場合で、コアの数nが4個より多い場合に、いわゆる輻輳状態となり、データ送信時に遅延が生じることを示している。
 すなわち、その実効稼働率は、平均送信頻度αが0.25である場合で、1本の光配線が4個のコアに共有されるときに、光の利用効率が低下しないで、かつ、輻輳状態とならないで、適切であることを示している。その実効稼働率は、さらに、共有されるコアの数nが平均送信頻度αの逆数程度であるときに、適切になることを示している。
 すなわち、光集積回路チップ1は、複数のコア間でデータの送受信を行う場合に、1本の光配線を共有するコアの数を、複数のコアの平均的なデータ送信頻度の逆数程度としている。このため、光集積回路チップ1は、光配線を共有する複数のコアのいずれかでデータ送信の機会が発生し、光源分配系を可変としなくても無駄のない効率的な光源分配が可能となる。
When the average transmission frequency α is 0.25, the effective operating rate indicates that it is 1 or less when the number n of cores is 3, and when the number n of cores is 4 1 and 1 or more when the number n of cores is 5. That is, the effective operation rate indicates that the light use efficiency is lowered when the average transmission frequency α is 0.25 and the number of cores is less than four. The effective operation rate further indicates that when the average transmission frequency α is 0.25 and the number n of cores is more than 4, a so-called congestion state occurs and a delay occurs during data transmission.
That is, when the average transmission frequency α is 0.25, the effective utilization rate is such that when one optical wiring is shared by four cores, the light utilization efficiency does not decrease and congestion occurs. It shows that it is appropriate without entering a state. The effective operation rate further indicates that the value is appropriate when the number n of shared cores is about the reciprocal of the average transmission frequency α.
That is, in the optical integrated circuit chip 1, when data is transmitted and received between a plurality of cores, the number of cores sharing one optical wiring is set to be approximately the reciprocal of the average data transmission frequency of the plurality of cores. . For this reason, the optical integrated circuit chip 1 has an opportunity for data transmission in any of the plurality of cores sharing the optical wiring, and can efficiently and efficiently distribute the light source without making the light source distribution system variable. Become.
 図4は、本発明の第2実施形態である光集積回路装置を示している。その光集積回路チップ21は、光分配線22と複数の光送信器23-1~23-9と複数の固定光量分岐器24-1~24-8と複数のコア25-1~25-36とを備えている。複数のコア25-1~25-36は、既述の第1実施形態における複数のコア5-1~5-36と同様にして、基板上に6行6列のタイル状に配置されている。その列は、第1列~第6列から形成されている。その行は、第1行~第6行から形成されている。複数のコア25-1~25-36の各々は、複数の光送信器23-1~23-9のいずれか1個に情報伝達可能に電気的に接続されている。 FIG. 4 shows an optical integrated circuit device according to the second embodiment of the present invention. The optical integrated circuit chip 21 includes an optical distribution line 22, a plurality of optical transmitters 23-1 to 23-9, a plurality of fixed light amount branching units 24-1 to 24-8, and a plurality of cores 25-1 to 25-36. And. The plurality of cores 25-1 to 25-36 are arranged in a 6-row and 6-column tile shape on the substrate in the same manner as the plurality of cores 5-1 to 5-36 in the first embodiment described above. . The column is composed of a first column to a sixth column. The row is formed from the first row to the sixth row. Each of the plurality of cores 25-1 to 25-36 is electrically connected to any one of the plurality of optical transmitters 23-1 to 23-9 so that information can be transmitted.
 光分配線22は、光ファイバから形成されている。光分配線22は、光集積回路装置上の複数の光送信器23-1~23-9を巡回するように配置され、端部がその基板の外部の光源26と接続され、もう一方の端部が複数の光送信器23-9に接続されている。
 複数の固定光量分岐器24-1~24-8は、光分配線22の途中に介設されている。固定光量分岐器24-1は、光源26から供給された光を光量が1:8である2つの光に分離し、光量が1である光を光分配線22-1に出力し、光量が8である光を固定光量分岐器24-2に出力する。固定光量分岐器24-2は、固定光量分岐器24-1から供給された光を光量が1:7である2つの光に分離し、光量が1である光を光分配線22-2(図示せず)に出力し、光量が7である光を固定光量分岐器24-3に出力する。固定光量分岐器24-3は、固定光量分岐器24-2から供給された光を光量が1:6である2つの光に分離し、光量が1である光を光分配線22-3に出力し、光量が6である光を固定光量分岐器24-6に出力する。固定光量分岐器24-6は、固定光量分岐器24-3から供給された光を光量が1:5である2つの光に分離し、光量が1である光を光分配線22-6に出力し、光量が5である光を固定光量分岐器24-5に出力する。固定光量分岐器24-5は、固定光量分岐器24-6から供給された光を光量が1:4である2つの光に分離し、光量が1である光を光分配線22-4(図示せず)に出力し、光量が4である光を固定光量分岐器24-4に出力する。固定光量分岐器24-4は、固定光量分岐器24-5から供給された光を光量が1:3である2つの光に分離し、光量が1である光を光分配線22-4に出力し、光量が3である光を固定光量分岐器24-7に出力する。固定光量分岐器24-7は、固定光量分岐器24-4から供給された光を光量が1:2である2つの光に分離し、光量が1である光を光分配線22-7に出力し、光量が2である光を固定光量分岐器24-8に出力する。固定光量分岐器24-8は、固定光量分岐器24-7から供給された光を光量が1:1である2つの光に分離し、1つの光を光分配線22-8(図示せず)に出力し、もう1つの光を光分配線22-9に出力する。
The optical distribution line 22 is formed from an optical fiber. The optical distribution line 22 is arranged so as to circulate a plurality of optical transmitters 23-1 to 23-9 on the optical integrated circuit device, and an end thereof is connected to a light source 26 outside the substrate, and the other end Are connected to a plurality of optical transmitters 23-9.
A plurality of fixed light quantity branching devices 24-1 to 24-8 are interposed in the middle of the optical distribution line 22. The fixed light quantity splitter 24-1 separates the light supplied from the light source 26 into two lights having a light quantity of 1: 8, and outputs the light having a light quantity of 1 to the light distribution line 22-1. 8 is output to the fixed light quantity splitter 24-2. The fixed light amount branching device 24-2 separates the light supplied from the fixed light amount branching device 24-1 into two lights having a light amount of 1: 7, and the light having the light amount of 1 is separated into the light distribution line 22-2 ( (Not shown), and the light having the light quantity of 7 is outputted to the fixed light quantity splitter 24-3. The fixed light quantity splitter 24-3 separates the light supplied from the fixed light quantity splitter 24-2 into two lights having a light quantity of 1: 6, and the light having a light quantity of 1 is supplied to the optical distribution line 22-3. The light having a light amount of 6 is output to the fixed light amount branching device 24-6. The fixed light amount branching device 24-6 separates the light supplied from the fixed light amount branching device 24-3 into two lights having a light amount of 1: 5, and the light having the light amount 1 is supplied to the light distribution line 22-6. The light having a light quantity of 5 is outputted to the fixed light quantity splitter 24-5. The fixed light amount branching device 24-5 separates the light supplied from the fixed light amount branching device 24-6 into two lights having a light amount of 1: 4, and the light having the light amount of 1 is divided into the light distribution lines 22-4 ( (Not shown), and the light having the light quantity of 4 is outputted to the fixed light quantity splitter 24-4. The fixed light quantity splitter 24-4 separates the light supplied from the fixed light quantity splitter 24-5 into two lights having a light quantity of 1: 3, and the light having a light quantity of 1 is supplied to the optical distribution line 22-4. The light having the light amount of 3 is output to the fixed light amount branching device 24-7. The fixed light quantity splitter 24-7 separates the light supplied from the fixed light quantity splitter 24-4 into two lights having a light quantity of 1: 2, and the light having a light quantity of 1 is supplied to the optical distribution line 22-7. The light having a light quantity of 2 is outputted to the fixed light quantity splitter 24-8. The fixed light quantity splitter 24-8 separates the light supplied from the fixed light quantity splitter 24-7 into two lights having a light quantity of 1: 1, and separates one light into an optical distribution line 22-8 (not shown). ) And another light is output to the optical distribution line 22-9.
 複数の光送信器23-1~23-9の構成は、既述の第1実施形態における複数の光送信器3-1~3-9と同様であり、基板上に形成されている。複数の光送信器23-1~23-9の各光送信器23-iは、複数のコア25-1~25-36のうちの隣接する4個のコアごとに情報伝達可能に電気的に接続されている。 The configuration of the plurality of optical transmitters 23-1 to 23-9 is the same as that of the plurality of optical transmitters 3-1 to 3-9 in the first embodiment described above, and is formed on the substrate. Each of the optical transmitters 23-i of the plurality of optical transmitters 23-1 to 23-9 is electrically transmitted so that information can be transmitted to four adjacent cores of the plurality of cores 25-1 to 25-36. It is connected.
