WO2006044856A2 - Use of a2a adenosine receptor agonists - Google Patents

Use of a2a adenosine receptor agonists Download PDF

Info

Publication number
WO2006044856A2
WO2006044856A2 PCT/US2005/037368 US2005037368W WO2006044856A2 WO 2006044856 A2 WO2006044856 A2 WO 2006044856A2 US 2005037368 W US2005037368 W US 2005037368W WO 2006044856 A2 WO2006044856 A2 WO 2006044856A2
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
regadenoson
human
single dose
administered
Prior art date
Application number
PCT/US2005/037368
Other languages
French (fr)
Other versions
WO2006044856A3 (en
Inventor
Toufigh Gordi
Ann Walls Olmsted
Hsiao Dee Lieu
Luiz Belardinelli
Original Assignee
Cv Therapeuitics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cv Therapeuitics, Inc. filed Critical Cv Therapeuitics, Inc.
Priority to JP2007537961A priority Critical patent/JP2008517063A/en
Priority to MX2007004749A priority patent/MX2007004749A/en
Priority to CA002583185A priority patent/CA2583185A1/en
Priority to EP05815368A priority patent/EP1802317A2/en
Priority to AU2005295437A priority patent/AU2005295437B2/en
Publication of WO2006044856A2 publication Critical patent/WO2006044856A2/en
Publication of WO2006044856A3 publication Critical patent/WO2006044856A3/en
Priority to IL182645A priority patent/IL182645A0/en
Priority to NO20072540A priority patent/NO20072540L/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner

Definitions

  • This invention relates to myocardial imaging methods that are accomplished by administering doses of regadenoson - an adenosine A 2A receptor agonist - to a mammal undergoing myocardial imaging.
  • Myocardial perfusion imaging is a diagnostic technique useful for the detection and characterization of coronary artery disease.
  • Perfusion imaging uses materials such as radionuclides to identify areas of insufficient blood flow.
  • blood flow is measured at rest, and the result compared with the blood flow measured during exercise on a treadmill (cardiac stress testing), such exertion being necessary to stimulate blood flow.
  • cardiac stress testing such exertion being necessary to stimulate blood flow.
  • CBF cardiac blood flow
  • Vasodilators for example dipyridamole, have been used for this purpose in patients prior to imaging with radionuclide. Dipyridamole is a long-acting compound and frequently requires antidotes to reverse the prolonged side effects. It is an infusion rather than a bolus (like regadenoson). It is also non ⁇ selective for adenosine receptors and requires weight-based dosing. Adenosine, a naturally occurring nucleoside, also is useful as a vasodilator. Adenosine exerts its biological effects by interacting with a family of adenosine receptors characterized as subtypes A-i, A 2A , A 2B , and A 3 .
  • Adenoscan ® is a formulation of a naturally occurring adenosine.
  • Adenoscan ® has been marketed as an adjuvant in perfusion studies using radioactive thallium-201.
  • its use is limited due to side effects such as flushing, chest discomfort, the urge to breathe deeply, headache, throat, neck, and jaw pain.
  • These adverse effects of adenosine are due to the activation of other adenosine receptor subtypes other than A 2A , which mediates peripheral vasodilatory effects to bronchoconstriction of adenosine.
  • the short half-life of adenosine necessitates continuous infusion during the procedure, further complicating its use.
  • Adenoscan ® is contraindicated in many patients including those with second-or third-degree block, sinus node disease, bronchoconstrictive or bronchospastic lung disease, and in patients with known hypersensitivity to the drug.
  • Other potent and selective agonists for the A 2A adenosine receptor are known.
  • MRE-0470 Medco
  • WRC-0470 Medco
  • compounds such as these have a high affinity for the A 2A receptor, and consequently, a long duration of action, which is undesirable in imaging, and could possibly prolong the duration of side effects.
  • regadenoson is selective for the adenosine A 2A receptor, has a short duration of action and does not appear to require administration as a continuous infusion.
  • Regadenoson and related compounds as well as methods for their manufacture and use in cardiac perfusion imagining are disclosed in U.S. Patent Nos. 6,403,567, 6,642,210, 6,214,807, and 6,770,634, as well as in published U.S. patent application nos. 2002-0012946 and 2004-0022177 the entirety of each specification of which are incorporated herein by reference.
  • regadenoson is a known compound, much remains unknown about its pharmacokinetic profile and range of potential therapeutic uses.
  • One aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec.
  • Another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the pharmaceutical composition is administered by iv bolus.
  • Yet another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the pharmaceutical composition is administered in about 10 to about 20 seconds.
  • Still another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the amount of the pharmaceutical composition administered is sufficient to raise the average coronary peak flow velocity by an amount ranging from about 16.5 to about 77.0 cm/sec.
  • the single dose of pharmaceutical composition includes from about 10 to about 500 micrograms of regadenoson or alternatively includes an amount of regadenoson ranging from about 0.05 to about 60 ⁇ g/kg weight of the human.
  • this invention includes the step of performing myocardial perfusion imaging of the human following the administration of the single dose of the pharmaceutical composition to the human.
  • at least one radionuclide may be administered to the human at a time selected from the group consisting of before the human receives the dose of pharmaceutical composition, simultaneously with the administration of the dose of pharmaceutical composition or after administering the dose of pharmaceutical composition to the human.
  • This means the radionuclide and the single dose of the pharmaceutical composition may be administered separately to the human or simultaneously to the human.
  • myocardium examination begins no sooner than about 1 minute after the single dose of the pharmaceutical composition is administered to the human.
  • Potent A 2A agonists are useful as adjuncts in cardiac imaging when added either prior to dosing with an imaging agent or simultaneously with an imaging agent.
  • Suitable imaging agents include, but are not limited to 201 Thallium or 99m Technetium-Sestamibi, 99m Tc-teboroxime, and Technetium-99m(lll).
  • a 2A agonists that increase CBF but do not significantly increase peripheral blood flow have been identified.
  • One particularly useful A 2A agonists is regadenoson.
  • Regadenoson is also referred to in the literature as CVT- 3146 or (1- ⁇ 9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6- aminopurin-2-yl ⁇ pyrazol-4-yl)-N-methylcarboxamide and has the formula:
  • Regadenoson may be administered by pharmaceutical administration methods that are known in the art. It is preferred that regadenoson is dosed i.v. It is more preferred that regadenoson is administered in a single dose i.v.
  • the term "single dose” refers generally to a single quickly administered dose of a therapeutic amount of regadenoson. The term “single dose” does not encompass a dose or doses administered over an extended period of time by, for example continuous i.v. infusion.
  • Regadenoson will typically be incorporated into a pharmaceutical composition prior to use.
  • pharmaceutical composition refers to the combination of regadenoson with at least one liquid carrier that together form a solution or a suspension. Lyophilized powders including compositions of this invention fall within the scope of "pharmaceutical compositions” so long as the powders are intended to be reconstituted by the addition of a suitable liquid carrier prior to use.
  • suitable liquid carriers include, but are not limited to water, distilled water, de-ionized water, saline, buffer solutions, normal isotonic saline solution, dextrose in water, and combinations thereof.
  • Such pharmaceutical compositions are generally suitable for injection.
  • buffer solution refers to a solution containing both a weak acid and its conjugate weak base.
  • the buffer solutions are used in pharmaceutical compositions of this invention in order to resist pH changes.
  • Non-limiting examples of useful buffer solutions are solutions that comprise sodium bicarbonate and sodium phosphate.
  • compositions including the compounds of this invention, and/or derivatives thereof may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use. If used in liquid form the compounds of this invention are preferably incorporated into a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal isotonic saline solution, standard 5% dextrose in water and buffered sodium or ammonium acetate solution. Such liquid formulations are suitable for parenteral administration, but may also be used for oral administration.
  • excipients such as polyvinylpyrrolidinone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride, sodium citrate or any other excipient known to one of skill in the art to pharmaceutical compositions including compounds of this invention.
  • compositions including regadenoson may be prepared and then administered, with or without intervening storage.
  • Various properties considered when formulating pharmaceutical compositions of this invention include, but are not limited to product shelf life, regadenoson solubility, composition pH, vein irritation, hemolysis, storage conditions (e.g., whether the pharmaceutical composition will be stored at room temperature or some other temperature) and the ability to withstand sterilization procedures.
  • One method to achieve the desired pharmaceutical composition properties is to include a co-solvent in the pharmaceutical composition.
  • the co-solvent can be selected from any liquid or compound in solution that imparts the desired properties to the pharmaceutical composition. Examples of useful co-solvents include, but are not limited to methylboronic acid, borate buffer, propylene glycol, or polyethylene glycol.
  • the amount of co-solvent in the pharmaceutical composition will depend upon properties, such as solubility and stability of the chosen A 2A receptor agonist.
  • examples of pharmaceutical compositions containing co-solvents can be found in U.S. Patent Publication No. 2005/0020915, the specification of which is incorporated herein by reference in its entirety.
  • Regadenoson has solubility in water of about 50 micrograms/mL. Therefore, regadenoson can be dissolved and administered in water so long as the desired weight amount of regadenoson can be administered in an acceptable volume. For example, a preferred dose of about 400 micrograms can be administered in 8 ml_ of water.
  • compositions of this invention that include regadenoson may include up to about 1 milligram/mL of regadenoson. It is preferred that pharmaceutical compositions including regadenoson include from about 50 to about 250 micrograms/mL, and more preferably from about 50 to 150 micrograms/mL of regadenoson.
  • regadenoson can be administered in a pharmaceutical composition including a methylboronic acid (MBA) co-solvent.
  • MSA methylboronic acid
  • the methylboronic acid is added to the pharmaceutical composition to improve agonist solubility and shelf life.
  • MBA increases the pH of the resulting composition.
  • the solubility of regadenoson in a pharmaceutical composition including MBA tends to decrease as the composition pH drops towards neutral. Therefore, with regadenoson, an optimal MBA-containing composition pH is from about 8.5 to 10 with a pH of about 9.1 to about 9.4 being preferred and a pH of about 9.3 being most preferred. This corresponds to a composition including from about 50 to about 250 mg/mL of MBA.
  • regadenoson can be combined with a borate buffer solution.
  • a borate buffer solution will be comprised of an aqueous solution of sodium borate that is adjusted to the desired pH such as a pH of 9.3 using an acid or a base.
  • MBA containing pharmaceutical compositions can suffer from storage problems. Namely, MBA can cause delamination when packaged in certain type I glass vessels. This problem can be overcome by storing the MBA containing pharmaceutical compositions in plastic vessels or in more resistant type I glass vessels.
  • regadenoson containing pharmaceutical compositions having a pH closer to neutral are desired, then an alternative is to combine regadenoson with a propylene glycol (PG) co-solvent.
  • PG propylene glycol
  • the amount of PG used in the composition may range from about 5% to up to 25% by volume with a range of about 8% to about 20% by volume being more preferred when using regadenoson.
  • An alternative to PG is polyethylene glycol - PEG.
  • a preferred PEG will have an average molecular weight of from about 200 to 400.
  • the regadenoson composition including PG or PEG will have a pH of from about 6 to about 8 with a pH of about 7 being preferred.
  • Any physiologically acceptable buffer capable of adjusting the composition pH to the desired value can be used. Examples of such buffer include, but are not limited to, dibasic sodium phosphate, dibasic sodium phosphate dehydrate, and monobasic sodium phosphate monohydrate. Additional optional ingredients such as EDTA and dimethylacetamide could be employed in the composition as well.
  • the pharmaceutical compositions of this invention may include one or more anti-oxidants such as butylated hydroxyanisole (BHA).
  • BHA butylated hydroxyanisole
  • Regadenoson has a rapid onset of action and a short duration of action when administered. Regadenoson is very useful when administered in a very small quantity in a single bolus intravenous (i.v.) injection. Regadenoson can be administered in amounts as little as 10 ⁇ g and as high as 2000 ⁇ g or more. An optimal dose may include as little as 10 ⁇ g and as much as about 1000 ⁇ g or more of regadenoson. More preferably, an optimal dose will range from about 100 to about 500 ⁇ g of regadenoson.
  • regadenoson is administered in a single bolus injection in an amount selected from about 300 ⁇ g, about 400 ⁇ g, about 500 ⁇ g, about 600 ⁇ g, and about 700 ⁇ g. These amounts are unexpectedly small when compared with adenosine which is typically administered continuously by IV infusion at a rate of about 140 ⁇ g/kg/min. Unlike adenosine, the same dosage of regadenoson can be administered to a human patient regardless of the patient's weight. Thus, the administration of a single uniform amount of regadenoson by iv bolus for myocardial imaging is dramatically simpler and less error prone than the time and weight dependent administration of adenosine.
  • the dose of regadenoson administered to a human patient can, however, be determined by weight. Typically, a weight based dose will range from about 0.05 to about 60 ⁇ g/kg and more preferably from about 0.1 to about 30 ⁇ g/kg.
  • Regadenoson in particular is generally well tolerated when administered in an amount up to 10 ⁇ g/kg in standing patients and up to 20 ⁇ g/kg in supine patients.
  • regadenoson may be administered orally, intravenously, through the epidermis or by any other means known in the art for administering therapeutic agents with bolus i.v. administration being preferred.
  • the bolus dosing occurs in 60 seconds or less. In yet other embodiments, the bolus dosing occurs in about 30 seconds or less, and more preferably in about 20 seconds or less or in about 10 seconds or less.
  • the pharmacokinetics of regadenoson are disclosed in more detail in the following examples.
  • PK pharmacokinetics
  • PD pharmacodynamics
  • maximum tolerated dose of regadenoson in healthy human subjects.
  • the model estimated a baseline and a maximal increase in HR of 62 and 76 bpm.
  • concentration of regadenoson causing half-maximal increase in HR (potency) was estimated to be 12.4 ng/mL.
  • Covariates such as , body mass index, body weight, age, and height had no influence on the PK or PD parameters.
  • Adverse events were generally mild to moderate, of rapid onset, short duration, and none required medical intervention. They included abdominal discomfort, chest pressure/tightness, dizziness, dyspnea, flushing, headache, hyperventilation, nausea, palpitations, and vomiting, and increased with dose level.
  • the maximum tolerated dose was 20 ⁇ g/kg in the supine position and 10 ⁇ g/kg in the standing position, with dose-limiting syncope or near syncope observed in subjects in the standing position.
  • PK pharmacokinetics
  • PD pharmacodynamics
  • the potential influence of various covariates on PK and PD model parameters was investigated.
  • the PK data were best described by a three-compartment model.
  • the population value of clearance and volume of distribution were estimated to be 29.9 L/h and 68.1 L, respectively.
  • the PD model of the APV data included a hypothetical effect compartment.
  • the baseline and the maximal increase in APV were estimated - based upon this data - to be 16.5 and 105 cm/seconds, with a potency (concentration of regadenoson that causes half maximal effect) of 29.9 ng/mL.
  • the model estimated a small value for the distribution rate constant (4 min " 1 ) from the plasma to the effect site, indicating a rather rapid onset of effect.
  • a Michaelis-Menten model resulted in the best fit of the HR data, with estimates of 67 and 41 bpm for the baseline and maximum increase in the HR, and a potency of 27.5 ng/mL.
  • Covariates such as body mass index, body weight, age, and height had no significant influence on the PK or PD parameters.
  • Regadenoson is a selective A 2 -adenosine receptor agonist under development for acute dilation of the coronary arterial vasculature during myocardial perfusion imaging.
  • a 2A -adenosine receptor activation is reported to cause inhibition of platelet aggregation and neutrophil activation.

