WO2005085294A1 - ヒアルロン酸−メトトレキサート結合体 - Google Patents

ヒアルロン酸−メトトレキサート結合体 Download PDF

Info

Publication number
WO2005085294A1
WO2005085294A1 PCT/JP2005/003739 JP2005003739W WO2005085294A1 WO 2005085294 A1 WO2005085294 A1 WO 2005085294A1 JP 2005003739 W JP2005003739 W JP 2005003739W WO 2005085294 A1 WO2005085294 A1 WO 2005085294A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mtx
million
conjugate
hyaluronic acid
Prior art date
Application number
PCT/JP2005/003739
Other languages
English (en)
French (fr)
Inventor
Hitoshi Ikeya
Tadashi Morikawa
Koichi Takahashi
Tatsuya Tamura
Akira Okamachi
Takenori Ishizawa
Haruhiko Sato
Yoshinobu Higuchi
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha, Chugai Seiyaku Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to EP05720011A priority Critical patent/EP1724287A4/en
Priority to JP2006510735A priority patent/JP4927536B2/ja
Priority to AU2005219733A priority patent/AU2005219733C1/en
Priority to KR1020067019810A priority patent/KR101234476B1/ko
Priority to US10/591,653 priority patent/US8088916B2/en
Priority to CN2005800129632A priority patent/CN1946743B/zh
Priority to CA2559188A priority patent/CA2559188C/en
Publication of WO2005085294A1 publication Critical patent/WO2005085294A1/ja
Priority to HK07110660.1A priority patent/HK1102481A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/06Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4
    • C07D475/08Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4 with a nitrogen atom directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/001Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence having less than 12 amino acids and not being part of a ring structure
    • C07K9/003Peptides being substituted by heterocyclic radicals, e.g. bleomycin, phleomycin