 光集積回路装置21は、既述の第1実施形態における光集積回路装置1と同様にして、動作する。すなわち、光集積回路装置21は、複数のコア25-1~25-36の1つのコアは、複数のコア25-1~25-36の他のコアに伝達すべき情報を生成すると、その情報とその他のコアを識別する情報とを示す電気信号を光送信器23-iに出力する。光源26と複数の固定光量分岐器24-1~24-8とは、複数の光送信器23-1~23-9に光を供給している。光送信器23-iは、光送信器23-iに接続される4個のコアから出力された電気信号が示すデータを示す光信号を順次に生成し、その光信号を光信号線網15に出力する。光信号線網15は、光送信器23-iから受信した光信号を光受信機のうちの1つに送信し、その光受信機は、光信号線網15から出力される光信号が示すデータを示す電気信号を複数のコア25-1~25-36のうちの1個のコアに出力する。
 光集積回路装置21は、既述の第1実施形態における光集積回路装置1と同様にして、光分配系を可変としなくても無駄のない効率的な光分配が実現することができる。すなわち、このような光配線方式は、複数の固定光量分岐器24-1~24-8を用いて分割された複数に光を強度変調して光信号を生成する光集積回路装置21にも適用することができる。
The optical integrated circuit device 21 operates in the same manner as the optical integrated circuit device 1 in the first embodiment described above. That is, in the optical integrated circuit device 21, when one core of the plurality of cores 25-1 to 25-36 generates information to be transmitted to the other cores of the plurality of cores 25-1 to 25-36, the information And an electrical signal indicating information identifying other cores are output to the optical transmitter 23-i. The light source 26 and the plurality of fixed light quantity dividers 24-1 to 24-8 supply light to the plurality of optical transmitters 23-1 to 23-9. The optical transmitter 23-i sequentially generates an optical signal indicating the data indicated by the electrical signals output from the four cores connected to the optical transmitter 23-i, and the optical signal is transmitted to the optical signal line network 15 Output to. The optical signal line network 15 transmits the optical signal received from the optical transmitter 23-i to one of the optical receivers, and the optical receiver indicates the optical signal output from the optical signal line network 15. An electrical signal indicating data is output to one of the plurality of cores 25-1 to 25-36.
Similarly to the optical integrated circuit device 1 in the first embodiment described above, the optical integrated circuit device 21 can achieve efficient and efficient light distribution without making the optical distribution system variable. That is, such an optical wiring system is also applied to an optical integrated circuit device 21 that generates an optical signal by intensity-modulating light into a plurality of light beams divided by using a plurality of fixed light amount branching units 24-1 to 24-8. can do.
 図5は、本発明による光集積回路装置の第3実施形態を示している。その光集積回路装置31は、複数の光分配線32-1~32-8と複数の光分配線33-1~33-8と複数の光送信器34-1~34-8と複数のコア37-1~37-64とを備えている。複数のコア37-1~37-64は、基板上に8行8列のタイル状に配置されている。複数のコア37-1~37-64の各々は、複数の光送信器34-1~34-8のいずれか1個に情報伝達可能に電気的に接続されている。
 複数の光分配線32-1~32-8は、それぞれ、光ファイバから形成されている。複数の光分配線32-1~32-8の各光分配線32-j(j=1,2,3,…,8)は、端部がその基板の外部の光源35と接続され、もう一方の端部が複数の光送信器34-1~34-8のうちの1つの光送信器34-jに接続されている。光分配線32-jは、光源35により生成された光を光送信器34-jに伝送する。
 複数の光分配線33-1~33-8は、それぞれ、光ファイバから形成されている。複数の光分配線33-1~33-8の各光分配線33-j(j=1,2,3,…,8)は、端部がその基板の外部の光源36と接続され、もう一方の端部が複数の光送信器34-1~34-8のうちの1つの光送信器34-jに接続されている。光分配線33-jは、光源36により生成された光を光送信器34-jに伝送する。光源36により生成される光は、光源35により生成される光と波長が異なっている。
 複数の光送信器34-1~34-8は、それぞれ、基板上に形成されている。各光送信器34-jは、複数のコア37-1~37-64のうちの8個のコアに情報伝達可能に電気的に接続されている。
FIG. 5 shows a third embodiment of the optical integrated circuit device according to the present invention. The optical integrated circuit device 31 includes a plurality of optical distribution lines 32-1 to 32-8, a plurality of optical distribution lines 33-1 to 33-8, a plurality of optical transmitters 34-1 to 34-8, and a plurality of cores. 37-1 to 37-64. The plurality of cores 37-1 to 37-64 are arranged in a tile shape of 8 rows and 8 columns on the substrate. Each of the plurality of cores 37-1 to 37-64 is electrically connected to any one of the plurality of optical transmitters 34-1 to 34-8 so that information can be transmitted.