Abstract

Myocardial imaging methods that are accomplished by administering doses of a pharmaceutical composition including regadenoson - an adenosine A2A receptor agonist - to a human undergoing myocardial imaging in an amount sufficient to achieve at least a minimal increase in average coronary peak flow velocity.

Description

TITLE: Use of A2A Adenosine Receptor Agonists
(1 ) Field of the Invention
This invention relates to myocardial imaging methods that are accomplished by administering doses of regadenoson - an adenosine A2A receptor agonist - to a mammal undergoing myocardial imaging.
(2) Description of the Art
Myocardial perfusion imaging (MPI) is a diagnostic technique useful for the detection and characterization of coronary artery disease. Perfusion imaging uses materials such as radionuclides to identify areas of insufficient blood flow. In MPI, blood flow is measured at rest, and the result compared with the blood flow measured during exercise on a treadmill (cardiac stress testing), such exertion being necessary to stimulate blood flow. Unfortunately, many patients are unable to exercise at levels necessary to provide sufficient blood flow, due to medical conditions such as peripheral vascular disease, arthritis, and the like. Therefore, a pharmacological agent that increases cardiac blood flow (CBF) for a short period of time would be of great benefit, particularly one that did not cause peripheral vasodilation. Vasodilators, for example dipyridamole, have been used for this purpose in patients prior to imaging with radionuclide. Dipyridamole is a long-acting compound and frequently requires antidotes to reverse the prolonged side effects. It is an infusion rather than a bolus (like regadenoson). It is also non¬ selective for adenosine receptors and requires weight-based dosing. Adenosine, a naturally occurring nucleoside, also is useful as a vasodilator. Adenosine exerts its biological effects by interacting with a family of adenosine receptors characterized as subtypes A-i, A2A, A2B, and A3. Adenoscan® is a formulation of a naturally occurring adenosine. Adenoscan® has been marketed as an adjuvant in perfusion studies using radioactive thallium-201. However, its use is limited due to side effects such as flushing, chest discomfort, the urge to breathe deeply, headache, throat, neck, and jaw pain. These adverse effects of adenosine are due to the activation of other adenosine receptor subtypes other than A2A, which mediates peripheral vasodilatory effects to bronchoconstriction of adenosine. Additionally, the short half-life of adenosine necessitates continuous infusion during the procedure, further complicating its use. Adenoscan® is contraindicated in many patients including those with second-or third-degree block, sinus node disease, bronchoconstrictive or bronchospastic lung disease, and in patients with known hypersensitivity to the drug. Other potent and selective agonists for the A2A adenosine receptor are known. For example, MRE-0470 (Medco) is an adenosine A2A receptor agonist that is a potent and selective derivative of adenosine. WRC-0470 (Medco) is an adenosine A2A agonist used as an adjuvant in imaging. In general, compounds such as these have a high affinity for the A2A receptor, and consequently, a long duration of action, which is undesirable in imaging, and could possibly prolong the duration of side effects.
One especially potent and useful adenosine A2A receptor agonist is regadenoson. Regadenoson is selective for the adenosine A2A receptor, has a short duration of action and does not appear to require administration as a continuous infusion. Regadenoson and related compounds as well as methods for their manufacture and use in cardiac perfusion imagining are disclosed in U.S. Patent Nos. 6,403,567, 6,642,210, 6,214,807, and 6,770,634, as well as in published U.S. patent application nos. 2002-0012946 and 2004-0022177 the entirety of each specification of which are incorporated herein by reference. Although regadenoson is a known compound, much remains unknown about its pharmacokinetic profile and range of potential therapeutic uses.
Summary Of The Invention
One aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec.
Another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the pharmaceutical composition is administered by iv bolus.
Yet another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the pharmaceutical composition is administered in about 10 to about 20 seconds. Still another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the amount of the pharmaceutical composition administered is sufficient to raise the average coronary peak flow velocity by an amount ranging from about 16.5 to about 77.0 cm/sec.
In still another aspect of this invention the single dose of pharmaceutical composition includes from about 10 to about 500 micrograms of regadenoson or alternatively includes an amount of regadenoson ranging from about 0.05 to about 60 μg/kg weight of the human.
In yet another aspect, this invention includes the step of performing myocardial perfusion imaging of the human following the administration of the single dose of the pharmaceutical composition to the human. In this aspect of the invention, at least one radionuclide may be administered to the human at a time selected from the group consisting of before the human receives the dose of pharmaceutical composition, simultaneously with the administration of the dose of pharmaceutical composition or after administering the dose of pharmaceutical composition to the human. This means the radionuclide and the single dose of the pharmaceutical composition may be administered separately to the human or simultaneously to the human. In a preferred aspect of this method, myocardium examination begins no sooner than about 1 minute after the single dose of the pharmaceutical composition is administered to the human.
Description Of A Preferred Embodiment
Potent A2A agonists are useful as adjuncts in cardiac imaging when added either prior to dosing with an imaging agent or simultaneously with an imaging agent. Suitable imaging agents include, but are not limited to 201Thallium or 99mTechnetium-Sestamibi, 99mTc-teboroxime, and Technetium-99m(lll).
New and potent A2A agonists that increase CBF but do not significantly increase peripheral blood flow have been identified. One particularly useful A2A agonists is regadenoson. Regadenoson is also referred to in the literature as CVT- 3146 or (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6- aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide and has the formula:
Figure imgf000007_0001
Methods for synthesizing regadenoson and related compounds are set forth in U.S. Patent No. 6,403,567, the specification of which is incorporated herein by reference in its entirety.
Regadenoson may be administered by pharmaceutical administration methods that are known in the art. It is preferred that regadenoson is dosed i.v. It is more preferred that regadenoson is administered in a single dose i.v. The term "single dose" refers generally to a single quickly administered dose of a therapeutic amount of regadenoson. The term "single dose" does not encompass a dose or doses administered over an extended period of time by, for example continuous i.v. infusion.
Regadenoson will typically be incorporated into a pharmaceutical composition prior to use. The term "pharmaceutical composition" refers to the combination of regadenoson with at least one liquid carrier that together form a solution or a suspension. Lyophilized powders including compositions of this invention fall within the scope of "pharmaceutical compositions" so long as the powders are intended to be reconstituted by the addition of a suitable liquid carrier prior to use. Examples of suitable liquid carriers include, but are not limited to water, distilled water, de-ionized water, saline, buffer solutions, normal isotonic saline solution, dextrose in water, and combinations thereof. Such pharmaceutical compositions are generally suitable for injection.
The term "buffer solution" or "buffer" as used herein refers to a solution containing both a weak acid and its conjugate weak base. The buffer solutions are used in pharmaceutical compositions of this invention in order to resist pH changes. Non-limiting examples of useful buffer solutions are solutions that comprise sodium bicarbonate and sodium phosphate.
Pharmaceutical compounds including the compounds of this invention, and/or derivatives thereof, may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use. If used in liquid form the compounds of this invention are preferably incorporated into a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal isotonic saline solution, standard 5% dextrose in water and buffered sodium or ammonium acetate solution. Such liquid formulations are suitable for parenteral administration, but may also be used for oral administration. It may be desirable to add excipients such as polyvinylpyrrolidinone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride, sodium citrate or any other excipient known to one of skill in the art to pharmaceutical compositions including compounds of this invention.
Pharmaceutical compositions including regadenoson may be prepared and then administered, with or without intervening storage. Various properties considered when formulating pharmaceutical compositions of this invention include, but are not limited to product shelf life, regadenoson solubility, composition pH, vein irritation, hemolysis, storage conditions (e.g., whether the pharmaceutical composition will be stored at room temperature or some other temperature) and the ability to withstand sterilization procedures. - One method to achieve the desired pharmaceutical composition properties is to include a co-solvent in the pharmaceutical composition. The co-solvent can be selected from any liquid or compound in solution that imparts the desired properties to the pharmaceutical composition. Examples of useful co-solvents include, but are not limited to methylboronic acid, borate buffer, propylene glycol, or polyethylene glycol. The amount of co-solvent in the pharmaceutical composition will depend upon properties, such as solubility and stability of the chosen A2A receptor agonist. Examples of pharmaceutical compositions containing co-solvents can be found in U.S. Patent Publication No. 2005/0020915, the specification of which is incorporated herein by reference in its entirety. Regadenoson has solubility in water of about 50 micrograms/mL. Therefore, regadenoson can be dissolved and administered in water so long as the desired weight amount of regadenoson can be administered in an acceptable volume. For example, a preferred dose of about 400 micrograms can be administered in 8 ml_ of water. If this volume is too great for administration purposes, or if the pharmaceutical composition will be stored at other than room temperature (RT), then additional ingredients can be added to the composition to increase the solubility of regadenoson in the composition and/or to provide the resulting pharmaceutical composition with other improved properties such as improved stability and storage properties.
Pharmaceutical compositions of this invention that include regadenoson may include up to about 1 milligram/mL of regadenoson. It is preferred that pharmaceutical compositions including regadenoson include from about 50 to about 250 micrograms/mL, and more preferably from about 50 to 150 micrograms/mL of regadenoson.
In order to improve solubility and storage properties, regadenoson can be administered in a pharmaceutical composition including a methylboronic acid (MBA) co-solvent. The methylboronic acid is added to the pharmaceutical composition to improve agonist solubility and shelf life. MBA increases the pH of the resulting composition. The solubility of regadenoson in a pharmaceutical composition including MBA tends to decrease as the composition pH drops towards neutral. Therefore, with regadenoson, an optimal MBA-containing composition pH is from about 8.5 to 10 with a pH of about 9.1 to about 9.4 being preferred and a pH of about 9.3 being most preferred. This corresponds to a composition including from about 50 to about 250 mg/mL of MBA. As an alternative to MBA, regadenoson can be combined with a borate buffer solution. Typically, a borate buffer solution will be comprised of an aqueous solution of sodium borate that is adjusted to the desired pH such as a pH of 9.3 using an acid or a base.
MBA containing pharmaceutical compositions can suffer from storage problems. Namely, MBA can cause delamination when packaged in certain type I glass vessels. This problem can be overcome by storing the MBA containing pharmaceutical compositions in plastic vessels or in more resistant type I glass vessels.
If regadenoson containing pharmaceutical compositions having a pH closer to neutral are desired, then an alternative is to combine regadenoson with a propylene glycol (PG) co-solvent. The amount of PG used in the composition may range from about 5% to up to 25% by volume with a range of about 8% to about 20% by volume being more preferred when using regadenoson. An alternative to PG is polyethylene glycol - PEG. A preferred PEG will have an average molecular weight of from about 200 to 400.
Preferably, the regadenoson composition including PG or PEG will have a pH of from about 6 to about 8 with a pH of about 7 being preferred. Any physiologically acceptable buffer capable of adjusting the composition pH to the desired value can be used. Examples of such buffer include, but are not limited to, dibasic sodium phosphate, dibasic sodium phosphate dehydrate, and monobasic sodium phosphate monohydrate. Additional optional ingredients such as EDTA and dimethylacetamide could be employed in the composition as well. The pharmaceutical compositions of this invention may include one or more anti-oxidants such as butylated hydroxyanisole (BHA).
Regadenoson has a rapid onset of action and a short duration of action when administered. Regadenoson is very useful when administered in a very small quantity in a single bolus intravenous (i.v.) injection. Regadenoson can be administered in amounts as little as 10 μg and as high as 2000 μg or more. An optimal dose may include as little as 10 μg and as much as about 1000 μg or more of regadenoson. More preferably, an optimal dose will range from about 100 to about 500 μg of regadenoson. It is preferred that regadenoson is administered in a single bolus injection in an amount selected from about 300 μg, about 400 μg, about 500 μg, about 600 μg, and about 700 μg. These amounts are unexpectedly small when compared with adenosine which is typically administered continuously by IV infusion at a rate of about 140 μg/kg/min. Unlike adenosine, the same dosage of regadenoson can be administered to a human patient regardless of the patient's weight. Thus, the administration of a single uniform amount of regadenoson by iv bolus for myocardial imaging is dramatically simpler and less error prone than the time and weight dependent administration of adenosine. The dose of regadenoson administered to a human patient can, however, be determined by weight. Typically, a weight based dose will range from about 0.05 to about 60 μg/kg and more preferably from about 0.1 to about 30 μg/kg.
Regadenoson in particular is generally well tolerated when administered in an amount up to 10 μg/kg in standing patients and up to 20 μg/kg in supine patients.
In an alternative embodiment, regadenoson may be administered orally, intravenously, through the epidermis or by any other means known in the art for administering therapeutic agents with bolus i.v. administration being preferred. In one embodiment, the bolus dosing occurs in 60 seconds or less. In yet other embodiments, the bolus dosing occurs in about 30 seconds or less, and more preferably in about 20 seconds or less or in about 10 seconds or less. The pharmacokinetics of regadenoson are disclosed in more detail in the following examples.
EXAMPLE 1
The purpose of this study was to investigate the pharmacokinetics (PK), pharmacodynamics (PD), and the maximum tolerated dose of regadenoson in healthy human subjects.
Thirty-six healthy, male subjects were included in the study. Subjects received single, IV bolus doses of regadenoson ranging from 0.1 to 30 μg/kg. The regadenoson dosage administered in this example and in Examples 2 & 3 below was a neutral pH dose including the preferred ingredients discussed above.
Concentrations of regadenoson were determined in plasma samples collected at various times and in urine samples collected over a 24-hour period after drug administration. ECG, blood pressure (BP), and heart rate (HR) were recorded for up to 24 hours post-dose. Adverse events (AE) were monitored for 24 hours post dose and via telephone 7 days later. A population approach was utilized in applying a three-compartmental PK model to the plasma concentration-time and a Michaelis- Menten model to the time-course of heart rate. The potential influence of various covariates on PK and PD model parameters was investigated. The population value of clearance (CL) was estimated to be 40.6 LVh, with renal clearance accounting for 57% of the total clearance. The volume of distribution of regadenoson was estimated to be 83.3 L. The model estimated a baseline and a maximal increase in HR of 62 and 76 bpm. The concentration of regadenoson causing half-maximal increase in HR (potency) was estimated to be 12.4 ng/mL. Covariates such as , body mass index, body weight, age, and height had no influence on the PK or PD parameters. Adverse events were generally mild to moderate, of rapid onset, short duration, and none required medical intervention. They included abdominal discomfort, chest pressure/tightness, dizziness, dyspnea, flushing, headache, hyperventilation, nausea, palpitations, and vomiting, and increased with dose level. The maximum tolerated dose was 20 μg/kg in the supine position and 10 μg/kg in the standing position, with dose-limiting syncope or near syncope observed in subjects in the standing position.
This example demonstrates that regadenoson is well tolerated in healthy male subjects. The lack of any significant influence of the covariates on the PK and PD model parameters suggests a unit-based dosing for regadenoson.
EXAMPLE 2
The purpose of this study was to investigate the pharmacokinetics (PK) and pharmacodynamics (PD) of regadenoson in subjects undergoing clinically indicated cardiac catheterization.
Thirty-six male and female subjects undergoing clinically indicated coronary angiography were studied. Subjects received single, IV bolus doses of regadenoson ranging from 10 to 500 μg. Concentrations of regadenoson were determined in plasma samples collected at various times prior to and after drug administration. ECG, average coronary peak flow velocity (APV), measured using intracoronary Doppler flow wire, blood pressure (BP), and heart rate (HR) were continuously monitored for up to 3 hours post-dose. Occurrence of adverse events (AEs) was monitored for approximately 3 hours post dosing and via telephone approximately 14 days later. A population approach was utilized in applying PK and PD models to the plasma concentration, APV, and HR data. The potential influence of various covariates on PK and PD model parameters was investigated. The PK data were best described by a three-compartment model. The population value of clearance and volume of distribution were estimated to be 29.9 L/h and 68.1 L, respectively. The PD model of the APV data included a hypothetical effect compartment. The baseline and the maximal increase in APV were estimated - based upon this data - to be 16.5 and 105 cm/seconds, with a potency (concentration of regadenoson that causes half maximal effect) of 29.9 ng/mL. The model estimated a small value for the distribution rate constant (4 min" 1) from the plasma to the effect site, indicating a rather rapid onset of effect. A Michaelis-Menten model resulted in the best fit of the HR data, with estimates of 67 and 41 bpm for the baseline and maximum increase in the HR, and a potency of 27.5 ng/mL. Covariates such as body mass index, body weight, age, and height had no significant influence on the PK or PD parameters. AEs were reported for fewer than half (n=17) of the subjects; events reported for 3 or more subjects were chest discomfort (n=3), tachycardia (n=4), and bleeding at the catheter site (n=3). These results demonstrate that regadenoson is a potent and well-tolerated coronary vasodilator. The lack of any significant influence of the covariates on the PK and PD model parameters suggests a unit-based dosing for regadenoson.
EXAMPLE 3
Regadenoson is a selective A2-adenosine receptor agonist under development for acute dilation of the coronary arterial vasculature during myocardial perfusion imaging. A2A-adenosine receptor activation is reported to cause inhibition of platelet aggregation and neutrophil activation.
To characterize the drug more completely, in this study, we determined affinity and potency values for binding and for functional responses to regadenoson in preparations of human platelets and neutrophils (membranes and intact cells), CHO cells expressing human A2A receptors (membranes and intact cells), and rat brain striatal membranes. For comparison, parallel assays of responses to the reference A2 A agonist CGS21680 were performed alongside each assay of regadenoson. Assay results are reported in Table 1 below.
Table 1
Values (mean ± SE) of affinity [Ki] and potency [EC50 or IC50] for regadenoson at A2A-adenosine receptors
Figure imgf000016_0001
Figure imgf000017_0001
ZM241385 displacement of binding of [3H]-CG-S21680 Responses to regadenoson and to CGS21680 were similar in magnitude. In all assays, CGS21680 was slightly more potent than regadenoson (i.e., values of EC50 for the 12 assays were 13-fold lower for CGS 21680, on average). It can be concluded from this study that regadenoson, like CGS21680, is not only a coronary vasodilator, but is also an inhibitor of both platelet aggregation and neutrophil activation (i.e., inflammation).

Claims

What is claimed is:
1. A method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec.
2. The method of claim 1 wherein said single dose of a pharmaceutical composition is administered by iv bolus.
3. The method of claim 1 wherein said single dose of a pharmaceutical composition is administered in about 10 to about 20 seconds.
4. The method of claim 1 wherein the amount of the single dose of a pharmaceutical composition administered is sufficient to raise the average coronary peak flow velocity by an amount ranging from about 16.5 to about 77.0 cm/sec.
5. The method of claim 1 wherein the single dose of pharmaceutical composition includes from about 10 to about 500 micrograms of regadenoson.
6. The method of claim 1 wherein the single dose of pharmaceutical composition includes an amount of regadenoson ranging from about 0.05 to about 60 μg/kg.
7. The method of claim 1 wherein myocardial perfusion imaging of a human is performed following administration of the single dose of the pharmaceutical composition to the human.
8. The method of claim 7 further comprising administering at least one radionuclide to the human at a time selected from the group consisting of before the human receives the dose of pharmaceutical composition, simultaneously with the administration of the dose of pharmaceutical composition or after administering the dose of pharmaceutical composition to the human.
9. The method of claim 7 wherein the radionuclide and the single dose of the pharmaceutical composition are administered separately to the human.
10. The method of claim 7 wherein the radionuclide and the single dose of the pharmaceutical composition are administered simultaneously to the human.
11. The method of claim 7 wherein the myocardium examination begins no sooner than about 1 minute from the time the single dose of the pharmaceutical composition is administered to the human.
PCT/US2005/037368 2004-10-20 2005-10-19 Use of a2a adenosine receptor agonists WO2006044856A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007537961A JP2008517063A (en) 2004-10-20 2005-10-19 Use of A2A adenosine receptor agonist
MX2007004749A MX2007004749A (en) 2004-10-20 2005-10-19 Use of a2a adenosine receptor agonists.
CA002583185A CA2583185A1 (en) 2004-10-20 2005-10-19 Use of a2a adenosine receptor agonists
EP05815368A EP1802317A2 (en) 2004-10-20 2005-10-19 Use of a2a adenosine receptor agonists
AU2005295437A AU2005295437B2 (en) 2004-10-20 2005-10-19 Use of A2A adenosine receptor agonists
IL182645A IL182645A0 (en) 2004-10-20 2007-04-18 Use of a2a adenosine receptor agonists
NO20072540A NO20072540L (en) 2004-10-20 2007-05-18 Use of A2A adenosine receptor agonist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62057704P 2004-10-20 2004-10-20
US60/620,577 2004-10-20

Publications (2)

Publication Number Publication Date
WO2006044856A2 true WO2006044856A2 (en) 2006-04-27
WO2006044856A3 WO2006044856A3 (en) 2006-07-06

Family

ID=35953984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/037368 WO2006044856A2 (en) 2004-10-20 2005-10-19 Use of a2a adenosine receptor agonists

Country Status (13)

Country Link
US (3) US7655636B2 (en)
EP (1) EP1802317A2 (en)
JP (1) JP2008517063A (en)
KR (1) KR20070083714A (en)
CN (1) CN101076343A (en)
AU (1) AU2005295437B2 (en)
CA (1) CA2583185A1 (en)
IL (1) IL182645A0 (en)
MX (1) MX2007004749A (en)
NO (1) NO20072540L (en)
RU (1) RU2007114908A (en)
WO (1) WO2006044856A2 (en)
ZA (1) ZA200703229B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2066232A1 (en) * 2006-09-29 2009-06-10 Cv Therapeutics, Inc. Methods for myocardial imaging in patients having a history of pulmonary disease
JP2010515081A (en) * 2007-01-03 2010-05-06 ギリアード・パロ・アルト・インコーポレイテッド Myocardial perfusion imaging
US8071566B2 (en) 2000-02-23 2011-12-06 Gilead Sciences, Inc. Methods of coronary imaging
RU2459626C2 (en) * 2006-09-01 2012-08-27 Гайлид Сайэнсиз, Инк. Methods and compositions improving patient's tolerance of myocardial visualisation technique
US8906878B2 (en) 2002-07-29 2014-12-09 Gilead Sciences, Inc. Myocardial perfusion imaging methods and compositions
USRE47301E1 (en) 2006-02-03 2019-03-19 Gilead Sciences, Inc. Process for preparing an A2A-adenosine receptor agonist and its polymorphs
USRE47351E1 (en) 1999-06-22 2019-04-16 Gilead Sciences, Inc. 2-(N-pyrazolo)adenosines with application as adenosine A2A receptor agonists

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403567B1 (en) * 1999-06-22 2002-06-11 Cv Therapeutics, Inc. N-pyrazole A2A adenosine receptor agonists
US6214807B1 (en) * 1999-06-22 2001-04-10 Cv Therapeutics, Inc. C-pyrazole 2A A receptor agonists
NZ537975A (en) * 2002-07-29 2007-08-31 Cv Therapeutics Inc Method of producing coronary vasodilation without peripheral vasodilation comprising administering at least 10 mcg of at least one A2A receptor agonist
US20050020915A1 (en) * 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
JP2008517063A (en) 2004-10-20 2008-05-22 シーブイ・セラピューティクス・インコーポレイテッド Use of A2A adenosine receptor agonist
JP2009541354A (en) * 2006-06-22 2009-11-26 シーブイ・セラピューティクス・インコーポレイテッド Use of A2A adenosine receptor agonists in the treatment of ischemia
US20090081120A1 (en) * 2006-09-01 2009-03-26 Cv Therapeutics, Inc. Methods and Compositions for Increasing Patient Tolerability During Myocardial Imaging Methods
JP2012504147A (en) * 2008-09-29 2012-02-16 ギリアード サイエンシーズ, インコーポレイテッド Combination of heart rate control agent and A-2-α receptor agonist for use in multi-detector computed tomography
WO2014083580A2 (en) * 2012-11-30 2014-06-05 Leiutis Pharmaceuticals Pvt. Ltd. Pharmaceutical compositions of regadenoson
US11445912B2 (en) 2015-09-30 2022-09-20 Cedars-Sinai Medical Center Robust myocardial blood oxygen level dependent magnetic resonance imaging with long acting coronary vasodilators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078779A2 (en) * 1999-06-22 2000-12-28 Cv Therapeutics, Inc. N-pyrazole a2a receptor agonists
WO2001062979A2 (en) * 2000-02-23 2001-08-30 Cv Therapeutics, Inc. Dentification of partial agonists of the a2a adenosine receptor
WO2004011010A1 (en) * 2002-07-29 2004-02-05 Cv Therapeutics, Inc. Myocardial perfusion imaging using a2a receptor agonists
WO2005082379A1 (en) * 2004-01-27 2005-09-09 Cv Therapeutics, Inc. Myocardial perfusion imaging using adenosine receptor agonists

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK135130B (en) 1970-12-28 1977-03-07 Takeda Chemical Industries Ltd Analogous process for the preparation of 2-substituted adenosine derivatives or acid addition salts thereof.
BE787064A (en) 1971-08-03 1973-02-01 Philips Nv MAGNETIC DEVICE CONTAINING DOMAINS
US3845770A (en) * 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US4089959A (en) 1976-03-31 1978-05-16 Cooper Laboratories, Inc. Long-acting xanthine bronchodilators and antiallergy agents
US4120947A (en) 1976-03-31 1978-10-17 Cooper Laboratories, Inc. Xanthine compounds and method of treating bronchospastic and allergic diseases
US4069959A (en) * 1976-10-27 1978-01-24 Butler Automatic, Inc. Web guide apparatus
SE7810946L (en) 1978-10-20 1980-04-21 Draco Ab METHOD OF TREATING CHRONIC OBSTRUCTIVE AIR DISEASE
US4326525A (en) * 1980-10-14 1982-04-27 Alza Corporation Osmotic device that improves delivery properties of agent in situ
US4593095A (en) 1983-02-18 1986-06-03 The Johns Hopkins University Xanthine derivatives
US5364620A (en) * 1983-12-22 1994-11-15 Elan Corporation, Plc Controlled absorption diltiazem formulation for once daily administration
US4696932A (en) 1984-10-26 1987-09-29 The United States Of America As Represented By The Department Of Health And Human Services Biologically-active xanthine derivatives
JPS6299395A (en) * 1985-10-25 1987-05-08 Yamasa Shoyu Co Ltd 2-alkinyladenosine and antihypertensive
US4968697A (en) 1987-02-04 1990-11-06 Ciba-Geigy Corporation 2-substituted adenosine 5'-carboxamides as antihypertensive agents
US4992445A (en) * 1987-06-12 1991-02-12 American Cyanamid Co. Transdermal delivery of pharmaceuticals
US5001139A (en) * 1987-06-12 1991-03-19 American Cyanamid Company Enchancers for the transdermal flux of nivadipine
US4902514A (en) * 1988-07-21 1990-02-20 Alza Corporation Dosage form for administering nilvadipine for treating cardiovascular symptoms
US5070877A (en) * 1988-08-11 1991-12-10 Medco Research, Inc. Novel method of myocardial imaging
DE3831430A1 (en) * 1988-09-15 1990-03-22 Bayer Ag SUBSTITUTED 4-HETEROCYCLYLOXIMINO-PYRAZOLIN-5-ONE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS A PEST CONTROL
US5270304A (en) * 1988-11-15 1993-12-14 Yamasa Shoyu Kabushiki Kaisha Therapeutic 2-alkynyl adenosine agent for ischemic diseases of the heart or brain
IT1229195B (en) 1989-03-10 1991-07-25 Poli Ind Chimica Spa XANTHINIC DERIVATIVES WITH BRONCODILATORY ACTIVITY AND THEIR THERAPEUTIC APPLICATIONS.
WO1990015812A1 (en) * 1989-06-20 1990-12-27 Yamasa Shoyu Kabushiki Kaisha Intermediate for 2-alkynyladenosine synthesis, production of said intermediate, production of 2-alkynyladenosine from said intermediate, and stable 2-alkynyladenosine derivative
US5032252A (en) * 1990-04-27 1991-07-16 Mobil Oil Corporation Process and apparatus for hot catalyst stripping in a bubbling bed catalyst regenerator
DE4019892A1 (en) 1990-06-22 1992-01-02 Boehringer Ingelheim Kg New xanthine derivs. are selective A1 adenosine antagonists - useful for treating CNS disorders (e.g. senile dementia) and heart and circulation disorders
US5189027A (en) * 1990-11-30 1993-02-23 Yamasa Shoyu Kabushiki Kaisha 2-substituted adenosine derivatives and pharmaceutical compositions for circulatory diseases
FR2671356B1 (en) 1991-01-09 1993-04-30 Inst Nat Sante Rech Med METHOD FOR DESCRIBING ANTIBODY (AB) DIRECTORIES AND T CELL RECEPTORS (TCR) IN THE INDIVIDUAL'S IMMUNE SYSTEM.
JP2740362B2 (en) * 1991-02-12 1998-04-15 ヤマサ醤油株式会社 Stable solid 2-octynyl adenosine and process for its preparation
JP3053908B2 (en) 1991-06-28 2000-06-19 ヤマサ醤油株式会社 2-alkynyl adenosine derivatives
US5516894A (en) 1992-03-11 1996-05-14 The General Hospital Corporation A2b -adenosine receptors
IT1254915B (en) * 1992-04-24 1995-10-11 Gloria Cristalli ADENOSINE DERIVATIVES FOR ACTIVITY A2 AGONIST
GB9210839D0 (en) 1992-05-21 1992-07-08 Smithkline Beecham Plc Novel compounds
WO1993025677A1 (en) 1992-06-12 1993-12-23 Garvan Institute Of Medical Research DNA SEQUENCES ENCODING THE HUMAN A1, A2a and A2b ADENOSINE RECEPTORS
EP0601322A3 (en) * 1992-10-27 1994-10-12 Nippon Zoki Pharmaceutical Co Adenosindeaminase inhibitor.
CA2112031A1 (en) 1992-12-24 1994-06-25 Fumio Suzuki Xanthine derivatives
WO1995011681A1 (en) 1993-10-29 1995-05-04 Merck & Co., Inc. Human adenosine receptor antagonists
ATE218139T1 (en) 1994-02-23 2002-06-15 Kyowa Hakko Kogyo Kk XANTHINE DERIVATIVES
US5704491A (en) 1995-07-21 1998-01-06 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US5646156A (en) 1994-04-25 1997-07-08 Merck & Co., Inc. Inhibition of eosinophil activation through A3 adenosine receptor antagonism
US5877180A (en) * 1994-07-11 1999-03-02 University Of Virginia Patent Foundation Method for treating inflammatory diseases with A2a adenosine receptor agonists
US6514949B1 (en) * 1994-07-11 2003-02-04 University Of Virginia Patent Foundation Method compositions for treating the inflammatory response
US6448235B1 (en) * 1994-07-11 2002-09-10 University Of Virginia Patent Foundation Method for treating restenosis with A2A adenosine receptor agonists
US5854081A (en) 1996-06-20 1998-12-29 The University Of Patent Foundation Stable expression of human A2B adenosine receptors, and assays employing the same
US5780481A (en) 1996-08-08 1998-07-14 Merck & Co., Inc. Method for inhibiting activation of the human A3 adenosine receptor to treat asthma
US5776960A (en) 1996-10-16 1998-07-07 Buckman Laboratories International, Inc. Synergistic antimicrobial compositions containing an ionene polymer and a pyrithione salt and methods of using the same
US5770716A (en) * 1997-04-10 1998-06-23 The Perkin-Elmer Corporation Substituted propargylethoxyamido nucleosides, oligonucleotides and methods for using same
AU7449598A (en) 1997-05-23 1998-12-11 Nippon Shinyaku Co. Ltd. Medicinal composition for prevention or treatment of hepatopathy
EP1014995A4 (en) 1997-06-18 2005-02-16 Aderis Pharmaceuticals Inc Compositions and methods for preventing restenosis following revascularization procedures
US6026317A (en) * 1998-02-06 2000-02-15 Baylor College Of Medicine Myocardial perfusion imaging during coronary vasodilation with selective adenosine A2 receptor agonists
US6117878A (en) 1998-02-24 2000-09-12 University Of Virginia 8-phenyl- or 8-cycloalkyl xanthine antagonists of A2B human adenosine receptors
CA2316994A1 (en) 1998-06-08 1999-12-16 Epigenesis Pharmaceuticals, Inc. Composition and method for prevention and treatment of cardiopulmonary and renal failure or damage associated with ischemia, endotoxin release, ards or brought about by administration of certain drugs
US6322771B1 (en) * 1999-06-18 2001-11-27 University Of Virginia Patent Foundation Induction of pharmacological stress with adenosine receptor agonists
US6214807B1 (en) * 1999-06-22 2001-04-10 Cv Therapeutics, Inc. C-pyrazole 2A A receptor agonists
CA2383351C (en) 1999-08-31 2005-11-01 Vanderbilt University Xanthine derivatives as selective antagonists of a2b adenosine receptors
US6368573B1 (en) * 1999-11-15 2002-04-09 King Pharmaceuticals Research And Development, Inc. Diagnostic uses of 2-substituted adenosine carboxamides
US6294522B1 (en) * 1999-12-03 2001-09-25 Cv Therapeutics, Inc. N6 heterocyclic 8-modified adenosine derivatives
US6605597B1 (en) * 1999-12-03 2003-08-12 Cv Therapeutics, Inc. Partial or full A1agonists-N-6 heterocyclic 5′-thio substituted adenosine derivatives
US6677336B2 (en) * 2000-02-22 2004-01-13 Cv Therapeutics, Inc. Substituted piperazine compounds
US6552023B2 (en) * 2000-02-22 2003-04-22 Cv Therapeutics, Inc. Aralkyl substituted piperazine compounds
US6387913B1 (en) 2000-12-07 2002-05-14 S. Jamal Mustafa Method of treating airway diseases with combined administration of A2B and A3 adenosine receptor antagonists
US6670334B2 (en) * 2001-01-05 2003-12-30 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
US6995148B2 (en) * 2001-04-05 2006-02-07 University Of Pittsburgh Adenosine cyclic ketals: novel adenosine analogues for pharmacotherapy
US6599283B1 (en) * 2001-05-04 2003-07-29 Cv Therapeutics, Inc. Method of preventing reperfusion injury
DE60235536D1 (en) * 2001-05-14 2010-04-15 Novartis Ag sulfonamide
MXPA04004388A (en) 2001-11-09 2005-05-16 Cv Therapeutics Inc A2b.
US6977300B2 (en) 2001-11-09 2005-12-20 Cv Therapeutics, Inc. A2B adenosine receptor antagonists
US7125993B2 (en) 2001-11-09 2006-10-24 Cv Therapeutics, Inc. A2B adenosine receptor antagonists
WO2003053366A2 (en) 2001-12-20 2003-07-03 Osi Pharmaceuticals, Inc. Pyrimidine a2b selective antagonist compounds, their synthesis and use
AU2003223497A1 (en) 2002-04-05 2003-10-27 Centocor, Inc. Asthma-related anti-il-13 immunoglobulin derived proteins, compositions, methods and uses
US20050020915A1 (en) * 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
NZ554485A (en) 2004-10-15 2010-12-24 Gilead Palo Alto Inc Method of preventing and treating airway remodeling and pulmonary inflammation using A2B adenosine receptor antagonists
JP2008517063A (en) 2004-10-20 2008-05-22 シーブイ・セラピューティクス・インコーポレイテッド Use of A2A adenosine receptor agonist
WO2006076698A1 (en) 2005-01-12 2006-07-20 King Pharmaceuticals Reserch & Development, Inc. Method of detecting myocardial dysfunction in patients having a history of asthma or bronchospasm
WO2007092372A1 (en) 2006-02-03 2007-08-16 Cv Therapeutics, Inc. Process for preparing an a2a-adenosine receptor agonist and its polymorphs
JP2009541354A (en) * 2006-06-22 2009-11-26 シーブイ・セラピューティクス・インコーポレイテッド Use of A2A adenosine receptor agonists in the treatment of ischemia
KR20090047499A (en) * 2006-09-01 2009-05-12 씨브이 쎄러퓨틱스, 인코포레이티드 Methods and compositions for increasing patient tolerability during myocardial imaging methods
US20090081120A1 (en) 2006-09-01 2009-03-26 Cv Therapeutics, Inc. Methods and Compositions for Increasing Patient Tolerability During Myocardial Imaging Methods
CA2663361A1 (en) * 2006-09-29 2008-04-10 Cv Therapeutics, Inc. Methods for myocardial imaging in patients having a history of pulmonary disease
MX2009007071A (en) * 2007-01-03 2009-10-13 Cv Therapeutics Inc Myocardial perfusion imaging.
JP2012504147A (en) 2008-09-29 2012-02-16 ギリアード サイエンシーズ, インコーポレイテッド Combination of heart rate control agent and A-2-α receptor agonist for use in multi-detector computed tomography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078779A2 (en) * 1999-06-22 2000-12-28 Cv Therapeutics, Inc. N-pyrazole a2a receptor agonists
WO2001062979A2 (en) * 2000-02-23 2001-08-30 Cv Therapeutics, Inc. Dentification of partial agonists of the a2a adenosine receptor
WO2004011010A1 (en) * 2002-07-29 2004-02-05 Cv Therapeutics, Inc. Myocardial perfusion imaging using a2a receptor agonists
US20040064039A1 (en) * 2002-07-29 2004-04-01 Cv Therapeutics Myocardial perfusion imaging method
WO2005082379A1 (en) * 2004-01-27 2005-09-09 Cv Therapeutics, Inc. Myocardial perfusion imaging using adenosine receptor agonists

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CERQUEIRA M D: "THE FUTURE OF PHARMACOLOGIC STRESS: SELECTIVE A2A ADENOSINE RECEPTOR AGONISTS" AMERICAN JOURNAL OF CARDIOLOGY, CAHNERS PUBLISHING CO., NEWTON, MA,, US, vol. 94, no. SUPPL, 22 July 2004 (2004-07-22), pages 33D-40D, XP008039306 ISSN: 0002-9149 *
HENDEL ROBERT C ET AL: "Pharmacologic stress SPECT myocardial perfusion imaging with a selective A2A agonist: Results of a pilot study comparing adenosine with CVT-3146." CIRCULATION, vol. 108, no. 17 Supplement, 28 October 2003 (2003-10-28), pages IV-636, XP008039261 & AMERICAN HEART ASSOCIATION SCIENTIFIC SESSIONS 2003; ORLANDO, FL, USA; NOVEMBER 09-12, 2003 ISSN: 0009-7322 *
JADBABAIE F ET AL: "MYOCARDIAL PERFUSION IMAGING WITH A NOVEL SELECTIVE A2A ADENOSINE RECEPTOR AGONIST (CVT-3146): IMPORTANT DIFFERENCES IN RADIOTRACER BEHAVIOUR" JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, vol. 41, no. 6, SUPPL A, 19 March 2003 (2003-03-19), pages 443A-444A, XP008039253 ISSN: 0735-1097 *
KERENSKY R A ET AL: "DOSE DEPENDENT INCREASE IN HUMAN CORONARY BLOOD FLOW VELOCITY FOLLOWING AN IV BOLUS OF CVT-3146, A NOVEL A2A ADENOSINE RECEPTOR AGONIST: A POTENTIAL AGENT FOR THE USE IN PHARMACOLOGICAL STRESS TESTING FOR MYOCARDIAL PERFUSION IMAGING" CIRCULATION, AMERICAN HEART ASSOCIATION, DALLAS, TX, US, vol. 106, no. 19, SUPPL II, 5 November 2002 (2002-11-05), pages II-618, XP008025424 ISSN: 0009-7322 *
XU J ET AL: "CORONARY VASODILATION BY A SHORT ACTING, LOW AFFINITY A2A ADENOSINERECEPTOR AGONIST IN ANESTHETIZED CLOSED CHEST DOGS; A SECOND GENERATION OF CORONARY ARTERY PHARMACOLOGIC STRESSOR" CIRCULATION, AMERICAN HEART ASSOCIATION, DALLAS, TX, US, vol. 102, no. 18, SUPPL, 31 October 2000 (2000-10-31), page II810, XP001030765 ISSN: 0009-7322 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47351E1 (en) 1999-06-22 2019-04-16 Gilead Sciences, Inc. 2-(N-pyrazolo)adenosines with application as adenosine A2A receptor agonists
US8071566B2 (en) 2000-02-23 2011-12-06 Gilead Sciences, Inc. Methods of coronary imaging
US8906878B2 (en) 2002-07-29 2014-12-09 Gilead Sciences, Inc. Myocardial perfusion imaging methods and compositions
USRE47301E1 (en) 2006-02-03 2019-03-19 Gilead Sciences, Inc. Process for preparing an A2A-adenosine receptor agonist and its polymorphs
RU2459626C2 (en) * 2006-09-01 2012-08-27 Гайлид Сайэнсиз, Инк. Methods and compositions improving patient's tolerance of myocardial visualisation technique
EP2066232A1 (en) * 2006-09-29 2009-06-10 Cv Therapeutics, Inc. Methods for myocardial imaging in patients having a history of pulmonary disease
JP2010515081A (en) * 2007-01-03 2010-05-06 ギリアード・パロ・アルト・インコーポレイテッド Myocardial perfusion imaging

Also Published As

Publication number Publication date
EP1802317A2 (en) 2007-07-04
IL182645A0 (en) 2007-07-24
AU2005295437B2 (en) 2011-05-19
MX2007004749A (en) 2007-06-18
RU2007114908A (en) 2008-10-27
KR20070083714A (en) 2007-08-24
CA2583185A1 (en) 2006-04-27
US20120189538A1 (en) 2012-07-26
AU2005295437A1 (en) 2006-04-27
CN101076343A (en) 2007-11-21
US8106029B2 (en) 2012-01-31
ZA200703229B (en) 2009-07-29
NO20072540L (en) 2007-05-18
JP2008517063A (en) 2008-05-22
US20060084625A1 (en) 2006-04-20
WO2006044856A3 (en) 2006-07-06
US7655636B2 (en) 2010-02-02
US20100158797A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US7655636B2 (en) Use of A2A adenosine receptor agonists
US8133879B2 (en) Myocardial perfusion imaging methods and compositions
EP2056834B1 (en) Methods and compositions for increasing patient tolerability during myocardial imaging methods
US20100086483A1 (en) Method of multidetector computed tomagraphy
US20100272645A1 (en) Myocardial perfusion imaging method
US20090081120A1 (en) Methods and Compositions for Increasing Patient Tolerability During Myocardial Imaging Methods
IL177119A (en) Myocardial perfusion imaging using adenosine receptor agonists
US9289446B2 (en) Myocardial perfusion imaging methods and compositions
KR20090027258A (en) Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects
Gordi et al. Use of A2A adenosine receptor agonists
JP2914454B2 (en) Vascular diagnostic aid
MXPA06008521A (en) Myocardial persufion imaging using adenosine receptor agonists
SG173924A1 (en) Myocardial perfusion imaging using adenosine receptor agonists

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2583185

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 182645

Country of ref document: IL

Ref document number: 200580035640.5

Country of ref document: CN

Ref document number: 1020077008782

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007114908

Country of ref document: RU

Ref document number: MX/a/2007/004749

Country of ref document: MX

Ref document number: 2005815368

Country of ref document: EP

Ref document number: 2007537961

Country of ref document: JP

Ref document number: 554611

Country of ref document: NZ

Ref document number: 2005295437

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005295437

Country of ref document: AU

Date of ref document: 20051019

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005815368

Country of ref document: EP