WO2005069453A1 - Optical fiber and method for manufacturing same - Google Patents

Optical fiber and method for manufacturing same Download PDF

Info

Publication number
WO2005069453A1
WO2005069453A1 PCT/JP2004/018856 JP2004018856W WO2005069453A1 WO 2005069453 A1 WO2005069453 A1 WO 2005069453A1 JP 2004018856 W JP2004018856 W JP 2004018856W WO 2005069453 A1 WO2005069453 A1 WO 2005069453A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
longitudinal direction
core
clad
refractive index
Prior art date
Application number
PCT/JP2004/018856
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Nakano
Yasuo Niino
Original Assignee
Toyoda Koki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki Kabushiki Kaisha filed Critical Toyoda Koki Kabushiki Kaisha
Publication of WO2005069453A1 publication Critical patent/WO2005069453A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Definitions

  • the present invention relates to an optical fiber used for fiber laser oscillation, comprising a core member containing a laser active material, and a clad member that transmits excitation light, and a method for manufacturing the same.
  • the optical fiber used for the fiber laser is usually about 2 to 12 [ ⁇ ] in diameter at the center of the cross section, which is made of a core material (single mode laser light is transmitted and doped with rare earth elements (Nd, Er)). Fiber shape).
  • the laser light is confined in the core member by having a clad member having a lower refractive index than the core member (which is the first clad member and transmits the excitation light) around the core member. . Further, by providing a second clad member having a lower refractive index than the first clad member around the first clad member, the excitation light is confined in the first clad member.
  • This laser Light has a small diameter (depending on the diameter of the core member) and a small divergence angle
  • the beam quality is very good (the beam quality of the laser beam depends on the radius of the emitted light and the spread angle of the emitted light). The smaller the product, the higher the beam quality.)
  • a conventional general optical fiber 1a (optical fiber used for fiber laser oscillation) has a longitudinal direction of a cylindrical first cladding member 10 (FIG. 8 (A)).
  • a core member 30 containing a laser-active substance is disposed in the Z-axis direction (A)).
  • FIG. 8 (B) shows a cross section perpendicular to the longitudinal direction of the optical fiber 1a (cross section BB in FIG. 8 (A)).
  • a core member 30 is disposed at a central portion of a first clad member 10 in a cross section perpendicular to the longitudinal direction.
  • the excitation light L in enters from the end face perpendicular to the longitudinal direction of the optical fiber 1 a the incident excitation light L in travels while being totally reflected in the first clad member 10. Then, when the excitation light L in that travels while being totally reflected in the first clad member 10 collides (accidentally) with the core member 30, the laser light is excited in the core member 30.
  • the diameter of the core member 30 is set to about 2 to 12 [ ⁇ ] in order to obtain higher quality laser light, and in order to obtain higher output laser light.
  • the diameter of the first cladding member 10 is set to about 100 [ ⁇ ] in order to allow more excitation light to enter. Therefore, the sectional area of the core member 30 with respect to the sectional area of the first clad member 10 is very small. For this reason, as shown in FIG. 8 (), the excitation light Lin does not collide with the core member 30 and is totally reflected within the first cladding member 10 while the first cladding member 10 is not reflected. May orbit along the outer periphery of the.
  • Fig. 8 (C) As shown in (1), an optical fiber having a rectangular cross-sectional shape of the first clad member 10 has been proposed to further reduce the circulating pump light L in. May occur.
  • the excitation light L in since the excitation light L in has relatively poor beam quality, it is very difficult to aim and enter the core member 30 so as to collide with the core member 30.
  • a core member is wound around the outer peripheral surface of a cylindrical glass cylinder, and excitation light is incident from the vicinity of the outer peripheral end of the end surface of the cylindrical body using a prism, and the excitation light is emitted.
  • a fiber laser oscillator that spirally circulates while being totally reflected inside a cylindrical body to further improve the laser output (see, for example, Japanese Patent Application Laid-Open No. H11-284425).
  • At least three core members 30 are provided in the first cladding member 10 of the optical fiber, and A multi-core fiber 1 b that has at least two regions 23 with changed mode field diameters to flatten the gain-wavelength characteristics not only when the gain is low but also when the gain is high (For example, refer to Japanese Patent Application Laid-Open No. H10-2442548).
  • a multi-core fiber 1 b that has at least two regions 23 with changed mode field diameters to flatten the gain-wavelength characteristics not only when the gain is low but also when the gain is high
  • the core member is easily broken because the exposed core member is wound around the outer peripheral surface of the cylindrical body.
  • excitation light is incident using a prism, and the excitation light is incident around the outer peripheral surface of the cylindrical body. Therefore, it is very difficult to make all the incident excitation light circulate when trying to make more excitation light incident (for example, if the diameter of the excitation light is increased, Excitation light whose incident angle does not satisfy the angle for total reflection inside the cylinder may increase. There is a potential).
  • the multi-core fiber lb described in Japanese Patent Application Laid-Open No. H10-224528 has a plurality of core members 30, but as shown in FIGS. 8 (E) to (G), Since the core member 30 is arranged substantially at the center of the cross section, it is estimated that the probability that the excitation light collides around the outer periphery of the first clad member 10 is low.
  • the present invention has been made in view of such a point, and in a fiber laser oscillation, more excitation light can excite a core member, and a light that can more efficiently obtain laser light.
  • the task is to provide fiber.
  • a first invention of the present invention is an optical fiber having a core member containing a laser active substance in a longitudinal direction and at least a part of the core member covered with a cladding member, wherein the plurality of core members are optical fibers.
  • the plurality of core members are arranged in the longitudinal direction, and the plurality of core members are arranged at the edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber.
  • the plurality of core members are arranged at the edge of the clad member, even if the excitation light totally reflected at the outer peripheral portion of the clad member is totally reflected so as to circulate, a higher value is obtained. Excitation light can collide with the core member with probability.
  • a second invention of the present invention is the optical fiber according to the first invention, wherein the number of core members is one, and the core members are arranged so as to reciprocate a plurality of times in the longitudinal direction of the optical fiber.
  • the second aspect by arranging one core member so as to reciprocate in the longitudinal direction, a plurality of core members are arranged at the edge of the clad member.
  • the excited laser light is generated inside one core member. Then, when extracting laser light from the output end of the single core member, since there is only one extraction port, a smaller diameter and higher quality laser light can be obtained.
  • a third invention of the present invention is a method for manufacturing an optical fiber, wherein a plurality of core members are arranged on an edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, the method comprising: In this method, the core members are arranged in a longitudinal direction, and the clad members are heated until the clad members can flow, and the core members are pressed against the clad members.
  • the optical fiber according to the first invention or the second invention can be manufactured more easily.
  • a fourth invention of the present invention is a method for manufacturing an optical fiber, wherein a plurality of core members are arranged on an edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, the method comprising: And a ceramic precursor having a refractive index equal to that of the clad member or a ceramic precursor having a refractive index equal to or more than the refractive index of the clad member and less than the refractive index of the core member. And a method of covering an outer periphery of a clad member in which a core member is arranged on the outer periphery.
  • the optical fiber according to the first invention or the second invention can be manufactured more easily.
  • an optical fiber manufactured by the method for manufacturing an optical fiber according to the third or fourth aspect is introduced into a hollow member having a lower refractive index than the clad member, Clear the gap between the optical fiber and the hollow member.
  • This is a method of filling with a ceramic precursor having a refractive index equivalent to that of the lad member or a ceramic precursor having a refractive index equal to or higher than the refractive index of the clad member and lower than the refractive index of the core member.
  • the optical fiber according to the first invention or the second invention can be manufactured more easily.
  • a sixth invention of the present invention is an optical fiber having a core member containing a laser active substance in a longitudinal direction and at least a part of the core member being covered with a cladding member, wherein at least one of the optical fibers to which excitation light is incident is provided.
  • the end surface is formed as an oblique surface (a flat surface or a curved surface) having a predetermined angle with respect to a cross section perpendicular to the longitudinal direction.
  • the end face on which the excitation light is incident is not perpendicular to the longitudinal direction, but is formed on an oblique surface (a flat surface or a curved surface) so as to have a predetermined angle.
  • a seventh invention of the present invention is the optical fiber according to the sixth invention, further comprising at least one end face on which the excitation light is incident, having a predetermined angle with respect to a cross section perpendicular to the longitudinal direction.
  • a plurality of oblique surfaces are formed, and the end surface is formed in a polygonal pyramid shape.
  • the seventh aspect by forming the end surface on which the excitation light is incident into a polygonal pyramid shape, the area of the excitation light incident surface is increased, and the excitation light is directed in the direction of each surface of the polygonal pyramid.
  • An injection device can be arranged.
  • An eighth invention of the present invention is the optical fiber according to the sixth invention or the seventh invention, wherein the optical fiber comprises: a pumping light incidence section for receiving the pumping light; And a pumping section that pumps the core member while the reflected pumping light is totally reflected.
  • the cross section perpendicular to the longitudinal direction of a part of the pumping light incidence section is larger than the cross sectional area of the pumping section perpendicular to the longitudinal direction. Are configured so that the cross-sectional area becomes larger.
  • the portion where the area of the pumping light incident portion (the cross-sectional area perpendicular to the longitudinal direction) is the largest is the area of the pumping portion (the portion excluding the pumping light incident portion) of the optical fiber (the longitudinal direction). (The cross-sectional area perpendicular to the plane), and further increase the surface on which the excitation light is incident.
  • FIG. 1 is a schematic view of an embodiment of the optical fiber 1 of the present invention.
  • FIG. 2 is a schematic view of an embodiment of a fiber laser oscillation device using the optical fiber 1 of the present invention.
  • FIG. 3 is a diagram illustrating an example of a method of manufacturing the optical fiber 1.
  • FIG. 4 is a view for explaining another example of the method for manufacturing the optical fiber 1.
  • FIG. 5 is a diagram for explaining another example of the optical fiber 1.
  • FIG. FIG. 6 is a diagram illustrating another example of the optical fiber 1.
  • FIG. 7 is a diagram illustrating another example of a fiber laser oscillation device using the optical fiber 1 of the present invention.
  • FIG. 8 is a diagram illustrating a conventional optical fiber.
  • FIG. 1 shows a schematic diagram of an optical fiber 1 of the present invention.
  • FIG. 1 (A) shows the optical fiber 1 of the present embodiment in the longitudinal direction
  • Fig. 2 shows an example of a cross-sectional view perpendicular to (z-axis direction in FIG. 1).
  • the optical fiber 1 has a core member 30 in the longitudinal direction, and the core member 30 is doped with a laser active material (such as a rare earth element such as Nd or Er).
  • a laser active material such as a rare earth element such as Nd or Er
  • the clad member 10 is referred to as a “first clad member 10 j”.
  • the outer periphery of the first clad member 10 is further covered with the second clad member 20.