The plurality of optical distribution lines 32-1 to 32-8 are each formed from an optical fiber. Each of the light distribution lines 32-j (j = 1, 2, 3,..., 8) of the plurality of light distribution lines 32-1 to 32-8 has an end connected to the light source 35 outside the substrate. One end is connected to one optical transmitter 34-j among the plurality of optical transmitters 34-1 to 34-8. The optical distribution line 32-j transmits the light generated by the light source 35 to the optical transmitter 34-j.
The plurality of optical distribution lines 33-1 to 33-8 are each formed from an optical fiber. Each of the light distribution lines 33-j (j = 1, 2, 3,..., 8) of the plurality of light distribution lines 33-1 to 33-8 has an end connected to the light source 36 outside the substrate. One end is connected to one optical transmitter 34-j among the plurality of optical transmitters 34-1 to 34-8. The optical distribution line 33-j transmits the light generated by the light source 36 to the optical transmitter 34-j. The light generated by the light source 36 has a wavelength different from that of the light generated by the light source 35.
The plurality of optical transmitters 34-1 to 34-8 are each formed on a substrate. Each optical transmitter 34-j is electrically connected to eight of the plurality of cores 37-1 to 37-64 so as to be able to transmit information.
 図6は、光送信器34-jを示している。光送信器34-jは、制御回路47と光変調器38と光変調器39とを備えている。制御回路47は、電気配線41-1~41-8を介して複数のコア37-1~37-64のうちの8個のコアに情報伝達可能に電気的に接続されている。たとえば、光送信器34-1の制御回路47は、電気配線41-1を介して第1行第1列のコアに情報伝達可能に電気的に接続され、電気配線41-2を介して第1行第2列のコアに情報伝達可能に電気的に接続され、電気配線41-3を介して第1行第3列のコアに情報伝達可能に電気的に接続され、電気配線41-4を介して第1行第4列のコアに情報伝達可能に電気的に接続され、電気配線41-5を介して第2行第1列のコアに情報伝達可能に電気的に接続され、電気配線41-6を介して第2行第2列のコアに情報伝達可能に電気的に接続され、電気配線41-7を介して第2行第3列のコアに情報伝達可能に電気的に接続され、電気配線41-8を介して第2行第4列のコアに情報伝達可能に電気的に接続されている。 FIG. 6 shows the optical transmitter 34-j. The optical transmitter 34-j includes a control circuit 47, an optical modulator 38, and an optical modulator 39. The control circuit 47 is electrically connected to eight of the plurality of cores 37-1 to 37-64 via the electric wirings 41-1 to 41-8 so that information can be transmitted. For example, the control circuit 47 of the optical transmitter 34-1 is electrically connected to the core in the first row and the first column via the electric wiring 41-1 so as to be able to transmit information, and is connected via the electric wiring 41-2 to the first circuit. It is electrically connected to the core of the first row and the second column so as to be able to transmit information, and is electrically connected to the core of the first row and the third column via the electric wiring 41-3 so as to be able to transmit information. Is electrically connected to the core of the first row and the fourth column via the wiring, and is electrically connected to the core of the second row and the first column via the electric wiring 41-5 so as to be able to transmit the information. It is electrically connected to the core of the second row and the second column via the wiring 41-6 so as to be able to transmit information, and electrically connected to the core of the second row and the third column via the electric wiring 41-7. It is connected and electrically connected to the core in the second row and the fourth column via the electric wiring 41-8 so that information can be transmitted.