Definitions

  • the present invention relates to a hyaluronic acid-methotrexate conjugate and a pharmaceutical use thereof.
  • OA Osteoarthritis
  • OA is a type of degenerative disease that develops based on aging.
  • the number of patients is steadily increasing. Still, sufficient diagnostic and therapeutic methods have not been established.
  • the first pathological change that occurs in OA is the degeneration and wear of articular cartilage, which is the mechanical stress caused by aging, which has become the bow I metal. This change progresses at a very slow rate and gradually evolves into pain.
  • HA is an in vivo polysaccharide composed of repeating units of N-acetyldarcosamine and glucuronic acid. HA acts as a main component of synovial fluid to maintain the viscoelasticity, load absorption and lubrication of synovial fluid, and in the cartilage matrix, a polymer called aggrecan binds to cartilage proteodalican. And plays a central role in maintaining moisture retention and viscosity.
  • HA having a molecular weight of about 600,000 daltons or more and a crosslinked product thereof into a knee joint removes OA pain, and thus HA preparations are widely used as one of the treatments for OA.
  • a high-molecular-weight HA preparation (trade name: Svenyl (registered trademark), manufactured and sold by Chugai Pharmaceutical Co., Ltd.) that is close to the molecular weight of HA in normal synovial fluid is available in Japan.
  • ⁇ Application is also approved for pain relief in knees associated with gussets (hereinafter also referred to as RA).
  • the molecular weight of HA is correlated with the potency of the drug, and it is said that the high molecular weight type HA has a longer lasting, stronger, and more medicinal effect than the low molecular weight type HA! .
  • HA preparations remove pain by returning the viscosity and elasticity of joint fluid impaired in the pathology of OA (or rheumatoid arthritis (RA)) to normal. ing.
  • RA rheumatoid arthritis
  • the externally added HA preparation disappears within a few days from the synovial fluid, the effect lasts for a long period of time. It has also been suggested that pain may be eliminated.
  • One such mechanism is the inhibitory effect on OA synovitis described below.
  • OA synovitis is not only a major cause of pain and inflammatory symptoms such as joint swelling and hot sensation, but also promotes joint destruction through the production of proteolytic enzymes, cytokins and radicals. It is considered a major exacerbating factor in the development of the disease.
  • OA synovitis has no significant proliferative changes as seen in RA, but is common to RA synovitis, such as synovial cell proliferation, angiogenesis and hyperemia, subsynovial edema and fibrosis. Many aspects have been observed. Thus, control of OA synovitis is important from the standpoint of more efficiently removing the pain and inflammation of OA and preventing the development of pathological conditions.
  • drugs that control synovitis include modified antirheumatic drugs used in the treatment of RA.
  • a group of drugs called drugs (hereinafter also referred to as DMARDs) is well known.
  • drugs hereinafter also referred to as MTX
  • MTX methotrexate
  • MTX is a drug that has advantages such as excellent efficacy and a relatively short time to onset of action.
  • MTX is only approved for systemic administration. (At present, only capsules are approved as a therapeutic agent for RA in Japan. Overseas, tablets and injections are approved.
  • the synovium is a tissue in which HA easily accumulates.
  • Synovial cells also have a mechanism to incorporate HA into cells via HA receptors such as CD44. Therefore, it is thought that HA may be a carrier for accumulating drugs in the synovium. So far, several technologies using HA as a drug carrier in vivo have been reported. However, there are almost no examples of application to technology related to the creation of a drug delivery system (hereinafter, also referred to as DDS) for the treatment of joint diseases, typically MTX, especially for the control of synovitis. Not known.
  • DDS drug delivery system
  • Patent Document 1 JP-A-5-39306
  • Patent Document 2 International Publication W094Z19376). These are all related to the DDS technology of an anticancer drug that has been shown to migrate to cancer tissues.
  • MTX is used for the purpose of an anticancer agent.
  • it is characterized by its ability to migrate to cancer tissues and lack of long-term persistence. Therefore, the binding rate of MTX is high (6.4-19% in the examples) to enhance its anticancer effect, and HA has a low molecular weight (100,000 daltons in the example). Further, since the peptide chain is bonded to the hydroxy group of HA by an isourea bond, the stability in an aqueous solution is low.
  • conjugate in which HA and a drug are bound is used as a therapeutic drug for joint diseases.
  • spacers such as a butyleneamine group (-CHNH-) and an otathyleneamine group (-CHNH-) are disclosed.
  • Conjugates of HA and a drug bound via the above are disclosed.
  • the conjugate is described as exhibiting a drug effect in a state where the drug remains bound, assuming an extracellular drug effect.
  • the binding between the drug and HA via the spacer is relatively strong, so that the conjugate cannot exert its efficacy unless the conjugate power is released like MTX, and it is difficult to adapt to the drug. .
  • the patent document is directed to a conjugate using a matrix meta-oral proteinase inhibitor (hereinafter, also referred to as MMPI) as a drug, and the disclosed examples also show the binding of MMPI. It is only about the body. No conjugate using MTX as a drug is specifically disclosed, and no description is given of its usefulness as a drug.
  • MMPI matrix meta-oral proteinase inhibitor
  • Patent Document 4 a spacer in which a special group (norbornene) is further bonded to a 13 amino-4,7,10 trioxathlidecanyl group is used to form the hydroxyl group of norbornene and HA.
  • An HA drug conjugate formed by the formation of a thiolbamate bond is disclosed.
  • the conjugate also assumes an extracellular drug effect as in Patent Document 2, and the drug effect is exhibited in a state where the drug remains bound. Therefore, Unless the compounding force is released, it cannot exert its medicinal effect, and it is difficult to adapt to a drug such as MTX.
  • Patent Document 3 is directed to a conjugate using MMPI as a drug, and there is no suggestion about a conjugate using MTX as a drug!
  • the present inventors have confirmed that if the molecular weight of HA is greatly reduced, the efficacy of HA will be impaired! Although conventional organic synthesis reaction conditions and post-treatment conditions are used in conventional methods for synthesizing HA-drug conjugates, further improvements are required to prepare high-molecular-weight HA-drug conjugates. is necessary.
  • HA-drug conjugates used as pharmaceuticals particularly high-molecular-weight HA-drug conjugates suitable for the treatment of joint diseases, formulations using the same, and methods for synthesizing the conjugates have been known. There was no.
  • Patent Document 1 JP-A-5-39306
  • Patent document 2 International publication W094Z19376 pamphlet
  • Patent document 3 International publication WO99Z59603 pamphlet
  • Patent Document 4 International Publication WO02 / 44218 Pamphlet
  • the problem to be solved by the invention is to provide a hyaluronic acid-methotrexate conjugate useful as a therapeutic drug for joint diseases.
  • methotrexate in which a carboxyl group of hyaluronic acid is bound to a carboxyl group of a hyaluronic acid via a linker containing a peptide chain, has excellent effects as a therapeutic agent for a joint disease of hyaluronic acid-methotrexate,
  • the present invention has been completed.
  • methotrexate is bound to a carboxyl group of hyaluronic acid via a linker containing a peptide chain having 118 amino acids.
  • Arlonate-methotrexate conjugates are provided.
  • the linker may comprise a peptide chain of 118 amino acids, and 115 inserted oxygen atoms, and a Z or carboxyl group or C alkoxy carboxy group.
  • the methotrexate bound to the linker has the formula (I), (II), (III) or (IV):
  • R and R each independently represent a hydroxy group, an amino group, a C alkoxy group, a C
  • L is the linker binding position
  • hyaluronic acid-methotrexate conjugate as described above, represented by:
  • a linker containing a peptide chain and methotrexate bound to the linker are represented by the formula ( ⁇ ) or ( ⁇ ,): [0030] [Formula 5]
  • R and R are each independently a hydroxy group, an amino group, a C alkoxy group, a C anoalkylamino group, or a di C alkylamino group;
  • Q forms a peptide chain consisting of 118 amino acids together with the NH— to be bound, and each residue of the amino acid contained in the peptide chain is independently a C alkyl Group, C Alkylcarbon group, C alkoxycarbol group, formyl group, c alkyls
  • Each amide bond in the peptide chain which may be substituted or protected by a group, is independently one or more c-alkyl groups and Z or c-alkylcarbonyl groups.
  • Each carboxyl group contained in the residue which may be substituted on the nitrogen atom, is independently substituted with 1 or 2 C alkyl groups !, or may be converted to an amide group.
  • R and R are each independently a hydrogen atom or a C alkyl group
  • Q may have 115 inserted oxygen atoms and Z or a carboxyl group.
  • [HA] indicates a bonding position with hyaluronic acid, and the linker forms an amide bond with a carboxyl group contained in the hyaluronic acid. ).
  • the said hyaluronic acid-methotrexate conjugate represented by these is provided.
  • a pharmaceutical composition containing the above-mentioned hyaluronic acid-methotrexate conjugate as an active ingredient, and a therapeutic agent for joint disease.
  • R and R each independently represent a hydroxy group, an amino group, a C alkoxy group
  • L is the formula ( ⁇ ')
  • Each residue of the amino acid formed and contained in the peptide chain is independently a C alkyl group
  • Alkylcarbonyl group C alkoxycarbonyl group, formyl group, C alkyls
  • Each amide bond contained in the peptide chain which may be substituted or protected by a group, is independently one or more c alkyl groups and ⁇ or c alkyl carbonyl groups.
  • Each carboxyl group contained in the residue which may be substituted on the nitrogen atom, is independently substituted with 1 or 2 C alkyl !, or may be converted to an amide group, You can
  • R and R are each independently a hydrogen atom or C alkyl
  • Q may have 115 inserted oxygen atoms and may have a ⁇ or carboxyl group. Or c alkylene which may be substituted by an alkoxycarboxy group. )so
  • the compound of the above formula (Va) or (Vb) is reacted with hyaluronic acid to convert the carboxyl group of the hyaluronic acid into an N-substituted amide group.
  • a method for producing a hyaluronic acid-methotrexate conjugate as described above comprising the step of:
  • the hyaluronic acid-methotrexate conjugate (HA-MTX conjugate) of the present invention is a novel compound.
  • a structure in which MTX is bound to a carboxyl group of HA via a linker containing a peptide chain is employed, whereby HA It has a pain relieving effect and also has a synovitis reducing effect of MTX. That is, it is considered that the HA-MTX conjugate of the present invention accumulates in the synovium, is taken into synovial cells, and expresses the medicinal effect of MTX in the cells.
  • the HA-MTX conjugate of the present invention when administered into the knee joint of OA or RA patients, it exhibits a pain-relieving action based on the properties of HA as in the case of conventional HA preparations, while synovial tissue It is gradually taken up into synovial cells while accumulating in the synovial cells, and dissociates MTX.
  • the dose of MTX can be significantly reduced as compared to oral administration, and the concern of systemic side effects, which is a problem with oral administration, can be eliminated.
  • both the HA preparation and MTX can exhibit pharmacological effects having different mechanisms of action at the administration site, a synergistic drug effect combining the two can be expected.
  • the HA-MTX conjugate of the present invention can safely exhibit the synovitis-inhibiting effect of MTX only in the administered joint, while having the aspect of HA as a joint injection. Nina !, an excellent remedy for joint diseases is provided.
  • the hyaluronic acid-methotrexate conjugate (HA-MTX conjugate) of the present invention is one in which methotrexate is bound to a carboxyl group of hyaluronic acid via a linker containing a peptide chain.
  • hyaluronic acid is not particularly limited. It is a disaccharide polymer consisting of glucuronic acid and N-acetyldarcosamine, having a molecular weight of 50 to 10 million daltons.
  • the salt of hyaluronic acid include, but are not limited to, sodium salt, potassium salt, calcium salt, aluminum salt, zinc salt, iron salt, ammonium salt, tetrabutylammonium salt and the like.
  • hyaluronic acid and salts thereof, and mixtures thereof include, for example, trade name Svenyl (registered trademark: Chugai Pharmaceutical Co., Ltd.); trade name Alz (registered trademark: manufacture Seikagaku Corporation, Sales Kaken Pharmaceutical Co., Ltd.); Trade name Opegan (registered trademark: Seikagaku Corporation, sales Santen Pharmaceutical Co., Ltd.).
  • hyaluronic acid derivative means a substance having an HA skeleton derived from HA.
  • hyaluronic acid derivative examples include, but are not limited to, a substance obtained by esterifying one or more carboxyl groups in HA (for example, benzyl esterified HA (trade name: Hyaff (registered trademark), Fidi a Advanced Biopolymers)), a substance obtained by crosslinking HA with formaldehyde and further polymerizing (for example, Synvisc (registered trademark), Biomatrix)), and one or more hydroxy groups in HA are acetylated. , Etc.
  • a substance obtained by esterifying one or more carboxyl groups in HA for example, benzyl esterified HA (trade name: Hyaff (registered trademark), Fidi a Advanced Biopolymers)
  • formaldehyde and further polymerizing for example, Synvisc (registered trademark), Biomatrix
  • the HA-MTX conjugate of the present invention must not impair the pain relieving action of HA. Therefore, it has been confirmed that the HA-MTX conjugate has a pain relieving action in clinical practice. It is preferable that the particle size and viscoelasticity are maintained. Considering that the larger the molecular weight, the higher the viscoelasticity and the more difficult the handling becomes, and the effect of HA as a carrier in the living body, specifically, the molecular weight of the HA-MTX conjugate is 600,600 It is preferable that the molecular weight of the HA—MTX conjugate is 800,000-6,000,000 daltons. It is more preferable that the molecular weight of the HA—MTX conjugate is 1,000,000-5,000,000 daltons. Is particularly preferred.
  • the molecular weight of the raw material HA and the molecular weight of the HA-MTX conjugate are measured by a method of calculating a viscosity average molecular weight from an intrinsic viscosity.
  • the conversion from the intrinsic viscosity ([7?]) To the viscosity average molecular weight (Mw) can be calculated using the following equation.
  • the peptide chain in the linker containing the peptide chain of the present invention is composed of amino acids.
  • the amino acids include glycine, alanine, serine, proline, phosphine, threonine,
  • ⁇ -amino acids such as stin, leucine, isoleucine, asparagine, aspartic acid, lysine, glutamine, glutamic acid, methionine, histidine, phenylalanine, arginine, tyrosine, and triptophan
  • ⁇ -amino acids having an alkyl side chain for example, Alanine or glycine substituted with a cycloalkyl group (for example, cyclopentylalanine, cyclohexylalanine, cyclohexyl glycine, etc.), or alanine or glycine substituted with an aryl group (eg, norvaline, norleucine, t-isocyanate
  • amino acids in the linker peptide of the present invention include those in which the residue is appropriately substituted or protected.
  • a functional group on the residue can be protected using a protecting group.
  • the protecting groups used for this purpose are well known in the art, some examples of which are described in other paragraphs of this specification. As a method for introducing each substituent and protecting group, particularly a protecting group, those well known in the art may be used.
  • the linker may be composed of only amino acids, or may contain a portion derived from a compound other than amino acids in or at the terminal of the peptide chain.
  • a linker in which a diamino compound such as alkylenediamine or oxaalkylenediamine or a dicarboxylic acid conjugate such as succinic acid is bonded to the inside or terminal of a peptide chain is also included in the linker.
  • a compound other than an amino acid is contained in or at the terminal of the peptide chain, and the linker binds to the carboxyl group of ⁇ and the carboxyl group of hyaluronic acid, alkylene diamine or oxaalkylene diamine is used.
  • ethylene diamine and 4,7,10 trioxa-1,13-tridecane diamine are present at the terminal of the peptide chain, preferably such diamino compounds as described above are present at the terminal of the peptide chain.
  • the amino acid constituting the peptide chain is not particularly limited, but from the viewpoint of affinity for the protease, the terminal that binds to the ⁇ ⁇ of the linker containing the peptide chain favored by the ⁇ -amino acid may be an a-amino acid. U, preferred.
  • the number of amino acids constituting the peptide chain is not particularly limited, but is typically 118, preferably 116, and particularly preferably 114.
  • Make the peptide chain Each residue of the resulting amino acid can be suitably substituted or protected independently by one or more groups.
  • groups include C alkyl groups, C alkylcarbonyl groups, C alkoxy groups
  • Reportol group for example, methoxycarbol group, ethoxycarbol group, (n or i-) propoxycarbol group, and (n-, s-, or t-) butoxycarbol group
  • Reportol group for example, methoxycarbol group, ethoxycarbol group, (n or i-) propoxycarbol group, and (n-, s-, or t-) butoxycarbol group
  • Formyl group C alkylsulfol group (eg, methanesulfol group, ethanesulfol group)
  • a force including a benzenesulfol group, (o—, m or p—) toluenesulfol group, and (1 or 2-) naphthalenesulfonyl group) is not limited thereto. Due to substitution or protection, for example, the carboxyl group contained in the residue may be a C alkoxycarbo-
  • a hydroxy group is a C alkoxy group or a C alkylcarbonyloxy group
  • the amino group is a C alkylamino group, a diCalkylamino group, a Calkylcarbonyl group.
  • the carboxyl group contained in the residue has one or two C
  • the residue may be substituted with a 1-6 kill group or converted into an amide group.
  • the residue contains a nitrogen-containing heterocyclic ring such as an indole ring / imidazole ring
  • the nitrogen atoms on the ring are each independently protected with a C alkyl group or a C alkylcarbonyl group.
  • the nitrogen atom contained therein can also be protected by a C alkyl group or a C alkylcarbonyl group.
  • protecting groups for the atom include, but are not limited to, those usually mentioned above, such as alkoxycarbonyl, formyl, C alkylsulfol, and Carylsulfol.
  • the one used can also be selected.
  • a thiol group is included in the residue,
  • the amide bond in the chain is also c alkyl group and Z or c alkylcarbonyl
  • the amino acid sequence constituting the peptide chain is not particularly limited, and examples thereof include the following.
  • an amino acid sequence containing the recognition site and Z or a cleavage site may be used.
  • Peptide chain consisting of one amino acid: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His ⁇ lie ⁇ Leu ⁇ Lys ⁇ Met ⁇ Phe ⁇ Pro, Ser ⁇ Thr ⁇ Trp ⁇ Tyr ⁇ Val, etc.
  • Peptide chain consisting of two amino acids: PhePhe, PheGly, PheLeu, TyrPhe, TrpPhe, PheTrp, PheTyr, GlyPhe, GlyGly, and the like.
  • PhePhe, PheGly G PhePhe, PheGly G
  • Peptide chain consisting of three amino acids: PheGlyGly, PheLeuGly, PhePheGly, AsnPhePhe, GlyPhePhe, LeuPhePhe, LeuAlaLeu, AlaValAla, GlyAlaPhe, GlyPheAla, GlylleAla, GlyllePal, GlylleAhe, GlylleAhe Preferably, AsnPhePhe.
  • Peptide chain consisting of four amino acids: GlyPheLeuGly, GlyPhePheLeu, GlyPhePhe Ala, GlyPheTyrAla, GlyPheGlyPhe ⁇ GlyPheGlyGly, GlyGlyPheGly, GlyGlyPheTyr, GlyGlyGuA, GlyGlyA, GlyGlyA, GlyGlyGu, Aly Preferably, GlyPheLeuGly 0
  • the linker in the present invention may have, for example, the structure represented by the above formula (X), in which case Q is one of eighteen as described above together with the NH- to be bound. From amino acids
  • Q is the force to insert one to five oxygen atoms or
  • Q include an ethane-1,2-diyl group, propane 1,3-diyl
  • butane 1,4-diyl group pentane 1,5-diyl group, hexane 1,6-diyl group, heptane 1,7-diyl group, octane 1,8-diyl group, nonane 1,9-diyl group, decane-1,10 Diyl group, 2-methylpropane 1,3-diyl group, 2-methylbutane 1,4-diyl group, 3-methylbutane 1,4-diyl group, 3-methylpentane 1,5-diyl group, 3-ethylpentane 1,5-diyl group, 2-methylhexane 1,6-diyl group, 3-methylhexane-1,6-diyl group, 4-methylheptane 1,7 diyl group, 3-oxapentane 1,5-diyl group, 3-oxahexane 1, 6-diyl group, 4-oxahexane 1,6-diyl group,
  • the HA-MTX conjugate of the present invention may take any binding mode as long as MTX is bound to the carboxyl group of HA via a linker containing a peptide chain. . That is, a linker containing a peptide chain is
  • the linker containing the peptide chain be bonded to the carboxyl group at position ⁇ and the carboxyl group at position ⁇ or ⁇ . More preferably, the linker is bonded to the carboxyl group at the a position of ⁇ . /.
  • a linker containing a peptide chain and a particularly preferable binding mode thereof are those in which the linker containing the peptide chain is diamino at the end of the peptide chain consisting of ⁇ -amino acid.
  • the compound exists, and the ⁇ terminus of the peptide chain is bonded to the ⁇ -carboxyl group of ⁇ by an acid amide bond, and the C terminus of the peptide chain is linked to the carboxyl group of ⁇ and an acid amide bond via a diamino compound.
  • methotrexate ( ⁇ ) moiety in the hyaluronic acid-methotrexate conjugate of the present invention may be modified by a known method in addition to modification with a linker.
  • a C alkyl group has 1 carbon atom.
  • 1-6 means a straight-chain or branched-chain alkyl group, for example, methyl group, ethyl group, ⁇ -propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group Group, t-butyl group, n-pentyl group, 3-methylbutyl Group, 2-methylbutyl group, 1-methylbutyl group, 1-ethylpropyl group, and n-hexyl group.
  • C alkylcarbonyl refers to a compound having 1 carbon atom.
  • 1-6 means a straight-chain or branched alkylcarboxy group, for example, acetyl group, propioyl group, 2-methylpropioyl group, 2,2-dimethylpropioyl And those having an alkyl group as defined above, such as an alkyl group, as an alkyl moiety.
  • C alkoxy is a straight-chain or branched-chain alcohol having 116 carbon atoms.
  • xy group includes those having an alkyl group as defined above, such as a methoxy group, an ethoxy group, and an n-propoxy group, as an alkyl moiety.
  • C alkylamino has 1 carbon atom.
  • 1 to 16 means a straight-chain or branched-chain alkylamino group, including those having an alkyl group as defined above, such as a methylamino group, an ethylamino group, and an n-propylamino group.
  • di C alkylamino has 1 carbon atom.
  • 1-6 means a straight or branched dialkylamino group of 16 and may be the same or different, for example, dimethylamino group, ethylmethylamino group, ethylamino group, ethylpropylamino group, etc. Those having the alkyl group defined above as the alkyl moiety are included.
  • di C alkylene is a straight or branched chain having 2 to 20 carbon atoms.
  • alkylene group includes, for example, an ethylene group, a propylene group, a butylene group, an otaylene group, a decalene group and the like.
  • the C alkoxycarboyl group is a straight-chain or branched-chain having 16 carbon atoms.
  • a C alkylsulfur group is a group having 1 carbon atom.
  • 1-6 Means a straight-chain or branched alkylsulfol group of 1-6, such as a methanesulfol group, an ethanesulfol group, an n-propanesulfol group or the like. Includes those that have
  • the acylation includes C alkylcarbonylation; And the benzoyl group is C alkyl, halogen atom, C alkoxy, etc.
  • the binding rate of MTX in the HA-MTX conjugate of the present invention is preferably in a range that exhibits a medicinal effect and does not cause any concern about side effects.
  • the binding ratio of MTX in this specification is calculated by the following equation.
  • the binding rate of MTX is not particularly limited, but is preferably 0.5% or more, and more preferably 1.0% or more, from the viewpoint of onset of drug efficacy.
  • the binding rate is preferably less than 10% in order to limit the effect of MTX to the administration area and reduce the systemic side effects of MTX.
  • the MTX conjugation rate is 0 in consideration of insolubility and inconvenience in synthesis. More preferably, it is 5% or more and less than 4.5%. It is particularly preferred that it is 10% or more and less than 4.5%.
  • the HA-MTX conjugate of the present invention is preferably a pharmaceutically acceptable salt in consideration of its ability to exist as a salt and its use.
  • a pharmaceutically acceptable salt for example, sodium salt, potassium salt, calcium salt, aluminum salt, zinc salt, iron salt, ammonium salt, tetrabutylammonium salt and the like can be mentioned.
  • the conjugate can be obtained by binding HA, a linker containing a peptide chain, and MTX in an appropriate order.
  • a route for introducing MTX after constructing a linker containing an HA-peptide chain, and a route for constructing a linker containing an MTX-peptide chain and then introducing it into HA may be mentioned.
  • Each of these coupling reactions is carried out at a temperature of -20 ° C to 40 ° C for several minutes using a solvent, a condensing agent and, if necessary, a reaction promoting additive used in a conventional acid amide bonding reaction. This can be done by reacting for several days.
  • Examples of the solvent include water, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, dioxane, methanol, ethanol , Dichloromethane, chloroform, and the like, and mixtures thereof.
  • Examples of the condensing agent include carbodiimide compounds such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, and benzotriazole-1-yloxy-tris (dimethylamino) phospho-.
  • reaction-promoting additive examples include N-hydroxysuccinimide, N-hydroxy-5-norbornene-2,3-carboximide, 1-hydroxybenzotriazole, 1-hydroxy-7-azabenzotriazole, and 3,4- Active ester agents such as dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazole, triethylamine, N-methylmorpholine, N, N-diisopropylethylamine, tris [2- (2-methoxyethoxy) ) Ethyl] amine and the like.
  • a functional group such as an amino acid side chain
  • a protecting group commonly used in ordinary organic synthesis can be used as necessary.
  • a route of constructing a linker containing an MTX peptide chain and then introducing the linker into HA is preferable from the viewpoint of the control of the conjugation reaction.
  • the solvent water, N, N-dimethylformamide, tetrahydrofuran, ethanol, and a mixed solution of water and tetrahydrofuran, which are preferable, and a mixed ratio of 1: 1 are most preferable.
  • the condensing agent is preferably a water-soluble condensing agent, most preferably 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, the amount of which is 0.1 equivalent to the carboxyl group in HA. Most preferred.
  • a reaction promoting additive 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazole is most preferred as an active ester agent. 0.1 equivalent to carboxyl group is most preferred.
  • 0.1 equivalent to carboxyl group is most preferred.
  • As a pH adjuster tris [2- (2-methoxyethoxy) ethyl] amine is most preferred, and the pH at the time of the reaction is most preferably 6-7.
  • the reaction temperature is preferably 10 ° C to 30 ° C, more preferably 0 ° C to 15 ° C.
  • the reaction time is preferably 1 hour to 48 hours, most preferably 12 hours to 24 hours.
  • joint disease specifically refers to articular cartilage defect, osteoarthritis (clear (Including primary with no apparent cause and secondary with a causative disease), shoulder periarthritis, rheumatoid arthritis, reactive arthritis, viral arthritis, pyogenic arthritis, tuberculous arthritis, neurology
  • diseases such as osteoarthritis, and further includes joint pain in these diseases (for example, knee joint pain in rheumatoid arthritis).
  • agent for treating joint disease includes a drug used for the prevention of the disease used for the treatment of the joint disease alone, and a drug used for suppressing the progression of the disease state (preventing deterioration and maintaining the status quo). Include.
  • the HA-MTX conjugate of the present invention is prepared by adding an effective amount of a pharmaceutically acceptable carrier, excipient, disintegrant, lubricant, binder, fragrance, coloring agent, and the like to an effective amount thereof. It can be used as a composition.
  • the pharmaceutical composition containing the HA-MTX conjugate of the present invention as an active ingredient is preferably used as a therapeutic agent for joint diseases, and among them, it is particularly preferable to be used as a preparation for local administration to joints.
  • the HA-MTX conjugate of the present invention is formulated as a therapeutic agent for joint diseases, it is not particularly limited.
  • the HA-MTX conjugate is dissolved in a physiological saline or a physiological saline phosphate to a desired concentration and injected.
  • the solution may be adjusted to a desired pH by adding an acid or a base.
  • the solution is adjusted to a desired salt concentration by adding a monovalent metal salt such as a sodium salt and a potassium salt, and an inorganic salt such as a divalent metal salt such as a magnesium salt, a calcium salt, and a manganese salt. Is also good.
  • the HA-MTX conjugate of the present invention may be distributed in a form in which it is pre-filled in a syringe such as a disposable syringe.
  • a syringe such as a disposable syringe.
  • the HA-MTX conjugate of the present invention has a solution concentration of 0.01% to 10% w / v, preferably 0%. 1% -2.0% w / v solution concentration, particularly preferably 0.5% -1.5% w / v solution concentration, should be administered to the patient at a dose of 13mL per dose. No. However, this dose may be appropriately increased or decreased depending on the instructions of a physician, the target patient, or the type and severity of the disease, or the molecular weight of the HA-MTX conjugate, etc., as appropriate.
  • the HA-MTX conjugate of the present invention when intra-articularly administered to an arthritis model in which a pathological condition develops in the knee joint, reduces synovitis that is not seen in HA, as described in the Examples below. Develops a negative effect. Furthermore, the present inventors have found that the action of reducing synovial inflammation is higher than that of HA-MTX conjugate having a low molecular weight (molecular weight of 300,000 daltons). It was found that an extremely high effect was confirmed for the MTX conjugate.
  • FIG. 1 shows the results of measuring the viscoelasticity of each test substance and a control (hyaluronic acid with a molecular weight of 1.9 million and hyaluronic acid with a molecular weight of 800,000).
  • Fig. 2 shows mBS in each test substance administration group and control group (HA and vehicle).
  • FIG. 3 shows the AUC of the graph of each test substance administration group and control group in FIG.
  • Fig. 4 shows the time course of the width of the knee joint immediately after the induction of collagen arthritis in the administration group of Example 1 and the control group (HA and Saline).
  • the left figure shows the time course of the right knee joint at the administration site, and the right figure shows the time course of the left knee joint at the non-administration site.
  • the graph shows the standard error of the mean.
  • FIG. 5 shows the arthritis of the collagenase OA model in the administration group of Example 1 and the control group (HA and Saline) as a time course of knee swelling from immediately after induction to 20 days after induction.
  • the graph shows the standard error of the mean.
  • FIG. 6 shows the degree of cartilage degeneration of the condyle of the lower leg in the collagenase OA model in the group administered with Example 2-2 and the saline group.
  • the graph shows the standard error of the mean.
  • N-carbobenzoxy-L-phenylalanine (Cbz-Phe: 7.16 g, 25.4 mmol)
  • Nt butoxycarbo-luoethylenediamine hydrochloride (5.00 g, 25.4 mmol)
  • 1-hydroxybenzotriazole hydrate (HOBT: 4.28 g, 28. Ommol)
  • N-methylmorpholine NMM: 3.07 mL, 28. Ommol
  • the compound lb (11.lg, 18.9 mg) was dissolved in 800 mL of methanol, 50 mL of DMF and 500 mL of THF, 1.00 g of 10% palladium on carbon was added, and the mixture was stirred at room temperature under a hydrogen atmosphere for 1 day. After filtering off the catalyst from the reaction mixture, the reaction mixture was concentrated under reduced pressure.
  • N-methylmorpholine NMM, 55; zL, 0.499 mmol
  • EDC 105 mg ⁇ 0.547 mmol
  • ⁇ -NMR 270MHz, DMSO-d
  • N-carbobenzoxy-L-phen-alanine (Cbz-Phe: 852 mg, 2.85 mmol) and N-t-butoxycarbo-lu 4,7,10 trioxa-1,13 tridecandiamine (760 mg, 2.37 mmol) And 1-hydroxybenzotriazole hydrate (HOBT: 363 mg, 2.37 mmol) were dissolved in 6 mL of dimethylformamide (DMF), and stirred under ice-cooling with stirring for 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC: 546mg, 2.85mmol) Stirred at warm for 2 days.
  • DMF dimethylformamide
  • the compound 2b (500 mg, 0.668 mmol) was dissolved in 10 mL of methanol, 150 mg of 10% palladium on carbon was added, and the mixture was stirred under a hydrogen atmosphere at room temperature for 1 day. After filtering off the catalyst from the reaction mixture, the reaction mixture was concentrated under reduced pressure. This residue, N-carbobenzoxy L-glutamic acid ⁇ -methyl ester (Cbz-Glu (OMe): 217 mg, 0.734 mmol) and HOBT (102 mg, 0.668 mm ol) was dissolved in 5 mL of DMF, EDC (141 mg, 0.734 mmol) was added with stirring under ice-cooling, and the mixture was stirred at room temperature for 16 hours.
  • Cbz-Glu (OMe) N-carbobenzoxy L-glutamic acid ⁇ -methyl ester
  • HOBT 102 mg, 0.668 mm ol
  • the compound 2c (514 mg, 0.576 mmol) was suspended in 30 mL of methanol, 100 mg of 10% palladium on carbon was added, and the mixture was stirred at room temperature under a hydrogen atmosphere for 1.5 hours. After filtering off the catalyst from the reaction mixture, the reaction mixture was concentrated under reduced pressure. This residue, 4 [N- (2,4-diamino-6-pteridinylmethyl) -N-methylamino] benzoic acid: 281 mg, 0.864 mmol) and HOBT (132 mg, 0.864 mmol) are dissolved in 5 mL of DMF and cooled with ice. EDC (166 mg, 0.864 mmol) was added with stirring, and the mixture was stirred at room temperature for 2 days.
  • N-t butoxycarbo-l-oxane was replaced with N-t butoxycarbo-l-ox-1,5-pentane instead of trioxane-1,13-tridecandiamine.
  • n-diamine 52 mg of the title compound was obtained as a yellow powder.
  • Example 12 Title of yellow powder was obtained in the same manner as in Example 12 except that N-carbobenzoxyglycine was used in place of N-carbobenzoxy L-phenylalanine in the step of (a). 528 mg of the product were obtained.
  • Nt butoxycarbo-loo 4,7,10 Trioxa-1,13-tridecanediamine was replaced by Nt butoxycarbo-2,4,7-dioxa-1, 10 Decanediamine was used to obtain 300 mg of the title compound as a yellow powder.
  • Example 12 The title of a yellow powder was obtained in the same manner as in Example 1-2 except that N-carbobenzoxy L-proline was used in place of N-carbobenzoxy L-phenalanine in the step (a). 382 mg of the dagger was obtained.
  • Example 12 The title compound as a yellow powder was obtained in the same manner as in Example 1-2, except that N-carbobenzoxy-alanine was used in place of N-carbobenzoxy L-phenalanine in the step of (a). 180 mg were obtained.
  • Example 11 The title compound as a yellow powder was obtained in the same manner as in Example 1-1 except that N-carbobenzoxy-alanine was used in place of N-carbobenzoxy L-phenalanine in the step of 1 (a). 194 mg were obtained.
  • Example 12 (b) In the same manner as in Example 12 except that the step of Example 12 (b) was omitted, 496 mg of the title compound as yellow powder was obtained.
  • Example 1-2 In the same manner as in Example 1-2, 312 mg of the title compound was obtained as a yellow powder using ⁇ -carbobenzoxy-L-glutamic acid a-methyl ester instead of N-carbobenzoxy-L-glutamic acid ⁇ -methylester.
  • Example 1-5 80 mg of the title compound was obtained as a yellow powder using ⁇ -carbobenzoxy-L-glutamic acid a-methyl ester instead of N-carbobenzoxy-L-glutamic acid ⁇ -methylester.
  • N-carbobenzoxy-D-phenylalanine was used in place of N-carbobenzoxy-L-phenylalanine to give the title compound as a yellow powder in an amount of 85 mg.
  • the peptide chain was extended according to a usual peptide synthesis method, and 145 mg of the title compound was obtained as a yellow powder in the same manner as in Example 12.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • the solution was neutralized by adding 1N hydrochloric acid (20 ml), and a solution prepared by dissolving sodium salt (9 g) in ultrapure water (45 ml) was added. Then, ethanol (600 ml) was added. Ethanol was precipitated by dropping, and the precipitate was separated by centrifugation. The precipitate was dissolved in ultrapure water (40 ml) to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by gel filtration using hyaluronic acid as a standard substance was about 1.95 million.
  • the binding ratio of MTX in the obtained conjugate was 2.1%, as calculated by measuring ultraviolet absorption (259 nm).
  • This precipitate is washed with a phosphate buffer (2 mM sodium phosphate, 154 mM sodium chloride, sodium chloride). , PH 7.2) (40 mL) to give a sterile aqueous solution of the title HA-MTX conjugate.
  • a phosphate buffer (2 mM sodium phosphate, 154 mM sodium chloride, sodium chloride). , PH 7.2) (40 mL) to give a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by gel filtration using hyaluronic acid as a standard substance was about 1.86 million. Further, the binding ratio of MTX in the obtained conjugate was 2.1% as calculated by measuring ultraviolet absorption (259 nm).
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 1 (0.031 mmol) obtained in Example 1-1 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.28 million, and the binding ratio of MTX was 1.9%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.18 million, and the binding ratio of MTX was 1.9%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 1 (0.031 mmol) obtained in Example 1-1 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.19 million, and the binding ratio of MTX was 2.2%.
  • This aqueous solution was purified in the same manner as in Example 2-1, and the title HA-MTX conjugate was sterilized. An aqueous solution was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.06 million, and the binding ratio of MTX was 2.3%.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • the solution was neutralized by adding 1N hydrochloric acid (20 ml), and a solution prepared by dissolving sodium salt (9 g) in ultrapure water (45 ml) was added. Then, ethanol (600 ml) was added. Ethanol was precipitated by dropping, and the precipitate was separated by centrifugation. The precipitate was dissolved in ultrapure water (40 ml) to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the gel filtration method using hyaluronic acid as a standard substance was about 2.32 million.
  • the MTX binding rate of the obtained conjugate was 0.6%, as calculated by measuring ultraviolet absorption (259 nm).
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.17 million, and the binding ratio of MTX was 0.5%.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • the solution was neutralized by adding 1N hydrochloric acid (20 ml), and a solution prepared by dissolving sodium salt (9 g) in ultrapure water (45 ml) was added. Then, ethanol (600 ml) was added. Ethanol was precipitated by dropping, and the precipitate was separated by centrifugation. The precipitate was dissolved in ultrapure water (40 ml) to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the gel filtration method using hyaluronic acid as a standard substance was about 2.32 million.
  • the binding ratio of MTX in the obtained conjugate was 1.1%, as calculated by measuring ultraviolet absorption (259 nm).
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2,230,000, and the binding ratio of MTX was 1.1%.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • the solution was neutralized by adding 1N hydrochloric acid (20 ml), and a solution prepared by dissolving sodium salt (9 g) in ultrapure water (45 ml) was added. Then, ethanol (600 ml) was added. Ethanol was precipitated by dropping, and the precipitate was separated by centrifugation. The precipitate was dissolved in ultrapure water (40 ml) to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by gel filtration using hyaluronic acid as a standard substance was about 2.27 million.
  • the MTX binding rate of the obtained conjugate was 1.4%, as calculated by measuring ultraviolet absorption (259 nm).
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.09 million, and the binding ratio of MTX was 1.3%.
  • Hyaluronic acid sodium salt 500 mg, molecular weight: about 2.3 million added to tetrahydrofuran (THF) ( 10 ml) was added to a suspension prepared by adding 3 -hydroxy-3,4-dihydro-4-oxo-1, 2,3-benzotriazine (HOOBt) (0.125 mmol) and the compound obtained in Example 11 1 (0.063 mmol) dissolved in an equal mixture of ultrapure water and THF (20 ml) was added, and then tris [2- (2-methoxyethoxy) ethyl] amine (0.063 mmol) was added.
  • THF tetrahydrofuran
  • the solution was neutralized by adding 1N hydrochloric acid (20 ml), and a solution prepared by dissolving sodium salt (9 g) in ultrapure water (45 ml) was added. Then, ethanol (600 ml) was added. Ethanol was precipitated by dropping, and the precipitate was separated by centrifugation. The precipitate was dissolved in ultrapure water (40 ml) to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by gel filtration using hyaluronic acid as a standard substance was about 2.05 million.
  • the MTX binding rate of the obtained conjugate was calculated by measuring ultraviolet absorption (259 nm), and was 3.9%.
  • the aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.91 million, and the binding ratio of MTX was 3.8%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.74 million, and the binding ratio of MTX was 4.4%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 2 (0.031 mmol) obtained in Example 1-2 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.11 million, and the binding ratio of MTX was 1.6%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.98 million, and the binding ratio of MTX was 1.4%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with compound 3 (0.031 mmol) obtained in Example 1-3 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.83 million, and the binding ratio of MTX was 1.8%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.55 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 4 (0.031 mmol) obtained in Example 1-4 to give the title compound. An aqueous solution of the HA—MTX conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 1.89 million, and the binding ratio of MTX was 1.6%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1,620,000, and the binding ratio of MTX was 1.6%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 5 (0.031 mmol) obtained in Example 1-5 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.92 million, and the binding ratio of MTX was 1.9%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.62 million, and the binding ratio of MTX was 2.0%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 6 (0.031 mmol) obtained in Example 1-6 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.72 million, and the binding ratio of MTX was 2.0%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.49 million, and the binding ratio of MTX was 1.9%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 7 (0.031 mmol) obtained in Example 1-7 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.14 million, and the binding ratio of MTX was 1.4%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.96 million, and the binding ratio of MTX was 1.2%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 8 (0.031 mmol) obtained in Example 1-8 to give the title compound.
  • HA—MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.89 million, and the binding ratio of MTX was 1.4%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.72 million, and the binding ratio of MTX was 1.4%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 800,000) was reacted with compound 2 (0.031 mmol) obtained in Example 1-2 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 830,000, and the binding ratio of MTX was 1.4%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 800,000, and the binding ratio of MTX was 1.4%.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • the solution was neutralized by adding 1N hydrochloric acid (20 ml), and a solution prepared by dissolving sodium salt (9 g) in ultrapure water (45 ml) was added. Then, ethanol (600 ml) was added. Ethanol was precipitated by dropping, and the precipitate was separated by centrifugation. The precipitate is treated with Otsuka saline (4 OmL) to give an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the gel filtration method using hyaluronic acid as a standard substance was about 830,000.
  • the MTX binding rate of the obtained conjugate was 0.5% as calculated by measuring ultraviolet absorption (259 nm).
  • the aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 810,000, and the binding ratio of MTX was 0.5%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 760,000, and the binding ratio of MTX was 3.4%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 9 (0.031 mmol) obtained in Example 1-9 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.99 million, and the binding ratio of MTX was 1.5%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.86 million, and the binding ratio of MTX was 1.4%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 10 (0.031 mmol) obtained in Example 1-10 to give the title compound.
  • An aqueous solution of the HA—MT X conjugate was obtained.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.44 million, and the binding ratio of MTX was 1.8%.
  • Example 2-1 hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) ) was reacted with the compound 11 (0.031 mmol) obtained in Example 111 to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.73 million, and the coupling ratio of MTX was 1.6%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.5 million, and the binding ratio of MTX was 1.6%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 12 (0.031 mmol) obtained in Example 1-12 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.5 million, and the coupling ratio of MTX was 2.3%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.39 million, and the binding ratio of MTX was 2.3%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was allowed to react with the i-conjugated compound 13 (0.031 mmol) obtained in Example 1-13 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.56 million, and the coupling ratio of MTX was 2.0%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.4 million, and the binding of MTX The rate was 2.2%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 14 (0.031 mmol) obtained in Example 1-14 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.66 million, and the coupling ratio of MTX was 1.6%.
  • the aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.52 million, and the binding ratio of MTX was 1.6%.
  • Example 2-1 the sodium salt of hyaluronic acid (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 15 (0.031 mmol) obtained in Example 1-15 to give the title compound.
  • An aqueous solution of the HA—MT X conjugate was obtained.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.52 million, and the binding ratio of MTX was 1.5%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 16 (0.031 mmol) obtained in Example 1-16 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.09 million, and the coupling ratio of MTX was 2.3%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.98 million, and the binding ratio of MTX was 2.3%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 17 (0.031 mmol) obtained in Example 1-17 to give the title HA An aqueous solution of the MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.13 million, and the coupling ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.79 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 18 (0.031 mmol) obtained in Example 1-18 to give the title HA An aqueous solution of the MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.92 million, and the coupling ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1,620,000, and the binding ratio of MTX was 1.7%.
  • Example 2-1 hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) ) was reacted with the conjugated compound 19 (0.3 mmol) obtained in Example 1-19 to obtain an aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.31 million, and the binding ratio of MTX was 2.1%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.02 million, and the binding ratio of MTX was 2.1%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 20 (0.031 mmol) obtained in Example 1-20 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.01 million, and the coupling ratio of MTX was 1.5%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.83 million, and the binding ratio of MTX was 1.5%.
  • the underlined part is a minor signal, from which a mixture of a-form and ⁇ -form was estimated. [Example 2-30]
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 21 (0.031 mmol) obtained in Example 121 to give the title HA—MT X An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.26 million, and the coupling ratio of MTX was 2.1%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.06 million, and the binding of MTX The rate was 2.1%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 22 (0.031 mmol) obtained in Example 1-22 to give the title HA — An aqueous solution of MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.9 million, and the binding ratio of MTX was 1.6%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.76 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 23 (0.031 mmol) obtained in Example 1-23 to give the title HA — An aqueous solution of MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.87 million, and the coupling ratio of MTX was 1.9%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.39 million, and the binding ratio of MTX was 1.9%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 24 (0.031 mmol) obtained in Example 1-24 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.86 million, and the coupling ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.65 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 25 (0.031 mmol) obtained in Example 1-25 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.89 million, and the coupling ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.47 million, and the binding ratio of MTX was 1.6%.
  • Example 2-1 Production of ⁇ - ⁇ -Val-NHC HO NH— HA
  • sodium hyaluronate 500 mg, molecular weight: about 2.3 million
  • the i-conjugated product 26 0.031 mmol obtained in Example 1-26
  • An aqueous solution of the HA—MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.87 million, and the coupling ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.56 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 27 (0.031 mmol) obtained in Example 1-27 to give the title compound. An aqueous solution of the HA—MTX conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 1.91 million, and the coupling ratio of MTX was 1.2%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.62 million, and the binding ratio of MTX was 1.2%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 28 (0.031 mmol) obtained in Example 1-28 to give the title compound.
  • HA MT
  • An aqueous solution of the X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.67 million, and the coupling ratio of MTX was 1.5%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.52 million, and the binding ratio of MTX was 1.6%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 29 (0.031 mmol) obtained in Example 1-29 to give the title compound. An aqueous solution of the HA—MTX conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 1.91 million, and the coupling ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.43 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 30 (0.031 mmol) obtained in Example 1-30 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 2.09 million, and the coupling ratio of MTX was 1.5%.
  • the aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.88 million, and the binding ratio of MTX was 1.5%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with compound 31 (0.031 mmol) obtained in Example 131 to give the title HA—MT X An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.89 million, and the binding ratio of MTX was 2.0%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.76 million, and the binding ratio of MTX was 2.0%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 32 (0.031 mmol) obtained in Example 1-32 to give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.96 million, and the coupling ratio of MTX was 2.1%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.8 million, and the binding ratio of MTX was 2.1%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 33 (0.031 mmol) obtained in Example 1-33 to give the title HA — An aqueous solution of MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.9 million, and the binding ratio of MTX was 1.4%.
  • Example 2-1 This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.72 million, and the binding ratio of MTX was 1.5%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated compound 34 (0.031 mmol) obtained in Example 1-34 to give the title HA — An aqueous solution of MT X conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.87 million, and the binding ratio of MTX was 1.7%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.65 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 35 (0.031 mmol) obtained in Example 1-35 to give the title compound. An aqueous solution of the HA—MT X conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 1.79 million, and the coupling ratio of MTX was 1.6%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.49 million, and the binding ratio of MTX was 1.7%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 36 (0.031 mmol) obtained in Example 1-36 to give the title compound. An aqueous solution of the HA—MT X conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 1.48 million, and the coupling ratio of MTX was 1.4%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.35 million, and the binding ratio of MTX was 1.4%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 2.3 million) was allowed to react with the i-conjugated product 37 (0.031 mmol) obtained in Example 1-37, to thereby give the title compound.
  • An aqueous solution of the HA—MTX conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.6 million, and the binding ratio of MTX was 1.4%.
  • This aqueous solution was purified by the same method as in Example 2-1 and the title HA-MTX conjugate was sterilized. An aqueous solution was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.41 million, and the binding ratio of MTX was 1.3%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugated product 38 (0.031 mmol) obtained in Example 1-38 to give the title compound. An aqueous solution of the HA—MT X conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 2.1 million, and the coupling ratio of MTX was 1.3%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.78 million, and the binding ratio of MTX was 1.2%.
  • Example 2-1 In the same manner as in Example 2-1, hyaluronic acid sodium salt (500 mg, molecular weight: about 2.3 million) was reacted with the i-conjugate 39 (0.031 mmol) obtained in Example 1-39 to give the title compound. An aqueous solution of the HA—MTX conjugate was obtained. The molecular weight determined by the same method as in Example 2-1 was about 2.06 million, and the binding ratio of MTX was 1.4%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 1.85 million, and the binding ratio of MTX was 1.3%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 320,000) was reacted with compound 2 (0.031 mmol) obtained in Example 1-2 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 330,000, and the binding ratio of MTX was 1.1%.
  • Example 2-1 sodium hyaluronate (500 mg, molecular weight: about 340,000) was reacted with compound 1 (0.031 mmol) obtained in Example 1-1 to give the title HA-MTX An aqueous solution of the conjugate was obtained.
  • the molecular weight determined by the same method as in Example 2-1 was about 340,000, and the binding ratio of MTX was 2.0%.
  • This aqueous solution was purified in the same manner as in Example 2-1 to obtain a sterile aqueous solution of the title HA-MTX conjugate.
  • the molecular weight determined by the same method as in Example 2-1 was about 340,000, and the binding ratio of MTX was 1.9%.
  • Example 2-1-11-2-50 The HA-MTX conjugate of the present invention obtained in Example 2-1-11-2-50 above is summarized in the following table.
  • Example 2- 1 8 -Phe-Gl -NH- C H 2 0 3 - MH- 1.5 199 million in 1.4 1.86 million
  • Example 2- 1 9 a -Phe- Gly-NH- H 2 0 2 - NH - NT 1.8 1.44 million
  • example 2- 20 a -Phe-Gly-NH -CgH!
  • HA-MTX conjugate of the present invention was examined.
  • the main focus of rheumatoid arthritis (RA) is the synovial tissue.
  • RA rheumatoid arthritis
  • One of its features is that synovial cells abnormally proliferate to form granulation tissue (pannus) and destroy cartilage and bone of joints. It is known. Secondary synovitis is also seen in osteoarthritis (OA).
  • synovitis causes inflammatory symptoms such as joint swelling, pain and warmth that are characteristic of knee OA ( Edited by Nobuyuki Takasaka et al., "Bone and Joint Diseases” 2003, Asakura Shoten). Therefore, a compound that inhibits the proliferation of synovial cells enhanced by TNF-a, which is an inflammatory site power-in, suppresses the progression of the pathology of RA and OA, and is a therapeutic drug therefor.
  • HA-MTX conjugate of Example 2 (Table 2) was used as a test substance.
  • HF LS (CA40405, Lot No .: 1413, 1493) is CELL APPLICATIONS INS. We purchased and used.
  • HFLS was seeded on a 96-well plate (Falcon) at 5000 cellsZwell and 5% FBS, lx
  • the cells were cultured for 3 hours in an antibiotic-antimycotic (GIBCO) iscove s modified Dulbecco s medium (IMD M) medium. After cell attachment, TNF- ⁇ (final concentration lOngZmL) and HA-MTX conjugate at each concentration were added and cultured for 5 days. Two days before the end of the culture, [ 3 H] -deoxyperidine (MORAVEK) of 37 kBqZwe11 was added, and the amount of [] deoxyperidine incorporated into the cells (radioactivity) was measured using a scintillation counter. The cells were collected by detaching the cells with 0.05% trypsin and 0.2% EDTA.
  • GEBCO antibiotic-antimycotic
  • IMD M iscove s modified Dulbecco s medium
  • Table 2 shows the IC values of the HA-MTX conjugate in HFLS.
  • Example 2-20 -Phe-Gl -NH-CaH,-WH- 1.6 1.5 million 1.8E-05
  • Example 2-2 -Phe-Gl -NH-CgH !? 0 2 NH-2.3 U90,000 8.3 -Q7 example 2- 2 2 a -P e-Gl -NH-C 4 H s O-NH- 2.2 140 million in 3.0E-06
  • example 2- 2 3 a -Phe-Pro- NH-C 1 o H 2 O 0 3 -MH- 1.6 1.52 million
  • Example 2- 25 a -Phe- / 3Ala-NH -C 2 H 4 -NH- 2.3 million in 2.9E-07
  • Example 2-2 6 a - Phe-NH-C 1 o H 2 O 0 3 -NH- 1.7 ⁇ 9 ten thousand 1.7E-06 example 2- 2 7 a -1 l.
  • the in vivo synovitis inhibitory effect of the HA-MTX conjugate of the present invention was evaluated by the inhibitory effect of knee methylation swelling in a rat methylated bovine serum albumin (mBSA) -induced monoarthritis model. evaluated.
  • the mBSA-induced arthritis model used in this experimental example is widely used as an antigen-induced arthritis model, and is known to induce synovitis (Sven E. Andersson, et al, The Journal of From Rheumatology (1998) 25: 9, 1772-7), the inhibitory effect of knee joint swelling in vivo observed in this model can be considered to be an inhibitory effect on synovial inflammation.
  • the compound of the present invention, which suppresses synovitis in vivo is useful as a therapeutic agent for joint diseases associated with synovitis (such as RA and OA).
  • the animals used were LEWZCrj rats (Charles Japan's Riva-1, 6 weeks old, male). Twenty-one and fourteen days before the induction of arthritis, 0.5 mL of an emulsion prepared with 2 mgZmL of mBSA (Calbiochem) aqueous solution and an equal amount of Freund's complete adjuvant (Difco) was subcutaneously administered to the flank of rats. Arthritis was induced by injecting 50 L of a 2 mg ZmL aqueous solution of mBSA into the right knee joint. The left knee joint was untreated and served as a control for each individual. The test substance (sterile water solution) and the control drug, hyaluronic acid, were administered 50 L intra-articularly to the right knee joint 7 days and 1 day before and 7 days after induction of arthritis.
  • mBSA Calbiochem
  • Freund's complete adjuvant Freund's complete adjuvant
  • the knee joint swelling was measured by measuring the width of both knee joints with a vernier caliper, and the left-right difference (right knee diameter left knee diameter) was defined as knee joint swelling.
  • the width of the knee joint is measured twice a week from immediately before the induction of arthritis to two weeks later, and the change over time is used to determine the AUC (Area Under the Curve; also referred to as the area under the curve. The area under the objective curve is shown.)
  • the average value and standard deviation of AUC were calculated for each measurement, and a t-test was performed between the test substance-administered group and the HA-administered group, and a significant difference was judged to be significant when the risk factor was less than 5%. .
  • Statistical analysis used SAS version 6.12 (SAS Institute Japan).
  • the AUC of each test substance was calculated as a relative value (% of control) of each test substance using the HA administration group as a control.
  • Table 3 shows the results of examining the effect of each HA-MTX conjugate of the present invention by the above method.
  • the HA-MTX conjugate of the present invention inhibits the proliferation of human synovial cells by TNF- ⁇ stimulation in vitro, which is not observed in HA, and develops arthritis in vivo. It has been found to have an effect of reducing synovitis in some models. In addition, in the arthritis model, MTX alone or a mixture of HA and MTX did not sufficiently reduce synovitis, whereas the HA-MTX conjugate had a strong synovitis reduction. It was clear that it was working.
  • HA-MTX conjugate The in vivo synovitis inhibitory effect of the HA-MTX conjugate was evaluated using a rat collagen arthritis model (Kane et al., “Joint Surgery” (1998), Vo 1.17, No. 1), which is widely used as a model for rheumatoid arthritis (RA). 2, 111-21).
  • the compound of the present invention that suppresses inflammation in this model is useful for treating autoantigen-induced immune diseases represented by RA.
  • DAZSlc rats Japan SLC, Inc., 11 weeks old, female were used as animals. 1.5 mg / mL of ⁇ ⁇ type collagen (collagen technology workshop) in 0.1 mol of OlmolZL acetic acid aqueous solution Then, an equal amount of Freund's incomplete adjuvant (Difco) was added thereto to prepare an emulsion. A total of 0.4 mL of this emulsion was applied to the skin at the back of the rat at a total of 0.4 mL / force to induce arthritis.
  • Freund's incomplete adjuvant Difco
  • test substance sterile aqueous solution
  • control drugs hyaluronic acid (HA) and saline (Saline) were administered only once every 5 days from the day of sensitization, 50 L only into the right knee joint.
  • the left knee joint was untreated.
  • a physiological saline was administered into the right knee joint of an animal (Normal) that did not induce arthritis.
  • Fig. 4 shows the results of examining the effect of the HA-MTX conjugate of the present invention by the above method.
  • the HA-MTX conjugate of the present invention significantly suppressed the width of the swollen joint due to the induction of collagen arthritis, as compared to the HA-administered group. , About the same level as the normal group. This effect was observed only at the site where the HA-MTX conjugate was administered (right knee), and was not observed at the site where the HA-MTX conjugate was not administered (left knee). As described above, it has become clear that the present compound can exert an action limited to the administration site.
  • the in vivo synovitis inhibitory effect of the HA-MTX conjugate was evaluated in collagenase-induced OA model rats.
  • the collagenase-induced OA model is a model in which collagen is injected directly into a joint to directly digest collagen in cartilage tissue and induce inflammation in the joint.
  • This model shows pathological changes similar to human OA pathology, such as articular cartilage degeneration and synovitis, and is useful for evaluating OA therapeutics (Takanori K, et al, Osteoarthritis and Cartilage (1998) 6 , 177-86). Therefore, this model suppresses inflammation
  • the compound of the present invention which suppresses cartilage degeneration and is useful as a therapeutic agent for OA.
  • the animals used were SDZCrj rats (Charles Nippon Charles, 6 weeks old, male). 1.5 ⁇ L Collagenase (SIGMA) solution (50 ⁇ L) was administered into the right knee joint cavity to induce arthritis. The left knee joint was left untreated to serve as a control for each individual. The test substance was administered to the right knee joint at a rate of 50 L once a week from 7 and 1 days before the induction of arthritis.
  • SIGMA Collagenase
  • the knee joint swelling was measured by measuring the width of both knee joints with a vernier caliper, and calculating the left-right difference (right knee diameter, left knee diameter) as knee joint swelling. From just before the induction of arthritis to 20 days later, the width of the knee joint was measured approximately twice a week, and the AUC of the graph showing the time course was calculated. The average value and standard error of AUC were calculated for each measurement, and an unpaired t-test was performed between the test substance-administered group and the HA-administered group. When the risk ratio was less than 5%, it was determined that there was a significant difference.
  • FIG. 5 shows the time course of typical joint swelling of the HA—MTX conjugate
  • Table 4 shows the results of the test substances examined.
  • the collagenase-induced OA model is known to be useful for evaluating therapeutic agents for OA, and the compound that suppresses inflammation and cartilage degeneration in this model is OA.
  • OA Useful as a therapeutic.
  • the animals used were SDZCrj rats (Charles' Riva Japan, 6 weeks old, male). 1.5 ⁇ L Collagenase (SIGMA) solution (50 ⁇ L) was administered into the right knee joint cavity to induce arthritis. The left knee joint was left untreated to serve as a control for each individual. 50 L of the test substance and control saline were intra-articularly administered to the right knee once a week from 7 and 1 days before the induction of arthritis.
  • SIGMA Collagenase
  • Fig. 6 shows the results of examining the effect of the HA-MTX conjugate of the present invention by the above method.
  • the HA-MTX conjugate of the present invention significantly suppressed the cartilage degeneration in the collagenase-induced OA model as compared with the physiological saline administration group. These results clearly show that the HA-MTX conjugate can suppress not only joint swelling but also destruction of articular cartilage in an arthritis model. Therefore, the HA-MTX conjugate of the present invention may be useful for the treatment of joint diseases involving articular cartilage degeneration or articular cartilage defects.
  • the HA-MTX conjugate of the present invention can safely exhibit the synovitis-inhibiting effect of MTX only in the administered joint while maintaining the aspect of HA as a joint injection. (4) An excellent therapeutic agent for joint disease having an effect is provided.

Abstract

 本発明の課題は、関節疾患治療薬として有用な、ヒアルロン酸−メトトレキサート結合体を提供することである。  この課題を解決する手段として、関節疾患治療薬として有用な、ヒアルロン酸のカルボキシル基に、1~8個のアミノ酸からなるペプチド鎖を含有するリンカーを介してメトトレキサートが結合した、ヒアルロン酸−メトトレキサート結合体を見出した。

Description

明 細 書
ヒアルロン酸-メトトレキサート結合体
技術分野
[0001] 本発明はヒアルロン酸ーメトトレキサート結合体、及びその医薬用途に関する。
背景技術
[0002] 変形性関節症(以下、 OAとも称す)は加齢を基盤として発症する、 Vヽゎゆる退行性 疾患の一種である。高齢化社会の現在、患者数は増加の一途を迪つている力 未だ 十分な診断法、治療法は確立されていない。 OAで最初に起こる病態変化は、加齢 によるメカ-カルストレスが弓 Iき金となった関節軟骨の変性と磨耗であると考えられて いる。この変化は極めてゆるやかな速度で進行し徐々に痛みへと進展する。
[0003] 現在の OA薬物治療では、全身療法として、 1)解熱鎮痛薬 (ァセトァミノフェン)、 2) 非ステロイド性抗炎症薬 (以下、 NSAIDsとも称す)、局所療法 (関節内注入)として、 3)ヒアルロン酸 (以下、 HAとも称す)製剤、および 4)ステロイド製剤が使用されてい る。従来、 NSAIDsをはじめとする全身的な薬物療法を行っても関節局所の疼痛や 腫脹が軽快しない場合、抗炎症作用が最も優れているステロイド製剤の関節内注入 が行われてきた。しかし、ステロイド製剤は、関節注入症候群 (ステロイド関節症)や全 身性の副作用など安全性の面で問題がある。そのため、ステロイド製剤に代わる安全 な関節内注入剤として、 HA製剤の有用性が高まりつつある。
[0004] HAは、 N—ァセチルダルコサミンとグルクロン酸との繰り返し単位より構成される生 体内多糖である。 HAは、関節液を構成する主成分として関節液の粘弾性、荷重吸 収作用および潤滑作用の保持に働いており、また軟骨マトリックスにおいては、軟骨 プロテオダリカンと結合してァグリカンと呼ばれる重合体を形成し、水分保持能と粘弹 性の維持に中心的な役割を担っている。
[0005] 分子量約 60万ダルトン以上の HAおよびその架橋物を膝関節内に注入すると OA の疼痛が除去されることから、 HA製剤は OAの治療法の一つとして広く用いられて いる。また、正常関節液中の HAの分子量に近い高分子量タイプの HA製剤(商品名 スべニール (登録商標)、製造販売 中外製薬株式会社)は、日本にお 、て関節リ ゥマチ(以下、 RAとも称す)に伴う膝の疼痛除去にも適用が認められている。なお、 H Aの分子量は薬効の強さと相関があり、高分子量タイプの HAの方が、低分子量タイ プの HAよりも持続性に優れ、より強 、薬効を示すと言われて!/、る。
[0006] 一般に、 HA製剤は、 OA (または関節リュウマチ(以下、 RAとも称す))の病態で損 なわれた関節液の粘性と弾性を正常に戻すことにより疼痛を除去していると考えられ ている。しかし、外部から加えた HA製剤は関節液中から数日以内には消失してしま うにもかかわらず、効果は長期間持続するため、上記の関節液の粘弾性改善とは異 なる機序で疼痛除去に働 、て 、る可能性も示唆されて 、る。そのような機序の 1つと して、後述の OA滑膜炎に対する抑制効果が挙げられる。
[0007] さて、 OAの痛みや炎症の発症メカニズムについては、未だ不明な点が多いが、最 近では軟骨の変性によって二次的に引き起こされる滑膜炎との関連性が注目されて いる。 OA滑膜炎は関節水症や熱感など疼痛、炎症症状の主たる原因となるのみな らず、タンパク分解酵素、サイト力インやラジカルの産生を介して関節破壊をも促進す るため、 OAの病態を進展させる主要な増悪因子と考えられている。また、 OA滑膜炎 は、 RAで見られるような著しい増殖性変化はないものの、滑膜細胞の増殖、血管新 生と充血、滑膜下の浮腫および線維化など、 RA滑膜炎に共通した面も多く認められ ている。このように、 OAの疼痛や炎症をより効率よく除去し、病態の進展を防ぐという 見地から、 OA滑膜炎の制御は重要である。
[0008] 滑膜に対する HAの作用は未だ十分には解明されていないが、アイソトープを使つ た実験から、 HAは関節腔よりも滑膜に集積し、より長期に存在することが知られてい る。また、滑膜組織を構成する滑膜細胞の表層には、 HAを認識するレセプター〔CD 44や RHAMM (receptor for HA— mediated motility)〕が存在し、滑膜細胞 は表層の CD44を介して、分子量 200万以上の HAをも細胞内に取り込む機構が備 わっていることも報告されている。これらの知見から、 HAの疼痛除去作用の少なくと も一部は、滑膜への作用を介して発現している可能性が示唆されているが、しかしな 力 HA製剤は、 OA滑膜炎で引き起こされる炎症症状そのものを抑制するまでの作 用はなぐ炎症症状の強 ゝ OAや RAに対する効果は決して十分ではな 、。
[0009] 一方、滑膜炎を制御する薬物としては、 RAの治療で用いられる修飾性抗リウマチ 薬 (以下、 DMARDとも称す)と呼ばれる薬物群が良く知られている。その中でも特に メトトレキサート(以下、 MTXとも称す)は、効力が優れていること、作用発現までの時 間が比較的短いこと、などの長所を有する薬剤である。しかし、 MTXは全身投与で のみ使用を認められている(現在、日本において、 RA治療薬として医薬品の承認を 受けているものはカプセル剤のみである。海外では、錠剤と注射剤が承認を受けて いる。)ため、治療目的部位である関節以外の部位で、その作用メカニズムに起因す る重篤な副作用 (肝障害、造血障害、肺障害、消化管障害など)を起こすことが知ら れている。その結果、使用に当たっては十分な副作用のモニタリングと副作用発症時 の対策が不可欠である。こうした副作用の懸念の大きさから、 MTXをはじめとする滑 膜炎抑制薬は、 RAに比べ症状の軽い OAなどの他の関節疾患への適応は認められ ていない。言い換えれば、 MTXの全身性の副作用を軽減する手段、もしくは薬効発 現に必要な部位でのみ MTXの作用を発現できる手段を見出せれば、より安全な RA 治療法を提供するのみならず、広範囲の関節疾患に MTXを用いることが可能となる
[0010] MTXの副作用を軽減し、望ましい薬効のみを引き出す手段として、これまでにも M TXの作用を関節内や滑膜にのみ限局させるための方法力 ^、くつ力試みられている 。例えば、 MTXを単独で局所投与(関節内投与)する方法が報告されているが、関 節内から MTXが速やかに消失してしまうため十分な薬効を発揮できない。また、リポ ゾーム化した MTXを用いることによって、マクロファージによる貪食能を利用して関 節内貯留性を向上させる方法も報告されているが、未だに臨床での有用性は確かめ られていない。このように、関節疾患治療薬としての MTXの副作用を軽減し、期待さ れる薬効のみを引き出すためには、なお技術的な改良が必要である。
[0011] 上述のように、滑膜は HAが集積しやす 、組織である。また、滑膜細胞は CD44な どの HAレセプターを介して HAを細胞内に取り込む機構を備えている。そのため、 H Aは薬物を滑膜に集積させるためのキャリアになりうる可能性が考えられる。これまで に、薬物の生体内キャリアとして、 HAを利用する技術はいくつか報告されている。し かし、 MTXを代表例とする関節疾患治療薬、特に滑膜炎制御に適した薬物のドラッ グデリバリーシステム(以下、 DDSとも称す)創出に関する技術への応用例はほとん ど知られていない。
[0012] これまでの報告例としては、例えば、 HAを含む多糖体にペプチド鎖を介して薬物 を結合した多糖体 薬物結合体が知られて 、る(特許文献 1:特開平 5— 39306号、 特許文献 2 :国際公開 W094Z19376号など)。これらはいずれも癌組織移行性をう たった抗癌剤の DDS技術に関するものである。
[0013] 特開平 5— 39306号では、抗癌剤としての目的で MTXが用いられている。しかし、 癌組織への移行性と長期体内残留性の無さとを特徴としていることから、抗癌作用を 高めるために MTXの結合率は高く(実施例では 6. 4— 19%)、かつ、 HAの分子量 は低い(実施例では 10万ダルトン)。また、 HAのヒドロキシ基にイソウレァ結合により ペプチド鎖が結合して 、るので、水溶液中での安定性は低 、。
[0014] 一方、 HAと薬物とを結合させた結合体 (コンジュゲート)を関節疾患治療薬に利用 した報告例もある。例えば、国際公開 WO99Z59603号 (特許文献 3)では、ブチレ ンァミン基 (一 C H NH-)およびオタチレンアミン基 (一 C H NH-)などのスぺーサー
4 8 8 16
を介して結合した HAと薬物の結合体が開示されて 、る。当該特許文献にお!、て、 当該結合体は、細胞外での薬効を想定して、薬物が結合したままの状態で薬効を発 現するものとして記載されている。実際、当該結合体ではスぺーサーを介しての薬物 と HAとの結合が比較的強固なため、 MTXのように結合体力 遊離しなければ薬効 を発揮できな 、薬物への適応は困難である。
[0015] それにカ卩え、当該特許文献はマトリックスメタ口プロティナーゼ阻害剤(以下、 MMP Iとも称す)を薬物として用いた結合体に向けられており、開示されている実施例も M MPIの結合体に関するもののみである。薬物として MTXを用いた結合体は何ら具体 的に開示されておらず、その医薬としての有用性について何らの記載も含まれてい ない。
[0016] 国際公開 WO02Z44218号 (特許文献 4)では、 13 アミノー 4, 7, 10 トリオキサト リデカニル基に更に特殊な基 (ノルボルネン)を結合させたスぺーサーを用い、ノルボ ルネンと HAのヒドロキシ基との力ルバメート結合の形成により生成した HA 薬物結 合体が開示されている。しかし、当該結合体も特許文献 2と同様に細胞外での薬効を 想定したものと考えられ、薬物が結合したままの状態で薬効を発現する。従って、結 合体力 遊離しなければ薬効を発揮できな 、薬物、例えば MTXへの適応は困難で ある。さらに、特許文献 3は、 MMPIを薬物として用いた結合体に向けられており、薬 物として MTXを用いた結合体につ!ヽては何ら示唆されて!ヽな!、。
[0017] 以上述べた通り、上記の文献には MTXを用いた HA— MTX結合体について何ら 記載されておらず、 HA— MTX結合体を関節疾患治療薬として使用することに関し 何ら記載も示唆もされて 、な 、。
[0018] また、先行技術として知られて 、る HA—薬物結合体の合成方法では、合成過程で
HAの分子量が大きく低下してしま 、、 HAの薬効が損なわれてしまうことを本発明者 らは確認して!/ヽる。従来の HA—薬物結合体の合成方法では一般的な有機合成反応 条件や後処理条件が用いられているが、高分子量の HAと薬物との結合体を調製す るには、更なる改良が必要である。
[0019] このように、医薬品として用いる HA—薬物結合体、特に関節疾患治療に適した高 分子量の HA—薬物結合体、それを用いた製剤、および当該結合体の合成方法はこ れまで知られて 、なかった。
特許文献 1:特開平 5— 39306号
特許文献 2:国際公開 W094Z19376号パンフレット
特許文献 3:国際公開 WO99Z59603号パンフレット
特許文献 4:国際公開 WO02/44218号パンフレット
発明の開示
発明が解決しょうとする課題
[0020] 発明が解決しょうとする課題は、関節疾患治療薬として有用な、ヒアルロン酸-メトト レキサート結合体を提供することである。
課題を解決するための手段
[0021] 本発明者らは、ヒアルロン酸のカルボキシル基に、ペプチド鎖を含有するリンカ一を 介してメトトレキサートが結合した、ヒアルロン酸-メトトレキサート結合体力 関節疾患 治療薬として卓効を有することを見出し、本発明を完成した。
[0022] すなわち本発明の一つの側面により、ヒアルロン酸のカルボキシル基に、 1一 8個の アミノ酸力もなるペプチド鎖を含有するリンカ一を介してメトトレキサートが結合した、ヒ アルロン酸ーメトトレキサート結合体が提供される。本発明の 1つの実施態様において 、当該リンカ一は、 1一 8個のアミノ酸からなるペプチド鎖、および 1一 5個の酸素原子 が挿入されて 、てもよくおよび Zまたはカルボキシル基または C アルコキシカルボ
1-6
-ル基で置換されて 、てもよ 、c アルキレンジァミン鎖を含むものである。
2-20
[0023] 本発明の別の側面により、リンカ一に結合したメトトレキサートが、式 (I)、 (II)、 (III) または (IV) :
[0024] [化 1]
Figure imgf000008_0001
[0025] [化 2]
H
Figure imgf000008_0002
[0026] [化 3]
Figure imgf000009_0001
[0027] [化 4]
Figure imgf000009_0002
[0028] [式中、 Rおよび Rはそれぞれ独立に、ヒドロキシ基、アミノ基、 C アルコキシ基、 C
1 2 1-6 アルキルアミノ基、またはジー C アルキルアミノ基であり;
1-6 1-6
Lは、リンカ一の結合位置である。 ]
0
で表される、上記のヒアルロン酸ーメトトレキサート結合体もまた提供される。
[0029] また、本発明の別の側面により、ペプチド鎖を含有するリンカ一および当該リンカ一 に結合したメトトレキサートが、式 (Γ)または (Π,): [0030] [化 5]
Figure imgf000010_0001
[0031] [ィ匕 6]
H
Figure imgf000010_0002
[式中、 Rおよび Rはそれぞれ独立に、ヒドロキシ基、アミノ基、 C アルコキシ基、 C ァノレキルアミノ基、またはジー C アルキルアミノ基であり;
Lは、式 (X)
[化 7]
Figure imgf000010_0003
Figure imgf000010_0004
[0034] (式中、 Qは結合する NH—と一緒になつて 1一 8個のアミノ酸力 なるペプチド鎖を 形成し、当該ペプチド鎖に含まれるアミノ酸の各残基は、独立に、 C アルキル基、 C アルキルカルボ-ル基、 C アルコキシカルボ-ル基、ホルミル基、 c アルキルス
1-6 1-6 1-6 ルホニル基、および C ァリールスルホ -ル基力 なる群力 選択される、 1個以上
6-10
の基により置換または保護されていてもよぐ当該ペプチド鎖に含まれる各アミド結合 は、独立に 1個以上の c アルキル基および Zまたは c アルキルカルボニル基で
1-6 1-6
窒素原子上を置換されていてもよぐ当該残基に含まれる各カルボキシル基は、独立 に 1または 2個の C アルキル基で置換されて!、てもよ!/、アミド基に変換されて ヽても
1-6
よく;
R および R はそれぞれ独立に水素原子または C アルキル基であり;
11 12 1-6
Qは 1一 5個の酸素原子が挿入されていてもよくおよび Zまたはカルボキシル基ま
2
たは C アルコキシカルボニル基で置換されて!/、てもよ!/、C アルキレンであり;およ
1-6 2-20
[HA]はヒアルロン酸との結合位置を表し、当該リンカ一は当該ヒアルロン酸に含ま れるカルボキシル基とアミド結合を形成する。)で表されるリンカ一である。 ] で表される、上記のヒアルロン酸ーメトトレキサート結合体が提供される。
[0035] さらに本発明のその他の側面によれば、上記ヒアルロン酸ーメトトレキサート結合体 を有効成分として含有する医薬組成物、および関節疾患治療薬もまた提供される。
[0036] さらに本発明の別の側面によれば、上記のヒアルロン酸ーメトトレキサート結合体の 製造に利用することができる、式 (Va)または (Vb):
[0037] [化 8]
Figure imgf000011_0001
[0038] [ィ匕 9]
H
Figure imgf000012_0001
[0039] [式中、 Rおよび Rはそれぞれ独立に、ヒドロキシ基、アミノ基、 C アルコキシ基、 C
1 2 1-6 アルキルアミノ基、またはジー C アルキルアミノ基であり;
1-6 1-6
Lは、式 (Χ' )
1
[0040] [化 10]
Figure imgf000012_0002
(Χ ')
[0041] (式中、 Qは結合する ΝΗ—と一緒になつて 1一 8個のアミノ酸力 なるペプチド鎖を
1
形成し、当該ペプチド鎖に含まれるアミノ酸の各残基は、独立に、 C アルキル基、 C
1-6
アルキルカルボニル基、 C アルコキシカルボニル基、ホルミル基、 C アルキルス
1-6 1-6 1-6 ルホニル基、および C ァリールスルホ -ル基力 なる群力 選択される、 1個以上
6-10
の基により置換または保護されていてもよぐ当該ペプチド鎖に含まれる各アミド結合 は、独立に 1個以上の c アルキル基および Ζまたは c アルキルカルボニル基で
1-6 1-6
窒素原子上を置換されていてもよぐ当該残基に含まれる各カルボキシル基は、独立 に 1または 2個の C アルキルで置換されて!、てもよ!/、アミド基に変換されて 、てもよ
1-6
<;
R および R はそれぞれ独立に水素原子または C アルキルであり;
11 12 1-6
Qは 1一 5個の酸素原子が挿入されていてもよくおよび Ζまたはカルボキシル基ま たは c アルコキシカルボ-ル基で置換されていてもよい c アルキレンである。)で
1-6 2-20
ある。 ]
の化合物が提供される。
[0042] さらに本発明の別の側面によれば、上記の式 (Va)または (Vb)の化合物をヒアル口 ン酸と反応させ、当該ヒアルロン酸のカルボキシル基を N—置換アミド基に変換するェ 程を含む、上記のヒアルロン酸ーメトトレキサート結合体の製造方法もまた提供される
[0043] 以下本発明の詳細について説明する。
[0044] 本発明のヒアルロン酸ーメトトレキサート結合体 (HA— MTX結合体)は新規化合物 である。本発明では、ヒアルロン酸 (HA)とメトトレキサー HMTX)とを結合させる手 段として、 HAのカルボキシル基に、ペプチド鎖を含有するリンカ一を介して MTXが 結合した構造を採用したことにより、 HAの疼痛除去作用を保持し、かつ、 MTXの滑 膜炎軽減作用を併せ持つ。即ち、本発明の HA-MTX結合体は、滑膜に集積した 後、滑膜細胞内に取り込まれ、細胞内で MTXの薬効を発現すると考えられる。
[0045] 従って、本発明の HA— MTX結合体を OAもしくは RA患者の膝関節内に投与した 場合、従来の HA製剤同様、 HAの特性に基づく疼痛除去作用を発現する一方で、 滑膜組織に蓄積しながら、徐々に滑膜細胞内に取り込まれ、 MTXを解離すること〖こ より、滑膜炎抑制作用を持続的に発現する。これにより、経口投与に比べ MTXの投 与量を大幅に低減することが可能であり、経口投与で問題となる全身性の副作用の 懸念を払拭できる。また、投与部位において、 HA製剤と MTXの両者は、作用機序 の異なる薬理効果を発現し得るので、両者相俟つた相乗的な薬効が期待できる。
[0046] 即ち、本発明の HA— MTX結合体により、関節注入剤としての HAの側面を持ちな がら、 MTXの滑膜炎抑制作用を投与関節内でのみ安全に発現させることができる、 従来にな!、優れた関節疾患治療薬が提供される。
[0047] 本発明のヒアルロン酸ーメトトレキサート結合体(HA— MTX結合体)は、ヒアルロン 酸のカルボキシル基に、ペプチド鎖を含有するリンカ一を介してメトトレキサートが結 合したものである。
[0048] 本発明にお 、て「ヒアルロン酸 (HA)」とは、特に限定はされな 、が、例えば平均分 子量 5万一 1000万ダルトンを有する、グルクロン酸と N—ァセチルダルコサミンとから 成る二糖の重合体である。ヒアルロン酸の塩には、特に限定はされないが、例えばナ トリウム塩、カリウム塩、カルシウム塩、アルミニウム塩、亜鉛塩、鉄塩、アンモニゥム塩 、テトラプチルアンモ -ゥム塩などが含まれる。ヒアルロン酸及びその塩、並びにそれ らの混合物の具体例には、例えば、商品名 スべニール (登録商標:製造販売 中外 製薬株式会社);商品名 ァルツ (登録商標:製造 生化学工業株式会社、販売 科 研製薬株式会社);商品名 オペガン (登録商標:製造 生化学工業株式会社、販売 参天製薬株式会社)などが含まれる。本発明にお ヽて「ヒアルロン酸誘導体」とは、 HAから誘導される HA骨格を有する物質を意味する。ヒアルロン酸誘導体としては、 特に限定はされないが、例えば、 HA中の一つ以上のカルボキシル基がエステル化 されて ヽる物質 (例えば、ベンジルエステル化 HA (商品名 Hyaff (登録商標)、 Fidi a Advanced Biopolymers) )、 HAをホルムアルデヒドで架橋しさらに高分子化し た物質(例えば、商品名 Synvisc (登録商標)、 Biomatrix) )、 HA中の一つ以上の ヒドロキシ基がァセチルイ匕されて 、るァセチルイ匕 HA、などを包含する。
[0049] 本発明の HA— MTX結合体は、 HAの疼痛除去作用を損なってはならないため、 HA— MTX結合体として、臨床での疼痛除去作用が確認されて!ヽる HAと同等の分 子量サイズと粘弾性を保持したものであることが好ましい。また、分子量が大きくなる と粘弾性が上がりハンドリングが困難になること、および生体内におけるキャリアとして の HAの効果を考慮すると、具体的には、 HA— MTX結合体としての分子量が 60万 一 600万ダルトンであることが好ましぐ HA— MTX結合体としての分子量が 80万一 600万ダルトンであることがより好ましぐ HA— MTX結合体としての分子量が 100万 一 500万ダルトンであることが特に好ましい。
[0050] ここで、上記した原料 HAの分子量、 HA— MTX結合体の分子量は、極限粘度から 粘度平均分子量を算出する方法で測定したものである。極限粘度([ 7? ])から粘度 平均分子量 (Mw)への換算は、以下の式を用いて算出することができる。
Mw= ( [ r? ]/0. 00036) 1 282
本発明のペプチド鎖を含有するリンカ一におけるペプチド鎖は、アミノ酸により構成 される。当該アミノ酸には、グリシン、ァラニン、セリン、プロリン、ノ《リン、トレオニン、シ スティン、ロイシン、イソロイシン、ァスパラギン、ァスパラギン酸、リジン、グルタミン、 グルタミン酸、メチォニン、ヒスチジン、フエ-ルァラニン、アルギニン、チロシン、トリプ トフアンなどの天然 α アミノ酸の他に、アルキル側鎖を持つ α アミノ酸 (例えば、ノ ルバリン、ノルロイシン、 t一口イシンなど)、シクロアルキル基で置換されたァラニンや グリシン(例えば、シクロペンチルァラニン、シクロへキシルァラニン、シクロへキシル グリシンなど)、またはァリール基で置換されたァラニンやグリシン (例えば、ピリジルァ ラニン、チェ-ルァラニン、ナフチルァラニン、置換フエ-ルァラニン、フエ-ルグリシ ンなど)などの非天然 α アミノ酸、 βーァラニンなどの β アミノ酸、 γーァミノ酪酸な どの γ アミノ酸、およびタウリンなどのアミノスルホン酸などが含まれる。本発明のリ ンカーペプチドにおけるアミノ酸には、その残基が適切に置換または保護されたもの も含まれる。例えば、当該残基上の官能基は、保護基を用いて保護され得る。この目 的のために使用する保護基は当該技術分野で周知であり、その一部の例は、本明 細書の他の段落に記載される。各置換基および保護基、特に保護基の導入方法は 、当該技術分野にぉ 、て周知のものを用いればょ 、。
[0051] 当該リンカ一はアミノ酸のみにより構成されていてもよぐまたはペプチド鎖の中また は末端にアミノ酸以外の化合物に由来する部分を含んでいてもよい。例えば、アルキ レンジァミン、ォキサアルキレンジァミンのようなジァミノ化合物ゃコハク酸のようなジ カルボン酸ィ匕合物がペプチド鎖の中または末端に結合したものなども当該リンカ一 に含まれる。ペプチド鎖の中または末端にアミノ酸以外の化合物を含む場合で、当 該リンカ一が ΜΤΧのカルボキシル基とヒアルロン酸のカルボキシル基に結合する場 合には、アルキレンジァミン、ォキサアルキレンジァミンのようなジァミノ化合物がぺプ チド鎖の末端に存在することが好ましぐエチレンジァミン、 4, 7, 10 トリオキサ— 1, 13—トリデカンジァミンがペプチド鎖の末端に存在することが特に好ましい。また、ぺ プチド鎖を構成するアミノ酸は特に限定されないが、プロテアーゼに対する親和性の 観点から、 α アミノ酸が好ましぐペプチド鎖を含有するリンカ一の ΜΤΧに結合する 末端は a -アミノ酸であることが好ま U、。
[0052] 当該ペプチド鎖を構成するアミノ酸の数は、特に限定はされないが、典型的には 1 一 8であり、好ましくは 1一 6であり、特に好ましくは 1一 4である。当該ペプチド鎖を構 成するアミノ酸の各残基は、独立に 1個以上の基により適切に置換または保護され得 る。そのような基には、 C アルキル基、 C アルキルカルボニル基、 C アルコキシ力
1-6 1-6 1-6
ルポ-ル基(例えば、メトキシカルボ-ル基、エトキシカルボ-ル基、(n または i一)プ 口ピルォキシカルボ-ル基、および(n—、 s—、または t一)ブトキシカルボ-ル基)、ホ ルミル基、 C アルキルスルホ -ル基(例えば、メタンスルホ-ル基、エタンスルホ-ル
1-6
基、および(n または i一)プロパンスルホ-ル基)、 C ァリールスルホ -ル基(例え
6-10
ば、ベンゼンスルホ-ル基、 (o—、 m または p—)トルエンスルホ-ル基、および(1 または 2—)ナフタレンスルホニル基)が含まれる力 これらに限定されない。置換また は保護により、例えば当該残基に含まれるカルボキシル基は C アルコキシカルボ-
1-6
ル基に、ヒドロキシ基は C アルコキシ基または C アルキルカルボニルォキシ基に、
1-6 1-6
アミノ基は C アルキルアミノ基、ジ C アルキルアミノ基、 C アルキルカルボニルァ
1-6 1-6 1-6
ミノ基または N— C アルキル C アルキルカルボニルァミノ基にそれぞれ変換され
1-6 1-6
ていてもよい。また、当該残基に含まれるカルボキシル基は、 1または 2個の C アル
1-6 キル基で置換されて 、てもよ 、アミド基に変換されて 、てもよ 、。当該残基中にインド 一ル環ゃイミダゾール環のような含窒素複素環が含まれる場合は、その環上の窒素 原子は、各々独立して、 C アルキル基または C アルキルカルボニル基で保護され
1-6 1-6
ていてもよい。当該残基中にグァ -ジノ基が存在する場合には、そこに含まれている 窒素原子も、 C アルキル基または C アルキルカルボニル基で保護され得る。窒素
1-6 1-6
原子に対する他の保護基としては、限定されないが、上記したアルコキシカルボニル 基、ホルミル基、 C アルキルスルホ-ル基、 C ァリールスルホ-ル基のような通常
1-6 6-10
用いられるものを選択することもできる。チオール基が当該残基に含まれる場合は、
C アルキル基または C アルキルカルボニル基で保護され得る。また、当該べプチ
1-6 1-6
ド鎖に含まれるアミド結合も、 c アルキル基および Zまたは c アルキルカルボニル
1-6 1-6
基で置換されていてもよぐ例えば CON (C アルキル)一に変換されていてもよい。
1-6
ペプチド鎖を構成するアミノ酸配列は特に限定されないが、例えば、以下のようなも のが挙げられる。尚、ターゲットとなる生体内プロテアーゼが存在し、その基質認識ァ ミノ酸配列が既知の場合、その認識部位および Zまたは切断部位を含むアミノ酸配 列を用いてもよい。 [0054] アミノ酸 1個力らなるペプチド鎖: Ala、 Arg、 Asn、 Asp、 Cys、 Gln、 Glu、 Gly、 His ゝ lieゝ Leuゝ Lysゝ Metゝ Pheゝ Pro、 Serゝ Thrゝ Trpゝ Tyrゝ Val、など。好ましくは、 P heゝ Tyr, Ile、 Glu。
[0055] アミノ酸 2個からなるペプチド鎖: PhePhe、 PheGly、 PheLeu、 TyrPhe、 TrpPhe 、 PheTrp、 PheTyr、 GlyPhe、 GlyGly、など。好ましくは、 PhePhe、 PheGlyG
[0056] アミノ酸 3個力らなるペプチド鎖: PheGlyGly、 PheLeuGly, PhePheGly, AsnPh ePhe、 GlyPhePhe, LeuPhePhe, LeuAlaLeu、 AlaValAla, GlyAlaPhe, GlyP heAla, GlylleAla, GlyllePhe, GlyLeuAla, GlyValAla, GlyValPhe, GlyGly Gly、など。好ましくは、 AsnPhePhe。
[0057] アミノ酸 4個力らなるペプチド鎖: GlyPheLeuGly、 GlyPhePheLeu, GlyPhePhe Ala、 GlyPheTyrAla, GlyPheGlyPheゝ GlyPheGlyGly, GlyGlyPheGly, GlyG lyPheTyr, GlyGlyGlyGly, LeuAlaLeuAla, AlaLeuAlaLeu, AlaGlyValPheゝ GluAsnPhePhe,など。好ましくは、 GlyPheLeuGly0
[0058] 本発明におけるリンカ一は、例えば上記式 (X)で示される構造を有していてもよぐ その場合 Qは結合する NH—と一緒になつて上述したような 1一 8個のアミノ酸から
1
なるペプチド鎖を形成する。また、 Qは 1一 5個の酸素原子が挿入される力 もしくは
2
カルボキシル基または C アルコキシカルボ-ル基で置換されていてもよい C アル
1-6 2-20 キレンである。 Qの具体例としては、エタンー 1, 2 ジィル基、プロパン 1, 3 ジィル
2
基、ブタン 1, 4 ジィル基、ペンタン 1, 5 ジィル基、へキサン 1, 6 ジィル基、 ヘプタン 1, 7 ジィル基、オクタン 1, 8 ジィル基、ノナン 1, 9 ジィル基、デカン -1, 10 ジィル基、 2 メチルプロパン 1, 3 ジィル基、 2 メチルブタン 1, 4ージィ ル基、 3 メチルブタン 1, 4 ジィル基、 3—メチルペンタン 1, 5 ジィル基、 3—ェチ ルペンタン 1, 5 ジィル基、 2—メチルへキサン 1, 6 ジィル基、 3—メチルへキサン -1, 6 ジィル基、 4 メチルヘプタン 1, 7 ジィル基、 3 ォキサペンタン 1, 5—ジ ィル基、 3—ォキサへキサン 1, 6 ジィル基、 4ーォキサへキサン 1, 6 ジィル基、 3 ォキサヘプタン—1, 7 ジィル基、 4 ォキサヘプタン 1, 7 ジィル基、 4ーォキサォ クタンー 1, 8 ジィル基、 3, 6—ジォキサオクタン 1, 8 ジィル基、 3, 6—ジォキサノ ナン 1, 9 ジィル基、 3, 6—ジォキサー 4ーメチルノナン 1, 9 ジィル基、 4, 7—ジォ キサデカン— 1, 10—ジィル基、 4, 9—ジォキサドデカン 1, 12 ジィル基、 4, 7, 10 —トリオキサトリデカン 1, 13 ジィル基などが挙げられ、好ましくは、エタンー 1, 2—ジ ィル基、ペンタン 1, 5 ジィル基、 3 ォキサペンタン—1, 5 ジィル基、 3, 6 ジォキ サオクタン 1, 8 ジィル基、 4, 7—ジォキサデカン 1, 10 ジィル基、 4, 9 ジォキ サドデカン— 1, 12 ジィル基、 4, 7, 10—トリオキサトリデカン 1, 13 ジィル基など が挙げられる。
[0059] 本発明の HA— MTX結合体は、 HAのカルボキシル基に、ペプチド鎖を含有するリ ンカーを介して MTXが結合するものであればどのような結合様式をとつて 、てもよ ヽ 。即ち、ペプチド鎖を含有するリンカ一は、
1) MTXの α位のカルボキシル基;
2) ΜΤΧの γ位のカルボキシル基;および
3) ΜΤΧのァミノ基と結合しうるものであり、さらにこれらの結合様式が複数混在 (例え ば、 ΜΤΧの α位のカルボキシル基で結合した結合体と、 ΜΤΧの γ位のカルボキシ ル基で結合した結合体が混在)していてもよい。し力しながら、プロテアーゼに対する 親和性と合成上の観点から、ペプチド鎖を含有するリンカ一は ΜΤΧのひ位のカルボ キシル基及び Ζまたは Ί位のカルボキシル基と結合して 、ることが好ましぐ当該リン カーは ΜΤΧの a位のカルボキシル基と結合して 、ることがより好まし!/、。
[0060] 本発明の HA— MTX結合体において、ペプチド鎖を含有するリンカ一およびその 結合様式のうち特に好ましいものは、ペプチド鎖を含有するリンカ一が α アミノ酸か らなるペプチド鎖の末端にジァミノ化合物が存在するものであり、そのペプチド鎖の Ν 末端が ΜΤΧの α位のカルボキシル基に酸アミド結合によって結合し、そのペプチド 鎖の C末端がジァミノ化合物を介して ΗΑのカルボキシル基と酸アミド結合によって結 合しているものである。
[0061] 本発明のヒアルロン酸ーメトトレキサート結合体におけるメトトレキサート(ΜΤΧ)部分 は、リンカ一による修飾以外に、公知の方法によりプロドラッグィ匕されていてもよい。
[0062] 本明細書において C アルキル基は、炭素数 1
1-6 一 6の直鎖または分枝鎖状のアル キル基を意味し、例えば、メチル基、ェチル基、 η プロピル基、 i プロピル基、 n—ブ チル基、 s -ブチル基、 i ブチル基、 t ブチル基、 n -ペンチル基、 3 -メチルブチル 基、 2—メチルブチル基、 1 メチルブチル基、 1 ェチルプロピル基、及び n—へキシ ル基等を含む。
[0063] 本明細書において C アルキルカルボニルは、炭素数 1
1-6 一 6の直鎖または分枝鎖 状のアルキルカルボ二ル基を意味し、例えば、ァセチル基、プロピオ-ル基、 2—メチ ルプロピオ-ル基、 2, 2—ジメチルプロピオ-ル基などの既に定義したアルキル基を アルキル部分として有するものが含まれる。
[0064] 本明細書において C アルコキシは、炭素数 1一 6の直鎖または分枝鎖状のアルコ
1-6
キシ基を意味し、例えばメトキシ基、エトキシ基、 n プロポキシ基などの既に定義した アルキル基をアルキル部分として有するものが含まれる。
[0065] 本明細書において C アルキルアミノは、炭素数 1
1-6 一 6の直鎖または分枝鎖状のァ ルキルアミノ基を意味し、例えばメチルァミノ基、ェチルァミノ基、 n プロピルアミノ基 などの既に定義したアルキル基をアルキル部分として有するものが含まれる。
[0066] 本明細書においてジ C アルキルアミノは、炭素数 1
1- 6 一 6の直鎖または分枝鎖状の ジアルキルアミノ基を意味し、例えばジメチルァミノ基、ェチルメチルァミノ基、ジェチ ルァミノ基、ェチル n プロピルアミノ基などの、同一または異なってもよい既に定義し たアルキル基をアルキル部分として有するものが含まれる。
[0067] 本明細書においてジ C アルキレンは、炭素数 2— 20の直鎖または分枝鎖状のァ
2- 20
ルキレン基を意味し、例えばエチレン基、プロピレン基、ブチレン基、オタチレン基、 デカレン基などが含まれる。
[0068] 本明細書において C アルコキシカルボ-ル基は、炭素数 1一 6の直鎖または分枝
1-6
鎖状のアルコキシカルボ-ル基を意味し、例えばメトキシカルボ-ル基、エトキシカル ボニル基、 n プロポキシカルボ-ル基などの既に定義したアルキル基をアルキル部 分として有するものが含まれる。
[0069] 本明細書において C アルキルスルホ -ル基は、炭素数 1
1-6 一 6の直鎖または分枝鎖 状のアルキルスルホ -ル基を意味し、例えばメタンスルホ-ル基、エタンスルホ-ル 基、 n プロパンスルホ-ル基などの既に定義したアルキル基をアルキル部分として 有するものが含まれる。
[0070] 本明細書におけるァシル化には、 C アルキルカルボニル化;およびべンゾィルイ匕 などが含まれ、当該ベンゾィル基は C アルキル、ハロゲン原子、 C アルコキシなど
1-6 1-6
で置換されていてもよい。
[0071] 本発明の HA— MTX結合体における MTXの結合率は、薬効を発揮し副作用の懸 念が無い範囲であることが好ましい。本明細書における MTXの結合率は、以下の式
[0072] [化 11]
(分子中に結合する MTX部分の数)
(MTXの結合率(%) )= x l 0°
(分子中のグルクロン酸部分の数)
[0073] により算出される。 MTXの結合率は、特に限定はされないが、薬効発現の観点から 0. 5%以上が好ましぐ 1. 0%以上がより好ましい。一方で、 MTXの作用を投与部 分に限局させ、 MTXの有する全身性の副作用を低減するためには、結合率は 10% より小さいことが好ましい。また、本発明の HA-MTX結合体は、分子量が大きぐか つ、 MTXの結合率が高 、と不溶ィ匕を起こし合成上の不都合が生じることを考慮する と、 MTXの結合率は 0. 5%以上かつ 4. 5%より小さいことが好ましぐ 1. 0%以上か つ 4. 5%より小さいことが特に好ましい。
[0074] 本発明の HA— MTX結合体は、塩として存在することもできる力 その用途を考慮 すれば薬学上許容可能な塩であることが好ましい。例えば、ナトリウム塩、カリウム塩 、カルシウム塩、アルミニウム塩、亜鉛塩、鉄塩、アンモ-ゥム塩、テトラプチルアンモ -ゥム塩などが挙げられる。
[0075] 本発明の HA— MTX結合体の合成にあたっては、 HA、ペプチド鎖を含有するリン カー、 MTXを適当な順番で結合させることによって得ることができる。例えば、 HA- ペプチド鎖を含有するリンカ一を構築した後に MTXを導入するルートや、 MTX—ぺ プチド鎖を含有するリンカ一を構築した後 HAに導入するルートが挙げられる。この各 結合反応は、通常の酸アミド結合反応に用いられる溶媒と縮合剤と必要に応じて反 応促進性の添加剤を用いて、 - 20°C— 40°Cの温度で、数分一数日間反応させるこ とで行える。溶媒としては、例えば、水、 N, N—ジメチルホルムアミド、 N, N—ジメチル ァセタミド、ジメチルスルホキシド、テトラヒドロフラン、ジォキサン、メタノール、エタノー ル、ジクロロメタン、クロ口ホルムなど、および、それらの混液が挙げられる。縮合剤と しては、例えば、 1—ェチルー 3— (3—ジメチルァミノプロピル)カルボジイミド、ジシクロ へキシルカルボジイミド、ジイソプロピルカルボジイミドなどのカルボジイミド化合物や 、ベンゾトリァゾールー 1ーィルーォキシ—トリス(ジメチルァミノ)ホスフォ-ゥムへキサフ ルォロホスフェート、 O— (7—ァザべンゾトリァゾールー 1ーィルー)— 1, 1, 3, 3—テトラメ チルゥ口-ゥムへキサフルォロホスフェート、 1 エトキシカルボ-ルー 2—エトキシー 1, 2—ジヒドロキノリンなどが挙げられる。反応促進性の添加剤としては、例えば、 N—ヒド ロキシスクシンイミド、 N—ヒドロキシー 5—ノルボルネンー 2, 3 カルボキシミド、 1ーヒドロ キシベンゾトリァゾール、 1—ヒドロキシー 7—ァザべンゾトリァゾール、 3, 4—ジヒドロ一 3 —ヒドロキシー 4 ォキソ—1, 2, 3—べンゾトリァゾール、などの活性エステル剤や、トリ ェチルァミン、 N メチルモルホリン、 N, N—ジイソプロピルェチルァミン、トリス [2— (2 ーメトキシエトキシ)ェチル]ァミンなどの pH調整剤が挙げられる。反応の際、アミノ酸 側鎖等の官能基、例えばヒドロキシ基、カルボキシル基、アミノ基等は、必要に応じて 通常の有機合成において汎用される保護基を用いることができる。
