WO2009097149A1 - A fuel cell air exchange apparatus - Google Patents

A fuel cell air exchange apparatus Download PDF

Info

Publication number
WO2009097149A1
WO2009097149A1 PCT/US2009/000648 US2009000648W WO2009097149A1 WO 2009097149 A1 WO2009097149 A1 WO 2009097149A1 US 2009000648 W US2009000648 W US 2009000648W WO 2009097149 A1 WO2009097149 A1 WO 2009097149A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
platform
air exchanger
cell air
holding
Prior art date
Application number
PCT/US2009/000648
Other languages
French (fr)
Inventor
Tobin J. Fisher
Tibor Fabian
Original Assignee
Ardica Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ardica Technologies, Inc. filed Critical Ardica Technologies, Inc.
Publication of WO2009097149A1 publication Critical patent/WO2009097149A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates generally to fuel cells. More particularly, the invention relates to providing unobstructed airflow to the fuel cell.
  • the present invention provides a fuel cell air exchanger.
  • the fuel cell air exchanger includes a platform having at least one opening there through and at least one holding post, where the holding post fixedly holds a fuel cell offset from the platform and proximal to the opening.
  • the fuel cell air exchanger provides an unimpeded air exchange through the openings to the fuel cell.
  • the holding posts are disposed an array, where the array of holding posts fixedly holds an array of the fuel cells offset from the platform.
  • the openings have a shape that can be circular, square, rectangular and polygonal.
  • the height of the holding post offset can be in a range from 0.5 to 7 mm.
  • the platform further includes an electronics holding region.
  • the platform further includes a vertical-orientation chimney channel.
  • the platform further includes protruding columns over the fuel cell, where the protruding column can abut the fuel cell and provides isolation for an intra-cell connection.
  • the platform can be articulated between at least two of the fixedly held fuel cells.
  • the platform can be made from materials that include metals, alloys composites, ceramics and plastics.
  • FIG. 1 shows a perspective view of a fuel cell air exchanger according to the present invention.
  • FIGs. 2(a)-2(c) shows planar front, planar side and perspective views of a fuel cell array and the fuel cell air exchanger assembly, respectively according to the present invention.
  • FIG. 3 shows protruding columns used for providing a positive stop to the cells when the fuel cell air exchanger is flexed according to the present invention.
  • FIG. 4 shows the results of a series of tests evaluating the impact of the air gap over the cell on performance.
  • FIG. 1 shows a perspective view of a fuel cell air exchanger 100
  • FIGs. 2(a) and 2(b) show planar and perspective views of a fuel cell array and the fuel cell air exchanger assembly 200, respectively.
  • the fuel cell air exchanger 100 includes a platform 102 having openings 104 through the platform 102 and holding posts 106, where the holding posts 106 are disposed in a pattern that fixedly holds one or more fuel cells 202, such as an array of FIG. 2, at an offset from the platform 102 and near the opening 104.
  • the fuel cell air exchanger 100 provides an unimpeded air exchange through the openings to the fuel cell.
  • the platform 102 can be flexible, semi- flexible or rigid, where the platform 102 can be made from materials that include metals, alloys composites, ceramics and plastics, to name a few.
  • the openings 104 have a square shape, however many other columnar shapes are possible such as circular, rectangular or polygonal for example.
  • the platform 102 further includes an electronics holding region 108. Also shown in the figures, the platform 102 can be articulated 108 between at least two of the fixedly held fuel cells 202. According to one embodiment, the figures further show an electronics holding region 110.
  • the air exchanger 100 includes an array of holding posts
  • the holding posts 106 constrain the cell in x, y directions and together with the columns 114 also in the z direction.
  • the cell 202 is fully constrained in all directions, where that posts 114 are in contact with cathode surface of the cell 202 and the holding posts 106 in contact with the sides and back of the anode surface.
  • the fuel cells 202 are snap-fitted between posts 106 for assembly.
  • the fuel cell air exchanger 100 creates an air gap over the surface of the fuel cells 202, and is used to increase the system's resistance to smothering caused by obstructing the cathode, for example, with air impermeable objects.
  • the space created by the holding posts 106 and protruding columns 114 guarantees a defined oxygen diffusion environment in the vicinity of the cathode surface independently of the diffusion obstacles outside the space. It allows the cells 202 to draw in air in from the surrounding area and increase the power output in smothered situations.

Abstract

A fuel cell air exchanger is provided. The fuel cell air exchanger includes a platform having at least one throughput opening and at least one holding post, where the holding post fixedly holds a fuel cell offset from the platform and proximal to the opening, where the opening can have many shapes. The fuel cell air exchanger provides an unimpeded air exchange through the openings to the fuel cell and can be flexible, semi-flexible or rigid. The fuel cell air exchanger can hold an array of fuel cells and fuel cell electronics. A chimney feature provides enhanced airflow when the air exchanger is disposed in a vertical position.

Description

A FUEL CELL AIR EXCHANGE APPARATUS
FIELD OF THE INVENTION
The invention relates generally to fuel cells. More particularly, the invention relates to providing unobstructed airflow to the fuel cell.
BACKGROUND
Many types of batteries and fuel cells consume oxygen from the air to produce electricity. Two methods for doing this include active systems, in which an air pump or fan is used for moving the air, and passive systems that depend on buoyancy driven convection and the diffusion of oxygen to the surface of the reaction surface for the production of electricity. During normal operation, it is possible in passive systems for the diffusion of oxygen to the reaction surface to be limited or stopped if the surface is obstructed, reducing the maximum power output from the cell. Planar arrays of these cells can be constructed to produce more power. In one possible scenario, if the array of fuel cells is integrated into the upper spine region of an article of clothing, leaning back into a high backed chair or wearing a backpack can obstruct the diffusion of oxygen to the cells, limiting their power output. Alternatively, if the array is used for powering for instance a laptop, the oxygen diffusion to the cathodes can be easily obstructed when operating inside of a bag.
Accordingly, there is a need to develop mechanical device creating an air gap over the surface fuel cells to increase the system's resistance to smothering by obstruction with air impermeable objects. SUMMARY OF THE INVENTION
The present invention provides a fuel cell air exchanger. The fuel cell air exchanger includes a platform having at least one opening there through and at least one holding post, where the holding post fixedly holds a fuel cell offset from the platform and proximal to the opening. The fuel cell air exchanger provides an unimpeded air exchange through the openings to the fuel cell.
According to one aspect of the invention, the platform has a material property that can be flexible, semi-flexible or rigid.
According to another aspect of the invention, the holding posts are disposed an array, where the array of holding posts fixedly holds an array of the fuel cells offset from the platform.
In a further aspect, the openings have a shape that can be circular, square, rectangular and polygonal.
In another aspect, the height of the holding post offset can be in a range from 0.5 to 7 mm.
In yet another aspect of the invention, the platform further includes an electronics holding region.
In another aspect, the platform further includes a vertical-orientation chimney channel. In another aspect, the platform further includes protruding columns over the fuel cell, where the protruding column can abut the fuel cell and provides isolation for an intra-cell connection.
In a further aspect, the platform can be articulated between at least two of the fixedly held fuel cells.
In another aspect of the invention, the platform can be made from materials that include metals, alloys composites, ceramics and plastics.
BRIEF DESCRIPTION OF THE FIGURES
The objectives and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawing, in which: FIG. 1 shows a perspective view of a fuel cell air exchanger according to the present invention.
FIGs. 2(a)-2(c) shows planar front, planar side and perspective views of a fuel cell array and the fuel cell air exchanger assembly, respectively according to the present invention.
FIG. 3 shows protruding columns used for providing a positive stop to the cells when the fuel cell air exchanger is flexed according to the present invention. FIG. 4 shows the results of a series of tests evaluating the impact of the air gap over the cell on performance. DETAILED DESCRIPTION OF THE INVENTION
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will readily appreciate that many variations and alterations to the following exemplary details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
Referring to the figures, FIG. 1 shows a perspective view of a fuel cell air exchanger 100, and FIGs. 2(a) and 2(b) show planar and perspective views of a fuel cell array and the fuel cell air exchanger assembly 200, respectively. As shown in FIG. 1, the fuel cell air exchanger 100 includes a platform 102 having openings 104 through the platform 102 and holding posts 106, where the holding posts 106 are disposed in a pattern that fixedly holds one or more fuel cells 202, such as an array of FIG. 2, at an offset from the platform 102 and near the opening 104. The fuel cell air exchanger 100 provides an unimpeded air exchange through the openings to the fuel cell. The platform 102 can be flexible, semi- flexible or rigid, where the platform 102 can be made from materials that include metals, alloys composites, ceramics and plastics, to name a few.
As shown in FIG. 1, the openings 104 have a square shape, however many other columnar shapes are possible such as circular, rectangular or polygonal for example. According to the embodiment shown, the platform 102 further includes an electronics holding region 108. Also shown in the figures, the platform 102 can be articulated 108 between at least two of the fixedly held fuel cells 202. According to one embodiment, the figures further show an electronics holding region 110. According to one embodiment the air exchanger 100 includes an array of holding posts
106, which are structures protruding from the platform 102 and protruding columns 114 over the cells 202, where the columns 114 provide a stand-off for the cells 202. The protruding columns 114 can be used for providing a positive stop to the cells 202. For example, the holding posts 106 constrain the cell in x, y directions and together with the columns 114 also in the z direction. The cell 202 is fully constrained in all directions, where that posts 114 are in contact with cathode surface of the cell 202 and the holding posts 106 in contact with the sides and back of the anode surface. In one aspect the fuel cells 202 are snap-fitted between posts 106 for assembly.
Additionally, the height of the holding posts 106 in combination with the protruding columns 114 can have an offset that can be in a range from 0.5 to 7 mm, where for the embodiment shown in FIGs. 2(a) and 2(b), the offset is preferably 2 to 3 mm.
The fuel cell air exchanger 100 creates an air gap over the surface of the fuel cells 202, and is used to increase the system's resistance to smothering caused by obstructing the cathode, for example, with air impermeable objects. The space created by the holding posts 106 and protruding columns 114 guarantees a defined oxygen diffusion environment in the vicinity of the cathode surface independently of the diffusion obstacles outside the space. It allows the cells 202 to draw in air in from the surrounding area and increase the power output in smothered situations.
Because the cells 202 often operate at elevated temperatures, it is further possible to encourage air flow when the cells 202 are oriented vertically (see FIG. 2(a)) by creating a vertical channel 112 within or above an array of cells 202 that allows the warm air near the cells 202 to rise, similar to a chimney, further increasing the air flow over the cells 202, thus increasing maximum power output. It is often desirable to have the power generating apparatus be as light as possible, making it beneficial to have the fuel cell air exchanger 100 be as light as possible.
The air gap over the cells 202 can be a range of thicknesses, depending on the current draw of the cells and thickness constraints of the system. While a thicker air gap is usually better, it is often desirable to minimize the thickness of the overall system within the bounds of desired performance. In an exemplary 8-Watt system, shown in FIGs. 2(a) and 2(b), an air gap of 1.5 - 3 mm was found to strike this balance well. FIG. 4 shows the results of a series of tests evaluating the impact of the air gap over the cell 202 on performance. A large impermeable plane was placed in parallel with the cathode surface of the cell. The cell was then operated in a constant voltage mode and the cell current was recorded. A number of possible methods exists for creating the air gap including the use of the protruding columns 114 in the form of stiff foamed or articulated materials or a stiff porous layer offset from the surface of the cells 202 at a number of discrete points. In a preferred embodiment, a grid with a pitch of approximately 10 mm was used with cylindrical columns 114 approximately 2 mm in length at the intersection points of the grid of the platform 102. One possible embodiment of this structure is shown in the figures. In a preferred embodiment, a thermo plastic material was used to minimize fabrication cost with necessary toughness, strength, and flexibility. Any number of cells 202 can be fashioned into an array to increase the voltage and power output of the system 200. In a hydrogen powered fuel cell system, in which each cell 202 produces roughly 0.6 V, practical systems tend to require 6 or more cells 202. These cells 202 can be situated in a number of arrangements, depending on the needs of the application. One preferred embodiment is shown in the figures, in which the cells are arranged with a vertical channel 112, creating a chimney of moving air, further enhancing air flow.
The present invention has now been described in accordance with several exemplary embodiments, which are intended to be illustrative in all aspects, rather than restrictive. Thus, the present invention is capable of many variations in detailed implementation, which may be derived from the description contained herein by a person of ordinary skill in the art.
All such variations are considered to be within the scope and spirit of the present invention as defined by the following claims and their legal equivalents.

Claims

CLAIMSWhat is claimed:
1. A fuel cell air exchanger comprising a platform having at least one opening there through and at least one holding post, wherein said holding post fixedly holds a fuel cell offset from said platform and proximal to said opening, whereby an unimpeded air exchange through said opening to said fuel cell is provided.
2. The fuel cell air exchanger of claim 1, wherein said platform has a material property selected from a group consisting of flexible, semi-flexible and rigid.
3. The fuel cell air exchanger of claim 1, wherein said at least one holding post is an array of said holding posts, wherein said array of holding posts fixedly holds an array of said fuel cells offset from said platform.
4. The fuel cell air exchanger of claim 1, wherein said at least one opening has a shape selected from the group consisting of circular, square, rectangular and polygonal.
5. The fuel cell air exchanger of claim 1, wherein a height of said holding post offset is in a range from 0.5 to 7 mm.
6. The fuel cell air exchanger of claim 1, wherein said platform further comprises an electronics holding region.
7. The fuel cell air exchanger of claim 1, wherein said platform further comprises a vertical-orientation chimney channel.
8. The fuel cell air exchanger of claim 1, wherein said platform further comprises protruding columns over said fuel cell, wherein said protruding column abuts said fuel cell and provides isolation for an intra-cell connection.
9. The fuel cell air exchanger of claim 1, wherein said platform is articulated between at least two said fixedly held fuel cells.
10. The fuel cell air exchanger of claim 1, wherein said platform is made from materials selected from a group consisting of metals, alloys composites, ceramics and plastics.
PCT/US2009/000648 2008-01-29 2009-01-29 A fuel cell air exchange apparatus WO2009097149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6296108P 2008-01-29 2008-01-29
US61/062,961 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009097149A1 true WO2009097149A1 (en) 2009-08-06

Family

ID=40473726

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2009/000642 WO2009097146A1 (en) 2008-01-29 2009-01-29 A system for purging non-fuel material from fuel cell anodes
PCT/US2009/000648 WO2009097149A1 (en) 2008-01-29 2009-01-29 A fuel cell air exchange apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2009/000642 WO2009097146A1 (en) 2008-01-29 2009-01-29 A system for purging non-fuel material from fuel cell anodes

Country Status (6)

Country Link
US (3) US20090269634A1 (en)
EP (1) EP2248213A1 (en)
JP (1) JP2011511416A (en)
CN (1) CN101971402A (en)
CA (1) CA2713022A1 (en)
WO (2) WO2009097146A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795926B2 (en) 2005-08-11 2014-08-05 Intelligent Energy Limited Pump assembly for a fuel cell system
US7547300B2 (en) 2006-04-12 2009-06-16 Icu Medical, Inc. Vial adaptor for regulating pressure
US9034531B2 (en) * 2008-01-29 2015-05-19 Ardica Technologies, Inc. Controller for fuel cell operation
US8808410B2 (en) 2009-07-23 2014-08-19 Intelligent Energy Limited Hydrogen generator and product conditioning method
US8741004B2 (en) 2009-07-23 2014-06-03 Intelligent Energy Limited Cartridge for controlled production of hydrogen
US8940458B2 (en) 2010-10-20 2015-01-27 Intelligent Energy Limited Fuel supply for a fuel cell
WO2012118533A2 (en) * 2010-10-29 2012-09-07 Ardica Technolgies Fuel cell purge system
US9169976B2 (en) 2011-11-21 2015-10-27 Ardica Technologies, Inc. Method of manufacture of a metal hydride fuel supply
US8752566B2 (en) 2012-03-02 2014-06-17 Uop Llc Method for rotary valve operation to reduce seal sheet wear
AU2013204180B2 (en) 2012-03-22 2016-07-21 Icu Medical, Inc. Pressure-regulating vial adaptors
DE102012007374A1 (en) 2012-04-12 2013-10-17 Daimler Ag Method for operating a fuel cell system
US9089475B2 (en) 2013-01-23 2015-07-28 Icu Medical, Inc. Pressure-regulating vial adaptors
ES2739291T3 (en) 2013-01-23 2020-01-30 Icu Medical Inc Pressure regulation vial adapters
JP6617101B2 (en) 2013-07-19 2019-12-04 アイシーユー メディカル インコーポレイテッド Pressure regulating fluid transfer system and method
AU2015277135B2 (en) 2014-06-20 2020-02-20 Icu Medical, Inc. Pressure-regulating vial adaptors
GB2533272A (en) * 2014-12-05 2016-06-22 Intelligent Energy Ltd Fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234358A (en) * 1989-03-07 1990-09-17 Nippon Soken Inc Fuel cell
EP1434292A1 (en) * 2001-09-26 2004-06-30 Sony Corporation Fuel cell and electronic device using fuel cell
US20040136156A1 (en) * 2002-12-26 2004-07-15 Shingo Nakamura Information processing apparatus
US20060127734A1 (en) * 2004-07-21 2006-06-15 Angstrom Power Incorporated Flexible fuel cell structures having external support

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262801A (en) * 1963-01-30 1966-07-26 Nopco Chem Co Process of preparing finely divided silicas of varied properties
US3774589A (en) 1971-08-30 1973-11-27 Chem E Watt Corp Self contained electrochemical heat source
US3744589A (en) * 1972-06-09 1973-07-10 Gen Motors Corp Swirling flow muffler
JPS5834167B2 (en) * 1974-03-29 1983-07-25 信越化学工業株式会社 Suiyouseiyouhouzai
US4261956A (en) * 1979-06-13 1981-04-14 Engelhard Minerals & Chemicals Corporation Cartridge for gas generator
JPS6033129B2 (en) * 1981-10-06 1985-08-01 第一工業製薬株式会社 Urethane resin emulsion composition for producing open-celled bodies
US4846176A (en) 1987-02-24 1989-07-11 Golden Theodore A Thermal bandage
US4846173A (en) * 1987-09-10 1989-07-11 Davidson Todd W Anterior-lateral "off-axis bite block system" for radiation therapy
US5182046A (en) * 1990-12-05 1993-01-26 Morton International, Inc. Sodium borohydride composition and improved method of producing compacted sodium borohydride
US5804329A (en) * 1995-12-28 1998-09-08 National Patent Development Corporation Electroconversion cell
US5817157A (en) * 1996-01-02 1998-10-06 Checketts; Jed H. Hydrogen generation system and pelletized fuel
US5932940A (en) * 1996-07-16 1999-08-03 Massachusetts Institute Of Technology Microturbomachinery
US6468694B1 (en) * 1997-03-27 2002-10-22 Millennium Cell, Inc. High energy density boride batteries
US5948558A (en) * 1997-03-27 1999-09-07 National Patent Development Corporation High energy density boride batteries
DE19743673C2 (en) 1997-10-02 2002-05-08 Xcellsis Gmbh Device for producing hydrogen from hydrocarbons and method for producing a catalyst
US6326097B1 (en) 1998-12-10 2001-12-04 Manhattan Scientifics, Inc. Micro-fuel cell power devices
US6375638B2 (en) 1999-02-12 2002-04-23 Medtronic Minimed, Inc. Incremental motion pump mechanisms powered by shape memory alloy wire or the like
US6534033B1 (en) 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
US6840955B2 (en) * 2000-01-27 2005-01-11 Robert J. Ein Therapeutic apparatus
AU2001250055A1 (en) 2000-03-30 2001-10-15 Manhattan Scientifics, Inc. Portable chemical hydrogen hydride system
US6544679B1 (en) 2000-04-19 2003-04-08 Millennium Cell, Inc. Electrochemical cell and assembly for same
US6250078B1 (en) * 2000-04-27 2001-06-26 Millennium Cell, L.L.P. Engine cycle and fuels for same
US6627669B2 (en) 2000-06-06 2003-09-30 Honeywell International Inc. Low dielectric materials and methods of producing same
US6579068B2 (en) * 2000-08-09 2003-06-17 California Institute Of Technology Method of manufacture of a suspended nitride membrane and a microperistaltic pump using the same
US6524542B2 (en) 2001-04-12 2003-02-25 Millennium Cell, Inc. Processes for synthesizing borohydride compounds
US6433129B1 (en) * 2000-11-08 2002-08-13 Millennium Cell, Inc. Compositions and processes for synthesizing borohydride compounds
US6670444B2 (en) * 2000-11-08 2003-12-30 Millennium Cell, Inc. Processes for synthesizing borohydride compounds
DE10063720A1 (en) 2000-12-20 2002-07-11 Siemens Ag Low-temperature fuel cell
JP2002234358A (en) 2001-02-07 2002-08-20 Honda Motor Co Ltd Follow-up traveling control device for vehicle
US6796898B1 (en) * 2001-02-15 2004-09-28 Mike Timpano Method for providing a blackjack insurance wager
JP3486613B2 (en) * 2001-03-06 2004-01-13 キヤノン株式会社 Image processing apparatus and method, program, and storage medium
US6645651B2 (en) 2001-06-01 2003-11-11 Robert G. Hockaday Fuel generator with diffusion ampoules for fuel cells
JP2002373682A (en) * 2001-06-15 2002-12-26 Honda Motor Co Ltd Fuel cell system
WO2003002163A1 (en) * 2001-06-29 2003-01-09 The Procter & Gamble Company Absorbent article
US6932847B2 (en) * 2001-07-06 2005-08-23 Millennium Cell, Inc. Portable hydrogen generator
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator
JP3807263B2 (en) * 2001-07-24 2006-08-09 日産自動車株式会社 Fuel cell power generation control device
US6960401B2 (en) * 2001-07-25 2005-11-01 Ballard Power Systems Inc. Fuel cell purging method and apparatus
US6861167B2 (en) * 2001-07-25 2005-03-01 Ballard Power Systems Inc. Fuel cell resuscitation method and apparatus
US6547633B2 (en) 2001-08-06 2003-04-15 Jill A. Haug Method of closing a stuffed toy
US6834623B2 (en) * 2001-08-07 2004-12-28 Christopher T. Cheng Portable hydrogen generation using metal emulsions
DE10147149A1 (en) * 2001-09-25 2003-04-24 Ballard Power Systems Process for dynamic production of electric power for a motor vehicle drive, uses atmospheric air fuel cell
US6924054B2 (en) * 2001-10-29 2005-08-02 Hewlett-Packard Development Company L.P. Fuel supply for a fuel cell
US6713201B2 (en) * 2001-10-29 2004-03-30 Hewlett-Packard Development Company, L.P. Systems including replaceable fuel cell apparatus and methods of using replaceable fuel cell apparatus
US6737184B2 (en) * 2001-11-09 2004-05-18 Hydrogenics Corporation Chemical hydride hydrogen generation system and an energy system incorporating the same
US6586563B1 (en) * 2001-12-18 2003-07-01 Millennium Cell, Inc. Processes for synthesizing alkali metal borohydride compounds
US6746496B1 (en) * 2002-01-15 2004-06-08 Sandia Corporation Compact solid source of hydrogen gas
US6887596B2 (en) 2002-01-22 2005-05-03 Hewlett-Packard Development Company, L.P. Portable disposable fuel-battery unit for a fuel cell system
US6808833B2 (en) * 2002-01-22 2004-10-26 Hewlett-Packard Development Company, L.P. Fuel supply for a fuel cell
US20030138679A1 (en) * 2002-01-22 2003-07-24 Ravi Prased Fuel cartridge and reaction chamber
US6890674B2 (en) * 2002-02-19 2005-05-10 Mti Microfuel Cells, Inc. Methods and apparatuses for managing fluids in a fuel cell system
DE10307112A1 (en) * 2002-02-19 2003-10-30 Proton Energy Sys Inc Energy storage and recovery system for electrochemical cell system, has pressure regulator provided between hydrogen generator and hydrogen storage device
JP4155021B2 (en) * 2002-02-28 2008-09-24 カシオ計算機株式会社 Power generation type power supply and electronic equipment
US7108777B2 (en) 2002-03-15 2006-09-19 Millennium Cell, Inc. Hydrogen-assisted electrolysis processes
US7052251B2 (en) * 2002-04-22 2006-05-30 Medtronic Minimed, Inc. Shape memory alloy wire driven positive displacement micropump with pulsatile output
US6921603B2 (en) * 2002-04-24 2005-07-26 The Regents Of The University Of California Microfluidic fuel cell systems with embedded materials and structures and method thereof
US6723072B2 (en) * 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US6818334B2 (en) * 2002-06-06 2004-11-16 Hewlett-Packard Development Company, L.P. Accelerated hydrogen generation through reactive mixing of two or more fluids
AUPS312302A0 (en) 2002-06-19 2002-07-18 Telezygology Inc Further improvements in fixing and release systems
US7097813B2 (en) * 2002-06-21 2006-08-29 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US7105245B2 (en) 2002-07-03 2006-09-12 Neah Power Systems, Inc. Fluid cell system reactant supply and effluent storage cartridges
JP2004071471A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Fuel cell system
US7316719B2 (en) * 2002-09-06 2008-01-08 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US7201782B2 (en) 2002-09-16 2007-04-10 Hewlett-Packard Development Company, L.P. Gas generation system
US6960403B2 (en) * 2002-09-30 2005-11-01 The Regents Of The University Of California Bonded polyimide fuel cell package and method thereof
US20040062978A1 (en) 2002-10-01 2004-04-01 Graftech, Inc. Fuel cell power packs and methods of making such packs
US6939529B2 (en) * 2002-10-03 2005-09-06 Millennium Cell, Inc. Self-regulating hydrogen generator
DE60336834D1 (en) * 2002-10-09 2011-06-01 Abbott Diabetes Care Inc FUEL FEEDING DEVICE, SYSTEM AND METHOD
US6821499B2 (en) * 2002-10-11 2004-11-23 General Motors Corporation Method of generating hydrogen by reaction of borohydrides and hydrates
US6893755B2 (en) * 2002-10-28 2005-05-17 Cellex Power Products, Inc. Method and system for controlling the operation of a hydrogen generator and a fuel cell
KR100493384B1 (en) 2002-11-07 2005-06-07 엘지.필립스 엘시디 주식회사 structure for loading of substrate in substrate bonding device for manucturing a liquid crystal display device
US7105033B2 (en) 2003-02-05 2006-09-12 Millennium Cell, Inc. Hydrogen gas generation system
JP3941705B2 (en) * 2003-02-13 2007-07-04 トヨタ自動車株式会社 Internal combustion engine stop / start control device
US6745801B1 (en) 2003-03-25 2004-06-08 Air Products And Chemicals, Inc. Mobile hydrogen generation and supply system
US7198474B2 (en) 2003-04-07 2007-04-03 Hewlett-Packard Development Company, L.P. Pump having shape memory actuator and fuel cell system including the same
US6986649B2 (en) * 2003-04-09 2006-01-17 Motorola, Inc. Micropump with integrated pressure sensor
US6706909B1 (en) * 2003-05-12 2004-03-16 Millennium Cell, Inc. Recycle of discharged sodium borate fuel
US7544435B2 (en) * 2003-05-15 2009-06-09 The Gillette Company Electrochemical cell systems comprising fuel consuming agents
US20040253500A1 (en) * 2003-06-13 2004-12-16 Bourilkov Jordan T. Fuel cartridge interconnect for portable fuel cells
US7172825B2 (en) * 2003-07-29 2007-02-06 Societe Bic Fuel cartridge with flexible liner containing insert
JP4412939B2 (en) * 2003-08-05 2010-02-10 三洋電機株式会社 Fuel cell system
US20050037245A1 (en) 2003-08-11 2005-02-17 Evogy, Inc. Method for hydrogen and electricity production using steam-iron process and solid oxide fuel cells
US7344571B2 (en) * 2003-08-14 2008-03-18 The Gillette Company Hydrogen generator
EP1515043B1 (en) * 2003-09-12 2006-11-22 Samsung Electronics Co., Ltd. Diaphram pump for cooling air
JP4417068B2 (en) * 2003-10-06 2010-02-17 本田技研工業株式会社 How to stop the fuel cell
TWI381572B (en) * 2003-11-14 2013-01-01 Encite Lllc Self-regulating gas generator and method
CN100454638C (en) * 2003-12-12 2009-01-21 日本电气株式会社 Fuel cell, fuel cartridge, and fuel cell system
US20050238573A1 (en) * 2004-04-14 2005-10-27 Qinglin Zhang Systems and methods for hydrogen generation from solid hydrides
JP4665436B2 (en) * 2004-05-19 2011-04-06 トヨタ自動車株式会社 Fuel cell system
US20050037252A1 (en) * 2004-08-06 2005-02-17 Pham Ai Quoc Tubular solid oxide fuel cells
US20060093878A1 (en) * 2004-11-03 2006-05-04 Adam Paul K Fuel cell test station gas-purge system and method
EP1814653B1 (en) * 2004-11-12 2012-07-18 Trulite, Inc. Hydrogen generator cartridge
US7666386B2 (en) 2005-02-08 2010-02-23 Lynntech Power Systems, Ltd. Solid chemical hydride dispenser for generating hydrogen gas
US20060196112A1 (en) * 2005-03-02 2006-09-07 Grant Berry Borohydride fuel compositions and methods
US8206869B2 (en) * 2005-06-03 2012-06-26 Daimler Ag Electrochemical fuel cell stack with integrated anode exhaust valves
KR100733236B1 (en) 2005-07-25 2007-06-28 마쯔시다덴기산교 가부시키가이샤 Manganese dioxide, method and apparatus for producing the same, and battery active material and battery prepared by using the same
JP2009505372A (en) * 2005-08-19 2009-02-05 ミレニアム セル インコーポレイテッド Hybrid hydrogen fuel system and control method thereof
US20080160360A1 (en) * 2006-04-13 2008-07-03 Fennimore Keith A Fuel cell purge cycle apparatus and method
US20070275275A1 (en) * 2006-05-23 2007-11-29 Mesa Scharf Fuel cell anode purge systems and methods
US20100150824A1 (en) 2008-11-21 2010-06-17 Lynntech, Inc. Hydrogen generator with reactant dilution scheme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234358A (en) * 1989-03-07 1990-09-17 Nippon Soken Inc Fuel cell
EP1434292A1 (en) * 2001-09-26 2004-06-30 Sony Corporation Fuel cell and electronic device using fuel cell
US20040136156A1 (en) * 2002-12-26 2004-07-15 Shingo Nakamura Information processing apparatus
US20060127734A1 (en) * 2004-07-21 2006-06-15 Angstrom Power Incorporated Flexible fuel cell structures having external support

Also Published As

Publication number Publication date
US20090269634A1 (en) 2009-10-29
JP2011511416A (en) 2011-04-07
US20090305112A1 (en) 2009-12-10
US20130224611A1 (en) 2013-08-29
CA2713022A1 (en) 2009-08-06
WO2009097146A1 (en) 2009-08-06
US8192890B2 (en) 2012-06-05
CN101971402A (en) 2011-02-09
EP2248213A1 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US8192890B2 (en) Fuel cell air exchange apparatus
US7841843B2 (en) Valveless micro air delivery device
WO2008039578A3 (en) Functionally integrated hydrogen fuel cell
US20060183015A1 (en) Passive micro fuel cell
WO2007142879A3 (en) Portable fuel cell assembly
ES2285051T3 (en) REFRIGERATION OF FUEL BATTERIES.
US7547485B2 (en) Power generation unit and fuel cell
JP2003515912A5 (en)
MX2010007056A (en) Modular unit fuel cell assembly.
Seo et al. Development of active breathing micro PEM fuel cell
KR20070067075A (en) Fuel cell and fuel cell system
US20080138692A1 (en) Fuel cell apparatus
TW200403882A (en) Fuel-cell element stack with stress relief and methods
WO2007022735A1 (en) Flow field plates for fuel cells
US20050066520A1 (en) Manufacturing process of layer lamination integrated fuel cell system and the fuel cell system itself
CN101071880B (en) Serial battery for passive self-breathing direct methanol fuel cell
EP3979374A1 (en) Hydrogen-powered fuel cell
ATE455133T1 (en) POLYMER, POLYMER ELECTROLYTE MEMBRANE FOR POLYMER ELECTROLYTE FUEL CELL AND MEMBRANE/ELECTROLYTE ARRANGEMENT
US20170220071A1 (en) Fuel cells in laptop computer devices
US20070037035A1 (en) Holding structure and electronic apparatus installing that therein
EP1521324A3 (en) Fuel cell
JP2010080259A (en) Fuel cell device
TWI380499B (en) Improved fuel cell structure
Ghaffari et al. Exploring the effect of circulation on the power of implantable glucose bio fuel cell
KR101442694B1 (en) Apparatus for supplying air for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705527

Country of ref document: EP

Kind code of ref document: A1