  • the relationship between the refractive indices of the respective members is as follows: the refractive index of the core member 30 (n 30)> the refractive index of the first clad member 10 (nlO)> the refractive index of the second clad member 20 (n 20)> It is set to be the refractive index of air.
  • the second clad member 20 may be omitted.
  • the concept that the core member 30 is “at least partially covered by the first clad member 10” is, as shown in FIG. 1 (B), a core section 30 that is perpendicular to the longitudinal direction.
  • the core member 30 is the first clad member. Including the case where the core member 30 is located at the boundary between the first clad member 10 and the second clad member 20, as shown in FIG. This includes the case where they are arranged.
  • the plurality of core members 30 are arranged in the longitudinal direction of the optical fiber 1, and the plurality of core members 30 are arranged on the edge of the first clad member 10 in a cross section perpendicular to the longitudinal direction. (See Fig. 1 (A)-(D)).
  • the excitation light for example, semiconductor laser light
  • the excitation light incident from the end face of the optical fiber 1 travels while being totally reflected at the outer peripheral portion of the first cladding member 10
  • the excitation light is more reliably cored.
  • the laser active substance of the core member 30 can be excited to generate output laser light.
  • the plurality of core members 30 arranged in the optical fiber 1 may be configured by arranging a plurality of core members 30 as shown in FIG. 1 (E), or FIG. As shown in (G) and (G), one or more core members may be arranged so as to reciprocate a plurality of times in the longitudinal direction of the optical fiber 1.
  • FIG. 2 (B) shows a cross section BB perpendicular to the longitudinal direction in FIG. 2 (A)
  • FIG. 2 (C) shows a cross section CC perpendicular to the longitudinal direction in FIG. 2 (A). I have.
  • the excitation light L in is input from the left end face of the optical fiber 1, and the output laser light L out is extracted from the right end face.
  • the right end face of the optical fiber 1 (the end face on the side from which the output laser light is taken out) is narrowed down to a tapered portion Mtp by the tapered portion Mtp. 0 is bundled.
  • the diameter (corresponding to pb undle) in FIG. 2 (C) which is a diameter perpendicular to the longitudinal direction (corresponding to pb undle) by the plurality of core members 30 can be reduced, and the beam of the output laser light L out
  • the optical fiber 1 shown in the example of Fig. 1 (F) it is not necessary to bundle the output laser light Lout since it is output from one place.
  • the optical fiber 1 shown in the example of FIG. 1 (G) it is preferable to bundle them.
  • the length of the excitation section M fiber for exciting the core member 30 with the excitation light L in is long enough for the entire excitation light L in to be used for excitation.
  • the cross section shown in FIG. 2 (C) shows a state in which the first clad member 10 and the second clad member 20 are left, but the cross section CC is such that the first clad member 10 is not left. Or the second clad member 20 may not be left. In the tapered portion Mt, neither the first clad member 10 nor the second clad member 20 is required.
  • a dike opening mirror 46 that transmits the pump light L in and reflects (does not transmit) the output laser light L out (in this example, (It is in contact with the input end face (left end face of optical fiber 1).)
  • a coating that transmits the excitation light L in and reflects the output laser light L out may be applied.
  • the arrangement and coating of the dichroic mirror may be performed only on the end face of the core member 30 (in this case, the core member 30 on the left end face of the optical fiber 1).
  • the output laser light L out is converted into a parallel light on the end face of the optical fiber 1 on the side from which the output laser light L o XI t is extracted (the right end face of the optical fiber 1 in the example of FIG. 2 (A)).
  • a collimating lens 42 for collecting the output laser light L out converted into a parallel light into a smaller diameter is disposed.
  • the output laser light Lout condensed in this way has high output and accuracy with higher beam quality, and can be used for various applications such as laser processing and laser welding.
  • the optical fiber 1 used in the above-described fiber laser oscillator has an end face diameter (corresponding to cpc 1 ad in FIG. 2 (B)) of about 3 to 1 at which the excitation light Lin is incident. Since it can be as large as 0 [mm], the excitation light L in can be easily incident, and more excitation light L in can be incident.
  • a first clad member 10 is formed.
  • the first clad member 10 is formed in a rectangular shape for convenience, but may be formed in a columnar shape, a polygonal column shape, or the like.
  • a plurality of core members 30 are placed on the side surface of the first clad member 10 in parallel in the longitudinal direction. Further, heating is performed until the first clad member 10 becomes in a flowable state.
  • the core member 30 is pressed in the direction of the first clad member 10 (the core member 30 is pushed into the first clad member 10 by a hot press HP or the like).
  • the steps shown in FIGS. 3 (B) to 3 (C) are performed over the outer periphery of the first clad member 10, whereby the structure shown in FIG. 3 (D) can be obtained.
  • the optical fiber 1 in the state shown in FIG. 3 (D) may be used.
  • the outer periphery is further covered with a solution-like ceramic precursor (a coating agent such as polysilazane) in the state shown in FIG.
  • the second clad member 20 is formed.
  • a ceramic precursor having a refractive index smaller than that of the first clad member 10 is used.
  • a first clad member 10 is formed.
  • the first clad member 10 is formed in a cylindrical shape for convenience in the example of FIG. 4, it may be formed in a rectangular or polygonal column shape.
  • a plurality of core members 30 are arranged on the side surface of the first clad member 10 in parallel in the longitudinal direction.
  • the outer periphery is further covered with a solution-like ceramic precursor (a coating agent such as polysilazane) and fired.
  • the ceramic precursor used at this time may be a ceramic precursor having a refractive index equivalent to that of the first clad member 10 or a refractive index not less than the refractive index of the first clad member 10 and less than the refractive index of the core member 30. Is used.
  • the fired ceramic precursor is thermally bonded to the first clad member 10 prepared in FIG. 4 (A), and the fired ceramic precursor is bonded to the first clad member 10 prepared in FIG. 4 (A). Together with the body, a new first clad member 10a is formed, and the core member 30 is fixed.
  • the optical fiber 1 fired from the state shown in FIG. 4 (C) may be used.
  • the outer periphery is further reduced to a solution-like ceramic precursor (which is smaller than the refractive index of the first clad member 10). (A ceramic precursor having a refractive index) and baking to form a second clad member 20.
  • a second clad member 20 (hollow member such as a hollow glass rod) having a refractive index lower than that of the first clad member 10 is formed, and a third clad member 20 is formed in the hollow portion of the second clad member 20.
  • a gap between the optical fiber and the second clad member 20 is formed by a solution-like ceramic precursor having the same refractive index as that of the first clad member 10 or the refractive index of the first clad member 10 or more and the core.
  • Solution ceramic having a refractive index less than that of member 30
  • An optical fiber 1 is formed by filling with a precursor and firing.
  • the optical fiber 1 shown in FIG. 1 shows an example of a structure in which the incident pump light L in collides with and excites the core member 30 with a higher probability, but the optical fiber shown in FIG. 5 to FIG. 1 shows an example of the structure of the optical fiber 1 to which more pump light L in can be incident.
  • one core member 30 may be disposed at the center, as in a conventional optical fiber, or a plurality of core members may be disposed on the outer periphery of the first clad member 10 as shown in FIG.
  • the output laser light L out can be obtained with higher efficiency.
  • excitation light incidence end face S As shown in FIGS. 5 (A) and (B), the end face S on which the excitation light Lin is incident (hereinafter, referred to as “excitation light incidence end face S”) is taken with respect to a cross section perpendicular to the longitudinal direction. It is formed on an oblique surface so as to have a predetermined angle (angle ⁇ in Fig. 5 (B)).
  • the shape of the excitation light incident end surface S is a flat surface, but the shape of the excitation light incident end surface S may be formed as a curved surface to have a lens effect.
  • the incident angle of the incident excitation light L in (the angle formed by the perpendicular to the excitation light incident end face S and the excitation light L in) becomes large, the excitation light does not enter the first clad member 10 but enters the first cladding member 10. It is preferable that the incident angle of the excitation light L in is as small as possible because the excitation light L in reflected by the surface of the end face S is likely to increase (in the example of FIG. 5 (B), the incident angle is 0 °). Shown).
  • the excitation light Lin may be covered with a member (such as a mirror) that totally reflects the excitation light Lin.
  • the excitation light incident end face S is formed into a polygonal pyramid (a quadrangular pyramid in the examples of FIGS. 5 (C) and (D)). Form.
  • a polygonal pyramid a quadrangular pyramid in the examples of FIGS. 5 (C) and (D).
  • the excitation light L in incident means (the excitation light L in generator, etc.) in the direction of the normal to each plane of the excitation light incident end face S. ) Can be arranged, so that more excitation light L in can be incident more easily.
  • an optical fiber 1 is used to enter an excitation light incident section M in which an excitation light L in is incident, and an incident excitation light L is incident.
  • an excitation light incident section M in When in is divided into the excitation section M fiber that excites the core member 30 while total reflection occurs, a part of the excitation light incidence section M in is larger than the area S cross section perpendicular to the longitudinal direction of the excitation section M fiber.
  • the excitation light incident part M in is configured so that the area S max of the cross section perpendicular to the longitudinal direction becomes larger.
  • the excitation light L in may be incident perpendicularly to the excitation light incident end face S (the incident angle is 0 °) (see FIG. 6 (B)), or the reflection angle in the excitation section M fiber (It is also possible to make the incident angle ((6a, 66c in FIG. 6 (C)) such that ⁇ 7a, ⁇ 7c) in FIG. 6 (C) is small.
  • the incident angle ((6a, 66c in FIG. 6 (C))
  • ⁇ 7a, ⁇ 7c) in FIG. 6 (C) is small.
  • the example of the fiber laser oscillation device shown in FIG. 7 (A) is an example in which the number of core members 30 is plural, and the example of the fiber laser oscillation device shown in FIG. 7 (B) is the core member 30. This is an example in the case of one.
  • the mounting method of the die mirror 46 is different from that of the fiber laser oscillator shown in Fig. 2 (A). Hereinafter, this difference will be described.
  • one dichroic mirror 46 is provided on the end face of one core member 30 and the dichroic mirror 46 is provided on the excitation light incident end face S. Is not provided.
  • a coating may be applied instead of the dichroic mirror.
  • a member (a dichroic mirror 46 or the like) that reflects the output laser light L out is attached to each end face of the core member 30 (each end face on the excitation light incident end face S side) on the end face of the core member 30. What is necessary is just to provide so that it may contact
  • the end faces of the core member 30 on the excitation light incident end face S side may be connected as shown by a one-point line in FIG. 7 (A) (C in FIG. 7 (A)). part). Since the connected core member 30 has no end face, there is no need to provide a member that reflects the output laser light Lout.
  • optical fiber 1 of the present invention and its manufacturing method are not limited to the shape, configuration, structure, method, and the like described in the present embodiment, and various changes, additions, and deletions may be made without departing from the spirit of the present invention. It is possible.
  • the optical fiber 1 of the present invention can be applied to various devices using laser light, such as a laser processing device.

Abstract

Disclosed is an optical fiber wherein a core member can be excited by more excitation lights and a laser beam can be obtained more efficiently. An optical fiber (1) comprising a core member (30) containing a laser active material and arranged in the longitudinal direction and a cladding member (10) covering at least a part of the core member (30) is characterized in that a plurality of the core members (30) are arranged in the optical fiber (1) along the longitudinal direction thereof so that the core members (30) are located in the peripheral portion of the cladding member (10) in a cross section of the optical fiber (1) perpendicular to the longitudinal direction. In this connection, a plurality of the core members (30) may be arranged in the optical fiber (1) or a single core member (30) may be arranged therein in such a manner that it turns around a plurality of times along the longitudinal direction of the optical fiber (1).