[0076] ここで、 HA分子量の低下を防ぐために、コンジュゲート化反応の制御のしゃすさの 観点から MTX ペプチド鎖を含有するリンカ一を構築した後 HAに導入するルートが 好ましい。溶媒は水、 N, N—ジメチルホルムアミド、テトラヒドロフラン、エタノール、お よび、それらの混液が好ましぐ水とテトラヒドロフランの混液が最も好ましぐその混合 比率は 1 : 1が最も好ましい。縮合剤は水溶性のものが好ましぐ 1-ェチルー3— (3-ジ メチルァミノプロピル)カルボジイミドが最も好ましく、その添力卩量は HA中のカルボキ シル基に対して 0. 1当量が最も好ましい。反応促進性添加剤は、活性エステル剤と しては 3, 4—ジヒドロ— 3—ヒドロキシー 4 ォキソ—1, 2, 3—べンゾトリアゾールが最も好 ましぐその添力卩量は HA中のカルボキシル基に対して 0. 1当量が最も好ましい。 pH 調整剤としてはトリス [2— (2—メトキシエトキシ)ェチル]ァミンが最も好ましぐ反応時 p Hが 6— 7であることが最も好ましい。また、反応温度は、 10°C— 30°Cが好ましぐ 0 °C一 15°Cが最も好ましい。反応時間は、 1時間一 48時間が好ましぐ 12時間一 24 時間が最も好ましい。
[0077] 本発明において「関節疾患」とは、具体的には、関節軟骨欠損、変形性関節症 (明 らかな原因のない 1次性と原因疾患が認められる 2次性を含む)、肩関節周囲炎、関 節リウマチ、反応性関節炎、ウィルス性関節炎、ィヒ膿性関節炎、結核性関節炎、神 経性関節症などの疾患を指し、さらに、これら疾患における関節痛 (例えば、関節リウ マチにおける膝関節痛など)をも包含する。また、「関節疾患治療薬」とは、前記関節 疾患の治療に用いられる薬剤だけでなぐ予防に用いられる薬剤、病態の進展抑制 (悪化の防止や現状維持)等のために用いられる薬剤をも包含する。
[0078] 本発明の HA— MTX結合体は、その有効量に、適宜、製薬上許容しうる担体、賦 型剤、崩壊剤、滑沢剤、結合剤、香料、着色剤等を加えて医薬組成物として用いるこ とができる。本発明の HA - MTX結合体を有効成分とする医薬組成物は、関節疾患 治療薬として用いられることが好ましぐその中でも関節局所投与製剤として用いられ ることが特に好ましい。
[0079] 本発明の HA— MTX結合体を関節疾患治療薬として製剤化するに際しては、特に 限定されないが、例えば、生理食塩水やリン酸生理食塩水等に所望の濃度に溶解さ せ、注射用製剤として製剤化することができる。この際、必要に応じて、酸又は塩基を カロえることにより、溶液を所望の pHに調整してもよい。また、ナトリウム塩、カリウム塩 等の 1価の金属塩、マグネシウム塩、カルシウム塩、マンガン塩等の 2価の金属塩等 の無機塩等を加えることにより、溶液を所望の塩濃度に調整してもよい。更に、所望 に応じて、安定化剤等が加えられていてもよい。このようにして調製された、本発明の HA— MTX結合体を溶解させた溶液を、デイスポーザブル注射筒等の注射器に予め 充填させた形で流通させてもょヽ。本発明の HA— MTX結合体を有効成分とする関 節疾患治療薬として投与するに際しては、本発明の HA— MTX結合体が 0. 01%— 10%w/vの溶液濃度、好ましくは 0. 1%— 2. 0%w/vの溶液濃度、特に好ましくは 0 . 5%— 1. 5%w/vの溶液濃度のものを、 1回あたり 1一 3mLを患者に投与すればよ い。但し、この投与量は、医師の指示、対象となる患者、又は疾患の種類やその重篤 度、或いは HA - MTX結合体の分子量等により、それぞれ最適な投与量に適宜増 減してちょい。
[0080] 本発明の HA— MTX結合体は、以下の実施例において説明するとおり、膝関節に 病態が発症する関節炎モデルに関節内投与すると、 HAには見られない滑膜炎の軽 減作用を発現する。さらに本願発明者らは、この滑膜炎症の軽減作用は、低分子量 ( 分子量 30万ダルトン)の HA— MTX結合体と比して、 60万ダルトン以上、特に分子 量 80万ダルトン以上の HA— MTX結合体に極めて高い効果が確認されることを見出 した。
図面の簡単な説明
[0081] [図 1]図 1は、各被検物質および対照(分子量 190万のヒアルロン酸および分子量 80 万のヒアルロン酸)の、粘弾性を測定した結果を示す。
[図 2]図 2は、各被検物質投与群および対照群 (HAおよび vehicle)における、 mBS
Aを膝関節内に投与直後力ゝらの膝関節腫脹の経時的推移を示す。
[図 3]図 3は、図 2の各被検物質投与群および対照群のグラフについての AUCを示 す。
[図 4]図 4は、実施例 1投与群および対照群 (HAおよび Saline)における、コラーゲン 関節炎を誘導した直後からの膝関節幅の経時的推移を示す。左図は投与部位の右 膝関節の経時的推移を示し、右図は非投与部位の左膝関節の経時的推移を示す。 グラフは平均士標準誤差で示す。
[図 5]図 5は、実施例 1投与群および対照群 (HAおよび Saline)における、コラゲナ ーゼ OAモデルの関節炎を、誘導直後から 20日後までの膝関節腫脹の経時的推移 として示す。グラフは平均士標準誤差で示す。
[図 6]図 6は、実施例 2— 2投与群および生理食塩水群における、コラゲナーゼ OAモ デルの下腿骨内顆部の軟骨変性の程度を示す。グラフは平均士標準誤差で示す。 発明を実施するための最良の形態
[0082] 本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれらの実施 例に限定されるものではない。
実施例
[0083] 〔実施例 1 1〕
2- [N- [N- [N- [4- [ [ ( 2 , 4—ジァミノ— 6—プテリジ -ル)メチル]メチルァミノ]ベン ゾィル]— — (O 5—メチルグルタミル) ]フエ-ルァラ -ル]フエ-ルァラ -ルァミノ]ェ チルァミン: MTX— a PhePhe— NH— C H NH (化合物 1)の製造 (a) Cbz-Phe-NH-C H NH— Boc (ィ匕合物 la)の製造
2 4
N カルボベンゾキシ - L-フエ-ルァラニン(Cbz— Phe:7.16g、 25.4mmol)と N t ブトキシカルボ-ルーエチレンジァミン塩酸塩(5.00g、 25.4mmol)と 1ーヒドロ キシベンゾトリアゾール水和物(HOBT: 4.28g、 28. Ommol)と N メチルモルホリ ン(NMM:3.07mL、 28. Ommol)をジメチルホルムアミド(DMF) lOOmLに溶解 し、氷冷撹拌下 1ーェチルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩 (ED C:5.36g、 28. Ommol)を加え、室温で 1日間撹拌した。反応液に 10%クェン酸水 溶液を加え、析出した固体をクロ口ホルムと少量のメタノールに溶かし、飽和重曹水、 飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。減圧濃縮して得られた残渣をシリ 力ゲルカラムクロマトグラフィ (溶出溶媒 クロ口ホルム:メタノール = 95: 5)で精製し、 白色固体の標題ィ匕合物 9.69gを得た。
[0084] 'H-NMR (270MHz, DMSO— d ) : δ 1.37(9Η、 s)、 2.69—3.19(6Η、 m)、
6
4. 12-4.22(lH、m)、4.93(2Η、 dd、 J=12.9Hz、J=15.1Ηζ)、6.75(1H、 br. t)、 7.22-7.33(10H、 m)、 7.48(1H、 d、J = 8.6Hz)、 8.05(1H、 br. t) LC/MS:441.9(M + H+)464.1(M + Na+)
(b) Cbz-PhePhe-NH-C H—NH—Boc (ィ匕合物 lb)の製造
2 4
化合物 la(9.69g、 21.9mmol)をメタノール 200mLに溶解し、 10%パラジウム 炭素 500mgを加え、水素雰囲気下室温で 1日撹拌した。反応混合物より触媒をろ別 後、減圧濃縮した。この残 と Cbz— Phe(6.92g、 23. lmmol)と HOBT(3.71g、 24.2mmol)と NMM(2.66mL、 24.2mmol)をジメチルホルムアミド(DMF) 50 mLに溶解し、氷冷撹拌下 EDC(4.64g、 24.2mmol)をカ卩え、室温で 1日間撹拌し た。反応液に水を加え、 10%クェン酸水溶液、飽和重曹水、水で洗浄し乾燥した。 得られた残渣をシリカゲルカラムクロマトグラフィ (溶出溶媒 クロ口ホルム:メタノール = 90: 10)で精製し、白色固体の標題ィ匕合物 12.8gを得た。
[0085] NMR(270MHz、 DMSO— d ): δ 1.37(9H、 s)、 2.62—3.18(8Η、 m)、
6
4. 18-4.29(1Η、 m)、 4.40—4.51(1Η、 m)、 4.93(2Η、 s)、 6.72(1Η、 br. t )、 7.10-7.32(15H、 m)、 7.46(1H、 d、J=8.6Hz)、 7.97(1H、 br. t)、 8.1 1(1Hゝ d、J = 7.9Hz) LC/MS:588.8(M + H+)611. 1(M + Na+)
(c) Cbz-Glu (OMe) PhePhe— NH—C H NH—Boc (ィ匕合物 lc)の製造
2 4
ィ匕合物 lb (11. lg、 18. 9mg)をメタノール 800mLと DMF50mLと THF500mL に溶解し、 10%パラジウム炭素 1.00gを加え、水素雰囲気下室温で 1日撹拌した。 反応混合物より触媒をろ別後、減圧濃縮した。この残渣と N カルボベンゾキシ L グルタミン酸 γ メチルエステル(Cbz— Glu(OMe) :5. 58g、 18. 9mmol)と HOB T(3. 18g、 20.8mmol)と NMM(2. 29mL、 20.8mmol)を DMFlOOmLに溶解 し、氷冷撹拌下 EDC(3. 99g、 20.8mmol)をカ卩え、室温で 2日間撹拌した。氷冷撹 拌下反応液に 10%クェン酸を加え生じた沈殿を、 5%重曹水、水で洗浄後、シリカゲ ルカラムクロマトグラフィ (溶出溶媒 ジクロロメタン:メタノール =10: 1)で精製し、メタ ノールを加え沈殿を生じさせ白色粉末の標題化合物 11. lgを得た。
NMR(270MHz、 DMSO— d ): δ 1. 36(9H、 s)、 1. 64—1.80(2H、 m)、
6
2. 17-2. 23(2H、 m)、 2. 76—3. 12(8H、 m)、 3. 56(3H、 s)、 3. 93—4.03(1 H、 m)、 4.40-4. 58(2H、 m)、 5.00(2H、 s)、 6.68(1H、 br. t)、 7. 18—7.44 (16H、 m)、 7.84-7. 90(2H、 m)、 8. 19(1H、 d、J = 7. 7Hz)
LC/MS:732.4(M+H+)、 754.4(M+Na+)
(d) MTX— a PhePhe— NH—C H NH—Boc (ィ匕合物 Id)の製造
2 4
化合物 lc(348mg、 0.476mmol)をメタノール 10mLとテトラヒドロフラン 10mLに 懸濁し、 10%パラジウム炭素 33mgをカ卩え、水素雰囲気下室温で 1. 5時間撹拌した 。反応混合物より触媒をろ別後、減圧濃縮した。この残渣と 4 [N— (2, 4—ジアミノー 6—プテリジ -ルメチル) N—メチルァミノ]安息香酸: 197mg、 0. 547mmol)と HO BT(76mg、 0.499mmol)を N メチルピロリドン(NMP)4mLに溶解し、氷冷撹拌 下 N—メチルモルホリン(NMM、 55;zL、 0.499mmol)と EDC (105mgゝ 0. 547m mol)を加え、室温で 4日間撹拌した。反応液に 5%重曹水をカ卩ぇ生じた沈殿をシリカ ゲルカラムクロマトグラフィ (溶出溶媒 ジクロロメタン:メタノール =10:1)、続いて、ァ ミンシリカゲル(NH— DM1020、 100— 200mesh、富士シリシァ化学株式会社製)力 ラムクロマトグラフィ (溶出溶媒 ジクロロメタン:メタノール =10:1)で精製し、黄色粉 末の標題ィ匕合物 362mgを得た。 [0087] Ή-NMR (270MHz, DMSO— d ): 61. 35(9H、 s)、 1. 78—1. 94(2H、 m)、
6
2. 23 (2H、 m)、 2.69—3. 10 (8H、 m)、 3. 22 (3H、 s)、 3. 55 (3H、 s)、 4. 27— 4. 52 (3H、 m)、 4. 79 (2H、 s)、 6.63 (2H、 br. s)、 6. 70 (1H、 br. t)、 6.82 (2 H、 d、 J=8. 9Hz)、 7.06-7. 25 (10H、 m)、 7.46 (1H、 br. s)、 7.66—7.88 (5 H、 m)、 8.06-8. 17(2H、 m)、 8. 56(1H、 s)
LC/MS:905. 5(M+H+)
(e) MTX— a—PhePhe— NH— C H NH (化合物 1)の製造
2 4 2
ィ匕合物 ld(360mg、 0. 398mmol)に、氷冷下、トリフルォロ酢酸 5mLを加え 1時 間撹拌した。反応液を減圧濃縮後、残渣をァミンシリカゲルカラムクロマトグラフィ (溶 出溶媒 ジクロロメタン:メタノール =100: 10、 2回)で精製し、黄色粉末の標題化合 物 275mgを得た。
[0088] 'H-NMR (270MHz, DMSO— d ) : δ 1.80—1. 96(2Η、 m)、 2. 20—2. 28(2
6
Η、 m)、 2.45(2Η、 t、J = 6. 6Hz), 2. 70—3. 10(6Η、 m)、 3. 22(3Η、 s)、 3. 5 5(3Η、 s)、 4. 26-4. 52(3Η、 m)、 4. 79(2Η、 s)、 6.61(2Η、 br. s)、 6.82(2 Η、 d、J=8. 7Ηζ)、 7.06-7. 21(10Η、 m)、 7.46(1Η、 br. s)、 7.65—7. 73(3 Η、 m)、 7.85(1Η、 d、J = 8. 1Ηζ)、 8.08—8. 16(2Η、 m)、 8. 56(1Η、 s)
LC/MS:805. 3(Μ+Η+)
〔実施例 1 2〕
4, 7, 10—トリオキサ— 13— [Ν— [Ν— [Ν— [4— [[(2, 4—ジァミノ— 6—プテリジ-ル) メチル]メチルァミノ]ベンゾィル] -a- (O 5—メチルグルタミル) ]フエ-ルァラ -ル]フ ェ-ルァラ -ルァミノ]トリデ力-ルァミン: MTX—a—PhePhe— NH— C H O— NH
10 20 3 2
(化合物 2)の製造
(a) Cbz-Phe-NH-C H O— NH— Boc (化合物 2a)の製造
10 20 3
N カルボベンゾキシ - L-フエ-ルァラニン(Cbz— Phe:852mg、 2.85mmol)と N —t—ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13 トリデカンジァミン(760mg、 2. 37mmol)と 1ーヒドロキシベンゾトリアゾール水和物(HOBT:363mg、 2. 37mm ol)をジメチルホルムアミド(DMF) 6mLに溶解し、氷冷撹拌下 1ーェチルー 3— (3—ジ メチルァミノプロピル)カルボジイミド塩酸塩(EDC:546mg、 2.85mmol)をカ卩え、室 温で 2日間撹拌した。反応液に酢酸ェチルをカ卩え、 10%クェン酸水溶液、 5%重曹 水、飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。減圧濃縮して得られた残渣を シリカゲルカラムクロマトグラフィ (溶出溶媒 ジクロロメタン:メタノール = 100: 3)で精 製し、油状の標題化合物 1.35gを得た。
[0089] 'H-NMR (270MHz, CDC1 ): δ 1.43(9H、 s)、 1.56—1.74(4Η、 m)、 3.0
3
6(2Η、 d、J = 6.8Ηζ)、 3.17—3.58(16Η、 m)、 4.30—4.39(1Η、 m)、 4.98 ( 1Η、 br)、 5.08(2Η、 s)、 5.50(1Η、 br)、 6.40(1Η、 br)、 7.16—7.32(10Η、 m)
LC/MS:624.3(M + Na+)
(b) Cbz-PhePhe-NH-C H O—NH - Boc (化合物 2b)の製造
10 20 3
化合物 2a (1.35g、 2.24mmol)をメタノール 12mLに溶解し、 10%パラジウム炭 素 200mgを加え、水素雰囲気下室温で 4時間撹拌した。反応混合物より触媒をろ別 後、減圧濃縮した。この残渣と Cbz— Phe(l.07g、 3.57mmol)と HOBT(514mg、 3.36mmol)を DMFlOmLに溶解し、氷冷撹拌下 EDC(688mg、 3.59mmol)を 加え、室温で 2日間撹拌した。反応液に酢酸ェチルをカ卩え、 10%クェン酸水溶液、 5 %重曹水、飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。減圧濃縮して得られた 残渣をシリカゲルカラムクロマトグラフィ (溶出溶媒 ジクロロメタン:メタノール =100: 3)で精製した。 n—へキサンを加えると白色沈殿物を生じ、ろ取して標題ィ匕合物 1.5 6gを得た。
[0090] 'H-NMR (270MHz, CDC1 ): δ 1.43(9H、 s)、 1.60—1.78(4Η、 m)、 2.9
3
6-3.60(20Η、 m)、 4.42—4.59(2Η、 m)、 4.96—5.07(3Η、 m)、 5.41 (1Η 、 br. d)、 6.39 (1H、 br)、 6.73 (1H、 br. d)、 7.08—7.31 (15H、 m)
LC/MS:771.3(M + Na+)
(c) Cbz-Glu (OMe) PhePhe-NH-C H O—NH— Boc (化合物 2c)の製造
10 20 3
ィ匕合物 2b(500mg、 0.668mmol)をメタノール 10mLに溶解し、 10%パラジウム 炭素 150mgを加え、水素雰囲気下室温で 1日撹拌した。反応混合物より触媒をろ別 後、減圧濃縮した。この残渣と N カルボベンゾキシ L—グルタミン酸 γ—メチルェ ステル(Cbz— Glu(OMe) :217mg、 0.734mmol)と HOBT(102mg、 0.668mm ol)を DMF5mLに溶解し、氷冷撹拌下 EDC(141mg、 0. 734mmol)を加え、室温 で 16時間撹拌した。反応液に酢酸ェチルを加え、 10%クェン酸水溶液、 5%重曹水 、飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。減圧濃縮して得られた残渣をシ リカゲルカラムクロマトグラフィ (溶出溶媒 ジクロロメタン:メタノール = 100: 5)で精製 した。 n—へキサンを加えると白色沈殿物を生じ、ろ取して標題ィ匕合物 529mgを得た
[0091] 'H-NMR (270MHZ, DMSO— d ) : δ 1. 36 (9H、 s)、 1. 50—1. 85 (6H、 m)、
6
2. 20(2H、 t、J = 7. 9Hz)、 2. 70—3. 10(8H、 m)、 3. 25—3.48(12H、 m)、 3. 56(3H、 s)、 3. 93-4.02(1H、 m)、 4. 20—4.60(2H、 m)、 5.00(2H、 s)、 6. 77(1H、 br. t)、 7. 10—7.45(16H、 m)、 7.82(1H、 br. t、J = 6. lHz)、 7. 91( 1H、 d、J = 7. 9Hz)、 8. 22(1H、 d、J = 7. 9Hz)
LC/MS:914. 3(M + Na+)
(d) MTX- a -PhePhe-NH-C H O— NH— Boc (化合物 2d)の製造
10 20 3
ィ匕合物 2c(514mg、 0. 576mmol)をメタノール 30mLに懸濁し、 10%パラジウム 炭素 lOOmgを加え、水素雰囲気下室温で 1. 5時間撹拌した。反応混合物より触媒 をろ別後、減圧濃縮した。この残渣と 4 [N— (2, 4—ジアミノー 6—プテリジニルメチル) — N—メチルァミノ]安息香酸: 281mg、 0.864mmol)と HOBT(132mg、 0.864m mol)を DMF5mLに溶解し、氷冷撹拌下 EDC(166mg、 0.864mmol)を加え、室 温で 2日間撹拌した。反応液に 5%重曹水を加え生じた沈殿をァミンシリカゲル (NH DM1020、 100— 200mesh、富士シリシァ化学株式会社製)カラムクロマトグラフィ (溶出溶媒 1回目、ジクロロメタン:メタノール =100: 7、 2回目、クロ口ホルム:メタノ ール =100:4)で精製し、黄色粉末の標題化合物 415mgを得た。
[0092] 'H-NMR (270MHz, DMSO— d ) : δ 1. 36(9Η、 s)、 1.48—1.61(4Η、 m)、
6
1. 81-1. 92(2Η、 m)、 2. 24(2Η、 t、J = 7. 9Ηζ)、 2. 70—3. 10(8Η、 m)、 3. 2 2(3Η、 s)、 3. 25-3.47(12Η、 m)、 3. 54(3Η、 s)、 4. 25—4. 50(3Η、 m)、 4. 79(2Η、 s)、 6. 61(2Η、 br. s)、 6. 76—6.83(3Η、 m)、 7.06—7. 24(10Η、 m) 、 7.45(1Η、 br. s)、 7.67—7. 80(4Η、 m)、 7.86(1Η、 d、J = 8. 1Ηζ)、 8.09 ( 1Η、 d、J = 7.4Ηζ)、 8. 15(1Η、 d、J = 8. 1Ηζ)、 8. 56(1Η、 s) LC/MS:1087. 5(M + Na+)
(e)MTX— α—PhePhe— NH— C H O— NH (化合物 2)の製造
10 20 3 2
ィ匕合物 2d(413mg、 0. 388mmol)に、水冷下、トリフノレ才ロ醉酸 3mLをカロえ 40分 間撹拌した。反応液を減圧濃縮後、残渣をァミンシリカゲルカラムクロマトグラフィ (溶 出溶媒 ジクロロメタン:メタノール =100: 7、 2回)で精製し、黄色粉末の標題化合物 344mgを得た。
[0093] 'H-NMR (270MHz, DMSO— d ) : δ 1.49—1. 95(4Η、 m)、 1. 81— 1. 92(2
6
Η、 m)、 2. 24(2Η、 t、J = 7. 9Ηζ)、 2. 70—3. 10(8Η、 m)、 3. 22(3Η、 s)、 3. 2 5-3.47(12Η、 m)、 3. 54(3Η、 s)、 4. 25—4. 50(3Η、 m)、 4. 79(2Η、 s)、 6. 61(2Η、 br. s)、 6. 76—6.83(3Η、 m)、 7.06—7. 24(1 OH, m)、 7.45(1H、 br . s)、 7. 83(1H、 br. t、J = 5.8Hz)
、 8.01(1H、 d、J = 7. 9Hz)、 8.09(1H、 d、J = 7. lHz)、 8. 15(1H、 d、J = 7.8 Hz)、 8. 56(1H、 s)
LC/MS:965. 5(M+H+)
〔実施例 1—3〕
MTX- a -PhePhe-NH-C H O -NH (化合物 3)の製造
10 20 2 2
実施例 1—2と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 4, 9—ジォキサ— 1, 12 —ドデカンジァミンを用いて、黄色粉末の標題化合物 221mgを得た。
[0094] NMR(400MHz、 DMSO— d ): δ 1.47—1.60(8H、 m)、 1. 80—1. 95(2
6
Η、 m)、 2. 20-2. 29 (2Η、 m)、 2.60 (2Η、 t)、 2. 70—3. 10 (6Η、 m)、 3. 22 (3 Η、 s)、 3. 25-3. 50 (8Η、 m)、 3. 54 (3Η、 s)、 4. 25—4.49 (3Η、 m)、 4. 79 (2 Η、 s)、 6. 60(2Η、 br. s)、 6.81(2H、 d、J = 8.4Hz)、 7.06—7. 20(10H、 m)、 7.45 (1H、 br. s)、 7. 65 (1H、 br. s)、 7. 70 (2H、 d)、 7. 73 (1H、 br. t)、 7.83
(1H、 d)、 8. 10(1H、 d)、 8. 11(1H、 d)、 8. 55(1H、 s)
LC/MS:949. 5(M+H+)
〔実施例 1—4〕
MTX- a -PhePhe-NH-C H O -NH (化合物 4)の製造 実施例 1—2と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 4, 7—ジォキサ— 1, 10 デカンジァミンを用いて、黄色粉末の標題化合物 407mgを得た。
[0095] NMR(400MHz、 DMSO— d ): δ 1. 50—1. 57(4H、 m)、 1. 85—1. 91(2
6
H、 m)、 2. 21-2. 28 (2H、 m)、 2.60 (2H、 t)、 2. 70—3. 13 (6H、 m)、 3. 22 (3 H、 s)、 3. 25-3.45 (8H、 m)、 3. 55 (3H、 s)、 4. 27—4.49 (3H、 m)、 4. 79 (2 H、 s)、 6. 60(2H、 br. s)、 6.82(2H、 d、J = 8.8Hz)、 7.07—7. 21(10H、 m)、 7.43 (1H、 br. s)、 7. 69 (1H、 br. s)、 7. 71 (2H、 d、 J = 8.8Hz)、 7. 75 (1H、 b r. t)、 7.85(1H、 d)、 8.08(1H、 d)、 8. 13(1H、 d)、 8. 56(1H、 s)
LC/MS:921.4(M+H+)
〔実施例 1—5〕
MTX- a -PhePhe-NH-C H O— NH (化合物 5)の製造
6 12 2 2
実施例 1—2と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N— t ブトキシカルボ二ルー 3, 6—ジォキサ— 1, 8— オクタンジァミンを用いて、黄色粉末の標題化合物 148mgを得た。
[0096] 'H-NMR (270MHz, DMSO— d ) : δ 1.81-1. 91(2Η、 m)、 2. 20—2. 25(2
6
Η、 m)、 2.61-2. 64 (2Η、 t)、 2. 70—2. 97 (6Η、 m)、 3. 22 (3Η、 s)、 3. 27—3 .47 (8Η、 m)、 3. 55 (3Η、 s)、 4. 27—4.47 (3Η、 m)、 4. 79 (2Η、 s)、 6.62 (2 Η、 br. s)、 6.82(2Η、 d、J = 8. 7Ηζ)、 7.06—7. 25(10Η、 m)、 7.46(1Η、 br. s)、 7.67(1Η、 br. s)、 7. 71(2H、 d、J = 8. 6Hz)、 7.85(1H、 d)、 7. 92(1H、 b r. t)、 8.07(1H、 d)、 8. 15(1H、 d)、 8. 56(1H、 s)
LC/MS:893.6(M+H+)
〔実施例 1 6〕
MTX- a -PhePhe-NH-C H O— NH (化合物 6)の製造
4 8 2
実施例 1—2と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N— t ブトキシカルボ-ルー 3 ォキサ—1, 5 ペンタ ンジァミンを用いて、黄色粉末の標題化合物 52mgを得た。
[0097] 'H-NMR (270MHz, DMSO— d ) : δ 1.84—1. 92(2Η、 m)、 2. 20—2. 27(2 H、 m)、 2. 60-2. 64 (2H、 t)、 2. 71—2. 99 (6H、 m)、 3. 22 (3H、 s)、 3. 25—3 . 45(4H、 m)、 3. 54(3H、 s)、 4. 27—4. 50(3H、 m)、 4. 79(2H、 s)、 6. 61(2 H、 br. s)、 6. 81(2H、 d、J = 8. 4Hz)、 7. 05—7. 21(10H、 m)、 7.45(1H、 br. s)、 7. 65(1H、 br. s)、 7. 70(2H、 d、J = 8. 6Hz)、 7. 84(1H、 d)、 7. 91(1H、 b r. t)、 8. 07(1H、 d)、 8. 15(1H、 d)、 8. 55(1H、 s)
LC/MS:849.4(M+H+)
〔実施例 1 7〕
MTX- a -PhePhe-NH-C H — NH (化合物 7)の製造
5 10 2
実施例 1—1と同様の方法で、 N— t ブトキシカルボ-ルー 1, 2—エチレンジァミンの 代わりに N— t ブトキシカルボ-ルー 1, 5 ペンタンジァミンを用いて、黄色粉末の標 題ィ匕合物 148mgを得た。
[0098] 'H-NMR (270MHz, DMSO-d ): δ 1. 16—1. 56(6H、m)、 1. 81—1. 97(2
6
H、 m)、 2. 21-2. 29 (2H、 m)、 2. 69—3. 06 (6H、 m)、 3. 23 (3H、 s)、 3. 55 (3 H、 s)、 4. 25-4. 50 (3H、 m)、 4. 80 (2H、 s)、 6. 65 (2H、 br. s)、 6. 82 (2H、 d 、J = 8. 6Hz)、 7. 08-7. 24(10H、 m)、 7. 50(1H、 br. s)、 7. 60—7. 89(5H、 m)、 8. 10-8. 16 (2H、 m)、 8. 55 (1H、 s)
LC/MS:847.4(M+H+)
〔実施例 1 8〕
MTX— a—PhePhe— Lys— OMe (ィ匕合物 8)の製造
実施例 1—2と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N— ε t ブトキシカルボ-ルー L—リジンメチルエス テルを用いて、黄色粉末の標題化合物 178mgを得た。
[0099] 'H-NMR (270MHz, DMSO-d ): δ 1. 25—1. 34(4H、 m)、 1. 56—1. 69(2
6
Η、 m)、 1. 75-1. 90(2Η、 m)、 2. 18—2.
25 (2Η、 br. t)、 2. 50—2. 60 (2H、 m)、 2. 65—3. 07 (4H、 m)、 3. 22 (3H、 s)、 3. 54 (3H、 s)、 3. 60 (3H、 s)、 4. 15—4. 60 (4H、 m)、 4. 79 (2H、 s)、 6. 63 (2 H、 br. s)、 6. 81(2H、 d、J = 8. 7Hz)、 7. 00—7. 25(10H、 m)、 7.45(1H、 br. s)、 7. 62(1H、 br. s)、 7. 69(2H、 d、J = 8. 6Hz)、 7. 80(1H、 d)、 8. 05(1H、 d )、8. 16(1H、 d)、 8. 30(1H、 d)、 8. 56(1H、 s)
LC/MS:905.4(M+H+)
〔実施例 1—9〕
MTX- a -PheGly-NH-C H O— NH (化合物 9)の製造
10 20 3 2
実施例 1 2 (a)の工程の N カルボベンゾキシ L フエ-ルァラニンの代わりに N— カルボベンゾキシグリシンを用いた以外は、実施例 1 2と同様の方法で、黄色粉末 の標題ィ匕合物 528mgを得た。
[0100] 'H-NMR (270MHz, DMSO— d ) : δ 1. 51— 1.64(4Η、 m)、 1. 84—1. 94(2
6
Η、 m)、 2. 21-2. 30(2Η、 m)、 2. 55(2Η、 t、J = 6. 3Ηζ)、 2. 78—2. 92(1Η、 m)、 3.03-3. 76(17Η、 m)、 3. 22(3Η、 s)、 3. 55(3Η、 s)、 4. 26—4. 52 (2Η 、 m)、 4. 79(2Η、 s)、 6.63(2Η、 br. s)、 6.82(2Η、 d、J = 8. 7Hz), 7. 11—7. 24(5Η、 m)、 7.47(1Η、 br. s)、 7.62—7. 72(4Η、 m)、 8.04—8. 16(2Η、 m) 、 8. 28 (1Η、 br. t)、 8. 56 (1H、 s)
LC/MS:875. 5(M+H+)
〔実施例 1—10〕
MTX- a -PheGly-NH-C H O -NH (化合物 10)の製造
10 20 2 2
実施例 1—9と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 4, 9—ジォキサ— 1, 12 —ドデカンジァミンを用いて、黄色粉末の標題化合物 300mgを得た。
[0101] 'H-NMR (400MHz, DMSO— d ) : δ 1.47—1. 50(4Η、 m)、 1. 54—1.60(4
6
Η、 m)、 1.82-1. 95(2Η、 m)、 2. 25—2. 28(2Η、 m)、 2. 58(2Η、 t、J = 6.6Η ζ)、 2.82-2. 87 (1Η、 m)、 3.02—3.07 (3Η、 m)、 3. 22 (3Η、 s)、 3. 25—3.4 1 (8Η、 m)、 3. 55 (3Η、 s)、 3. 55—3.63 (2Η、 m)、 4. 28—4.47 (2Η、 m)、 4. 7 9(2Η、 s)、 6. 60(2Η、 br. s)、 6.81(2Η、 d、J = 8.8Ηζ)、 7.09—7. 18(5Η、 m )、 7.45(1Η、 br. s)、 7. 59(1Η、 br. t)、 7.66(1Η、 br. s)、 7. 70(2H、 d、J = 8 . 8Hz)、 8.02 (1H、 d)、 8.08 (1H、 d)、 8. 26 (1H、 br. t)、 8. 56 (1H、 s)
LC/MS:859. 3(M+H+)
〔実施例 1—11〕 MTX— a -PheGly-NH-C H O— NH (化合物 11)の製造
8 16 2 2
実施例 1—9と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 4, 7—ジォキサ— 1, 10 デカンジァミンを用いて、黄色粉末の標題化合物 300mgを得た。
[0102] NMR(400MHz、 DMSO— d ): δ 1. 53—1.62(4H、 m)、 1. 82—1. 92(2
6
H、 m)、 2. 20-2. 27 (2H、 m)、 2. 50—2.60 (2H、 t)、 2.81—2. 86 (1H、 m)、 2 . 97-3.08 (3H、 m)、 3. 22 (3H、 s)、 3. 25—3.47 (8H、 m)、 3. 55 (3H、 s)、 3 . 55-3. 73 (2H、 m)、 4. 24—4.47 (2H、 m)、 4. 79 (2H、 s)、 6. 60 (2H、 br. s) 、 6.81(2H、 d)、 7. 12-7. 21(5H、 m)、 7.45(1H、 br. s)、 7. 60(1H、 br. t)、 7. 63(1H、 br. s)、 7. 69(2H、 d)、 8.03(1H、 d)、 8. 10(1H、 d)、 8. 28(1H、 b r. t)、 8. 56(1H、 s)
LC/MS:831. 3(M+H+)
〔実施例 1—12〕
MTX— a -PheGly-NH-C H O— NH (化合物 12)の製造
6 12 2 2
実施例 1—9と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 3, 6—ジォキサ— 1, 8— オクタンジァミンを用いて、黄色粉末の標題化合物 18 lmgを得た。
[0103] 'H-NMR (270MHz, DMSO— d ) : δ 1.83—1. 92(2Η、 m)、 2. 21—2. 27(2
6
Η、 m)、 2.60-2. 65 (2Η、 t)、 2. 75—3. 10 (2Η、 m)、 3. 22 (3Η、 s)、 3. 23—3 .46(10Η、 m)、 3. 55(3Η、 s)、 3. 55—3. 75(2Η、 m)、 4. 25—4. 52(2Η、 m)、 4. 79(2Η、 s)、 6.61(2Η、 br. s)、 6.82(2Η、 d、J = 8.6Ηζ)、 7. 10—7. 20(5 Η、 m)、 7.45 (1Η、 br. s)、 7. 63—7. 72 (4Η、 m)、 8.00 (1Η、 d)、 8. 10 (1Η、 d)、 8. 27 (1Η、 br. t)、 8. 56 (1H、 s)
LC/MS:803.4(M+H+)
〔実施例 1—13〕
MTX— a -PheGly-NH-C H O— NH (化合物 13)。
4 8 2
[0104] 実施例 1—9と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10 トリオキサ—1, 13—トリデカンジァミンの代わりに N— t ブトキシカルボ-ルー 3 ォキサ—1, 5 ペンタ ンジァミンを用いて、黄色粉末の標題化合物 318mgを得た。
[0105] 'H-NMR (270MHz, DMSO— d ) : δ 1.82—1. 95(2Η、 m)、 2. 22—2. 27(2
6
Η、 m)、 2. 59-2. 64(2Η、 t)、 2. 73—3. 15(2Η、 m)、 3. 23(3Η、 s)、 3. 25—3 . 38(6Η、 m)、 3. 55(3Η、 s)、 3.46—3. 77(2Η、 m)、 4. 23—4. 51(2Η、 m)、 4 . 79(2Η、 s)、 6.62(2Η、 br. s)、 6.82(2Η、 d、J = 8.6Ηζ)、 7. 10—7. 17(5Η 、 m)、 7.47(1Η、 br. s)、 7.63—7. 75(4Η、 m)、 8.02(1Η、 d)、 8. 11(1Η、 d) 、 8. 27(1Η、 br. t)、 8. 56(1H、 s)
LC/MS:759. 3(M+H+)
〔実施例 1—14〕
MTX- a -PhePro-NH-C H O— NH (化合物 14)の製造
10 20 3 2
実施例 1 2 (a)の工程で N カルボベンゾキシ L フエ-ルァラニンの代わりに N— カルボベンゾキシ L プロリンを用いた以外は、実施例 1—2と同様の方法で、黄色 粉末の標題ィ匕合物 382mgを得た。
[0106] 'H-NMR (270MHz, DMSO— d ) : δ 1, 49—2.03(10Η、 m)、 2. 19—2. 30 (
6
2Η、 m)、 2. 55(2Η、 t、J=6.6Hz), 2.62—3.69(21Η、 m)、 3. 55(3Η、 s)、 4 . 28-4. 38(1Η、 m)、 4.63—4. 75(1Η、 m)、 4. 79(2Η、 s)、 6. 60(2Η、 br. s) 、 6.82(2Η、 d、J = 8.6Hz), 7. 14—7. 29(5Η、 m)、 7.47(1Η、 br. s)、 7.66— 7. 72 (4Η、 m)、 7. 94—8. 10 (2Η、 m)、 8. 56 (1Η、 s)
LC/MS:915. 3(Μ+Η+)
〔実施例 1 15〕
MTX— a -Phe β Ala— NH— C H O— NH (化合物 15)の製造