 制御回路47は、さらに、電気配線42を介して光変調器38に情報伝達可能に電気的に接続されている。電気配線43を介して光変調器39に情報伝達可能に電気的に接続されている。制御回路47は、その8個のコアから出力されたデータを、電気配線42を介して光変調器38に送信し、または、電気配線43を介して光変調器39に送信する。
 光変調器38は、光分配線32-jを介して光源35に接続され、光ファイバ44を介して光信号線網46に情報伝達可能に接続されている。光ファイバ44と光信号線網46とは、光分配線32-1~32-8と光分配線33-1~33-9と別個に設けられている。光変調器38は、制御回路47から出力される情報に基づいて、光分配線32-jを介して光源35から供給される光を強度変調して光信号を生成する。光変調器38は、光ファイバ44を介してその光信号を光信号線網46に出力する。
 光変調器39は、光分配線33-jを介して光源36に接続され、光ファイバ45を介して光信号線網46に情報伝達可能に接続されている。光ファイバ45は、光分配線32-1~32-8と光分配線33-1~33-9と別個に設けられている。光変調器39は、制御回路47から出力される情報に基づいて、光分配線33-jを介して光源36から供給される光を強度変調して光信号を生成する。光変調器39は、光ファイバ45を介してその光信号を光信号線網46に出力する。
 光集積回路装置31は、さらに、図示されていない複数の光受信機を備えている。光信号線網46は、光送信器34-jから受信した光信号をその複数の光受信機のうちの1つに送信し、その光受信機は、光信号線網46から出力される光信号が示す情報を示す電気信号に生成し、その電気信号を複数のコア37-1~37-64のうちの1個のコアに出力する。
The control circuit 47 is further electrically connected to the optical modulator 38 via the electric wiring 42 so that information can be transmitted. It is electrically connected to the optical modulator 39 through the electrical wiring 43 so as to be able to transmit information. The control circuit 47 transmits the data output from the eight cores to the optical modulator 38 via the electrical wiring 42 or transmits it to the optical modulator 39 via the electrical wiring 43.
The optical modulator 38 is connected to the light source 35 through an optical distribution line 32-j, and is connected to an optical signal line network 46 through an optical fiber 44 so that information can be transmitted. The optical fiber 44 and the optical signal line network 46 are provided separately from the optical distribution lines 32-1 to 32-8 and the optical distribution lines 33-1 to 33-9. Based on the information output from the control circuit 47, the optical modulator 38 modulates the intensity of light supplied from the light source 35 via the optical distribution line 32-j and generates an optical signal. The optical modulator 38 outputs the optical signal to the optical signal line network 46 via the optical fiber 44.
The optical modulator 39 is connected to the light source 36 via an optical distribution line 33-j and connected to an optical signal line network 46 via an optical fiber 45 so as to be able to transmit information. The optical fiber 45 is provided separately from the optical distribution lines 32-1 to 32-8 and the optical distribution lines 33-1 to 33-9. Based on the information output from the control circuit 47, the optical modulator 39 modulates the intensity of light supplied from the light source 36 via the optical distribution line 33-j to generate an optical signal. The optical modulator 39 outputs the optical signal to the optical signal line network 46 through the optical fiber 45.
The optical integrated circuit device 31 further includes a plurality of optical receivers not shown. The optical signal line network 46 transmits the optical signal received from the optical transmitter 34-j to one of the plurality of optical receivers, and the optical receiver outputs the optical signal output from the optical signal line network 46. An electrical signal indicating information indicated by the signal is generated, and the electrical signal is output to one of the plurality of cores 37-1 to 37-64.
 複数のコア37-1~37-64の1つのコアは、複数のコア37-1~37-64の他のコアに伝達すべき情報を生成すると、その情報とその他のコアを識別する情報とを示す電気信号を光送信器34-jに出力する。光源35は、複数の光分配線32-1~32-8を介して複数の光送信器34-1~34-8に光を供給している。光源36は、複数の光分配線33-1~33-8を介して複数の光送信器34-1~34-8に光を供給している。光送信器34-jの制御回路47は、光送信器34-jに接続される8個のコアから出力された電気信号が示すデータを順次に光変調器38または光変調器39に出力する。光変調器38は、光分配線32-jを介して光源35から供給される光を強度変調して光信号を生成する。その光信号は、制御回路47から出力されるデータを示している。光変調器38は、光ファイバ44を介してその光信号を光信号線網46に出力する。光変調器39は、光分配線33-jを介して光源36から供給される光を強度変調して光信号を生成する。その光信号は、制御回路47から出力されるデータを示している。光変調器39は、光ファイバ45を介してその光信号を光信号線網46に出力する。光信号線網46は、光送信器34-jから受信した光信号を光受信機のうちの1つに送信し、その光受信機は、光信号線網46から出力される光信号が示すデータを示す電気信号を複数のコア37-1~37-64のうちの1個のコアに出力する。 When one core of the plurality of cores 37-1 to 37-64 generates information to be transmitted to the other cores of the plurality of cores 37-1 to 37-64, the information and information for identifying other cores Is output to the optical transmitter 34-j. The light source 35 supplies light to the plurality of optical transmitters 34-1 to 34-8 via the plurality of optical distribution lines 32-1 to 32-8. The light source 36 supplies light to the plurality of optical transmitters 34-1 to 34-8 via the plurality of optical distribution lines 33-1 to 33-8. The control circuit 47 of the optical transmitter 34-j sequentially outputs the data indicated by the electrical signals output from the eight cores connected to the optical transmitter 34-j to the optical modulator 38 or the optical modulator 39. . The optical modulator 38 modulates the intensity of light supplied from the light source 35 via the optical distribution line 32-j to generate an optical signal. The optical signal indicates data output from the control circuit 47. The optical modulator 38 outputs the optical signal to the optical signal line network 46 via the optical fiber 44. The optical modulator 39 modulates the intensity of light supplied from the light source 36 via the optical distribution line 33-j and generates an optical signal. The optical signal indicates data output from the control circuit 47. The optical modulator 39 outputs the optical signal to the optical signal line network 46 through the optical fiber 45. The optical signal line network 46 transmits the optical signal received from the optical transmitter 34-j to one of the optical receivers, and the optical receiver indicates the optical signal output from the optical signal line network 46. An electrical signal indicating data is output to one of the plurality of cores 37-1 to 37-64.
 このような動作によれば、光集積回路装置31は、第1実施形態における光集積回路装置1と同様にして、光分配系を可変としなくても無駄のない効率的な光分配を実現することができる。光集積回路装置31は、さらに、コアあたりのスループット(伝送容量)が既述の実施の形態における光集積回路装置1または光集積回路装置21と変わらないが、データ搬送波として2種類の異なる波長の光を利用しているので、光信号線網46において同一のリンク内の伝送を許容でき(波長多重化)、経路選択の自由度が増す利点がある。なお、本実施の形態では、光源の数が2つまでの場合について説明したが、消費電力や素子のフットプリントが許す範囲でさらに多くの光源を集積してもよい。また、本発明の技術範囲は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることができる。
 本出願は、日本特許出願番号2008-046482に基づいて条約上の優先権を主張する。その開示は、引用によりここに組み込まれる。
 本発明が例示的実施形態を参照して説明されたが、本発明はこれらの例示的実施形態に制限されるものではない。請求の範囲に規定される本願の範囲から逸脱することなく種々の変更、修正が可能なことは問う業者には理解できよう。
According to such an operation, the optical integrated circuit device 31 realizes efficient and efficient light distribution even if the optical distribution system is not variable, in the same manner as the optical integrated circuit device 1 in the first embodiment. be able to. Further, the optical integrated circuit device 31 has the same throughput (transmission capacity) per core as that of the optical integrated circuit device 1 or the optical integrated circuit device 21 in the above-described embodiment, but has two different wavelengths as data carriers. Since light is used, transmission within the same link can be permitted in the optical signal line network 46 (wavelength multiplexing), and there is an advantage that the degree of freedom in route selection is increased. In the present embodiment, the case where the number of light sources is up to two has been described. However, more light sources may be integrated within a range allowed by power consumption and element footprint. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
This application claims treaty priority based on Japanese Patent Application No. 2008-046482. That disclosure is incorporated herein by reference.
Although the invention has been described with reference to exemplary embodiments, the invention is not limited to these exemplary embodiments. Those skilled in the art will appreciate that various changes and modifications can be made without departing from the scope of the present application as defined in the appended claims.

Claims (10)

  1.  チップ上に形成され、複数のグループにグループ化された複数のコアと、
     前記チップ上に形成され、前記複数のグループに対してそれぞれ設けられた複数の光送信器と
    を具備し、
     前記複数のコアの各々は、前記複数のコアのうちの他のコアに宛てられた電気信号を前記複数の光送信のうちの対応するものに送信し、前記対応する光送信器は、前記電気信号に基づいて光信号を前記他のコア宛に光信号線網を介して伝送し、
     前記複数のコアの個数は、前記複数の光送信器を前記光信号線網に接続する光配線の個数より多い
     光集積回路装置。
    A plurality of cores formed on a chip and grouped into a plurality of groups;
    A plurality of optical transmitters formed on the chip and provided for each of the plurality of groups;
    Each of the plurality of cores transmits an electrical signal addressed to another core of the plurality of cores to a corresponding one of the plurality of optical transmissions, and the corresponding optical transmitter includes the electrical transmitter An optical signal based on the signal is transmitted to the other core via the optical signal line network;
    The number of the plurality of cores is greater than the number of optical wirings connecting the plurality of optical transmitters to the optical signal line network.
  2.  請求の範囲1に記載の光集積回路装置において、
     前記複数のグループの各々内のコアの数は、前記複数の光送信器の各々が前記光信号線網に1つの光信号を送信する単位時間当たりに、前記複数のコアの各々が前記電気信号を前記複数の光送信器のうちの1つの光送信器に送信する平均送信頻度に基づいて算出される
     光集積回路装置。
    The optical integrated circuit device according to claim 1,
    The number of cores in each of the plurality of groups is such that each of the plurality of optical transmitters transmits the optical signal to the optical signal line network per unit time. An optical integrated circuit device that is calculated based on an average transmission frequency for transmitting the signal to one of the plurality of optical transmitters.
  3.  請求の範囲2に記載の光集積回路装置において、
     前記コアの個数は、前記平均送信頻度の逆数に概ね等しい
     光集積回路装置。
    The optical integrated circuit device according to claim 2,
    An optical integrated circuit device in which the number of cores is approximately equal to the inverse of the average transmission frequency.
  4.  請求の範囲1乃至3のいずれかに記載の光集積回路装置において、
     前記複数の光送信器の各々は、前記光信号を生成するために使用される光を供給するための単一の光ファイバに接続されている
     光集積回路装置。
    The optical integrated circuit device according to any one of claims 1 to 3,
    Each of the plurality of optical transmitters is connected to a single optical fiber for supplying light used to generate the optical signal.
  5.  請求の範囲1乃至3のいずれかに記載の光集積回路装置において、
     前記複数の光送信器の各々に対して設けられ、光源により生成される光を前記各光送信器に分配する固定光量分岐器を更に具備し、
     前記複数の光送信器の各々は、前記固定光量分岐器から供給された分岐光を用いて前記光信号を生成する
     光集積回路装置。
    The optical integrated circuit device according to any one of claims 1 to 3,
    A fixed light amount splitter that is provided for each of the plurality of optical transmitters and distributes the light generated by the light source to each of the optical transmitters;
    Each of the plurality of optical transmitters generates the optical signal using the branched light supplied from the fixed light amount branching device.
  6.  請求の範囲1乃至3のいずれかに記載の光集積回路装置において、
     前記複数の光送信器の各々は、複数の光源からそれぞれ供給される複数の光を用いて複数の前記光信号を前記光信号線網に送信する
     光集積回路装置。
    The optical integrated circuit device according to any one of claims 1 to 3,
    Each of the plurality of optical transmitters transmits a plurality of the optical signals to the optical signal line network using a plurality of lights respectively supplied from a plurality of light sources.
  7.  請求の範囲6に記載の光集積回路装置において、
     前記複数の光は、波長が互いに異なる
     光集積回路装置。
    The optical integrated circuit device according to claim 6,
    The plurality of lights are optical integrated circuit devices having different wavelengths.
  8.  チップ上に形成され、複数のグループにグループ化された複数のコアと、
     前記チップ上に形成され、前記複数のグループのそれぞれに設けられた複数の光送信器と、
     光源により生成される光を前記複数の光送信器に分配する固定光量分岐器と
    を具備し、
     前記複数のコアの各々は、前記複数のコアのうちの他のコアに宛てられた電気信号を前記複数の光送信のうちの対応するものに送信し、
     前記対応する光送信器は、前記電気信号に基づいて、前記対応する固定光量分岐器から供給される分岐光を用いて光信号を生成し、光信号線網を介して前記他のコア宛に伝送し、
     前記複数のコアの個数は、前記複数の光送信器を前記光信号線網に接続する光配線の個数より多い
     光集積回路装置。
    A plurality of cores formed on a chip and grouped into a plurality of groups;
    A plurality of optical transmitters formed on the chip and provided in each of the plurality of groups;
    A fixed light amount branching unit that distributes light generated by a light source to the plurality of optical transmitters,
    Each of the plurality of cores transmits an electrical signal addressed to another core of the plurality of cores to a corresponding one of the plurality of optical transmissions;
    The corresponding optical transmitter generates an optical signal using the branched light supplied from the corresponding fixed light amount branching unit based on the electrical signal, and sends the optical signal to the other core via the optical signal line network. Transmit
    The number of the plurality of cores is greater than the number of optical wirings connecting the plurality of optical transmitters to the optical signal line network.
  9.  請求の範囲8に記載の光集積回路装置において、
     前記複数のグループの各々内のコアの数は、前記複数の光送信器の各々が前記光信号線網に1つの光信号を送信する単位時間当たりに、前記複数のコアの各々が前記電気信号を前記複数の光送信器のうちの1つの光送信器に送信する平均送信頻度に基づいて算出される
     光集積回路装置。
    The optical integrated circuit device according to claim 8, wherein
    The number of cores in each of the plurality of groups is such that each of the plurality of optical transmitters transmits the optical signal to the optical signal line network per unit time. An optical integrated circuit device that is calculated based on an average transmission frequency for transmitting the signal to one of the plurality of optical transmitters.
  10.  請求の範囲9に記載の光集積回路装置において、
     前記コアの個数は、前記平均送信頻度の逆数に概ね等しい
     光集積回路装置。
    The optical integrated circuit device according to claim 9,
    An optical integrated circuit device in which the number of cores is approximately equal to the inverse of the average transmission frequency.
PCT/JP2009/053639 2008-02-27 2009-02-27 Optical integrated circuit device WO2009107761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500757A JP5257710B2 (en) 2008-02-27 2009-02-27 Optical integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008046482 2008-02-27
JP2008-046482 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009107761A1 true WO2009107761A1 (en) 2009-09-03

Family

ID=41016147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053639 WO2009107761A1 (en) 2008-02-27 2009-02-27 Optical integrated circuit device

Country Status (2)

Country Link
JP (1) JP5257710B2 (en)
WO (1) WO2009107761A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038225A2 (en) * 2005-09-26 2007-04-05 Rambus Incorporated A memory module including a plurality of integrated circuit memory devices and a plurality of buffer devices in a matrix topology

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873253A (en) * 1981-10-28 1983-05-02 Matsushita Electric Ind Co Ltd Optical signal transmission system
JPH0513749A (en) * 1991-06-28 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> Optical connection circuit
JPH0996746A (en) * 1995-09-29 1997-04-08 Fujitsu Ltd Active optical circuit sheet or active optical circuit board
JP2001141949A (en) * 1999-11-15 2001-05-25 Canon Inc Optical wave guide device
JP2003234721A (en) * 2002-02-06 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JP4671688B2 (en) * 2002-06-24 2011-04-20 サムスン エレクトロニクス カンパニー リミテッド Memory system comprising a memory module having a path for transmitting high-speed data and a path for transmitting low-speed data
JP3927883B2 (en) * 2002-08-02 2007-06-13 キヤノン株式会社 Optical waveguide device and photoelectric fusion substrate using the same
US7095620B2 (en) * 2002-11-27 2006-08-22 International Business Machines Corp. Optically connectable circuit board with optical component(s) mounted thereon
JP3897688B2 (en) * 2002-12-11 2007-03-28 キヤノン株式会社 Optoelectronic wiring board
JP4586654B2 (en) * 2005-07-04 2010-11-24 ソニー株式会社 Optical data transmission system and optical data transmission method
JP2007164110A (en) * 2005-12-19 2007-06-28 National Institute Of Advanced Industrial & Technology Method for making optical i/o component and optical integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038225A2 (en) * 2005-09-26 2007-04-05 Rambus Incorporated A memory module including a plurality of integrated circuit memory devices and a plurality of buffer devices in a matrix topology

Also Published As

Publication number Publication date
JPWO2009107761A1 (en) 2011-07-07
JP5257710B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN110012368B (en) Silicon-based integrated on-chip multi-mode optical switching system compatible with wavelength division multiplexing signals
CN104303441B (en) Optical transceiver and light output value control method
KR101254706B1 (en) Three-dimensional network on chip
US9986316B2 (en) Optical switching
US9551838B2 (en) Optical bridge
US20140029943A1 (en) Coplanar routing for optical transmission
US11637633B2 (en) Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
US9746747B2 (en) Optical switch, optical switch apparatus and node, and communication network
CN113759477A (en) Multi-channel optical engine packaging type small chip and common packaging type photoelectric module
CN109560891A (en) Realize the method and device of wavelength-division-multiplexed optical signal branch
JP2023528256A (en) Integrated CMOS Optical/Electronic WDM Communication System Using Optical Frequency Comb Generator
CN101030831B (en) Apparatus for wavelength division multiplexing and method for realizing its function
JP5257710B2 (en) Optical integrated circuit device
CN105594222B (en) A kind of computer system interconnection means and method for transmitting signals
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
CN114488398A (en) Redundant silicon-based photoelectric integrated chip
CN116299888A (en) Optical interconnection device and method of manufacturing the same
US10873409B2 (en) Optical switch
CN216981914U (en) Local optical module, opposite optical module and optical transmission device
WO2022234722A1 (en) Path control device of optical network, optical network system, path control method, and path control program
CN210469346U (en) High-bandwidth communication system among multiple integrated circuits
WO2022267547A1 (en) Transmission method for service optical signal, and network device and optical network
JPH09247092A (en) Optical parallel transmission device
US8280251B2 (en) Data transmission using direct and indirect optical paths
CN108512603B (en) Transmitting end of multi-path coherent optical communication device and multi-path coherent optical communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500757

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714866

Country of ref document: EP

Kind code of ref document: A1