Description

明細書 光ファイバ、 及びその製造方法 技術分野  Description Optical fiber and manufacturing method thereof
本発明は、 レーザ活"生物質を含むコア部材と、 励起光を透過させるク ラッド部材とを有するファイバレーザ発振に用いる光ファイバ、 及びそ の製造方法に関する。 背景技術  The present invention relates to an optical fiber used for fiber laser oscillation, comprising a core member containing a laser active material, and a clad member that transmits excitation light, and a method for manufacturing the same.
従来より、 比較的ビーム品質の劣る励起光を用いて非常に高品質のレ 一ザ光を高効率で得ることができるファイバレーザ発振装置や、 高速 · 大容量 ·長距離伝送が可能な光増幅器等に用いる種々の光ファイバが提 案されている。  Conventionally, fiber laser oscillators that can obtain very high-quality laser light with high efficiency using pump light with relatively low beam quality, and optical amplifiers that can perform high-speed, large-capacity, long-distance transmission Various optical fibers used for such purposes have been proposed.
ファイバレーザに用いられる光ファイバは通常、 断面の中心にコア部 材 (シングルモードのレーザ光を透過させ、 希土類元素 ( N d、 E r ) 等がドープされた直径 2〜 1 2 [μιη ] 程度のファイバ形状) を有して いる。 そして、 コア部材の周囲に、 コア部材よりも低い屈折率を持つク ラッド部材 (第 1クラッ ド部材であり、 励起光を透過させる) を有する ことで、 レーザ光をコア部材内に閉じ込めている。 更に第 1クラッド部 材の周囲に、 第 1クラッド部材の屈折率よりも低い屈折率を持つ第 2ク ラッド部材を有することで、 励起光を第 1クラッド部材内に閉じ込めて いる。  The optical fiber used for the fiber laser is usually about 2 to 12 [μιη] in diameter at the center of the cross section, which is made of a core material (single mode laser light is transmitted and doped with rare earth elements (Nd, Er)). Fiber shape). The laser light is confined in the core member by having a clad member having a lower refractive index than the core member (which is the first clad member and transmits the excitation light) around the core member. . Further, by providing a second clad member having a lower refractive index than the first clad member around the first clad member, the excitation light is confined in the first clad member.
そして、 この光ファイバに入射された励起光がコア部材を通ると (コ ァ部材に衝突すると) コア部材内の希土類元素が励起されてレーザ光が 発生し、 コア部材内にはシングルモードのレーザ光が残る。 このレーザ 光は、 小径 (コア部材の径に依存する) であり、 かつ広がり角が小さいWhen the excitation light incident on the optical fiber passes through the core member (collides with the core member), the rare-earth element in the core member is excited to generate laser light, and a single-mode laser is generated in the core member. Light remains. This laser Light has a small diameter (depending on the diameter of the core member) and a small divergence angle
(発生したレーザ光の波長、 コア部材及び第 1クラッド部材の屈折率等 に依存する)ため、 ビーム品質が非常によい(レーザ光のビーム品質は、 出射光の半径と、 出射光の広がり角の半角との積で表され、 この積が小 さい程ビーム品質が高い)。 (Because it depends on the wavelength of the generated laser beam, the refractive index of the core member and the first cladding member, etc.), the beam quality is very good (the beam quality of the laser beam depends on the radius of the emitted light and the spread angle of the emitted light). The smaller the product, the higher the beam quality.)
従来の一般的な光ファイバ 1 a (ファイバレーザ発振に用いる光ファ ィバ) は、 第 8図 (A ) に示すように、 円柱形状の第 1クラッド部材 1 0の長手方向 (第 8図 (A ) の Z軸方向) に、 レーザ活性物質を含むコ ァ部材 3 0が配置されている。 また、 第 8図 (B ) は、 光ファイバ 1 a の長手方向に垂直な断面 (第 8図 (A ) の断面 B B ) を示している。 第 8図 (B ) に示すように、 従来の一般的な光ファイバ 1 aは、 長手方向 に垂直な断面において、 第 1クラッド部材 1 0の中心部分にコア部材 3 0が配置されている。  As shown in FIG. 8 (A), a conventional general optical fiber 1a (optical fiber used for fiber laser oscillation) has a longitudinal direction of a cylindrical first cladding member 10 (FIG. 8 (A)). A core member 30 containing a laser-active substance is disposed in the Z-axis direction (A)). FIG. 8 (B) shows a cross section perpendicular to the longitudinal direction of the optical fiber 1a (cross section BB in FIG. 8 (A)). As shown in FIG. 8 (B), in a conventional general optical fiber 1a, a core member 30 is disposed at a central portion of a first clad member 10 in a cross section perpendicular to the longitudinal direction.
この光ファイバ 1 aの長手方向に垂直な端面から励起光 L i nを入射 すると、 入射した励起光 L i nが第 1クラッド部材 1 0内を全反射しな がら進行する。 そして、 第 1クラッド部材 1 0内を全反射しながら進行 する励起光 L i nが (偶然的に) コア部材 3 0に衝突すると、 コア部材 3 0内でレーザ光が励起される。 ,  When the excitation light L in enters from the end face perpendicular to the longitudinal direction of the optical fiber 1 a, the incident excitation light L in travels while being totally reflected in the first clad member 10. Then, when the excitation light L in that travels while being totally reflected in the first clad member 10 collides (accidentally) with the core member 30, the laser light is excited in the core member 30. ,
なお、 一般的な光ファイバ 1 aでは、 より高品質なレーザ光を得るた めにコア部材 3 0の径を約 2〜 1 2 [μιη ] としており、 より高出力の レーザ光を得る目的でより多くの励起光を入射するために第 1クラッド 部材 1 0の径を約 1 0 0 [μιη ] としている。 従って、 第 1クラッド部 材 1 0の断面積に対するコア部材 3 0の断面積が非常に小さい。 このた め、 第 8図 (Β ) に示すように、 励起光 L i nがコア部材 3 0に衝突す ることなく、 第 1クラッド部材 1 0内で全反射しながら第 1クラッド部 材 1 0の外周に沿って周回してしまう場合がある。 また、 第 8図 (C ) に示すように、 周回してしまう励起光 L i nをより低減するために第 1 クラッド部材 1 0の断面形状を矩形にした光ファイバも提案されている が、 それでも周回してしまう励起光 L i nが発生する場合がある。 In the general optical fiber 1a, the diameter of the core member 30 is set to about 2 to 12 [μιη] in order to obtain higher quality laser light, and in order to obtain higher output laser light. The diameter of the first cladding member 10 is set to about 100 [μιη] in order to allow more excitation light to enter. Therefore, the sectional area of the core member 30 with respect to the sectional area of the first clad member 10 is very small. For this reason, as shown in FIG. 8 (), the excitation light Lin does not collide with the core member 30 and is totally reflected within the first cladding member 10 while the first cladding member 10 is not reflected. May orbit along the outer periphery of the. Fig. 8 (C) As shown in (1), an optical fiber having a rectangular cross-sectional shape of the first clad member 10 has been proposed to further reduce the circulating pump light L in. May occur.
また、 励起光 L i nは、 比較的ビーム品質が劣るので、 コア部材 3 0 に衝突するように狙って入射することは非常に困難である。  In addition, since the excitation light L in has relatively poor beam quality, it is very difficult to aim and enter the core member 30 so as to collide with the core member 30.
そこで、 例えばファイバレーザ発振装置の分野では、 円筒形のガラス 円柱体の外周面にコア部材を卷回し、 円柱体の端面の外周端部近傍から プリズムを用いて励起光を入射し、 励起光を円柱体の内部で全反射させ ながら螺旋状に周回させ、 レーザ出力をより向上させるファイバレーザ 発振装置が提案されている (例えば特開平 1 1— 2 8 4 2 5 5号公報参 照)。  Therefore, for example, in the field of fiber laser oscillators, a core member is wound around the outer peripheral surface of a cylindrical glass cylinder, and excitation light is incident from the vicinity of the outer peripheral end of the end surface of the cylindrical body using a prism, and the excitation light is emitted. There has been proposed a fiber laser oscillator that spirally circulates while being totally reflected inside a cylindrical body to further improve the laser output (see, for example, Japanese Patent Application Laid-Open No. H11-284425).
また、 例えば光増幅器の分野では、 第 8図 (D ) 〜 (G ) に示すよう に、 光ファイバの第 1クラッド部材 1 0内にコア部材 3 0を少なく とも 3本有し、 長手方向に少なく とも 2個所のモードフィールド径の変化し た領域 2 3を設け、 利得が低いときだけでなく、 利得が高いときであつ ても、 利得波長特性を平坦にすることができる、 マルチコアファイバ 1 bが提案されている (例えば特開平 1 0— 2 4 2 5 4 8号公報参照)。 特開平 1 1— 2 8 4 2 5 5号公報に記截のファイバレーザ発振装置で は、 円柱体の外周面に剥き出しのコア部材を巻きつけるため、 コア部材 が折れ易いと推定される。  For example, in the field of optical amplifiers, as shown in FIGS. 8 (D) to (G), at least three core members 30 are provided in the first cladding member 10 of the optical fiber, and A multi-core fiber 1 b that has at least two regions 23 with changed mode field diameters to flatten the gain-wavelength characteristics not only when the gain is low but also when the gain is high (For example, refer to Japanese Patent Application Laid-Open No. H10-2442548). In the fiber laser oscillating device described in Japanese Patent Application Laid-Open No. H11-2844255, it is presumed that the core member is easily broken because the exposed core member is wound around the outer peripheral surface of the cylindrical body.
また、 特開平 1 1一 2 8 4 2 5 5号公報に記載のファイバレーザ発振 装置では、 プリズムを用いて励起光を入射し、 円柱体の外周面を周回す るように励起光を入射する必要があるため、 より多くの励起光を入射し ようとした場合、 入射した励起光を全て周回させることは非常に困難で ある (例えば励起光の径を大きくすると、 円柱体の外周面への入射角が 円柱体の内部で全反射するための角度を満足しない励起光が多くなる可 能性がある)。 Further, in the fiber laser oscillation device described in Japanese Patent Application Laid-Open No. 11-284,255, excitation light is incident using a prism, and the excitation light is incident around the outer peripheral surface of the cylindrical body. Therefore, it is very difficult to make all the incident excitation light circulate when trying to make more excitation light incident (for example, if the diameter of the excitation light is increased, Excitation light whose incident angle does not satisfy the angle for total reflection inside the cylinder may increase. There is a potential).
また、 特開平 1 0— 2 4 2 5 4 8号公報に記載のマルチコアファイバ l bでは、 コア部材 3 0を複数有しているが、 第 8図 (E ) 〜 (G ) に 示すように、当該コア部材 3 0が断面のほぼ中心に配置されているため、 第 1クラッド部材 1 0の外周に沿って周回するような励起光が衝突する 確率は低いと推定される。  In addition, the multi-core fiber lb described in Japanese Patent Application Laid-Open No. H10-224528 has a plurality of core members 30, but as shown in FIGS. 8 (E) to (G), Since the core member 30 is arranged substantially at the center of the cross section, it is estimated that the probability that the excitation light collides around the outer periphery of the first clad member 10 is low.