10 20 3 2
実施例 1 2 (a)の工程で N カルボベンゾキシ L フエ-ルァラニンの代わりに N— カルボベンゾキシ —ァラニンを用いた以外は、実施例 1—2と同様の方法で、黄色 粉末の標題化合物 180mgを得た。
[0107] 'H-NMR (270MHz, DMSO— d ) : δ 1. 52—1.62(4Η、 m)、 1. 78—1. 95(2
6
Η、 m)、 2. 16-2. 22(4Η、 m)、 2. 56(2Η、 t、J = 7. 3Ηζ)、 2. 71—3.48(21Η 、 m)、 3. 55(3Η、 s)、 4. 10(2Η、 br. s)、 4. 21—4. 30(1Η、 m)、 4. 38—4.49 ( 1Η、 m)、 4.80(2Η、 s)、 6. 59(2Η、 br. s)、 6.83(2Η、 d、J = 8.6Ηζ)、 7. 10— 7. 21 (5H、 m)、 7.43 (1H、 br. s)、 7.65—7. 74 (3H、 m)、 7.83—7.89 (2H、 m)、 7. 96(1H、 br. t)、 8.08(1H、 d、J = 6. 8Hz)、 8. 56(1H、 s)
LC/MS:889. 5(M+H+)
〔実施例 1—16〕
MTX - a -Phe β Ala - NH - C H NH (化合物 16)の製造
2 4 2
実施例 1 1 (a)の工程で N カルボベンゾキシ L フエ-ルァラニンの代わりに N— カルボベンゾキシ —ァラニンを用いた以外は、実施例 1—1と同様の方法で、黄色 粉末の標題化合物 194mgを得た。
[0108] 'H-NMR (270MHz, DMSO— d ) : δ 1.80—1. 94(2Η、 m)、 2. 18—2. 26(4
6
Η、 m)、 2. 54(2Η、 t、J = 6. 1Ηζ)、 2. 74—3.08(6Η、 m)、 3. 23(3Η、 s)、 3. 5 5 (3Η、 s)、 4. 24-4.48 (2Η、 m)、 4.80 (2Η、 s)、 6. 59 (2Η、 br. s)、 6.83 (2 Η、 d、 J=8.4Hz)、 7. 13 (5Η、 s)、 7.45 (1Η、 br. s)、 7.65—7.86 (5Η、 m)、 7 . 96(1Η、 br. t)、 8.09(1H、 d、J = 6. 8Hz)、 8. 56(1H、 s)
LC/MS:729. 3(M+H+)
〔実施例 1—17〕
MTX- a -Phe-NH-C H O -NH (化合物 17)の製造
10 20 3 2
実施例 1 2 (b)の工程を省略した以外は実施例 1 2と同様の方法で、黄色粉末の 標題ィ匕合物 496mgを得た。
[0109] 'H-NMR (300MHz, DMSO— d ) : δ 1.49—1. 59(4Η、 m)、 1. 82—1.89(2
6
Η、 m)、 2. 19-2. 27(2H、m)、2. 55(2H、t、J = 7. 2Hz)、2. 73—3. 10(4H、 m)、 3. 23 (3H、 s)、 3. 17—3.48 (12H、 m)、 3. 55 (3H、 s)、 4. 21—4. 28 (1H 、 m)、 4. 38-4.45(1H、 m)、 4.80(2H、 s)、 6.61(2H、 br. s), 6.83(2H、 d、 J = 9. 3Hz)、 7. 11-7. 20(5H、 m)、 7.46(1H、 br. s)、 7.66(1H、 br. s)、 7. 73(2H、 d、J = 9.0Hz)、 7.83(1H、 t)、 7. 92(1H、 d、J = 8.4Hz)、 8. 12(1H 、 d、J = 7. 5Hz)、 8. 56(1H、 s)
LC/MS:818.4(M+H+)
〔実施例 1—18〕
MTX— a— lie— NH— C H O -NH (化合物 18)の製造 実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ L イソロイシンを用いて、黄色粉末の標題化合物 562mg を得た。
[0110] 'H-NMR (270MHz, DMSO— d ) : δ 0. 76—0. 80(6Η、 m)、 0. 99—1. 10(1
6
Η、 m)、 1. 36-1. 45(1Η、 m)、 1.49—1. 73(5Η、 m)、 1. 88—2. 07(2Η、 m)、 2. 33-2. 38(2Η、 m)、 2. 55(2Η、 t、J = 6. 6Ηζ)、 2. 98—3.48(14Η、 m)、 3. 21 (3Η、 s)、 3. 56 (3Η、 s)、 4. 05—4. 13 (1Η、 m)、 4.40—4.48 (1Η、 m)、 4. 78(2Η、 s)、 6. 60(2Η、 br. s)、 6. 82(2Η、 d、J = 8.4Ηζ)、 7.46(1Η、 br. s)、 7. 66-7. 72(3Η、 m)、 7. 98(1Η、 br. t)、 8. 12(1Η、 d、J = 7. 6Ηζ)、 8. 56(1 Η、 s)
LC/MS:784.4(Μ+Η+)
〔実施例 1—19〕
ΜΤΧ— a -Ile-NH-C Η— ΝΗ (化合物 19)
2 4 2
実施例 1—18と同様の方法で、 Ν— t ブトキシカルボ-ルー 4, 7, 10—トリオキサ— 1 , 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 1, 2—エチレンジァミン を用いて、黄色粉末の標題化合物 320mgを得た。
[0111] 'H-NMR (300MHz, DMSO— d ) : δ 0. 76—0. 80(6Η、 m)、 0. 96—1. 08(1
6
Η、 m)、 1. 34-1. 48(1Η、 m)、 1. 62—1. 70(1Η、 m)、 1. 85—2. 03(2Η、 m)、 2. 36(2Η、 t、J = 7. 8Ηζ)、 2. 95—3. 08(2Η、 m)、 3. 21(3Η、 s)、 3. 56(3Η、 s )、4. 06-4. 12(1Η、 m)、 4. 38—4.45(1Η、 m)、 4. 78(2Η、 s)、 6. 61(2Η、 br . s)、 6. 83(2Η、 d、J = 9. 0Hz)、 7. 43(1Η、 br. s)、 7. 64—7. 72(4Η、 m)、 7. 92(1Η、 t、J = 5. 7Ηζ)、 8. 12(1Η、 d、J = 7. 5Ηζ)、 8. 57(1Η、 s)。
[0112] LC/MS:624. 2(Μ+Η+)
〔実施例 1—20〕
ΜΤΧ— α— Glu(OMe)— ΝΗ— C Η Ο— ΝΗ (化合物 20)の製造
10 20 3 2
実施例 1—17と同様の方法で、 Ν カルボベンゾキシ L フエ-ルァラニンの代わり に Ν カルボベンゾキシ L グルタミン酸 y メチルエステルを用いて、黄色粉末の 標題ィ匕合物 600mgを得た。 [0113] Ή-NMR (270MHz, DMSO— d ): 61. 50—2.03(8H、 m)、 2. 24—2. 31(2
6
H、 t)、 2. 34-2.40(2H、 t)、 2.49—2. 57(2H、 t)、 2. 97—3. 52(14H、 m)、 3 . 21 (3H、 s)、 3. 53 (3H、 s)、 3. 55 (3H、 s)、 4. 15—4. 36 (2H、 m)、 4. 78 (2H 、 s)、 6. 61(2H、 br. s)、 6.81(2H、 d、J = 8. 7Hz)、 7.46(1H、 br. s)、 7.67( 1H、 br. s)、 7. 72(2H、 d、J = 8. 6Hz)、 7.84(1H、 br. t)、 7. 95(1H、 d)、 8. 1 4(1H、 d)、 8. 55(1H、 s)
LC/MS:814.4(M+H+)
〔実施例 1—21〕
MTX— a -Glu (OMe) NH— C H NH (化合物 21)の製造
2 4 2
実施例 1—20と同様の方法で、 N— t ブトキシカルボ-ルー 4, 7, 10—トリオキサ— 1 , 13—トリデカンジァミンの代わりに N t ブトキシカルボ二ルー 1, 2—エチレンジァミン を用いて、黄色粉末の標題化合物 283mgを得た。
[0114] 'H-NMR (270MHz, DMSO— d ) : δ 1. 71—2.09(4Η、 m)、 2. 28(2Η、 t、 J
6
=7. 6Hz), 2. 39(2Η、 t、J = 7.6Hz), 2. 53(2Η、 t、J = 6. ΙΗζ), 2. 99—3.0 5 (2Η、 m)、 3. 21 (3Η、 s)、 3. 54 (3Η、 s)、 3. 56 (3Η、 s)、 4. 14—4. 36 (2Η、 m )、4. 79(2Η、 s)、 6.61(2Η、 br. s)、 6.82(2Η、 d、J = 8.6Hz), 7.43(1Η、 br . s)、 7. 65-7. 79(4Η、 m)、 7. 95(1Η、 d、J = 7.8Ηζ)、 8. 14(1Η、 d、J = 6. 9 Ηζ)、 8. 56(1Η、 s)
LC/MS:654. 1(Μ+Η+)
〔実施例 1—22〕
MTX- a -Tyr-NH-C H O -NH (化合物 22)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ Lーチロシンを用いて、黄色粉末の標題化合物 133mgを得 た。
[0115] 'H-NMR (270MHz, DMSO-d ): δ 1. 51-1.62(4H、m)、 1. 85—1. 95(2
6
H、 m)、 2. 23-2. 31 (2H、 m)、 2. 51—2. 58 (2H、 t)、 2.63—2. 91 (2H、 m)、 2 . 95-3. 16(2H、 m)、 3. 22(3H、 s)、 3. 27—3. 54(12H、 m)、 3. 56(3H、 s)、 4. 22-4. 35(2H、 m)、 4. 79(2H、 s)、 6. 57(2H、 d、J = 8. lHz)、 6.61(2H、 br. s)、 6.82(2H、 d、J = 8. 7Hz)、 6. 92(2H、 d、J = 8. 1Hz), 7.47(1H、 br. s)、 7.67-7.88 (5H、 m)、8. 13 (1H、 d)、 8. 55 (1H、 s)
LC/MS:834.4(M+H+)
〔実施例 1—23〕
MTX- a -Trp-NH-C H O— NH (化合物 23)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ L トリプトファンを用いて、黄色粉末の標題化合物 17 lmg を得た。
[0116] 'H-NMR (270MHz, DMSO-d ): δ 1. 50—1.61(4H、m)、 1. 84—1. 97(2
6
H、 m)、 2. 23-2. 32(2H、 m)、 2. 50—2. 56(2H、 t)、 2. 92—3. 15(4H、 m)、 3 . 22(3H、 s)、 3. 29-3.45(12H、 m)、 3. 55(3H、 s)、 4. 29—4.49(2H、 m)、 4. 78 (2H、 s)、 6.64 (2H、 br. s)、 6.80 (2H、 d)、 6. 92 (1H、 t)、 7.04 (1H、 t) 、 7. 10(1H、 s)、 7. 26(1H、 d)、 7.44(1H、 br. s)、 7. 51(1H、 d)、 7.65(1H、 br. s)、 7.69(2H、 d)、 7.82(1H、 br. t)、 7. 93(1H、 d)、 8. 10(1H、 d)、 8. 55 (1H、 s)、 10. 80(1H、 s)
LC/MS:857. 5(M+H+)
〔実施例 1—24〕
MTX- a -Ser-NH-C H O -NH (化合物 24)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ Lーセリンを用いて、黄色粉末の標題化合物 416mgを得た
[0117] 'H-NMR (300MHz, DMSO-d ): δ 1. 50—1.63(4H、 m)、 1. 90—2.08(4
6
Η、 m)、 2. 39(2Η、 t、J = 7.8Hz), 2. 55(2Η、 t、J = 6.6Hz), 3.05—3.48(1 6Η、 m)3. 21(3Η、 s)、 3. 56(3Η、 s)、 4. 13—4. 20(1Η、 m)、 4. 33—4.41(1 Η、 m)、 4. 78(2Η、 s)、 6.61(2Η、 br. s)、 6.82(2Η、 d、J = 9. ΟΗζ), 7.44(1 Η、 br. s)、 7.66-7.80(5Η、 m)、 8. 19(1Η、 d、J = 6. 9Ηζ)、 8. 56(1Η、 s)
LC/MS:758.4(Μ+Η+)
〔実施例 1—25〕 MTX- a -Leu-NH-C H O— NH (化合物 25)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ L一口イシンを用いて、黄色粉末の標題化合物 283mgを得 た。
[0118] 'H-NMR (270MHz, DMSO— d ) : δ 0.80—0.87(6Η、 d)、 1.43—1.64(7
6
Η、 m)、 1. 90-2.06(2Η、 m)、 2. 34—2. 30(2Η、 t)、 2. 53—2. 58(2Η、 t)、 3 .04-3.08(2Η、 m)、 3. 21(3Η、 s)、 3. 33—3.47(12Η、 m)、 3. 56(3Η、 s)、 4. 19-4. 37(2Η、 m)、 4. 78(2Η、 s)、 6.62(2Η、 br. s)、 6.82(2Η、 d、J = 8. 7Hz)、 7.45 (1Η、 br. s)、 7.64—7. 85 (5Η、 m)、 8. 10 (1Η、 d)、 8. 55 (1Η、 s )
LC/MS:784.4(M+H+)
〔実施例 1—26〕
MTX- a -Val-NH-C H O -NH (化合物 26)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ L パリンを用いて、黄色粉末の標題化合物 590mgを得た
[0119] 'H-NMR (270MHz, DMSO— d ): δ 0. 79(6Η、 d、J = 6.8Hz), 1. 52—1. 5
6
9 (4Η、 m)、 1.85-2.04 (3Η、 m)、 2. 33—2. 35 (2Η、 t)、 2. 56—2. 58 (2Η、 t) 、 2. 93-3. 55 (14Η、 m)、 3. 21 (3Η、 s)、 3. 56 (3Η、 s)、 4.03—4.08 (1Η、 m )、4.42-4.47(1Η、 m)、 4. 78(2Η、 s)、 6.62(2Η、 br. s)、 6.82(2Η、 d、J = 8. 7Ηζ)、 7.45(1Η、 br. s)、 7.61—7. 72(4Η、 m)、 7. 98(1Η、 br. t)、 8. 13 ( 1Η、 d)、 8. 56(1Η、 s)
LC/MS:770.4(M+H+)
〔実施例 1—27〕
MTX— a— His— NH— C H O -NH (化合物 27)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ L ヒスチジンを用いて、黄色粉末の標題化合物 8 lmgを得 [0120] H— NMR(300MHz、 DMSO— d ) : 61.49—1. 58(4H、 m)、 1. 90—2. 04(2
6
H、 m)、 2. 39(2H、 t、J = 6. 6Hz), 2. 55(2H、 t、J = 6. 9Hz), 2. 83(2H、 m)、 3. 02 (2H、 m)、 3. 16—3.47 (12H、 m)、 3. 23 (3H、 s)、 3. 57 (3H、 s)、 4. 22 ( 1H、 m)、 4. 32 (1H、 m)、 4. 80 (2H、 s)、 6. 61 (2H、 br. s)、 6. 72 (1H、 s)、 6. 84(2H、 d、 J = 8.4Hz)、 7. 10—7. 70(5H、 m)、 7. 77(2H、 d、J = 8. 7Hz)、 8. 36(1H、 br), 8. 57(1H、 s)
LC/MS:808. 3(M+H+)
〔実施例 1—28〕
MTX- a -Pro-NH-C H O— NH (化合物 28)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ L プロリンを用いて、黄色粉末の標題化合物 683mgを得 た。
[0121] NMR(270MHz、 DMSO— d ): δ 1. 58(4H、 dd、J = 6. 5Hz、J=12. 8Hz
6
), 1. 69—2. 10(6H、 m)、 2.44(2H、 t、J = 7. 7Hz), 2. 60(2H、 t、J = 6. 8Hz )、 2. 91—3. 75(19H、 m)、 3. 57(3H、 s)、 4. 18—4. 25(1H、 m)、 4. 61—4. 7 2(1H、 m)、 4. 77(2H、 s)、 6. 61(2H、 br. s)、 6. 80(2H、 d、J = 8. 7Hz)、 7.4 4(1H、 br. s)、 7. 69—7. 80(4H、 m)、 8. 15(1H、 d、J = 7. lHz)、 8. 55(1H、 s )
LC/MS:768. 3(M+H+)
〔実施例 1—29〕
MTX- α-β Ala-NH-C H O -NH (化合物 29)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ βーァラニンを用いて、黄色粉末の標題化合物 230mgを 得た。
[0122] 'H-NMR (270MHz, DMSO— d ) : δ 1.49—1. 62(4Η、 m)、 1. 79—2. 02(2
6
Η、 m)、 2. 21(2Η、 t、J = 6. 9Hz), 2. 32(2Η、 t、J = 7. 3Ηζ), 2. 56(2Η、 t、J =6. 6Ηζ)、 3. 00-3. 61(19Η、 m)、 3. 55(3Η、 s)、 4. 29—4. 38(1Η、 m)、 4. 78(2Η、 s)、 6. 61(2Η、 br. s)、 6. 81(2Η、 d、J = 8. 6Ηζ)、 7.43(1Η、 br. s)、 7. 61-7. 91(3H、 m)、 7. 72(2H、 d、J = 8.6Hz)、 8.02(1H、 d、J = 7.8Hz),
8. 55(1H、 s)
LC/MS:742.4(M+H+)
〔実施例 1—30〕
MTX- y -PhePhe-NH-C H O— NH (化合物 30)の製造
10 20 3 2
実施例 1—2と同様の方法で、 N カルボベンゾキシ L グルタミン酸 γ—メチルェ ステルの代わりに Ν カルボベンゾキシ L グルタミン酸 a メチルエステルを用い て、黄色粉末の標題化合物 312mgを得た。
[0123] 'H-NMR (270MHz, DMSO— d ) : δ 1.49—1.60(4Η、 m)、 1. 76—1. 98(2
6
Η、 m)、 2.09-2. 20(2Η、 m)、 2. 56(2Η、 t、J = 6.6Hz), 2.62—3. 16(6Η、 m)、 3. 21 (3Η、 s)、 3. 27—3.48 (12Η、 m)、 3. 59 (3Η、 s)、 4. 27—4. 53 (3Η 、 m)、 4. 78(2Η、 s)、 6.61(2Η、 br. s)、 6.81(2Η、 d、J = 8.6Hz), 7. 16—7. 23 (10Η、 m)、 7.48 (1Η、 br. s)、 7.68—7. 74 (3Η、 m)、 7.83 (1Η、 br. t)、 8 .01(1H、 d、J = 7. 9Hz)、 8. 10(1H、 d、J = 7.8Hz)、 8. 36(1H、 d、J = 6.8Hz )、8. 55(1H、 s)
LC/MS:965. 5(M+H+)
〔実施例 1—31〕
ΜΤΧ-γ -PhePhe-NH-C H O -NH (化合物 31)の製造
6 12 2 2
実施例 1—5と同様の方法で、 N カルボベンゾキシ L グルタミン酸 γ—メチルェ ステルの代わりに Ν カルボベンゾキシ L グルタミン酸 a メチルエステルを用い て、黄色粉末の標題化合物 80mgを得た。
[0124] 'H-NMR (270MHz, DMSO— d ) : δ 1. 75—1. 97(2Η、 m)、 2.08—2. 17(2
6
Η、 m)、 2. 59-2. 62 (2Η、 t)、 2. 58—3.05 (6Η、 m)、 3. 22 (3Η、 s)、 3. 15—3 . 52 (8Η、 m)、 3. 59 (3Η、 s)、 4. 23—4. 52 (3Η、 m)、 4. 78 (2Η、 s)、 6.63 (2 Η、 br. s)、 6.81(2Η、 d、J = 8. 7Ηζ)、 7. 11—7. 21(10Η、 m)、 7.44(1Η、 br. s)、 7.65(1Η、 br. s)、 7. 70(2H、 d)、 7. 94—8. 12(3H、 m)、 8. 35(1H、 d)、 8 . 55(1H、 s)
LC/MS:893. 5(M+H+) 〔実施例 1—32〕
MTX- y -PhePhe-NH-C H O— NH (化合物 32)の製造
4 8 2
実施例 1—6と同様の方法で、 N カルボベンゾキシ L グルタミン酸 γ—メチルェ ステルの代わりに Ν カルボベンゾキシ L グルタミン酸 a メチルエステルを用い て、黄色粉末の標題化合物 49mgを得た。
[0125] 'H-NMR (270MHz, DMSO— d ) : δ 1. 73—1. 97(2Η、 m)、 2.08—2. 18(2
6
Η、 m)、 2.60-2. 65(2Η、 t)、 2. 59—3.02(6Η、 m)、 3. 21(3Η、 s)、 3. 13—3 .44 (4Η、 m)、 3. 59 (3Η、 s)、 4. 25—4. 53 (3Η、 m)、 4. 78 (2Η、 s)、 6.63 (2 Η、 br. s)、 6.81(2Η、 d、J = 8. 7Ηζ)、 7.09—7. 25(10Η、 m)、 7.43(1Η、 br. s)、 7.66(1Η、 br. s)、 7. 72(2H、 d、J = 8.4Hz)、 7. 95—8. 10(3H、 m)、 8. 3 6(1H、 d)、 8. 55(1H、 s)
LC/MS:849. 5(M+H+)
〔実施例 1—33〕
MTX- y -PheGly-NH-C H O -NH (化合物 33)の製造
10 20 3 2
実施例 1—9と同様の方法で、 N カルボベンゾキシ L グルタミン酸 γ—メチルェ ステルの代わりに Ν カルボベンゾキシ L グルタミン酸 a メチルエステルを用い て、黄色粉末の標題化合物 693mgを得た。
[0126] 'H-NMR (270MHz, DMSO— d ) : δ 1. 50—1.68(4Η、 m)、 1. 80—2.02(2
6
Η、 m)、 2. 12-2. 27(2Η、 m)、 2. 55(2Η、 t、J = 6.4Ηζ)、 2. 71—2. 79(1Η、 m)、 2. 96-3. 14 (3Η、 m)、 3. 22 (3Η、 s)、 3. 38—3. 74 (12Η、 m)、 3. 59 (3Η 、 s)、 4. 28-4.48(2Η、 m)、 4. 79(2Η、 s)、 6.62(2Η、 br. s)、 6.81(2Η、 d、J =8.4Ηζ)、 7. 14-7. 28(5Η、 m)、 7.47(1Η、 br. s)、 7.63—7. 73(4Η、 m)、 8. 19(1Η、 d、J = 7.6Ηζ)、 8. 29—8. 36(2Η、 m)、 8. 56(1Η、 s)
LC/MS:875.4(Μ+Η+)
〔実施例 1—34〕
MTX- y -Phe-NH-C H O -NH (化合物 34)の製造
10 20 3 2
実施例 1—17と同様の方法で、 N カルボベンゾキシ L グルタミン酸 γ メチル エステルの代わりに Ν カルボベンゾキシ L—グルタミン酸 a メチルエステルを用 いて、黄色粉末の標題化合物 480mgを得た。
[0127] 'H-NMR (300MHz, DMSO— d ) : δ 1.49—1. 58(4Η、 m)、 1. 79—2.00(2
6
Η、 m)、 2. 10-2. 27(2Η、 m)、 2. 55(2Η、 t、J = 6. 9Hz), 2.69—2. 93(2Η、 m)、 2. 96-3. 12(2Η、 m)、 3. 22(3Η、 s)、 3. 26—3.48(12Η、 m)、 3. 59 (3Η 、 s)、 4. 25-4. 33 (1Η、 m)、 4. 38—4.46 (1Η、 m)、 4. 79 (2Η、 s)、 6.62 (2Η 、 br. s)、 6.81(2Η、 d、J = 8. 7Ηζ)、 7. 10—7. 24(5Η、 m)、 7.44(1Η、 br)、 7 . 70(1Η、 br)、 7. 72(2Η、 d、J = 8. 7Hz), 7. 95(1Η、 t)、 8. 10(1Η、 d、J = 8. 1Ηζ)、 8. 35(1Η、 d、J = 6. 9Ηζ)、 8. 56(1Η、 s)
LC/MS:818.4(Μ+Η+)
〔実施例 1—35〕
ΜΤΧ— γ— Glu(OMe)— ΝΗ— C Η Ο— ΝΗ (化合物 35)の製造
10 20 3 2
実施例 1—20と同様の方法で、 Ν カルボベンゾキシ L グルタミン酸 γ メチル エステルの代わりに Ν カルボベンゾキシ L—グルタミン酸 a メチルエステルを用 いて、黄色粉末の標題化合物 438mgを得た。
[0128] 'H-NMR (270MHz, DMSO— d ) : δ 1. 52—2.06(8Η、 m)、 2. 22—2. 30(4
6
Η、 m)、 2. 53-2. 58(2Η、 t)、 3.03—3. 15(2Η、 m)、 3. 22(3Η、 s)、 3. 25—3 . 54(12Η、 m)、 3. 56(3Η、 s)、 3.61(3Η、 s)、 4. 13—4.40(2Η、 m)、 4. 79(2 Η、 s)、 6. 63(2Η、 br. s)、 6.81(2Η、 d、J = 8.6Ηζ)、 7.44(1Η、 br. s)、 7.67 (1Η、 br. s)、 7. 72(2H、 d、J = 8.4Hz)、 7. 90(1H、 br. t)、 7. 99(1H、 d)、 8. 37(1H、 d)、 8. 56(1H、 s)
LC/MS:814. 5(M+H+)
〔実施例 1—36〕
MTX- a -D-Phe-D-Phe-NH-C H O— NH (化合物 36)の製造
10 20 3 2
実施例 1—2と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ D フエ-ルァラニンを用いて、黄色粉末の標題化合物 31 3mg 守た。
[0129] 'H-NMR (270MHz, DMSO— d ) : δ 1.40—1. 59(4Η、 m)、 1. 74—1.83(2
6
Η、 m)、 2.04-2. 11(2Η、 m)、 2. 56—2. 58(2Η、 t)、 2. 59—3. 12(6Η、 m)、 3 . 21(3H、 s)、 3. 17-3. 51(12H、 m)、 3. 55(3H、 s)、 4. 24—4.44(3H、 m)、 4. 78(2H、 s)、 6.62(2H、 br. s)、 6.81(2H、 d、J = 8.6Hz)、 7. 10—7. 26(10 H、 m)、 7.45(2H、 m)、 7.64(1H、 br. s)、 7. 72(2H、 d、J = 8.4Hz)、 8. 18 ( 2H、 m)、 8.43(1H、 d)、 8. 55(1H、 s)
LC/MS:965.6(M+H+)
〔実施例 1—37〕
MTX- y -D-Phe-D-Phe-NH-C H O— NH (化合物 37)の製造
10 20 3 2
実施例 1—30と同様の方法で、 N カルボベンゾキシ L フエ-ルァラニンの代わり に N カルボベンゾキシ D フエ-ルァラニンを用いて、黄色粉末の標題化合物 85 mg¾ ^守に。
[0130] 'H-NMR (270MHz, DMSO— d ) : δ 1. 51— 1.61(4Η、 m)、 1. 74—2.02(2
6
Η、 m)、 2. 11-2. 16(2Η、 m)、 2. 54-2. 59(2Η、 t)、 2.62—3. 12(6Η、 m)、 3 . 22(3Η、 s)、 3. 25-3. 53(12Η、 m)、 3.60(3Η、 s)、 4. 31—4.46(3Η、 m)、 4. 79(2Η、 s)、 6.61(2Η、 br. s)、 6.81(2Η、 d、J = 8.6Ηζ)、 7.08—7. 26(10 Η、 m)、 7.44 (1Η、 br. s)、 7. 66—7. 77 (4Η、 m)、 8.06 (2Η、 m)、 8. 36 (1Η、 d)、 8. 56(1Η、 s)
LC/MS:965.6(M+H+)
〔実施例 1—38〕
MTX- a -AsnPhePhe-NH-C H O -NH (化合物 38)の製造
10 20 3 2
通常のペプチド合成法に従ってペプチド鎖を伸張し、実施例 1 2と同様の方法で 、黄色粉末の標題化合物 145mgを得た。
[0131] 'H-NMR (270MHz, DMSO— d ) : δ 1. 52—1. 59(4Η、 m)、 1. 87—2.02(2
6
Η、 m)、 2. 32-3.48 (24Η、 m)、 3. 22 (3Η、 s)、 3. 55 (3Η、 s)、 4. 24—4. 56 ( 4Η、 m)、 4. 79(2Η、 s)、 6.60(2Η、 br. s)、 6.81(2Η、 d、J = 8.6Ηζ)、 7.04— 7. 75 (17Η、 m)、 8.07—8. 26 (4Η、 m)、 8. 56 (1Η、 s)
LC/MS:1079. 5(Μ+Η+)
〔実施例 1—39〕
MTX— a/y—GlyPheLeuGly—NH—C H O NH (化合物 39)の製造 通常のペプチド合成法に従ってペプチド鎖を伸張し、実施例 1 2と同様の方法で 、黄色粉末の化合物 723mgを得た。 LCZMS解析により、精製過程で異性化を生 じひ Z Ύの混合物( α: γ = 3: 1)となって 、ること (化合物 39)を確認した。
[0132] LC/MS : 1045. 7 (M+H+)
〔実施例 2—1〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万)にテトラヒドロフラン (THF) ( 10ml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ—1, 2, 3—べンゾ トリアジン(HOOBt) (0. 125mmol)及び実施例 1 1で得られた化合物 1 (0. 031m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添加した後、トリス [2—( 2—メトキシエトキシ)ェチル]ァミン(0. 094mmol)を超純水と THFの等量混合液(1 0ml)に溶解した液を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後に 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125mmol) を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪拌した。こ の溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリウム(9g) を超純水(45ml)に溶解した液を添カ卩したのち、エタノール(600ml)を滴下してエタ ノール析出を行い、析出物を遠心分離により分離した。析出物を超純水 (40ml)に溶 解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物質とするゲ ルろ過法により求めた分子量は約 195万であった。また、得られた結合体の MTXの 結合率は、紫外吸収(259nm)を測定することにより算出したところ、 2. 1%であった
[0133] この水溶液に、塩ィ匕ナトリウム(6g)を超純水(160mL)に溶解した液を添カ卩したの ち、エタノール (400mL)を滴下してエタノール析出を行い、析出物を遠心分離によ り分離した。析出物を超純水(500mL)に溶解し、塩ィ匕ナトリウム(15g)を添加したの ち、 0. 45 /z mのフィルター (ステリベックス HV:ミリポア)でろ過し、以後無菌的にろ 液にエタノール(lOOOmL)を滴下してエタノール析出を行い、析出物をろ取し真空 乾燥した。この析出物をリン酸緩衝液(2mMリン酸ナトリウム、 154mM塩ィ匕ナトリウム 、 pH7. 2) (40mL)に溶解し、標題の HA— MTX結合体の無菌水溶液を得た。ヒア ルロン酸を標準物質とするゲルろ過法により求めた分子量は約 186万であった。また 、得られた結合体の MTXの結合率は、紫外吸収(259nm)を測定することにより算 出したところ、 2. 1%であった。
[0134] 'H-NMR (500MHz, D O): δ 1. 83 (m)、 2. 01 (br. s)、 2. 13 (m)、 2. 49 (m
2
)、 2. 68 (m)、 2. 95 (m)、 3. 35 (br. s)、 3. 51 (br. s)、 3. 56 (br. s)、 3. 71 (br. s)、 3. 82 (br. s)、 4. 16 (t)、 4. 46 (br. s)、 4. 54 (br. d)、 4. 88 (d)、 4. 99 (d)、 6. 63 (d) , 6. 87-7. l l (m)、 7. 73 (d) , 8. 69 (s)
〔実施例 2— 2〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-1で得られた化合物 1 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 228万、 MT Xの結合率は 1. 9%であった。
[0135] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 218万、 MTXの結合 率は 1. 9%であった。
[0136] 'H-NMR (500MHz, D O): δ 1. 84 (m)、 2. 01 (br. s)、 2. 13 (m)、 2. 49 (t)
2
、 2. 68 (m)、 2. 95 (m)、 3. 36 (br. d)、 3. 51 (br. d)、 3. 56 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 16 (t)、 4. 46 (br. d)、 4. 55 (br. d)、 4. 88 (d)、 4. 98 (d)、 6. 63 (d) , 6. 87-7. 13 (m)、 7. 74 (d) , 8. 70 (s)
〔実施例 2— 2,〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-1で得られた化合物 1 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 219万、 MT Xの結合率は 2. 2%であった。
[0137] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 206万、 MTXの結合 率は 2. 3%であった。
[0138] 'H-NMR (500MHz, D O): δ 1. 83 (m)、 2. 01 (br. s)、 2. 14 (m)、 2. 52 (m
2
)、 2. 70 (m)、 2. 96 (m)、 3. 35 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 16 (t)、 4. 46 (br. s)、 4. 55 (br. s)、 4. 87 (d)、 4. 97 (d)、 6. 66 (d) , 6. 88-7. 09 (m)、 7. 72 (d) , 8. 69 (s)
〔実施例 2—3〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万)にテトラヒドロフラン (THF) ( 10ml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ—1, 2, 3—べンゾ トリアジン(HOOBt) (0. 125mmol)及び実施例 1 1で得られた化合物 1 (0. 008m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添加した後、トリス [2—( 2—メトキシェトキシ)ェチル]ァミン(0. 118mmol)を超純水と THFの等量混合液(1 0ml)に溶解した液を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後に 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125mmol) を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪拌した。こ の溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリウム(9g) を超純水(45ml)に溶解した液を添カ卩したのち、エタノール(600ml)を滴下してエタ ノール析出を行い、析出物を遠心分離により分離した。析出物を超純水 (40ml)に溶 解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物質とするゲ ルろ過法により求めた分子量は約 232万であった。また、得られた結合体の MTXの 結合率は、紫外吸収(259nm)を測定することにより算出したところ、 0. 6%であった
[0139] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 217万、 MTXの結合 率は 0. 5%であった。
[0140] 'H-NMR (500MHZ, D O): δ 2. 01 (br. s)、 2. 52 (m)、 2. 69 (m)、 2. 95 (m )、 3. 34 (br. d)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 1 6 (t)、 4. 46 (br. s)、 4. 55 (br. s)、 6. 66 (d)、 6. 87—7. 10 (m)、 7. 72 (d)、 8.
69 (s)
〔実施例 2—4〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万)にテトラヒドロフラン (THF) ( 10ml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ—1, 2, 3—べンゾ トリアジン(HOOBt) (0. 125mmol)及び実施例 1 1で得られた化合物 1 (0. 015m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添加した後、トリス [2—( 2—メトキシェトキシ)ェチル]ァミン(0. l lOmmol)を超純水と THFの等量混合液(1 0ml)に溶解した液を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後に 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125mmol) を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪拌した。こ の溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリウム(9g) を超純水(45ml)に溶解した液を添カ卩したのち、エタノール(600ml)を滴下してエタ ノール析出を行い、析出物を遠心分離により分離した。析出物を超純水 (40ml)に溶 解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物質とするゲ ルろ過法により求めた分子量は約 232万であった。また、得られた結合体の MTXの 結合率は、紫外吸収(259nm)を測定することにより算出したところ、 1. 1%であった
[0141] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 223万、 MTXの結合 率は 1. 1%であった。
[0142] 'H-NMR (500MHz, D O): δ 1. 84 (m)、 2. 01 (br. s)、 2. 13 (m)、 2. 52 (m
2
)、 2. 70 (m)、 2. 96 (m)、 3. 35 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 16 (t)、 4. 46 (br. s)、 4. 55 (br. s)、 6. 66 (d)、 6. 88—7. 09 (m)、 7. 72 (d) , 8. 69 (s) 〔実施例 2—5〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万)にテトラヒドロフラン (THF) ( 10ml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ—1, 2, 3—べンゾ トリアジン(HOOBt) (0. 125mmol)及び実施例 1 1で得られた化合物 1 (0. 020m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添加した後、トリス [2—( 2—メトキシエトキシ)ェチル]ァミン(0. 105mmol)を超純水と THFの等量混合液(1 0ml)に溶解した液を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後に 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125mmol) を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪拌した。こ の溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリウム(9g) を超純水(45ml)に溶解した液を添カ卩したのち、エタノール(600ml)を滴下してエタ ノール析出を行い、析出物を遠心分離により分離した。析出物を超純水 (40ml)に溶 解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物質とするゲ ルろ過法により求めた分子量は約 227万であった。また、得られた結合体の MTXの 結合率は、紫外吸収(259nm)を測定することにより算出したところ、 1. 4%であった
[0143] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 209万、 MTXの結合 率は 1. 3%であった。
[0144] 'H-NMR (500MHz, D O): δ 1. 84 (m)、 2. 01 (br. s)、 2. 13 (m)、 2. 49 (t)
2
、 2. 68 (m)、 2. 95 (m)、 3. 36 (br. s)、 3. 51 (br. s)、 3. 56 (br. s)、 3. 71 (br. s )、 3. 83 (br. s)、 4. 16 (t)、 4. 46 (br. s)、 4. 55 (br. d)、 4. 88 (d)、 4. 98 (d)、 6. 63 (d) , 6. 87-7. 13 (m)、 7. 74 (d) , 8. 70 (s)
〔実施例 2— 6〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万)にテトラヒドロフラン (THF) ( 10ml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ—1 , 2, 3—べンゾ トリアジン(HOOBt) (0. 125mmol)及び実施例 1 1で得られた化合物 1 (0. 063m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添加した後、トリス [2—( 2—メトキシエトキシ)ェチル]ァミン(0. 063mmol)を超純水と THFの等量混合液(1 0ml)に溶解した液を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後に 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125mmol) を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪拌した。こ の溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリウム(9g) を超純水(45ml)に溶解した液を添カ卩したのち、エタノール(600ml)を滴下してエタ ノール析出を行い、析出物を遠心分離により分離した。析出物を超純水 (40ml)に溶 解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物質とするゲ ルろ過法により求めた分子量は約 205万であった。また、得られた結合体の MTXの 結合率は、紫外吸収(259nm)を測定することにより算出したところ、 3. 9%であった
[0145] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 191万、 MTXの結合 率は 3. 8%であった。
[0146] 'H-NMR (500MHz, D O): δ 1. 84 (m)、 2. 02 (br. s)、 2. 15 (m)、 2. 53 (t)
2
、 2. 70 (m)、 2. 96 (m)、 3. 35 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 (br. s )、 3. 83 (br. s)、 4. 16 (t)、 4. 46 (br. s)、 4. 55 (br. s)、 4. 89 (s)、 4. 96 (d)、 6 . 66 (d) , 6. 87-7. 10 (m)、 7. 72 (d) , 8. 68 (s)
〔実施例 2— 7〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万)にテトラヒドロフラン (THF) ( 10ml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ—1 , 2, 3—べンゾ トリアジン(HOOBt) (0. 125mmol)及び実施例 1 1で得られた化合物 1 (0. 125m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添カ卩した後、超純水と T HFの等量混合液(10ml)を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後 に 1ーェチルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125 mmol)を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反 応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪 拌した。この溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリ ゥム(9g)を超純水(45ml)に溶解した液を添カ卩したのち、エタノール (600ml)を滴 下してエタノール析出を行い、析出物を遠心分離により分離した。析出物を超純水( 40ml)に溶解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物 質とするゲルろ過法により求めた分子量は約 197万であった。また、得られた結合体 の MTXの結合率は、紫外吸収(259nm)を測定することにより算出したところ、 4. 5 %であった。
[0147] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 174万、 MTXの結合 率は 4. 4%であった。
[0148] 'H-NMR (500MHZ, D O): δ 1. 83 (m)、 1. 93 (m)、 2. 02 (br. s)、 2. 14 (m
2
)、 2. 53 (t)、 2. 69 (m)、 2. 95 (m)、 3. 35 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、
3. 71 (br. s)、 3. 83 (br. s)、 4. 16 (t)、 4. 46 (br. s)、 4. 55 (br. d)、 4. 87 (d)、
4. 95 (d) , 6. 67 (d) , 6. 87—7. 10 (m)、 7. 71 (d) , 8. 68 (s)
〔実施例 2— 8〕
MTX- a -PhePhe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-2で得られた化合物 2 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 211万、 MT Xの結合率は 1. 6%であった。
[0149] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 198万、 MTXの結合 率は 1. 4%であった。
〔実施例 2—9〕 MTX- a -PhePhe-NHC H O NH— HAの製造
10 20 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-3で得られた化合物 3 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 183万、 MT Xの結合率は 1. 8%であった。
[0150] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 155万、 MTXの結合 率は 1. 7%であった。
〔実施例 2— 10〕
MTX- a -PhePhe-NHC H O NH— HAの製造
8 16 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-4で得られたィ匕合物 4 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 189万、 MT Xの結合率は 1. 6%であった。
[0151] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 162万、 MTXの結合 率は 1. 6%であった。
〔実施例 2— 11〕
MTX- a -PhePhe-NHC H O NH— HAの製造
6 12 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-5で得られた化合物 5 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 192万、 MT Xの結合率は 1. 9%であった。
[0152] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 162万、 MTXの結合 率は 2. 0%であった。
[0153] 'H-NMR (500MHz, D O): δ 1. 77—1. 85 (m)、 2. 02 (br. s)、 2. 16—2. 24
2
(m)、 2. 51 (m)、 2. 66 (m)、 2. 92 (m)、 3. 00 (m)、 3. 35 (br. s)、 3. 51 (br. s) 、 3. 57 (br. s)、 3. 72 (br. s)、 3. 83 (br. s)、 4. 20 (m)、 4. 46 (br. s)、 4. 55 (b r. s)、 6. 68 (d) , 6. 95—7. 18 (m)、 7. 76 (d) , 8. 72 (s)
〔実施例 2— 12〕
MTX- a -PhePhe-NHC H ONH— HAの製造
4 8
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-6で得られたィ匕合物 6 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 172万、 MT Xの結合率は 2. 0%であった。
[0154] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 149万、 MTXの結合 率は 1. 9%であった。
[0155] 'H-NMR (500MHz, D O): δ 1. 77—1. 84 (m)、 2. 01 (br. s)、 2. 20—2. 28
2
(m)、 2. 49 (m)、 2. 64 (m)、 2. 93 (m)、 3. 00 (m)、 3. 35 (br. s)、 3. 52 (br. s) 、 3. 58 (br. s)、 3. 73 (br. s)、 3. 83 (br. s)、 4. 20 (t)、 4. 47 (br. s)、 4. 55 (br . s)、 4. 92 (d) , 5. 06 (d) , 6. 64 (d) , 6. 94—7. 19 (m)、 7. 77 (d) , 8. 73 (s)
〔実施例 2— 13〕
MTX- a -PhePhe-NHC H NH— HAの製造
5 10
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-7で得られた化合物 7 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 214万、 MT Xの結合率は 1. 4%であった。
[0156] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 196万、 MTXの結合 率は 1. 2%であった。
〔実施例 2—14〕
MTX- a— PhePhe— Lys— HAの製造
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-8で得られたィ匕合物 8 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 189万、 MT Xの結合率は 1. 4%であった。
[0157] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 172万、 MTXの結合 率は 1. 4%であった。
〔実施例 2 - 15〕
MTX- a -PheGly-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 80万) と実施例 1-2で得られた化合物 2 (0. 031mmol)を反応させ、標題の HA-MTX結 合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 83万、 MTX の結合率は 1. 4%であった。
[0158] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2— 1と同様の方法で求めた分子量は約 80万、 MTXの結合 率は 1. 4%であった。
〔実施例 2— 16〕
MTX- a -PheGly-NHC H O NH— HAの製造
10 20 3
ヒアルロン酸ナトリウム塩(500mg,分子量:約 80万)にテトラヒドロフラン (THF) (1 Oml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ 1, 2, 3—べンゾト リアジン(HOOBt) (0. 125mmol)及び実施例 1—2で得られた化合物 2 (0. 009m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添加した後、トリス [2—( 2—メトキシェトキシ)ェチル]ァミン(0. 116mmol)を超純水と THFの等量混合液(1 0ml)に溶解した液を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後に 1ーェ チルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125mmol) を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪拌した。こ の溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリウム(9g) を超純水(45ml)に溶解した液を添カ卩したのち、エタノール(600ml)を滴下してエタ ノール析出を行い、析出物を遠心分離により分離した。析出物を大塚生理食塩水 (4 OmL)に溶解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物 質とするゲルろ過法により求めた分子量は約 83万であった。また、得られた結合体の MTXの結合率は、紫外吸収(259nm)を測定することにより算出したところ、 0. 5% であった。
[0159] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2— 1と同様の方法で求めた分子量は約 81万、 MTXの結合 率は 0. 5%であった。
〔実施例 2— 17〕
MTX- a -PheGly-NHC H O NH— HAの製造
10 20 3
ヒアルロン酸ナトリウム塩(500mg,分子量:約 80万)にテトラヒドロフラン (THF) (1 Oml)をカ卩えた懸濁液に、 3—ヒドロキシー 3, 4—ジヒドロー 4 ォキソ 1, 2, 3—べンゾト リアジン(HOOBt) (0. 125mmol)及び実施例 1—2で得られた化合物 2 (0. 125m mol)を超純水と THFの等量混合液(20ml)に溶解した液を添カ卩した後、超純水と T HFの等量混合液(10ml)を添加し、 5°Cにて攪拌した。攪拌を開始してから 30分後 に 1ーェチルー 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩(EDC) (0. 125 mmol)を超純水(10ml)に溶解した液を添加し、 5°Cにて 20時間攪拌した。この反 応液に、 0. 09Nの水酸ィ匕ナトリウム水溶液(220ml)を添カ卩し、 5°Cにて 3. 5時間攪 拌した。この溶液に 1Nの塩酸(20ml)を添加することにより中和し、さらに塩ィ匕ナトリ ゥム(9g)を超純水(45ml)に溶解した液を添カ卩したのち、エタノール (600ml)を滴 下してエタノール析出を行い、析出物を遠心分離により分離した。析出物を超純水( 40ml)に溶解し、標題の HA— MTX結合体の水溶液を得た。ヒアルロン酸を標準物 質とするゲルろ過法により求めた分子量は約 77万であった。また、得られた結合体の MTXの結合率は、紫外吸収(259nm)を測定することにより算出したところ、 3. 4% であった。
[0160] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2— 1と同様の方法で求めた分子量は約 76万、 MTXの結合 率は 3. 4%であった。
〔実施例 2 - 18〕 MTX- a -PheGly-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1-9で得られた化合物 9 (0. 031mmol)を反応させ、標題の HA—MTX 結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 199万、 MT Xの結合率は 1. 5%であった。
[0161] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 186万、 MTXの結合 率は 1. 4%であった。
[0162] 'H-NMR (500MHZ, D O): δ 1. 59 (m)、 1. 78 (m)、 1. 90—1. 95 (m)、 2. 0
2
2 (br. s)、 2. 13-2. 23 (m)、 2. 99—3. 14 (m)、 3. 28 (s)、 3. 35 (br. s)、 3. 51 ( br. s)、 3. 57 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 26 (t)、 4. 46 (br. s)、 4. 54 (br. s)、 4. 92 (s)、 6. 93 (d)、 7. 13—7. 20 (m)、 7. 66 (d)、 8. 69 (s)
〔実施例 2— 19〕
MTX- a -PheGly-NHC H O NH— HAの製造
10 20 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—10で得られたィ匕合物 10 (0. 031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。
[0163] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 144万、 MTXの結合 率は 1. 8%であった。
[0164] 'H-NMR (500MHz, D O): δ 1. 49 (m)、 1. 60 (m)、 1. 76 (m)、 2. 01 (br. s
2
)、 2. 09-2. 15 (m)、 2. 20—2. 28 (m)、 2. 99—3. 09 (m)、 3. 10—3. 17 (m)、 3 . 33 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 30 (m )、 4. 46 (br. s)、 4. 55 (br. d)、 4. 97 (s)、 6. 91 (d)、 7. 13 (m)、 7. 17—7. 21 ( m)、 7. 67 (d) , 8. 73 (s)
〔実施例 2—20〕
MTX- a -PheGly-NHC H O NH— HAの製造
8 16 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1 11で得られた化合物 11 (0. O31mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 173万、 M TXの結合率は 1. 6%であった。
[0165] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 150万、 MTXの結合 率は 1. 6%であった。
[0166] 'H-NMR (500MHz, D O): δ 1. 64 (m)、 1. 78 (m)、 2. 01 (br. s)、 2. 09—2
2
. 17 (m)、 2. 24 (m)、 3. 01 (m)、 3. 08 (m)、 3. 16 (m)、 3. 34 (br. s)、 3. 51 (b r. s)、 3. 56 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 31 (m)、 4. 46 (br. s)、 4. 5 4 (br. s)、 4. 97 (s)、 6. 91 (d) , 7. l l (m)、 7. 14—7. 21 (m)、 7. 67 (d) , 8. 72 ( s)
〔実施例 2— 21〕
MTX- a -PheGly-NHC H O NH— HAの製造
6 12 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—12で得られたィ匕合物 12 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 150万、 M TXの結合率は 2. 3%であった。
[0167] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 139万、 MTXの結合 率は 2. 3%であった。
〔実施例 2—22〕
MTX- a -PheGly-NHC H ONH— HAの製造
4 8
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—13で得られたィ匕合物 13 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 156万、 M TXの結合率は 2. 0%であった。
[0168] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 140万、 MTXの結合 率は 2. 2%であった。
〔実施例 2-23〕
MTX- a -PhePro-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—14で得られたィ匕合物 14 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 166万、 M TXの結合率は 1. 6%であった。
[0169] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 152万、 MTXの結合 率は 1. 6%であった。
〔実施例 2—24〕
MTX- a -Phe β Ala-NHC H O NH—HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—15で得られたィ匕合物 15 (0. 031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。
[0170] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 152万、 MTXの結合 率は 1. 5%であった。
〔実施例 2-25〕
MTX- a -Phe β Ala-NHC H NH—HAの製造
2 4
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—16で得られたィ匕合物 16 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 209万、 M TXの結合率は 2. 3%であった。
[0171] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 198万、 MTXの結合 率は 2. 3%であった。
〔実施例 2-26〕 MTX- a -Phe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—17で得られたィ匕合物 17(0.031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 213万、 M TXの結合率は 1. 7%であった。
[0172] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 179万、 MTXの結合 率は 1. 7%であった。
[0173] 'H-NMR (500MHz, D O): δ 1.63 (m)、 1. 79(m)、 2.02 (br. s)、 2. 20 (m
2
)、 2. 28(m)、 3.08(m)、 3. 10—3. 20(m)、 3. 31(s)、 3. 35 (br. s)、 3. 52 (br . s)、 3. 56 (br. s)、 3. 72 (br. s)、 3.84 (br. s)、 4. 28 (t)、 4.47 (br. s)、 4. 54 (br. s)、 4. 97(s)、 6. 94(d), 7.06(t)、 7. 13(d), 7.67(d), 8. 73 (s) 〔実施例 2—27〕
ΜΤΧ-α-Ile-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—18で得られたィ匕合物 18(0.031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 192万、 M TXの結合率は 1. 7%であった。
[0174] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 162万、 MTXの結合 率は 1. 7%であった。
[0175] 'H-NMR (500MHz, D O): δ 0.84(t)、0. 89(d), 1. 18(m)、 1.47(m)、 1
2
. 78(m)、 1.83-1. 90(m)、 2.02 (br. s)、 2. 36(m)、 3. 24(s)、 3. 35 (br. s) 、 3. 51 (br. s)、 3. 57 (br. s)、 3.63 (br. s)、 3. 71 (br. s)、 3.83 (br. s)、 4.09 (d)、 4.45 (br. s)、 4. 55 (br. s)、 4. 93 (s)、 6. 92 (d)、 7. 72 (d)、 8.68 (s)
〔実施例 2-28〕
ΜΤΧ-α-Ile-NHC H NH— HAの製造
2 4
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—19で得られたィ匕合物 19 (0. O31mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 231万、 M TXの結合率は 2. 1%であった。
[0176] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 202万、 MTXの結合 率は 2. 1%であった。
〔実施例 2—29〕
ΜΤΧ- α -Glu-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—20で得られたィ匕合物 20 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 201万、 M TXの結合率は 1. 5%であった。
[0177] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 183万、 MTXの結合 率は 1. 5%であった。
[0178] 'H-NMR (500MHz, D O): δ 1. 57(m)_、 1. 77 (m)、 2. 02 (br. s)、 2. 25 (m
2
)、 2. 37 (t)、 3. 24 (s)、 3. 25 (s)、 3. 35 (br. s)、 3. 51 (br. s)、 3. 56 (br. s)、 3 . 71 (br. s)、 3. 83 (br. s)、 4. 13 (m)、 4. 22 (m)、 4. 36 (m)、 4. 46 (br. s)、 4. 55 (br. s)、 4. 91 (s)、 6. 94 (d)、 7. 76 (d)、 8. 66 (s)、 8. 68 (s)
注:下線部分はマイナーシグナルであり、これにより a体と γ体の混合物と推定した。 〔実施例 2—30〕
ΜΤΧ- α -Glu-NHC H NH— HAの製造
2 4
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1 21で得られた化合物 21 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 226万、 M TXの結合率は 2. 1%であった。
[0179] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 206万、 MTXの結合 率は 2. 1%であった。
〔実施例 2 - 31〕
MTX- a -Tyr-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—22で得られたィ匕合物 22(0.031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 190万、 M TXの結合率は 1.6%であった。
[0180] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 176万、 MTXの結合 率は 1. 7%であった。
[0181] 'H-NMR (500MHZ, D O): δ 1. 63 (m)、 1. 77 (m)、 2. 02 (br. s)、 2. 23—2
2
. 35(m)、 2. 95(m)、 3.03—3. 21(m)、 3. 34 (br. s)、 3. 51 (br. s)、 3. 58 (br . s)、 3. 71 (br. s)、 3.83 (br. s)、 4. 28 (m)、 4.47 (br. d)、 4. 54 (br. s)、 4. 9 2(s)、 6. 58(d), 6. 94(d), 7.66(d), 8.68 (s)
〔実施例 2-32〕
MTX- a -Trp-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—23で得られたィ匕合物 23(0.031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 187万、 M TXの結合率は 1. 9%であった。
[0182] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 139万、 MTXの結合 率は 1. 9%であった。
[0183] 'H-NMR (500MHz, D O): δ 1. 53(m)、 1. 74(m)、 2. 01 (br. s)、 2. 09—2
2
. 15(m)、 2.46(m)、 2.85(m)、 3.05(m)、 3. 35 (br. s)、 3. 52 (br. s)、 3. 58 (br. s)、 3. 74 (br. s)、 3. 83 (br. s)、 4. 27 (m)、 4.48 (br. d)、 4. 55 (br. s)、 6 . 83(d), 6. 99(s)、 7.05(s)、 7. 15(d), 7.43(d), 7.49(s)、 8. 74 (s) 〔実施例 2-33〕 ΜΤΧ- α -Ser-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—24で得られたィ匕合物 24 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 186万、 M TXの結合率は 1. 7%であった。
[0184] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 165万、 MTXの結合 率は 1. 7%であった。
[0185] 'H-NMR (500MHz, D O): δ 1. 61 (m)、 1. 76 (m)、 2. 02 (br. s)、 2. 38 (t)
2
、 2. 51 (m)、 3. 24 (s)、 3. 25 (s)、 3. 35 (br. s)、 3. 50 (br. s)、 3. 56 (br. s)、 3 . 58 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 28 (m)、 4. 39 (m)、 4. 46 (br. s)、 4. 54 (br. s)、 4. 91 (s)、 6. 93 (d)、 7. 70 (d)、 7. 76 (d)、 8. 66 (s)、 8. 68 (s) 注:下線部分はマイナーシグナルであり、これにより a体と γ体の混合物と推定した。 〔実施例 2—34〕
MTX- a -Leu-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—25で得られたィ匕合物 25 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 189万、 M TXの結合率は 1. 7%であった。
[0186] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 147万、 MTXの結合 率は 1. 6%であった。
[0187] 'H-NMR (500MHz, D O): δ 0. 84 (d) , 0. 89 (d) , 1. 52—1. 68 (m)、 1. 72
2
-1. 83 (m)、 2. 01 (br. s)、 2. 45 (t)、 3. 34 (br. s)、 3. 50 (br. s)、 3. 57 (br. s) 、 3. 72 (br. s)、 3. 83 (br. s)、 4. 28 (m)、 4. 45 (br. d)、 4. 54 (br. s)、 4. 95 (s )、6. 91 (d) , 7. 72 (d) , 8. 69 (s)
〔実施例 2— 35〕
ΜΤΧ- α -Val-NHC H O NH— HAの製造 実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—26で得られたィ匕合物 26 (0. O31mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 187万、 M TXの結合率は 1. 7%であった。
[0188] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 156万、 MTXの結合 率は 1. 7%であった。
[0189] 'H-NMR (500MHz, D O): δ 0. 93 (m)、 1. 78 (m)、 2. 01 (br. s)、 2. 11—2
2
. 19 (m)、 2. 47 (m)、 3. 24 (s)、 3. 34 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 63 (br. s)、 3. 72 (br. s)、 3. 83 (br. s)、 4. 02 (d)、 4. 47 (br. d)、 4. 54 (br. s) 、 4. 95 (s)、 6. 91 (d)、 7. 72 (d)、 8. 69 (s)
〔実施例 2-36〕
ΜΤΧ- α -His-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—27で得られたィ匕合物 27 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 191万、 M TXの結合率は 1. 2%であった。
[0190] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 162万、 MTXの結合 率は 1. 2%であった。
[0191] 'H-NMR (500MHz, D O): δ 1. 70 (m)、 1. 79 (m)、 2. 01 (br. s)、 2. 23—2
2
. 36 (m)、 3. 13-3. 22 (m)、 3. 26 (s)、 3. 34 (br. s)、 3. 50 (br. s)、 3. 56 (br. s)、 3. 61 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 33 (t)、 4. 46 (br. d)、 4. 54 ( br. s)、 4. 96 (s)、 6. 92 (d) , 7. 30 (s)、 7. 73 (d) , 8. 57 (s)、 8. 70 (s) 〔実施例 2— 37〕
ΜΤΧ- α -Pro-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—28で得られたィ匕合物 28 (0. 031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 167万、 M TXの結合率は 1. 5%であった。
[0192] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 152万、 MTXの結合 率は 1. 6%であった。
〔実施例 2—38〕
MTX- α - β Ala-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—29で得られたィ匕合物 29 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 191万、 M TXの結合率は 1. 7%であった。
[0193] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 143万、 MTXの結合 率は 1. 7%であった。
[0194] 'H-NMR (500MHz, D O): δ 1. 60 (m)、 1. 67 (m)、 1. 79 (m)、 2. 01 (br. s
2
)、 2. 42 (m)、 2. 47 (m)、 3. 09 (t)、 3. 14 (t)、 3. 34 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 73 (br. s)、 3. 82 (br. s)、 4. 47 (br. s)、 4. 54 (br. d)、 4. 96 (s) 、 6. 92 (d) , 7. 73 (d) , 8. 70 (s)
〔実施例 2— 39〕
MTX- y -PhePhe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—30で得られたィ匕合物 30 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 209万、 M TXの結合率は 1. 5%であった。
[0195] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 188万、 MTXの結合 率は 1. 5%であった。
[0196] 'H-NMR (500MHz, D O): δ 1. 52 (m)、 1. 81 (m)、 2. 02 (br. s)、 2. 16—2 . 29 (m)、 2. 60 (m)、 2. 76 (m)、 2. 99 (m)、 3. 07 (m)、 3. 18—3. 26 (m)、 3. 3 2 (s)、 3. 35 (br. s)、 3. 52 (br. s)、 3. 56 (br. s)、 3. 66 (br. s)、 3. 73 (br. s)、 3 . 84 (br. s)、4. 15 (t)、 4. 27 (t)、 4. 36 (m)、 4. 47 (br. s)、 4. 55 (br. d)、 6. 8 6 (d)、 6. 92-6. 99 (m)、 7. 02—7. 16 (m)、 7. 79 (d)、 8. 71 (s)
〔実施例 2—40〕
MTX- y -PhePhe-NHC H O NH— HAの製造
6 12 2
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1 31で得られた化合物 31 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 189万、 M TXの結合率は 2. 0%であった。
[0197] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 176万、 MTXの結合 率は 2. 0%であった。
[0198] 'H-NMR (500MHz, D O): δ 2. 02 (br. s)、 2. 15—2. 24 (m)、 2. 60 (m)、 2
2
. 74-2. 83 (m)、 3. 12—3. 19 (m)、 3. 20—3. 23 (m)、 3. 29 (s)、 3. 35 (br. s) 、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 21 (t)、 4. 26 (t) 、 4. 32 (m)、 4. 46 (br. s)、 4. 55 (br. d)、 6. 84 (s)、 6. 93 (d) , 7. 00—7. 13 ( m)、 7. 76 (d) , 8. 64 (s)
〔実施例 2— 41〕
MTX- y -PhePhe-NHC H ONH— HAの製造
4 8
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—32で得られたィ匕合物 32 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 196万、 M TXの結合率は 2. 1%であった。
[0199] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 180万、 MTXの結合 率は 2. 1%であった。
〔実施例 2— 42〕 MTX- y -PheGly-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—33で得られたィ匕合物 33(0.031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 190万、 M TXの結合率は 1.4%であった。
[0200] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 172万、 MTXの結合 率は 1.5%であった。
[0201] 'H-NMR (500MHz, D O): δ 1.69(m)、 1.79(m)、 2.02 (br. s)、 2.19—2
2
.26(m)、 2.29(m)、 2.66(m)、 2.82(m)、 3.13(m)、 3.20(m)、 3.29(s)、 3.34 (br. s)、 3.51 (br. s)、 3.56 (br. s)、 3.71 (br. s)、 3.83 (br. s)4. 16 (t) 、 4.33 (m)、 4.46 (br. s)、 4.54 (br. s)、 4.94 (d)、 6.82 (s)、 6.99—7.08 (m )、 7.75(d), 8.68 (s)
〔実施例 2—43〕
MTX- y -Phe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—34で得られたィ匕合物 34(0.031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 187万、 M TXの結合率は 1.7%であった。
[0202] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 165万、 MTXの結合 率は 1.7%であった。
[0203] 'H-NMR (500MHz, D O): δ 1.44(m)、 1.80(m)、 2.02 (br. s)、 2.31(m
2
)、 2.53(m)、 2.68(m)、 2.88(m)、 3.01(m)、 3.13(m)、 3. 18(m)、 3.31 ( s)、 3.35 (br. s)、 3.51 (br. s)、 3.58 (br. s)、 3.63 (br. s)、 3.72 (br. s)、 3. 84 (br. s)、 4.02 (t)、 4.37 (m)、 4.47 (br. s)、 4.55 (br. s)、 4.86 (d)、 4.98 (d)、 6.76(d)、 7.02-7.09(m)、 7.78(d), 8.72 (s)
〔実施例 2—44〕 ΜΤΧ- γ -Glu-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—35で得られたィ匕合物 35 (0. 031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 179万、 M TXの結合率は 1. 6%であった。
[0204] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 149万、 MTXの結合 率は 1. 7%であった。
[0205] 'H-NMR (500MHz, D O): δ 1. 61—1. 71 (m)、 1. 73—1. 88 (m)、 2. 01 (br
2
. s)、 2. 23 (m)、 2. 32 (t)、 2. 38—2. 55 (m)、 3. 07 (m)、 3. 34 (br. s)、 3. 51 ( br. s)、 3. 56 (br. s)、 3. 73 (br. s)、 3. 83 (br. s) 4. 15 (m)、 4. 46 (br. s)、 4. 5 5 (br. s)、 4. 95 (s)、 6. 91 (d)、 7. 70 (d)、 8. 71 (s)
〔実施例 2—45〕
MTX- a -D-Phe-D-Phe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—36で得られたィ匕合物 36 (0. 031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 148万、 M TXの結合率は 1. 4%であった。
[0206] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 135万、 MTXの結合 率は 1. 4%であった。
〔実施例 2— 46〕
MTX- γ -D-Phe-D-Phe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—37で得られたィ匕合物 37 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 160万、 M TXの結合率は 1. 4%であった。
[0207] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 141万、 MTXの結合 率は 1. 3%であった。
〔実施例 2— 47〕
MTX- a -AsnPhePhe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—38で得られたィ匕合物 38 (0. 031mmol)を反応させ、標題の HA—MT X結合体の水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 210万、 M TXの結合率は 1. 3%であった。
[0208] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 178万、 MTXの結合 率は 1. 2%であった。
[0209] 'H-NMR (500MHz, D O): δ 1. 60 (m)、 1. 80 (m)、 2. 02 (br. s)、 2. 34 (m
2
)、 2. 54 (m)、 2. 60-3. 05 (m)、 3. 35 (br. s)、 3. 52 (br. s)、 3. 57 (br. s)、 3. 64 (br. s)、 3. 72 (br. s)、 3. 83 (br. s)、 4. 28 (m)、 4. 46 (br. s)、 4. 55 (br. s) 、 6. 61 (d) . 6. 77 (t)、 6. 82—7. 36 (m)、 7. 76 (d)、 7. 80 (d) , 8. 61 (s)、 8. 6 4
注:下線部分はマイナーシグナルであり、これにより a体と γ体の混合物と推定した。 〔実施例 2— 48〕
MTX- a / y -GlyPheLeuGlv-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 230万 )と実施例 1—39で得られたィ匕合物 39 (0. 031mmol)を反応させ、標題の HA— MT X結合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 206万、 M TXの結合率は 1. 4%であった。
[0210] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2-1と同様の方法で求めた分子量は約 185万、 MTXの結合 率は 1. 3%であった。
[0211] 'H-NMR (500MHz, D O): δ 0. 72 (d)、0. 77 (d) , 0. 81 (dl, 1. 32 (m)、 1
2
. 50 (m)、 1. 67-1. 82 (m)、 2. 01 (br. s)、 2. 23 (m)、 2. 33 (m)、 2. 75—3. 03 (m)、3. 51 (br. s)、 3. 58 (br. s)、 3. 71 (br. s)、 3. 83 (br. s)、 4. 16—4. 28 (m )、 4. 46 (br. s)、 4. 54 (br. s)、 6. 85 (d)、 6. 92—7. 06 (m)、 7. 75 (d)、 7. 78 ( d)、 8. 63 (s)、 8. 65 (s)
注:下線部分はマイナーシグナルであり、これにより a体と γ体の混合物と推定した。 〔実施例 2—49〕
ΜΤΧ- a -PhePhe-NHC H O NH— HAの製造
10 20 3
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 32万) と実施例 1-2で得られた化合物 2 (0. 031mmol)を反応させ、標題の HA-MTX結 合体の水溶液を得た。
[0212] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2— 1と同様の方法で求めた分子量は約 33万、 MTXの結合 率は 1. 1%であった。
[0213] 'H-NMR (500MHz, D O): δ 1. 67 (m)、 1. 79 (m)、 1. 84—1. 94 (m)、2. 0
2
2 (br. s)、 2. 12-2. 20 (m)、 2. 59 (m)、 2. 77 (m)、 2. 91 (m)、 2. 99 (m)、 3. 1 2-3. 25 (m)、 3. 35 (br. s)、 3. 49 (br. s)、 3. 51 (br. s)、 3. 57 (br. s)、 3. 71 ( br. s)、 3. 83 (br. s) 4. 18 (t)、 4. 45 (br. d)、 4. 55 (br. d)、 4. 88 (d)、 4. 96 (d )、6. 76 (d) , 6. 95-7. 10 (m)、 7. 72 (d) , 8. 68 (s)
〔実施例 2—50〕
MTX- a -PhePhe-NHC H NH— HAの製造
2 4
実施例 2— 1と同様の方法で、ヒアルロン酸ナトリウム塩(500mg,分子量:約 34万) と実施例 1-1で得られた化合物 1 (0. 031mmol)を反応させ、標題の HA-MTX結 合体の水溶液を得た。実施例 2 - 1と同様の方法で求めた分子量は約 34万、 MTX の結合率は 2. 0%であった。
[0214] この水溶液を実施例 2— 1と同様の方法で精製し、標題の HA— MTX結合体の無菌 水溶液を得た。実施例 2— 1と同様の方法で求めた分子量は約 34万、 MTXの結合 率は 1. 9%であった。
[0215] 'H-NMR (500MHz, D O): δ 1. 83 (m)、 2. 01 (br. s)、 2. 12 (m)、 2. 52 (t)
2
、 2. 69 (m)、 2. 95 (m)、 3. 34 (br. d)、 3. 49 (br. d)、 3. 57 (br. s)、 3. 70 (br. s)、 3.83 (br. s)、 4.16 (t)、 4.45 (br. d)、 4.54 (br. d)、 4.87 (d)、 4.96 (d)、 6.66(d), 6.88-7.09(m)、 7.72(d), 8.68 (s)
上記実施例 2— 1一 2— 50で得られた本発明の HA— MTX結合体を以下の表にまと めた。
[表 1-1]
Figure imgf000070_0001
[表 1-2] 実施例 2— 1 8 -Phe-Gl -NH-C! H2 03- MH- 1.5 199万 1.4 186万 実施例 2— 1 9 a -Phe- Gly-NH- H2 02- NH - NT 1.8 144万 実施例 2— 20 a -Phe-Gly-NH-CgH! e02-NH- 1.6 173万 1.6 150万 実施例 2— 2 1 a -Phe-Gly-NH-CBH1202-NH- 2.3 150万 2.3 139万 実施例 2— 22 a -Phe-Gly-NH-C4HaO-NH- 2.0 156万 2.2 M0万 実施例 2— 23 a -Phe-Pro - WH - C oH2O03-MH- 1.6 1E6万 1.6 152万 実施例 2— 24 a -Phe-jSAIa-NH-Cl oH2 O03-NH- NT 1,5 152万 実施例 2— 25 a -Phe-jSAIa-NH-C2H4-NH- 2.3 20S万 2,3 193万 実施例 2— 26 a -Phe-NH-C, H2 03-NH- 1.7 213万 1.7 179万 実施例 2— 2 7 a -1 le - NH - C DH2 O03-NH- 1.7 1S2万 1.7 1S2万 実施例 2— 2 8 a -1 le-NH-C2H4-NH- 2.1 231万 ?.1 202万 実施例 2— 2 9 ! a -Glu-NH-Cl oH2 O03-NH- 1.5 201万 1.5 万 実施例 2— 30 -Glu— NH- C2H4-NH- 2.1 226万 2.† 206万 実施例 2— 3 1 -T r-NH-C, H2003- MH- 1.6 190万 1.7 176万 実施例 2 -3 2 a - Trp- NH- nH 03- MH - 1. g 187万 1.9 133万 実施例 2— 3 3 a/ r -Ser-NH-Cl oH2 o03-NH- 1.7 万 1.7 165万 実施例 2 - 34 a -Leu-NH-C1 0H2 03- NH- 1.7 万 1.6 147万 実施例 2 - 35 a - Vaト NH-C oH2O03-NH- 1.7 187万 1.7 156万 実施例 2 - 36 a -His - - C nH?o0,-NH- 1.2 191万 1.2 162万 実施例 2 - 3 7 a -ΡΓΟ-ΝΗ-Εί 0H - MH 1.5 167万 1.6 152万 実施例 2 _ 38 a - /?Ala-NH-C oH2 03 NH- 1.7 191万 1.7 143万 実施例 2 - 39 r - Phe- Phe - NH- H2 03-NH - 1.5 209万 1.5 188万 実施例 2 -40 r -Phe-Phe-NH-C^! ?0?-rJH- 2.1 189万 2.0 Π6万 実施例 2— 4 1 r -Phe-Phe-NH-C,H80-NH- 2.† 196万 2.1 180万 1-3] 実施例 2 - 4 2 T -P e-Gly-NH-Cl oH2003-NH- 1.4 190万 5 172万 実施例 2— 4 3 r -Phe-NH-Cl oH2 O03-MH- 1.7 187万 1.7 165万 実施例 2 _ 4 4 了 -Glu-NH-Cl oH2 O03-fJH- 1.6 179万 1, 7 149万 実施例 2— 4 5 a -Dp e-DPhe-NH-C1 oHz o03-NH- 1.4 148万 1,4 135万 実施例 2 - 4 6 Ύ -Dphe-DPhe-NH-C! oH? o03-NH- 1.4 160万 1.3 ,41万 実施例 2— 4 7 a /了 - Asn- Phe-Phe-NH-C,。H2。03- NH 1.3 210万 1.2 8万 実施例 2 - 4 8 α/ Ύ -Gl
Figure imgf000072_0001
1.4 206万 1.3 万 実施例 2 _ 4 9 a -Phe-Phe-NH-C, DH2 O03-NH- HT NT 1.1 33万 実施例 2 - 5 0 a -Phe-Phe-NH-C2H4-NH- 2.0 34万 1, 9 34万
[0219] [実験例 1]
粘弾性の測定
ヒアルロン酸(分子量 190万、 80万)と実施例 2—1、 2—8、 2— 18、 2—27および 2—2 9の結合体の無菌水溶液の粘弾性を、 CSL500型ストレス制御式レオメーター(Carr i Med社製)で、直径 4cmのコーンを用い、 37°Cで測定した。図 1のように、各結合 体は分子量 80万と 190万のヒアルロン酸の中間の粘弾性を示した。
[0220] [実験例 2]
滑膜細胞増殖抑制作用
ヒト滑膜細胞 (HFLS)を用いて、 TNF- a刺激による細胞増殖亢進に対する本発 明の HA— MTX結合体の影響を検討した。関節リウマチ (RA)の主病巣は、滑膜組 織であり、その特徴の一つとして、滑膜細胞が異常増殖して肉芽組織 (パンヌス)を形 成し、関節の軟骨 ·骨を破壊することが知られている。また、変形性関節症 (OA)でも 二次性の滑膜炎が見られる。 OAにおいては、 RAで見られるような滑膜細胞の著し い増殖変化はないものの、滑膜炎は膝 OAの特徴である関節水症や疼痛、熱感とい つた炎症症状の原因となる (宫坂信之ら編集、「骨 ·関節疾患」 2003年、朝倉書店)。 従って、炎症性サイト力インである TNF— aで亢進した滑膜細胞の増殖を阻害する 化合物は、 RAおよび OAの病態進行を抑制し、その治療薬となる。
[0221] 被験物質として実施例 2の HA— MTX結合体の無菌水溶液 (表 2)を使用した。 HF LS (CA40405, Lot No. :1413, 1493)は CELL APPLICATIONS INS.よ り購入して使用した。
[0222] HFLSは 96穴プレート(Falcon)に 5000cellsZwellで播種して 5%FBS、 lx
Antibiotic- Antimycotic (GIBCO) iscove s modified Dulbecco s medium (IMD M)培地にて 3時間培養した。細胞付着後、 TNF- α (最終濃度 lOngZmL)、各濃 度の HA— MTX結合体を添カ卩して 5日間培養した。培養終了 2日前に、 37kBqZwe 11の [3H]—デォキシゥリジン(MORAVEK)を加え、細胞内への [ ] デォキシゥリ ジン取り込み量 (放射活性)をシンチレーシヨンカウンターで測定した。細胞の回収は 0 . 05%トリプシン 0. 2%EDTAで細胞を剥がして行った。
[0223] 各実験で測定した各被験物質の放射活性は、被験物質を添加せず培養した群の 放射活性を controlとして、相対値 (% of control)を算出した。 HA— MTX結合体の MT X濃度は、ヒアルロン酸 lmgZmLあたりフリーのカルボキシル基が 2. 49x10— 3mol ZL(lgZ40lZL:401は N—ァセチルダルコサミン +グルクロン酸の分子量)である こと力ゝら、この値に MTXの結合率を乗して算出した。(MTX結合率 1%の HA— MT X結合体 lmgZmL場合、 MTX濃度は 2. 49xlO—5molZLとした。)得られた値を使 用して 4 parameter logistic法(解析ソフト GraphPad Prism 3.02)により細胞増殖阻害 活性 (IC 値)を算出した。
50
[0224] HFLSにおける HA— MTX結合体の IC 値を表 2に示す。
50
[0225] [表 2-1]
表 2 TNF- 激したヒト滑膜細胞の増殖抑制作用
Figure imgf000074_0001
2-2] 実施例 2— 20 -Phe-Gl -NH-CaH, - WH- 1.6 150万 1.8E-05 実施例 2— 2 -Phe-Gl -NH-CgH! ?02 NH- 2.3 U9万 8.3 -Q7 実施例 2— 2 2 a -P e-Gl -NH-C4HsO-NH- 2.2 140万 3.0E-06 実施例 2— 2 3 a -Phe-Pro-NH-C1 oH2 O03-MH- 1.6 152万
実施例 2— 24 ot -P e-^AIa-NH-C,。H2 O03- NH - 1.5 152万 3.5E-06 実施例 2— 25 a -Phe-/3Ala-NH-C2H4-NH- 2.3 万 2.9E-07 実施例 2— 2 6 a -Phe-NH-C1 oH2 O03-NH- 1.7 Π9万 1.7E-06 実施例 2— 2 7 a -1 l 。e NH- 0H2。03- MH- 1.7 162万 3. IE- 06 干
実施例 2 - 28 a -1 le-NH-C2Hd-NH- 2.1 202万 1.2E-05 実施例 2 - 2 9 a 1.5 万 8. E-06 実施例 2 - 30 ct -Glu-NH-C2H4-NH- 2.1 206万 5.4E-05 実施例 2 - 3 1 a -Tyr-NH-C!。H2。03- NH - 1.7 万 7.0E-D6 実施例 2 - 32 a 1.9 139万 4.7E 06 実施例 2— 33 a -Ser-NH-C1。H2。03- NH- 1.7 165万 3.6E-05 実施例 2— 34 a -Leu-NH-CI QH2003-NH- 1-6 147万 3.6E-Q6 実施例 2 - 35 a -Vai-NH-Cl oH2 )03-NH- 1.7 156万 1.1E-05 実施例 2— 36 a -His-NH-Cl oH2003-NH- 1.2 162万 1.7E-05 実施例 2 39 了 -Phe-Phe-NH-C! 0H2O03-NH- 1.5 18B万 3.2E m m-06 実施例 2— 42 r - Phe- Gly- NH- C, 0H2O03 NH— 1.5 172万
実施例 2— 47 /y - Asn-Phe-Phe- NH-C,。H2。03- NH- 1,2 178万 L IE-06 芙施例 2 S a/r -G 1 y-Phe-Leu-G 1 y-NH-C 1 0H2003-NH- .3 135万 3.3E-06 実施例 2— 49 a - Phe- Phe- NH-C,。H2O03- NH- 1.1 33万 1.3E-05
MT) [単独 - - - 5.5E-08
[0227] 表 2の結果より、検討した HA— MTX結合体は 、ずれも TNF— a刺激による HFLS の細胞増殖亢進を抑制する作用を有することが確認された。
[0228] [実験例 3]
mBSA誘導単関節炎モデルに対する膝関節腫脹抑制効果
本発明の HA— MTX結合体の in vivoでの滑膜炎抑制作用を、ラット methylated bovine serum albumin (mBSA)誘導単関節炎モデルの膝関節腫脹の抑制効果にて 評価した。本実験例で用いられた mBSA誘導関節炎モデルは、抗原誘発関節炎モ デルとして汎用されるものであり、滑膜炎を誘発することが知られている(Sven E. Andersson, et al, The Journal of Rheumatology(1998) 25: 9, 1772- 7)ことから、本モ デルで認められる in vivoにおける膝関節腫張の抑制効果は、滑膜炎症抑制作用 であると考えることができる。滑膜炎を in vivoで抑制する本発明化合物は、滑膜炎 を伴う関節疾患 (RAや OAなど)の治療薬として有用である。
[0229] 動物は LEWZCrj系ラット(日本チャールズ 'リバ一、 6週齢、雄)を使用した。関節 炎を誘導する 21日および 14日前に、 2mgZmLの mBSA(Calbiochem)水溶液と 等量の Freund' s complete adjuvant (Difco)で作製した乳濁液 0. 5mLをラットのわき 腹に皮下投与した。関節炎は 2mgZmLの mBSA水溶液 50 Lを右膝関節内投与 して誘導した。左膝関節は無処置で各個体のコントロールとした。被験物質 (無菌水 溶液)および対照薬であるヒアルロン酸は関節炎誘導 7日および 1日前と 7日後に、 5 0 Lを右膝関節内投与した。
[0230] 膝関節腫脹の測定は両膝関節の幅をノギスで測定して、左右差 (右膝直径 左膝 直径)を膝関節腫脹とした。関節炎誘導直前より 2週間後まで週 2回の頻度で膝関節 幅を測定して、その経時的推移から AUC (Area Under the Curveの略。曲線下面積 ともいう。ここでは、関節腫張の経時的曲線下の面積を示す。)を算出した。測定時ご とに AUCの平均値および標準偏差を算出し、被検物質投与群と HA投与群間で対 応のない t検定を行い、危険率 5%未満の場合に有意差ありと判断した。統計解析は SAS version 6.12 (SASインスティチュートジャパン)を使用した。また、各被験物質の AUCは HA投与群を controlとして、各被験物質の相対値 (% of control)を算出した。
[0231] 本発明の各 HA— MTX結合体の効果を上記の方法で検討した結果を表 3に示す。
[0232] [表 3-1] 表; niBSA锈導単関節炎モデルの関節腫脹に対する HA ΜΠ¾合体の抑制作用
Figure imgf000077_0001
[0233] [表 3 - 2]
Figure imgf000077_0002
[0234] 表 3に示される結果より、今回検討した ΗΑ— ΜΤΧ結合体は 、ずれも、 ΗΑ投与群 に比べ、関節炎モデルの膝関節腫脹を有意に抑制することが明らかとなった。また、 HAに結合する MTXの結合率の影響に注目すると、 MTXの結合率が 0. 5から 4. 4 % (実施例 1一 7)で、関節炎モデルの膝関節腫脹を HA投与群に比べて有意に抑 制することが示唆された。
[0235] [実験例 4]
実験例 3の方法に従い、本発明の HA— MTX結合体の有用性を検証する目的で、 1)実施例 2 - 2で調製した HA - MTX結合体 (無菌水溶液)の投与群、 2)その HA - MTX結合体が含有する MTXと同量の MTXを含む溶液の投与群、および 3)その 結合体が含有するのと同量の MTXおよびヒアルロン酸(HA)の混合物(HA+MT X)の投与群の間で関節腫脹抑制作用を比較した。本試験の膝関節腫脹の経時的 推移を図 2に、及びその AUCを図 3に示す。図 2および図 3に示される結果より、 MT X単体および MTXと HAの混合物に比べ、 HA— MTX結合体は、関節炎モデルの 関節腫脹に対する著しく強い抑制作用を有することが確認された。従って、 MTXと H Aとの結合は、 MTXの関節腫脹抑制作用を著しく向上させることが明らかとなった。
[0236] 以上のことより、本発明の HA— MTX結合体は、 HAには認められない in vitroで の TNF— α刺激によるヒト滑膜細胞の増殖抑制作用、 in vivoでの関節炎を発症す るモデルの滑膜炎を軽減する作用を有することが明らかとなった。また、関節炎モデ ルにお ヽては、 MTX単独および HAと MTXの混合物では十分な滑膜炎の軽減作 用が認められないのに対し、 HA— MTX結合体は強力な滑膜炎の軽減作用を発揮 することが明ら力となった。
[0237] [実験例 5]
コラーゲン関節炎モデルに対する影響
HA— MTX結合体の in vivoにおける滑膜炎抑制作用を、関節リウマチ (RA)のモ デルとして汎用されるラットコラーゲン関節炎モデル (金ら、「関節外科」(1998)、 Vo 1. 17、 No. 2, 111— 21)にて評価した。本モデルで炎症を抑制する本発明化合物 は、 RAに代表される自己抗原誘発免疫疾患の治療に有用である。
[0238] 動物は DAZSlcラット(日本エスエルシー (株)、 11週齢、メス)を使用した。ゥシ Π 型コラーゲン (コラーゲン技術研修会)を 0. OlmolZL酢酸水溶液に 1. 5mg/mL となるように溶解して、これに等量の Freund's incomplete adjuvant (Difco)をカ卩えて 乳濁液を作製した。この乳濁液をラットの背部皮内 4力所に 1力所当たり約 0. lml^C 合計 0. 4mL投与し、関節炎を誘発した。被験物質 (無菌水溶液)および対照薬であ るヒアルロン酸 (HA)と生理食塩水(Saline)は、感作当日より、 5日に 1回の割合で、 50 Lを右膝関節内にのみ投与を行った。左膝関節は無処置とした。また、病態モ デルの対照として、関節炎を誘導しない動物 (Normal)の右膝関節内に生理食塩水 を投与した。
[0239] 膝関節腫脹の変化は両膝の関節幅をノギスで測定して正常群の関節幅と比較する ことで観察した。関節炎誘導直前より 23日後まで、週 2回程度の割合で観察した。膝 関節幅の測定値については、測定時ごとに平均値および標準誤差を算出し、被験 物質群と HA投与群間で対応のな ヽ t検定を行 ヽ、危険率 5%未満の場合に有意差 ありと判断した。統計解析は SAS version 8.02 (SASインスティチュートジャパン)を使 用した。
[0240] 本発明の HA— MTX結合体の効果を上記の方法で検討した結果を図 4に示す。
[0241] 図 4に示される結果より、本発明の HA— MTX結合体は HA投与群に比べ、コラー ゲン関節炎の誘導により腫脹した関節幅を有意に抑制し、その関節幅の経時的推移 は、正常群とほぼ同等レベルであった。また、この効果は、 HA— MTX結合体を投与 した部位 (右膝)においてのみ観察され、非投与部位 (左膝)においては認められな かった。このように、本化合物が、投与部位に限局して、作用を発現できることが明ら カゝとなった。
[0242] [実験例 6]
コラゲナーゼ誘導関節炎 (OA)モデルに対する関節腫脹抑制効果
HA— MTX結合体の in vivoにおける滑膜炎抑制作用を、コラゲナーゼ誘導 OA モデルラットにて評価した。コラゲナーゼ誘導 OAモデルは、関節内にコラゲナーゼ を注入することにより、軟骨組織のコラーゲンを直接消化して、関節内で炎症を誘発 するモデルである。このモデルは関節軟骨変性や滑膜炎などのヒト OA病態と類似し た病理組織学的変化を示し、 OA治療薬の評価に有用である (Takanori K, et al, Osteoarthritis and Cartilage (1998)6, 177-86)。したがって、本モデルの炎症を抑制 し、かつ軟骨変性を抑制する本発明化合物は OA治療薬として有用である。
[0243] 動物は SDZCrj系ラット(日本チャールズ 'リバ一、 6週齢、雄)を使用した。 1. 5% Collagenase (SIGMA)溶液 50 μ Lを右膝関節腔内に投与して関節炎を誘導した。 左膝関節は、各個体のコントロールとするために無処置にした。被験物質は関節炎 誘導の 7および 1日前より、週 1回の割合で 50 Lを右膝関節内に投与した。
[0244] 膝関節腫脹の測定は、両膝関節の幅をノギスで測定して、その左右差 (右膝直径 左膝直径)を求めて膝関節腫脹とした。関節炎誘導直前より 20日後まで、週 2回程 度の頻度で膝関節幅を測定して、その経時的推移を示すグラフの AUCを算出した。 測定時ごとに AUCの平均値および標準誤差を算出し、被検物質投与群と HA投与 群間で対応のない t検定を行い、危険率 5%未満の場合に有意差ありと判断した。
[0245] 本発明の HA— MTX結合体の効果を上記の方法で検討した結果を図 5と表 4に示 す。図 5に HA— MTX結合体の典型的な関節腫脹の経時変化を示し、表 4に検討し た被験物質の結果を示した。
[0246] [表 4]
Figure imgf000081_0001
これらの結果より、今回検討した HA— MTX結合体はいずれも HA投与群に比べ、 コラゲナーゼ誘導関節炎モデルの関節腫脹を有意に抑制することが明らかとなった
[実験例 7]
コラゲナーゼ誘導関節炎 (OA)モデルに対する関節軟骨破壊抑制効果
実験例 6の冒頭に記載したように、コラゲナーゼ誘導 OAモデルは OA治療薬の評 価に有用であることが知られており、本モデルの炎症を抑制し、かつ軟骨変性を抑制 する化合物は OA治療薬として有用である。 [0249] 動物は SDZCrj系ラット(日本チャールズ 'リバ一、 6週齢、雄)を使用した。 1. 5% Collagenase (SIGMA)溶液 50 μ Lを右膝関節腔内に投与して関節炎を誘導した。 左膝関節は、各個体のコントロールとするため無処置にした。被験物質と対照の生理 食塩水は、関節炎誘導の 7および 1日前より、週 1回の割合で 50 Lを右膝へ関節 内投与した。
[0250] 膝関節軟骨の破壊の程度を評価するために、関節炎誘導後 28日目に右膝関節を 採取して、下腿骨内顆部の関節軟骨の変性像を走査型電子顕微鏡 (SEM)にて撮 影した。撮影後、盲検化を行い、各個体の SEM像力も関節軟骨変性の程度に順位 付けを行った。データを固定した後、盲検化を開錠して、各群の順位平均を算出した 。生理食塩水投与群と被験物質投与群との間で、 Wilcoxon検定を行い、危険率 5 %未満を有意とした。統計解析は SAS version 8.02 (SASインスティチュートジャパン )を使用した。
[0251] 本発明の HA— MTX結合体の効果を上記の方法で検討した結果を図 6に示す。
[0252] 図 6に示される結果より、本発明の HA— MTX結合体は、生理食塩水投与群に比 ベ、コラゲナーゼ誘導 OAモデルの軟骨変性を有意に抑制した。この結果より、 HA- MTX結合体が関節炎モデルの関節腫脹のみならず、関節軟骨の破壊をも抑制でき ることが明ら力となった。したがって、本発明の HA— MTX結合体は、関節軟骨変性 あるいは関節軟骨欠損を伴う関節疾患の治療に有用であり得る。
産業上の利用可能性
[0253] 本発明の HA— MTX結合体により、関節注入剤としての HAの側面を持ちながら、 MTXの滑膜炎抑制作用を投与関節内でのみ安全に発現させることができる、従来 にな!ヽ効果を有する、優れた関節疾患治療薬が提供される。

Claims

請求の範囲
[1] ヒアルロン酸、ヒアルロン酸誘導体またはそれらの塩のカルボキシル基に、 1一 8個 のアミノ酸力もなるペプチド鎖を含有するリンカ一を介してメトトレキサートが結合した 、ヒアルロン酸ーメトトレキサート結合体。
[2] リンカ一が、 1一 8個のアミノ酸からなるペプチド鎖、ならびに C アルキレンジァミン
2-20
鎖を含み、当該アルキレンジァミン鎖は、 1一 5個の酸素原子が挿入されていてもよく および Zまたはカルボキシル基または C アルコキシカルボ-ル基で置換されて!、て
1-6
もよ 、、請求項 1に記載のヒアルロン酸ーメトトレキサート結合体。
[3] ヒアルロン酸の総カルボキシル基に対するメトトレキサートの結合率が 0. 5%— 4. 5
%である、請求項 1または 2に記載のヒアルロン酸ーメトトレキサート結合体。
[4] ヒアルロン酸の分子量が 60万ダルトン以上である請求項 1一 3のいずれ力 1項に記 載のヒアルロン酸ーメトトレキサート結合体。
[5] リンカ一に結合したメトトレキサートが、式 (1)、(Π)、(III)または (IV):
[化 1]
Figure imgf000083_0001
I
[化 2]
Figure imgf000084_0001
Figure imgf000084_0002
[化 4]
Figure imgf000084_0003
[式中、 Rおよび Rはそれぞれ独立に、ヒドロキシ基、アミノ基、 C アルコキシ基、 C
1 2 1-6
アルキルアミノ基、またはジー C アルキルアミノ基であり;
1-6 1-6
Lは、リンカ一の結合位置である。 ]
0
で表される、請求項 1一 4のいずれか 1項に記載のヒアルロン酸ーメトトレキサート結合 体。 [6] ペプチド鎖を含有するリンカ一および当該リンカ一に結合したメトトレキサートが、式 (1' )または(11' ):
[化 5]
Figure imgf000085_0001
[式中、 Rおよび Rはそれぞれ独立に、ヒドロキシ基、アミノ基、 C アルコキシ基、 C
1 2 1-6 アルキルアミノ基、またはジー C アルキルアミノ基であり;
1-6 1-6
Lは、式 (X)
[化 7]
Figure imgf000085_0002
Figure imgf000085_0003
(式中、 Qは結合する NH—と一緒になつて 1一 8個のアミノ酸力もなるペプチド鎖を 形成し、当該ペプチド鎖に含まれるアミノ酸の各残基は、独立に、 C アルキル基、 C
1-6
アルキルカルボニル基、 C アルコキシカルボニル基、ホルミル基、 C アルキルス
1-6 1-6 1-6 ルホニル基、および C ァリールスルホ -ル基力 なる群力 選択される、 1個以上
6-10
の基により置換または保護されていてもよぐ当該ペプチド鎖に含まれる各アミド結合 は、独立に 1個以上の c アルキル基および Zまたは c アルキルカルボニル基で
1-6 1-6
窒素原子上を置換されていてもよぐ当該残基に含まれる各カルボキシル基は、独立 に 1または 2個の C アルキル基で置換されて!、てもよ!/、アミド基に変換されて ヽても
1-6
よく;
R および R はそれぞれ独立に水素原子または C アルキル基であり;
11 12 1-6
Qは C アルキレンであり、当該アルキレンは 1一 5個の酸素原子が挿入されてい
2 2-20
てもよくおよび Zまたはカルボキシル基または c アルコキシカルボニル基で置換さ
1-6
れていてもよく;および
[HA]はヒアルロン酸との結合位置を表し、当該リンカ一は当該ヒアルロン酸に含ま れるカルボキシル基とアミド結合を形成する。)で表されるリンカ一である。 ] で表される、請求項 1一 4のいずれか 1項に記載のヒアルロン酸ーメトトレキサート結合 体。
[7] 請求項 1一 6のいずれか 1項に記載のヒアルロン酸ーメトトレキサート結合体を有効 成分として含有する医薬組成物。
[8] 請求項 1一 6のいずれか 1項に記載のヒアルロン酸ーメトトレキサート結合体を有効 成分として含有する関節疾患治療薬。
[9] 関節局所投与製剤である請求項 8記載の関節疾患治療薬。
[10] 式 (Va)または (Vb) :
[化 8]
Figure imgf000087_0001
[化 9]
Figure imgf000087_0002
[式中、 Rおよび Rはそれぞれ独立に、ヒドロキシ基、アミノ基、 C アルコキシ基、 C
1 2 1-6
アルキルアミノ基、またはジー C アルキルアミノ基であり;
1-6 1-6
Lは、式 (Χ' )
1
[化 10]
Figure imgf000087_0003
(Χ ')
(式中、 Qは結合する NH—と一緒になつて 1一 8個のアミノ酸力もなるペプチド鎖を
1
形成し、当該ペプチド鎖に含まれるアミノ酸の各残基は、独立に、 C アルキル基、 C
1-6
アルキルカルボニル基、 C アルコキシカルボニル基、ホルミル基、 C アルキルス ルホニル基、および C ァリールスルホ -ル基力 なる群力 選択される、 1個以上
6-10
の基により置換または保護されていてもよぐ当該ペプチド鎖に含まれる各アミド結合 は、独立に 1個以上の c アルキル基および Zまたは c アルキルカルボニル基で
1-6 1-6
窒素原子上を置換されていてもよぐ当該残基に含まれる各カルボキシル基は、独立 に 1または 2個の C アルキルで置換されて!、てもよ!/、アミド基に変換されて 、てもよ
1-6
<;
R および R はそれぞれ独立に水素原子または C アルキルであり;
11 12 1-6
Qはじ アルキレンであり、当該アルキレンは 1一 5個の酸素原子が挿入されてい
2 2-20
てもよくおよび Zまたはカルボキシル基または c アルコキシカルボ-ル基で置換さ
1-6
れていてもよい。)である。 ]
の化合物。
請求項 10に記載の式 (Va)または (Vb)の化合物をヒアルロン酸と反応させ、当該ヒ アルロン酸のカルボキシル基を N—置換アミド基に変換する工程を含む、請求項 1に 記載のヒアルロン酸ーメトトレキサート結合体の製造方法。
PCT/JP2005/003739 2004-03-05 2005-03-04 ヒアルロン酸−メトトレキサート結合体 WO2005085294A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP05720011A EP1724287A4 (en) 2004-03-05 2005-03-04 HYALURONIC / METHOTREXATE CONNECTION
JP2006510735A JP4927536B2 (ja) 2004-03-05 2005-03-04 ヒアルロン酸−メトトレキサート結合体
AU2005219733A AU2005219733C1 (en) 2004-03-05 2005-03-04 Hyaluronic acid-methotrexate conjugate
KR1020067019810A KR101234476B1 (ko) 2004-03-05 2005-03-04 히알루론산/메토트렉세이트 화합물
US10/591,653 US8088916B2 (en) 2004-03-05 2005-03-04 Hyaluronic acid-methotrexate conjugate
CN2005800129632A CN1946743B (zh) 2004-03-05 2005-03-04 透明质酸/甲氨蝶呤化合物
CA2559188A CA2559188C (en) 2004-03-05 2005-03-04 Hyaluronic acid-methotrexate conjugate
HK07110660.1A HK1102481A1 (en) 2004-03-05 2007-10-03 Hyaluronic acid/methotrexate compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-062616 2004-03-05
JP2004062616 2004-03-05
JP2004167755 2004-06-04
JP2004-167755 2004-06-04

Publications (1)

Publication Number Publication Date
WO2005085294A1 true WO2005085294A1 (ja) 2005-09-15

Family

ID=34921707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003739 WO2005085294A1 (ja) 2004-03-05 2005-03-04 ヒアルロン酸−メトトレキサート結合体

Country Status (10)

Country Link
US (1) US8088916B2 (ja)
EP (1) EP1724287A4 (ja)
JP (1) JP4927536B2 (ja)
KR (1) KR101234476B1 (ja)
CN (1) CN1946743B (ja)
AU (1) AU2005219733C1 (ja)
CA (1) CA2559188C (ja)
HK (1) HK1102481A1 (ja)
TW (1) TWI359665B (ja)
WO (1) WO2005085294A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012086A2 (de) * 2006-07-28 2008-01-31 Medac Gesellschaft für klinische Spezialpräparate mbH Proteinbindende methotrexat-derivate und diese enthaltende arzneimittel
WO2010038771A1 (ja) 2008-09-30 2010-04-08 中外製薬株式会社 光安定化された医薬組成物
US8557986B2 (en) 2006-05-01 2013-10-15 Seikagaku Corporation Method of producing polysaccharide derivatives
CN108888775A (zh) * 2018-07-24 2018-11-27 西北大学 一种透明质酸-甲氨蝶呤自组装纳米胶束及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122954A2 (en) * 2005-05-18 2006-11-23 Eurand Pharmaceuticals Limited Antiproliferative conjugates comprising hyaluronic acid and n-derivatives of glutamic acid
EP1905456A4 (en) * 2005-07-06 2010-12-22 Seikagaku Kogyo Co Ltd PHARMACEUTICAL LIGHT-NETWORKED HYALURONIC DERIVATIVE GEL
CA2805008C (en) * 2010-07-12 2015-05-12 Shin Poong Pharmaceutical Co., Ltd. Filler composition for tissue augmentation comprising a hydrogel of hyaluronic acid cross-linked with alkylene diamine
ES2836823T3 (es) 2011-05-16 2021-06-28 Genzyme Corp Inducción de inmunotolerancia mediante el uso de metotrexato
KR101445265B1 (ko) 2012-09-18 2014-09-30 포항공과대학교 산학협력단 히알루론산-핵산 접합체 및 이를 포함하는 핵산 전달용 조성물
MX363462B (es) * 2012-10-11 2019-03-25 Ascendis Pharma As Diagnostico, prevencion y tratamiento de enfermedades de la articulacion.
KR101467076B1 (ko) * 2013-02-20 2014-12-02 성균관대학교산학협력단 히알루론산-메토트렉세이트 접합체를 포함하는 관절염 예방 또는 치료용 약학적 조성물 및 이의 제조방법
US9572832B2 (en) * 2013-08-29 2017-02-21 Holy Stone Healthcare Co., Ltd. Compound of glycosaminoglycan and its fabrication method as well as application
KR101616623B1 (ko) * 2014-07-24 2016-04-29 연세대학교 산학협력단 양이온성 고분자가 결합된 소수성 약물 및 음이온성 고분자가 결합된 친수성 약물을 포함하는 나노입자
IT201700110784A1 (it) * 2017-10-03 2019-04-03 Fidia Farm Spa Composizioni farmaceutiche contenenti Acido Ialuronico e Carnosina e relativo uso
IT201800003841A1 (it) * 2018-03-21 2019-09-21 Acme Drugs S R L Coniugati di stanozololo e acido ialuronico
CN111732675A (zh) * 2020-08-18 2020-10-02 山东华熙海御生物医药有限公司 透明质酸-氨基葡萄糖接枝共聚物、制法及其应用
CN111821470B (zh) * 2020-09-01 2022-08-12 中南大学 包载甲氨蝶呤的铁-鞣酸配合物及其制备方法与应用
CN115444840B (zh) * 2022-09-15 2023-08-25 四川大学 一种前药、两性离子水凝胶及其制备方法、应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489065A (en) 1981-07-02 1984-12-18 Valcor Scientific Ltd. Chondroitin drug Complexes
JPS6440499A (en) * 1987-08-06 1989-02-10 Teijin Ltd Folic acid-analog derivative and production thereof
WO1992011037A2 (en) 1990-12-19 1992-07-09 Advanced Magnetics Inc. Targeting of therapeutic agents using polysaccharides
JPH0539306A (ja) 1990-12-14 1993-02-19 D D S Kenkyusho:Kk ヒアルロン酸およびコンドロイチン誘導体
JPH0680705A (ja) * 1992-09-02 1994-03-22 D D S Kenkyusho:Kk ヘパリン誘導体
WO1994013327A1 (en) 1992-12-15 1994-06-23 The Wellcome Foundation Limited Immunoreactive reagents employing dihydrofolate reductase
WO1994019376A1 (en) 1993-02-26 1994-09-01 Drug Delivery System Institute, Ltd. Polysaccharide derivative and drug carrier
JPH0885703A (ja) * 1994-09-16 1996-04-02 D D S Kenkyusho:Kk 臓器移行性を有する多糖誘導体および薬物担体
JPH09188705A (ja) * 1995-11-07 1997-07-22 Seikagaku Kogyo Co Ltd グリコサミノグリカン誘導体およびその製造法
US5902795A (en) 1992-06-16 1999-05-11 Trustees Of Tufts College Oligosaccharides reactive with hyaluronan-binding protein and their methods of use
JPH11222425A (ja) * 1997-10-27 1999-08-17 Ss Pharmaceut Co Ltd 関節疾患治療用関節内投与製剤
WO1999059603A1 (fr) 1998-05-20 1999-11-25 Chugai Seiyaku Kabushiki Kaisha Medicaments contre les affections articulaires lies a l'acide hyaluronique
WO2000064486A2 (en) 1999-04-28 2000-11-02 Vectramed, Inc. Enzymatically activated polymeric drug conjugates
WO2001068105A1 (en) 2000-03-17 2001-09-20 Eurand Pharmaceuticals Ltd. Polysaccharidic esters of n-derivatives of glutamic acid
US6322815B1 (en) 1994-07-22 2001-11-27 W. Mark Saltzman Multipart drug delivery system
WO2002044218A1 (fr) 2000-11-30 2002-06-06 Chugai Seiyaku Kabushiki Kaisha Compose de derive d'acide hydroxamique et d'acide hyaluronique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554386A (en) 1986-07-03 1996-09-10 Advanced Magnetics, Inc. Delivery of therapeutic agents to receptors using polysaccharides
TW577758B (en) 1997-10-27 2004-03-01 Ssp Co Ltd Intra-articular preparation for the treatment of arthropathy
EP3363463A3 (en) 2004-01-07 2018-10-31 Seikagaku Corporation Hyaluronic acid derivative and drug containing the same
US7807675B2 (en) * 2004-04-02 2010-10-05 Denki Kagaku Kogyo Kabushiki Kaisha Hyaluronic acid-methotrexate conjugate
DE102005017196A1 (de) 2005-04-13 2006-10-19 Henkel Kgaa Pastenförmige Blondiermittel mit cyclischen Kohlensäureestern und Silikaten

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489065A (en) 1981-07-02 1984-12-18 Valcor Scientific Ltd. Chondroitin drug Complexes
JPS6440499A (en) * 1987-08-06 1989-02-10 Teijin Ltd Folic acid-analog derivative and production thereof
JPH0539306A (ja) 1990-12-14 1993-02-19 D D S Kenkyusho:Kk ヒアルロン酸およびコンドロイチン誘導体
WO1992011037A2 (en) 1990-12-19 1992-07-09 Advanced Magnetics Inc. Targeting of therapeutic agents using polysaccharides
US5902795A (en) 1992-06-16 1999-05-11 Trustees Of Tufts College Oligosaccharides reactive with hyaluronan-binding protein and their methods of use
JPH0680705A (ja) * 1992-09-02 1994-03-22 D D S Kenkyusho:Kk ヘパリン誘導体
JPH08507750A (ja) * 1992-12-15 1996-08-20 ザ・ウエルカム・ファウンデーション・リミテッド ジヒドロフォレートレダクターゼを用いる免疫反応試薬
WO1994013327A1 (en) 1992-12-15 1994-06-23 The Wellcome Foundation Limited Immunoreactive reagents employing dihydrofolate reductase
WO1994019376A1 (en) 1993-02-26 1994-09-01 Drug Delivery System Institute, Ltd. Polysaccharide derivative and drug carrier
US6322815B1 (en) 1994-07-22 2001-11-27 W. Mark Saltzman Multipart drug delivery system
JPH0885703A (ja) * 1994-09-16 1996-04-02 D D S Kenkyusho:Kk 臓器移行性を有する多糖誘導体および薬物担体
JPH09188705A (ja) * 1995-11-07 1997-07-22 Seikagaku Kogyo Co Ltd グリコサミノグリカン誘導体およびその製造法
JPH11222425A (ja) * 1997-10-27 1999-08-17 Ss Pharmaceut Co Ltd 関節疾患治療用関節内投与製剤
WO1999059603A1 (fr) 1998-05-20 1999-11-25 Chugai Seiyaku Kabushiki Kaisha Medicaments contre les affections articulaires lies a l'acide hyaluronique
WO2000064486A2 (en) 1999-04-28 2000-11-02 Vectramed, Inc. Enzymatically activated polymeric drug conjugates
JP2002542304A (ja) * 1999-04-28 2002-12-10 ベクトレイムド インコーポレイテッド 酵素的に活性化された重合薬物接合体
WO2001068105A1 (en) 2000-03-17 2001-09-20 Eurand Pharmaceuticals Ltd. Polysaccharidic esters of n-derivatives of glutamic acid
WO2002044218A1 (fr) 2000-11-30 2002-06-06 Chugai Seiyaku Kabushiki Kaisha Compose de derive d'acide hydroxamique et d'acide hyaluronique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LUO Y ET AL., BIOMACROMOLECULES, vol. 1, no. 2, 2000, pages 208 - 218
OUCHI T ET AL., ACS SYMPOSIUM SERIES, vol. 469, 1991
ROSOWSKY A. ET AL: "Methotrexate Analogs. 23. Synthesis, Dihydrofolate Reductase Affinity, Cytotoxicity, and in Vivo Antitumor Activity of Some putative Degradation Products of Methotrexate-poly (L lysine) Conjugates.", JOURNAL OF MEDICINE CHEMISTRY., vol. 27, no. 7, 1984, pages 888 - 893, XP002989867 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557986B2 (en) 2006-05-01 2013-10-15 Seikagaku Corporation Method of producing polysaccharide derivatives
WO2008012086A2 (de) * 2006-07-28 2008-01-31 Medac Gesellschaft für klinische Spezialpräparate mbH Proteinbindende methotrexat-derivate und diese enthaltende arzneimittel
WO2008012086A3 (de) * 2006-07-28 2008-12-24 Medac Klinische Spezialpraep Proteinbindende methotrexat-derivate und diese enthaltende arzneimittel
AU2007278407B2 (en) * 2006-07-28 2012-05-24 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Protein-binding methotrexate derivatives, and medicaments containing the same
KR101176890B1 (ko) 2006-07-28 2012-09-04 메닥 게젤사프트 후르 클리니셰 스페지알프라파라테 엠베하 단백질 결합 메토트렉사트 유도체 및 상기 유도체를 포함하는 약제
WO2010038771A1 (ja) 2008-09-30 2010-04-08 中外製薬株式会社 光安定化された医薬組成物
EP2343078A4 (en) * 2008-09-30 2012-05-16 Denki Kagaku Kogyo Kk PHARMACEUTICAL COMPOSITION STABILIZED BY LIGHT
JP5683957B2 (ja) * 2008-09-30 2015-03-11 電気化学工業株式会社 光安定化された医薬組成物
US9072791B2 (en) 2008-09-30 2015-07-07 Denki Kagaku Kogyo Kabushiki Kaisha Photostabilized pharmaceutical compositions
CN108888775A (zh) * 2018-07-24 2018-11-27 西北大学 一种透明质酸-甲氨蝶呤自组装纳米胶束及其制备方法

Also Published As

Publication number Publication date
AU2005219733C1 (en) 2010-12-16
JP4927536B2 (ja) 2012-05-09
CA2559188C (en) 2013-01-08
AU2005219733B2 (en) 2010-05-06
CA2559188A1 (en) 2005-09-15
US8088916B2 (en) 2012-01-03
CN1946743B (zh) 2010-06-02
AU2005219733A1 (en) 2005-09-15
JPWO2005085294A1 (ja) 2007-12-13
US20070197465A1 (en) 2007-08-23
HK1102481A1 (en) 2007-11-23
EP1724287A4 (en) 2010-10-27
EP1724287A1 (en) 2006-11-22
TWI359665B (en) 2012-03-11
KR101234476B1 (ko) 2013-02-18
CN1946743A (zh) 2007-04-11
KR20070006798A (ko) 2007-01-11
TW200533363A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
WO2005085294A1 (ja) ヒアルロン酸−メトトレキサート結合体
JP5001645B2 (ja) ヒアルロン酸−メトトレキサート結合体
EP2284209B1 (en) Polymer conjugate of folic acid or folic acid derivative
EP2682409B1 (en) Derivative of hyaluronic acid modified with amino-carboxylic acid
JPWO2008010463A1 (ja) コンブレタスタチン類の高分子結合体
JPWO2006095775A1 (ja) 水溶性ヒアルロン酸修飾物とglp−1アナログの結合体
JP6529606B2 (ja) 自己免疫障害及び炎症障害を治療及び/又は予防するための短い合成ペプチド
JP4467888B2 (ja) アロエ−エモジン誘導体と腫瘍性病理学の治療におけるその使用
JP6851977B2 (ja) マクロライド系免疫抑制剤の高分子誘導体
JPH08502519A (ja) 生物学的に活性な化合物
WO2017119272A1 (ja) マクロライド系免疫抑制剤の高分子誘導体
WO2015002078A1 (ja) ボロン酸化合物の新規製剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510735

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10591653

Country of ref document: US

Ref document number: 2005720011

Country of ref document: EP

Ref document number: 2007197465

Country of ref document: US

Ref document number: 2559188

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005219733

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067019810

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3685/CHENP/2006

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005219733

Country of ref document: AU

Date of ref document: 20050304

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005219733

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580012963.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005720011

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019810

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10591653

Country of ref document: US