WO2004096041A2 - Method and apparatus for impedance signal localizations from implanted devices - Google Patents

Method and apparatus for impedance signal localizations from implanted devices Download PDF

Info

Publication number
WO2004096041A2
WO2004096041A2 PCT/US2004/011470 US2004011470W WO2004096041A2 WO 2004096041 A2 WO2004096041 A2 WO 2004096041A2 US 2004011470 W US2004011470 W US 2004011470W WO 2004096041 A2 WO2004096041 A2 WO 2004096041A2
Authority
WO
WIPO (PCT)
Prior art keywords
physiological
resistivity
factor
physiological factors
factors
Prior art date
Application number
PCT/US2004/011470
Other languages
French (fr)
Other versions
WO2004096041A3 (en
Inventor
Li Wang
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to EP04760256A priority Critical patent/EP1628573A2/en
Priority to JP2006510021A priority patent/JP4473865B2/en
Priority to CA002525105A priority patent/CA2525105A1/en
Publication of WO2004096041A2 publication Critical patent/WO2004096041A2/en
Publication of WO2004096041A3 publication Critical patent/WO2004096041A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36521Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being derived from measurement of an electrical impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Definitions

  • the present invention relates generally to implantable medical devices (IMDs), and more particularly, the present invention relates to an apparatus and method for identifying cardiac insult using comparisons of multiple impedance vectors to differentiate between the physiological factors that contribute to cardiac insult.
  • IMDs implantable medical devices
  • the impedance measuring vectors or paths provided by some modern pacemakers and implantable cardio defibrillators are quite extensive. Many pacemakers currently measure impedance to measure minute ventilation as a physiological indicator of activity. The minute ventilation value obtained in this way can be used to set the pacing rate in a physiological adaptive pacemaker.
  • the impedance changes over time over a particular vector can have many contributing factors, some major and some minor, so that multiple factors contribute to impedance signals measured by the device.
  • a nonexclusive list of such contributing factors in which changes in the factors over time can cause changes in the measured impedance over time across a vector include, for example, changes in lung resistivity, changes in blood resistivity, changes in heart muscle resistivity, changes in skeletal muscle resistivity, changes in heart volume, and changes in lung volume.
  • Measuring changes in impedance or resistivity in a certain contributing factor can be problematic, since such changes tend to be relatively accurately detectable across one vector while being less susceptible to accurate detection across another vector.
  • Some vectors are highly sensitive or susceptible to changes in certain of the contributing factors, while being less sensitive or susceptible to impedance changes in other contributing factors.
  • What is needed is a method and apparatus that more accurately differentiates between the multiple sources of and or physiological factors that contribute to changes in impedance measures over time.
  • the present invention is directed to a method and apparatus for monitoring a plurality of physiological factors contributing to physiological conditions of a patient in an implantable medical device.
  • a first impedance, corresponding to the plurality of physiological factors is determined across a plurality of vectors
  • a second impedance, corresponding to the plurality of physiological factors is determined across the plurality of vectors subsequent to determining the first impedance.
  • a relative change in impedance corresponding to the plurality of vectors is determined in response to the first impedance and the second impedance, and first minimally contributing physiological factors of the plurality of physiological factors associated with a first physiological factor of the plurality of physiological factors are determined.
  • Relative change in tissue resistivity corresponding to the first physiological factor is then determined in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
  • an implantable medical device adapted to be implanted within a patient includes a housing portion housing electrical circuitry for operating the implantable medical device, and a plurality of electrodes positioned within the patient.
  • a microprocessor determines a relative change in impedance corresponding to a plurality of vectors formed between the plurality of electrodes, determines first minimally contributing physiological factors of a plurality of physiological factors associated with a first physiological factor of a plurality of physiological factors, and determines relative change in resistivity corresponding to the first physiological factor in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
  • FIG. 1 is a schematic diagram of impedance vectors crossing two physiological impedance change factors
  • FIG. 2 is a schematic diagram of an exemplary implanted medical device system for measuring impedance changes across and/or near a heart according to the present invention
  • FIG. 3 is a functional schematic diagram of an implantable medical device in which the present invention may be practiced
  • FIG. 4 is a table of sensitivity or susceptibility coefficients of several vectors to changes in impedance in several physiological factor impedance contributors.
  • FIG. 5 is a flowchart illustrating a method for isolating impedance changes over time to physiological factors according to the present invention.
  • FIG. 1 is a schematic diagram of impedance vectors crossing physiological impedance change factors. As illustrated in FIG.
  • an abstract diagram 100 illustrating a simplified example of the present invention includes one physiological factor contributing to changes in impedance over time as sensed across various vectors, Factor A, and another physiological factor contributing to changes in impedance over time as sensed across various vectors, Factor B.
  • Impedance change contributing Factor A is represented at 102 and impedance change contributing Factor B is indicated at 104.
  • a region of overlap 106 is formed that includes contributing Factor A and contributing Factor B.
  • Three vectors, Vector 1 at 108, Vector 2 at 112, and Vector 3 at 110, are also illustrated.
  • Vector 1 conceptually passes through a large portion of Factor A, while being little influenced by Factor B.
  • Vector 2 passes through a large portion of Factor B, being little influenced by
  • Vector 3 passes through portions of both Factor A and Factor B and is thus influenced somewhat by both Factor A and Factor B. As a result, the sensitivity or susceptibility of Vector 1 to Factor A is high, and the sensitivity or susceptibility of Vector 1 to Factor B is low. The sensitivity of Vector 2 to Factor A is low and the sensitivity of Vector 2 to Factor B is high. The sensitivity of Vector 3 to Factor A is medium, as is the sensitivity of Vector 3 to Factor B.
  • Equation 1 the change in impedance over time across a Vector X in the simplified system of FIG. 1 is given in Equation 1 below.
  • ⁇ yx A in Equation 1 is the sensitivity to impedance changes over time across Vector X caused by resistivity changes over time in Factor A.
  • ⁇ yx B is used to indicate the changes over time across Vector X caused by resistivity changes over time in Factor B.
  • Q A indicates the relative change in resistivity over time in Factor A and QB indicates the relative change in resistivity over time in Factor B.
  • Equation 2 gives the changes in impedance over time across another vector, Vector Y.
  • Equation 2 states that the changes in impedance over time across Vector Y are equal to the sensitivity to changes over time across Vector Y caused by resistivity changes over time in Factor A times the fractional resistivity changes over time in Factor A plus the sensitivity to changes over time across Vector Y caused by resistivity changes in Factor B over time times the fractional change in resistivity over time in Factor B.
  • Equation 3 indicates that the fractional change (relative change or percentage change) in resistivity of Factor A is equal to the change in the resistivity of Factor A relative to the resistivity of Factor A. This may also be stated as indicated in
  • Equation 3 as being the change in resistivity from Time 1 to Time 2 divided by the resistivity at Time 1.
  • Equations 1 and 2 provide a system of equations that can be solved. These equations can be easily solved, even in the presence of additional factors, if the sensitivity coefficients, the ⁇ values, are not randomly occurring but have advantageous patterns. In particular, where there are multiple vectors available to select from, it will be advantageous to select Vectors X and Y such that the sensitivity values ⁇ V ⁇ and ⁇ V ⁇ differ only for one factor.
  • Equation 6 results from subtracting equation 5 from equation 4.
  • Equation 7 thus indicates that given the susceptibility values, and given the measured impedance changes over time for Vector 1 and Vector 3, the resistivity changes over time in Factor A can be evaluated. As will be discussed later, the resistivity changes over time for a single factor may be highly physiologically significant, and can serve as an indicator of the progress of specific medical conditions.
  • the system of equations above can be further extended to include other factors.
  • Equations 8, 9 and 10 above include a new factor, Factor C.
  • a new vector, Vector Z is also included. It may be noted that while equation 8 is shown for completeness, it is not needed to solve for Q B if QA is known and ⁇ y c is substantially equal to ⁇ V ⁇ c. To solve for Q B , since Q A is known, we can select vectors such that the sensitivity varies between the selected vectors only for Factor B, and not Factor C, with
  • FIG. 2 is a schematic diagram of an exemplary implanted medical device system for measuring impedance changes across and/or near a heart according to the present invention.
  • an implantable medical device system 10 includes an implantable cardiac defibrillator (ICD) 12 having a housing or can 14 and a connector block 16.
  • ICD implantable cardiac defibrillator
  • IMD system 10 may be implemented using any of a number of medical devices or alternative device configurations, including, but not limited to ICD 12.
  • EMM electrocardiogram
  • IMD system 10 includes a ventricular lead, which includes an elongated insulated lead body 24, carrying three concentric coiled conductors separated from one another by tubular insulative sheaths.
  • the distal end of the ventricular lead is deployed in right ventricle 38.
  • a ring electrode 40 Located adjacent the distal end of the ventricular lead are a ring electrode 40, an extendable helix electrode 44, mounted retractably within an insulative electrode head 42, and an elongated (approximately 5 cm) defibrillation coil electrode 36.
  • Defibrillation electrode 36 may be fabricated from many materials, such as platinum or platinum alloy. Each of the electrodes is coupled to one of the coiled conductors within lead body 24.
  • Electrodes 40 and 44 are employed for cardiac pacing and for sensing ventricular depolarizations. Accordingly, electrodes 40 and 44 serve as sensors for a ventricular electrocardiogram (V-EGM).
  • V-EGM ventricular electrocardiogram
  • At the proximal end of the ventricular lead is a bifurcated connector 20 that carries three electrical connectors, each coupled to one of the coiled conductors.
  • the right ventricular (RV) lead includes an elongated insulated lead body 22, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths, corresponding to the structure of the ventricular lead.
  • the distal end of the RV lead is deployed in right atrium 34.
  • Each of the electrodes is coupled to one of the coiled conductors within lead body 22.
  • Electrodes 28 and 32 are employed for atrial pacing and for sensing atrial depolarizations. Accordingly, electrodes 28 and 32 serve as sensors for an atrial electrocardiogram (AEGM).
  • AEGM atrial electrocardiogram
  • Electrode 26 is provided proximal to electrode 32 and coupled to the third conductor within lead body 22. Electrode 26 is preferably at least 10 cm long and is configured to extend from the SVC toward the tricuspid valve. At the proximal end of the lead is a bifurcated connector 18 that carries three electrical connectors, each coupled to one of the coiled conductors. Implantable ICD 12 is shown in combination with the leads, with lead connector assemblies 18 and 20 inserted into connector block 16. Outward facing portion of housing or can 14 of ICD 12 may be left uninsulated so that the uninsulated portion of the housing or can 14 optionally serves as a subcutaneous defibrillation electrode, used to defibrillate either the atria or ventricles. In addition, a button electrode 158 may also be included along housing 14.
  • FIG. 3 is a functional schematic diagram of an implantable medical device in which the present invention may be practiced.
  • FIG. 3 should be construed as an illustrative example of one type of device in which the invention may be embodied.
  • the invention is not limited to the particular type of device shown in FIG. 3, but may be practiced in a wide variety of device implementations, such as a pacemaker or an ICD.
  • the invention is not limited to the implementation shown in FIG. 3.
  • the invention may be practiced in a system that includes more or fewer features than are depicted in FIG. 3.
  • the device illustrated in FIG. 3 is provided with an electrode system including electrodes.
  • Electrodes 152, 154, 156 and 158 correspond respectively to an atrial defibrillation electrode, a ventricular defibrillation electrode, the uninsulated portion of the housing of the implantable PCD and a button electrode positioned along the housing.
  • Electrodes 152, 154, 156 and 158 are coupled to a high voltage output circuit 144.
  • High voltage output circuit 144 includes high voltage switches controlled by cardioversion/defibrillation (CV/defib) control logic 142 via a control bus 146.
  • the switches within output circuit 144 control which electrodes are employed and which are coupled to the positive and negative terminals of a capacitor bank including capacitors 159 and 160 during delivery of defibrillation pulses.
  • Electrodes 104 and 106 are located proximate a ventricle and are coupled to an R-wave sense amplifier 114. Operation of amplifier 114 is controlled by pacing circuitry 120 via control lines 116. Amplifier 114 may perform other functions in addition to amplification, such as filtering signals sensed by electrodes 104 and 106. Amplifier 114 may also include a comparator that compares the input signal to a preselected ventricular sense threshold. Amplifier 114 outputs a signal on an R-out line 118 whenever the signal sensed between electrodes 104 and 106 exceeds the ventricular sense threshold.
  • Electrodes 100 and 102 are located on or in an atrium and are coupled to a P-wave sense amplifier 108. Operation of amplifier 108 is controlled by pacing circuitry 120 via control lines 110. Amplifier 108 may perform other functions in addition to amplification, such as filtering signals sensed by electrodes 100 and 102. Amplifier 108 may include a comparator that compares the input signal to a preselected atrial sense threshold, which is usually different from the ventricular sense threshold. Amplifier 108 outputs a signal on a P-out line 112 whenever the signal sensed between electrodes 100 and 102 exceeds the atrial sense threshold.
  • a switch matrix 134 selectively couples the available electrodes to a wide band (2.5-150 Hz) amplifier 136 for use in signal analysis.
  • Signal analysis may be performed using analog circuitry, digital circuitry, or a combination of both.
  • a microprocessor 128 controls the selection of electrodes via a data/address bus 126. The selection of electrodes may be varied as desired.
  • Amplifier 136 provides signals from the selected electrodes to a multiplexer 138, which provides the signals to an analog-to-digital (A/D) converter 140 for conversion to multi-bit digital signals and to a random access memory (RAM) 130 under control of a direct memory access (DMA) circuit 132 for storage.
  • A/D analog-to-digital
  • RAM random access memory
  • DMA direct memory access
  • the PCD illustrated in FIG. 3 also contains circuitry for providing cardiac pacing, cardioversion, and defibrillation therapies.
  • pacer timing/control circuitry 120 may include programmable digital counters that control the basic time intervals associated with DDD, WI, DVI, VDD, AAI, DDI, and other modes of single and dual chamber pacing. Pacer timing/control circuitry 120 may also control escape intervals associated with anti-tachyarrhythmia pacing in both the atrium and the ventricle, employing any of a number of anti-tachya ⁇ hythmia pacing therapies.
  • Intervals defined by pacing circuitry 120 include, but are not limited to, atrial and ventricular pacing escape intervals, refractory periods during which sensed P- waves and R- waves are ineffective to restart timing of the escape intervals, and pulse widths of the pacing pulses.
  • Microprocessor 128 determines the durations of these intervals based on stored data in RAM 130 and communicates these durations to pacing circuitry 120 via address/data bus 126. Microprocessor 128 also determines the amplitude of pacing pulses and communicates this information to pacing circuitry 120.
  • pacing timing/control circuitry 120 resets its escape interval counters upon sensing P-waves and R-waves as indicated by signals on lines 112 and 118.
  • the escape interval counters are reset in accordance with the selected mode of pacing on time-out trigger generation of pacing pulses by pacer output circuits.
  • pacer output circuits include an atrial pacer output circuit 122 coupled to electrodes 100 and 102, and a ventricular pacer output circuit 124 coupled to electrodes 104 and 106.
  • Pacing timing/control circuitry 120 also resets the escape interval counters when the pacer output circuits generate pacing pulses, thereby controlling the basic timing of cardiac pacing functions, including anti-tachyarrhythmia pacing.
  • Microprocessor 128 determines the durations of the intervals defined by the escape interval timers and communicates these durations using data/address bus 126.
  • the value of the count present in the escape interval counters when reset by sensed R-waves and P-waves may be used to measure the durations of R-R intervals, P-P intervals, P-R intervals, and R-P intervals. These measurements are stored in RAM 130 and used to detect tachyarrhythmias.
  • Microprocessor 128 typically operates as an interrupt-driven device under control of a program stored in an associated read only memory (ROM, not shown) and is responsive to interrupts from pacer timing/control circuitry 120 corresponding to the occurrence of sensed P-waves and R-waves and to the generation of cardiac pacing pulses.
  • ROM read only memory
  • Data/address bus 126 provides these interrupts.
  • microprocessor 128 perfonns any necessary mathematical calculations, and pacer timing/control circuitry 120 may update the values or intervals that it controls.
  • microprocessor 128 When an anti-tachyarrhythmia pacing regimen is indicated based on a detected atrial or ventricular tachyarrhythmia, appropriate timing intervals are loaded from microprocessor 128 into pacer timing/control circuitry 120. In the event that generation of a cardioversion or defibrillation pulse is required, microprocessor 128 employs an escape interval counter to control timing of such cardioversion and defibrillation pulses, as well as associated refractory periods.
  • microprocessor 128 activates cardioversion/defibrillation control circuitry 142, which uses high voltage charging control lines 150 to cause a charging circuit 162 to initiate charging of high voltage capacitors 158 and 160.
  • a VCAP line 148 monitors the voltage on high voltage capacitors 158 and 160 and communicates this information through multiplexer 138. When this voltage reaches a predetermined value set by microprocessor 128, A/D converter 140 generates a control signal on Cap Full (CF) line 164 to terminate charging.
  • pacer timing/control circuitry 120 controls timing of the delivery of the defibrillation or cardioversion pulse.
  • microprocessor 128 returns the device to cardiac pacing and waits for a subsequent interrupt due to pacing or the occurrence of a sensed atrial or ventricular depolarization.
  • An output circuit 144 delivers the cardioversion or defibrillation pulses as directed by control circuitry 142 via control bus 146.
  • Output circuit 144 dete ⁇ nines whether a monophasic or biphasic pulse is delivered, the polarity of the electrodes, and which electrodes are involved in delivery of the pulse.
  • Output circuit 144 may include high voltage switches that control whether electrodes are coupled together during delivery of the pulse. Alternatively, electrodes intended to be coupled together during the pulse may simply be permanently coupled to one another, either inside or outside the device housing. Similarly, polarity may be preset in some implantable defibrillators.
  • An impedance measurement logical interface (LIMLI) 180 is provided and employed when initiated by microprocessor 128 on address/data bus 126 either automatically on a periodic basis or in response to a programmed command received through telemetry.
  • impedance is measured along selected vectors extending through the tissue of the body using various electrodes, as will be described below in detail.
  • One embodiment of the invention utilizes a pacing device, having firmware adapted to stimulate tissue at sub-threshold levels and to sense various impedance values across various vectors using various electrodes coupled to the device.
  • Presently available implanted cardiac devices have impedance sensing capability that is used to measure minute ventilation and physiological activity.
  • Circuitry and systems suitable for stimulating cardiac tissue and measuring impedance across the tissue is described, for example, in U.S. Patent No. 5,562,711 (Yerich et al.), herein incorporated by reference.
  • Other impedance measuring circuitry is disclosed in U.S. Patent No. 6,070,100 (Bakels et al.), herein incorporated by reference.
  • the impedance measurements include “raw” measurements and “processed” measurements.
  • Processed measurements include “average” measurements formed of the averages of more than one measurement, “filtered” measurements formed of filtered impedance measurements, “derivative” impedance measurements formed of the first or higher order derivatives of impedance measurements, “selected” impedance measurements formed of the highest or lowest impedance measurements from a set of impedance measurements, “gated” impedance measurements taken from peaks or troughs in or gated to respiratory or cardiac cycles, and “inverted” impedance measurements formed of inverted impedance measurements.
  • the selected impedance measurements can be used to catch an impedance minimum or maximum from a time region including a small number, for example, 1 to 10, of impedance measurements.
  • a small number for example, 1 to 10.
  • two or more sensing electrode impedance measurements can be added together to form an
  • augmented impedance measurement Similarly, one or more sensing electrode measurement can be subtracted from one or more other sensing electrode measurement to form a "subtracted” impedance measurement. Both the augmented and subtracted impedance measurements can provide valuable information gathered from the similarities or differences encountered by the stimulating current's path to the sensing electrodes.
  • the impedance measurements used in all methods according to the present invention can be any of the aforementioned raw and processed impedance measurements and combinations thereof.
  • the system depicted here need not be limited to these lead positions, electrode sizes, and numbers of electrodes.
  • Other embodiments of this system include multi-polar electrodes (3 or more electrodes on a single lead), defibrillation coils, and/or the pacemaker can andor button electrodes on the can.
  • the impedance measurement can be made between two or more stimulating electrodes and two or more sensing electrodes, which are not necessarily exclusive of each other. Specifically, some of the stimulating electrodes may also be sensing electrodes.
  • Various paths or vectors may be drawn between any combination of electrodes connected to implanted device can 14 or connected to leads 22 and 24.
  • One electrode may serve as an emitter while another electrode may serve as a collector, with yet another pair of electrodes used to measure the electrical potential between those electrodes, to determine the impedance across the paths or vectors.
  • the emitter and collector can share one or both electrodes with the electrode pair used to sense the voltage, in bipolar and tripolar configurations, respectively. In quadrapolar configurations, the emitter, collector, and measuring electrode pair are distinct electrodes.
  • the te ⁇ n "vector” and "path” may be used interchangeably for the purposes of the present application. For example, a first vector used to measure impedance changes, Vector 1, is formed by a stimulation path and a sense path between RV coil 36 and can 14.
  • Vector 1 is a bi-polar vector, utilizing RV coil 36 as the emitter and can 14 as the collector, and measuring voltage at RV coil 36 and can 14. Impedance changes may also be measured across another vector, Vector 2, formed by a stimulation path from RV ring electrode (Vr) 40 to can 14 and a sense path from RV coil 36 to can 14.
  • Vector 2 is a tri-polar vector, utilizing RV ring 40 as the emitter and can 14 as the collector, and using RV coil 36 and can 14 as voltage measuring points.
  • Impedance changes may also be measured across a vector, Vector 3, formed by a stimulation path and a sense path from RV ring electrode 40 to can 14.
  • Vector 3 is a ventricular bi-polar vector, utilizing right ventricular ring electrode 40 as the emitter and can 14 as the collector, and also using right ventricular ring electrode 40 and can 14 as voltage measuring electrodes.
  • Impedance changes may also be measured across another vector, Vector 4, formed by a stimulation path from RV ring electrode 40 to can 14 and a sense path from RV tip electrode (Vt) 44 to can 14.
  • Vector 4 is a ventricular tri- polar vector, utilizing right ventricular ring electrode 40 as the emitter and can 14 as the collector, and also using right ventricular tip electrode 44 and can 14 as voltage measuring electrodes.
  • Vector 5 formed by a stimulation path from RV coil electrode 40 to can 14 and a sense path from RV coil electrode 40 to button 158.
  • Vector 5 is a tri-polar vector, using right ventricular coil 40 as the emitter and can 14 as the collector, and utilizing right ventricular coil 40 and button 158 on the can 14 as voltage measuring electrodes.
  • the above described vectors are but a few of the possible leads, electrodes, and vectors that can be used according to the present invention.
  • Electrodes that can be used include superior vena cava coils, right atrial ring electrodes, right atrial tip electrodes, left atrial coils, left atrial ring electrodes, left atrial tip electrodes, left ventricular ring electrodes, left ventricular tip electrodes, including leads place via the coronary sinus, along with electrodes placed endocardially or epicardially.
  • Several impedance measuring electrodes and vectors that can be used to advantage in the present invention are discussed in U.S. Published Patent Application No. 2002/0002389, herein incorporated by reference. More combinations can be visually created by inspection and are well known to the inventor and will become apparent to those skilled in the art.
  • Additional combinations can be created using additional electrodes not limited to those shown in the Figures.
  • Vector 6 is an AV quadra-polar vector, utilizing right ventricular ring electrode 40 as an emitter and right atrial ring electrode 32 as a collector, and using a right ventricular tip 44 and right atrial tip 28 as the voltage measuring electrodes.
  • Vector 7 is a brady, tri-polar vector utilizing right atrial ring electrode 32 as the emitter and the can 14 as a collector, and utilizing right atrial tip 28 and can 14 as voltage measuring electrodes.
  • FIG. 4 illustrates a table or susceptibility matrix for the various vectors previously described, along with two others, not requiring separate illustration and well known to those skilled in the art.
  • FIG. 4 includes the sensitivities or susceptibilities of the various vectors to the various physiological impedance factors, as will be discussed further.
  • the various factors included in FIG. 4 are lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume, and lung volume.
  • Vectors 1 through 7 are as previously described.
  • the column labeled "Vector" in FIG. 4 includes the stimulation electrode pair/sense electrode pair.
  • Vector 2 thus refers to stimulation between the right ventricular ring and can, and sensing between the right ventricular coil and can. Inspection of FIG.
  • Vector 3 is extremely sensitive to changes in blood resistivity relative to the other various physiological factors.
  • Vector 2 may be seen to be much less sensitive to changes in blood resistivity than Vector 3. It may also be seen that Vectors 1 and 2 vary significantly in the sensitivity to blood resistivity, while having very similar sensitivities to the remaining factors.
  • the sensitivities or susceptibilities for Vectors 1 through 4 and 6 through 7 have been theoretically derived from mathematical modeling, and validated. The sensitivities or susceptibilities can be further refined and calibrated through testing by those skilled in the art, using the teachings of the present invention.
  • Vector 5 contains values in FIG. 4 that have been estimated based on physical physiological considerations and the other values in the table.
  • Equation 13 gives the change in impedance over time for a selected vector as a function of the sensitivities or susceptibilities of a factor in FIG. 4.
  • One such example is the distance between two electrodes for which the distance is expected to remain fixed.
  • the impedance contributions refer to impedance contributions for which changes can be expected over time.
  • ⁇ Z ⁇ L * Q L + ⁇ B * Q B + ⁇ H M * QHM + ⁇ *SM * QSM + CIHV * HV + ⁇ LV * K L v (13)
  • Q is equal to ⁇ p/p
  • K is equal to ⁇ V/V.
  • L represents lung resistivity
  • B represents blood resistivity
  • HM represents heart muscle resistivity
  • SM represents skeletal muscle resistivity
  • HV heart volume
  • LV lung volume.
  • the lung resistivity and heart volume resistivity, L and HV may be lumped together as a single parameter as an indicator of heart failure, as is the case with fluid overload in congestive heart failure.
  • Vector 2 into equation 13 allows us to solve for Q B .
  • the impedance can be measured across Vector 1 at time 1 and the impedance measured across Vector 2 also at time 1, or a very short time after time 1, for example, microseconds after time 1.
  • the impedance across Vectors 1 and 2 may be evaluated at time 2.
  • the change in impedance over time for Vector 2 may be subtracted from the change in impedance over time for Vector 1, leading us to the result of equation
  • QHM The contribution difference by QHM is small and may be neglected, as may be the contribution difference by K LV .
  • Q B ( ⁇ Zyi - ⁇ Zv 2 ) / 0.107.
  • Q B has thus been determined using equation 13, the susceptibility matrix table, and the measurements from Vectors 1 and 2.
  • the mathematics involved in dete ⁇ mning Q B can be implemented in several ways. In some methods, the impedance changes over time are periodically measured by the implanted medical device and stored. The stored values can be retrieved periodically or on demand by a telemetry device. The telemetry device itself, or a separate computing device, or the implanted device itself, can implement the above- described methods in order to determine the change in blood resistivity over time.
  • This change in blood resistivity, or any other factor according to the present invention may be plotted, analyzed, and transmitted to a treating physician for further analysis.
  • a significant change in the blood resistivity, or any other factor in the present invention may be flagged or indicated as deserving particular attention.
  • Some methods alert the patient and/or a treating physician via a patient alert system, which can include a computer network, including the Internet and Websites, in either or both directions between patient and physician.
  • the relative change in heart muscle resistivity is also of interest.
  • the resistivity of the heart muscle can change as a function of the degree of perfusion of the heart muscle.
  • a decrease in perfusion for example, caused by a decrease in blood being supplied by the coronary arteries, can be indicative of significant blockage or of myocardial infarction.
  • FIG. 4 shows that Vectors 2 and 3 differ in their sensitivity to changes in heart muscle resistivity, while remaining approximately the same for other substantially contributing factors.
  • Vectors 2 and 3 do differ in their sensitivity to blood resistivity, but the change in blood resistivity, Q B , has previously been solved.
  • the values from FIG. 4 for Vector 2 and Vector 3 may be substituted into Equation 13. Equation 13 evaluated at Vector 2 may then be subtracted from the values for Equation 13 for Vector 3, resulting in Equation 15.
  • Equation 16 results, solving for
  • QHM h thus been solved for, providing an indication of heart muscle perfusion.
  • the relative or fractional changes in QHM can be determined by measuring the changes in impedance over time across Vectors
  • the changes in skeletal muscle resistivity, Q S M * are also of interest.
  • a significant change in the skeletal muscle resistivity can be indicative of inflammation or edema of muscle surrounding the pocket containing the implanted medical device.
  • a change in Q S M can be indicative by hematoma, bleeding in the pocket.
  • a significant change in Q S M can also be indicative of infection in the pocket.
  • Vector 5 has a significant difference in sensitivity for skeletal muscle relative to the other vectors.
  • Vector 5 is an estimate of the expected values for the sensitivities. It may be noted that the values for the blood resistivity and heart muscle resistivity may not be of importance as to their exact values as the values for Q B and Q H M are already known. What is significant is that the changes in sensitivity for skeletal muscle of Vector 5 relative to the other vectors is a significantly large difference.
  • Q S M may be solved for by evaluating Equation 13 for Vector 5 and another vector, for example, Vector 1. When the differences in Equation 13 for Vectors 1 and 5 are evaluated, with the values for Q.
  • Q SM can be solved for.
  • another method solves for Q SM using Vectors 1 and 5 without requiring knowledge of any other factors. Evaluating the change in Q S M thus provides an indication of hematoma or infection in the pocket, which can be indicated as a change of interest to the treating physician.
  • the value for K V may also be evaluated using equations according to the present invention and the proper sensitivity coefficients. Inspection of FIG. 4 indicates a small change in sensitivities or a difference in sensitivities between Vectors 1 and 2. These differences in sensitivities are small, relative to the differences previously encountered for the other factors. This small difference in sensitivities means that the resulting value may be effected by noise and uncertainty in the values. The accuracy of the resulting K V value will thus likely be less accurate using only the sensitivity values found in FIG. 4. Nonetheless, K L v can be solved for by substituting the values for Vector 1 and Vector 2 into Equation 13 and subtracting the values for Vector 1 from the values for Vector 2.
  • the values for the sensitivity of heart volume are equal to each other as between Vectors 1 and 2, thus removing heart volume as a factor in the equation.
  • the resulting K L V can give an indication in changes over time for the average lung volume.
  • Q B , Q H M n d Q S M have been previously solved, and KLV can be determined, and tracked, with the changes noted and reported over time.
  • the changes in lung resistivity and heart volume, Q L and K V, are of interest as a group, as they are indicative of heart failure.
  • FIG. 5 is a flowchart illustrating a method for isolating impedance changes over time to monitor physiological factors according to the present invention.
  • an implantable medical device utilizing the method for identifying cardiac insult of the present invention can be programmed to determined changes in all or any number of the factors listed in the table of FIG. 4.
  • a method for monitoring a plurality of physiological factors contributing to physiological conditions of a patient includes measuring impedance along any number of the vectors in the table of FIG. 4, Step 200, waiting a predetermined time period, such as hours, days, weeks, Step 202, and measuring the impedance along the vectors again, Step 204. Based on the two measured impedances along the predetermined vectors, a relative change in impedance is determined, Step 206. Using the table of FIG.
  • the desired programmed physiological factors of the physiological factors included such as lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, are identified, and minimally contributing factors are determined for the programmed physiological factors, Step 208.
  • Relative change in resistivity for the programmed physiological factors is then determined, Step 210, and the results are stored, or output to an external device, such as a programmer, a network, a data transmission bus, or a patient alert device, Step 212.
  • the desired programmed physiological factor is blood resistivity
  • impedance is measured along vectors 1 and 2 of the Table in FIG. 4, and the minimally contributing factors are determined to be lung resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume.
  • the desired physiological factor is heart muscle resistivity
  • impedance is measured along vectors 1, 2 and 3 of the Table in FIG. 4, and the minimally contributing factors are determined to be lung resistivity, skeletal muscle resistivity, heart volume and lung volume.
  • the relative change in resistivity is determined for blood resistivity, and the relative change in resistivity is determined for heart muscle resistivity using equation (16) as described above, with ⁇ Z V3 - ⁇ Z V2 being equal to the relative change in impedance determined in Step 206.
  • the desired physiological factor is skeletal muscle resistivity
  • impedance is measured along vectors 1, 2, 3 and 5 of the Table in FIG. 4, and the minimally contributing factors are determined to be lung resistivity, heart volume and lung volume.
  • the relative change in resistivity is determined for skeletal muscle using values determined for blood resistivity and heart muscle resistivity, using Equation 13, with the relative change in impedance determined in Step 206 being ⁇ Zy 5 - ⁇ Zvi if vectors 1 and 5 are utilized, ⁇ Z V5 - ⁇ Z V2 if vectors 2 and 5 are utilized (and Q B is determined using vectors 1 and 2 as described above), ⁇ Zvs - ⁇ Z V3 if vectors 3 and 5 are utilized (and Q B and Q HM are determined using vectors 1-3), ⁇ Z V5 - ⁇ Z V4 if vectors 4 and 5 are utilized (and Q B and QHM are determined using vectors 1-3).
  • lung resistivity and heart volume are computed in the same way using Equation 13, with vectors 6 and 7 being utilized so that the relative change in impedance determined in Step 206 is ⁇ Z V6 - ⁇ Z V5 for example, and the values for the remaining factors previously obtained are used.
  • the present invention may be extended by those skilled in the art from inspection of the location of various leads.
  • a vector from a first button on the can to a second button on the can is unlikely to be sensitive to changes in lung volume.
  • situated electrodes are likely to have similar sensitivities to the same factor, even when the sensitivities are substantial.
  • a vector from the RV coil and SVC coil will be more sensitive to heart volume, and much less sensitive to skeletal muscle changes.
  • the present invention explicitly includes within its scope implantable cardiac devices executing programs or logic implementing methods according to the present invention.
  • the present invention's scope also includes computer programs or logic capable of being executed, directly or indirectly, on implantable medical device impedance data.
  • Computer readable media having instructions for implementing or executing methods according to the present invention are also within the scope of the present invention. Impedance factor isolating methods, devices implementing those methods, computer programs implementing those methods, and computer readable media containing programs implementing those methods are also within the scope of the invention.
  • the computer readable medium includes any type of computer readable memory, such as floppy disks, conventional hard disks, CD-ROMS, Flash ROMS, nonvolatile ROM, and RAM.

Abstract

Method and apparatus for monitoring a plurality of physiological factors contributing to physiological conditions of a heart, that determines a first impedance, corresponding to the plurality of physiological factors, across a plurality of vectors, and a second impedance, corresponding to the plurality of physiological factors, across the plurality of vectors subsequent to determining the first impedance. A relative change in impedance corresponding to the plurality of vectors is determined in response to the first impedance and the second impedance, first minimally contributing physiological factors of the plurality of physiological factors associated with a first physiological factor of the plurality of physiological factors are determined, and relative change in tissue resistivity corresponding to the first physiological factor in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance are determined.

Description

METHOD AND APPARATUS FOR IMPEDANCE SIGNAL LOCALIZATIONS
FROM IMPLANTED DEVICES
The present invention relates generally to implantable medical devices (IMDs), and more particularly, the present invention relates to an apparatus and method for identifying cardiac insult using comparisons of multiple impedance vectors to differentiate between the physiological factors that contribute to cardiac insult.
The impedance measuring vectors or paths provided by some modern pacemakers and implantable cardio defibrillators are quite extensive. Many pacemakers currently measure impedance to measure minute ventilation as a physiological indicator of activity. The minute ventilation value obtained in this way can be used to set the pacing rate in a physiological adaptive pacemaker. The impedance changes over time over a particular vector can have many contributing factors, some major and some minor, so that multiple factors contribute to impedance signals measured by the device. A nonexclusive list of such contributing factors in which changes in the factors over time can cause changes in the measured impedance over time across a vector include, for example, changes in lung resistivity, changes in blood resistivity, changes in heart muscle resistivity, changes in skeletal muscle resistivity, changes in heart volume, and changes in lung volume. Measuring changes in impedance or resistivity in a certain contributing factor can be problematic, since such changes tend to be relatively accurately detectable across one vector while being less susceptible to accurate detection across another vector. Some vectors are highly sensitive or susceptible to changes in certain of the contributing factors, while being less sensitive or susceptible to impedance changes in other contributing factors.
What is needed is a method and apparatus that more accurately differentiates between the multiple sources of and or physiological factors that contribute to changes in impedance measures over time.
The present invention is directed to a method and apparatus for monitoring a plurality of physiological factors contributing to physiological conditions of a patient in an implantable medical device. According to an embodiment of the present invention, a first impedance, corresponding to the plurality of physiological factors, is determined across a plurality of vectors, and a second impedance, corresponding to the plurality of physiological factors, is determined across the plurality of vectors subsequent to determining the first impedance. A relative change in impedance corresponding to the plurality of vectors is determined in response to the first impedance and the second impedance, and first minimally contributing physiological factors of the plurality of physiological factors associated with a first physiological factor of the plurality of physiological factors are determined. Relative change in tissue resistivity corresponding to the first physiological factor is then determined in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
According to another embodiment of the present invention, an implantable medical device adapted to be implanted within a patient includes a housing portion housing electrical circuitry for operating the implantable medical device, and a plurality of electrodes positioned within the patient. A microprocessor determines a relative change in impedance corresponding to a plurality of vectors formed between the plurality of electrodes, determines first minimally contributing physiological factors of a plurality of physiological factors associated with a first physiological factor of a plurality of physiological factors, and determines relative change in resistivity corresponding to the first physiological factor in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
Other advantages and features of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein: FIG. 1 is a schematic diagram of impedance vectors crossing two physiological impedance change factors; FIG. 2 is a schematic diagram of an exemplary implanted medical device system for measuring impedance changes across and/or near a heart according to the present invention;
FIG. 3 is a functional schematic diagram of an implantable medical device in which the present invention may be practiced;
FIG. 4 is a table of sensitivity or susceptibility coefficients of several vectors to changes in impedance in several physiological factor impedance contributors; and
FIG. 5 is a flowchart illustrating a method for isolating impedance changes over time to physiological factors according to the present invention.
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Several forms of invention have been shown and described, and other forms will now be apparent to those skilled in art. It will be understood that embodiments shown in drawings and described above are merely for illustrative purposes, and are not intended to limit scope of the invention as defined in the claims that follow. FIG. 1 is a schematic diagram of impedance vectors crossing physiological impedance change factors. As illustrated in FIG. 1, an abstract diagram 100 illustrating a simplified example of the present invention includes one physiological factor contributing to changes in impedance over time as sensed across various vectors, Factor A, and another physiological factor contributing to changes in impedance over time as sensed across various vectors, Factor B. Impedance change contributing Factor A is represented at 102 and impedance change contributing Factor B is indicated at 104. A region of overlap 106 is formed that includes contributing Factor A and contributing Factor B. Three vectors, Vector 1 at 108, Vector 2 at 112, and Vector 3 at 110, are also illustrated. Vector 1 conceptually passes through a large portion of Factor A, while being little influenced by Factor B. Vector 2 passes through a large portion of Factor B, being little influenced by
Factor A. Vector 3 passes through portions of both Factor A and Factor B and is thus influenced somewhat by both Factor A and Factor B. As a result, the sensitivity or susceptibility of Vector 1 to Factor A is high, and the sensitivity or susceptibility of Vector 1 to Factor B is low. The sensitivity of Vector 2 to Factor A is low and the sensitivity of Vector 2 to Factor B is high. The sensitivity of Vector 3 to Factor A is medium, as is the sensitivity of Vector 3 to Factor B.
Generally, the change in impedance over time across a Vector X in the simplified system of FIG. 1 is given in Equation 1 below.
ΔZVχ = αvxA * QA + αvχB * QB (1)
The term αyxA in Equation 1 is the sensitivity to impedance changes over time across Vector X caused by resistivity changes over time in Factor A. Similarly, αyxB is used to indicate the changes over time across Vector X caused by resistivity changes over time in Factor B. QA indicates the relative change in resistivity over time in Factor A and QB indicates the relative change in resistivity over time in Factor B.
Equation 2 below gives the changes in impedance over time across another vector, Vector Y.
ΔZVγ = αVYA * QA + αvγB * QB (2)
Equation 2 states that the changes in impedance over time across Vector Y are equal to the sensitivity to changes over time across Vector Y caused by resistivity changes over time in Factor A times the fractional resistivity changes over time in Factor A plus the sensitivity to changes over time across Vector Y caused by resistivity changes in Factor B over time times the fractional change in resistivity over time in Factor B.
QA = ΔpA/pA = (PAΏ - PATI/PATI (3)
Equation 3 indicates that the fractional change (relative change or percentage change) in resistivity of Factor A is equal to the change in the resistivity of Factor A relative to the resistivity of Factor A. This may also be stated as indicated in
Equation 3, as being the change in resistivity from Time 1 to Time 2 divided by the resistivity at Time 1.
Taken together, Equations 1 and 2 provide a system of equations that can be solved. These equations can be easily solved, even in the presence of additional factors, if the sensitivity coefficients, the α values, are not randomly occurring but have advantageous patterns. In particular, where there are multiple vectors available to select from, it will be advantageous to select Vectors X and Y such that the sensitivity values αVχ and αVγ differ only for one factor. To find or evaluate QA in Equations 1 and 2, it is advantageous to find two vectors, X and Y, such that αVχA is substantially different than αwA and such that CXV B is substantially equal to OVYB- It may be more generally stated, that in order to solve for relative changes in Factor A over time, the sensitivity to changes in Factor A across Vectors X and Y should differ from each other, while the sensitivities across Vectors X and Y should be substantially equal for any remaining factors in which the change in impedance over time is not known and for which the contribution is significant. Referring again to FIG. 1, in order to evaluate QA (the relative change in resistivity in Factor A), Vectors 1 and 3 may be selected. Substituting Vectors 1 and 3 into Equations 1 and 2 results in Equations 4 and 5 below.
ΔZvι = αviA * QA + αviB * QB (4)
ΔZV3 = V3A * QA + V3B * QB (5) Equation 6 below results from subtracting equation 5 from equation 4.
ΔZvi - ΔZV3 = (αViA - <XV3A) * QA +
Figure imgf000007_0001
Solving for Q we arrive at Equation 7 below. QA = (ΔZvi - ΔZV3) / (αViA - V3A) (7) As previously discussed, αy and αγ3B are substantially equal to each other, and therefore are either zero or a very small value and may thus be ignored. In systems where the number of equations equals the number of unknowns, it is possible to use standard matrix algebra to solve for QA and QB. AS is discussed later, there may not always be a number of equations equal to the number of unknowns, but the factor changes in resistivity may still be evaluated due to similarities and differences in values of the susceptibility coefficients. Equation 7 thus indicates that given the susceptibility values, and given the measured impedance changes over time for Vector 1 and Vector 3, the resistivity changes over time in Factor A can be evaluated. As will be discussed later, the resistivity changes over time for a single factor may be highly physiologically significant, and can serve as an indicator of the progress of specific medical conditions. The system of equations above can be further extended to include other factors.
ΔZVχ = αVXA * QA + v B * QB + ctvxc * Qc (8) ΔZVY = αvYA * QA + vγB * QB + OVYC * Qc (9) ΔZvz = αvzA * QA + αvzB * QB + αVzc * Qc (10)
Equations 8, 9 and 10 above include a new factor, Factor C. A new vector, Vector Z, is also included. It may be noted that while equation 8 is shown for completeness, it is not needed to solve for QB if QA is known and αy c is substantially equal to αVγc. To solve for QB, since QA is known, we can select vectors such that the sensitivity varies between the selected vectors only for Factor B, and not Factor C, with
Factor A being taken care of already by the known value of QA- Selecting Vectors Y and Z leads to Equation 11 below.
ΔZVY - ΔZVZ = ( vYA - VZA) * QA + (αVYB - CIVZB) * QB + (αwc - αvzc) * Qc ( 11 ) Solving for QB leads to Equation 12 below.
QB = ((ΔZVY - ΔZyx) - (αVYc - α vzc) * Qc - («VYA - CXVZA) * Q V («VYB - OC VZB) (12)
As αvYc and αvzc were selected to be substantially equal to each other, the difference of these two terms is very small relative to (XVYB - <*VZB or zero and drops out of the above equation. Therefore, QB is solved. It should be noted that Factor C in the above equation could be a grouped or lumped factor. This can prove useful where the grouped or lumped factor is an indicator as a grouped or lumped factor of a significant medical condition.
FIG. 2 is a schematic diagram of an exemplary implanted medical device system for measuring impedance changes across and/or near a heart according to the present invention. As illustrated in FIG. 2, an implantable medical device system 10 includes an implantable cardiac defibrillator (ICD) 12 having a housing or can 14 and a connector block 16. IMD system 10 may be implemented using any of a number of medical devices or alternative device configurations, including, but not limited to ICD 12. Other techniques or therapies responsive to electrocardiogram (EGM) signals or other patient diagnostic data, such as therapies that administer drugs in response to atrial arrhythmia, also may implement various embodiments of the invention.
IMD system 10 includes a ventricular lead, which includes an elongated insulated lead body 24, carrying three concentric coiled conductors separated from one another by tubular insulative sheaths. The distal end of the ventricular lead is deployed in right ventricle 38. Located adjacent the distal end of the ventricular lead are a ring electrode 40, an extendable helix electrode 44, mounted retractably within an insulative electrode head 42, and an elongated (approximately 5 cm) defibrillation coil electrode 36. Defibrillation electrode 36 may be fabricated from many materials, such as platinum or platinum alloy. Each of the electrodes is coupled to one of the coiled conductors within lead body 24.
Electrodes 40 and 44 are employed for cardiac pacing and for sensing ventricular depolarizations. Accordingly, electrodes 40 and 44 serve as sensors for a ventricular electrocardiogram (V-EGM). At the proximal end of the ventricular lead is a bifurcated connector 20 that carries three electrical connectors, each coupled to one of the coiled conductors.
The right ventricular (RV) lead includes an elongated insulated lead body 22, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths, corresponding to the structure of the ventricular lead. The distal end of the RV lead is deployed in right atrium 34. Located adjacent the distal end of the RV lead are a ring electrode 32 and an extendable helix electrode 28, mounted retractably within an insulative electrode head 30. Each of the electrodes is coupled to one of the coiled conductors within lead body 22. Electrodes 28 and 32 are employed for atrial pacing and for sensing atrial depolarizations. Accordingly, electrodes 28 and 32 serve as sensors for an atrial electrocardiogram (AEGM).
An elongated coil electrode 26 is provided proximal to electrode 32 and coupled to the third conductor within lead body 22. Electrode 26 is preferably at least 10 cm long and is configured to extend from the SVC toward the tricuspid valve. At the proximal end of the lead is a bifurcated connector 18 that carries three electrical connectors, each coupled to one of the coiled conductors. Implantable ICD 12 is shown in combination with the leads, with lead connector assemblies 18 and 20 inserted into connector block 16. Outward facing portion of housing or can 14 of ICD 12 may be left uninsulated so that the uninsulated portion of the housing or can 14 optionally serves as a subcutaneous defibrillation electrode, used to defibrillate either the atria or ventricles. In addition, a button electrode 158 may also be included along housing 14.
FIG. 3 is a functional schematic diagram of an implantable medical device in which the present invention may be practiced. FIG. 3 should be construed as an illustrative example of one type of device in which the invention may be embodied. The invention is not limited to the particular type of device shown in FIG. 3, but may be practiced in a wide variety of device implementations, such as a pacemaker or an ICD. In addition, the invention is not limited to the implementation shown in FIG. 3. For example, the invention may be practiced in a system that includes more or fewer features than are depicted in FIG. 3. The device illustrated in FIG. 3 is provided with an electrode system including electrodes. For clarity of analysis, the pacing/sensing electrodes 100, 102, 104, and 106 are shown as logically separate from pacing/defibrillation electrodes 152, 154, 156 and 158. Electrodes 152, 154, 156 and 158 correspond respectively to an atrial defibrillation electrode, a ventricular defibrillation electrode, the uninsulated portion of the housing of the implantable PCD and a button electrode positioned along the housing.
Electrodes 152, 154, 156 and 158 are coupled to a high voltage output circuit 144. High voltage output circuit 144 includes high voltage switches controlled by cardioversion/defibrillation (CV/defib) control logic 142 via a control bus 146. The switches within output circuit 144 control which electrodes are employed and which are coupled to the positive and negative terminals of a capacitor bank including capacitors 159 and 160 during delivery of defibrillation pulses.
Electrodes 104 and 106 are located proximate a ventricle and are coupled to an R-wave sense amplifier 114. Operation of amplifier 114 is controlled by pacing circuitry 120 via control lines 116. Amplifier 114 may perform other functions in addition to amplification, such as filtering signals sensed by electrodes 104 and 106. Amplifier 114 may also include a comparator that compares the input signal to a preselected ventricular sense threshold. Amplifier 114 outputs a signal on an R-out line 118 whenever the signal sensed between electrodes 104 and 106 exceeds the ventricular sense threshold.
Electrodes 100 and 102 are located on or in an atrium and are coupled to a P-wave sense amplifier 108. Operation of amplifier 108 is controlled by pacing circuitry 120 via control lines 110. Amplifier 108 may perform other functions in addition to amplification, such as filtering signals sensed by electrodes 100 and 102. Amplifier 108 may include a comparator that compares the input signal to a preselected atrial sense threshold, which is usually different from the ventricular sense threshold. Amplifier 108 outputs a signal on a P-out line 112 whenever the signal sensed between electrodes 100 and 102 exceeds the atrial sense threshold.
A switch matrix 134 selectively couples the available electrodes to a wide band (2.5-150 Hz) amplifier 136 for use in signal analysis. Signal analysis may be performed using analog circuitry, digital circuitry, or a combination of both.
A microprocessor 128 controls the selection of electrodes via a data/address bus 126. The selection of electrodes may be varied as desired. Amplifier 136 provides signals from the selected electrodes to a multiplexer 138, which provides the signals to an analog-to-digital (A/D) converter 140 for conversion to multi-bit digital signals and to a random access memory (RAM) 130 under control of a direct memory access (DMA) circuit 132 for storage. The PCD illustrated in FIG. 3 also contains circuitry for providing cardiac pacing, cardioversion, and defibrillation therapies. For example, pacer timing/control circuitry 120 may include programmable digital counters that control the basic time intervals associated with DDD, WI, DVI, VDD, AAI, DDI, and other modes of single and dual chamber pacing. Pacer timing/control circuitry 120 may also control escape intervals associated with anti-tachyarrhythmia pacing in both the atrium and the ventricle, employing any of a number of anti-tachyaιτhythmia pacing therapies.
Intervals defined by pacing circuitry 120 include, but are not limited to, atrial and ventricular pacing escape intervals, refractory periods during which sensed P- waves and R- waves are ineffective to restart timing of the escape intervals, and pulse widths of the pacing pulses. Microprocessor 128 determines the durations of these intervals based on stored data in RAM 130 and communicates these durations to pacing circuitry 120 via address/data bus 126. Microprocessor 128 also determines the amplitude of pacing pulses and communicates this information to pacing circuitry 120.
During pacing, pacing timing/control circuitry 120 resets its escape interval counters upon sensing P-waves and R-waves as indicated by signals on lines 112 and 118. The escape interval counters are reset in accordance with the selected mode of pacing on time-out trigger generation of pacing pulses by pacer output circuits. These pacer output circuits include an atrial pacer output circuit 122 coupled to electrodes 100 and 102, and a ventricular pacer output circuit 124 coupled to electrodes 104 and 106. Pacing timing/control circuitry 120 also resets the escape interval counters when the pacer output circuits generate pacing pulses, thereby controlling the basic timing of cardiac pacing functions, including anti-tachyarrhythmia pacing. Microprocessor 128 determines the durations of the intervals defined by the escape interval timers and communicates these durations using data/address bus 126. The value of the count present in the escape interval counters when reset by sensed R-waves and P-waves may be used to measure the durations of R-R intervals, P-P intervals, P-R intervals, and R-P intervals. These measurements are stored in RAM 130 and used to detect tachyarrhythmias.
Microprocessor 128 typically operates as an interrupt-driven device under control of a program stored in an associated read only memory (ROM, not shown) and is responsive to interrupts from pacer timing/control circuitry 120 corresponding to the occurrence of sensed P-waves and R-waves and to the generation of cardiac pacing pulses.
Data/address bus 126 provides these interrupts. In response to these interrupts, microprocessor 128 perfonns any necessary mathematical calculations, and pacer timing/control circuitry 120 may update the values or intervals that it controls.
When an anti-tachyarrhythmia pacing regimen is indicated based on a detected atrial or ventricular tachyarrhythmia, appropriate timing intervals are loaded from microprocessor 128 into pacer timing/control circuitry 120. In the event that generation of a cardioversion or defibrillation pulse is required, microprocessor 128 employs an escape interval counter to control timing of such cardioversion and defibrillation pulses, as well as associated refractory periods. In response to the detection of atrial, ventricular fibrillation or tachyarrhythmia requiring a cardioversion pulse, microprocessor 128 activates cardioversion/defibrillation control circuitry 142, which uses high voltage charging control lines 150 to cause a charging circuit 162 to initiate charging of high voltage capacitors 158 and 160. A VCAP line 148 monitors the voltage on high voltage capacitors 158 and 160 and communicates this information through multiplexer 138. When this voltage reaches a predetermined value set by microprocessor 128, A/D converter 140 generates a control signal on Cap Full (CF) line 164 to terminate charging. Thereafter, pacer timing/control circuitry 120 controls timing of the delivery of the defibrillation or cardioversion pulse. Following delivery of the fibrillation or tachyarrhythmia therapy, microprocessor 128 returns the device to cardiac pacing and waits for a subsequent interrupt due to pacing or the occurrence of a sensed atrial or ventricular depolarization.
An output circuit 144 delivers the cardioversion or defibrillation pulses as directed by control circuitry 142 via control bus 146. Output circuit 144 deteπnines whether a monophasic or biphasic pulse is delivered, the polarity of the electrodes, and which electrodes are involved in delivery of the pulse. Output circuit 144 may include high voltage switches that control whether electrodes are coupled together during delivery of the pulse. Alternatively, electrodes intended to be coupled together during the pulse may simply be permanently coupled to one another, either inside or outside the device housing. Similarly, polarity may be preset in some implantable defibrillators.
An impedance measurement logical interface (LIMLI) 180 is provided and employed when initiated by microprocessor 128 on address/data bus 126 either automatically on a periodic basis or in response to a programmed command received through telemetry. According to the present invention, impedance is measured along selected vectors extending through the tissue of the body using various electrodes, as will be described below in detail. One embodiment of the invention utilizes a pacing device, having firmware adapted to stimulate tissue at sub-threshold levels and to sense various impedance values across various vectors using various electrodes coupled to the device. Presently available implanted cardiac devices have impedance sensing capability that is used to measure minute ventilation and physiological activity. Circuitry and systems suitable for stimulating cardiac tissue and measuring impedance across the tissue is described, for example, in U.S. Patent No. 5,562,711 (Yerich et al.), herein incorporated by reference. Other impedance measuring circuitry is disclosed in U.S. Patent No. 6,070,100 (Bakels et al.), herein incorporated by reference.
It is to be understood that the impedance measurements include "raw" measurements and "processed" measurements. Processed measurements include "average" measurements formed of the averages of more than one measurement, "filtered" measurements formed of filtered impedance measurements, "derivative" impedance measurements formed of the first or higher order derivatives of impedance measurements, "selected" impedance measurements formed of the highest or lowest impedance measurements from a set of impedance measurements, "gated" impedance measurements taken from peaks or troughs in or gated to respiratory or cardiac cycles, and "inverted" impedance measurements formed of inverted impedance measurements. The selected impedance measurements can be used to catch an impedance minimum or maximum from a time region including a small number, for example, 1 to 10, of impedance measurements. In embodiments having more than one pair of sensing electrodes, two or more sensing electrode impedance measurements can be added together to form an
"augmented" impedance measurement. Similarly, one or more sensing electrode measurement can be subtracted from one or more other sensing electrode measurement to form a "subtracted" impedance measurement. Both the augmented and subtracted impedance measurements can provide valuable information gathered from the similarities or differences encountered by the stimulating current's path to the sensing electrodes.
Unless noted otherwise, the impedance measurements used in all methods according to the present invention can be any of the aforementioned raw and processed impedance measurements and combinations thereof.
It also is to be understood that the system depicted here need not be limited to these lead positions, electrode sizes, and numbers of electrodes. Other embodiments of this system include multi-polar electrodes (3 or more electrodes on a single lead), defibrillation coils, and/or the pacemaker can andor button electrodes on the can. In some embodiments, the impedance measurement can be made between two or more stimulating electrodes and two or more sensing electrodes, which are not necessarily exclusive of each other. Specifically, some of the stimulating electrodes may also be sensing electrodes. Various paths or vectors may be drawn between any combination of electrodes connected to implanted device can 14 or connected to leads 22 and 24. One electrode may serve as an emitter while another electrode may serve as a collector, with yet another pair of electrodes used to measure the electrical potential between those electrodes, to determine the impedance across the paths or vectors. The emitter and collector can share one or both electrodes with the electrode pair used to sense the voltage, in bipolar and tripolar configurations, respectively. In quadrapolar configurations, the emitter, collector, and measuring electrode pair are distinct electrodes. The teπn "vector" and "path" may be used interchangeably for the purposes of the present application. For example, a first vector used to measure impedance changes, Vector 1, is formed by a stimulation path and a sense path between RV coil 36 and can 14. Vector 1 is a bi-polar vector, utilizing RV coil 36 as the emitter and can 14 as the collector, and measuring voltage at RV coil 36 and can 14. Impedance changes may also be measured across another vector, Vector 2, formed by a stimulation path from RV ring electrode (Vr) 40 to can 14 and a sense path from RV coil 36 to can 14. Vector 2 is a tri-polar vector, utilizing RV ring 40 as the emitter and can 14 as the collector, and using RV coil 36 and can 14 as voltage measuring points.
Impedance changes may also be measured across a vector, Vector 3, formed by a stimulation path and a sense path from RV ring electrode 40 to can 14. Vector 3 is a ventricular bi-polar vector, utilizing right ventricular ring electrode 40 as the emitter and can 14 as the collector, and also using right ventricular ring electrode 40 and can 14 as voltage measuring electrodes. Impedance changes may also be measured across another vector, Vector 4, formed by a stimulation path from RV ring electrode 40 to can 14 and a sense path from RV tip electrode (Vt) 44 to can 14. Vector 4 is a ventricular tri- polar vector, utilizing right ventricular ring electrode 40 as the emitter and can 14 as the collector, and also using right ventricular tip electrode 44 and can 14 as voltage measuring electrodes. Another vector may be used, Vector 5, formed by a stimulation path from RV coil electrode 40 to can 14 and a sense path from RV coil electrode 40 to button 158. Vector 5 is a tri-polar vector, using right ventricular coil 40 as the emitter and can 14 as the collector, and utilizing right ventricular coil 40 and button 158 on the can 14 as voltage measuring electrodes. The above described vectors are but a few of the possible leads, electrodes, and vectors that can be used according to the present invention. Other electrodes that can be used include superior vena cava coils, right atrial ring electrodes, right atrial tip electrodes, left atrial coils, left atrial ring electrodes, left atrial tip electrodes, left ventricular ring electrodes, left ventricular tip electrodes, including leads place via the coronary sinus, along with electrodes placed endocardially or epicardially. Several impedance measuring electrodes and vectors that can be used to advantage in the present invention are discussed in U.S. Published Patent Application No. 2002/0002389, herein incorporated by reference. More combinations can be visually created by inspection and are well known to the inventor and will become apparent to those skilled in the art.
Additional combinations can be created using additional electrodes not limited to those shown in the Figures.
Vector 6 is an AV quadra-polar vector, utilizing right ventricular ring electrode 40 as an emitter and right atrial ring electrode 32 as a collector, and using a right ventricular tip 44 and right atrial tip 28 as the voltage measuring electrodes. Vector 7 is a brady, tri-polar vector utilizing right atrial ring electrode 32 as the emitter and the can 14 as a collector, and utilizing right atrial tip 28 and can 14 as voltage measuring electrodes.
FIG. 4 illustrates a table or susceptibility matrix for the various vectors previously described, along with two others, not requiring separate illustration and well known to those skilled in the art. FIG. 4 includes the sensitivities or susceptibilities of the various vectors to the various physiological impedance factors, as will be discussed further. The various factors included in FIG. 4 are lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume, and lung volume. Vectors 1 through 7 are as previously described. The column labeled "Vector" in FIG. 4 includes the stimulation electrode pair/sense electrode pair. Vector 2 thus refers to stimulation between the right ventricular ring and can, and sensing between the right ventricular coil and can. Inspection of FIG. 4 shows, for example, that Vector 3 is extremely sensitive to changes in blood resistivity relative to the other various physiological factors. Vector 2 may be seen to be much less sensitive to changes in blood resistivity than Vector 3. It may also be seen that Vectors 1 and 2 vary significantly in the sensitivity to blood resistivity, while having very similar sensitivities to the remaining factors. The sensitivities or susceptibilities for Vectors 1 through 4 and 6 through 7 have been theoretically derived from mathematical modeling, and validated. The sensitivities or susceptibilities can be further refined and calibrated through testing by those skilled in the art, using the teachings of the present invention. Vector 5 contains values in FIG. 4 that have been estimated based on physical physiological considerations and the other values in the table.
Equation 13 below gives the change in impedance over time for a selected vector as a function of the sensitivities or susceptibilities of a factor in FIG. 4. There may be other factors for which there are substantial impedance contributions but for which there are no substantial impedance change contributions. One such example is the distance between two electrodes for which the distance is expected to remain fixed. As used in the present application, the impedance contributions refer to impedance contributions for which changes can be expected over time.
ΔZ = αL * QL + αB * QB + αHM * QHM + <*SM * QSM + CIHV * HV + αLV * KLv (13) Q is equal to Δp/p, and K is equal to ΔV/V. L represents lung resistivity, B represents blood resistivity, HM represents heart muscle resistivity, SM represents skeletal muscle resistivity, HV represents heart volume, and LV represents lung volume. As will be discussed below, in some methods, the lung resistivity and heart volume resistivity, L and HV may be lumped together as a single parameter as an indicator of heart failure, as is the case with fluid overload in congestive heart failure.
Using the values of the table in FIG. 4 together with equation 13, and the various methods previously described for the general statement of the invention, we may now derive physiologically meaningful changes in factors.
The changes in blood resistivity are often of interest to a treating physician. Changes in blood resistivity can indicate electrolyte imbalances and also the effectiveness of blood thinners or other prescribed medications. Inspection of FIG. 4 shows that Vectors 1 and 2 differ in the sensitivity to changes in blood resistivity but have substantially the same sensitivities as between the two vectors to the other factors in FIG. 4. This indicates that Vectors 1 and 2 may be evaluated to solve for the fractional change in blood resistivity. Inserting the values for Vector 1 into equation 13 and the values for
Vector 2 into equation 13 allows us to solve for QB. The impedance can be measured across Vector 1 at time 1 and the impedance measured across Vector 2 also at time 1, or a very short time after time 1, for example, microseconds after time 1. At a later time, for example, hours, days or weeks later, the impedance across Vectors 1 and 2 may be evaluated at time 2. The change in impedance over time for Vector 2 may be subtracted from the change in impedance over time for Vector 1, leading us to the result of equation
14 below.
ΔZvi - ΔZV2 = 0 * QL + (0.13 - 0.023) * QB - 0.01 * QHM + 0 * QSM - 0 * KHV + 0.002 * KLV (14)
The contribution difference by QHM is small and may be neglected, as may be the contribution difference by KLV. Solving for QB, QB = (ΔZyi - ΔZv2) / 0.107. QB has thus been determined using equation 13, the susceptibility matrix table, and the measurements from Vectors 1 and 2. The mathematics involved in deteπmning QB can be implemented in several ways. In some methods, the impedance changes over time are periodically measured by the implanted medical device and stored. The stored values can be retrieved periodically or on demand by a telemetry device. The telemetry device itself, or a separate computing device, or the implanted device itself, can implement the above- described methods in order to determine the change in blood resistivity over time. This change in blood resistivity, or any other factor according to the present invention, may be plotted, analyzed, and transmitted to a treating physician for further analysis. A significant change in the blood resistivity, or any other factor in the present invention, may be flagged or indicated as deserving particular attention. Some methods alert the patient and/or a treating physician via a patient alert system, which can include a computer network, including the Internet and Websites, in either or both directions between patient and physician. The relative change in heart muscle resistivity is also of interest. The resistivity of the heart muscle can change as a function of the degree of perfusion of the heart muscle. A decrease in perfusion, for example, caused by a decrease in blood being supplied by the coronary arteries, can be indicative of significant blockage or of myocardial infarction. The change in the heart muscle relative resistivity is thus a factor of particular interest. Inspection of FIG. 4 shows that Vectors 2 and 3 differ in their sensitivity to changes in heart muscle resistivity, while remaining approximately the same for other substantially contributing factors. Vectors 2 and 3 do differ in their sensitivity to blood resistivity, but the change in blood resistivity, QB, has previously been solved. The values from FIG. 4 for Vector 2 and Vector 3 may be substituted into Equation 13. Equation 13 evaluated at Vector 2 may then be subtracted from the values for Equation 13 for Vector 3, resulting in Equation 15.
ΔZV3 - ΔZV2 = 0.020 * QL + 1.257 * QB + 0.44 * QHM + 0.04 * QSM + 0.0003 * KHV + 0.003 * KLV (15)
The value for QB is already known. The contributions for QL, QSM, KHV, and K V are significantly less than those of QB and QHM> and may therefore be initially treated as 0. Using the previously obtained value for QB, Equation 16 results, solving for
QHM-
QHM = ((ΔZV3 - ΔZV2) - 1.257 * QB) / 0.44 (16)
QHM h s thus been solved for, providing an indication of heart muscle perfusion. As discussed with respect to other factors, the relative or fractional changes in QHM can be determined by measuring the changes in impedance over time across Vectors
2 and 3, with the changes in QHM automatically computed and analyzed.
The changes in skeletal muscle resistivity, QSM* are also of interest. A significant change in the skeletal muscle resistivity can be indicative of inflammation or edema of muscle surrounding the pocket containing the implanted medical device. A change in QSM can be indicative by hematoma, bleeding in the pocket. A significant change in QSM can also be indicative of infection in the pocket.
Inspection of FIG. 4 shows that Vector 5 has a significant difference in sensitivity for skeletal muscle relative to the other vectors. Vector 5, as previously discussed, is an estimate of the expected values for the sensitivities. It may be noted that the values for the blood resistivity and heart muscle resistivity may not be of importance as to their exact values as the values for QB and QHM are already known. What is significant is that the changes in sensitivity for skeletal muscle of Vector 5 relative to the other vectors is a significantly large difference. Using the methods previously described, QSM may be solved for by evaluating Equation 13 for Vector 5 and another vector, for example, Vector 1. When the differences in Equation 13 for Vectors 1 and 5 are evaluated, with the values for Q.B and QHM already being known, and the sensitivity differences in lung resistivity, heart volume, and lung volume being extremely small, QSM can be solved for. Given the values in FIG. 4, another method solves for QSM using Vectors 1 and 5 without requiring knowledge of any other factors. Evaluating the change in QSM thus provides an indication of hematoma or infection in the pocket, which can be indicated as a change of interest to the treating physician.
The value for K V, the fractional change in lung volume, may also be evaluated using equations according to the present invention and the proper sensitivity coefficients. Inspection of FIG. 4 indicates a small change in sensitivities or a difference in sensitivities between Vectors 1 and 2. These differences in sensitivities are small, relative to the differences previously encountered for the other factors. This small difference in sensitivities means that the resulting value may be effected by noise and uncertainty in the values. The accuracy of the resulting K V value will thus likely be less accurate using only the sensitivity values found in FIG. 4. Nonetheless, KLv can be solved for by substituting the values for Vector 1 and Vector 2 into Equation 13 and subtracting the values for Vector 1 from the values for Vector 2. The values for the sensitivity of heart volume are equal to each other as between Vectors 1 and 2, thus removing heart volume as a factor in the equation. The resulting KLV can give an indication in changes over time for the average lung volume. QB, QHM nd QSM have been previously solved, and KLV can be determined, and tracked, with the changes noted and reported over time. The changes in lung resistivity and heart volume, QL and K V, are of interest as a group, as they are indicative of heart failure. With Equation 13 thus solved for all factors but lung resistivity and heart volume change, a change in impedance over time may thus have the blood resistivity, heart muscle resistivity, skeletal muscle resistivity, and lung volume change accounted for, leaving only the lung resistivity and heart volume change on one side of the equation. The combined lung resistivity and heart volume change may thus be tracked as well, as a group. The changes in the combined lung resistivity and heart volume change may also be tracked over time, with significant changes noted, reported, and further analyzed by a treating physician. This combined change can be of particular value in tracking congestive heart failure. FIG. 5 is a flowchart illustrating a method for isolating impedance changes over time to monitor physiological factors according to the present invention. According to the present invention, an implantable medical device utilizing the method for identifying cardiac insult of the present invention can be programmed to determined changes in all or any number of the factors listed in the table of FIG. 4. For example, as illustrated in FIG. 5, a method for monitoring a plurality of physiological factors contributing to physiological conditions of a patient, according to the present invention includes measuring impedance along any number of the vectors in the table of FIG. 4, Step 200, waiting a predetermined time period, such as hours, days, weeks, Step 202, and measuring the impedance along the vectors again, Step 204. Based on the two measured impedances along the predetermined vectors, a relative change in impedance is determined, Step 206. Using the table of FIG. 4, the desired programmed physiological factors of the physiological factors included, such as lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, are identified, and minimally contributing factors are determined for the programmed physiological factors, Step 208. Relative change in resistivity for the programmed physiological factors is then determined, Step 210, and the results are stored, or output to an external device, such as a programmer, a network, a data transmission bus, or a patient alert device, Step 212.
For example, if the desired programmed physiological factor is blood resistivity, impedance is measured along vectors 1 and 2 of the Table in FIG. 4, and the minimally contributing factors are determined to be lung resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume. The relative change in resistivity for this physiological factor is then determined using the equation for obtaining blood resistivity QB = (ΔZVι - ΔZy2) / 0.107 obtained from equation 13 as described above, with ΔZvi - ΔZV2 being equal to the relative change deteπnined in Step 206.
If the desired physiological factor is heart muscle resistivity, impedance is measured along vectors 1, 2 and 3 of the Table in FIG. 4, and the minimally contributing factors are determined to be lung resistivity, skeletal muscle resistivity, heart volume and lung volume. The relative change in resistivity is determined for blood resistivity, and the relative change in resistivity is determined for heart muscle resistivity using equation (16) as described above, with ΔZV3 - ΔZV2 being equal to the relative change in impedance determined in Step 206.
In the same way, if the desired physiological factor is skeletal muscle resistivity, impedance is measured along vectors 1, 2, 3 and 5 of the Table in FIG. 4, and the minimally contributing factors are determined to be lung resistivity, heart volume and lung volume. The relative change in resistivity is determined for skeletal muscle using values determined for blood resistivity and heart muscle resistivity, using Equation 13, with the relative change in impedance determined in Step 206 being ΔZy5 - ΔZvi if vectors 1 and 5 are utilized, ΔZV5 - ΔZV2 if vectors 2 and 5 are utilized (and QB is determined using vectors 1 and 2 as described above), ΔZvs - ΔZV3 if vectors 3 and 5 are utilized (and QB and QHM are determined using vectors 1-3), ΔZV5 - ΔZV4 if vectors 4 and 5 are utilized (and QB and QHM are determined using vectors 1-3). As described below, lung resistivity and heart volume are computed in the same way using Equation 13, with vectors 6 and 7 being utilized so that the relative change in impedance determined in Step 206 is ΔZV6 - ΔZV5 for example, and the values for the remaining factors previously obtained are used.
The present invention may be extended by those skilled in the art from inspection of the location of various leads. In one example, a vector from a first button on the can to a second button on the can is unlikely to be sensitive to changes in lung volume. Similarly situated electrodes are likely to have similar sensitivities to the same factor, even when the sensitivities are substantial. In another example, a vector from the RV coil and SVC coil will be more sensitive to heart volume, and much less sensitive to skeletal muscle changes.
The present invention explicitly includes within its scope implantable cardiac devices executing programs or logic implementing methods according to the present invention. The present invention's scope also includes computer programs or logic capable of being executed, directly or indirectly, on implantable medical device impedance data. Computer readable media having instructions for implementing or executing methods according to the present invention are also within the scope of the present invention. Impedance factor isolating methods, devices implementing those methods, computer programs implementing those methods, and computer readable media containing programs implementing those methods are also within the scope of the invention. The computer readable medium includes any type of computer readable memory, such as floppy disks, conventional hard disks, CD-ROMS, Flash ROMS, nonvolatile ROM, and RAM.
While a particular embodiment of the present invention has been shown and described, modifications may be made. It is therefore intended in the appended claims to cover all such changes and modifications, which fall within the true spirit and scope of the invention.

Claims

1. A method for monitoring a plurality of physiological factors contributing to physiological conditions of a patient in an implantable medical device, comprising: determining a first impedance, corresponding to the plurality of physiological factors, across a plurality of vectors; determining a second impedance, corresponding to the plurality of physiological factors, across the plurality of vectors subsequent to determining the first impedance; determining a relative change in impedance corresponding to the plurality of vectors in response to the first impedance and the second impedance; determining first minimally contributing physiological factors of the plurality of physiological factors associated with a first physiological factor of the plurality of physiological factors; and determining relative change in tissue resistivity corresponding to the first physiological factor in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
2. The method of claim 1, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity.
3. The method of claim 1, wherein the plurality of vectors include a first vector and a second vector, the first vector including a first stimulation path and a first sense path extending between a first electrode, positioned within a ventricle of the heart, and an uninsulated portion of a housing of the device, and the second vector including a second stimulation path, extending between a second electrode, positioned within a ventricle of the heart, and the uninsulated portion of the housing, and a second sense path extending between the first electrode and the uninsulated portion of the housing.
4. The method of claim 3, further comprising: deteπnining second minimally contributing physiological factors of the plurality of physiological factors associated with a second physiological factor of the plurality of physiological factors; and determining relative change in tissue resistivity for the second physiological factor in response to physiological factors of the plurality of physiological factors other than the second minimal contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for first physiological factor.
5. The method of claim 4, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity and the second physiological factor is lung volume.
6. The method of claim 3, further comprising: deteπnining second minimally contributing physiological factors of the plurality of physiological factors associated with a second physiological factor of the plurality of physiological factors; and deteπnining relative change in tissue resistivity corresponding to the second physiological factor in response to physiological factors of the plurality of physiological factors other than the second minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor, wherein the plurality of vectors further includes a third vector including a third stimulation path and a third sensing path extending between the second electrode and the uninsulated portion.
7. The method of claim 6, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity and the second physiological factor is heart muscle.
8. The method of claim 1 , wherein the plurality of vectors include a first vector and a second vector, the first vector including a first stimulation path and a first sense path extending between a first electrode, positioned within a ventricle of the heart, and an uninsulated portion of a housing of the device, and the second vector including a second stimulation path extending between the first electrode and the uninsulated portion of the housing and a second sense path extending between the first electrode and a second electrode, positioned along the housing.
9. The method of claim 8, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is skeletal muscle resistivity.
10. The method of claim 4, wherein the plurality of vectors further include a third vector including a third stimulation path extending between the first electrode and the uninsulated portion of the housing and a third sensing path extending between the first electrode and a third electrode positioned along the housing.
11. The method of claim 10, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity and the second physiological factor is skeletal muscle resistivity.
12. The method of claim 6, further comprising: determining third minimally contributing physiological factors of the plurality of physiological factors associated with a third physiological factor of the plurality of physiological factors; and deteπnining relative change in tissue resistivity coπesponding to the third physiological factor in response to physiological factors of the plurality of physiological factors other than the third minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor, wherein the plurality of vectors further includes a fourth vector including a fourth stimulation path extending between the first electrode and the uninsulated portion of the housing and a fourth sensing path extending between the first electrode and a third electrode positioned along the housing.
13. The method of claim 12, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity and the third physiological factor is skeletal muscle resistivity.
14. The method of claim 6, further comprising: determining third minimally contributing physiological factors of the plurality of physiological factors associated with a third physiological factor of the plurality of physiological factors; and deteπnining relative change in tissue resistivity corresponding to the third physiological factor in response to physiological factors of the plurality of physiological factors other than the third minimally contributing physiological factors, the relative change in impedance, and the determined change in resistivity for the first physiological factor and the second physiological factor, wherein the plurality of vectors further includes a fourth vector and a fifth vector, the fourth vector including a fourth stimulation path extending between the second electrode and the uninsulated portion of the housing and a fourth sense path extending between a third electrode positioned within the ventricle and the uninsulated portion of the housing, and the fifth vector including a fifth stimulation path extending between the first electrode and the uninsulated portion of the housing and a fifth sensing path extending between the first electrode and a fourth electrode positioned along the housing.
15. The method of claim 14, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity and the third physiological factor is skeletal muscle resistivity.
16. The method of claim 6, further comprising: determining third minimally contributing physiological factors of the plurality of physiological factors associated with a third physiological factor of the plurality of physiological factors; and determining relative change in tissue resistivity corresponding to the third physiological factor in response to physiological factors of the plurality of physiological factors other than the third minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor and the second physiological factor.
17. The method of claim 16, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity and the third physiological factor is lung volume.
18. The method of claim 12, further comprising: determining fourth minimally contributing physiological factors of the plurality of physiological factors associated with a fourth physiological factor of the plurality of physiological factors; and determining relative change in tissue resistivity corresponding to the fourth physiological factor in response to physiological factors of the plurality of physiological factors other than the fourth minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor and the second physiological factor; determining fifth minimally contributing physiological factors of the plurality of physiological factors associated with a fifth physiological factor of the plurality of physiological factors; and determining relative change in tissue resistivity coπesponding to the fifth physiological factor in response to physiological factors of the plurality of physiological factors other than the fifth minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor, the second physiological factor, the third physiological factor, and the fourth physiological factor, wherein the plurality of vectors include a fifth vector including a fifth stimulation path extending between one of the second electrode and a fourth electrode positioned within an atrium of the heart, and the fourth electrode and the uninsulated portion of the housing, and a fifth sense path extending between one of a fifth electrode positioned within the ventricle and a sixth electrode positioned within the atrium, and the sixth electrode and the uninsulated portion of the housing.
19. The method of claim 18, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity, the third physiological factor is skeletal muscle resistivity, the fourth physiological factor is lung volume and the fifth physiological factor is heart volume and lung resistivity.
20. An implantable medical device adapted to be implanted within a patient, comprising: a housing portion housing electrical circuitry for operating the implantable medical device; a plurality of electrodes positioned within the patient; and a microprocessor determining a relative change in impedance corresponding to a plurality of vectors formed between the plurality of electrodes, determining first minimally contributing physiological factors of a plurality of physiological factors associated with a first physiological factor of a plurality of physiological factors, and determining relative change in tissue resistivity coπesponding to the first physiological factor in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
21. The device of claim 20, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity.
22. The device of claim 20, wherein the plurality of vectors include a first vector and a second vector, the first vector including a first stimulation path and a first sense path extending between a first electrode of the plurality of electrodes, positioned within a ventricle of the heart, and an uninsulated portion of a housing of the device, and the second vector including a second stimulation path, extending between a second electrode of the plurality of electrodes, positioned within a ventricle of the heart, and the uninsulated portion of the housing, and a second sense path extending between the first electrode and the uninsulated portion of the housing.
23. The device of claim 22, wherein the microprocessor determines second minimally contributing physiological factors of the plurality of physiological factors associated with a second physiological factor of the plurality of physiological factors, and determines relative change in tissue resistivity for the second physiological factor in response to physiological factors of the plurality of physiological factors other than the second minimal contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for first physiological factor.
24. The device of claim 23, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity and the second physiological factor is lung volume.
25. The device of claim 22, wherein the microprocessor determines second minimally contributing physiological factors of the plurality of physiological factors associated with a second physiological factor of the plurality of physiological factors, and determines relative change in tissue resistivity coπesponding to the second physiological factor in response to physiological factors of the plurality of physiological factors other than the second minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor, wherein the plurality of vectors further includes a third vector including a third stimulation path and a third sensing path extending between the second electrode and tire uninsulated portion.
26. The device of claim 25, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity and the second physiological factor is heart muscle.
27. The device of claim 20, wherein the plurality of vectors include a first vector and a second vector, the first vector including a first stimulation path and a first sense path extending between a first electrode of the plurality of electrodes, positioned within a ventricle of the heart, and an uninsulated portion of a housing of the device, and the second vector including a second stimulation path extending between the first electrode and the uninsulated portion of the housing and a second sense path extending between the first electrode and a second electrode of the plurality of electrodes, positioned along the housing.
28. The device of claim 27, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is skeletal muscle resistivity.
29. The device of claim 23, wherein the plurality of vectors further include a third vector including a third stimulation path extending between the first electrode and the uninsulated portion of the housing and a third sensing path extending between the first electrode and a third electrode of the plurality of electrodes positioned along the housing.
-SO- SO. The device of claim 29, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity and the second physiological factor is skeletal muscle resistivity.
31. The device of claim 25, wherein the microprocessor determines third minimally contributing physiological factors of the plurality of physiological factors associated with a third physiological factor of the plurality of physiological factors, and determines relative change in tissue resistivity corresponding to the third physiological factor in response to physiological factors of the plurality of physiological factors other than the third minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor, wherein the plurality of vectors further includes a fourth vector including a fourth stimulation path extending between the first electrode and the uninsulated portion of the housing and a fourth sensing path extending between the first electrode and a third electrode of the plurality of electrodes positioned along the housing.
32. The device of claim 31 , wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity and the third physiological factor is skeletal muscle resistivity.
33. The device of claim 25, wherein the microprocessor determines third minimally contributing physiological factors of the plurality of physiological factors associated with a third physiological factor of the plurality of physiological factors, and determines relative change in tissue resistivity coπesponding to the third physiological factor in response to physiological factors of the plurality of physiological factors other than the third minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor and the second physiological factor, wherein the plurality of vectors further includes a fourth vector and a fifth vector, the fourth vector including a fourth stimulation path extending between the second electrode and the uninsulated portion of the housing and a fourth sense path extending between a third electrode of the plurality of electrodes positioned within the ventricle and the uninsulated portion of the housing, and the fifth vector including a fifth stimulation path extending between the first electrode and the uninsulated portion of the housing and a fifth sensing path extending between the first electrode and a fourth electrode of the plurality of electrodes positioned along the housing.
34. The device of claim 33, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity and the third physiological factor is skeletal muscle resistivity.
35. The device of claim 25, wherein the microprocessor determines third minimally contributing physiological factors of the plurality of physiological factors associated with a third physiological factor of the plurality of physiological factors, and determines relative change in tissue resistivity corresponding to the third physiological factor in response to physiological factors of the plurality of physiological factors other than the third minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor and the second physiological factor.
36. The device of claim 35, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity and the third physiological factor is lung volume.
37. The device of claim 31 , wherein the microprocessor: determines fourth minimally contributing physiological factors of the plurality of physiological factors associated with a fourth physiological factor of the plurality of physiological factors, determines relative change in tissue resistivity coπesponding to the fourth physiological factor in response to physiological factors of the plurality of physiological factors other than the fourth minimally contributing physiological factors, the relative change in impedance, and the deteπnined relative change in tissue resistivity for the first physiological factor and the second physiological factor, deteπnines fifth minimally contributing physiological factors of the plurality of physiological factors associated with a fifth physiological factor of the plurality of physiological factors, and determines relative change in tissue resistivity coπesponding to the fifth physiological factor in response to physiological factors of the plurality of physiological factors other than the fifth minimally contributing physiological factors, the relative change in impedance, and the determined relative change in tissue resistivity for the first physiological factor, the second physiological factor, the third physiological factor, and the fourth physiological factor, wherein the plurality of vectors include a fifth vector including a fifth stimulation path extending between one of the second electrode and a fourth electrode of the plurality of electrodes positioned within an atrium of the heart, and the fourth electrode and the uninsulated portion of the housing, and a fifth sense path extending between one of a fifth electrode of the plurality of electrodes positioned within the ventricle and a sixth electrode of the plurality of electrodes positioned within the atrium, and the sixth electrode and the uninsulated portion of the housing.
38. The device of claim 37, wherein the plurality of physiological factors include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume, and wherein the first physiological factor is blood resistivity, the second physiological factor is heart muscle resistivity, the third physiological factor is skeletal muscle resistivity, the fourth physiological factor is lung volume and the fifth physiological factor is heart volume and lung resistivity.
39. A computer-readable medium having computer executable instructions for performing a method for monitoring a plurality of physiological factors contributing to physiological conditions of a heart, comprising: determining a first impedance, coπesponding to the plurality of physiological factors, across a plurality of vectors; determining a second impedance, coπesponding to the plurality of physiological factors, across the plurality of vectors subsequent to deteπnining the first impedance; deteπnining a relative change in impedance corresponding to the plurality of vectors in response to the first impedance and the second impedance; determining first minimally contributing physiological factors of the plurality of physiological factors associated with a first physiological factor of the plurality of physiological factors; and deteπnining relative change in tissue resistivity coπesponding to the first physiological factor in response to physiological factors of the plurality of physiological factors other than the first minimal contributing physiological factors and the relative change in impedance.
PCT/US2004/011470 2003-04-25 2004-04-14 Method and apparatus for impedance signal localizations from implanted devices WO2004096041A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04760256A EP1628573A2 (en) 2003-04-25 2004-04-14 Method and apparatus for impedance signal localizations from implanted devices
JP2006510021A JP4473865B2 (en) 2003-04-25 2004-04-14 Method and apparatus for locating impedance signals from embedded devices
CA002525105A CA2525105A1 (en) 2003-04-25 2004-04-14 Method and apparatus for impedance signal localizations from implanted devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/423,118 US7149573B2 (en) 2003-04-25 2003-04-25 Method and apparatus for impedance signal localizations from implanted devices
US10/423,118 2003-04-25

Publications (2)

Publication Number Publication Date
WO2004096041A2 true WO2004096041A2 (en) 2004-11-11
WO2004096041A3 WO2004096041A3 (en) 2004-12-02

Family

ID=33299033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/011470 WO2004096041A2 (en) 2003-04-25 2004-04-14 Method and apparatus for impedance signal localizations from implanted devices

Country Status (5)

Country Link
US (2) US7149573B2 (en)
EP (1) EP1628573A2 (en)
JP (1) JP4473865B2 (en)
CA (1) CA2525105A1 (en)
WO (1) WO2004096041A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US7925349B1 (en) 2006-03-31 2011-04-12 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US9066662B2 (en) 2007-04-04 2015-06-30 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US9113789B2 (en) 2007-04-04 2015-08-25 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ113799A0 (en) 1999-06-22 1999-07-15 University Of Queensland, The A method and device for measuring lymphoedema
US7191000B2 (en) * 2001-07-31 2007-03-13 Cardiac Pacemakers, Inc. Cardiac rhythm management system for edema
US7907998B2 (en) * 2002-07-03 2011-03-15 Tel Aviv University Future Technology Development L.P. Bio-impedance apparatus and method
US7226422B2 (en) * 2002-10-09 2007-06-05 Cardiac Pacemakers, Inc. Detection of congestion from monitoring patient response to a recumbent position
US8068906B2 (en) 2004-06-21 2011-11-29 Aorora Technologies Pty Ltd Cardiac monitoring system
US7387610B2 (en) 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
US7447543B2 (en) * 2005-02-15 2008-11-04 Regents Of The University Of Minnesota Pathology assessment with impedance measurements using convergent bioelectric lead fields
US7603170B2 (en) * 2005-04-26 2009-10-13 Cardiac Pacemakers, Inc. Calibration of impedance monitoring of respiratory volumes using thoracic D.C. impedance
US7907997B2 (en) * 2005-05-11 2011-03-15 Cardiac Pacemakers, Inc. Enhancements to the detection of pulmonary edema when using transthoracic impedance
US9089275B2 (en) 2005-05-11 2015-07-28 Cardiac Pacemakers, Inc. Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
US7340296B2 (en) 2005-05-18 2008-03-04 Cardiac Pacemakers, Inc. Detection of pleural effusion using transthoracic impedance
US8900154B2 (en) 2005-05-24 2014-12-02 Cardiac Pacemakers, Inc. Prediction of thoracic fluid accumulation
US7644714B2 (en) 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
AU2006265763B2 (en) 2005-07-01 2012-08-09 Impedimed Limited Monitoring system
EP2250963A3 (en) 2005-07-01 2012-02-29 Intersection Medical, Inc. Pulmonary monitoring system
JP5607300B2 (en) 2005-07-01 2014-10-15 インぺディメッド リミテッド Apparatus and method for performing impedance measurements on an object
CA2615845A1 (en) * 2005-07-20 2007-01-25 Impedance Cardiology Systems, Inc. Index determination
CA2625631C (en) 2005-10-11 2016-11-29 Impedance Cardiology Systems, Inc. Hydration status monitoring
US20070129641A1 (en) * 2005-12-01 2007-06-07 Sweeney Robert J Posture estimation at transitions between states
US7844331B2 (en) * 2005-12-20 2010-11-30 Cardiac Pacemakers, Inc. Method and apparatus for controlling anti-tachyarrhythmia pacing using hemodynamic sensor
US7672722B1 (en) * 2005-12-21 2010-03-02 Pacesetter, Inc. Hardware-based state machine for use in discriminating near field signals from far field signals for use in an implantable cardiac stimulation device
ES2545730T3 (en) 2006-05-30 2015-09-15 Impedimed Limited Impedance measurements
US8583224B2 (en) * 2006-09-08 2013-11-12 Cardiac Pacemakers, Inc. Implantable medical device and methods for automated detection of infection
US8417343B2 (en) 2006-10-13 2013-04-09 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9913982B2 (en) 2011-01-28 2018-03-13 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
WO2008064426A1 (en) 2006-11-30 2008-06-05 Impedimed Limited Measurement apparatus
US10307074B2 (en) 2007-04-20 2019-06-04 Impedimed Limited Monitoring system and probe
US7930022B2 (en) * 2007-05-07 2011-04-19 Cardiac Pacemakers, Inc. System and method to determine hemodynamic tolerability
WO2009018620A1 (en) 2007-08-09 2009-02-12 Impedimed Limited Impedance measurement process
US8831716B2 (en) * 2007-09-11 2014-09-09 Cardiac Pacemakers, Inc. Histogram-based thoracic impedance monitoring
US8509892B2 (en) 2008-06-19 2013-08-13 Cardiac Pacemakers, Inc. Method and apparatus for controlling anti-tachyarrhythmia therapy using hemodynamic tolerability
EP3714771A1 (en) 2008-10-01 2020-09-30 Inspire Medical Systems, Inc. System for treating sleep apnea transvenously
US8914101B2 (en) * 2008-10-30 2014-12-16 Medtronic, Inc. System and method to localize changes in intrathoracic fluid content using measured impedance in an implantable device
EP3184045B1 (en) 2008-11-19 2023-12-06 Inspire Medical Systems, Inc. System treating sleep disordered breathing
AU2009321478B2 (en) 2008-11-28 2014-01-23 Impedimed Limited Impedance measurement process
WO2010117810A1 (en) 2009-03-31 2010-10-14 Inspire Medical Systems, Inc. Percutaneous access for systems of treating sleep-related disordered breathing
JP5643829B2 (en) 2009-10-26 2014-12-17 インぺディメッド リミテッドImpedimed Limited Method and apparatus for use in impedance measurement analysis
US8900140B2 (en) * 2009-10-27 2014-12-02 Cardiac Pacemakers, Inc. Multiple vector fluid localization
EP2501283B1 (en) 2009-11-18 2016-09-21 Impedimed Limited Signal distribution for patient-electrode measurements
US7925348B1 (en) * 2010-01-26 2011-04-12 Pacesetter, Inc. Extra-cardiac impedance based hemodynamic assessment method and system
US8626278B2 (en) 2010-10-08 2014-01-07 Euljoon Park Method and system for discriminating and monitoring atrial arrhythmia based on cardiogenic impedance
US9861293B2 (en) * 2011-04-28 2018-01-09 Myolex Inc. Sensors, including disposable sensors, for measuring tissue
US20150039045A1 (en) 2011-08-11 2015-02-05 Inspire Medical Systems, Inc. Method and system for applying stimulation in treating sleep disordered breathing
US8934992B2 (en) 2011-09-01 2015-01-13 Inspire Medical Systems, Inc. Nerve cuff
WO2013090798A1 (en) 2011-12-14 2013-06-20 Intersection Medical, Inc. Devices, systems and methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue
EP2793696B1 (en) 2011-12-23 2016-03-09 Cardiac Pacemakers, Inc. Physiological status indicator apparatus
US9089276B2 (en) 2013-03-15 2015-07-28 Pacesetter, Inc. Systems and methods for obtaining substantially simultaneous mult-channel impedance measurements and related applications
US20160081585A1 (en) * 2013-08-02 2016-03-24 The Trustees Of Dartmouth College Multiple-electrode electrical impedance sensing biopsy sampling device and method
US11383083B2 (en) 2014-02-11 2022-07-12 Livanova Usa, Inc. Systems and methods of detecting and treating obstructive sleep apnea
US9174052B1 (en) * 2014-07-10 2015-11-03 Pacesetter, Inc. Methods and systems for controlling stimulation in paddle lead based on local impedances
CN113908438A (en) 2015-03-19 2022-01-11 启迪医疗仪器公司 Stimulation for treating sleep disordered breathing
US10799707B2 (en) * 2016-11-17 2020-10-13 Biotronik Se & Co. Kg Enhanced therapy settings in programmable electrostimulators
AU2018316277B2 (en) 2017-08-11 2023-12-07 Inspire Medical Systems, Inc. Cuff electrode

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003975A (en) * 1988-04-19 1991-04-02 Siemens-Pacesetter, Inc. Automatic electrode configuration of an implantable pacemaker
DE3914680A1 (en) * 1989-05-03 1990-11-08 Alt Eckhard HEART PACEMAKER
ATE142520T1 (en) * 1991-11-04 1996-09-15 Cardiac Pacemakers Inc IMPLANTABLE HEART MONITORING AND STIMULATION DEVICE FOR DIAGNOSIS AND THERAPY
US5235976A (en) * 1991-12-13 1993-08-17 Cardiac Pacemakers, Inc. Method and apparatus for managing and monitoring cardiac rhythm using active time as the controlling parameter
US5313953A (en) * 1992-01-14 1994-05-24 Incontrol, Inc. Implantable cardiac patient monitor
US5735876A (en) * 1994-05-31 1998-04-07 Galvani Ltd. Electrical cardiac output forcing method and apparatus for an atrial defibrillator
IT1272265B (en) * 1994-06-06 1997-06-16 Medtronic Inc Societa Del Minn IMPROVEMENT IN CARDIAC STIMULATOR SYSTEMS
US5562711A (en) * 1994-11-30 1996-10-08 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing
US5607455A (en) * 1995-05-25 1997-03-04 Intermedics, Inc. Method and apparatus for automatic shock electrode enabling
US5755742A (en) * 1996-11-05 1998-05-26 Medtronic, Inc. Cardioversion/defibrillation lead impedance measurement system
US6070100A (en) * 1997-12-15 2000-05-30 Medtronic Inc. Pacing system for optimizing cardiac output and determining heart condition
US6022322A (en) * 1998-02-06 2000-02-08 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
US6104949A (en) * 1998-09-09 2000-08-15 Vitatron Medical, B.V. Medical device
US6473640B1 (en) * 1999-01-25 2002-10-29 Jay Erlebacher Implantable device and method for long-term detection and monitoring of congestive heart failure
US6512949B1 (en) * 1999-07-12 2003-01-28 Medtronic, Inc. Implantable medical device for measuring time varying physiologic conditions especially edema and for responding thereto
US6490486B1 (en) * 2000-04-27 2002-12-03 Pacesetter, Inc. Implantable cardiac stimulation device and method that monitors displacement of an implanted lead
WO2001087410A2 (en) * 2000-05-15 2001-11-22 Pacesetter, Inc. Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart
US7130682B2 (en) * 2000-12-26 2006-10-31 Cardiac Pacemakers, Inc. Pacing and sensing vectors
US6684101B2 (en) * 2001-04-25 2004-01-27 Cardiac Pacemakers, Inc. Implantable medical device employing single drive, dual sense impedance measuring
US6665564B2 (en) * 2001-05-21 2003-12-16 Cardiac Pacemakers, Inc. Cardiac rhythm management system selecting A-V delay based on interval between atrial depolarization and mitral valve closure
US6546288B1 (en) * 2001-06-18 2003-04-08 Pacesetter, Inc. Implantable cardiac stimulation system with high threshold response and patient notification method
SE0200922D0 (en) 2002-03-25 2002-03-25 St Jude Medical A heart monitoring device, a system including such a device and a lesser use of the system
US7313434B2 (en) * 2002-11-25 2007-12-25 Regents Of The University Of Minnesota Impedance monitoring for detecting pulmonary edema and thoracic congestion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US7925349B1 (en) 2006-03-31 2011-04-12 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US7945326B1 (en) 2006-03-31 2011-05-17 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8010196B1 (en) 2006-03-31 2011-08-30 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8065005B1 (en) 2006-03-31 2011-11-22 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8306623B2 (en) 2006-03-31 2012-11-06 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8600497B1 (en) 2006-03-31 2013-12-03 Pacesetter, Inc. Systems and methods to monitor and treat heart failure conditions
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US9107585B1 (en) 2006-03-31 2015-08-18 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US9066662B2 (en) 2007-04-04 2015-06-30 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US9113789B2 (en) 2007-04-04 2015-08-25 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device

Also Published As

Publication number Publication date
US20070118042A1 (en) 2007-05-24
CA2525105A1 (en) 2004-11-11
JP2006524540A (en) 2006-11-02
US7826896B2 (en) 2010-11-02
JP4473865B2 (en) 2010-06-02
US20040215097A1 (en) 2004-10-28
US7149573B2 (en) 2006-12-12
EP1628573A2 (en) 2006-03-01
WO2004096041A3 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US7826896B2 (en) Method and apparatus for impedance signal localizations from implanted devices
US9730604B2 (en) Methods for detecting atrial tachyarrhythmia in implantable devices without dedicated atrial sensing
EP1598093B1 (en) System for automated fluid monitoring
US8761876B2 (en) Thoracic or intracardiac impedance detection with automatic vector selection
EP1893086B1 (en) A method and a medical device for evaluating the prevalence of different postures of a patient and a computer readable medium for bringing a computer to performing the method
JP4625463B2 (en) Method and apparatus for detecting and identifying arrhythmia
US7305266B1 (en) Cardiac stimulation devices and methods for measuring impedances associated with the heart
US7953488B2 (en) Pre-qualification of an alternate sensing configuration
US8396543B2 (en) Storage of data for evaluation of lead integrity
US20120109235A1 (en) Capture detection in response to lead related conditions
US20070049982A1 (en) Apparatus and method for testing an implantable medical device and sensing parameter settings
US8374692B2 (en) Identifying a lead related condition based on motion-based lead impedance fluctuations
US7027867B2 (en) Implantable cardiac device having a system for detecting T wave alternan patterns and method
US20060095084A1 (en) Conduction based automatic therapy selection
JP4354811B2 (en) Implantable medical device for monitoring cardiac signals
US10945670B2 (en) Minute volume sensor optimization using quadripolar leads
US20100114231A1 (en) Methods and systems to monitor ischemia
WO2010014062A1 (en) Pre-qualification of an alternate sensing configuration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2525105

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004760256

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004760256

Country of ref document: EP