WO2006090877A1 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
WO2006090877A1
WO2006090877A1 PCT/JP2006/303624 JP2006303624W WO2006090877A1 WO 2006090877 A1 WO2006090877 A1 WO 2006090877A1 JP 2006303624 W JP2006303624 W JP 2006303624W WO 2006090877 A1 WO2006090877 A1 WO 2006090877A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
projection data
image
analysis
subject
Prior art date
Application number
PCT/JP2006/303624
Other languages
English (en)
French (fr)
Inventor
Osamu Miyazaki
Koichi Hirokawa
Toshiyuki Irie
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2007504834A priority Critical patent/JP5001142B2/ja
Priority to CN2006800062088A priority patent/CN101128153B/zh
Publication of WO2006090877A1 publication Critical patent/WO2006090877A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure

Definitions

  • the present invention relates to an X-ray source current (hereinafter referred to as an X-ray tube current) supplied to an X-ray source (hereinafter referred to as an X-ray tube) that determines an X-ray irradiation intensity to an imaging region of a subject.
  • the present invention relates to an improvement in an X-ray CT system that performs control according to the position of the specimen in the body axis direction.
  • the image quality of an image obtained by an X-ray CT apparatus is determined by factors such as spatial resolution and noise contained in the image. Of these factors, image noise mainly depends on the intensity of transmitted X-rays.
  • the intensity of the transmitted X-ray is determined by the intensity of the irradiated X-ray and the X-ray transmission length of the cross-section of the subject.
  • the intensity of the irradiated X-ray is determined by the current supplied to the X-ray tube.
  • Absorption of the cross-section of the imaging area of the subject is determined by the transmission length in the front-rear direction (hereinafter also referred to as the “front-rear direction”) and the lateral direction thereof (hereinafter also referred to as the “left-right direction”) if the shape of the human body is an ellipse. It depends on the difference. Reduction of transmitted X-ray intensity increases the ratio of noise to the transmitted X-ray intensity signal.
  • Patent Document 1 The technique for improving the transmission X-ray intensity reduction is disclosed in Patent Document 1, for example.
  • This document improves the reduction of transmitted X-ray intensity by the following procedure. First, scan the scanogram data taken prior to the measurement of the tomographic image for diagnosis (also called “main scan”), and use the analyzed scanogram image data to model the three-dimensional transmission length of the subject. Is generated. Next, an X-ray tube current change pattern corresponding to the imaging region of the subject is set based on the generated three-dimensional transmission length model and the scan conditions of the main scan.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-263097
  • the X-ray tube current control value is set based on the generated scanogram, and in the scanogram, the X-ray attenuation of the subject is large for each tissue such as bone or soft tissue.
  • tissue such as bone or soft tissue.
  • X-ray absorption differs. For example, in areas such as shoulders with many bones, the transmitted X-ray intensity is insufficient. Thus, when the transmitted X-ray intensity is insufficient, the amount of noise for the transmitted X-ray intensity signal increases.
  • An object of the present invention is to provide an X-ray CT apparatus capable of obtaining a high-quality tomographic image even at a site where a variation in transmitted X-ray intensity of a subject is large.
  • Control means for collecting projection data for directions, reconstructing the collected projection data to generate a tomographic image of the subject, and controlling the X-ray source and the rotation means;
  • An X-ray CT apparatus having display means for displaying the generated tomogram, and reconstructing the tomogram for analysis at the imaging region of the subject from the projection data, and reconstructing the tomogram Projection data analysis means that re-projects the image to generate a control profile
  • a tube current control means for controlling a current value supplied to the X-ray tube based on the generated control profile.
  • a high-quality tomographic image can be obtained even at a site where the variation in the transmitted X-ray intensity of the subject is large.
  • FIG. 1 is a schematic configuration diagram of an X-ray CT apparatus to which the present invention is applied.
  • FIG. 2 is a block diagram for explaining a first embodiment of the projection data analyzing apparatus applied in the tube current control unit of the present invention.
  • FIG. 3 is a flowchart illustrating the flow of tube current control processing applied in the present invention.
  • FIG. 4 (A) is a reconstructed tomographic image for analysis reconstructed on the basis of projection data of an imaging region of a subject having a relatively small amount of bone by the projection data analysis apparatus of the present invention shown in FIG.
  • B is a diagram for explaining an image after threshold processing of a reconstructed tomographic image for analysis and an X direction bone attenuation profile B obtained by reprojecting the image in the X direction.
  • FIG. 5 (A) is a reconstructed tomographic image for analysis reconstructed based on the projection data of the imaging region of a subject having many bones by the projection data analysis apparatus of the present invention shown in FIG.
  • FIG. 6 is a timing chart for explaining each process executed by the projection data analyzing apparatus according to the first embodiment of the present invention shown in FIG. 2 together with the start of the main scan by the X-ray CT apparatus of the present invention.
  • FIG. 7 X direction taken along the body axis direction of each of the three tissues, soft tissue, bone, and lung field, from the reconstructed image for analysis of the subject obtained by the projection data analyzer , Schematic diagram showing the result of reprojection in the Y direction together with the scanogram of the corresponding part of the subject.
  • the X-ray CT apparatus 1 measures the projection data of the subject while controlling the X-ray tube current according to the X-ray tube position ( ⁇ , Z). Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.
  • FIG. 1 shows a configuration of an X-ray CT apparatus 1 of the present embodiment.
  • the X-ray CT apparatus 1 includes a scanner 10, a host computer 20 connected to the scanner 10, an operation unit 24 and a display device 30 connected to the host computer 20. First, the components of the scanner 10 will be described.
  • the X-ray tube 11 irradiates the subject with X-rays.
  • the X-ray detector 12 is arranged opposite to the X-ray tube 11 and detects X-rays transmitted through the subject.
  • a data measurement system (DAS (Data Acquisition System) 13 calculates projection data by performing predetermined data processing on the transmitted X-rays detected by the X-ray detector 12.
  • the X-ray high voltage device 14 is an X-ray tube.
  • the voltage, current, and power supply time (corresponding to the X-ray irradiation time) can be set by the operation unit 24 described later.
  • the voltage applied from the power supply is the tube voltage
  • the current is referred to as the tube current
  • the data transmitter 15 transfers data between the rotating system and the stationary system, and includes a slip ring and brush, or a rotating transformer, etc.
  • the scanner controller 16 is an X-ray tube 11 And the amount of rotation of the rotating plate (scanner) attached with the X-ray detector 12.
  • the projection data analyzer 17 reconstructs a slice image of the subject from the projection data calculated by the data measuring device 13.
  • the tube current control unit 18 It controls the tube current of the X-ray tube 11.
  • Each of these components is mounted on a rotating body 19 that can rotate around the subject.
  • the projection data analyzing apparatus 17 may be provided with a part weight determining unit 17d.
  • the part weight determining unit 17d is covered.
  • Organ site information can be obtained by evaluating the absolute amount, ratio, or change of reprojection values.
  • the part weight determination unit 17d changes the current control value obtained by the current control value calculation unit 17c for each organ part using the obtained organ part information, and outputs a new current control value to the X-ray high voltage apparatus 14.
  • a weight coefficient for each organ part is prepared in advance, and a value obtained by multiplying the current control value by the weight is set as a new current control value.
  • a small value is set for the pelvic cavity (lower abdomen), and the weight is controlled to be an irradiation dose lower than the irradiation dose obtained from the transmission length.
  • step S1 scanogram imaging is performed by the X-ray CT apparatus 1.
  • step S2 the photographing range is set based on the scanogram image photographed in step S1.
  • step S3 X-ray imaging conditions including tube current values are set.
  • the tube current value set here is the initial value of the imaging condition.
  • step S4 view data measurement is performed according to the shooting range and shooting conditions set in steps S2 and S3.
  • step S 5 projection data compression processing is performed by the data compression device provided in the input stage of the projection data analysis device 17.
  • step S 6 the projection data compressed in step S 5 is input to the analysis image reconstruction unit 17 a of the projection data analysis device 17.
  • the analysis image reconstruction means 17a performs an analysis image reconstruction process.
  • step S7 the reconstructed image analysis means 17b analyzes the reconstructed image based on the analysis image created in step S6, and calculates the converted transmission length of a predetermined reference substance (for example, water) in the analysis image. To do.
  • step S8 the optimum tube current value is calculated using a transmission length-one control value conversion table or the like based on the converted transmission length obtained by the tube current control value calculation means 17c.
  • step S9 whether or not to correct the tube current value of the X-ray high-voltage device 14 based on the optimum tube current value calculated in the tube current control value calculation means 17c is determined based on the deviation of the initial condition.
  • the process returns to S4 and the view data measurement is continued based on the current tube current value.
  • the process proceeds to S10, the X-ray condition including the tube current is reset, and the reset new tube current value is input to the X-ray high voltage device 14. Then, the process returns to step S4, and the view data is measured according to the X-ray condition based on the new current control value.
  • step S11 the image processing device 23 performs an image reconstruction process based on the projection data measured in step S4.
  • Step S11 and steps S5 to S10 can be processed in parallel. This parallel processing can speed up a series of measurements and data processing.
  • the projection data obtained in step S4 is output to the host computer 20 by the rotating data transmission device 15.
  • step S11 the data transmission device 22 of the host computer 20 is The projection data is received and output to the image processing device 23.
  • the image processing device 23 performs image reconstruction processing based on the projection data, and outputs a tomographic image to the display device 30.
  • step S12 it is determined whether or not the measurement is finished. If “Yes”, the measurement is finished. If “No”, return to step S4.
  • the reconstructed image analysis unit 17b mainly performs reprojection processing on the reconstructed image for analysis, and can calculate the converted transmission length information in the reprojection direction. Further, the reconstructed image analyzing means 17b according to the present embodiment can perform threshold processing at the time of reprojection. For example, bone reprojection data B as shown in FIGS. 4 and 5 can be calculated.
  • FIG. 5 is an example of obtaining a converted transmission length at a different part from FIG. Similar to FIG. 4, the torsional force of a tomogram 50 having bone portions (B) 51, 52, 53, 54, 56, 59 and soft tissue (T) 55, 56, 57 is shown. In this example, the X-ray transmission profile is calculated as 5mm. As can be seen by comparing 4mm in Fig. 4 with 5mm in Fig. 5, the maximum reprojection value Bmax varies greatly depending on the measurement site of the subject.
  • Tube current control value calculation means 17c converts the obtained control profile into a converted transmission length, and calculates an optimal tube current control value from the converted converted transmission length.
  • an object is elliptically approximated with a uniform substance (for example, water), and converted using a transmission length equivalent to a substance (for example, water) of an elliptically approximated shape as a reference.
  • ⁇ F (j) is the integral value of all CT values in the reprojection direction (for example, the X direction), so the water equivalent transmission length Dw [mm] is obtained by the following equation (1).
  • the CT values here are 0 for air and 1000 for water.
  • Dw ⁇ F (j) * p / N * 1000 (1)
  • P is the pixel size [mm]
  • N is the number of reprojection beams covering the subject (corresponding to the width of the subject viewed from the reprojection direction).
  • the current control value Q of the tube current is given in advance as a function of Dw (or in the form of a table), and the current control value can be obtained from equation (2). Since the analysis target uses reconstructed images instead of projection data, the accuracy of the evaluation of the cross section of the subject is improved.
  • Nt and Nb are the number of reprojection beams including soft tissue and bone. If the bone CT value is 2000 and the soft tissue is 1040,
  • the current control value is obtained by weighting the soft tissue and bone permeation length to obtain the water permeation length by Equation (5) and the current control value by Equation (2).
  • Both the weighting factors Wt and Wb can be set to 1.0, but when the tube voltage is low, the effect of the bone is greater. Therefore, the tube current is set higher by increasing the bone weight Wb. Can be adjusted easily.
  • the bone weight Wb can be adjusted to be small.
  • Wt and Wb may be used as the weight for each part of the imaging organ described later.
  • the operation of the X-ray CT apparatus 1 will be described.
  • the X-ray detector 12 of the X-ray CT apparatus 1 has a detection element of 1024 channels
  • the view data is captured 102 4 times per rotation.
  • projection data from DAS 13 is input to projection data analysis device 17 by means of a data compression device provided in the input stage of projection data analysis device 17 so that the average value for the center two rows of the multi-slice detector is input.
  • 8 sample data is added in both the view direction and channel direction, and 128 channels of view data are input 128 times per rotation. If the sampling interval of the original data is 0.5 mm, an analysis image with a resolution of about 4 mm can be reconstructed.
  • the filter correction process is performed using a blur correction filter that has been saved in advance by performing 256-point Fourier transform. Further, the back projection process is performed after the blur correction filter. When the back projection process of the view data necessary for reconstruction is completed, the tomographic image for analysis is reconstructed. By the way, it is necessary to save the air data and offset data along with the water data. Since the air data offset data only needs one view, the memory capacity required to store each data can be small.
  • the initial value X0 of the X-ray condition and the time interval At of the control instruction are input.
  • Xo may be the optimum value obtained as a result of analyzing the scanogram, or may be determined directly by the operator.
  • control instruction time interval At is arbitrary, it is significant if the X-ray exposure is not optimized even if the tube current value is updated too frequently. It may be defined by the number of views and the angle interval. For example, if the view is 128 views per rotation, the tube current value is output every 32 views, and can be updated 4 times per rotation.
  • FIG. 6 shows a timing chart of each process during scanning.
  • scanning starts with "to" and X-ray exposure begins, data collection starts synchronously.
  • the initial value of the tube current is XO.
  • All measured data is sent to the data transmission device 15 and transmitted to the static system.
  • Data captured by the host computer 20 is reconstructed as a tomographic image for interpretation by the image processing device 23.
  • the projection data analyzing apparatus 17 performs analysis image reconstruction, reconstructed image analysis, and optimum tube current control value calculation processing.
  • Image reconstruction for analysis, reconstructed image analysis, and optimum tube current control value calculation processing are each processed in a pipeline.
  • the new tube current control value obtained by the optimum tube current control value calculation process is sent to the X-ray high-voltage device 14, and feedback is enabled only at t6. Note that the actual shooting start point may be the time when the feedback becomes valid.
  • the tube current value obtained here is set based on an analysis image reconstructed from projection data obtained in the vicinity of time tl_t2, and the corresponding phase (angle) information is obtained.
  • the X-ray high voltage apparatus 14 changes the actual control value at the corresponding phase t6.
  • the tube current control value is determined by directly processing projection data as in the prior art, it is necessary to review the parameters of the tube current value as the gain, log conversion gain, focus-to-detector distance, etc. change. Since it is set based on the absolute value of force CT value, stable control is possible.
  • the reprojection value of the bone increases from the vicinity of the shoulder. In this way, it can be seen that the characteristics of the imaging region are shown. Therefore, in the present embodiment, it is possible to determine a part using each reprojection value.
  • the transmission length is converted into the X-ray absorption coefficient of water.
  • the substance serving as an index of the X-ray absorption coefficient limited to water is arbitrarily selected from bone, soft tissue, and the like. You may choose. This is because it is sufficient that the subject can be converted as the permeation length of a predetermined substance.

Abstract

 被検体にX線を照射するX線源と、前記X線源と前記被検体を挟んで対向して配置され、前記被検体の透過X線を投影データとして検出するX線検出器と、前記X線源および前記X線検出器を回転する回転手段と、前記回転手段によって前記X線管および前記X線検出器が回転され複数の角度方向について投影データを収集し、これらの収集された投影データを再構成演算し、前記被検体の断層像を生成すると共に、前記X線源、前記回転手段を制御する制御手段と、前記生成された断層像を表示する表示手段と、を備えたX線CT装置において、前記投影データから前記被検体の撮影部位における解析用の断層像を再構成し、その再構成された断層像を再投影して制御プロファイルを生成する投影データ解析手段と、前記生成された制御プロファイルに基づいて前記X線管に供給する電流値を制御する管電流制御手段と、を備える。  

Description

明 細 書
X線 CT装置
技術分野
[0001] 本発明は、被検体の撮影領域への X線照射強度を決める X線源 (以下 X線管と称 す)へ供給する X線源電流(以下 X線管電流と称す)を被検体の体軸方向の位置に 応じて制御する X線 CT装置の改良に関する。
本出願は、 日本国特許法に基づく 2005年特許出願第 051497号に基づくパリ優 先権主張を伴う出願であり、特願第 2005— 051497号の利益を享受するために参 照による援用を受ける出願である。
背景技術
[0002] X線 CT装置によって得られる画像は、空間分解能や画像に含有されるノイズなど のファクタによってその画質が決定される。これらのファクタのうちの画像ノイズは主と して透過 X線の強度に依存する。透過 X線の強度は照射 X線の強度と被検体の撮影 部位断面の X線透過長によって求まる。照射 X線の強度は X線管に供給する電流に よって決まる。被検体の撮影部位断面の吸収は、人体の形状を楕円とすれば、その 正面背面方向(以下、「前後方向」ともいう)その両側面方向(以下「左右方向」ともい う)の透過長の違いによって決まる。透過 X線強度の低減は透過 X線強度信号に対 するノイズの割合を高めることになる。
上記透過 X線強度の低減の改善技術は、例えば、特許文献 1に開示されている。こ の文献は次の手順で透過 X線強度の低減を改善している。まず、診断に供する断層 像の計測(「本スキャン」ともレ、う)に先立って撮影したスキヤノグラム画像データを解 祈し、その解析されたスキヤノグラム画像データにより被検体の 3次元的透過長モデ ルを生成する。次に、前記被検体の撮影部位に応じた X線管電流の変化パターンが 、前記生成された 3次元的透過長モデルと本スキャンのスキャン条件に基づレ、て設 定される。
特許文献 1 :特開 2002— 263097号公報
発明の開示 発明が解決しょうとする課題
[0003] しかし、従来技術では、生成されたスキヤノグラムに基づいて X線管電流制御値が 設定されているに止まっており、スキヤノグラムでは被検体の X線減弱が大きい骨や 軟部組織などの組織ごとに X線吸収量が異なることが配慮されていない。例えば、骨 が多い肩などの部位では、透過 X線強度が不足することになる。このように透過 X線 強度が不足する場合には、透過 X線強度信号に対するノイズ量が増加する。すなわ ち、被検体の骨が多く含まれる部位では、上記従来技術を採用しても、透過 X線強 度の不足によるノイズ量増加により断層像の画質が低下する問題が依然として残さ れている。
本発明の目的は、被検体の透過 X線強度の変動が大きい部位であっても高画質な 断層像を得ることが可能な X線 CT装置を提供することである。
課題を解決するための手段
[0004] 本発明の X線 CT装置は、被検体に X線を照射する X線源と、前記 X線源と前記被 検体を挟んで対向して配置され、前記被検体の透過 X線を投影データとして検出す る X線検出器と、前記 X線源および前記 X線検出器を回転する回転手段と、前記回 転手段によって前記 X線管および前記 X線検出器が回転され複数の角度方向につ いて投影データを収集し、これらの収集された投影データを再構成演算し、前記被 検体の断層像を生成すると共に、前記 X線源、前記回転手段を制御する制御手段と 、前記生成された断層像を表示する表示手段と、を備えた X線 CT装置において、前 記投影データから前記被検体の撮影部位における解析用の断層像を再構成し、そ の再構成された断層像を再投影して制御プロファイルを生成する投影データ解析手 段と、前記生成された制御プロファイルに基づレ、て前記 X線管に供給する電流値を 制御する管電流制御手段と、を備えたことを特徴とする。
発明の効果
[0005] 本発明によれば、被検体の透過 X線強度の変動が大きい部位であっても高画質な 断層像を得ることができる。
図面の簡単な説明 [0006] [図 1]本発明が適用された X線 CT装置の概略構成図。
[図 2]本発明の管電流制御部で適用される投影データ解析装置の第一の実施例を 説明するためのブロック図。
[図 3]本発明で適用される管電流の制御処理の流れを説明するフローチャート。
[図 4] (A)は図 2に示した本発明の投影データ解析装置によって比較的骨の少ない 被検体の撮影部位の投影データに基づいて再構成された解析用再構成断層像、(
B)は解析用再構成断層像の閾値処理後の像およびその像を X方向に再投影して得 られた X方向骨減弱プロファイル Bを説明する図。
[図 5] (A)は図 2に示した本発明の投影データ解析装置によって骨の多い被検体の 撮影部位の投影データに基づいて再構成された解析用再構成断層像、 (B)は解析 用再構成断層像の閾値処理後の像およびその像を X方向に再投影して得られた X 方向骨減弱プロファイル Bを説明する図。
[図 6]本発明 X線 CT装置による本スキャン開始と共に図 2に示した本発明の第一の 実施例による投影データ解析装置によって実行される各処理を説明するタイミングチ ヤート。
[図 7]投影データ解析装置によって得られた被検体の解析用再構成画像から軟部組 織、骨および肺野の 3つのそれぞれの組織について被検体の体軸方向に沿って取 られた X方向、 Y方向の再投影結果を被検体の対応部位のスキヤノグラムと共に示し た模式図。
発明を実施するための最良の形態
[0007] 以下、添付図面に従って、本発明に係る X線 CT装置の実施の形態について説明 する。本実施の形態に係る X線 CT装置 1は、 X線管位置( Θ、 Z)に応じて X線管電 流を制御しながら被検体の投影データを計測する。なお、発明の実施の形態を説明 するための全図において、同一機能を有するものは同一符号を付け、その繰り返し の説明は省略する。
[0008] 図 1は本実施例の X線 CT装置 1の構成を示している。 X線 CT装置 1は、スキャナ 1 0と、スキャナ 10と接続されるホストコンピュータ 20と、ホストコンピュータ 20と接続され る操作部 24及び表示装置 30から成る。 [0009] まず、スキャナ 10の構成要素を説明する。
X線管 11は被検体に X線を照射する。 X線検出器 12は X線管 11と対向配置され前 記被検体を透過した X線を検出する。データ計測装置(DAS (Data Acquisition Syst em) 13は、 X線検出器 12によって検出された透過 X線に所定のデータ処理を行って 投影データを算出する。 X線高電圧装置 14は X線管 11に供給する電源であり、後述 する操作部 24によって電圧、電流、電力供給時間 (X線照射時間に相当)が設定で きるようになつている。その電源から印加される電圧は管電圧、電流は管電流と称し ている。データ送信装置 15は回転系一静止系間のデータ転送を行うもので、スリップ リングとブラシ、あるいは回転トランスなどがある。スキャナ制御装置 16は、 X線管 11 と X線検出器 12が取り付けられた回転板 (スキャナ)の回転量を制御する。投影デー タ解析装置 17はデータ計測装置 13によって算出された投影データから被検体の断 層像を再構成する。管電流制御部 18は、 X線管 11の管電流を制御する。これらの各 構成要素は被検体の周囲を回転可能な回転体 19上に搭載されている。
[0010] 次に、ホストコンピュータ 20は X線 CT装置 1を統括制御するもので。次の構成要素 を有している。制御装置 21は X線 CT装置 1の統括制御を行うための CPUやメモリか らなる。データ受信装置 22はスキャナ 10のデータ送信装置 15から計測データを受 信する。画像処理装置 23はデータ受信装置 22によって受信された計測データに基 づいて画像再構成演算を行い、断層像を生成する。操作部 24は、管電流制御モー ドの ON/OFFの入力指示などを与えるためのトラックボール、マウス、キーボードなど である。
[0011] また、表示装置 30は、生成された断層像を表示する機能を備える。 X線 CT装置 1 は、図示を省略するが、撮影時に被検体を載置するための患者テーブルを備える。 本実施形態に係る X線 CT装置 1は、操作部 24の入力指示により管電流制御モー ドの ON/OFFが可能である。管電流制御モード OFF時は照射 X線強度が一定に保 たれて本スキャンが進行する。 X線検出器 12で計測された透過 X線強度のデータは 、 DAS 13でデジタルデータに変換されたのち回転系のデータ送信装置 15から静止 系に伝送される。静止系ではデータ受信装置 22の受信部で投影データを取り込み、 画像処理装置 23に送られて断層像として再構成された後、表示装置 30に表示され て読影に供される。
[0012] 図 2に基づいて第一実施形態に係る投影データ解析装置 17の構成について説明 する。
投影データ解析装置 17は、 X線管 11に流す管電流の制御値を決定する。投影デ ータ解析装置 17は、解析用画像再構成部 17a、再構成画像解析部 17b、管電流制 御値算出部 17cを有してレ、る。解析用画像再構成部 17aは投影データが入力される と、投影データの再構成処理を開始し、あらかじめ定められたビュー間隔毎に断層像 を計算する。再構成画像解析部 17bは、再構成画像を解析し、断面の、例えば、骨 および軟部組織の最大再投影値、これらを総合した最大再投影値および画像の縦 横の幅を含む換算透過長を算出する。管電流制御値算出部 17cは得られた換算透 過長に応じた最適管電流制御値を算出し、 X線高電圧装置 14に新たな管電流値を 含む撮影条件を入力する。
[0013] さらに、投影データ解析装置 17に部位重み決定手段 17dを設けてもよい。
具体的には図 2の点線部分に示すように、部位重み決定部 17dをカ卩える。臓器部 位情報は、再投影値の絶対量、比率、あるいは変化を評価することにより得られる。 部位重み決定部 17dは、得られた臓器部位情報を用いて臓器部位ごとに電流制御 値算出部 17cで得た電流制御値を変更して、新たな電流制御値を X線高圧装置 14 へ出力する。例えば、臓器部位ごとの重み係数をあらかじめ用意しておき、電流制御 値に重みを乗じたものを新たな電流制御値とする。重みは、例えば、女性が被検体 の場合には骨盤腔(下腹部)に対しては小さい値が設定されており、透過長から得ら れた照射量よりも低い照射量に制御される。
[0014] X線 CT装置 1の管電流制御部 18は、次の手順で管電流が制御される。まず、計測 された投影データ (計測データ)を本スキャン中に随時に解析用断層像を再構成す る。随時に再構成された解析用断層像は解析され、その解析によって新たな管電流 値を決定する。前記新たに決定された管電流値は X線管 11に直接フィードバックさ れる。これらの処理による一連の流れは、スキヤノグラムを撮影し、撮影範囲 ·Χ線条 件の初期値を決定した後、本スキャンに移行してビュー毎の投影データの計測(ビュ 一データ計測)を開始する。管電流値を含む X線条件は本スキャン中に随時更新さ れる。
[0015] 以下、図 3に基づいて管電流制御処理の流れを詳細に説明する。
はじめに、ステップ S1では、 X線 CT装置 1によりスキヤノグラム撮影が行われる。ス テツプ S2では、ステップ S1によって撮影されたスキヤノグラム画像に基づいて撮影範 囲が設定される。ステップ S3では、管電流値を含む X線撮影の条件設定が行われる 。ここで設定される管電流値が撮影条件の初期値となる。ステップ S4では、ステップ S2および S3で設定された撮影範囲および撮影条件に従いビューデータ計測が行 われる。
[0016] ステップ S5では、投影データ解析装置 17の入力段に備えられたデータ圧縮装置 により投影データの圧縮処理が行われる。
[0017] ステップ S6では、投影データ解析装置 17の解析用画像再構成手段 17aにステツ プ S5で圧縮された投影データが入力される。解析用画像再構成手段 17aは、解析 用画像の再構成処理を行う。ステップ S 7では、ステップ S6で作成された解析用画像 に基づいて再構成画像解析手段 17bが再構成画像を解析し、解析用画像における 所定の基準物質 (例えば、水)による換算透過長を算出する。ステップ S8では、管電 流制御値算出手段 17cが得られた換算透過長に基づいて透過長一制御値変換テ 一ブル等を使って最適管電流値を算出する。ステップ S9では管電流制御値算出手 段 17cで算出した最適管電流値に基づいて X線高電圧装置 14の管電流値を修正す るか否かを初期条件の偏差に基づき判断する。管電流値を修正しない場合には、 S 4に戻り、現在の管電流値に基づいてビューデータ計測を続行する。管電流値を修 正する場合には S10へ進み、管電流を含む X線条件を再設定し、その再設定された 新たな管電流値を X線高電圧装置 14に入力する。そして、ステップ S4へもどり、新た な電流制御値による X線条件によってビューデータ計測を行う。
[0018] ステップ S11では、ステップ S4で計測した投影データに基づいて、画像処理装置 2 3が画像再構成処理を行う。ステップ S11とステップ S5〜S10とは、並列処理が可能 である。この並列処理によって一連の計測及びデータ処理の高速化が図れる。ステ ップ S4で得られた投影データは、回転系のデータ伝送装置 15によりホストコンピュー タ 20に出力される。ステップ S11では、ホストコンピュータ 20のデータ伝送装置 22が 投影データを受信し、画像処理装置 23に出力する。画像処理装置 23は、投影デー タに基づいて画像再構成処理を行レ、、断層像を表示装置 30に出力する。ステップ S 12では、計測が終了したか否力を判断し、「Yes」であれば計測を終了する。 「No」で あればステップ S4へ戻る。
[0019] 次に再構成画像解析手段 17bについて更に詳細に説明する。再構成画像解析手 段 17bは主に解析用再構成画像について再投影処理を実施するもので、再投影方 向の換算透過長情報を算出することができる。また、本実施の形態に係る再構成画 像解析手段 17bは、再投影時に閾値処理を施すことができる。例えば、図 4、 5に示 したような骨の再投影データ Bが算出可能である。
[0020] 図 4 (A)では、骨咅 B分(B) 41、 42、 43、 44、 46、 49と軟咅糸且織 (T) 45、 46、 47を 有する断層像 40の例が示されている。図 4 (A)では、断層像 40に対し所定の Ci s での閾値処理を施して、骨、軟部組織などの各種領域を抽出する。そして、領域抽 出された断層像 40の X方向からの X線透過のプロファイルが 4Aのように算出される。 その算出されたプロファイルの中から最大再投影値 Bmaxが求められる。これを X方 向以外の最大再投影値 Bmaxを被検体の周りについて全周分加算することで X管電 流に反映される制御プロファイルが得られる。
[0021] 図 5では、図 4と別の部位での換算透過長を得る例である。図 4と同様に、骨部分( B) 51、 52、 53、 54、 56、 59と軟咅組織 (T) 55、 56、 57を有する断層像 50の ί列力 示されている。この例では X線透過のプロファイルが 5Αのように算出される。図 4の 4 Αと図 5の 5Αを比較してみれば判るように、被検体の計測部位によって最大再投影 値 Bmaxが大きく変動する。
[0022] 管電流制御値算出手段 17cは、得られた制御プロファイルを換算透過長に変換し 、その変換された換算透過長から最適な管電流の制御値を算出する。管電流制御 値算出に当たっては、被検体を均一な物質 (例えば水)で楕円近似し、楕円近似さ れた形状の物質 (例えば水)等価な透過長を基準に換算する。例えば、∑F (j)は、 全 CT値の再投影方向(例えば X方向)の積分値であるから、次式(1)で水等価透過 長 Dw〔mm〕が求められる。ここで言う CT値は空気を 0、水を 1000とした。
Dw=∑F (j) *p/N*1000 (1) [0023] ここで、 Pは画素サイズ〔mm〕、 Nは被検体をカバーする再投影ビーム数(再投影 方向から見た被検体の幅に相当)である。管電流の電流制御値 Qは Dwの関数 (ある いはテーブルの形で)としてあらかじめ与えられており、電流制御値は(2)式により求 める。解析対象が投影データでなく再構成画像を用いているため、被検体断面の評 価精度が向上する。
Q = f (Dw) (2)
[0024] 閾値付きの再投影処理をした場合、さらに軟部組織と骨の透過長を(3), (4)式で 算出することが可能である。ここで、 Nt、 Nbは軟部組織、骨を含む再投影ビーム数 である。骨の CT値を 2000、軟部組織を 1040とすれば、
Db =∑B (j) *p/Nb*2000 (3)
Dt=∑T (j) *p/Nt*1040 (4)
電流制御値は、軟部組織と骨の透過長とにそれぞれ重み付けして水の透過長を( 5)式で求め、(2)式で電流制御値を求める。
[0025] 重み係数 Wt、 Wbは共に 1.0としても良レ、が、管電圧が低い場合はより骨の影響が 大きくなるので、骨の重み Wbを大きくすることで管電流を高めに設定するような調整 が可能である。
また、小児などでは骨の影響も小さぐ出来るだけ管電流を低めに設定し X線被曝 を抑制することが望ましい。この場合は骨の重み Wbを小さくする調整が可能である。 また、後述する撮影臓器の部位毎の重みとして Wt、 Wbを用いても良い。
Dw=Wt*Dt+Wb*Db (5)
[0026] また、重み係数を用いない方法では軟部組織の透過長および骨の透過長と最適 管電流値の関係をあらかじめ求めておくことも可能である。その場合、最適管電流の 電流制御値 Qは(6)式となる。
Q = f (Dt, Db) (6)
[0027] この場合、臨床データを同様に解析して、 2次元のテーブルを統計的に求めてもよ レ、。
いずれにしても、骨の透過長を考慮した被検体断面の算出が可能なため、被検体 断面の一層の計測精度の向上が図れる。 [0028] 再投影処理は:!枚の解析用再構成画像から複数方向で実施しても良ぐ X方向(3 時)、 Y方向(0時)の 2方向以上で実施すれば、位相の進んだ 6時、 9時方向の透過 長が推定可能である。管電波を正弦波状あるいは任意の関数として制御する場合で は、最大値と最小値などがあれば良いので、演算量を減らすため X方向、 Y方向を交 互に演算してもよい。
[0029] 次に X線 CT装置 1の動作について説明する。本実施形態に係る X線 CT装置 1の X 線検出器 12は、例えば、 1024チャンネルの検出素子を有すれば、 1回転あたり 102 4回ビューデータを取り込む。また、 DAS 13からの投影データは投影データ解析装 置 17の入力段に備えられたデータ圧縮装置によって、マルチスライス検出器の中央 2列分の平均値が投影データ解析装置 17に入力されるように構成する。さらに、ビュ 一方向、チャンネル方向ともに、 8サンプルデータを加算し、 128チャンネルのビュー データが、 1回転あたり 128回入力される。元データのサンプリング間隔が 0· 5mmと すれば、 4mm程度の分解能を持った解析用画像が再構成可能となる。解析用再構 成画像マトリクスは 128画素とすれば、分解能 4mmで最大 FOV (関心領域)は 512m mとなる。読影用の再構成画像に比べ、再構成マトリクス力 1/16、ビュー数が 1/8 なので、およその演算規模は 1/128程度となる。この場合、フィルタ補正処理は 25 6点のフーリエ変換を実施してあらかじめ保存されているボケ補正フィルタによって施 す。さらに逆投影処理はボケ補正フィルタの後に実施する。再構成に必要なビュー データの逆投影処理が終了すると解析用断層像が再構成される。ちなみに水データ と共に空気データやオフセットデータも保存しておく必要がある力 空気データゃォ フセットデータは 1ビュー分で良いため、各データの記憶に要するメモリ容量は少なく てよい。
[0030] マルチスライス CTの場合では、配列される列数が多くなると Feldkamp法等の 3次 元逆投影演算が必要であるが、本実施例においては従来の 2次元再構成で特定の 列のみをそのまま再構成しても十分実用性がある。
また、評価断面の換算透過長の推定精度の向上は、中央付近の列のみだけでなく 、端の列の画像もあわせて再構成し、体軸方向に複数点の換算透過長を取得すれ ばよい。 [0031] 本スキャンに先立ち、 X線条件の初期値 X〇、制御指示の時間間隔 Atが入力され る。 X〇はスキヤノグラムを解析した結果得られた最適値でも、操作者が経験的に決 めた直でもよい。
[0032] また、制御指示の時間間隔 Atは任意であるが、あまり頻繁に管電流値を更新して も X線被曝の適正化がなされなければ有意でなレ、ため、制御系の応答時間などを考 慮して決定し、当然ビュー数や角度間隔で定義されてもよい。たとえば、 1回転あたり 128ビューとすれば、 32ビュー毎に管電流値を出力すれば、 1回転あたり 4回更新可 能となる。
[0033] 図 6にスキャン中の各処理のタイミングチャートを示す。 toでスキャンが開始され X線 の曝射が始まると、それに同期してデータの収集動作が開始される。ここで、管電流 の初期値を XOとする。データ伝送装置 15には計測した全てのデータが送られ、静 止系に伝送される。ホストコンピュータ 20に取り込まれたデータは画像処理装置 23 で読影用の断層像として再構成される。
[0034] 一方、投影データ解析装置 17では管電流制御値を決定するため、解析用画像再 構成、再構成画像解析、最適管電流制御値算出処理を実施する。解析用画像再構 成、再構成画像解析、最適管電流制御値算出処理はそれぞれパイプライン的に処 理される。最適管電流制御値算出処理で得られた新たな管電流制御値が X線高電 圧装置 14に送られ、 t6で始めてフィードバックが有効になる。なお、フィードバックが 有効になった時点を実質的な撮影開始点としてもよい。
[0035] ここで得られた管電流値は、時間 tl _t2付近で得られた投影データから再構成さ れた解析用画像を基に設定されたものであり、対応する位相(角度)情報を有してい る。ここで、 X線高電圧装置 14は対応する位相 t6で実際の制御値を変更する。 従来技術のような投影データを直接処理して管電流制御値を決める場合は、ブリア ンプゲイン、ログ変換ゲイン、焦点一検出器間距離などが変化すると管電流値のパラ メータの見直しが必要である力 CT値という絶対値に基づいて設定されるため、安 定した制御が可能である。
[0036] 図 7は、軟部組織、骨、肺野の 3つの組織範囲ごとに X、 Y方向の再投影結果を示 したものである。横軸は体軸方向で、背景のスキヤノグラム像の位置に対応している。 ここで、軟部組織の再投影結果に着目すると、 X、 Y両方向とも肺野存在位置のみが 高い再投影値を示している。
[0037] 一方、骨の再投影値は肩の付近から増加している。このように撮影部位の特徴がそ れぞれ表れていることが判る。そこで、本実施形態では各再投影値を用いて部位判 定することを可能とした。
[0038] 本実施形態では自動的に部位ごとに被曝線量を制御可能としたが、当然、スキヤノ グラムなどで特に被曝線量を低くしたレ、部位を操作者が設定しその情報を用いて制 御しても良いが、管電流値が断層像の計測部位に合わせて追従設定されるほうが使 い勝手の点では望ましい。
[0039] また、本実施形態では、透過長を水の X線吸収係数に換算するように説明したが、 水に限らす X線吸収係数の指標になる物質は骨、軟部組織などから任意に選択して もよい。なぜならば、被検体が所定の物質の透過長として換算できればよいからであ る。

Claims

請求の範囲
[1] 被検体に X線を照射する X線源(11)と、
前記 X線源(11)と前記被検体を挟んで対向して配置され、前記被検体の透過 X線を 投影データとして検出する X線検出器 (12)と、前記 X線源(11)および前記 X線検出器 (12)を回転する回転手段(19)と、
前記回転手段(19)によって前記 X線管 (11)および前記 X線検出器(12)が回転され 複数の角度方向について投影データを収集し、これらの収集された投影データを再 構成演算し、前記被検体の断層像を生成すると共に、前記 X線源 (11)、前記回転手 段 (19)を制御する制御手段 (20)と、
前記生成された断層像を表示する表示手段 (30)と、
を備えた X線 CT装置にぉレ、て、
前記投影データから前記被検体の撮影部位における解析用の断層像を再構成し 、その再構成された断層像を再投影して制御プロファイルを生成する投影データ解 析手段(17)と、
前記生成された制御プロファイルに基づレ、て前記 X線管に供給する電流値を制御 する管電流制御手段(18)と、を備えた、
ことを特徴とする X線 CT装置。
[2] 前記投影データ解析手段(17)は、所定の方向から X線が照射されたとき、その透過 方向に存在する X線吸収量の異なる部位によって構成される X線吸収量のプロフアイ ルを再投影して前記制御プロファイルを生成すること特徴とする請求項 1に記載の X 線 CT装置。
[3] 前記投影データ解析手段(17)は、前記再投影された X線吸収量のプロファイルを前 記被検体の全周分求め、その全周分 X線吸収量のプロファイルを加算して前記制御 プロファイルを生成すること特徴とする請求項 1に記載の X線 CT装置。
[4] 前記投影データ解析手段(17)は、
前記投影データの一部から解析用の断層像を再構成する解析用画像再構成手段( 17a)と、
前記再構成された解析用の断層像について所定の X線吸収を有する基準物質の X 線透過長を換算透過長として算出する再構成画像解析手段(17b)と、 前記算出された換算透過長に基づいて前記 X線管(11)に供給するための電流量を 算出する管電流制御値算出手段(17c)と、
を備えたことを特徴とする請求項 1乃至 3の何れかに記載の X線 CT装置。
[5] 前記投影データ解析手段(17)は、前記管電流制御値算出手段(17c)によって算出 された電流制御値を臓器部位ごとに臓器部位情報を用いて変更する部位重み決定 手段(17d)をさらに備えたことを特徴とする請求項 4に記載の X線 CT装置。
[6] 前記投影データ解析手段(17)は、前記被検体のスキヤノグラム撮影を行い、前記撮 影されたスキヤノグラム画像に基づいて撮影範囲、管電流値を含む X線撮影の初期 条件を設定し、それらの設定された撮影範囲および撮影条件に従い投影データの 計測を行い、計測された投影データを用いて解析用画像の再構成処理を行い、前 記再構成処理された解析用画像における所定の方向からの制御プロファイルを生成 し、前記生成された制御プロファイルに基づいて換算透過長を求め、その求められた 換算透過長より管電流値を算出することを特徴とする請求項 4に記載の X線 CT装置
[7] 前記投影データ解析手段(17)は、前記基準物質を用い、換算透過長から管電流値 を算出することを特徴とする請求項 6に記載の X線 CT装置。
[8] 前記投影データ解析手段(17)は、骨透過長と軟部組織透過長とに所定の重み付け を行い、前記換算透過長を算出することを特徴とする請求項 6に記載の X線 CT装置
[9] 前記所定の重み付けは、前記解析用断層像に基づいて前記被検体の臓器部位を 特定し、前記特定された臓器部位に応じて行われることを特徴とする請求項 8に記載 の X線 CT装置。
[10] 前記解析される換算透過長は、水等価透過長、骨透過長および軟部組織透過長を 含む透過長により換算することを特徴とする請求項 6乃至 9の何れか一項に記載の X 線 CT装置。
PCT/JP2006/303624 2005-02-25 2006-02-27 X線ct装置 WO2006090877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007504834A JP5001142B2 (ja) 2005-02-25 2006-02-27 X線ct装置
CN2006800062088A CN101128153B (zh) 2005-02-25 2006-02-27 X射线ct设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005051497 2005-02-25
JP2005-051497 2005-02-25

Publications (1)

Publication Number Publication Date
WO2006090877A1 true WO2006090877A1 (ja) 2006-08-31

Family

ID=36927507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303624 WO2006090877A1 (ja) 2005-02-25 2006-02-27 X線ct装置

Country Status (4)

Country Link
US (1) US7636416B2 (ja)
JP (1) JP5001142B2 (ja)
CN (1) CN101128153B (ja)
WO (1) WO2006090877A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972276A1 (en) * 2007-03-20 2008-09-24 Cefla Societa' Cooperativa Method for activation of an emitter of a computed tomography scanner
JP2009172380A (ja) * 2008-01-25 2009-08-06 General Electric Co <Ge> 画像再構成の方法及びシステム
JP2010075443A (ja) * 2008-09-26 2010-04-08 Ge Medical Systems Global Technology Co Llc 断層像処理装置、x線ct装置およびプログラム
JP2010269048A (ja) * 2009-05-25 2010-12-02 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2012020009A (ja) * 2010-07-15 2012-02-02 Mitsubishi Heavy Ind Ltd 放射線治療装置制御方法および放射線治療装置制御装置
JP2012075773A (ja) * 2010-10-05 2012-04-19 Hitachi Medical Corp X線ct装置
JP2012533337A (ja) * 2009-07-17 2012-12-27 ピー.ローラー デイヴィッド 放射線画像システム用拡張型低コントラスト検出能
JP2015019788A (ja) * 2013-07-18 2015-02-02 日立アロカメディカル株式会社 X線測定装置
JP2018000380A (ja) * 2016-06-29 2018-01-11 東芝メディカルシステムズ株式会社 X線診断装置
WO2018032095A1 (en) * 2016-08-18 2018-02-22 Hydro-Quebec Apparatus and method for inspecting a power line

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7620309B2 (en) * 2006-04-04 2009-11-17 Adobe Systems, Incorporated Plenoptic camera
US8290358B1 (en) 2007-06-25 2012-10-16 Adobe Systems Incorporated Methods and apparatus for light-field imaging
WO2009020977A1 (en) * 2007-08-06 2009-02-12 Adobe Systems Incorporated Method and apparatus for radiance capture by multiplexing in the frequency domain
US8189065B2 (en) 2008-01-23 2012-05-29 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
US7962033B2 (en) 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
DE102008014738A1 (de) * 2008-03-18 2009-09-24 Siemens Aktiengesellschaft Verfahren zur medizinischen Bildgebung sowie medizinische Bildgebungsvorrichtung
US8155456B2 (en) * 2008-04-29 2012-04-10 Adobe Systems Incorporated Method and apparatus for block-based compression of light-field images
US8244058B1 (en) * 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
WO2010015952A2 (en) * 2008-08-04 2010-02-11 Koninklijke Philips Electronics N.V. Interventional imaging and data processing
US8315476B1 (en) 2009-01-20 2012-11-20 Adobe Systems Incorporated Super-resolution with the focused plenoptic camera
US8189089B1 (en) 2009-01-20 2012-05-29 Adobe Systems Incorporated Methods and apparatus for reducing plenoptic camera artifacts
US8345144B1 (en) 2009-07-15 2013-01-01 Adobe Systems Incorporated Methods and apparatus for rich image capture with focused plenoptic cameras
US8228417B1 (en) 2009-07-15 2012-07-24 Adobe Systems Incorporated Focused plenoptic camera employing different apertures or filtering at different microlenses
US8400555B1 (en) 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths
US9168016B2 (en) * 2010-01-29 2015-10-27 Fujifilm Corporation Radiographic image capturing apparatus, radiographic image capturing system, and method of supplying electric power to radiographic image capturing apparatus
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
US8358366B1 (en) 2010-05-28 2013-01-22 Adobe Systems Incorporate Methods and apparatus for high-speed digital imaging
US8665341B2 (en) 2010-08-27 2014-03-04 Adobe Systems Incorporated Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data
US8803918B2 (en) 2010-08-27 2014-08-12 Adobe Systems Incorporated Methods and apparatus for calibrating focused plenoptic camera data
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
US8724000B2 (en) 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
CN102440792B (zh) * 2010-10-11 2015-12-02 株式会社东芝 X射线ct系统
US9030550B2 (en) 2011-03-25 2015-05-12 Adobe Systems Incorporated Thin plenoptic cameras using solid immersion lenses
JP6257948B2 (ja) * 2012-08-07 2018-01-10 東芝メディカルシステムズ株式会社 X線撮影システム
CN103040481B (zh) * 2012-12-25 2015-08-26 深圳先进技术研究院 一种降低x射线诊断设备x射线剂量的系统及方法
CN104812305B (zh) * 2012-12-27 2018-03-30 东芝医疗系统株式会社 X射线ct装置以及控制方法
DE102013219249A1 (de) * 2013-09-25 2015-03-26 Siemens Aktiengesellschaft Verfahren und System zur automatischen Auswahl eines Scanprotokolls
US9857163B2 (en) 2013-10-31 2018-01-02 Hexagon Metrology, Inc. Parametric control of object scanning
US9406107B2 (en) * 2013-12-18 2016-08-02 General Electric Company System and method of computed tomography signal restoration via noise reduction
US10238357B2 (en) 2014-03-31 2019-03-26 Hitachi, Ltd. X-ray CT apparatus and scanning method
GB2544946B (en) 2014-08-31 2021-03-10 Berestka John Systems and methods for analyzing the eye
CN104287768A (zh) * 2014-09-30 2015-01-21 沈阳东软医疗系统有限公司 一种ct扫描剂量控制方法及系统
CN105391368B (zh) * 2015-10-13 2018-03-20 沈阳东软医疗系统有限公司 一种测量直线加速器治疗头光阑位置的系统
US10085698B2 (en) * 2016-01-26 2018-10-02 Genereal Electric Company Methods and systems for automated tube current modulation
CN106725570B (zh) * 2016-12-30 2019-12-20 上海联影医疗科技有限公司 成像方法及系统
EP3675739A4 (en) 2017-08-28 2020-08-19 Shanghai United Imaging Healthcare Co., Ltd. SYSTEM AND METHOD FOR REMOVING HARD TISSUE IN A COMPUTER IMAGE
US10973489B2 (en) * 2017-09-29 2021-04-13 General Electric Company CT imaging system and method using a task-based image quality metric to achieve a desired image quality
DE102020204515B3 (de) 2020-04-07 2021-05-27 Siemens Healthcare Gmbh Automatisiertes Ermitteln eines Röntgenröhrenstromprofils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166995A (ja) * 1994-12-13 1996-06-25 Toshiba Corp 医用診断支援システム
JP2001276040A (ja) * 2000-04-03 2001-10-09 Hitachi Medical Corp X線ct装置
JP2002263097A (ja) * 2001-03-09 2002-09-17 Hitachi Medical Corp X線ct装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400378A (en) * 1993-11-19 1995-03-21 General Electric Company Dynamic dose control in multi-slice CT scan
US5379333A (en) * 1993-11-19 1995-01-03 General Electric Company Variable dose application by modulation of x-ray tube current during CT scanning
US5867555A (en) * 1997-03-04 1999-02-02 Siemens Aktiengesellschaft Adaptive dose modulation during CT scanning
US5822393A (en) * 1997-04-01 1998-10-13 Siemens Aktiengesellschaft Method for adaptively modulating the power level of an x-ray tube of a computer tomography (CT) system
US6385280B1 (en) * 1998-08-18 2002-05-07 Siemens Aktiengesellschaft X-ray computed tomography apparatus with modulation of the x-ray power of the x-ray source
JP4387638B2 (ja) * 2001-07-04 2009-12-16 株式会社東芝 X線コンピュータ断層診断装置
JP3961249B2 (ja) * 2001-08-28 2007-08-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ctシステム、ガントリ装置、操作コンソール及びその制御方法並びにプログラムコード、記憶媒体
JP4309631B2 (ja) * 2001-10-22 2009-08-05 株式会社東芝 X線コンピュータトモグラフィ装置
JP3864106B2 (ja) * 2002-03-27 2006-12-27 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 透過x線データ獲得装置およびx線断層像撮影装置
US6775352B2 (en) * 2002-08-16 2004-08-10 Ge Medical Systems Global Technology Company, Llc Method and system for implementing variable x-ray intensity modulation schemes for imaging systems
JP3864139B2 (ja) * 2002-12-20 2006-12-27 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置および被曝線量算出方法
JP4490645B2 (ja) * 2003-04-09 2010-06-30 株式会社東芝 X線コンピュータ断層撮影装置
JP4439202B2 (ja) * 2003-05-09 2010-03-24 株式会社東芝 X線コンピュータ断層撮影装置及び画像ノイズシミュレーション装置
JP2005185718A (ja) * 2003-12-26 2005-07-14 Ge Medical Systems Global Technology Co Llc 放射線断層撮像装置および撮像方法
US6990172B2 (en) * 2004-02-19 2006-01-24 General Electric Company Method and apparatus to determine tube current modulation profile for radiographic imaging
JP4679068B2 (ja) * 2004-04-26 2011-04-27 株式会社東芝 X線コンピュータ断層撮影装置
CN100393281C (zh) * 2004-07-23 2008-06-11 株式会社东芝 X射线计算机断层摄像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166995A (ja) * 1994-12-13 1996-06-25 Toshiba Corp 医用診断支援システム
JP2001276040A (ja) * 2000-04-03 2001-10-09 Hitachi Medical Corp X線ct装置
JP2002263097A (ja) * 2001-03-09 2002-09-17 Hitachi Medical Corp X線ct装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972276A1 (en) * 2007-03-20 2008-09-24 Cefla Societa' Cooperativa Method for activation of an emitter of a computed tomography scanner
US7856084B2 (en) 2007-03-20 2010-12-21 Cefla Societa' Cooperativa Method for activation of an emitter of a computed tomography scanner
JP2009172380A (ja) * 2008-01-25 2009-08-06 General Electric Co <Ge> 画像再構成の方法及びシステム
JP2010075443A (ja) * 2008-09-26 2010-04-08 Ge Medical Systems Global Technology Co Llc 断層像処理装置、x線ct装置およびプログラム
JP2010269048A (ja) * 2009-05-25 2010-12-02 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2012533337A (ja) * 2009-07-17 2012-12-27 ピー.ローラー デイヴィッド 放射線画像システム用拡張型低コントラスト検出能
JP2012020009A (ja) * 2010-07-15 2012-02-02 Mitsubishi Heavy Ind Ltd 放射線治療装置制御方法および放射線治療装置制御装置
JP2012075773A (ja) * 2010-10-05 2012-04-19 Hitachi Medical Corp X線ct装置
JP2015019788A (ja) * 2013-07-18 2015-02-02 日立アロカメディカル株式会社 X線測定装置
JP2018000380A (ja) * 2016-06-29 2018-01-11 東芝メディカルシステムズ株式会社 X線診断装置
WO2018032095A1 (en) * 2016-08-18 2018-02-22 Hydro-Quebec Apparatus and method for inspecting a power line
US10976266B2 (en) 2016-08-18 2021-04-13 Hydro-Quebec Apparatus and method for inspecting a power line

Also Published As

Publication number Publication date
US20080107231A1 (en) 2008-05-08
JPWO2006090877A1 (ja) 2008-07-24
JP5001142B2 (ja) 2012-08-15
CN101128153A (zh) 2008-02-20
US7636416B2 (en) 2009-12-22
CN101128153B (zh) 2010-09-29

Similar Documents

Publication Publication Date Title
JP5001142B2 (ja) X線ct装置
EP0893784B1 (en) Radiation tomography method and apparatus
US9254107B2 (en) X-ray CT apparatus and tube current determination method
JP4436658B2 (ja) ボリューム灌流を計算するための方法及び装置
EP2243020B1 (en) System and method for quantitative imaging of chemical composition to decompose more than two materials
JP5317580B2 (ja) X線ct装置
US7885373B2 (en) System and method for quantitative imaging of chemical composition to decompose multiple materials
JP4152649B2 (ja) Ctスカウト画像処理のための方法及び装置
EP0544507A2 (en) Over-range image artifact reduction in tomographic imaging
JPH07246200A (ja) X線ctスキャナー
KR20040086826A (ko) X선 ct 시스템에 있어서의 보정계수 산출 방법 및빔경화 후처리 방법, x선 ct 시스템
JPH04332538A (ja) 物体の画像を作成する方法及び装置
WO2010038536A1 (ja) X線ct装置
JP2001224588A (ja) 被曝を低減したコンピュータ断層撮影イメージング方法及び装置
EP1885247A1 (en) Continuous computer tomography performing super-short-scans and stronger weighting of most recent data
JP2005143759A (ja) X線ct装置
WO2013047439A1 (ja) X線ct装置及び画像補正方法
US20060120586A1 (en) Method and system for extracting information about the cardiac cycle from CT projection data
JP3789728B2 (ja) プロジェクションデータ補正方法および装置並びに放射線断層撮像装置
US6647084B1 (en) Method and apparatus for filtering projection data of a helical scan
JP2002153454A (ja) X線ct装置
JP4649150B2 (ja) 放射線撮像装置及び撮像方法
JP3784916B2 (ja) X線ct装置
US20200167977A1 (en) Tomographic image processing apparatus and method, and computer program product
JP2000023969A (ja) 放射線断層撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11884099

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680006208.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC. COMMUNICATION SENT ON 22-02-20008.

122 Ep: pct application non-entry in european phase

Ref document number: 06714761

Country of ref document: EP

Kind code of ref document: A1