本発明は、 このような点に鑑みて創案されたものであり、 ファイバレ 一ザ発振において、より多くの励起光がコア部材を励起することができ、 より効率よく レーザ光を得ることができる光ファィバを提供することを 課題とする。 発明の開示 '  The present invention has been made in view of such a point, and in a fiber laser oscillation, more excitation light can excite a core member, and a light that can more efficiently obtain laser light. The task is to provide fiber. DISCLOSURE OF THE INVENTION ''
本発明の第 1の発明は、 レーザ活性物質を含むコア部材を長手方向に 有するとともに当該コア部材の少なく とも一部をクラッド部材で覆った 光ファイバであって、 複数のコア部材が光ファイバの長手方向に配置さ れているとともに、 当該複数のコア部材が、 光ファイバの長手方向に垂 直な断面において、 クラッド部材の縁部に配置されている。  A first invention of the present invention is an optical fiber having a core member containing a laser active substance in a longitudinal direction and at least a part of the core member covered with a cladding member, wherein the plurality of core members are optical fibers. The plurality of core members are arranged in the longitudinal direction, and the plurality of core members are arranged at the edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber.
第 1の発明によれば、 複数のコア部材がクラッド部材の縁部に配置さ れているので、 クラッド部材の外周部で全反射する励起光が周回するよ うに全反射しても、 より高い確率で励起光をコア部材に衝突させること ができる。  According to the first aspect, since the plurality of core members are arranged at the edge of the clad member, even if the excitation light totally reflected at the outer peripheral portion of the clad member is totally reflected so as to circulate, a higher value is obtained. Excitation light can collide with the core member with probability.
このため、 より多くの励起光がコア部材を励起することができ、 より 効率よく レーザ光を得ることができる。  For this reason, more excitation light can excite the core member, and laser light can be obtained more efficiently.
本発明の第 2の発明は、 第 1の発明に係る光ファイバであって、 コア 部材は 1本であり、 当該コア部材が光ファイバの長手方向に複数回往復 するように配置されている。 第 2の発明によれば、 1本のコア部材を長手方向に往復させて配置す ることで、 複数のコア部材がクラッド部材の縁部に配置されるように構 成する。 A second invention of the present invention is the optical fiber according to the first invention, wherein the number of core members is one, and the core members are arranged so as to reciprocate a plurality of times in the longitudinal direction of the optical fiber. According to the second aspect, by arranging one core member so as to reciprocate in the longitudinal direction, a plurality of core members are arranged at the edge of the clad member.
このため、励起されたレーザ光は、 1本のコア部材の内部で発生する。 そして、 当該 1本のコア部材の出力端からレーザ光を取り出す際、 取り 出し口が 1本であるので、 より小径の、 より高品質のレーザ光を得るこ とができる。  Therefore, the excited laser light is generated inside one core member. Then, when extracting laser light from the output end of the single core member, since there is only one extraction port, a smaller diameter and higher quality laser light can be obtained.
本発明の第 3の発明は、光ファイバの長手方向に垂直な断面において、 クラッド部材の縁部に複数のコア部材が配置されている光ファイバの製 造方法であって、 クラッド部材の外周上に、 且つ長手方向にコア部材を 並べ、 クラッド部材が流動可能状態になるまで加熱して、 コア部材をク ラッド部材に押し付ける方法である。  A third invention of the present invention is a method for manufacturing an optical fiber, wherein a plurality of core members are arranged on an edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, the method comprising: In this method, the core members are arranged in a longitudinal direction, and the clad members are heated until the clad members can flow, and the core members are pressed against the clad members.
第 3の発明によれば、 第 1の発明または第 2の発明に係る光ファイバ を、 より容易に製造することが可能である。  According to the third invention, the optical fiber according to the first invention or the second invention can be manufactured more easily.
本発明の第 4の発明は、光ファイバの長手方向に垂直な断面において、 クラッド部材の縁部に複数のコア部材が配置されている光ファイバの製 造方法であって、 クラッド部材の外周上に、 且つ長手方向にコア部材を 並べ、 クラッド部材と同等の屈折率を有するセラミックス前駆体あるい は、 クラッド部材の屈折率以上且つコア部材の屈折率未満の屈折率を有 するセラミックス前駆体にて、 前記外周上にコア部材を並べたクラッド 部材の外周を覆う方法である。  A fourth invention of the present invention is a method for manufacturing an optical fiber, wherein a plurality of core members are arranged on an edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, the method comprising: And a ceramic precursor having a refractive index equal to that of the clad member or a ceramic precursor having a refractive index equal to or more than the refractive index of the clad member and less than the refractive index of the core member. And a method of covering an outer periphery of a clad member in which a core member is arranged on the outer periphery.
第 4の発明によれば、 第 1の発明または第 2の発明に係る光ファイバ を、 より容易に製造することが可能である。  According to the fourth invention, the optical fiber according to the first invention or the second invention can be manufactured more easily.
本発明の第 5の発明は、 第 3の発明または第 4の発明に係る光フアイ バの製造方法にて製造した光ファイバを、 クラッド部材よりも低い屈折 率を有する中空部材に揷入し、 光ファイバ及び中空部材との間隙を、 ク ラッド部材と同等の屈折率を有するセラミックス前駆体あるいは、 クラ ッド部材の屈折率以上且つコア部材の屈折率未満の屈折率を有するセラ ミ ックス前駆体で充填する方法である。 According to a fifth aspect of the present invention, an optical fiber manufactured by the method for manufacturing an optical fiber according to the third or fourth aspect is introduced into a hollow member having a lower refractive index than the clad member, Clear the gap between the optical fiber and the hollow member. This is a method of filling with a ceramic precursor having a refractive index equivalent to that of the lad member or a ceramic precursor having a refractive index equal to or higher than the refractive index of the clad member and lower than the refractive index of the core member.
第 5の発明によれば、 第 1の発明または第 2の発明に係る光ファイバ を、 より容易に製造することが可能である。  According to the fifth invention, the optical fiber according to the first invention or the second invention can be manufactured more easily.
本発明の第 6の発明は、 レーザ活性物質を含むコア部材を長手方向に 有するとともに当該コア部材の少なく とも一部をクラッド部材で覆った 光ファイバであって、 励起光を入射する少なくとも 1つの端面が、 長手 方向に垂直な断面に対して所定の角度を有する斜めの面 (平面または曲 面) に形成されている。  A sixth invention of the present invention is an optical fiber having a core member containing a laser active substance in a longitudinal direction and at least a part of the core member being covered with a cladding member, wherein at least one of the optical fibers to which excitation light is incident is provided. The end surface is formed as an oblique surface (a flat surface or a curved surface) having a predetermined angle with respect to a cross section perpendicular to the longitudinal direction.
第 6の発明によれば、 励起光を入射する端面を、 長手方向に垂直でな く、 所定の角度を有するように斜めの面 (平面または曲面) に形成する ことで、 励起光の入射面の面積を、 より大きくすることができる。  According to the sixth aspect, the end face on which the excitation light is incident is not perpendicular to the longitudinal direction, but is formed on an oblique surface (a flat surface or a curved surface) so as to have a predetermined angle. Can have a larger area.
これにより、 より大きな入射面からより多くの励起光を入射すること ができ、 より多くの励起光がコア部材を励起することができる。  Thereby, more excitation light can be incident from a larger incident surface, and more excitation light can excite the core member.
本発明の第 7の発明は、第 6の発明に係る光ファイバであって、更に、 励起光を入射する少なく とも 1つの端面において、 長手方向に垂直な断 面に対して所定の角度を有する斜めの面 (平面または曲面) を複数形成 し、 当該端面が多角錐状に形成されている。  A seventh invention of the present invention is the optical fiber according to the sixth invention, further comprising at least one end face on which the excitation light is incident, having a predetermined angle with respect to a cross section perpendicular to the longitudinal direction. A plurality of oblique surfaces (flat or curved) are formed, and the end surface is formed in a polygonal pyramid shape.
第 7の発明によれば、 励起光を入射する端面を多角錐状に形成するこ とで、 励起光の入射面の面積をより大きくするとともに、 当該多角錐の 各面の方向に励起光の入射装置を配置することができる。  According to the seventh aspect, by forming the end surface on which the excitation light is incident into a polygonal pyramid shape, the area of the excitation light incident surface is increased, and the excitation light is directed in the direction of each surface of the polygonal pyramid. An injection device can be arranged.
これにより、複数の方向からより多くの励起光を入射することができ、 より'多くの励起光がコア部材を励起することができる。  Thereby, more excitation light can be incident from a plurality of directions, and more excitation light can excite the core member.
本発明の第 8の発明は、 第 6の発明または第 7の発明に係る光フアイ バであって、 光ファイバは、 励起光を入射する励起光入射部と、 入射さ れた励起光が全反射しながらコア部材を励起する励起部とで構成され、 励起部における長手方向に垂直な断面の断面積よりも、 励起光入射部の 一部における長手方向に垂直な断面の断面積の方が大きくなるように構 成されている。 An eighth invention of the present invention is the optical fiber according to the sixth invention or the seventh invention, wherein the optical fiber comprises: a pumping light incidence section for receiving the pumping light; And a pumping section that pumps the core member while the reflected pumping light is totally reflected.The cross section perpendicular to the longitudinal direction of a part of the pumping light incidence section is larger than the cross sectional area of the pumping section perpendicular to the longitudinal direction. Are configured so that the cross-sectional area becomes larger.
第 8の発明によれば、励起光入射部の面積(長手方向に垂直な断面積) が最も大きくなる部分が、 光ファイバの励起部 (励起光入射部を除いた 部分) の面積 (長手方向に垂直な断面積) よりも大きくなるように設定 し、 更に励起光を入射する面を更に大きくする。  According to the eighth aspect, the portion where the area of the pumping light incident portion (the cross-sectional area perpendicular to the longitudinal direction) is the largest is the area of the pumping portion (the portion excluding the pumping light incident portion) of the optical fiber (the longitudinal direction). (The cross-sectional area perpendicular to the plane), and further increase the surface on which the excitation light is incident.
これにより、 更に多くの励起光がコア部材を励起することができる。 図面の簡単な説明  Thereby, more excitation light can excite the core member. Brief Description of Drawings
第 1図は、 本発明の光ファイバ 1の一実施の形態の概略図である。 第 2図は、本発明の光ファイバ 1を用いたファイバレーザ発振装置の一 実施の形態の概略図である。 第 3図は、 光ファイバ 1の製造方法の例を 説明する図である。 第 4図は、 光ファイバ 1の製造方法の別の例を説明 する図である。 第 5図は、 光ファイバ 1における、 その他の例を説明す る図である。 第 6図は、 光ファイバ 1における、 その他の例を説明する 図である。 第 7図は、 本発明の光ファイバ 1を用いたファイバレーザ発 振装置のその他の例を説明する図である。 第 8図は、 従来の光フアイ バを説明する図である。 発明を実施するための最良の形態  FIG. 1 is a schematic view of an embodiment of the optical fiber 1 of the present invention. FIG. 2 is a schematic view of an embodiment of a fiber laser oscillation device using the optical fiber 1 of the present invention. FIG. 3 is a diagram illustrating an example of a method of manufacturing the optical fiber 1. FIG. 4 is a view for explaining another example of the method for manufacturing the optical fiber 1. FIG. FIG. 5 is a diagram for explaining another example of the optical fiber 1. FIG. FIG. 6 is a diagram illustrating another example of the optical fiber 1. FIG. 7 is a diagram illustrating another example of a fiber laser oscillation device using the optical fiber 1 of the present invention. FIG. 8 is a diagram illustrating a conventional optical fiber. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を実施するための最良の形態を図面を用いて説明する。 第 1図は本発明の光ファイバ 1の概略図を示している。  Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows a schematic diagram of an optical fiber 1 of the present invention.
[光ファイバの構造 (第 1図)]  [Structure of optical fiber (Fig. 1)]
第 1図 (A ) は、本実施の形態の光ファイバ 1における、長手方向 (第 1図における z軸方向) に垂直な断面図の例を示している。 光ファイバ 1は、 コア部材 3 0を長手方向に有しており、 コア部材 3 0にはレーザ 活性物質(希土類元素である N d、 E r等) 力 Sドープされている。 また、 コア部材 3 0の少なく とも一部はクラッド部材 1 0 (以下、 クラッド部 材 1 0を「第 1クラッド部材 1 0 j と記載する) で覆われている。 また、 第 1図に示す例では、 第 1クラッド部材 1 0の外周を更に第 2クラッ ド 部材 2 0で覆っている。 FIG. 1 (A) shows the optical fiber 1 of the present embodiment in the longitudinal direction (Fig. 2 shows an example of a cross-sectional view perpendicular to (z-axis direction in FIG. 1). The optical fiber 1 has a core member 30 in the longitudinal direction, and the core member 30 is doped with a laser active material (such as a rare earth element such as Nd or Er). Also, at least a part of the core member 30 is covered with a clad member 10 (hereinafter, the clad member 10 is referred to as a “first clad member 10 j”). In the example, the outer periphery of the first clad member 10 is further covered with the second clad member 20.
また、 各部材の屈折率の関係は、 コア部材 3 0の屈折率 (n 3 0 ) > 第 1クラッド部材 1 0の屈折率 (n l O ) >第 2クラッド部材 2 0の屈 折率 (n 2 0 ) >空気の屈折率となるように設定されている。 なお、 第 2クラッド部材 2 0は省略してもよい。  The relationship between the refractive indices of the respective members is as follows: the refractive index of the core member 30 (n 30)> the refractive index of the first clad member 10 (nlO)> the refractive index of the second clad member 20 (n 20)> It is set to be the refractive index of air. The second clad member 20 may be omitted.
また、 コア部材 3 0が 「少なく とも一部が第 1クラッド部材 1 0に覆 われている」 という概念は、 第 1図 (B ) に示すように、 長手方向に垂 直な断面において、 コア部材 3 0が第 1クラッド部材 1 0の内部に配置 されている場合を含むとともに、 第 1図 (C ) に示すように、 長手方向 に垂直な断面において、 コア部材 3 0が第 1クラッド部材 1 0と第 2ク ラッド部材 2 0の境界に配置されている場合も含み、 第 1図 (D ) に示 すように、 コア部材 3 0が第 1クラッド部材 1 0の外周に接するように 配置されている場合も含む。  Also, the concept that the core member 30 is “at least partially covered by the first clad member 10” is, as shown in FIG. 1 (B), a core section 30 that is perpendicular to the longitudinal direction. In addition to the case where the member 30 is disposed inside the first clad member 10, as shown in FIG. 1 (C), in a cross section perpendicular to the longitudinal direction, the core member 30 is the first clad member. Including the case where the core member 30 is located at the boundary between the first clad member 10 and the second clad member 20, as shown in FIG. This includes the case where they are arranged.
そして、 複数のコア部材 3 0を光ファイバ 1の長手方向に配置し、 当 該複数のコア部材 3 0が、 長手方向に垂直な断面において、 第 1クラッ ド部材 1 0の縁部に配置されている (第 1図 (A ) 〜 (D ) 参照)。 これにより、 光ファイバ 1の端面から入射された励起光 (例えば半導 体レーザ光) が第 1クラッ ド部材 1 0の外周部で全反射しながら進行し ても、 より確実に励起光をコア部材 3 0に衝突させて、 コア部材 3 0の レーザ活性物質を励起して出力レーザ光を発生させることができる。 なお、 光ファイバ 1に配置する複数のコア部材 3 0は、 第 1図 (E) に示すように複数本のコア部材 3 0を配置して構成してもよいし、 第 1 図 (F) 及び (G) に示すように 1本または複数のコア部材を、 光ファ ィバ 1の長手方向に複数回往復するように配置して構成するようにして もよい。 Then, the plurality of core members 30 are arranged in the longitudinal direction of the optical fiber 1, and the plurality of core members 30 are arranged on the edge of the first clad member 10 in a cross section perpendicular to the longitudinal direction. (See Fig. 1 (A)-(D)). Thus, even if the excitation light (for example, semiconductor laser light) incident from the end face of the optical fiber 1 travels while being totally reflected at the outer peripheral portion of the first cladding member 10, the excitation light is more reliably cored. By colliding with the member 30, the laser active substance of the core member 30 can be excited to generate output laser light. Note that the plurality of core members 30 arranged in the optical fiber 1 may be configured by arranging a plurality of core members 30 as shown in FIG. 1 (E), or FIG. As shown in (G) and (G), one or more core members may be arranged so as to reciprocate a plurality of times in the longitudinal direction of the optical fiber 1.
[光ファイバを用いたファイバレーザ発振装置 (第 2図)]  [Fiber laser oscillator using optical fiber (Fig. 2)]
次に第 2図を用いて、 上記に説明した光ファイバ 1を用いたファイバ レーザ発振装置の例を説明する。 第 2図 (B) は第 2図 (A) における 長手方向に垂直な断面 B Bを示しており、 第 2図 (C) は第 2図 (A) における長手方向に垂直な断面 C Cを示している。  Next, an example of a fiber laser oscillator using the optical fiber 1 described above will be described with reference to FIG. FIG. 2 (B) shows a cross section BB perpendicular to the longitudinal direction in FIG. 2 (A), and FIG. 2 (C) shows a cross section CC perpendicular to the longitudinal direction in FIG. 2 (A). I have.
第 2図 (A) の例では、 光ファイバ 1の左端面から励起光 L i nを入 射し、 右端面から出力レーザ光 L o u tを取り出している。 なお、 第 2 図 (A) の例では、 光ファイバ 1の右端面 (出力レーザ光の取り出し側 の端面) では、 テーパ部 M t pにて光ファイバ 1をテーパ形状に絞り、 複数のコア部材 3 0を束ねている。 束ねることで、 複数のコア部材 3 0 による径 (長手方向に垂直な径であり、 第 2図 (C) の (pb u n d l e に相当する) を小さくすることができ、 出力レーザ光 L o u tのビーム 品質を、 より向上させることができる。 なお、 第 1図 (F) の例に示す 光ファイバ 1の場合は、 出力レーザ光 L o u tが 1個所から出力される ため、 束ねる必要はない。 また、 第 1図 (G) の例に示す光ファイバ 1 の場合は束ねることが好ましい。  In the example of FIG. 2 (A), the excitation light L in is input from the left end face of the optical fiber 1, and the output laser light L out is extracted from the right end face. In the example shown in FIG. 2A, the right end face of the optical fiber 1 (the end face on the side from which the output laser light is taken out) is narrowed down to a tapered portion Mtp by the tapered portion Mtp. 0 is bundled. By bundling, the diameter (corresponding to pb undle) in FIG. 2 (C), which is a diameter perpendicular to the longitudinal direction (corresponding to pb undle) by the plurality of core members 30 can be reduced, and the beam of the output laser light L out In the case of the optical fiber 1 shown in the example of Fig. 1 (F), it is not necessary to bundle the output laser light Lout since it is output from one place. In the case of the optical fiber 1 shown in the example of FIG. 1 (G), it is preferable to bundle them.
なお、 励起光 L i nがコア部材 30を励起させる励起部 M f i b e r の長さは、 励起光 L i nが全て励起に使用されるのに充分な長さを有す る。 また、 第 2図 (C) に示す断面では、 第 1クラッド部材 1 0及び第 2クラッド部材 20を残した状態の図を示したが、 断面 C C部分では第 1クラッド部材 1 0が残らないようにしてもよいし、 第 2クラッド部材 2 0が残らないようにしてもよい。 テーパ部 M t では、 第 1クラッド 部材 1 0も第 2クラッド部材 2 0も特になくてもよい。 Note that the length of the excitation section M fiber for exciting the core member 30 with the excitation light L in is long enough for the entire excitation light L in to be used for excitation. Also, the cross section shown in FIG. 2 (C) shows a state in which the first clad member 10 and the second clad member 20 are left, but the cross section CC is such that the first clad member 10 is not left. Or the second clad member 20 may not be left. In the tapered portion Mt, neither the first clad member 10 nor the second clad member 20 is required.
光ファイバ 1における励起光 L i nの入射側端面には、 励起光 L i n を透過して出力レーザ光 L o u tを反射する (透過させない) ダイク口 イツクミラー 4 6を配置している (この例では、 入射端面 (光ファイバ 1の左端面) に当接させている)。 なお、 ダイクロイツクミラー 4 6の代 わりに、 励起光 L i nを透過して出力レーザ光 L o u tを反射するコー ティングを施してもよい。 また、 ダイクロイツクミラーの配置、 コーテ イングの実施は、 コア部材 3 0の端面 (この場合、 光ファイバ 1の左端 面のコア部材 3 0の部分) のみに行ってもよい。  At the end face of the optical fiber 1 on the incident side of the pump light L in, there is disposed a dike opening mirror 46 that transmits the pump light L in and reflects (does not transmit) the output laser light L out (in this example, (It is in contact with the input end face (left end face of optical fiber 1).) Instead of the dichroic mirror 46, a coating that transmits the excitation light L in and reflects the output laser light L out may be applied. The arrangement and coating of the dichroic mirror may be performed only on the end face of the core member 30 (in this case, the core member 30 on the left end face of the optical fiber 1).
また、 光ファイバ 1における出力レーザ光 L o XI tを取り出す側の端 面 (第 2図 (A ) の例では、 光ファイバ 1の右端面) には、 出力レーザ 光 L o u tを平行光に変換するコリメートレンズ 4 2と、 平行光に変換 した出力レーザ光 L o u tをより小さな径に集光する集光レンズ 4 4と を配置している。 このように集光した出力レーザ光 L o u tは、 より高 いビーム品質にて高い出力と精度を有しており、 レーザ加工、 レーザ溶 接等、 種々の用途に用いることが可能である。  The output laser light L out is converted into a parallel light on the end face of the optical fiber 1 on the side from which the output laser light L o XI t is extracted (the right end face of the optical fiber 1 in the example of FIG. 2 (A)). A collimating lens 42 for collecting the output laser light L out converted into a parallel light into a smaller diameter is disposed. The output laser light Lout condensed in this way has high output and accuracy with higher beam quality, and can be used for various applications such as laser processing and laser welding.
以上に説明したファイバレーザ発振装置に用いた光ファイバ 1は、 励 起光 L i nを入射する端面の径 (第 2図 (B ) 中の cp c 1 a dに相当す る) を約 3〜 1 0 [ m m] と大きくできるので、 励起光 L i nを入射し 易く、 より多くの励起光 L i nを入射することができる。  The optical fiber 1 used in the above-described fiber laser oscillator has an end face diameter (corresponding to cpc 1 ad in FIG. 2 (B)) of about 3 to 1 at which the excitation light Lin is incident. Since it can be as large as 0 [mm], the excitation light L in can be easily incident, and more excitation light L in can be incident.
また、 テーパ部 M t pにてコア部材 3 0を束ねることで、 従来のファ ィバレーザ用光ファイバ (第 8図 (B ) 及び (C ) に示すファイバレー ザ用光ファイバ) を複数本束ねるよりも小径の出力レーザ光 L o u tを 得ることができるので、 ビーム品質をより高くすることができる。  Also, by bundling the core members 30 at the tapered portion Mtp, it is possible to bundle a plurality of conventional fiber laser optical fibers (fiber laser optical fibers shown in FIGS. 8 (B) and (C)). Since a small-diameter output laser beam L out can be obtained, the beam quality can be further improved.
[光ファイバの製造方法 1 (第 3図)] 次に第 3図 (A ) ~ ( E ) を用いて、 第 1図に説明した光ファイバ 1 の製造方法の例を説明する。 [Optical fiber manufacturing method 1 (Fig. 3)] Next, an example of a method for manufacturing the optical fiber 1 described in FIG. 1 will be described with reference to FIGS. 3 (A) to 3 (E).
まず、第 3図(A ) に示すように、第 1クラッド部材 1 0を形成する。 なお、 第 3図の例では便宜上、 第 1クラッド部材 1 0を矩形に形成した が、 円柱形状または多角柱形状等に形成してもよい。  First, as shown in FIG. 3 (A), a first clad member 10 is formed. In the example of FIG. 3, the first clad member 10 is formed in a rectangular shape for convenience, but may be formed in a columnar shape, a polygonal column shape, or the like.
次に第 3図 (B ) に示すように、 第 1クラッド部材 1 0の側面に複数 のコア部材 3 0を長手方向に平行に並べて乗せる。 更に第 1クラッド部 材 1 0が流動可能な状態になるまで加熱する。  Next, as shown in FIG. 3 (B), a plurality of core members 30 are placed on the side surface of the first clad member 10 in parallel in the longitudinal direction. Further, heating is performed until the first clad member 10 becomes in a flowable state.
そして第 3図 ( C ) に示すように、 コア部材 3 0を第 1クラッド部材 1 0の方向に押し付ける (ホットプレス H P等で第 1クラッド部材 1 0 内にコア部材 3 0を押し込む)。  Then, as shown in FIG. 3 (C), the core member 30 is pressed in the direction of the first clad member 10 (the core member 30 is pushed into the first clad member 10 by a hot press HP or the like).
上記の第 3図 (B ) 〜 (C ) の工程を、 第 1クラッド部材 1 0の外周 に渡って行うことで、 第 3図 (D ) に示す構造を得ることができる。 第 2クラッド部材 2 0を省略する場合は、 第 3図 (D ) に示す状態の 光ファイバ 1を用いればよい。 また、 第 2クラッド部材 2 0を省略しな い場合は、 第 3図 (D ) に示す状態において、 外周を更に溶液状のセラ ミックス前駆体 (ポリシラザン等のコーティング剤) で覆い、 焼成して 第 2クラッド部材 2 0を形成する。 このときに用いるセラミックス前駆 体は、 第 1クラッド部材 1 0の屈折率よりも小さな屈折率を有するもの を用いる。  The steps shown in FIGS. 3 (B) to 3 (C) are performed over the outer periphery of the first clad member 10, whereby the structure shown in FIG. 3 (D) can be obtained. When the second clad member 20 is omitted, the optical fiber 1 in the state shown in FIG. 3 (D) may be used. If the second clad member 20 is not omitted, the outer periphery is further covered with a solution-like ceramic precursor (a coating agent such as polysilazane) in the state shown in FIG. The second clad member 20 is formed. At this time, a ceramic precursor having a refractive index smaller than that of the first clad member 10 is used.
以上に説明した工程にて、 複数のコア部材 3 0が第 1クラッド部材 1 0の縁部に配置された光ファイバ 1.を実現することが可能である。  Through the steps described above, it is possible to realize the optical fiber 1 in which the plurality of core members 30 are arranged on the edge of the first clad member 10.
[光ファイバの製造方法 2 (第 4図)]  [Optical fiber manufacturing method 2 (Fig. 4)]
次に第 4図 (A ) 〜 (D ) を用いて、 第 3図に説明した光ファイバ 1 の製造方法とは別の製造方法の例を説明する。  Next, an example of a manufacturing method different from the manufacturing method of the optical fiber 1 described in FIG. 3 will be described with reference to FIGS. 4 (A) to 4 (D).
まず、第 4図 ( A ) に示すように、第 1クラッド部材 1 0を形成する。 なお、 第 4図の例では便宜上、 第 1クラッド部材 1 0を円柱形状に形成 したが、 矩形または多角柱形状等に形成してもよい。 First, as shown in FIG. 4 (A), a first clad member 10 is formed. Although the first clad member 10 is formed in a cylindrical shape for convenience in the example of FIG. 4, it may be formed in a rectangular or polygonal column shape.
次に第 4図 (B ) に示すように、 第 1クラッド部材 1 0の側面に複数 のコア部材 3 0を長手方向に平行に並べる。  Next, as shown in FIG. 4 (B), a plurality of core members 30 are arranged on the side surface of the first clad member 10 in parallel in the longitudinal direction.
そして第 4図 (C ) に示すように、 外周を更に溶液状のセラミ ックス 前駆体 (ポリシラザン等のコーティング剤) で覆い、 焼成する。 このと きに用いるセラミックス前駆体は、 第 1クラッド部材 1 0と同等の屈折 率を有するセラミックス前駆体あるいは、 第 1クラッド部材 1 0の屈折 率以上且つコア部材 3 0の屈折率未満の屈折率を有するものを用いる。 これにより、 焼成したセラミックス前駆体を第 4図 (A ) で用意した第 1クラッド部材 1 0と熱結合させ、 第 4図 (A ) で用意した第 1クラッ ド部材 1 0と焼成したセラミックス前駆体とで、 新たな第 1クラッド部 材 1 0 aを構成するとともに、 コア部材 3 0を固着する。  Then, as shown in FIG. 4 (C), the outer periphery is further covered with a solution-like ceramic precursor (a coating agent such as polysilazane) and fired. The ceramic precursor used at this time may be a ceramic precursor having a refractive index equivalent to that of the first clad member 10 or a refractive index not less than the refractive index of the first clad member 10 and less than the refractive index of the core member 30. Is used. As a result, the fired ceramic precursor is thermally bonded to the first clad member 10 prepared in FIG. 4 (A), and the fired ceramic precursor is bonded to the first clad member 10 prepared in FIG. 4 (A). Together with the body, a new first clad member 10a is formed, and the core member 30 is fixed.
第 2クラッド部材 2 0を省略する場合は、 第 4図 (C ) に示す状態か ら焼成した光ファイバ 1を用いればよい。 また、 第 2クラッド部材 2 0 を省略しない場合は、第 4図(C )から焼成した光ファイバ 1において、 更に外周を溶液状のセラミックス前駆体 (第 1クラッド部材 1 0の屈折 率よりも小さな屈折率を有するセラミック前駆体) で覆い、 焼成して第 2クラッド部材 2 0を形成する。  When the second clad member 20 is omitted, the optical fiber 1 fired from the state shown in FIG. 4 (C) may be used. When the second clad member 20 is not omitted, in the optical fiber 1 fired from FIG. 4 (C), the outer periphery is further reduced to a solution-like ceramic precursor (which is smaller than the refractive index of the first clad member 10). (A ceramic precursor having a refractive index) and baking to form a second clad member 20.
もしくは、 第 1クラッド部材 1 0よりも低い屈折率の第 2クラッド部 材 2 0 (中空のガラス棒等の中空部材) を形成し、 当該第 2クラッド部 材 2 0の中空部に、 第 3図 (D ) または第 4図 (B ) または第 4図 (C ) の状態の光ファイバを揷入する。 そして、 光ファイバと第 2クラッド部 材 2 0との間隙を、 第 1クラッド部材 1 0と同等の屈折率を有する溶液 状のセラミックス前駆体あるいは、 第 1クラッド部材 1 0の屈折率以上 且つコア部材 3 0の屈折率未満の屈折率を有する溶液状のセラミックス 前駆体で充填し、 焼成して光ファイバ 1を形成する。 Alternatively, a second clad member 20 (hollow member such as a hollow glass rod) having a refractive index lower than that of the first clad member 10 is formed, and a third clad member 20 is formed in the hollow portion of the second clad member 20. Insert the optical fiber in the state shown in Fig. (D) or Fig. 4 (B) or Fig. 4 (C). Then, a gap between the optical fiber and the second clad member 20 is formed by a solution-like ceramic precursor having the same refractive index as that of the first clad member 10 or the refractive index of the first clad member 10 or more and the core. Solution ceramic having a refractive index less than that of member 30 An optical fiber 1 is formed by filling with a precursor and firing.
以上に説明した工程にて、 複数のコア部材 3 0が第 1クラッド部材 1 0の縁部に配置された光ファイバ 1を実現することが可能である。  Through the steps described above, it is possible to realize the optical fiber 1 in which the plurality of core members 30 are arranged on the edge of the first clad member 10.
[その他の例 (第 5図〜第 7図)]  [Other examples (Figs. 5 to 7)]
第 1図に示す光ファイバ 1は、 入射した励起光 L i nがより高い確率 でコア部材 3 0に衝突及び励起する構造の例を示しているが、 第 5図〜 第 6図に示す光ファイバ 1は、 より多くの励起光 L i nを入射すること ができる光ファイバ 1の構造の例を示している。 この場合、 コア部材 3 0は従来の光ファイバのように、 中心に 1本配置してもよいし、 第 1図 に示すように第 1クラッド部材 1 0の外周に複数本配置するようにすれ ば更に高い効率で出力レーザ光 L o u tを得ることができる。  The optical fiber 1 shown in FIG. 1 shows an example of a structure in which the incident pump light L in collides with and excites the core member 30 with a higher probability, but the optical fiber shown in FIG. 5 to FIG. 1 shows an example of the structure of the optical fiber 1 to which more pump light L in can be incident. In this case, one core member 30 may be disposed at the center, as in a conventional optical fiber, or a plurality of core members may be disposed on the outer periphery of the first clad member 10 as shown in FIG. Thus, the output laser light L out can be obtained with higher efficiency.
なお、 第 5図及び第 6図では説明のため、 コア部材 3 0の記载を省略 している。  5 and 6, the illustration of the core member 30 is omitted for the sake of explanation.
[励起光の入射面を斜めに形成した光ファイバの例 (第 5図 (A ) 及び ( B ) ) ]  [Example of an optical fiber in which the incident surface of the excitation light is formed obliquely (Figs. 5 (A) and (B))]
第 5図 (A ) 及び (B ) に示すように、 励起光 L i nを入射する端面 S (以下、 「励起光入射端面 S」 と記载する) を、 長手方向に垂直な断面 に対して所定の角度 (第 5図 (B ) 中の角度 Θ) を有するように斜めの 面に形成する。 なお、 本実施の形態では、 励起光入射端面 Sの形状を平 面としているが、 励起光入射端面 Sの形状を曲面に形成してレンズ効果 を持たせるようにしてもよい。  As shown in FIGS. 5 (A) and (B), the end face S on which the excitation light Lin is incident (hereinafter, referred to as “excitation light incidence end face S”) is taken with respect to a cross section perpendicular to the longitudinal direction. It is formed on an oblique surface so as to have a predetermined angle (angle Θ in Fig. 5 (B)). In the present embodiment, the shape of the excitation light incident end surface S is a flat surface, but the shape of the excitation light incident end surface S may be formed as a curved surface to have a lens effect.
なお、 この場合、 入射する励起光 L i nの入射角 (励起光入射端面 S の垂線と励起光 L i nとが成す角度) が大きくなると第 1クラッド部材 1 0内に入射されずに励起光入射端面 Sの表面で反射してしまう励起光 L i nが増加し易いので、 励起光 L i nの入射角は、 できるだけ小さい ほうが好ましい(第 5図(B )の例では入射角が 0 °の例を示している)。 また、この場合、第 1クラッド部材 1 0内を進行する励起光 L i nと、 第 1クラッド部材 1 0の側面との成す角 θΐιが大きくなり易いので、 第 1クラッド部材 1 0の外周を、 励起光 L i nを全反射する部材 (ミラー 等) で覆うようにしてもよい。 In this case, when the incident angle of the incident excitation light L in (the angle formed by the perpendicular to the excitation light incident end face S and the excitation light L in) becomes large, the excitation light does not enter the first clad member 10 but enters the first cladding member 10. It is preferable that the incident angle of the excitation light L in is as small as possible because the excitation light L in reflected by the surface of the end face S is likely to increase (in the example of FIG. 5 (B), the incident angle is 0 °). Shown). Further, in this case, since the angle θΐι between the excitation light L in traveling in the first clad member 10 and the side surface of the first clad member 10 tends to be large, the outer periphery of the first clad member 10 is The excitation light Lin may be covered with a member (such as a mirror) that totally reflects the excitation light Lin.
[励起光の入射面を多角錐状に形成した光ファイバの例 (第 5図 (C) 及び (D))]  [Example of optical fiber with excitation light incident surface formed in a polygonal pyramid shape (Fig. 5 (C) and (D))]
他の実施例として、 第 5図 (C) 及び (D) に示すように、 励起光入 射端面 Sを、 多角錐状 (第 5図 (C) 及び (D) の例では四角錐) に形 成する。 以下、 第 5図 (A) 及び (B) との相違点について説明する。  As another embodiment, as shown in FIGS. 5 (C) and (D), the excitation light incident end face S is formed into a polygonal pyramid (a quadrangular pyramid in the examples of FIGS. 5 (C) and (D)). Form. Hereinafter, differences from FIGS. 5 (A) and 5 (B) will be described.
この場合、 励起光入射端面 Sの面積が増大するだけでなく、 励起光入 射端面 Sの各平面の法線の方向にそれぞれ励起光 L i nの入射手段 (励 起光 L i nの発生装置等) を配置することができるので、 より多くの励 起光 L i nを、 より容易に入射することができる。  In this case, not only does the area of the excitation light incident end face S increase, but also the excitation light L in incident means (the excitation light L in generator, etc.) in the direction of the normal to each plane of the excitation light incident end face S. ) Can be arranged, so that more excitation light L in can be incident more easily.
[励起光の入射面の径をより大きく した光ファイバの例 (第 6図 (A) 〜 (C))]  [Example of an optical fiber with a larger diameter of the pumping light incident surface (Figs. 6 (A) to (C))]
更に他の実施例として、 第 6図 (A) 〜 (C) に示すように、 光ファ ィバ 1を励起光 L i nを入射する励起光入射部 M i nと、 入射された励 起光 L i nが全反射しながらコア部材 3 0を励起する励起部 M f i b e r とに分けた場合、 励起部 M f i b e rの長手方向に垂直な断面の面積 S f i b e rよりも、 励起光入射部 M i nの一部における、 長手方向に 垂直な断面の面積 Sm a xの方が大きくなるように励起光入射部 M i n を構成する。  As still another embodiment, as shown in FIGS. 6 (A) to 6 (C), an optical fiber 1 is used to enter an excitation light incident section M in which an excitation light L in is incident, and an incident excitation light L is incident. When in is divided into the excitation section M fiber that excites the core member 30 while total reflection occurs, a part of the excitation light incidence section M in is larger than the area S cross section perpendicular to the longitudinal direction of the excitation section M fiber. The excitation light incident part M in is configured so that the area S max of the cross section perpendicular to the longitudinal direction becomes larger.
なお、励起光 L i nは、励起光入射端面 Sに対して垂直(入射角は 0°) に入射 (第 6図 (B) 参照) してもよいし、 励起部 M f i b e r内での 反射角 (第 6図 (C) における Θ7 a、 Θ7 c ) が小さくなるような入射 角 (第 6図(C) における Θ6 a、 66 c )で入射するようにしてもよい。 以下、 第 5図 (A ) 〜 (D ) と同様であるので説明を省略する。 The excitation light L in may be incident perpendicularly to the excitation light incident end face S (the incident angle is 0 °) (see FIG. 6 (B)), or the reflection angle in the excitation section M fiber (It is also possible to make the incident angle ((6a, 66c in FIG. 6 (C)) such that Θ7a, Θ7c) in FIG. 6 (C) is small. Hereinafter, since it is the same as FIG. 5 (A) to (D), the description is omitted.
[その他の例におけるファイバレーザ発振装置 (第 7図)]  [Fiber laser oscillator in other examples (Fig. 7)]
次に、 第 5図 (A ) 及び (B ) に示す光ファイバ 1を用いたファイバ レーザ発振装置について説明する。  Next, a fiber laser oscillator using the optical fiber 1 shown in FIGS. 5 (A) and (B) will be described.
第 7図 (A ) に示すファイバレーザ発振装置の例は、 コア部材 3 0が 複数本の場合の例であり、 第 7図 (B ) に示すファイバレーザ発振装置 の例は、 コア部材 3 0が 1本の場合の例である。 第 2図 (A ) に示すフ アイバレーザ発振装置とはダイク口イツクミラー 4 6の取り付け方法が 異なっている。 以下、 この相違点について説明する。  The example of the fiber laser oscillation device shown in FIG. 7 (A) is an example in which the number of core members 30 is plural, and the example of the fiber laser oscillation device shown in FIG. 7 (B) is the core member 30. This is an example in the case of one. The mounting method of the die mirror 46 is different from that of the fiber laser oscillator shown in Fig. 2 (A). Hereinafter, this difference will be described.
第 7図 (A ) 及び (B ) に示す例では、 1本のコア部材 3 0の端面に 1個のダイクロイツクミラー 4 6を設けており、 励起光入射端面 Sには ダイクロイツクミラー 4 6を設けていない。 なお、 ダイクロイツクミラ 一 4 6の代わりにコーティングを施してもよい。 この場合、 コア部材 3 0の端面毎 (励起光入射端面 S側の端面毎) に、 出力レーザ光 L o u t を反射する部材 (ダイクロイツクミラー 4 6等) を、 コア部材 3 0の端 面に、 当該コア部材の長手方向と垂直になるように当接させて設ければ よい。  In the example shown in FIGS. 7 (A) and (B), one dichroic mirror 46 is provided on the end face of one core member 30 and the dichroic mirror 46 is provided on the excitation light incident end face S. Is not provided. In addition, a coating may be applied instead of the dichroic mirror. In this case, a member (a dichroic mirror 46 or the like) that reflects the output laser light L out is attached to each end face of the core member 30 (each end face on the excitation light incident end face S side) on the end face of the core member 30. What is necessary is just to provide so that it may contact | abut so that it may become perpendicular to the longitudinal direction of the said core member.
なお、 第 7図 (A ) の一点鎮線部分に示すように、 励起光入射端面 S 側のコア部材 3 0の端面を、 連結するようにしてもよい (第 7図 (A ) 中の C部分)。連結したコア部材 3 0は端面を持たないので、 出力レーザ 光 L o u tを反射する部材を設ける必要がない。  The end faces of the core member 30 on the excitation light incident end face S side may be connected as shown by a one-point line in FIG. 7 (A) (C in FIG. 7 (A)). part). Since the connected core member 30 has no end face, there is no need to provide a member that reflects the output laser light Lout.
本発明の光ファイバ 1及びその製造方法は、 本実施の形態で説明した 形状、 構成、 構造、 方法等に限定されず、 本発明の要旨を変更しない範 囲で種々の変更、 追加、 削除が可能である。  The optical fiber 1 of the present invention and its manufacturing method are not limited to the shape, configuration, structure, method, and the like described in the present embodiment, and various changes, additions, and deletions may be made without departing from the spirit of the present invention. It is possible.
本実施の形態の説明に用いた数値は一例であり、 この数値に限定され るものではない。 本実施の形態では、 励起光 L i nに半導体レーザを用いたが、 励起光 には種々のものを用いることができる。 産業上の利用可能性 The numerical values used in the description of the present embodiment are examples, and the present invention is not limited to these numerical values. In the present embodiment, a semiconductor laser is used for the excitation light Lin, but various types of excitation light can be used. Industrial applicability
本発明の光ファイバ 1は、 レーザ加工装置等、 レーザ光を用いた種々 の装置に適用できる。  The optical fiber 1 of the present invention can be applied to various devices using laser light, such as a laser processing device.

Claims

請 求 の 範 囲 The scope of the claims
1 . レーザ活性物質を含むコア部材を長手方向に有するとともに当該コ ァ部材の少なく とも一部をクラッド部材で覆った光ファイバであって、 複数のコア部材が光ファイバの長手方向に配置されているとともに、 当該複数のコア部材が、 光ファイバの長手方向に垂直な断面において、 クラッド部材の縁部に配置されている、 ことを特徴とする光ファイバ。1. An optical fiber having a core member containing a laser active substance in a longitudinal direction and at least a part of the core member covered with a cladding member, wherein a plurality of core members are arranged in the longitudinal direction of the optical fiber. An optical fiber, wherein the plurality of core members are arranged at an edge of the clad member in a cross section perpendicular to the longitudinal direction of the optical fiber.
2 . 請求項 1に記載の光ファイバであって、 2. The optical fiber according to claim 1, wherein
コア部材は 1本であり、 当該コア部材が光ファイバの長手方向に複数 回往復するように配置されている、 ことを特徴とする光ファイバ。  An optical fiber, wherein the number of core members is one, and the core member is arranged so as to reciprocate a plurality of times in the longitudinal direction of the optical fiber.
3 . 光ファイバの長手方向に垂直な断面において、 クラッド部材の縁部 に複数のコア部材が配置されている光ファイバの製造方法であって、 クラッ ド部材の外周上に、 且つ長手方向にコア部材を並べ、  3. A method for manufacturing an optical fiber in which a plurality of core members are arranged on an edge of a clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, the core being disposed on an outer periphery of the clad member and in a longitudinal direction. Arrange the members,
クラッド部材が流動可能状態になるまで加熱して、 コア部材をクラッ ド部材に押し付ける、 ことを特徴とする光ファイバの製造方法。  A method for manufacturing an optical fiber, comprising heating a clad member to a flowable state and pressing a core member against the clad member.
4 . 光ファイバの長手方向に垂直な断面において、 クラッド部材の縁部 に複数のコア部材が配置されている光ファイバの製造方法であって、 クラッ ド部材の外周上に、 且つ長手方向にコア部材を並べ、  4. A method for manufacturing an optical fiber in which a plurality of core members are arranged at an edge of a clad member in a cross section perpendicular to the longitudinal direction of the optical fiber, the core being disposed on an outer periphery of the clad member and in a longitudinal direction. Arrange the members,
クラッド部材と同等の屈折率を有するセラミックス前駆体あるいは、 クラッド部材の屈折率以上且つコア部材の屈折率未満の屈折率を有する セラミックス前駆体にて、 前記外周上にコア部材を並べたクラッド部材 の外周を覆う、 ことを特徴とする光ファイバの製造方法。  A ceramic precursor having a refractive index equivalent to that of the clad member or a ceramic precursor having a refractive index equal to or greater than the refractive index of the clad member and less than the refractive index of the core member; A method for producing an optical fiber, which covers an outer periphery.
5 . 請求項 3または 4に記載した光ファイバの製造方法にて製造した光 ファイバを、クラッド部材よりも低い屈折率を有する中空部材に揷入し、 前記光ファイバ及び中空部材との間隙を、 クラッド部材と同等の屈折 率を有するセラミックス前駆体あるいは、 クラッド部材の屈折率以上且 つコア部材の屈折率未満の屈折率を有するセラミックス前駆体で充填す る、 ことを特徴とする光ファイバの製造方法。 5. The optical fiber manufactured by the optical fiber manufacturing method according to claim 3 or 4 is inserted into a hollow member having a lower refractive index than the cladding member, and a gap between the optical fiber and the hollow member is formed. A ceramic precursor having the same refractive index as the clad member, or a refractive index equal to or higher than the refractive index of the clad member A method for producing an optical fiber, comprising filling a ceramic precursor having a refractive index less than the refractive index of one core member.
6 . レーザ活性物質を含むコア部材を長手方向に有するとともに当該コ ァ部材の少なく とも一部をクラッド部材で覆った光ファイバであって、 励起光を入射する少なく とも 1つの端面が、 長手方向に垂直な折面に 対して所定の角度を有する斜めの面に形成されている、 ことを特 ί数とす る光ファイバ。  6. An optical fiber having a core member containing a laser active substance in the longitudinal direction and at least a part of the core member covered with a cladding member, wherein at least one end face for receiving the excitation light has a longitudinal direction. An optical fiber formed on an oblique surface having a predetermined angle with respect to a bent surface perpendicular to the optical fiber.
7 . 請求項 6に記載の光ファイバであって、  7. The optical fiber according to claim 6, wherein
更に、 励起光を入射する少なく とも 1つの端面において、 長手方向に 垂直な断面に対して所定の角度を有する斜めの面を複数形成し、 当該端 面が多角錐状に形成されている、 ことを特徴とする光ファイバ。  Further, at least one end face on which the excitation light is incident, a plurality of oblique faces having a predetermined angle with respect to a cross section perpendicular to the longitudinal direction are formed, and the end face is formed in a polygonal pyramid shape. An optical fiber.
8 . 請求項 6または 7に記載の光ファイバであって、  8. The optical fiber according to claim 6 or 7, wherein
光ファイバは、 励起光を入射する励起光入射部と、 入射された励起光 が全反射しながらコア部材を励起する励起部とで構成され、  The optical fiber is composed of a pumping light input section for inputting pumping light, and an excitation section for pumping the core member while totally reflecting the incident pumping light.
励起部における長手方向に垂直な断面の断面積よりも、 励起光人射部 の一部における長手方向に垂直な断面の断面積の方が大きくなる うに 構成されている、 ことを特徴とする光ファイバ。  The light is characterized in that a cross-sectional area of a cross section perpendicular to the longitudinal direction in a part of the excitation light irradiation part is larger than a cross-sectional area of a cross section perpendicular to the longitudinal direction in the excitation part. fiber.
PCT/JP2004/018856 2004-01-15 2004-12-10 Optical fiber and method for manufacturing same WO2005069453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004008032A JP3889746B2 (en) 2004-01-15 2004-01-15 Optical fiber manufacturing method
JP2004-8032 2004-01-15

Publications (1)

Publication Number Publication Date
WO2005069453A1 true WO2005069453A1 (en) 2005-07-28

Family

ID=34792207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018856 WO2005069453A1 (en) 2004-01-15 2004-12-10 Optical fiber and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP3889746B2 (en)
WO (1) WO2005069453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703601A1 (en) * 2005-03-15 2006-09-20 Jtekt Corporation Fiber laser oscillator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199185B2 (en) * 2009-06-09 2013-05-15 三菱電線工業株式会社 Optical fiber coupling structure and manufacturing method thereof
EP2548056B1 (en) * 2010-03-16 2021-05-05 OFS Fitel, LLC Multicore transmission and amplifier fibers and schemes for launching pump light to amplifier cores
CN101840022A (en) * 2010-04-02 2010-09-22 哈尔滨工程大学 Ring-shaped distributed multi-core fiber and preparation method thereof
JP5739855B2 (en) * 2012-11-07 2015-06-24 株式会社フジクラ Amplifying optical fiber and optical amplifier
JP5635056B2 (en) * 2012-11-07 2014-12-03 株式会社フジクラ Amplifying optical fiber and optical amplifier
JP2014099453A (en) * 2012-11-13 2014-05-29 Sumitomo Electric Ind Ltd Amplifying multi-core optical fiber and multi-core optical fiber amplifier
JPWO2014132990A1 (en) * 2013-02-26 2017-02-02 古河電気工業株式会社 Optical fiber bundle structure, rare earth doped multicore fiber, connection structure thereof, rare earth doped multicore fiber excitation method, and multicore optical fiber amplifier
US9459407B2 (en) * 2013-03-15 2016-10-04 Ofs Fitel, Llc Ring combiner
JP5659341B2 (en) * 2013-06-05 2015-01-28 日本電信電話株式会社 Multi-core optical transmission system, optical amplification and optical amplification components
JP6734100B2 (en) * 2016-03-31 2020-08-05 古河電気工業株式会社 Optical fiber amplifier and multistage optical amplification fiber structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048026A (en) * 1983-09-30 1991-09-10 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic amplifier
US5353365A (en) * 1992-03-06 1994-10-04 Alcatel Cable Multi-waveguide cylindrical optical conductor for telecommunications cable and method of making same
US5566196A (en) * 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
JPH11312833A (en) * 1998-04-30 1999-11-09 Ando Electric Co Ltd Optical waveguide and optical direct amplifier
EP1037334A2 (en) * 1999-03-17 2000-09-20 Hoya Corporation A laser device and an optical signal amplifier using thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748762B2 (en) * 1973-05-23 1982-10-18
JPS5930885Y2 (en) * 1979-11-30 1984-09-03 日本電信電話株式会社 optical fiber
JPS58115403A (en) * 1981-12-28 1983-07-09 Fujikura Ltd Multicore constant polarization optical fiber and its manufacture
JPS58120205A (en) * 1982-01-09 1983-07-18 Hitachi Cable Ltd Production of image guide
IL72845A0 (en) * 1983-09-30 1984-12-31 Univ Leland Stanford Junior Fiber optic amplifier
JPH0631445Y2 (en) * 1986-02-24 1994-08-22 岡野電線株式会社 Plastic optical fiber
JP3044767B2 (en) * 1989-09-27 2000-05-22 大日本インキ化学工業株式会社 Manufacturing method of optical transmission body
JP2830617B2 (en) * 1992-06-17 1998-12-02 日立電線株式会社 Rare earth element-doped multi-core fiber and method for producing the same
JP3949748B2 (en) * 1996-04-01 2007-07-25 旭化成エレクトロニクス株式会社 Manufacturing method of optical parts
JPH10242548A (en) * 1997-02-24 1998-09-11 Hitachi Cable Ltd Er added multicore fiber and light amplifier using the same
JP4138979B2 (en) * 1998-01-30 2008-08-27 浜松ホトニクス株式会社 Fiber laser equipment and laser processing equipment
JP4285831B2 (en) * 1999-03-17 2009-06-24 浜松ホトニクス株式会社 Fiber laser and optical amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048026A (en) * 1983-09-30 1991-09-10 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic amplifier
US5353365A (en) * 1992-03-06 1994-10-04 Alcatel Cable Multi-waveguide cylindrical optical conductor for telecommunications cable and method of making same
US5566196A (en) * 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
JPH11312833A (en) * 1998-04-30 1999-11-09 Ando Electric Co Ltd Optical waveguide and optical direct amplifier
EP1037334A2 (en) * 1999-03-17 2000-09-20 Hoya Corporation A laser device and an optical signal amplifier using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703601A1 (en) * 2005-03-15 2006-09-20 Jtekt Corporation Fiber laser oscillator

Also Published As

Publication number Publication date
JP3889746B2 (en) 2007-03-07
JP2005203549A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US6229939B1 (en) High power fiber ribbon laser and amplifier
US7957432B2 (en) Light coupler and fiber laser system including the same
US6370297B1 (en) Side pumped optical amplifiers and lasers
EP1612895B1 (en) Fiber laser oscillators
US20040076197A1 (en) Fibre laser
CA2613137A1 (en) Optical coupler devices, methods of their production and use
KR100271046B1 (en) Solid-state laser device which is pumped by light output from laser diode
US6882664B2 (en) Laser with internally coupled pump source
WO2005069453A1 (en) Optical fiber and method for manufacturing same
EP1492206A1 (en) Rare-earth-doped fiber and optical fiber laser using the same
WO2005096460A1 (en) Optical fiber amplifier and optical amplifying method employing it, laser oscillating method, laser amplifier and laser oscillator, and laser and laser machining apparatus both employing laser oscillator
JP2002270928A (en) Method for optical excitation, optical amplifier, fiber laser, and optical fiber
EP1703601A1 (en) Fiber laser oscillator
US9020007B2 (en) Laser device
JP2007214431A (en) Optical fiber laser
JP2014225584A (en) Fiber laser device
WO2010149163A1 (en) Optical coupler device
JP2005200277A (en) Method for manufacturing optical fiber
JPH01251678A (en) Laser device
JP4850591B2 (en) Optical coupling device, solid-state laser device, and fiber laser device
US6961360B2 (en) Pumped laser and optimized lasing medium
JP4144566B2 (en) Fiber laser oscillator
WO2019021565A1 (en) Fiber laser device
JP2001102662A (en) Optical fiber device
JP2001015834A (en) Manufacture of laser beam generating device and optical amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase