WO2007060762A1 - 放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン - Google Patents

放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン Download PDF

Info

Publication number
WO2007060762A1
WO2007060762A1 PCT/JP2006/313210 JP2006313210W WO2007060762A1 WO 2007060762 A1 WO2007060762 A1 WO 2007060762A1 JP 2006313210 W JP2006313210 W JP 2006313210W WO 2007060762 A1 WO2007060762 A1 WO 2007060762A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electrodes
pair
discharge tube
temperature sensor
Prior art date
Application number
PCT/JP2006/313210
Other languages
English (en)
French (fr)
Inventor
Yoshiki Takata
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/089,968 priority Critical patent/US7884552B2/en
Publication of WO2007060762A1 publication Critical patent/WO2007060762A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • H01J61/526Heating or cooling particular parts of the lamp heating or cooling of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/56One or more circuit elements structurally associated with the lamp
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector

Definitions

  • the present invention relates to a discharge tube, a display device illumination device, a liquid crystal display device, and a liquid crystal television.
  • a liquid crystal panel used for a liquid crystal display device such as a liquid crystal television does not emit light spontaneously. Therefore, a separate illumination device called a backlight device is required as an external lamp.
  • This backlight device is installed on the back side or the side of the liquid crystal panel.
  • a base made of metal and having an open surface on the side of the liquid crystal panel, and a plurality of lamps housed in the base.
  • a configuration that includes a number of optical members (such as a diffusion sheet) that are arranged in the opening of the base and efficiently emit light emitted from the discharge tube toward the liquid crystal panel. Make it.
  • a discharge voltage is applied between both electrodes while the emitter electrodes provided at both ends are heated.
  • a hot cathode fluorescent tube that starts the process may be used.
  • An example of such a hot cathode fluorescent tube lighting circuit is disclosed in JP-A-5-242989. This is a technique for saving power by providing a heating circuit for supplying a current to the emitter electrode with a switching element separately from a circuit for generating a discharge voltage, and turning on the switching element intermittently.
  • the switching control in the technique of the above-mentioned document is the current supply to the emitter electrode.
  • the actual temperature of the emitter electrode is affected by the current flowing through the emitter electrode (which differs for each discharge tube) and external factors.
  • An object of the present invention is to grasp the temperature of the electrode of the discharge tube with higher accuracy and control the electrode temperature of the discharge tube more appropriately.
  • a discharge tube includes a pair of electrodes to which a voltage containing an AC component is applied from a power source and a heating current is supplied from an electrode heating circuit, and a tube that houses the pair of electrodes therein.
  • the temperature of the electrode of the discharge tube can be grasped with higher accuracy, and the temperature of the electrode of the discharge tube can be more easily controlled.
  • the discharge tube is preferably a hot cathode tube.
  • the hot cathode tube has a characteristic of being relatively low and capable of obtaining high luminance with a voltage, there is a problem that the electrode is liable to deteriorate and has a short lifetime. That is, the electrode of the hot cathode tube has a characteristic that if the temperature of the electrode is too high, the surface emitter will evaporate, and conversely if the temperature of the electrode is too low, the particles of the emitter will be easily spattered.
  • the temperature sensor is constituted by a thermocouple, good temperature detection is possible in an electrode that is in a high temperature state.
  • FIG. 1 is a perspective view conceptually illustrating a liquid crystal display according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating an electrical configuration of a backlight device in the liquid crystal display device of Embodiment 1.
  • FIG. 3 A side view conceptually illustrating electrodes of a hot cathode tube
  • FIG. 4 is a block diagram conceptually illustrating the internal configuration of the feedback arithmetic circuit in FIG.
  • FIG. 6 is a block diagram conceptually showing a liquid crystal television configured using the liquid crystal display device shown in FIG.
  • FIG. 7 is a block diagram illustrating the electrical configuration of the backlight device in the liquid crystal display device according to the second embodiment.
  • FIG. 8 is a block diagram illustrating the electrical configuration of the backlight device in the liquid crystal display device according to the third embodiment.
  • Liquid crystal display display device, liquid crystal display device
  • Backlight device (lighting device for display device)
  • Hot cathode tube discharge tube
  • Embodiment 1 of the present invention will be described with reference to the drawings.
  • the liquid crystal display 1 corresponds to the display device of the present invention, and is disposed in front of the knock device 2 (the backlight device 2 corresponds to the illumination device for display device),
  • the display panel 3 is capable of displaying images (the display panel 3 corresponds to a liquid crystal panel).
  • the knocklight device 2 is not limited to this, but includes a tray 22 containing a plurality of hot cathode fluorescent tubes 21, a light guide plate 23 made of synthetic resin disposed immediately above the tray 22, and a light guide plate 23 formed thereon.
  • This is a so-called direct-type backlight device having a diffusing sheet 24 arranged, and two lens sheets 25 and 26 arranged thereon.
  • the diffusion sheet 24 and the lens sheets 25 and 26 are made of a synthetic resin, and each has a substantially rectangular shape in plan view, and thereby a sheet laminate is formed.
  • a reflection sheet 22a is provided in the tray 22, and the plurality of hot cathode fluorescent tubes 21 are positioned on the reflection sheet 22a.
  • Each of the hot cathode fluorescent tubes 21 is arranged in parallel in the tray 22 at equal intervals, and is provided in a planar shape as a whole.
  • the display panel 3 includes a pair of glass substrates 5 fitted in a frame 4 and a panel substrate 6 interposed between the pair of transparent electrodes and an alignment film containing liquid crystal. It has.
  • the knocklight device 2 includes a hot cathode fluorescent tube 21 that is a discharge tube including a pair of electrodes 33 and 34, and a power supply circuit 70 that applies a voltage including an AC component to the pair of electrodes 33 and 34.
  • a power supply circuit 70 that applies a voltage including an AC component to the pair of electrodes 33 and 34.
  • an electrode heating circuit 38 for supplying a heating current to the electrodes 33 and 34 is provided.
  • the power supply circuit 70 is configured as an inverter circuit here as long as it is configured to generate an AC voltage.
  • the electrodes 33 and 34 are each configured as a filament that can be used as a metal material such as tungsten.
  • the electrodes 33 and 34 are electrode radioactive materials made of oxides such as Ba, Sr, Ca and Zr ( Emitter) is applied.
  • the tube member 23 of the hot cathode fluorescent tube 21 is made of soft glass (soda lime glass, lead glass, etc.), has translucency, and has a cylindrical shape. Closed portions (not shown in FIG. 2) for closing both ends of the tube member 23 are provided at both ends of the tube member 23.
  • the hot cathode fluorescent tube 21 has a characteristic that high luminance can be obtained at a relatively low voltage.
  • the electrode is easily deteriorated and has a short life. That is, the above-mentioned emitter is scattered and evaporated by ion bombardment at the time of lamp start-up, electron bombardment during heating and heating, etc., and when such an emitter is exhausted, the lifetime of the lamp is reached. As shown in FIG. 5, this emitter has a characteristic that it easily evaporates when the temperature rises too much.
  • the temperature of the electrode too high from the viewpoint of preventing the emitter from evaporating.
  • the temperature of the electrode is too low, a sputtering phenomenon in which the particles of the emitter are scattered in response to the collision of electrons tends to occur.
  • the overall rate of exhaustion of the emitter is considered to be the smallest when the emitter temperature is moderate and not too low (1200K in Fig. 5).
  • the knocklight device 2 is provided with temperature sensors 31, 32 for detecting the temperatures of the electrodes 33, 34 to which the heating current is supplied, and the control unit 37 is based on the detection results of the temperature sensors 31, 32.
  • the control unit 37 corresponds to control means to control the heating current.
  • the electrode heating circuit 38 includes a DC power source 60 (DC power source 60 corresponds to a power source for heating) and a semiconductor switch element SW (hereinafter also referred to as a switch element SW) such as FET and IGBT. .
  • the DC power supply 60 supplies a heating current to the electrodes 33 and 34, and the switch element SW is based on the PWM signal from the PWM signal generation circuit 50 that forms part of the control unit 37! It is configured to do. The control of the heating current will be described later.
  • the temperature sensors 31, 32 are constituted by thermocouples (for example, platinum and rhodium thermocouples, etc.), and good temperature detection is possible at the electrodes 33, 34 that are in a high temperature state. These temperature sensors 31, 32 are arranged inside the hot cathode fluorescent tube 21 (that is, inside the tube member 23), and are configured so as not to be affected by external influences.
  • the above-described closing member for closing the tube member 23 is provided at both ends of the hot cathode fluorescent tube 21, and the stem portion 35 shown in FIG. 3 is configured so as to form a part of the closing member.
  • the stem portion 35 is configured as an inner wall portion of the closing member, and may have various shapes and configurations as long as the configuration can support the electrode without being limited to the example of FIG.
  • Each electrode 33, 34 is provided so as to extend from stem portions 35 provided at both ends of the hot cathode fluorescent tube 21.
  • FIG. 3 illustrates the stem portion 35 on the one electrode 33 side, and a pair of lead portions 33a and 33b are provided so as to extend from the stem portion 35, and the pair of lead portions 33a and 33b.
  • the filament part 33c is provided in a form spanned between the two.
  • the temperature sensor 31 is attached to the lead portions 33a and 33b. Specifically, the temperature sensor 31 is attached to the first temperature detection element 31a attached to one of the pair of lead portions 33a and 33b and to the other. And a second temperature detecting element 31b to be attached. The first temperature detection element 31a and the second temperature detection element 31b are both attached to positions near the filament part 33c in the pair of lead parts 33a and 33b.
  • the temperature sensor 31 is attached to the lead portions 33a and 33b, the first temperature detection element 31a attached to one of the pair of lead portions 33a and 33b, and the second temperature detection attached to the other. And element 31b. Both the first temperature detection element 31a and the second temperature detection element 31b are attached to positions close to the filament part 33c in the pair of lead parts 33a and 33b.
  • the other electrode 34 side also has the same configuration. Yes. That is, on the electrode 34 side, a stem portion (not shown) similar to FIG. 3 and a pair of lead portions 34a, 34b (illustrated schematically in FIG. 2) and a filament part 34c (illustrated schematically in FIG. 2) are provided.
  • the temperature sensor 32 has the same configuration as that of the temperature sensor 31 shown in FIG. 3, and specifically, the first sensor attached to one lead part 34a of the pair of lead parts 34a, 34b.
  • a temperature detection element 32a and a second temperature detection element 32b attached to the other lead portion 34b are provided.
  • the first temperature detection element 32a and the second temperature detection element 32b have the same configuration as the first temperature detection element 31a and the second temperature detection element 31b in FIG. 3, and a pair of lead portions 34a , 34b are attached to positions close to the filament portion 34c (not shown).
  • the temperature detection circuit 30 is configured to acquire a temperature signal from each temperature detection element 31a, 31b, 32a, 32b and output an average temperature signal of each temperature.
  • voltage signals VI, V2, V3, and V4 corresponding to the temperature are input to the temperature detection circuit 30 from the temperature detection elements 31a, 31b, 32a, and 32b, and the voltage signal V5 corresponding to the average temperature is generated. It is getting output.
  • the temperature detection circuit 30 may be constituted by an average circuit that outputs an average voltage of a plurality of voltages, or may be constituted by an AZD converter and a CPU.
  • the voltage signal V5 indicating the average temperature is input to the control unit 37.
  • Reference numeral 36 is a ballast.
  • control unit 37 will be described.
  • the control unit 37 includes a feedback arithmetic circuit 40 and a PWM signal generation circuit 50.
  • the feedback arithmetic circuit 40 is configured to determine an output based on the temperature signal V5 from the temperature detection circuit 30 and the target temperature and to provide the output to the PWM signal generation circuit 50. ing.
  • the PI control is performed based on the current temperature and the target temperature.
  • a signal corresponding to the average value of the detection values by the first temperature detection elements 31a and 32a and the detection values by the second temperature detection elements 31b and 32b is sent to the feedback arithmetic circuit 40 of the control unit 37.
  • V5 is input as the current temperature
  • the feedback control amount is determined based on the average value
  • the PWM signal corresponding to the control amount is used to adjust the feedback control amount.
  • the thermal current is controlled.
  • the feedback calculation circuit 40 includes a subtractor 41 for obtaining a temperature deviation between the detected current temperature (temperature indicated by the voltage signal V5) and the target temperature, and each of the temperature deviations is multiplied by an integral gain. And an integrator 44 for obtaining an integral value of an operation value obtained by the integral operator 42 and calculating an integral control value. In addition, a proportional calculator 43 is provided that calculates a proportional control value by multiplying the temperature deviation by a proportional gain. Then, the sum of the integral control value and the proportional control value is calculated as a control amount (command value).
  • the subtractor 41 is configured by a known subtraction circuit
  • the integral calculator 42 and the proportional calculator 43 are configured by a known multiplier circuit.
  • the integrator 44 is configured by a known integration circuit so that a predetermined constant value is used for each of the proportional gain used in the proportional calculator 43 and the integral gain used in the integral calculator 42. It has become.
  • the feedback arithmetic circuit 40 is controlled by the CPU and the PI control. It may be realized by a program for performing the above.
  • the control amount (command value) calculated by the feedback calculation circuit 40 is input to the PWM signal generation circuit 50.
  • This PWM signal generation circuit 50 outputs a PWM signal having a duty ratio corresponding to the input control amount, and is constituted by a known PWM circuit, but may be realized by a microcomputer or the like. .
  • the entire control unit 37 is configured by a microcomputer, and the microcomputer performs feedback calculation (PI calculation), calculates a feedback control amount, and outputs a PWM signal corresponding to the feedback control amount.
  • PI calculation feedback calculation
  • control methods for example, PID control
  • PID control may be used as long as the configuration performs force feedback calculation illustrating the configuration for performing PI control.
  • the electrode heating circuit 38 is configured to supply a heating current to both electrodes 33 and 34 of the pair.
  • the temperature sensors 31, 32 described above are attached to both electrodes of the pair of electrodes 33, 34.
  • the heating current is controlled by the control unit 37 based on the detected values of the temperature sensors 31 and 32 of the electrodes 33 and 34, respectively.
  • the electrode heating circuit 38 is controlled based on the PWM signal output from the PWM signal generation circuit 50. That is, the semiconductor switch SW is driven based on the PWM signal from the PWM signal generation circuit 50, and the duty ratio is controlled. Thus, the heating current is controlled by controlling the duty ratio according to the outputs (detected values) of the temperature sensors 31 and 32.
  • hot cathode fluorescent tubes 21 and their peripheral circuits as described above can be provided.
  • three hot cathode fluorescent tubes 21 are provided as a knocklight device, three sets of the configuration shown in FIG. 2 may be provided.
  • a liquid crystal television 100 includes a liquid crystal display 1 having a liquid crystal panel 3 and a backlight device 2, a known antenna 88 for receiving a video signal, and reception by the antenna 88.
  • Drive means for driving the liquid crystal display 1 based on the signal.
  • the driving means includes a VIF amplification video detection unit 86, a luminance / color signal processing unit 85, a video output unit 83, a controller 84, and the like.
  • a known tuner 87 is connected to the antenna 88.
  • the tuner 87 selects a reception channel and amplifies the signal.
  • a superheterodyne reception system is used that converts VHF and UHF video and audio carriers to intermediate frequencies of 58.75 MHz and 54.25 MHz, respectively.
  • the tuner 87 is connected to a VIF amplification video detection unit 86 including a video intermediate frequency amplification circuit and a video detection circuit.
  • the VIF amplified video detector 86 is connected to a SIF amplified audio detector 89 and a luminance / color signal processor 85.
  • the luminance / chromaticity signal processing unit 85 includes a luminance adjusting circuit, a band amplifier, a color signal demodulating circuit, and a matrix circuit.
  • the video output unit 83 is a circuit that outputs the R, G, and B signals generated by the luminance / chromaticity signal processing unit 85 line by line.
  • the controller 84 includes a PLL circuit that generates a clock synchronized with a horizontal synchronizing signal from which the composite video signal power is also separated, and a clock countdown circuit, and generates various timing pulses necessary for sequential driving. It is done.
  • the X driver 82 is composed of a shift register circuit, and sequentially scans and drives the nose lines of the gate in the horizontal direction (X direction) of the panel with a start pulse from the controller.
  • the Y driver 82 is a modulation drive circuit that drives the bus line of the source in the vertical direction (Y direction) of the panel with a video signal.
  • the R, G, B signals for one line are held from the video output, and the liquid crystal panel 3 is driven in synchronization with the scanning of the X driver 81 according to the RGB pixel arrangement.
  • a voltage containing an AC component is applied from the power supply circuit 70, and the heating current is applied from the electrode heating circuit 38.
  • a pair of electrodes 33, 34 to which the gas is supplied, a tube member 23 that accommodates the pair of electrodes 33, 34 inside, and a detection signal based on the temperature of the electrodes 33, 34 are given to a control unit 37 that controls the heating current Temperature sensors 31 and 32 that output as much as possible are provided. Therefore, the temperature of the electrode of the discharge tube can be grasped with higher accuracy, and the temperature of the electrode of the discharge tube can be controlled more properly!
  • the electrode heating circuit 38 includes a DC power source 60 (heating power source) for supplying a heating current to the electrodes 33 and 34. Therefore, the voltage application for discharging and the current control for heating the electrode can be performed with high independence, so that the temperature of the electrode can be controlled better.
  • a DC power source 60 heating power source
  • the discharge tube according to the present embodiment is constituted by a hot cathode fluorescent tube 21. Therefore
  • High luminance can be obtained at a relatively low voltage.
  • the electrode temperature controls the electrode temperature, the evaporation of the emitter and the scattering of the spatter are both suppressed, thereby extending the life of the electrode.
  • each temperature sensor 31, 32 is configured by a thermocouple.
  • the temperature sensors 31 and 32 are arranged in the tube of the hot cathode fluorescent tube 21. Therefore, as compared with the case where it is arranged outside the tube, each temperature sensor 31, 32 can detect the temperature of the electrode, which is less susceptible to external factors, with higher accuracy.
  • Each electrode 33, 34 includes a pair of lead portions 33a, 33b and a pair of lead portions 34a, 34b extending from stem portions provided at both ends of the hot cathode fluorescent tube 21, and a pair of lead portions. Filament portions 33c and 34c spanning 33a and 33b are provided. Temperature sensors 31 and 32 are attached to the lead portions 33a and 33b and the lead portions 34a and 34b, respectively. Therefore, the temperature near the discharge position can be detected with high accuracy without significantly affecting the discharge.
  • Each of the temperature sensors 31, 32 has a first temperature detection element attached to one of the pair of lead portions and a second temperature detection element attached to the other. Then, the control unit 37 calculates the heating current based on the average value of a plurality of detection values including the detection values by the first temperature detection elements 31a and 32a and the detection values by the second temperature detection elements 3 lb and 32b. It is configured to control. Therefore, the temperature of the electrodes 33 and 34 can be detected stably without variation, and temperature control with higher accuracy is possible.
  • both the first temperature detection element and the second temperature detection element are attached to positions close to the filament portion in the pair of lead portions. Therefore, the temperature in the vicinity of the filament where discharge occurs can be detected more appropriately.
  • the electrode heating circuit 38 is configured to supply a heating current to both electrodes 33 and 34, and temperature sensors 31 and 32 are attached to the electrodes 33 and 34, respectively. Then, the control unit 37 controls the heating current supplied to the electrodes 33 and 34 based on the detection values of the temperature sensors 31 and 32 of the electrodes 33 and 34. According to this configuration, since the heating current supplied to both electrodes 33 and 34 can be controlled in consideration of the temperature of both electrodes 33 and 34, it is possible to perform suitable control in consideration of the overall balance.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the second embodiment is different from the first embodiment in that the configuration of the control unit 37 is changed from Fig. 2, and the other configuration is the same as that of the first embodiment. Shi Detailed description will be omitted.
  • the control unit 37 is configured by the determination circuit 55.
  • This determination circuit is a circuit for determining whether or not the temperature indicated by the output from the temperature detection circuit 30 is within a predetermined temperature range. Specifically, a first threshold value corresponding to the lower limit temperature of the target temperature range and a second threshold value corresponding to the upper limit temperature are set.
  • a signal for driving the semiconductor switch SW is output, and the temperature Output continues until the average temperature of sensors 31 and 32 exceeds the upper limit temperature.
  • the heating current continues to be supplied from the DC power source 60, and the electrodes 33 and 34 continue to rise in temperature.
  • the discrimination circuit 55 may be realized by a CPU or the like which may be realized by a window comparator or the like.
  • the second embodiment is different from the first embodiment in that the control unit 37 and the electrode heating circuit 38 are changed from Fig. 2, and the other configurations are the same as those of the first embodiment. The detailed description is omitted.
  • the resistance value of the variable resistor R1 is controlled based on the average temperature of the temperature sensors 31 and 32, and the supply amount supplied to the electrodes 33 and 34 is controlled. Specifically, similarly to the first embodiment, the control amount is calculated by the feedback arithmetic circuit 40, and the variable resistor 38 is controlled by the drive circuit 80 so that the current amount corresponds to the control amount.
  • thermocouple is used as a temperature sensor
  • other temperature sensors such as a thermistor
  • the temperature sensor is provided for both electrodes.
  • the temperature sensor may be provided for only one of the electrodes.
  • the heating power source may be configured by a power AC power source exemplified as a DC power source as the heating power source.

Description

明 細 書
放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン 技術分野
[0001] 本発明は、放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン に関する。
背景技術
[0002] 液晶テレビジョンなどの液晶表示装置に用いる液晶パネルは、自発光しな!、ため、 別途に外部ランプとしてバックライト装置と称される表示装置用照明装置を必要として いる。このバックライト装置は、液晶パネルの裏側或いは側方に設置されるようになつ ており、大まかには、金属製で液晶パネル側の面が開口したベースと、ランプとして ベース内に収容される複数本の放電管と、ベースの開口部分に配されて放電管が発 する光を効率的に液晶パネル側へ放出させるための多数枚の光学部材類 (拡散シ ートなど)などを備えた構成をなして 、る。
[0003] ところで、上記のような表示装置用照明装置に用いられる放電管としては、両端部 に設けられたェミッタ電極が加熱された状態で両電極間に放電用電圧が印加される ことで放電を開始する熱陰極蛍光管が用いられることがある。このような熱陰極蛍光 管の点灯回路としては、例えば特開平 5— 242989号公報に記載のものがある。これ は、放電用電圧を発生させる回路とは別に、スイッチング素子を備えてェミッタ電極 に電流を流す加熱用回路を設け、スイッチング素子を間欠的にオンさせることにより 省電力化を図る技術である。
発明の開示
[0004] この種の放電管の点灯回路で、スイッチング素子のオフ期間を長くすると、省電力 化には寄与するものの、ェミッタ電極の温度が低下しすぎて熱電子の放出量が減少 することで放電を維持できなくなることがある。かといつて、スイッチング素子のオン期 間が長すぎては、省電力化を図ることができないし、ェミッタ電極の消耗量が多くなつ て放電管の寿命が短くなる。
[0005] しかるに、上記文献の技術におけるスイッチング制御は、ェミッタ電極への電流供 給を止めた後の温度低下の予測に基づいてなされており、ェミッタ電極の実温度は ェミッタ電極に流れる電流 (放電管毎に相違する)や外的要因などの影響を受けると V、う事情のものでは、ェミッタ電極の温度を最適な状態に維持することが困難であつ た。
[0006] 本発明は、放電管の電極の温度をより高精度に把握し、放電管の電極温度をより 適切に制御することを目的とする。
[0007] 本発明に係る放電管は、電源から交流成分を含んだ電圧が印加され、かつ、電極 加熱回路から加熱電流が供給される一対の電極と、前記一対の電極を内部に収容 する管部材と、前記電極の温度に基づく検出信号を前記加熱電流を制御する制御 手段に与えるべく出力する温度センサとを備える。また、係る放電管を用いた表示装 置用照明装置にあっては、温度センサによる検出結果に基づいて加熱電流を制御 する。
[0008] この構成によれば、放電管の電極の温度をより高精度に把握できるようになり、放電 管の電極の温度をより適切に制御しやすくなる。
[0009] 上記放電管は、熱陰極管であることが好ま 、。熱陰極管は、比較的低 、電圧で 高輝度が得られるという特性を有するものの、電極が劣化しやすく低寿命という問題 がある。即ち、熱陰極管の電極は、温度が上がりすぎると、表面のェミッタが蒸発しや すぐ逆に、電極の温度が下がりすぎるとェミッタの粒子が飛散するスパッタが生じや すくなるという特性を有する。
[0010] このような熱陰極管を対象として上記構成を用いるようにすれば、電極温度を精度 高く制御しやすくなるため、ェミッタの蒸発抑制或いはスパッタの飛散抑制若しくはそ の両方を実現しやすくなる。
[0011] また、上記放電管において、温度センサを熱電対によって構成すると、高温状態と なる電極において良好な温度検出が可能となる。
図面の簡単な説明
[0012] [図 1]本発明の実施形態 1に係る液晶ディスプレイを概念的に例示する斜視図
[図 2]実施形態 1の液晶表示装置におけるバックライト装置の電気的構成を例示する ブロック図 [図 3]熱陰極管の電極を概念的に例示する側面図
[図 4]図 2のフィードバック演算回路の内部構成を概念的に例示するブロック図
[図 5]電極のェミッタ温度と消耗速度との関係を示すグラフ
[図 6]図 1等に示す液晶表示装置を用いて構成される液晶テレビジョンを概念的に例 示するブロック図
[図 7]実施形態 2の液晶表示装置におけるバックライト装置の電気的構成を例示する ブロック図
[図 8]実施形態 3の液晶表示装置におけるバックライト装置の電気的構成を例示する ブロック図 符号の説明
1…液晶ディスプレイ (表示装置、液晶表示装置)
2···バックライト装置 (表示装置用照明装置)
3…液晶パネル
21···熱陰極管 (放電管)
23…管部材
30···温度検出回路
31, 32···温度センサ
31a, 32a…第 1の温度検出素子
31b, 32b…第 2の温度検出素子
33, 34···電極
33a, 33b…リード部
33c…フィラメント部
35···ステム部
37···制御部 (制御手段)
38···電極加熱回路
60···直流電源 (加熱用電源)
70…電源回路
100···液晶テレビジョン 発明を実施するための最良の形態
[0014] <実施形態 1 >
本発明の実施形態 1を図面を参照して説明する。
[0015] 1.全体構成
本実施形態による液晶ディスプレイ 1は、本発明の表示装置に該当しており、ノ ック ライト装置 2 (バックライト装置 2は、表示装置用照明装置に相当する)と、その前方に 配置され、画像表示可能なディスプレイパネル 3 (ディスプレイパネル 3は、液晶パネ ルに相当する)によって構成されている。ノ ックライト装置 2はこれに限定されるもので はないが、複数の熱陰極蛍光管 21を収容したトレイ 22と、その真上に配置された合 成榭脂製の導光板 23、その上に配置された拡散シート 24、および、更にその上に配 置された 2枚のレンズシート 25、 26とを備えた直下型バックライト装置と呼ばれるもの である。図 1に示すように、拡散シート 24およびレンズシート 25、 26は合成樹脂により 形成され、いずれも平面視において略長方形を呈しており、これらによりシート積層 体が形成されている。
[0016] 図 1に示すように、トレイ 22内には反射シート 22aが設けられ、複数の熱陰極蛍光 管 21は反射シート 22a上に位置している。各々の熱陰極蛍光管 21は、トレイ 22内に 等間隔に平行に配置され、全体として平面状に設けられている。一方、ディスプレイ パネル 3は、それぞれフレーム 4内に嵌装された一対のガラス基板 5と、その間に介 装され、一対の透明電極と、液晶を含んだ配向膜とによって構成されたパネル基板 6 とを備えている。
[0017] 2.電気的構成
ノ ックライト装置 2は、一対の電極 33, 34を備えた放電管である熱陰極蛍光管 21と 、一対の電極 33, 34に、交流成分を含んだ電圧を印加する電源回路 70とを備えて おり、さらに、電極 33, 34に、加熱電流を供給する電極加熱回路 38が設けられてい る。電源回路 70は、交流電圧を発生させる構成であればよぐここではインバータ回 路として構成されている。電極 33、 34は、それぞれタングステン等の金属材料力ゝらな るフィラメントとして構成されて 、る。
[0018] なお、電極 33, 34には、 Ba, Sr, Ca, Zrなどの酸化物からなる電極放射性物質( ェミッタ)が塗布されている。また、熱陰極蛍光管 21の管部材 23は、軟質ガラス (ソー ダ石灰ガラス、鉛ガラス等)などカゝらなり、透光性を有すると共に、筒状に構成されて いる。管部材 23の両端部には、当該管部材 23の両端部を閉塞する閉塞部(図 2で は図示略)が設けられている。
[0019] ここで、本実施形態のバックライト装置 2に用いられる熱陰極蛍光管 21に言及する と、この熱陰極蛍光管 21は、比較的低い電圧で高輝度が得られるという特性を有す るものの、電極が劣化しやすく低寿命という問題がある。即ち、上述のェミッタは、ラン プ始動時のイオン衝撃や点灯中の電子衝撃 ·加熱などにより飛散蒸発するものであ り、このようなェミッタが消耗し尽されるとランプの寿命となる。このェミッタは、図 5に示 すように、温度が上がりすぎると、蒸発しやすいという特性を有しているため、電極の 温度を高くしすぎることはェミッタの蒸発防止の観点から好ましくない。一方、同図に 示すように、電極の温度が低下しすぎると、電子の衝突に応じてェミッタの粒子が飛 散するスパッタ現象が生じやすくなる。即ち、ェミッタの総合的な消耗速度は、ェミツ タ温度が高すぎず低すぎない適度な温度(図 5では 1200K)の場合に最も小さくなる と考えられる。
[0020] 本実施形態では、上記の点に着目し、電極 33, 34の温度を、高すぎずかつ低すぎ な 、適切な温度に制御可能な構成を実現し、ェミッタの消耗を抑制するようにして 、 る。具体的には、ノ ックライト装置 2において、加熱電流が供給される電極 33, 34の 温度を検出する温度センサ 31, 32を設け、温度センサ 31, 32による検出結果に基 づいて、制御部 37 (制御部 37は、制御手段に相当する)により加熱電流を制御して いる。このように温度センサ 31, 32からの検出結果に基づいて加熱電流の制御を行 うことで、電極温度を精度高く制御してェミッタの蒸発抑制及びスパッタの飛散抑制 を共に実現し、電極の高寿命化を図っている。
[0021] 電極加熱回路 38は、直流電源 60 (直流電源 60は、加熱用電源に相当する)と、 F ET、 IGBT等の半導体スィッチ素子 SW (以下、スィッチ素子 SWともいう)を備えてい る。直流電源 60は、電極 33, 34に加熱電流を供給するものであり、スィッチ素子 SW は、制御部 37の一部をなす PWM信号生成回路 50からの PWM信号に基づ!/、てォ ンオフする構成をなしている。なお、加熱電流の制御については後述する。 [0022] 温度センサ 31, 32は、熱電対 (例えば、白金'ロジウム熱電対等)によって構成され ており、高温状態となる電極 33, 34において良好な温度検出が可能となっている。こ れら、温度センサ 31, 32は、熱陰極蛍光管 21における管内(即ち、管部材 23の内 部)に配置され、外部の影響をあまり受けないように構成されている。
[0023] 次に、これら温度センサ 31, 32の配置について、一対の電極 33のうちの電極 33を 参照して説明する。熱陰極蛍光管 21の両端部において管部材 23を閉塞する上述 の閉塞部材が設けられており、その閉塞部材の一部をなすように図 3に示すステム部 35が構成されている。ステム部 35は、閉塞部材の内壁部として構成されるものであり 、電極を支持可能な構成であれば図 3の例に限らず種々の形状、構成とすることが できる。
[0024] そして、熱陰極蛍光管 21の両端に設けられたステム部 35から延出するように各電 極 33, 34が設けられている。図 3では、一方の電極 33側のステム部 35を例示してお り、このステム部 35から延出するように、一対のリード部 33a, 33bが設けられ、これら 一対のリード部 33a, 33bの間に架け渡される形態でフィラメント部 33cが設けられて いる。
[0025] 温度センサ 31は、リード部 33a, 33bに取り付けられており、具体的には、一対のリ ード部 33a, 33bの一方に取り付けられる第 1の温度検出素子 31aと、他方に取り付 けられる第 2の温度検出素子 31bとを有している。これら第 1の温度検出素子 31a及 び第 2の温度検出素子 31bは、共に、一対のリード部 33a, 33bにおいて、フィラメン ト部 33c寄りの位置に取り付けられている。
[0026] 温度センサ 31は、リード部 33a, 33bに取り付けられており、一対のリード部 33a, 3 3bの一方に取り付けられる第 1の温度検出素子 31aと、他方に取り付けられる第 2の 温度検出素子 31bとを有している。これら第 1の温度検出素子 31a及び第 2の温度検 出素子 31bは、共に、一対のリード部 33a, 33bにおいて、フィラメント部 33c寄りの位 置に取り付けられている。
[0027] なお、図 3では、一方の電極 33側における、ステム部 35、一対のリード部 33a, 33b 、及びフィラメント部 33cの構成を例示した力 他方の電極 34側も同様の構成をなし ている。即ち、電極 34側にも、図 3と同様のステム部(図示略)、一対のリード部 34a, 34b (図 2にて概略的に例示)、フィラメント部 34c (図 2にて概略的に例示)が設けら れている。
[0028] また、温度センサ 32も、図 3に示す温度センサ 31と同様の構成となっており、具体 的には、一対のリード部 34a, 34bの一方のリード部 34aに取り付けられる第 1の温度 検出素子 32aと、他方のリード部 34bに取り付けられる第 2の温度検出素子 32bとを 備えている。そして、これら第 1の温度検出素子 32a及び第 2の温度検出素子 32bが 、図 3の第 1の温度検出素子 31a及び第 2の温度検出素子 31bと同様の構成をなし、 一対のリード部 34a, 34bのそれぞれにおいてフィラメント部 34c寄りの位置に取り付 けられている(図示は省略)。
[0029] 温度検出回路 30は、各温度検出素子 31a, 31b, 32a, 32bから温度信号を取得 し、それぞれの温度の平均温度信号を出力する構成をなしている。図 2の例では、各 温度検出素子 31a, 31b, 32a, 32bから温度に対応した電圧信号 VI, V2, V3, V 4が温度検出回路 30に入力され、平均温度に対応した電圧信号 V5が出力されるよ うになつている。この温度検出回路 30は、複数の電圧の平均電圧を出力する平均回 路によって構成してもよぐ AZD変^^と CPUなどによって構成してもよい。平均温 度を示す電圧信号 V5は、制御部 37に入力されるようになっている。なお、符号 36は 安定器である。
[0030] 次に、制御部 37について説明する。
[0031] 制御部 37は、フィードバック演算回路 40と、 PWM信号生成回路 50によって構成 されている。
[0032] フィードバック演算回路 40は、図 4にて概念的に示すように、温度検出回路 30から の温度信号 V5と目標温度に基づく出力を決定し、 PWM信号生成回路 50に与える ように構成されている。この図 4の例では、現在温度と目標温度に基づいて PI制御を 行う構成となっている。
[0033] 本実施形態では、制御部 37のフィードバック演算回路 40に、第 1の温度検出素子 31a, 32aによる検出値及び第 2の温度検出素子 31b, 32bによる検出値の平均値 に対応した信号 V5が現在温度として入力されるようになっており、それらの平均値に 基づいてフィードバック制御量が定められ、その制御量に応じた PWM信号によりカロ 熱電流が制御される。
[0034] フィードバック演算回路 40は、検出された現在温度 (電圧信号 V5が示す温度)と目 標温度との温度偏差を求める減算器 41を備え、その温度偏差に対してそれぞれ積 分ゲインを乗算する積分演算器 42と、その積分演算器 42による演算値の積分値を 求めて積分制御値を算出する積分器 44とを備えている。また、温度偏差に比例ゲイ ンを乗算して比例制御値を算出する比例演算器 43を有している。そして、積分制御 値と比例制御値との和が制御量 (指令値)として算出される。
[0035] なお、図 4の例では、減算器 41は、公知の減算回路によって構成され、積分演算 器 42、比例演算器 43は、公知の乗算回路によって構成されている。また、積分器 44 は、公知の積分回路によって構成されており、比例演算器 43で用いる比例ゲイン及 び積分演算器 42で用いる積分ゲインはそれぞれ、予め定められた一定値が用いら れるようになっている。
[0036] なお、現在温度と目標温度とに基づ!/、て PI制御を実行可能な構成であれば、他の 構成を用いてもよぐ例えば、フィードバック演算回路 40を、 CPUと PI制御を行うため のプログラムなどによって実現してもよい。
[0037] 上記フィードバック演算回路 40によって算出された制御量 (指令値)は PWM信号 生成回路 50に入力される。この PWM信号生成回路 50は、入力された制御量に応 じたデューティー比の PWM信号を出力するものであり、公知の PWM回路によって 構成されて 、るが、マイコンなどによって実現してもよ 、。
[0038] また、図 2では説明上フィードバック演算回路 40と PWM信号生成回路 50を別々に 分けた構成を示している力 これらは単一の手段によって実現されていてもよい。例 えば、制御部 37全体をマイコンによって構成し、このマイコンによってフィードバック 演算 (PI演算)を行うと共にフィードバック制御量を算出し、かつそのフィードバック制 御量に応じた PWM信号を出力するようにしてもょ 、。
[0039] また、図 4の例では、 PI制御を行う構成を例示している力 フィードバック演算する 構成であれば他の制御方法 (例えば PID制御)であってもよ 、。
[0040] 電極加熱回路 38は、対の電極 33, 34の両電極に加熱電流を供給する構成をなし ている。これら一対の電極 33, 34の両電極には、上述の温度センサ 31, 32がそれ ぞれ取り付けられており、両電極 33, 34の両温度センサ 31, 32の検出値に基づい て制御部 37により加熱電流が制御されるようになって 、る。
[0041] 電極加熱回路 38の制御は、 PWM信号生成回路 50から出力される PWM信号に 基づいて行われる。即ち、 PWM信号生成回路 50からの PWM信号に基づいて半導 体スィッチ SWが駆動され、デューティー比制御がなされる。このように温度センサ 31 , 32の出力(検出値)に応じてデューティー比が制御されることで加熱電流が制御さ れることとなる。
[0042] なお、上記のような熱陰極蛍光管 21及びその周辺回路 (温度検出回路 30、電極 加熱回路 38、制御部 37)は、複数設けることができる。例えば、ノ ックライト装置とし て熱陰極蛍光管 21を 3本設ける場合には、図 2のような構成を 3セット設けるようにす ればよい。
[0043] 次に、上述の液晶ディスプレイ 1を用いて構成される液晶テレビジョン 100について 説明する。
[0044] 図 6に示すように、液晶テレビジョン 100は、液晶パネル 3及びバックライト装置 2を 有してなる液晶ディスプレイ 1と、映像信号を受信する公知のアンテナ 88と、アンテナ 88にて受信した信号に基づいて液晶ディスプレイ 1を駆動する駆動手段とを備えて いる。駆動手段は、 VIF増幅映像検波部 86、輝度 ·色信号処理部 85、映像出力部 8 3、コントローラ 84などによって構成されている。
[0045] アンテナ 88には、公知のチューナ 87が接続されており、このチューナ 87では、受 信チャネルを選択し、その信号を増幅する。ここでは、 VHF及び UHFの映像搬送波 と音声搬送波をそれぞれ 58.75MHzと 54. 25MHzの中間周波数に変換するスー パヘテロダイン受信方式が用いられて 、る。
[0046] チューナ 87には、映像中間周波数増幅回路及び映像検波回路からなる VIF増幅 映像検波部 86が接続されている。 VIF増幅映像検波部 86には、 SIF増幅音声検波 部 89と輝度 ·色信号処理部 85が接続されて 、る。
[0047] 輝度,色度信号処理部 85は、輝度調節回路、帯域増幅器、色信号復調回路、マト リックス回路を有している。映像出力部 83は、輝度 ·色度信号処理部 85にて生成さ れた R, G, B信号を 1ラインずつ出力する回路である。 [0048] コントローラ 84は、複合映像信号力も分離した水平同期信号に同期したクロックを 発生する PLL回路と、クロックのカウントダウン回路で構成されており、順次駆動に必 要な各種タイミングパルスを生成する構成となしている。
[0049] Xドライバ 82は、シフトレジスタ回路で構成されており、コントローラからのスタートパ ルスでパネルの横方向(X方向)のゲートのノ スラインを順次走査駆動する。
[0050] Yドライバ 82は、パネルの縦方向(Y方向)のソースのバスラインを映像信号で駆動 する変調駆動回路である。コントローラ 84からの制御パルスに応じ、映像出力から 1 ライン分の R, G, B信号をホールドし、 RGB画素配列に従って Xドライバ 81の走査と 同期して液晶パネル 3を駆動する。
[0051] なお、上記の液晶ディスプレイ及び液晶テレビジョンの構成はあくまで一例であり、 ノ ックライト装置 2以外は公知の種々の構成を用いることができる。
[0052] 以上のように、上述の放電管、表示装置用照明装置、液晶ディスプレイ、液晶テレ ビジョンでは、電源回路 70から交流成分を含んだ電圧が印加され、かつ、電極加熱 回路 38から加熱電流が供給される一対の電極 33, 34と、一対の電極 33, 34を内部 に収容する管部材 23と、電極 33, 34の温度に基づく検出信号を、加熱電流を制御 する制御部 37に与えるべく出力する温度センサ 31, 32とが設けられている。従って 、放電管の電極の温度をより高精度に把握でき、放電管の電極の温度をより適切に 制御しやす!、構成となって ヽる。
[0053] また、本実施形態に係る電極加熱回路 38は、電極 33, 34に加熱電流を供給する ための直流電源 60 (加熱用電源)を備えている。従って、放電のための電圧印加と、 電極を加熱するための電流制御とをそれぞれ独立性高く行うことができるため、電極 の温度をより良好に制御できる。
[0054] また本実施形態に係る放電管は熱陰極蛍光管 21によって構成されている。従って
、比較的低い電圧で高輝度が得られるようになつている。その上、電極温度の制御に よりェミッタの蒸発抑制及びスパッタの飛散抑制が共になされ、電極の高寿命化が図 られている。
[0055] また、本実施形態では、各温度センサ 31, 32が、熱電対によって構成されている。
従って、高温状態となる電極 33, 34において良好な温度検出が可能となっている。 [0056] また、本実施形態では、各温度センサ 31, 32が、熱陰極蛍光管 21の管内に配置 されている。従って、管外に配置する場合と比較して各温度センサ 31, 32が外的な 要因を受けにくぐ電極の温度をより精度高く検出できるようになつている。
[0057] また、各電極 33, 34は、熱陰極蛍光管 21の両端に設けられたステム部から延出す る一対のリード部 33a, 33b及び一対のリード部 34a, 34bと、一対のリード部 33a, 3 3bに架け渡されるフィラメント部 33c及び 34cとを備えている。そして、リード部 33a, 3 3b及びリード部 34a, 34bに温度センサ 31, 32がそれぞれ取り付けられている。従つ て、放電にあまり影響を与えずに放電位置付近の温度を精度高く検出できるようにな つている。
[0058] 温度センサ 31, 32は、いずれも、一対のリード部の一方に取り付けられる第 1の温 度検出素子と、他方に取り付けられる第 2の温度検出素子とを有している。そして、制 御部 37は、第 1の温度検出素子 31a, 32aによる検出値及び第 2の温度検出素子 3 lb, 32bによる検出値を含んだ複数の検出値の平均値に基づいて加熱電流を制御 する構成をなしている。従って、電極 33, 34の温度をばらつきなく安定的に検出でき 、一層精度高い温度制御が可能となっている。
[0059] 温度センサ 31, 32は、第 1の温度検出素子及び第 2の温度検出素子が共に一対 のリード部において、フィラメント部寄りの位置に取り付けられている。従って、放電が 生じるフィラメント部付近の温度をより適切に検出できるようになつている。
[0060] また、電極加熱回路 38は、両電極 33, 34に加熱電流を供給する構成をなしており 、それら両電極 33, 34に温度センサ 31 , 32がそれぞれ取り付けられている。そして 、制御部 37は、両電極 33, 34の両温度センサ 31, 32の検出値に基づいて、両電極 33, 34に供給する加熱電流を制御している。この構成によれば、両電極 33, 34の 温度を考慮して両電極に供給する加熱電流を制御できることとなるため、全体的なバ ランスを考慮した好適な制御が可能となる。
[0061] <実施形態 2 >
次に、本発明の実施形態 2を図 7によって説明する。
[0062] 実施形態 2は、図 2から制御部 37の構成を変更した点が実施形態 1と異なり、その 他の構成は実施形態 1と同様であるのでその他の部分については同一の符号を付し 、詳細な説明は省略する。
[0063] 実施形態 2では、制御部 37が判別回路 55によって構成されている。この判別回路 は、温度検出回路 30からの出力が示す温度が所定温度範囲内である力否かを判別 する回路である。具体的には、目標とすべき温度範囲の下限温度に対応した第 1の 閾値と、上限温度に対応した第 2の閾値が定められている。温度センサ 31, 32の平 均温度が下限温度を下回った場合 (即ち、温度検出回路 30からの信号が第 1の閾 値を下回った場合)に半導体スィッチ SWを駆動する信号を出力し、温度センサ 31, 32の平均温度が上限温度を上回るまで出力し続ける。この間、直流電源 60から加 熱電流の供給が続き、電極 33, 34は温度上昇し続ける。その後、上限温度を上回つ た場合 (即ち信号 V5が第 2の閾値に達した場合)には、半導体スィッチ SWを駆動す る信号の出力をオフし、第 1の閾値を下回るまでオフし続ける。このように、本実施形 態では、いわゆるオンオフ制御がなされるようになつている。なお、判別回路 55はウイ ンドコンパレータなどによって実現してもよぐ CPUなどによって実現してもよい。
[0064] <実施形態 3 >
次に、本発明の実施形態 3を図 8によって説明する。
[0065] 実施形態 2は、図 2から制御部 37、電極加熱回路 38を変更した点が実施形態 1と 異なり、その他の構成は実施形態 1と同様であるのでその他の部分については同一 の符号を付し、詳細な説明は省略する。
[0066] 本実施形態では、温度センサ 31, 32の平均温度に基づいて可変抵抗 R1の抵抗 値を制御し、電極 33、 34に供給される供給量を制御する構成となっている。具体的 には、実施形態 1と同様に、フィードバック演算回路 40で制御量を算出し、その制御 量に応じた電流量となるように、駆動回路 80によって可変抵抗 38を制御している。
[0067] <他の実施形態 >
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく 、例えば次のような実施形態も本発明の技術的範囲に含まれる。
[0068] (1)上記実施形態では、温度センサとして熱電対を用いた例を示したが、温度検出 可能な構成であれば他の温度センサ(サーミスタ等)であってもよ 、。
[0069] (2)上記実施形態では、電極に複数の温度センサを設けた例を示した力 電極に 温度センサを 1つのみ設ける構成であってもよい。
[0070] (3)上記実施形態では、両電極にそれぞれ温度センサを設ける構成を例示したが V、ずれか一方の電極のみに温度センサを設けるようにしてもょ 、。
[0071] (4)上記実施形態では、単一の電源によって単一の熱陰極管を駆動する方式を例 示したが、単一の電源によって複数の熱陰極管を並列駆動する方式であってもよい 。この場合、例えば、全ての熱陰極管の電極に加熱電流を供給する電極加熱回路を 設けると共に、複数の熱陰極管全てに上記実施形態と同様の温度センサを設け、全 ての温度センサの平均値に基づいて電極加熱回路からの出力電流を制御するよう にすればよい。
[0072] (5)上記実施形態では、加熱用電源として直流電源を例示した力 交流電源によ つて加熱用電源を構成してもよ ヽ。

Claims

請求の範囲
[1] 電源から交流成分を含んだ電圧が印加され、かつ、電極加熱回路から加熱電流が 供給される一対の電極と、
前記一対の電極を内部に収容する管部材と、
前記電極の温度に基づく検出信号を、前記加熱電流を制御する制御手段に与え るべく出力する温度センサと、
を備えた放電管。
[2] 前記放電管は、熱陰極管である請求の範囲第 1項に記載の放電管。
[3] 前記温度センサは、熱電対からなる請求の範囲第 1項又は第 2項に記載の放電管
[4] 前記温度センサは、前記管部材の内部に配置されている請求の範囲第 3項に記載 の放電管。
[5] 前記管部材の両端にステム部が設けられ、
前記電極は、前記ステム部力 延出する一対のリード部と、前記一対のリード部に 架け渡されるフィラメント部とを含み、
前記温度センサは、前記リード部に取り付けられている請求の範囲第 4項に記載の 放電管。
[6] 前記温度センサは、前記一対のリード部の一方に取り付けられる第 1の温度検出素 子と、他方に取り付けられる第 2の温度検出素子と、を有することを特徴とする特徴と する請求の範囲第 5項に記載の放電管。
[7] 前記温度センサは、前記リード部のうち前記フィラメント部寄りの位置に取り付けら れて 、る請求の範囲第 6項に記載の放電管。
[8] 一対の電極を備えた放電管と、
前記一対の電極の少なくとも一方に、交流成分を含んだ電圧を印加する電源と、 前記電極を加熱するための加熱電流を供給する電極加熱回路と、
前記加熱電流が供給される前記電極の温度を検出する温度センサと、 前記温度センサによる検出結果に基づいて、前記加熱電流を制御する制御手段と 、を備えた表示装置用照明装置。
[9] 前記放電管は、熱陰極管である請求の範囲第 8項に記載の表示装置用照明装置
[10] 前記温度センサは、熱電対からなる請求の範囲第 9項に記載の表示装置用照明装 置。
[11] 前記温度センサは、前記放電管の管内に配置されている請求の範囲第 10項に記載 の表示装置用照明装置。
[12] 前記電極は、放電管の両端に設けられたステム部から延出する一対のリード部と、 前記一対のリード部に架け渡されるフィラメント部とを備え、前記リード部に前記温度 センサが取り付けられている請求の範囲第 11項に記載の表示装置用照明装置。
[13] 前記温度センサは、前記一対のリード部の一方に取り付けられる第 1の温度検出素 子と、他方に取り付けられる第 2の温度検出素子と、を有し、前記制御手段は、少なく とも前記第 1の温度検出素子による検出値及び前記第 2の温度検出素子による検出 値を含んだ複数の検出値の平均値に基づいて前記加熱電流を制御する請求の範 囲第 12項に記載の表示装置用照明装置。
[14] 前記温度センサは、前記一対のリード部において、前記フィラメント部寄りの位置に 取り付けられていることを特徴とする請求の範囲第 13項に記載の表示装置用照明装 置。
[15] 前記電極加熱回路は、前記一対の電極の双方に加熱電流を供給する構成をなし 、前記各電極には前記温度センサがそれぞれ取り付けられており、前記制御手段は 、両電極の両温度センサの検出値に基づ 、て前記加熱電流を制御する請求の範囲 第 8項ないし第 14項のいずれかに記載の表示装置用照明装置。
[16] 請求の範囲第 8項ないし第 15項のいずれかに記載の表示装置用照明装置と、液 晶パネルと、を備えた液晶表示装置。
[17] 請求の範囲第 16項に記載の液晶表示装置と、映像信号を受信する受信手段と、 前記受信手段にて受信した信号に基づいて前記液晶表示装置を駆動する駆動手 段とを備えた液晶テレビジョン。
PCT/JP2006/313210 2005-11-22 2006-07-03 放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン WO2007060762A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/089,968 US7884552B2 (en) 2005-11-22 2006-07-03 Electrical discharge tube, illumination apparatus for display device, liquid crystal display device, and liquid crystal display television

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-337277 2005-11-22
JP2005337277A JP2009037736A (ja) 2005-11-22 2005-11-22 放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン

Publications (1)

Publication Number Publication Date
WO2007060762A1 true WO2007060762A1 (ja) 2007-05-31

Family

ID=38067001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313210 WO2007060762A1 (ja) 2005-11-22 2006-07-03 放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン

Country Status (3)

Country Link
US (1) US7884552B2 (ja)
JP (1) JP2009037736A (ja)
WO (1) WO2007060762A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014941A1 (de) * 2006-08-03 2008-02-07 Cooper Crouse-Hinds Gmbh Vorrichtung und verfahren zur überwachung wenigstens einer leuchtstofflampe
DE102007040209A1 (de) * 2007-08-27 2009-03-12 Uviterno Ag Vorrichtung zum Bestrahlen eines Substrats
US20120093687A1 (en) * 2009-04-07 2012-04-19 Malcom Robert Snowball Sterilisation of packaged articles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109446A (ja) * 2006-10-26 2008-05-08 Funai Electric Co Ltd 液晶テレビジョンおよび液晶表示装置
CN110856317A (zh) * 2019-11-13 2020-02-28 西安居正知识产权运营管理有限公司 一种基于物联网的自调节夜灯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165851U (ja) * 1982-04-28 1983-11-04 東芝熱器具株式会社 発熱ランプ
JPS6236966A (ja) * 1985-08-09 1987-02-17 Casio Comput Co Ltd 光源装置
JPH05242989A (ja) * 1992-02-25 1993-09-21 Sony Corp 熱陰極蛍光管調光回路
JPH0668858A (ja) * 1992-08-18 1994-03-11 Shincron:Kk 標準光源およびその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487481A (en) * 1980-03-24 1984-12-11 Epson Corporation Backlighted liquid crystal display
US5274305A (en) * 1991-12-04 1993-12-28 Gte Products Corporation Low pressure mercury discharge lamp with thermostatic control of mercury vapor pressure
JP4367754B2 (ja) * 2002-10-31 2009-11-18 株式会社村田製作所 蛍光ランプ点灯装置
KR100487437B1 (ko) * 2002-12-31 2005-05-03 엘지.필립스 엘시디 주식회사 와이드 모드 액정표시장치에서 노말 모드 구동 방법
US7161312B2 (en) * 2003-08-14 2007-01-09 Sluggo Lighting Ltd. Distributed fluorescent light control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165851U (ja) * 1982-04-28 1983-11-04 東芝熱器具株式会社 発熱ランプ
JPS6236966A (ja) * 1985-08-09 1987-02-17 Casio Comput Co Ltd 光源装置
JPH05242989A (ja) * 1992-02-25 1993-09-21 Sony Corp 熱陰極蛍光管調光回路
JPH0668858A (ja) * 1992-08-18 1994-03-11 Shincron:Kk 標準光源およびその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014941A1 (de) * 2006-08-03 2008-02-07 Cooper Crouse-Hinds Gmbh Vorrichtung und verfahren zur überwachung wenigstens einer leuchtstofflampe
US8018179B2 (en) 2006-08-03 2011-09-13 Cooper Crouse-Hinds Gmbh Apparatus and method for monitoring at least one fluorescent lamp
NO340663B1 (no) * 2006-08-03 2017-05-29 Cooper Crouse Hinds Gmbh Apparat og fremgangsmåte for å overvåke minst én fluoriserende lampe
DE102007040209A1 (de) * 2007-08-27 2009-03-12 Uviterno Ag Vorrichtung zum Bestrahlen eines Substrats
US20120093687A1 (en) * 2009-04-07 2012-04-19 Malcom Robert Snowball Sterilisation of packaged articles

Also Published As

Publication number Publication date
JP2009037736A (ja) 2009-02-19
US7884552B2 (en) 2011-02-08
US20090244396A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
KR101146194B1 (ko) 제어장치
WO2007060762A1 (ja) 放電管、表示装置用照明装置、液晶表示装置、及び液晶テレビジョン
CN101300904B (zh) 高压水银灯的点亮方法及点亮装置、灯系统及投影式显示装置
KR20080033771A (ko) 백라이트 유닛의 구동장치, 이를 구비한 액정표시장치, 및그 제어방법
US20110032286A1 (en) Display device and television receiver
US20080210847A1 (en) Illumination Device
US8125161B2 (en) Light emitting device driving apparatus and method for driving the same
JP2008122695A (ja) 液晶表示装置及びその制御方法
JP2012073400A (ja) 表示装置
JP4637877B2 (ja) 面発光素子の駆動回路及び駆動方法
JPWO2012073338A1 (ja) 表示装置、表示装置の色補正方法
US20060114218A1 (en) System and method for flat panel display brightness correction
JP2002311416A (ja) 液晶表示装置
JP2007264394A (ja) 投写型映像表示装置
KR20060108226A (ko) 백라이트 구동 장치 및 구동 방법
WO2013099165A1 (ja) 液晶表示装置
JP5080404B2 (ja) 表示装置
US7629750B2 (en) Lamp driving device and driving method thereof
JP2009021529A (ja) 照明用装置及び照明装置の制御方法
JPH10333123A (ja) 液晶装置
WO2007069382A1 (ja) 光源装置、表示装置およびテレビ受信機
JP2000171773A (ja) 液晶表示装置
KR100727115B1 (ko) 전원제어방법 및 영상표시기기
KR20110037705A (ko) 영상표시기기에서 백라이트 제어 장치 및 방법
JP2010086865A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12089968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP