WO2004086776A2 - Co-channel wireless communication methods and systems using nonsymmetrical alphabets - Google Patents

Co-channel wireless communication methods and systems using nonsymmetrical alphabets Download PDF

Info

Publication number
WO2004086776A2
WO2004086776A2 PCT/US2004/008880 US2004008880W WO2004086776A2 WO 2004086776 A2 WO2004086776 A2 WO 2004086776A2 US 2004008880 W US2004008880 W US 2004008880W WO 2004086776 A2 WO2004086776 A2 WO 2004086776A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wireless communications
radioterminals
alphabet
return link
Prior art date
Application number
PCT/US2004/008880
Other languages
French (fr)
Other versions
WO2004086776A3 (en
Inventor
Peter D. Karabinis
Original Assignee
Mobile Satellite Ventures, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/795,875 priority Critical patent/US7444170B2/en
Application filed by Mobile Satellite Ventures, L.P. filed Critical Mobile Satellite Ventures, L.P.
Priority to AU2004223381A priority patent/AU2004223381C1/en
Priority to CA2517067A priority patent/CA2517067C/en
Priority to PCT/US2004/008880 priority patent/WO2004086776A2/en
Priority to EP04758074A priority patent/EP1606956A4/en
Priority to MXPA05010287A priority patent/MXPA05010287A/en
Publication of WO2004086776A2 publication Critical patent/WO2004086776A2/en
Publication of WO2004086776A3 publication Critical patent/WO2004086776A3/en
Priority to AU2010201677A priority patent/AU2010201677B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18584Arrangements for data networking, i.e. for data packet routing, for congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • H04W88/184Messaging devices, e.g. message centre

Definitions

  • This invention relates to wireless communications methods and systems, and more particularly to wireless communication systems and methods that can communicate co-channel.
  • Polarization diversity receiving systems and methods are well known in wireless communications.
  • a wireless terminal may transmit a linearly- polarized signal that may be received by orthogonally polarized antennas (e.g., horizontal and vertical polarization) at a base station (terrestrial or space-based) to thereby separately receive orthogonally polarized portions of the transmitted signal.
  • the orthogonally polarized portions may be combined to effectively increase link robustness, since many channel degradations such as fading, are largely uncorrelated when comparing antennas of orthogonal polarizations. See for example, U.S. Patent 6,526,278 to Hanson et al. entitled Mobile Satellite Communication System Utilizing Polarization Diversity Combining; U.S.
  • Patent 5,724,666 to Dent entitled Polarization Diversity Phased Array Cellular Base Station and Associated Methods
  • U.S. Patent 6,418,316 to Hildebrand et al. entitled Increasing Channel Capacity of Wireless Local Loop via Polarization Diversity Antenna Distribution Scheme
  • U.S. Patent 6,445,926 to Boch et al. entitled Use of Sectorized Polarization Diversity as a Means of Increasing Capacity in Cellular Wireless Systems.
  • Some embodiments of the present invention transmit wireless communications from at least two radioterminals to a base station co-channel over a return link using a return link alphabet, and transmit wireless communications from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
  • the term "co- channel” indicates signals that overlap in time and space, and that use the same carrier frequency, the same time slot if the signals are Time Division Multiple Access (TDMA) signals, and the same spreading code if the signals are Code Division Multiple Access (CDMA) signals, such that the two signals collide at a receiver.
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • Embodiments of the present invention can allow the co-channel signals to be decoded or deciphered at the receiver, and can allow the radioterminals to use a smaller return link alphabet which can reduce the power dissipation at the radioterminals.
  • the wireless communications are transmitted from the base station to the radioterminals non-co-channel over the forward link using the forward link alphabet that has more symbols than the return link alphabet.
  • co-channel transmissions may be used.
  • wireless communications are transmitted from the at least two radioterminals to at least one antenna at the base station co-channel over a return link using a return link alphabet.
  • these transmissions are made to at least one multiple-polarized antenna at the base station.
  • these transmissions are made to a plurality of multiple-polarized antennas at the base station.
  • these transmissions are made to a plurality of multiple-polarized antennas in a single sector of the base station.
  • the wireless communications are transmitted to the plurality of multiple-polarized antennas in a sector if the at least two radioterminals are separated by more than a predetermined distance. In other embodiments, these transmissions are made to at least one multiple-polarized antenna in at least two sectors of the base station. In yet other embodiments, these transmissions are made to at least one multiple-polarized antenna at a first base station and at least one multiple-polarized antenna at a second base station. In still other embodiments, these transmissions are made from a single linearly-polarized antenna at each of the at least two radioterminals.
  • inventions of the present invention transmit wireless communications from at least two radioterminals to a base station over a return link using a return alphabet and transmit wireless communications from the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
  • the transmission from the radioterminals to the base station may be non-co-channel or co-channel.
  • the wireless communications may be transmitted from the base station to at least one antenna at each of the at least two radioterminals, to at least one multiple-polarized antenna at each of the at least two radioterminals and/or to a plurality of multiple-polarized antennas at each of the at least two radioterminals, co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet, as was described above.
  • Transmission from the base station may use at least one antenna, at least one linearly- polarized antenna, at least two linearly-polarized antennas, at least two linearly- polarized antennas in a sector, at least one linearly-polarized antenna in at least two sectors and/or at least one linearly-polarized antenna at two or more base stations, as was described above.
  • wireless communications are received from a base station at a first radioterminal and at least one second radioterminal that is proximate the first radioterminal over a forward link, co-channel.
  • the wireless communications are relayed from the at least one second radioterminal to the first radiotenninal over a short-range wireless link.
  • the wireless communications that are relayed to the first radioterminal from the at least one second radioterminal over the short-range wireless link are used to process the wireless communications that are received from the base station at the first radioterminal.
  • these embodiments may be combined with any of the embodiments that were described above.
  • Still other embodiments of the present invention bidirectionally transmit wireless communications co-channel in time division duplex from at least two radioterminals to a base station over a return link using a return link alphabet, and from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
  • Figures 1-3 and 4A-4B are diagrams of co-channel wireless communications according to various embodiments of the present invention.
  • Figure 5 A is a diagram of radioterminal to base station communications according to embodiments of the present invention.
  • Figure 5B is a diagram of base station to radioterminal communications according to embodiments of the present invention.
  • Figure 5C is a diagram of base station to radioterminal communications according to other embodiments of the present invention.
  • Figures 6A-6B are block diagrams of receivers that may be used in Figures
  • Figure 7 graphically illustrates simulated receiver performance for signals in Rayleigh fading channels according to some embodiments of the present invention.
  • Figure 8 is a diagram of base station to radioterminal bidirectional communications according to embodiments of the present invention.
  • Figure 9 is a block diagram of a receiver and transmitter that may be used in embodiments of Figure 8.
  • Figure 10 is a block diagram of a receiver that may be used in Figure 9 according to embodiments of the present invention.
  • Figure 11 is a block diagram of a transmitter that may be used in Figure 9 according to embodiments of the present invention.
  • Figures 12 and 13 are diagrams of radioterminals and base stations, respectively, according to embodiments of the present invention.
  • Some embodiments of the present invention may arise from a recognition that it is possible to configure two physically distinct radioterminals to transmit to a base station, also referred to as a base transceiver station (BTS), co-channel, using the same return-link radio-channel resource(s) while still being able, at the BTS, to reliably demodulate and reconstruct (i.e., decode) the two data streams of the two physically distinct radioterminals. It is also possible to configure a BTS to transmit to two physically distinct radioterminals co-channel, over the same forward-link radio- channel resource(s), while each of the two distinct radioterminals is able to reliably demodulate and reconstruct the information intended for it.
  • a base station also referred to as a base transceiver station (BTS), co-channel
  • BTS base transceiver station
  • the two physically distinct radioterminals may thus communicate bi-directionally with a BTS, co- channel, in some embodiments, using no more channel resource(s) than a single radioterminal would use.
  • the signal processing techniques that make this possible can exploit the multipath scattering nature of the radiochannel and/or the multi-dimensional nature of space and its relationship to electro-magnetic wave propagation.
  • embodiments of the invention can be extended to allow three or more physically distinct radioterminals to communicate co-channel with a BTS without using any more radiochannel resource(s) than a single radioterminal would.
  • Some embodiments of the present invention may also arise from a recognition that co-channel communications may be more beneficial for an infrastructure (base station) receiver than for a radioterminal receiver, because an infrastructure transmitter may not be power limited and may thus resort to a higher-alphabet modulation format (i.e. 8-PSK, 16-QAM, 64-QAM, etc.) to increase channel capacity on a forward link.
  • a radioterminal' s transmitter may be power limited and may thus be constrained to lower-alphabet modulation formats (i.e. QPSK, GMSK, etc.).
  • the ability of two or more radioterminals to send information to an infrastructure element (base station) co-channel may be used advantageously to increase channel capacity on the return link(s).
  • base stations and radioterminals may be configured to utilize different modulation alphabets on forward and return links with a return link alphabet having a smaller number of distinct states (symbols) than a forward link alphabet, and with at least some infrastructure (base station) receivers of the system configured for co- channel communications, as will be described in further detail below.
  • FIG. 1 is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to some embodiments of the present invention.
  • wireless communications are transmitted from at least two radioterminals 110a and 110b to a base station (BTS) 120 co-channel over a return link 130 using a return link alphabet having return link symbols S R .
  • BTS base station
  • wireless communications are transmitted from the base station 120 to the at least two radioterminals 110a and 110b over a forward link 140 using a forward link alphabet having forward link symbols S F , wherein the forward link alphabet has more symbols than the return link alphabet.
  • S F > SR.
  • the wireless communications are transmitted from the base station 120 to the at least two radioterminals 110a and 110b non-co-channel over the forward link 140 using the forward link alphabet that has more symbols S F than the return link alphabet S R .
  • the wireless communications are transmitted from the at least two radioterminals 110a and 110b to at least one antenna 122 at the base station 120 co-channel over the return link 130 using the return link alphabet.
  • the at least one antenna 122 is at least one multiple-polarized antenna. In other embodiments, the at least one antenna 122 is a plurality of multiple- polarized antennas.
  • the base station 120 includes a plurality of sectors using sectorization techniques that are well known to those having skill in the art.
  • the at least one antenna 122 comprises a plurality of multiple- polarized antennas in a single sector of the base station, such that wireless communications are transmitted from the at least two radioterminals 110a and 110b to the plurality of multiple-polarized antennas in the single sector of the base station 120 co-channel over the return link 130 using the return link alphabet.
  • the wireless communications from the at least two radioterminals 110a and 110b are transmitted to a plurality of multiple-polarized antennas 122 in the sector of the base station 120 co-channel over the return link 130 using the return link alphabet if the at least two radioterminals are separated by more than a predetermined distance D.
  • the wireless communications are transmitted from the at least two radioterminals 110a and 110b to at least one multiple-polarized antenna 122 in at least two sectors of the base station 120 co-channel over a return link using the return link alphabet.
  • FIG. 2 is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to other embodiments of the present invention.
  • the base station 120 is a first base station.
  • Wireless communications are transmitted from at least two radioterminals 110a and 110b to at least one multiple-polarized antenna 122 at the first base station and at least one multiple-polarized antenna 222 at a second base station 220 co-channel over a return link 130 using a return link alphabet.
  • wireless communications may be transmitted from a single linearly-polarized antenna 112a, 112b at each of the at least two radioterminals 110a, 110b to the base station 120, 220 co-channel over the return link 130 using the return link alphabet.
  • Figures 1 and 2 allow co-channel transmissions from radioterminals to a base station using a small element alphabet in conjunction with non-co-channel transmissions from the base station to the radioterminals using a larger element alphabet.
  • the number of antenna elements at the base station may be operative within a given sector of a base station, distributed over more than one sector of a base station and/or distributed over a plurality of base stations.
  • intra-sector co-channel return link communications may be provided, as well as inter-sector and inter-base station return link co-channel communications, to provide potentially improved capacity characteristics.
  • intra-sector co-channel communications between two or more radioterminals and a base station may only be allowed in response to a distance D between the radioterminals. Since the system can know the position of the radioterminals, based on, for example, GPS or other techniques, radioterminals that are, for example, D meters or more apart may be allocated co-channel resources. Otherwise, non-co-channel resources may be allocated. The distance D may be selected so as to provide sufficient multipath differentiation from the signals that originate from the two radioterminals that are transmitting co-channel.
  • Figure 3 is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to still other embodiments of the present invention.
  • wireless communications are transmitted from at least two radioterminals 310a, 310b to a base station 320 over a return link 330 using a return link alphabet having return link symbols SR.
  • Wireless communications are also transmitted from the base station 320 to the at least two radioterminals 310a, 310b co-channel over a forward link 340 using a forward link alphabet having forward link symbols S F , wherein the forward link alphabet has more symbols than the return link alphabet.
  • S F > S R .
  • Embodiments of Figure 3 may be employed where it is desirable to relay much more data to the radioterminals 310a, 310b from the base station 320 than to the base station 320 from the radioterminals 310a, 310b. This may be the case when the radioterminals may be receiving large files from the base station, whereas the radioterminals are only sending back mouse clicks and/or other small amounts of data.
  • Embodiments of Figure 3 use a larger element alphabet in conjunction with co- channel communications to serve two or more terminals, while the radioterminals use a smaller element alphabet and may communicate non-co-channel with the system.
  • wireless communications are transmitted from the at least two radioterminals 310a, 310b to the base station 320 co-channel over the return link 330 using the return link alphabet.
  • the wireless communications are transmitted from the base station 320 to at least one antenna 312a 3 312b at each of the at least two radioterminals co-channel over the forward link using the forward link alphabet that has more symbols than the return link alphabet.
  • the at least one antenna 312a, 312b comprises at least one multiple-polarized antenna. In other embodiments, the at least one antenna 312a, 312b comprises a plurality of multiple-polarized antennas.
  • the at least one antenna 322 at the base station 320 comprises at least one linearly-polarized antenna, at least two linearly-polarized antennas, at least two linearly-polarized antennas in a single sector and/or a linearly-polarized antenna in at least two sectors, as was described above in connection with the antennas 122 of Figure 1.
  • transmissions may occur to at least one linearly-polarized antenna at a first base station and at a second base station, as was described above in connection with Figure 2.
  • Figure 4A is a diagram of co-channel wireless communications according to yet other embodiments of the present invention.
  • wireless communications are received from a base station 420 at a first radioterminal 410a and at at least one second radioterminal 410b that is proximate the first radioterminal 410a, over a forward link 440, co-channel.
  • the wireless communications from the at least one second radioterminal 410b are relayed to the first radioterminal 410a over a short-range wireless link 450.
  • the short-range wireless link may be based on Bluetooth and/or other technologies such as 802.11, UWB, etc.
  • the first radioterminal 410a uses the wireless communications that are relayed to the first radioterminal 410a from the at least one second radioterminal 410b over the short- range wireless link 450, to process the wireless communications that are received from a base station 420 at the first radioterminal 410a over the forward link 440.
  • the signals from one or more proximate radioterminals may be used to improve a quality measure such as a bit error rate, of the information that is being received from the base station 420. It will also be understood by those having skill in the art that embodiments of Figure 4 need not use a forward link alphabet that has more symbols than a return link alphabet.
  • embodiments of Figure 4 may be used with any of the embodiments of Figures 1-3, including the use of a forward link alphabet that has more symbols than a return link alphabet, co-channel communications from the radioterminals 410a, 410b to the base station 420, and antenna configurations for the base station 422 and for the radioterminal antennas 412a, 412b similar to those described in connection with Figures 1-3.
  • FIG. 4B is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to still other embodiments of the present invention.
  • wireless communications are bi-directionally transmitted co-channel in Time Division Duplex (TDD) 450.
  • Time division duplex transmission is well known to those having skill in the art, and need not be described further herein.
  • bidirectional transmission co-channel in time division duplex proceeds from at least two radioterminals 460a, 460b to a base station 470 over a return link using a return link alphabet, and from the base station 470 to the at least two radioterminals 460a, 460b over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
  • the antennas 462a, 462b of the first and second radioterminals 460a, 460b may be configured as was described in Figures 1-4 A above.
  • the antenna or antennas 472 of the base station 470 may be embodied as was described above in any of Figures 1-4 A.
  • the receiver of a radioterminal and the receiver of a BTS may be configured to operate on a plurality of signals that may be acquired via a plurality of spatially-separated and/or co-located antennas.
  • the transmitter of a radioterminal may use a single antenna.
  • the BTS may transmit the information that is intended for a first radioterminal from a first antenna and the information that is intended for a second radioterminal from a second antenna that may be spatially-separated from the first.
  • the two radioterminals may use the same return-link channel resource(s) to transmit information to the BTS.
  • the BTS may use the same forward-link channel resource(s) to transmit information to the two radioterminals.
  • Figures 5A and 5B illustrate antenna configurations of non-TDD embodiments. It will also be understood that some embodiments of Figures 5A and 5B may be used in TDD mode as well.
  • the M dual-polarized (or cross polarized) receiver antennas 512 of a radioterminal 510 may be replaced by M triple (x, y, z) -polarized, linearly-polarized, circularly- polarized and/or other type of receiver antennas.
  • M triple (x, y, z) -polarized, linearly-polarized, circularly- polarized and/or other type of receiver antennas may be replaced with triple-polarized, linearly-polarized, circularly- polarized, and/or other type of antennas, and that the value of M may be different for different radioterminals.
  • only one receiver antenna that has been tapped at different points may be used on a radioterminal to provide a plurality of signal inputs to the radioterminal 's receiver.
  • the N dual-polarized receiver antennas 540 of a BTS may be replaced in part or in entirety by triple (x, y, z) - , polarized, linearly-polarized, circularly-polarized, and/or other type of receiver antennas.
  • linearly-polarized transmitter antennas 520 of a BTS may be replaced by a dual- or multi-dimensionally-polarized, circularly-polarized and/or other type of transmitter antenna(s) and that the linearly-polarized transmitter antenna 532 of a radioterminal 530 may be replaced by a dual-polarized, multi- dimensionally-polarized, circularly-polarized and/or other type of transmitter antenna.
  • FIG. 5A in environments of dense radioterminal communications, such as in airports, convention centers, shopping malls, etc., one or more radioterminals 550b-550n that is/are proximate to a first co-channel radioterminal 550a may be configured to provide signals to the first receiving co- channel radioterminal 550a.
  • the first receiving co-channel radioterminal 550a may be configured to process the signals received from the one or more proximate radioterminals so as to improve a quality measure, such as the Bit Error Rate (BER), of the information that is being received from the BTS.
  • BER Bit Error Rate
  • one or more radioterminals 550b'-550n' that is/are proximate to a second co-channel radioterminal 550a' may be configured to provide signals to the second receiving co-channel radioterminal 550a'.
  • the second receiving co-channel radioterminal 550a' may be configured to process the signals received from the one or more proximate radioterminals, so as to improve a quality measure such as the BER of the information that is being received from the BTS. Accordingly, two or more radioterminals such as radioterminals 550a and 550a' may operate co-channel. It also will be understood that some embodiments of Figures 5C may be used in TDD mode as well.
  • FIG. 6A A linear receiver processor, in accordance with the well-known Least Mean Squared Error (LMSE) criterion, is illustrated in Figure 6A for non-TDD embodiments.
  • LMSE Least Mean Squared Error
  • Figure 6A illustrates a receiver for a BTS, but the principles and architecture may also be applied to a radioterminal.
  • each antenna of the array 540 operates in two spatial dimensions and provides two signals to the receiver: one corresponding to the first spatial dimension "vertically-polarized” and the other corresponding to the second spatial dimension "horizontally-polarized.”
  • each signal of the set ⁇ Vi, Hi, V 2 , H , ...., VN, HN ⁇ is operated on by two transversal filters 610a, 610b; one for each co-channel source (radioterminal).
  • the transversal filters may be fractionally spaced, synchronously spaced, or single tap filters.
  • a computer simulation has been developed to assess the potential efficacy of the receiver of Figure 6 A.
  • Figure 7 graphically illustrates results of the computer simulation.
  • the simulation modeled two co-channel radioterminals each transmitting independent data using Binary Phase Shift Keyed (BPSK) modulation with no Forward Error Correction (FEC) coding.
  • BPSK Binary Phase Shift Keyed
  • FEC Forward Error Correction
  • the computer simulation modeled bursty transmission to emulate GSM.
  • the channel was assumed static and an a priori known to the receiver training sequence (the burst mid-amble in GSM terminology) was used to estimate the transversal filter coefficients of the receiver.
  • the burst mid-amble in GSM terminology was used to estimate the transversal filter coefficients of the receiver.
  • a new Rayleigh fading channel was picked pseudo- randomly.
  • Flat Rayleigh-fadmg channels were assumed. Consequently, there was no Inter-Symbol Interference (1ST), only non-dispersive Co-channel Interference (CCI) due to the co-channel radioterminal.
  • CCI Co-channel Interference
  • the Bit Error Rate (BER) was evaluated for several receiver antenna configurations as described below.
  • a receiver architecture of Figure 6B may be used.
  • the receiver of Figure 6B uses an estimate of the co-channel signal that has minimum noise and/or interference variance to cancel the CCI in the other co-channel signal, thus reducing or minimizing noise enhancement in the other co-channel signal, since a regenerated noise-free estimate of the CCI may now be used in the cancellation.
  • the noise and/or interference variance of the two co-channel decision variables S i and S may be estimated once per "data burst." The duration of the data burst may be chosen small relative to the rate-of-change of the channel state so as to validate a static (or quasi-static) channel assumption over a given data burst.
  • the noise and/or interference variance of S ⁇ has been found to be smaller than the noise and/or interference variance of the second decision variable, S 2 .
  • the decision that is made on S ⁇ assumed correct, may be used to form an improved decision variable S 2 , based on which a decision or a series of decisions may be made regarding the data elements transmitted by the second co-channel radioterminal.
  • the one (out of the L) decision variable with minimum noise and/or interference variance will be identified, a decision on it will be made, and that decision will be used to improve the noise and/or interference variance of the second least noise and/or interference variance variable. Then, a decision on the improved second least noise and/or interference variance variable will be made and now both decisions that have been made thus far can be used to improve the decision variable of the third least noise and/or interference variance variable, etc.
  • Figure 8 illustrates two radioterminals communicating co-channel bidirectionally with a BTS in a TDD mode according to other embodiments of the present invention.
  • a BTS receiver of Figure 6A and/or 6B may be used to process the received waveforms, as was already described, and make decisions on the data that has been transmitted co-channel to the BTS antennas 840 by the radioterminals 830. This function is illustrated by Block 910 of Figure 9.
  • the BTS receiver of Figure 9 may also be configured to perform processing of the received waveforms in accordance with the well-known zero-forcing criterion thereby "forcing to zero", to the extent that digital quantization effects and/or other implementation constraints may allow, the ISI and the CCI, at least over the span of the transversal filters used.
  • This function is illustrated by Block 920 of Figure 9 and is further illustrated in greater detail in Figure 10.
  • the state of the channel may be assumed static or quasi-static provided that the TDD frame interval has been chosen sufficiently small.
  • the transversal filter coefficients that have been derived by the BTS receiver to yield "zero" ISI and CCI at the BTS may be used to process or pre-distort a BTS data vector d prior to transmitting it to the co-channel radioterminals.
  • the same BTS antenna array may be performing both receive and transmit functions. This function is illustrated by Block 930 of Figure 9 and is further illustrated in greater detail in Figure 11. It also will be understood that some embodiments of Figure 8 may be used in non-TDD mode, as well.
  • the information that is transmitted by a BTS, co-channel, for a plurality of radioterminals can arrive at the plurality of co-channel radioterminals free, or substantially free, of ISI and CCI.
  • the receiver complexity of a radioterminal may be reduced and the radioterminal may only be equipped with a single linearly-polarized receiver antenna.
  • the zero-forcing processing at a BTS receiver as illustrated in Figures 9 and 10 may be omitted and instead, the transversal filter coefficients derived from a LMSE processor (Block 910 of Figure 9) may be used for the transmitter processing (Block 930 of Figure 9) of a BTS. Accordingly, information that is received when wirelessly receiving at least two signals on the same carrier frequency, time interval, and/or code, from a corresponding at least two radioterminals, may be discriminated among the at least two signals.
  • a radioterminal may include a transceiver which itself includes a transmitter and a receiver, as illustrated in Figure 12, which perform the transmitting and receiving operations, respectively, that were described herein.
  • the antenna of the radioterminal may be regarded as a component of the transceiver.
  • a base station may also include a transceiver which itself includes a transmitter and a receiver, as illustrated in Figure 13, which perform the transmitting and receiving operations, respectively, that were described herein.
  • the antenna of the base station may be regarded as a component of the transceiver.

Abstract

Wireless communications are transmitted from at least two radioterminals (110a, 110b) to a base station (120) co-channel over a return link using a return link alphabet. Wireless communications are also transmitted from the base station to the at least two radioterminals over a forward link using forward link alphabet that has more symbols than the return link alphabet. The co=channel signal are deciphered at the receiver, while the radio terminal can use a smaller return link alphabet, which can reduce the power dissipation at the radiotermials.

Description

CO-CHANNEL WIRELESS COMMUNICATION METHODS AND SYSTEMS USING NONSYMMETRICAL ALPHABETS
Cross-Reference to Provisional Applications This application claims the benefit of Provisional Application Serial No. 60/457,043, entitled Satellite Assisted Push-To-Send Radiotelephone Systems and Methods, filed March 24, 2003; Provisional Application Serial No. 60/457,118, entitled Radio Frequency Communication Systems and Methods That Use
Polarization Orthogonality to Double Channel Capacity, filed March 24, 2003; Provisional Application Serial No. 60/473,959, entitled Systems and Methods That Enable Co-Channel Communications With a Base Station of a Plurality of Radioterminals, filed May 28, 2003; and Provisional Application Serial No. 60/477,522, entitled Satellite Assisted Push-To-Send Radioterminal Systems, Methods and Protocols, filed June 11, 2003, all of which are assigned to the assignee of the present invention, the disclosures of all of which are hereby incorporated herein by reference in their entirety as if set forth fully herein.
Field of the Invention
This invention relates to wireless communications methods and systems, and more particularly to wireless communication systems and methods that can communicate co-channel.
Background of the Invention
Polarization diversity receiving systems and methods are well known in wireless communications. For example, a wireless terminal may transmit a linearly- polarized signal that may be received by orthogonally polarized antennas (e.g., horizontal and vertical polarization) at a base station (terrestrial or space-based) to thereby separately receive orthogonally polarized portions of the transmitted signal. The orthogonally polarized portions may be combined to effectively increase link robustness, since many channel degradations such as fading, are largely uncorrelated when comparing antennas of orthogonal polarizations. See for example, U.S. Patent 6,526,278 to Hanson et al. entitled Mobile Satellite Communication System Utilizing Polarization Diversity Combining; U.S. Patent 5,724,666 to Dent entitled Polarization Diversity Phased Array Cellular Base Station and Associated Methods; U.S. Patent 6,418,316 to Hildebrand et al. entitled Increasing Channel Capacity of Wireless Local Loop via Polarization Diversity Antenna Distribution Scheme; and U.S. Patent 6,445,926 to Boch et al. entitled Use of Sectorized Polarization Diversity as a Means of Increasing Capacity in Cellular Wireless Systems.
Other systems and methods that use polarization effects in wireless communications are described in the following publications: Andrews et al., Tripling the Capacity of Wireless Communications Using Electromagnetic Polarization, Nature, Vol. 409, January 18, 2001, pp. 316-318; Wolniansky et al, V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel, Invited paper, Proc. ISSSE-98, Pisa, Italy, Sept. 29, 1998, pp. 295-300; and Cusani et al., A Simple Polarization-Recovery Algorithm for Dual-Polarized Cellular Mobile-Radio Systems in Time-Variant Faded Environments, IEEE Transactions in Vehicular Technology, Vol. 49, No. 1, January 2000, pp. 220-228.
It is also known to use diversity concepts to increase the capacity of wireless communications. See, for example, the following publications: Miller et al., Estimation of Co-Channel Signals With Linear Complexity, IEEE Transactions on Communications, Vol. 49, No. 11 , November 2001 , pp. 1997-2005 ; and Wong et al, Performance Enhancement of Multiuser MIMO Wireless Communications Systems, IEEE Transactions on Communications, Vol. 50, No. 12, December 2002, pp. 1960- 1970.
Summary of the Invention
Some embodiments of the present invention transmit wireless communications from at least two radioterminals to a base station co-channel over a return link using a return link alphabet, and transmit wireless communications from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet. As used herein, the term "co- channel" indicates signals that overlap in time and space, and that use the same carrier frequency, the same time slot if the signals are Time Division Multiple Access (TDMA) signals, and the same spreading code if the signals are Code Division Multiple Access (CDMA) signals, such that the two signals collide at a receiver. Embodiments of the present invention can allow the co-channel signals to be decoded or deciphered at the receiver, and can allow the radioterminals to use a smaller return link alphabet which can reduce the power dissipation at the radioterminals.
In some embodiments of the present invention, the wireless communications are transmitted from the base station to the radioterminals non-co-channel over the forward link using the forward link alphabet that has more symbols than the return link alphabet. In yet other embodiments, co-channel transmissions may be used. In some embodiments, wireless communications are transmitted from the at least two radioterminals to at least one antenna at the base station co-channel over a return link using a return link alphabet. In other embodiments, these transmissions are made to at least one multiple-polarized antenna at the base station. In yet other embodiments, these transmissions are made to a plurality of multiple-polarized antennas at the base station. In still other embodiments, these transmissions are made to a plurality of multiple-polarized antennas in a single sector of the base station. In some embodiments, the wireless communications are transmitted to the plurality of multiple-polarized antennas in a sector if the at least two radioterminals are separated by more than a predetermined distance. In other embodiments, these transmissions are made to at least one multiple-polarized antenna in at least two sectors of the base station. In yet other embodiments, these transmissions are made to at least one multiple-polarized antenna at a first base station and at least one multiple-polarized antenna at a second base station. In still other embodiments, these transmissions are made from a single linearly-polarized antenna at each of the at least two radioterminals.
Other embodiments of the present invention transmit wireless communications from at least two radioterminals to a base station over a return link using a return alphabet and transmit wireless communications from the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet. In other embodiments, as was described above, the transmission from the radioterminals to the base station may be non-co-channel or co-channel. Moreover, the wireless communications may be transmitted from the base station to at least one antenna at each of the at least two radioterminals, to at least one multiple-polarized antenna at each of the at least two radioterminals and/or to a plurality of multiple-polarized antennas at each of the at least two radioterminals, co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet, as was described above. Transmission from the base station may use at least one antenna, at least one linearly- polarized antenna, at least two linearly-polarized antennas, at least two linearly- polarized antennas in a sector, at least one linearly-polarized antenna in at least two sectors and/or at least one linearly-polarized antenna at two or more base stations, as was described above.
In other embodiments of the present invention, wireless communications are received from a base station at a first radioterminal and at least one second radioterminal that is proximate the first radioterminal over a forward link, co-channel. The wireless communications are relayed from the at least one second radioterminal to the first radiotenninal over a short-range wireless link. The wireless communications that are relayed to the first radioterminal from the at least one second radioterminal over the short-range wireless link are used to process the wireless communications that are received from the base station at the first radioterminal. Moreover, these embodiments may be combined with any of the embodiments that were described above.
Still other embodiments of the present invention bidirectionally transmit wireless communications co-channel in time division duplex from at least two radioterminals to a base station over a return link using a return link alphabet, and from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet. These embodiments also may be combined with any of the embodiments that were described above.
It will be understood by those having skill in the art that embodiments of the present invention were described above primarily with respect to method aspects.
However, other embodiments of the present invention provide systems, base stations and radioterminals according to any of the embodiments that were described above.
Brief Description of the Drawings Figures 1-3 and 4A-4B are diagrams of co-channel wireless communications according to various embodiments of the present invention.
Figure 5 A is a diagram of radioterminal to base station communications according to embodiments of the present invention. Figure 5B is a diagram of base station to radioterminal communications according to embodiments of the present invention.
Figure 5C is a diagram of base station to radioterminal communications according to other embodiments of the present invention. Figures 6A-6B are block diagrams of receivers that may be used in Figures
5A-5C according to embodiments of the present invention.
Figure 7 graphically illustrates simulated receiver performance for signals in Rayleigh fading channels according to some embodiments of the present invention.
Figure 8 is a diagram of base station to radioterminal bidirectional communications according to embodiments of the present invention.
Figure 9 is a block diagram of a receiver and transmitter that may be used in embodiments of Figure 8.
Figure 10 is a block diagram of a receiver that may be used in Figure 9 according to embodiments of the present invention. Figure 11 is a block diagram of a transmitter that may be used in Figure 9 according to embodiments of the present invention.
Figures 12 and 13 are diagrams of radioterminals and base stations, respectively, according to embodiments of the present invention.
Detailed Description
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Some embodiments of the present invention may arise from a recognition that it is possible to configure two physically distinct radioterminals to transmit to a base station, also referred to as a base transceiver station (BTS), co-channel, using the same return-link radio-channel resource(s) while still being able, at the BTS, to reliably demodulate and reconstruct (i.e., decode) the two data streams of the two physically distinct radioterminals. It is also possible to configure a BTS to transmit to two physically distinct radioterminals co-channel, over the same forward-link radio- channel resource(s), while each of the two distinct radioterminals is able to reliably demodulate and reconstruct the information intended for it. The two physically distinct radioterminals may thus communicate bi-directionally with a BTS, co- channel, in some embodiments, using no more channel resource(s) than a single radioterminal would use. The signal processing techniques that make this possible, according to some embodiments of the invention, can exploit the multipath scattering nature of the radiochannel and/or the multi-dimensional nature of space and its relationship to electro-magnetic wave propagation. Moreover, embodiments of the invention can be extended to allow three or more physically distinct radioterminals to communicate co-channel with a BTS without using any more radiochannel resource(s) than a single radioterminal would.
Some embodiments of the present invention may also arise from a recognition that co-channel communications may be more beneficial for an infrastructure (base station) receiver than for a radioterminal receiver, because an infrastructure transmitter may not be power limited and may thus resort to a higher-alphabet modulation format (i.e. 8-PSK, 16-QAM, 64-QAM, etc.) to increase channel capacity on a forward link. In contrast, a radioterminal' s transmitter may be power limited and may thus be constrained to lower-alphabet modulation formats (i.e. QPSK, GMSK, etc.). Thus, the ability of two or more radioterminals to send information to an infrastructure element (base station) co-channel may be used advantageously to increase channel capacity on the return link(s). According to some embodiments, therefore, base stations and radioterminals may be configured to utilize different modulation alphabets on forward and return links with a return link alphabet having a smaller number of distinct states (symbols) than a forward link alphabet, and with at least some infrastructure (base station) receivers of the system configured for co- channel communications, as will be described in further detail below.
Figure 1 is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to some embodiments of the present invention. As shown in Figure 1, wireless communications are transmitted from at least two radioterminals 110a and 110b to a base station (BTS) 120 co-channel over a return link 130 using a return link alphabet having return link symbols SR. AS also shown in Figure 1, wireless communications are transmitted from the base station 120 to the at least two radioterminals 110a and 110b over a forward link 140 using a forward link alphabet having forward link symbols SF, wherein the forward link alphabet has more symbols than the return link alphabet. In other words, SF > SR. In some embodiments, the wireless communications are transmitted from the base station 120 to the at least two radioterminals 110a and 110b non-co-channel over the forward link 140 using the forward link alphabet that has more symbols SF than the return link alphabet SR.
Still referring to Figure 1 , the wireless communications are transmitted from the at least two radioterminals 110a and 110b to at least one antenna 122 at the base station 120 co-channel over the return link 130 using the return link alphabet. In some embodiments, the at least one antenna 122 is at least one multiple-polarized antenna. In other embodiments, the at least one antenna 122 is a plurality of multiple- polarized antennas.
In still other embodiments, the base station 120 includes a plurality of sectors using sectorization techniques that are well known to those having skill in the art. In some embodiments, the at least one antenna 122 comprises a plurality of multiple- polarized antennas in a single sector of the base station, such that wireless communications are transmitted from the at least two radioterminals 110a and 110b to the plurality of multiple-polarized antennas in the single sector of the base station 120 co-channel over the return link 130 using the return link alphabet. In other embodiments, the wireless communications from the at least two radioterminals 110a and 110b are transmitted to a plurality of multiple-polarized antennas 122 in the sector of the base station 120 co-channel over the return link 130 using the return link alphabet if the at least two radioterminals are separated by more than a predetermined distance D. In still other embodiments, the wireless communications are transmitted from the at least two radioterminals 110a and 110b to at least one multiple-polarized antenna 122 in at least two sectors of the base station 120 co-channel over a return link using the return link alphabet.
Figure 2 is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to other embodiments of the present invention. As shown in Figure 2, the base station 120 is a first base station. Wireless communications are transmitted from at least two radioterminals 110a and 110b to at least one multiple-polarized antenna 122 at the first base station and at least one multiple-polarized antenna 222 at a second base station 220 co-channel over a return link 130 using a return link alphabet. In any of the embodiments of Figures 1 and/or 2, wireless communications may be transmitted from a single linearly-polarized antenna 112a, 112b at each of the at least two radioterminals 110a, 110b to the base station 120, 220 co-channel over the return link 130 using the return link alphabet.
Accordingly, some embodiments of Figures 1 and 2 allow co-channel transmissions from radioterminals to a base station using a small element alphabet in conjunction with non-co-channel transmissions from the base station to the radioterminals using a larger element alphabet. The number of antenna elements at the base station may be operative within a given sector of a base station, distributed over more than one sector of a base station and/or distributed over a plurality of base stations. As such, intra-sector co-channel return link communications may be provided, as well as inter-sector and inter-base station return link co-channel communications, to provide potentially improved capacity characteristics. Moreover, in some embodiments, intra-sector co-channel communications between two or more radioterminals and a base station may only be allowed in response to a distance D between the radioterminals. Since the system can know the position of the radioterminals, based on, for example, GPS or other techniques, radioterminals that are, for example, D meters or more apart may be allocated co-channel resources. Otherwise, non-co-channel resources may be allocated. The distance D may be selected so as to provide sufficient multipath differentiation from the signals that originate from the two radioterminals that are transmitting co-channel. Figure 3 is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to still other embodiments of the present invention. As shown in Figure 3, wireless communications are transmitted from at least two radioterminals 310a, 310b to a base station 320 over a return link 330 using a return link alphabet having return link symbols SR. Wireless communications are also transmitted from the base station 320 to the at least two radioterminals 310a, 310b co-channel over a forward link 340 using a forward link alphabet having forward link symbols SF, wherein the forward link alphabet has more symbols than the return link alphabet. In other words, SF > SR.
Embodiments of Figure 3 may be employed where it is desirable to relay much more data to the radioterminals 310a, 310b from the base station 320 than to the base station 320 from the radioterminals 310a, 310b. This may be the case when the radioterminals may be receiving large files from the base station, whereas the radioterminals are only sending back mouse clicks and/or other small amounts of data. Embodiments of Figure 3 use a larger element alphabet in conjunction with co- channel communications to serve two or more terminals, while the radioterminals use a smaller element alphabet and may communicate non-co-channel with the system. In other embodiments, wireless communications are transmitted from the at least two radioterminals 310a, 310b to the base station 320 co-channel over the return link 330 using the return link alphabet.
Still referring to Figure 3, in some embodiments, the wireless communications are transmitted from the base station 320 to at least one antenna 312a3 312b at each of the at least two radioterminals co-channel over the forward link using the forward link alphabet that has more symbols than the return link alphabet. In some embodiments, the at least one antenna 312a, 312b comprises at least one multiple-polarized antenna. In other embodiments, the at least one antenna 312a, 312b comprises a plurality of multiple-polarized antennas. In other embodiments, the at least one antenna 322 at the base station 320 comprises at least one linearly-polarized antenna, at least two linearly-polarized antennas, at least two linearly-polarized antennas in a single sector and/or a linearly-polarized antenna in at least two sectors, as was described above in connection with the antennas 122 of Figure 1. In still other embodiments, transmissions may occur to at least one linearly-polarized antenna at a first base station and at a second base station, as was described above in connection with Figure 2. Figure 4A is a diagram of co-channel wireless communications according to yet other embodiments of the present invention. As shown in Figure 4A, wireless communications are received from a base station 420 at a first radioterminal 410a and at at least one second radioterminal 410b that is proximate the first radioterminal 410a, over a forward link 440, co-channel. The wireless communications from the at least one second radioterminal 410b are relayed to the first radioterminal 410a over a short-range wireless link 450. The short-range wireless link may be based on Bluetooth and/or other technologies such as 802.11, UWB, etc. The first radioterminal 410a uses the wireless communications that are relayed to the first radioterminal 410a from the at least one second radioterminal 410b over the short- range wireless link 450, to process the wireless communications that are received from a base station 420 at the first radioterminal 410a over the forward link 440. Accordingly, in embodiments of Figure 4 A, the signals from one or more proximate radioterminals may be used to improve a quality measure such as a bit error rate, of the information that is being received from the base station 420. It will also be understood by those having skill in the art that embodiments of Figure 4 need not use a forward link alphabet that has more symbols than a return link alphabet. However, in other embodiments of the invention, embodiments of Figure 4 may be used with any of the embodiments of Figures 1-3, including the use of a forward link alphabet that has more symbols than a return link alphabet, co-channel communications from the radioterminals 410a, 410b to the base station 420, and antenna configurations for the base station 422 and for the radioterminal antennas 412a, 412b similar to those described in connection with Figures 1-3.
Figure 4B is a diagram of co-channel wireless communications using nonsymmetrical alphabets according to still other embodiments of the present invention. Referring to Figure 4B, wireless communications are bi-directionally transmitted co-channel in Time Division Duplex (TDD) 450. Time division duplex transmission is well known to those having skill in the art, and need not be described further herein. As shown in Figure 4B, bidirectional transmission co-channel in time division duplex proceeds from at least two radioterminals 460a, 460b to a base station 470 over a return link using a return link alphabet, and from the base station 470 to the at least two radioterminals 460a, 460b over a forward link using a forward link alphabet that has more symbols than the return link alphabet. The antennas 462a, 462b of the first and second radioterminals 460a, 460b may be configured as was described in Figures 1-4 A above. Moreover, the antenna or antennas 472 of the base station 470 may be embodied as was described above in any of Figures 1-4 A.
Additional discussion of co-channel wireless communications according to various embodiments of the invention now will be provided. Specifically, in accordance with "non-Time Division Duplex" (non-TDD) embodiments, the receiver of a radioterminal and the receiver of a BTS may be configured to operate on a plurality of signals that may be acquired via a plurality of spatially-separated and/or co-located antennas. The transmitter of a radioterminal may use a single antenna. The BTS may transmit the information that is intended for a first radioterminal from a first antenna and the information that is intended for a second radioterminal from a second antenna that may be spatially-separated from the first. The two radioterminals may use the same return-link channel resource(s) to transmit information to the BTS. The BTS may use the same forward-link channel resource(s) to transmit information to the two radioterminals. Figures 5A and 5B illustrate antenna configurations of non-TDD embodiments. It will also be understood that some embodiments of Figures 5A and 5B may be used in TDD mode as well.
Those skilled in the art will recognize that the M dual-polarized (or cross polarized) receiver antennas 512 of a radioterminal 510, as illustrated in Figure 5B, may be replaced by M triple (x, y, z) -polarized, linearly-polarized, circularly- polarized and/or other type of receiver antennas. In some embodiments, only some of the M dual-polarized receiver antennas 512 of a radioterminal 510, as illustrated in Figure 5B, may be replaced with triple-polarized, linearly-polarized, circularly- polarized, and/or other type of antennas, and that the value of M may be different for different radioterminals. In still other embodiments, only one receiver antenna that has been tapped at different points may be used on a radioterminal to provide a plurality of signal inputs to the radioterminal 's receiver. It will also be understood by those of skill in the art that the N dual-polarized receiver antennas 540 of a BTS, as illustrated in Figure 5A, may be replaced in part or in entirety by triple (x, y, z) - , polarized, linearly-polarized, circularly-polarized, and/or other type of receiver antennas. Finally, those having skill in the art will also recognize that one or both of the linearly-polarized transmitter antennas 520 of a BTS, as illustrated in Figure 5B, may be replaced by a dual- or multi-dimensionally-polarized, circularly-polarized and/or other type of transmitter antenna(s) and that the linearly-polarized transmitter antenna 532 of a radioterminal 530 may be replaced by a dual-polarized, multi- dimensionally-polarized, circularly-polarized and/or other type of transmitter antenna.
Those having skill in the art will also recognize that embodiments of Figures 5 A and 5B may be extended to accommodate L co-channel radioterminals (L > 2) by having L transmitter antennas 520 on the BTS with the λth such antenna (λ = 1, 2, ..., L) transmitting information intended for a corresponding λh radioterminal. Referring now to Figure 5C, in environments of dense radioterminal communications, such as in airports, convention centers, shopping malls, etc., one or more radioterminals 550b-550n that is/are proximate to a first co-channel radioterminal 550a may be configured to provide signals to the first receiving co- channel radioterminal 550a. These signals may be relayed from the one or more proximate radioterminals 550b-550n to the first receiving co-channel radioterminal 550a via short-range wireless links 552. The first receiving co-channel radioterminal 550a may be configured to process the signals received from the one or more proximate radioterminals so as to improve a quality measure, such as the Bit Error Rate (BER), of the information that is being received from the BTS. Still referring to Figure 5C, one or more radioterminals 550b'-550n' that is/are proximate to a second co-channel radioterminal 550a', may be configured to provide signals to the second receiving co-channel radioterminal 550a'. These signals may be relayed from the one or more proximate radioterminals 550b'-550n' to the second receiving co-channel radioterminal 550a' via short range wireless links 552. The second receiving co- channel radioterminal 550a' may be configured to process the signals received from the one or more proximate radioterminals, so as to improve a quality measure such as the BER of the information that is being received from the BTS. Accordingly, two or more radioterminals such as radioterminals 550a and 550a' may operate co-channel. It also will be understood that some embodiments of Figures 5C may be used in TDD mode as well.
A linear receiver processor, in accordance with the well-known Least Mean Squared Error (LMSE) criterion, is illustrated in Figure 6A for non-TDD embodiments. Those skilled in the art will recognize that other linear and/or nonlinear receiver processors such as, for example, Kalman-based, least squares, recursive least squares, Zero Forcing (ZF) and/or Maximum Likelihood Sequence Estimation (MLSE) etc, may be used in lieu of and/or in combination with the receiver processor of Figure 6A. It also will be understood that Figure 6A illustrates a receiver for a BTS, but the principles and architecture may also be applied to a radioterminal.
In accordance with the illustrative BTS receiver antenna array 540 of Figure 5 A, each antenna of the array 540 operates in two spatial dimensions and provides two signals to the receiver: one corresponding to the first spatial dimension "vertically-polarized" and the other corresponding to the second spatial dimension "horizontally-polarized." Thus, in accordance with the receiver antenna array that is illustrated in Figure 5 A, the i antenna (i = 1, 2, ..., N) provides the receiver with the signal inputs Vj and Hj. As is illustrated in Figure 6A, each signal of the set {Vi, Hi, V2, H , ...., VN, HN} is operated on by two transversal filters 610a, 610b; one for each co-channel source (radioterminal). The transversal filter outputs are summed at 620a, 620b, to produce an output signal Sj (j = 1, 2) based on which a decision is made at Blocks 630a, 630b regarding the information symbol that has been transmitted by the th j co-channel source. The transversal filters may be fractionally spaced, synchronously spaced, or single tap filters. A computer simulation has been developed to assess the potential efficacy of the receiver of Figure 6 A. Figure 7 graphically illustrates results of the computer simulation. The simulation modeled two co-channel radioterminals each transmitting independent data using Binary Phase Shift Keyed (BPSK) modulation with no Forward Error Correction (FEC) coding. The computer simulation modeled bursty transmission to emulate GSM. Within each burst of data, the channel was assumed static and an a priori known to the receiver training sequence (the burst mid-amble in GSM terminology) was used to estimate the transversal filter coefficients of the receiver. For each burst of data a new Rayleigh fading channel was picked pseudo- randomly. Flat Rayleigh-fadmg channels were assumed. Consequently, there was no Inter-Symbol Interference (1ST), only non-dispersive Co-channel Interference (CCI) due to the co-channel radioterminal. Thus, the receiver transversal filters reduced to single coefficient devices. The Bit Error Rate (BER) was evaluated for several receiver antenna configurations as described below. As shown in Figure 7, for the case of four dual-polarized receiver antennas, the uncoded Rayleigh-faded channel BER for each co-channel radioterminal, at E(,/N0 of 4 dB, is ~ 10"3, whereas the BER of classical BPSK in Additive White Gaussian Noise (AWGN) with no fading, at the same Eb N0 of 4 dB is ~ 10"2. Thus, the simulations appear to show that not only has the receiver of Figure 6A reduced the CCI, but significant diversity gain has also been attained.
To potentially improve further on the receiver performance of Figure 6A, a receiver architecture of Figure 6B may be used. The receiver of Figure 6B uses an estimate of the co-channel signal that has minimum noise and/or interference variance to cancel the CCI in the other co-channel signal, thus reducing or minimizing noise enhancement in the other co-channel signal, since a regenerated noise-free estimate of the CCI may now be used in the cancellation. Referring again to Figure 6A, the noise and/or interference variance of the two co-channel decision variables S i and S may be estimated once per "data burst." The duration of the data burst may be chosen small relative to the rate-of-change of the channel state so as to validate a static (or quasi-static) channel assumption over a given data burst. The estimate of noise and/or interference variance of Sj (j = 1, 2) may, for example, be based on the magnitude of a linear superposition of squared transversal filter weights, that may be involved in forming Sj or may be based on processing of an a priori known to the receiver, training sequence. In the illustrative example of Figure 6B, the noise and/or interference variance of S \ has been found to be smaller than the noise and/or interference variance of the second decision variable, S 2. Thus, the decision that is made on S ι, assumed correct, may be used to form an improved decision variable S 2, based on which a decision or a series of decisions may be made regarding the data elements transmitted by the second co-channel radioterminal.
It will be understood by those of skill in the art that, in the illustrative receiver processing of Figure 6B, if the second decision variable was found to have lower noise and/or interference variance, a decision on that variable may have been made and that decision may have been used to form an improved first decision variable. It will also be understood by those skilled in the art that the principle and receiver architecture that is illustrated on Figure 6B, of first deciding on the least noise and/or interference variance variable and then using that decision to improve the noise and/or interference variance of the second decision variable, may be extended similarly to the general case where there are L co-channel radioterminals and, therefore, L decision variables at the receiver. In that case, the one (out of the L) decision variable with minimum noise and/or interference variance will be identified, a decision on it will be made, and that decision will be used to improve the noise and/or interference variance of the second least noise and/or interference variance variable. Then, a decision on the improved second least noise and/or interference variance variable will be made and now both decisions that have been made thus far can be used to improve the decision variable of the third least noise and/or interference variance variable, etc. Finally, it will be understood that even though the receiver principles and architectures of Figures 6A and 6B have been described using nomenclature associated with a BTS, the principles and receiver architectures of Figures 6 A and 6B, and variations thereof, are also applicable to the radioterminal.
Figure 8 illustrates two radioterminals communicating co-channel bidirectionally with a BTS in a TDD mode according to other embodiments of the present invention. When the radioterminals 830 transmit information to the BTS antennas 840, a BTS receiver of Figure 6A and/or 6B may be used to process the received waveforms, as was already described, and make decisions on the data that has been transmitted co-channel to the BTS antennas 840 by the radioterminals 830. This function is illustrated by Block 910 of Figure 9. The BTS receiver of Figure 9 may also be configured to perform processing of the received waveforms in accordance with the well-known zero-forcing criterion thereby "forcing to zero", to the extent that digital quantization effects and/or other implementation constraints may allow, the ISI and the CCI, at least over the span of the transversal filters used. This function is illustrated by Block 920 of Figure 9 and is further illustrated in greater detail in Figure 10. Over the time interval of a TDD frame, the state of the channel may be assumed static or quasi-static provided that the TDD frame interval has been chosen sufficiently small. Thus, capitalizing on the reciprocity of the TDD channel over its static or quasi-static interval the transversal filter coefficients that have been derived by the BTS receiver to yield "zero" ISI and CCI at the BTS, may be used to process or pre-distort a BTS data vector d prior to transmitting it to the co-channel radioterminals. In TDD, the same BTS antenna array may be performing both receive and transmit functions. This function is illustrated by Block 930 of Figure 9 and is further illustrated in greater detail in Figure 11. It also will be understood that some embodiments of Figure 8 may be used in non-TDD mode, as well. Given the above, the information that is transmitted by a BTS, co-channel, for a plurality of radioterminals, can arrive at the plurality of co-channel radioterminals free, or substantially free, of ISI and CCI. Thus, the receiver complexity of a radioterminal may be reduced and the radioterminal may only be equipped with a single linearly-polarized receiver antenna. Those skilled in the art will recognize that even in TDD mode the principles and receiver architectures that were described earlier for the non-TDD case can apply for both a BTS and a radioterminal. Also, those skilled in the art will recognize that the zero-forcing processing at a BTS receiver as illustrated in Figures 9 and 10 may be omitted and instead, the transversal filter coefficients derived from a LMSE processor (Block 910 of Figure 9) may be used for the transmitter processing (Block 930 of Figure 9) of a BTS. Accordingly, information that is received when wirelessly receiving at least two signals on the same carrier frequency, time interval, and/or code, from a corresponding at least two radioterminals, may be discriminated among the at least two signals.
Finally, it will be understood that, in all of the embodiments that have been described herein, a radioterminal may include a transceiver which itself includes a transmitter and a receiver, as illustrated in Figure 12, which perform the transmitting and receiving operations, respectively, that were described herein. The antenna of the radioterminal may be regarded as a component of the transceiver. Similarly, in all of the embodiments described herein, a base station may also include a transceiver which itself includes a transmitter and a receiver, as illustrated in Figure 13, which perform the transmitting and receiving operations, respectively, that were described herein. The antenna of the base station may be regarded as a component of the transceiver. In the drawings and specification, there have been disclosed embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims

What is Claimed is:
1. A wireless communication method comprising: transmitting wireless communications from at least two radioterminals to a base station co-channel over a return link using a return link alphabet; and transmitting wireless communications from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
2. A method according to Claim 1 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from the base station to the at least two radioterminals non-co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
3. A method according to Claim 1 wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to at least one antenna at the base station co-channel over a return link using a return link alphabet.
4. A method according to Claim 1 wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to at least one multiple-polarized antenna at the base station co-channel over a return link using a return link alphabet.
5. A method according to Claim 1 wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to a plurality of multiple-polarized antennas at the base station co-channel over a return link using a return link alphabet.
6. A method according to Claim 1 wherein the base station includes a plurality of sectors and wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to a plurality of multiple-polarized antennas in a sector of the base station co-channel over a return link using a return link alphabet.
7. A method according to Claim 1 wherein the base station includes a plurality of sectors and wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to at least one multiple-polarized antenna in at least two sectors of the base station co- channel over a return link using a return link alphabet.
8. A method according to Claim 1 wherein the base station is a first base station and wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to at least one multiple-polarized antenna at the first base station and at least one multiple- polarized antenna at a second base station co-channel over a return link using a return link alphabet.
9. A method according to Claim 6 wherein transmitting wireless communications from at least two radioterminals to a plurality of multiple-polarized antennas in a sector of the base station co-channel over a return link using a return link alphabet comprises: selectively transmitting wireless communications from at least two radioterminals to a plurality of multiple-polarized antennas in a sector of the base station co-channel over a return link using a return link alphabet if the at least two radioterminals are separated by more than a predetermined distance.
10. A method according to Claim 1 wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from a single linearly-polarized antenna at each of the at least two radioterminals to a base station co-channel over a return link using a return link alphabet.
11. A method according to Claim 1 further comprising: decoding the wireless communications that are transmitted from the at least two radioterminals to the base station co-channel.
12. A wireless communication method comprising: transmitting wireless communications from at least two radioterminals to a base station over a return link using a return link alphabet; and transmitting wireless communications from the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
13. A method according to Claim 12 wherein transmitting wireless communications from at least two radioterminals to a base station comprises: transmitting wireless communications from at least two radioterminals to a base station co-channel over a return link using a return link alphabet.
14. A method according to Claim 12 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from the base station to at least one antenna at each of the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
15. A method according to Claim 12 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from the base station to at least one multiple-polarized antenna at each of the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
16. A method according to Claim 12 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from the base station to a plurality of multiple-polarized antennas at each of the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
17. A method according to Claim 12 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from at least one antenna at the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
18. A method according to Claim 12 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from at least one linearly-polarized antenna at the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
19. A method according to Claim 12 wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from at least two linearly-polarized antennas at the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
20. A method according to Claim 12 wherein the base station includes a plurality of sectors and wherein transmitting wireless communications from at least two linearly-polarized antennas at the base station to the at least two radioterminals comprises: transmitting wireless communications from at least two linearly-polarized antennas in a sector of the base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
21. A method according to Claim 12 wherein the base station includes a plurality of sectors and wherein transmitting wireless communications from at least two linearly-polarized antennas at the base station to the at least two radioterminals comprises: transmitting wireless communications from at least one linearly-polarized antenna in at least two sectors of the base station to the at least two radioterminals co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
22. A method according to Claim 12 wherein the base station is a first base station and wherein transmitting wireless communications from the base station to the at least two radioterminals comprises: transmitting wireless communications from at least one linearly-polarized antenna at the first base station and at least one linearly-polarized antenna at a second base station to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
23. A method according to Claim 12 further comprising: decoding the wireless communications that are transmitted from the base station to the at least two radioterminals co-channel.
24. A wireless communication method comprising: receiving wireless communications from a base station at a first radioterminal and at at least one second radioterminal that is proximate the first radioterminal, over a forward link, co-channel; relaying the wireless communications from the at least one second radioterminal to the first radioterminal over a short-range wireless link; and using the wireless communications that are relayed to the first radioterminal from the at least one second terminal over the short-range wireless link to process the wireless communications that are received from the base station at the first radioterminal.
25. A wireless communication method according to Claim 24: wherein receiving wireless communications from a base station at a first radioterminal and at at least one second radioterminal that is proximate to the first radioterminal, over a forward link, co-channel comprises receiving wireless communications from a base station at a first radioterminal and at at least one second radioterminal that is proximate to the first radioterminal, over a forward link, co- channel using a forward link alphabet; and wherein the method further comprises transmitting wireless communications from the first radioterminal and at least one second radioterminal to the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet.
26. A method according to Claim 25 wherein transmitting wireless communications from the first radioterminal and at least one second radioterminal to the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet comprises: transmitting wireless communications from the first radioterminal and at least one second radioterminal to at least one antenna at the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet.
27. A method according to Claim 25 wherein transmitting wireless communications from the first radioterminal and at least one second radioterminal to the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet comprises: transmitting wireless communications from the first radioterminal and at least one second radioterminal to a plurality of multiple-polarized antennas in a sector of the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet.
28. A method according to Claim 25 wherein transmitting wireless communications from the first radioterminal and at least one second radioterminal to the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet comprises: transmitting wireless communications from the first radioterminal and at least one second radioterminal to at least one multiple-polarized antenna in at least two sectors of the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet.
29. A method according to Claim 25 wherein the base station is a first base station and wherein transmitting wireless communications from the first radioterminal and at least one second radioterminal to the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet comprises: transmitting wireless communications from the first radioterminal and at least one second radioterminal to at least one multiple-polarized antenna at the first base station and at least one multiple-polarized antenna at a second base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet.
30. A method according to Claim 27 wherein transmitting wireless communications from the first radioterminal and at least one second radioterminal to a plurality of multiple-polarized antennas in a sector of the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet comprises: transmitting wireless communications from the first radioterminal and at least one second radioterminal to a plurality of multiple-polarized antennas in a sector of the base station co-channel using a return link alphabet that has fewer symbols than the forward link alphabet if the first radioterminal and the at least one second radioterminal are separated by more than a predetermined distance.
31. A wireless communication method comprising: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to a base station over a return link using a return link alphabet and from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
32. A method according to Claim 31 wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to at least one antenna at the base station over a return link using a return link alphabet and from the at least one antenna at the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
33. A method according to Claim 31 wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to at least one multiple-polarized antenna at the base station over a return link using a return link alphabet and from the at least one multiple-polarized antenna at the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
34. A method according to Claim 31 wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to a plurality of multiple-polarized antennas at the base station over a return link using a return link alphabet and from the plurality of multiple-polarized antennas at the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
35. A method according to Claim 31 wherein the base station includes a plurality of sectors and wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to a plurality of multiple-polarized antennas in a sector of the bas.e station over a return link using a return link alphabet and from the plurality of multiple-polarized antennas in the sector of the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
36. A method according to Claim 31 wherein the base station includes a plurality of sectors and wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to at least one multiple-polarized antenna in at least two sectors of the base station over a return link using a return link alphabet and from the at least one multiple-polarized antenna in the at least two sectors of the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
37. A method according to Claim 31 wherein the base station is a first base station and wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to at least one multiple-polarized antenna at the first base station and at least one multiple-polarized antenna at a second base station over a return link using a return link alphabet and from the at least one multiple-polarized antenna at the first base station and the at least one multiple- polarized antenna at the second base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
38. A method according to Claim 35 wherein bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to a plurality of multiple-polarized antennas in a sector of the base station over a return link using a return link alphabet and from the plurality of multiple-polarized antennas in the sector of the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet comprises: selectively bidirectionally transmitting wireless communications co-channel in time division duplex from at least two radioterminals to a plurality of multiple- polarized antennas in a sector of the base station over a return link using a return link alphabet and from the plurality of multiple-polarized antennas in the sector of the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet if the at least two radioterminals are separated by more than a predetermined distance.
39. A method according to Claim 31 wherein bidirectionally transmitting comprises: bidirectionally transmitting wireless communications co-channel in time division duplex from a single linearly-polarized antenna at each of the at least two radioterminals to at least one antenna at the base station over a return link using a return link alphabet and from the at least one antenna at the base station to the single linearly-polarized antenna at each of the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
40. A method according to Claim 31 further comprising: decoding the wireless communications that are transmitted co-channel in time division duplex from the at least two radioterminals to the base station and from the base station to the at least two radioterminals.
41. A base station comprising: a receiver that is configured to receive wireless communications from at least two radioterminals co-channel over a return link using a return link alphabet; and a transmitter that is configured to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
42. A base station according to Claim 41 wherein the transmitter is configured to transmit wireless communications to the at least two radioterminals non-co-channel over the forward link using a forward link alphabet that has more symbols than the return link alphabet.
43. A base station according to Claim 41 wherein the receiver is configured to receive wireless communications from at least two radioterminals co- channel over a return link using a return link alphabet at at least one antenna.
44. A base station according to Claim 41 wherein the receiver is configured to receive wireless communications from at least two radioterminals co- channel over a return link using a return link alphabet at at least one multiple- polarized antenna.
45. A base station according to Claim 41 wherein the receiver is configured to receive wireless communications from at least two radioterminals co- channel over a return link using a return link alphabet at a plurality of multiple- polarized antennas.
46. A base station according to Claim 41 wherein the base station includes a plurality of sectors and wherein the receiver is configured to receive wireless communications from at least two radioterminals co-channel over a return link using a return link alphabet at a plurality of multiple-polarized antennas in a sector of the base station.
47. A base station according to Claim 41 wherein the base station includes a plurality of sectors and wherein the receiver is configured to receive wireless communications from at least two radioterminals co-channel over a return link using a return link alphabet at at least one multiple-polarized antenna in at least two sectors.
48. A base station according to Claim 41 wherein the receiver is further configured to decode the wireless communications that are received from the at least two radioterminals co-channel.
49. A base station comprising: a receiver that is configured to receive wireless communications from at least two radioterminals over a return link using a return link alphabet; and a transmitter that is configured to transmit wireless communications to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
50. A base station according to Claim 49 wherein the receiver is configured to receive wireless communications from at least two radioterminals co- channel over a return link using a return link alphabet.
51. A base station according to Claim 49 wherein the transmitter is configured to transmit wireless communications to the at least two radioterminals co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one antenna.
52. A base station according to Claim 49 wherein the transmitter is configured to transmit wireless communications to the at least two radioterminals co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one linearly-polarized antenna.
53. A base station according to Claim 49 wherein the transmitter is configured to transmit wireless communications to the at least two radioterminals co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least two linearly-polarized antennas.
54. A base station according to Claim 49 wherein the base station includes a plurality of sectors and wherein the transmitter is configured to transmit wireless communications to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least two linearly-polarized antennas in a sector.
55. A base station according to Claim 49 wherein the base station includes a plurality of sectors and wherein the transmitter is configured to transmit wireless communications to the at least two radioterminals co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one linearly-polarized antenna in at least two sectors.
56. A base station comprising: a time division duplex transceiver that is configured to receive wireless communications co-channel from at least two radioterminals over a return link using a return link alphabet and to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
57. A base station according to Claim 56 wherein the transceiver is configured to receive wireless communications co-channel from at least two radioterminals over a return link using a return link alphabet and to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one antenna.
58. A base station according to Claim 56 wherein the transceiver is configured to receive wireless communications co-channel from at least two radioterminals over a return link using a return link alphabet and to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one multiple-polarized antenna.
59. A base station according to Claim 56 wherein the transceiver is configured to receive wireless communications co-channel from at least two radioterminals over a return link using a return link alphabet and to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet at a plurality of multiple-polarized antennas.
60. A base station according to Claim 56 wherein the base station includes a plurality of sectors and wherein the transceiver is configured to receive wireless communications co-channel from at least two radioterminals over a return link using a return link alphabet and to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet at a plurality of multiple-polarized antennas in a sector.
61. A base station according to Claim 56 wherein the base station includes a plurality of sectors and wherein the transceiver is configured to receive wireless communications co-channel from at least two radioterminals over a return link using a return link alphabet and to transmit wireless communications to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one multiple-polarized antenna in at least two sectors.
62. A base station according to Claim 60 wherein the transceiver is configured to selectively receive wireless communications co-channel from at least two radioterminals to the plurality of multiple-polarized antennas in the sector over a return link using a return link alphabet if the at least two radioterminals are separated by more than a predetermined distance.
63. A base station according to Claim 56 wherein the time division duplex transceiver is further configured to decode the wireless communications that are received co-channel from the at least two radioterminals.
64. A radioterminal comprising: a transmitter that is configured to transmit wireless communications to a base station over a return link using a return link alphabet; and a receiver that is configured to receive at least two wireless communications from the base station co-channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
65. A radioterminal according to Claim 64 wherein the receiver is configured to receive at least two wireless communications from the base station co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one antenna.
66. A radioterminal according to Claim 64 wherein the receiver is configured to receive at least two wireless communications from the base station co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at at least one multiple-polarized antenna.
67. A radioterminal according to Claim 64 wherein the receiver is configured to receive at least two wireless communications from the base station co- channel over a forward link using a forward link alphabet that has more symbols than the return link alphabet at a plurality of multiple-polarized antennas.
68. A radioterminal according to Claim 64 wherein the receiver is further configured to decode at least one of the at least two wireless communications that are received from the base station co-channel.
69. A radiotemiinal comprising: a receiver that is configured to receive wireless communications from a base station over a forward link, to receive the wireless communications from at least one second radioterminal over a short-range wireless link, and to use the wireless communications that are received from the at least one second terminal over the short- range wireless link to process the wireless communications that are received from the base station.
70. A radioterminal according to Claim 69: wherein the receiver is configured to receive wireless communications from the base station over a forward link using a forward link alphabet; and wherein the radioterminal further comprises a transmitter that is configured to transmit wireless communications to the base station using a return link alphabet that has fewer symbols than the forward link alphabet.
71. A radioterminal comprising: a time division duplex transceiver that is configured to transmit wireless communications to a base station over a return link using a return link alphabet and to receive wireless communications from the base station over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
72. A radioterminal according to Claim 71 wherein the time division duplex transceiver is configured to transmit wireless communications from a single linearly-polarized antenna to the base station over a return link using a return link alphabet and to receive wireless communications from the base station at the single linearly-polarized antenna over a forward link using a forward link alphabet that has more symbols than the return link alphabet.
73. A radioterminal according to Claim 71 wherein the transceiver is further configured to decode the wireless communications that are received from the base station over the forward link.
PCT/US2004/008880 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets WO2004086776A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/795,875 US7444170B2 (en) 2003-03-24 2004-03-08 Co-channel wireless communication methods and systems using nonsymmetrical alphabets
AU2004223381A AU2004223381C1 (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets
CA2517067A CA2517067C (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets
PCT/US2004/008880 WO2004086776A2 (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets
EP04758074A EP1606956A4 (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets
MXPA05010287A MXPA05010287A (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets.
AU2010201677A AU2010201677B2 (en) 2003-03-24 2010-04-28 Co-channel wireless communication methods and systems using nonsymmetrical alphabets

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US45711803P 2003-03-24 2003-03-24
US45704303P 2003-03-24 2003-03-24
US60/457,118 2003-03-24
US60/457,043 2003-03-24
US60/473,959 2003-05-28
US47395903P 2003-05-29 2003-05-29
US47752203P 2003-06-11 2003-06-11
US60/477,522 2003-06-11
PCT/US2004/008880 WO2004086776A2 (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets

Publications (2)

Publication Number Publication Date
WO2004086776A2 true WO2004086776A2 (en) 2004-10-07
WO2004086776A3 WO2004086776A3 (en) 2007-11-01

Family

ID=42104561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/008880 WO2004086776A2 (en) 2003-03-24 2004-03-17 Co-channel wireless communication methods and systems using nonsymmetrical alphabets

Country Status (6)

Country Link
US (1) US7444170B2 (en)
EP (1) EP1606956A4 (en)
AU (2) AU2004223381C1 (en)
CA (1) CA2517067C (en)
MX (1) MXPA05010287A (en)
WO (1) WO2004086776A2 (en)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174127B2 (en) 1999-08-10 2007-02-06 Atc Technologies, Llc Data communications systems and methods using different wireless links for inbound and outbound data
US6892068B2 (en) * 2000-08-02 2005-05-10 Mobile Satellite Ventures, Lp Coordinated satellite-terrestrial frequency reuse
US8265637B2 (en) 2000-08-02 2012-09-11 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US7558568B2 (en) * 2003-07-28 2009-07-07 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US7792488B2 (en) 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US7664460B2 (en) 2001-09-14 2010-02-16 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US7447501B2 (en) * 2001-09-14 2008-11-04 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7181161B2 (en) * 2001-09-14 2007-02-20 Atc Technologies, Llc Multi-band/multi-mode satellite radiotelephone communications systems and methods
US7062267B2 (en) * 2001-09-14 2006-06-13 Atc Technologies, Llc Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US7792069B2 (en) 2001-09-14 2010-09-07 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum using different channel separation technologies in forward and reverse links
US7623859B2 (en) 2001-09-14 2009-11-24 Atc Technologies, Llc Additional aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7006789B2 (en) * 2001-09-14 2006-02-28 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US8270898B2 (en) 2001-09-14 2012-09-18 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US6999720B2 (en) * 2001-09-14 2006-02-14 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US7603117B2 (en) 2001-09-14 2009-10-13 Atc Technologies, Llc Systems and methods for terrestrial use of cellular satellite frequency spectrum
US7113778B2 (en) 2001-09-14 2006-09-26 Atc Technologies, Llc Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US6785543B2 (en) 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US7890098B2 (en) 2001-09-14 2011-02-15 Atc Technologies, Llc Staggered sectorization for terrestrial reuse of satellite frequencies
US7218931B2 (en) * 2001-09-14 2007-05-15 Atc Technologies, Llc Satellite radiotelephone systems providing staggered sectorization for terrestrial reuse of satellite frequencies and related methods and radiotelephone systems
US7593724B2 (en) * 2001-09-14 2009-09-22 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US7155340B2 (en) 2001-09-14 2006-12-26 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US7603081B2 (en) 2001-09-14 2009-10-13 Atc Technologies, Llc Radiotelephones and operating methods that use a single radio frequency chain and a single baseband processor for space-based and terrestrial communications
US6856787B2 (en) 2002-02-12 2005-02-15 Mobile Satellite Ventures, Lp Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
US7593691B2 (en) 2002-02-12 2009-09-22 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to a power level associated with a wireless transmitter
US6937857B2 (en) * 2002-05-28 2005-08-30 Mobile Satellite Ventures, Lp Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US7092708B2 (en) * 2002-12-12 2006-08-15 Atc Technologies, Llc Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
GB2396775B (en) * 2002-12-23 2005-04-13 Motorola Inc Method and apparatus for establishing direct communication for mobiles in a radio communication system
US7203490B2 (en) 2003-03-24 2007-04-10 Atc Technologies, Llc Satellite assisted push-to-send radioterminal systems and methods
US7444170B2 (en) * 2003-03-24 2008-10-28 Atc Technologies, Llc Co-channel wireless communication methods and systems using nonsymmetrical alphabets
US6879829B2 (en) * 2003-05-16 2005-04-12 Mobile Satellite Ventures, Lp Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
US20040240525A1 (en) * 2003-05-29 2004-12-02 Karabinis Peter D. Wireless communications methods and apparatus using licensed-use system protocols with unlicensed-use access points
US7340213B2 (en) * 2003-07-30 2008-03-04 Atc Technologies, Llc Intra- and/or inter-system interference reducing systems and methods for satellite communications systems
US8670705B2 (en) * 2003-07-30 2014-03-11 Atc Technologies, Llc Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US20050041619A1 (en) * 2003-08-22 2005-02-24 Karabinis Peter D. Wireless systems, methods and devices employing forward- and/or return-link carriers having different numbers of sub-band carriers
US7113743B2 (en) 2003-09-11 2006-09-26 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
WO2005032170A2 (en) 2003-09-23 2005-04-07 Atc Technologies, Llc Systems and methods for mobility management in overlaid satellite and terrestrial communications systems
CN1622677A (en) * 2003-11-27 2005-06-01 皇家飞利浦电子股份有限公司 A method for supporting point-to-point communication switch in wireless communication network
US8380186B2 (en) * 2004-01-22 2013-02-19 Atc Technologies, Llc Satellite with different size service link antennas and radioterminal communication methods using same
US7418236B2 (en) * 2004-04-20 2008-08-26 Mobile Satellite Ventures, Lp Extraterrestrial communications systems and methods including ancillary extraterrestrial components
US8655398B2 (en) 2004-03-08 2014-02-18 Atc Technologies, Llc Communications systems and methods including emission detection
US7933552B2 (en) * 2004-03-22 2011-04-26 Atc Technologies, Llc Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with combining operation
US7606590B2 (en) 2004-04-07 2009-10-20 Atc Technologies, Llc Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US7161988B2 (en) * 2004-04-12 2007-01-09 The Directv Group, Inc. Method and apparatus for minimizing co-channel interference
US8213553B2 (en) * 2004-04-12 2012-07-03 The Directv Group, Inc. Method and apparatus for identifying co-channel interference
JP2007533263A (en) * 2004-04-12 2007-11-15 ザ・ディレクティービー・グループ・インコーポレイテッド Shift channel characteristics to mitigate co-channel interference
US7672285B2 (en) * 2004-06-28 2010-03-02 Dtvg Licensing, Inc. Method and apparatus for minimizing co-channel interference by scrambling
US7636566B2 (en) * 2004-04-12 2009-12-22 Atc Technologies, Llc Systems and method with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US20050239399A1 (en) * 2004-04-21 2005-10-27 Karabinis Peter D Mobile terminals and set top boxes including multiple satellite band service links, and related systems and methods
US8265549B2 (en) 2004-05-18 2012-09-11 Atc Technologies, Llc Satellite communications systems and methods using radiotelephone
US20050260984A1 (en) * 2004-05-21 2005-11-24 Mobile Satellite Ventures, Lp Systems and methods for space-based use of terrestrial cellular frequency spectrum
US7706748B2 (en) * 2004-06-25 2010-04-27 Atc Technologies, Llc Methods of ground based beamforming and on-board frequency translation and related systems
CA2576521C (en) 2004-08-11 2016-09-20 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US20060094420A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Multi frequency band/multi air interface/multi spectrum reuse cluster size/multi cell size satellite radioterminal communicaitons systems and methods
US7639981B2 (en) * 2004-11-02 2009-12-29 Atc Technologies, Llc Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
WO2006055648A2 (en) * 2004-11-16 2006-05-26 Atc Technologies, Llc Satellite communications systems, components and methods for operating shared satellite gateways
US7747229B2 (en) * 2004-11-19 2010-06-29 Atc Technologies, Llc Electronic antenna beam steering using ancillary receivers and related methods
US7454175B2 (en) 2004-12-07 2008-11-18 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US8594704B2 (en) 2004-12-16 2013-11-26 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
EP2254265A3 (en) 2005-01-05 2013-11-27 ATC Technologies, LLC Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems and methods
US7596111B2 (en) 2005-01-27 2009-09-29 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US7636546B2 (en) * 2005-02-22 2009-12-22 Atc Technologies, Llc Satellite communications systems and methods using diverse polarizations
WO2006091605A2 (en) * 2005-02-22 2006-08-31 Atc Technologies, Llc Reusing frequencies of a fixed and/or mobile communications system
US7738837B2 (en) * 2005-02-22 2010-06-15 Atc Technologies, Llc Satellites using inter-satellite links to create indirect feeder link paths
US7756490B2 (en) 2005-03-08 2010-07-13 Atc Technologies, Llc Methods, radioterminals, and ancillary terrestrial components for communicating using spectrum allocated to another satellite operator
US8515359B2 (en) * 2005-03-09 2013-08-20 Intel Corporation Method and apparatus to provide low cost transmit beamforming for network devices
US7796986B2 (en) * 2005-03-11 2010-09-14 Atc Technologies, Llc Modification of transmission values to compensate for interference in a satellite down-link communications
US7627285B2 (en) 2005-03-14 2009-12-01 Atc Technologies, Llc Satellite communications systems and methods with distributed and/or centralized architecture including ground-based beam forming
WO2006099443A1 (en) 2005-03-15 2006-09-21 Atc Technologies, Llc Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
WO2006099501A1 (en) * 2005-03-15 2006-09-21 Atc Technologies, Llc Methods and systems providing adaptive feeder links for ground based beam forming and related systems and satellites
US7453396B2 (en) 2005-04-04 2008-11-18 Atc Technologies, Llc Radioterminals and associated operating methods that alternate transmission of wireless communications and processing of global positioning system signals
US7817967B2 (en) * 2005-06-21 2010-10-19 Atc Technologies, Llc Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
USRE47633E1 (en) 2005-06-22 2019-10-01 Odyssey Wireless Inc. Systems/methods of conducting a financial transaction using a smartphone
US8233554B2 (en) 2010-03-29 2012-07-31 Eices Research, Inc. Increased capacity communications for OFDM-based wireless communications systems/methods/devices
US8670493B2 (en) 2005-06-22 2014-03-11 Eices Research, Inc. Systems and/or methods of increased privacy wireless communications
US7970345B2 (en) 2005-06-22 2011-06-28 Atc Technologies, Llc Systems and methods of waveform and/or information splitting for wireless transmission of information to one or more radioterminals over a plurality of transmission paths and/or system elements
US7907944B2 (en) 2005-07-05 2011-03-15 Atc Technologies, Llc Methods, apparatus and computer program products for joint decoding of access probes in a CDMA communications system
US7593753B1 (en) * 2005-07-19 2009-09-22 Sprint Communications Company L.P. Base station antenna system employing circular polarization and angular notch filtering
US8190114B2 (en) * 2005-07-20 2012-05-29 Atc Technologies, Llc Frequency-dependent filtering for wireless communications transmitters
US7623867B2 (en) * 2005-07-29 2009-11-24 Atc Technologies, Llc Satellite communications apparatus and methods using asymmetrical forward and return link frequency reuse
US7831202B2 (en) 2005-08-09 2010-11-09 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
CN101248606B (en) * 2005-08-26 2013-05-15 直视集团公司 Methods and apparatuses for determining scrambling codes for signal transmission
WO2007047370A2 (en) 2005-10-12 2007-04-26 Atc Technologies, Llc Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
WO2007084682A1 (en) 2006-01-20 2007-07-26 Atc Technologies, Llc Systems and methods for forward link closed loop beamforming
US8705436B2 (en) 2006-02-15 2014-04-22 Atc Technologies, Llc Adaptive spotbeam broadcasting, systems, methods and devices for high bandwidth content distribution over satellite
US8923850B2 (en) 2006-04-13 2014-12-30 Atc Technologies, Llc Systems and methods for controlling base station sectors to reduce potential interference with low elevation satellites
US7751823B2 (en) 2006-04-13 2010-07-06 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US9014619B2 (en) 2006-05-30 2015-04-21 Atc Technologies, Llc Methods and systems for satellite communications employing ground-based beam forming with spatially distributed hybrid matrix amplifiers
US8169955B2 (en) 2006-06-19 2012-05-01 Atc Technologies, Llc Systems and methods for orthogonal frequency division multiple access (OFDMA) communications over satellite links
US8526941B2 (en) 2006-06-29 2013-09-03 Atc Technologies, Llc Apparatus and methods for mobility management in hybrid terrestrial-satellite mobile communications systems
US7778211B2 (en) * 2006-09-26 2010-08-17 Cisco Technology, Inc. Method for computing a downlink beamforming weighting vector based on up link channel information
US8031646B2 (en) 2007-05-15 2011-10-04 Atc Technologies, Llc Systems, methods and devices for reusing spectrum of another operator
US8064824B2 (en) 2007-07-03 2011-11-22 Atc Technologies, Llc Systems and methods for reducing power robbing impact of interference to a satellite
US7978135B2 (en) 2008-02-15 2011-07-12 Atc Technologies, Llc Antenna beam forming systems/methods using unconstrained phase response
US9374746B1 (en) 2008-07-07 2016-06-21 Odyssey Wireless, Inc. Systems/methods of spatial multiplexing
US8433241B2 (en) 2008-08-06 2013-04-30 Atc Technologies, Llc Systems, methods and devices for overlaid operations of satellite and terrestrial wireless communications systems
US8193975B2 (en) 2008-11-12 2012-06-05 Atc Technologies Iterative antenna beam forming systems/methods
US8339308B2 (en) 2009-03-16 2012-12-25 Atc Technologies Llc Antenna beam forming systems, methods and devices using phase adjusted least squares beam forming
US8520561B2 (en) 2009-06-09 2013-08-27 Atc Technologies, Llc Systems, methods and network components that provide different satellite spot beam return carrier groupings and reuse patterns
EP2484027B1 (en) 2009-09-28 2017-03-29 ATC Technologies, LLC Systems and methods for adaptive interference cancellation beamforming
US10110288B2 (en) 2009-11-04 2018-10-23 Atc Technologies, Llc Frequency division duplex (FDD) return link transmit diversity systems, methods and devices using forward link side information
US8274925B2 (en) 2010-01-05 2012-09-25 Atc Technologies, Llc Retaining traffic channel assignments for satellite terminals to provide lower latency communication services
CN101800678B (en) * 2010-03-12 2012-05-23 华为技术有限公司 Microwave transmission method, device and system applying CCDP and XPIC
US9806790B2 (en) 2010-03-29 2017-10-31 Odyssey Wireless, Inc. Systems/methods of spectrally efficient communications
US10560244B2 (en) * 2013-07-24 2020-02-11 At&T Intellectual Property I, L.P. System and method for reducing inter-cellsite interference in full-duplex communications
US10334515B2 (en) 2017-01-13 2019-06-25 ENK Wireless, Inc. Conveying information via auxiliary device selection
US11100796B2 (en) 2018-05-07 2021-08-24 ENK Wireless, Inc. Systems/methods of improving vehicular safety
US10681716B2 (en) 2018-05-07 2020-06-09 ENK Wireless, Inc. Systems/methods of providing increased wireless capacity, vehicular safety, electrical power wirelessly, and device control responsive to geographic position
US11075740B2 (en) 2018-05-07 2021-07-27 ENK Wireless, Inc. Systems/methods of communications using a plurality of cooperative devices
US10804998B2 (en) 2018-05-07 2020-10-13 ENK Wireless, Inc. Systems/methods of providing increased wireless capacity, vehicular safety, electrical power wirelessly, and device control responsive to geographic position

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303286A (en) * 1991-03-29 1994-04-12 Space Systems/Loral, Inc. Wireless telephone/satellite roaming system
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5327572A (en) * 1990-03-06 1994-07-05 Motorola, Inc. Networked satellite and terrestrial cellular radiotelephone systems
US5073900A (en) * 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
US5835857A (en) * 1990-03-19 1998-11-10 Celsat America, Inc. Position determination for reducing unauthorized use of a communication system
US5878329A (en) * 1990-03-19 1999-03-02 Celsat America, Inc. Power control of an integrated cellular communications system
US5446756A (en) * 1990-03-19 1995-08-29 Celsat America, Inc. Integrated cellular communications system
US6067442A (en) * 1991-10-10 2000-05-23 Globalstar L.P. Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
US5526404A (en) * 1991-10-10 1996-06-11 Space Systems/Loral, Inc. Worldwide satellite telephone system and a network coordinating gateway for allocating satellite and terrestrial gateway resources
US5619503A (en) 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US6157811A (en) 1994-01-11 2000-12-05 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US5724666A (en) * 1994-03-24 1998-03-03 Ericsson Inc. Polarization diversity phased array cellular base station and associated methods
US5511233A (en) * 1994-04-05 1996-04-23 Celsat America, Inc. System and method for mobile communications in coexistence with established communications systems
WO1995034153A1 (en) 1994-06-08 1995-12-14 Hughes Aircraft Company Apparatus and method for hybrid network access
US5754961A (en) * 1994-06-20 1998-05-19 Kabushiki Kaisha Toshiba Radio communication system including SDL having transmission rate of relatively high speed
US5584046A (en) 1994-11-04 1996-12-10 Cornell Research Foundation, Inc. Method and apparatus for spectrum sharing between satellite and terrestrial communication services using temporal and spatial synchronization
FR2729025B1 (en) * 1995-01-02 1997-03-21 Europ Agence Spatiale METHOD AND SYSTEM FOR TRANSMITTING RADIO SIGNALS VIA A SATELLITE NETWORK BETWEEN A FIXED EARTH STATION AND MOBILE USER TERMINALS
US6240124B1 (en) * 1995-06-06 2001-05-29 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5619525A (en) * 1995-06-06 1997-04-08 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5991345A (en) 1995-09-22 1999-11-23 Qualcomm Incorporated Method and apparatus for diversity enhancement using pseudo-multipath signals
US6449461B1 (en) * 1996-07-15 2002-09-10 Celsat America, Inc. System for mobile communications in coexistence with communication systems having priority
US5926758A (en) * 1996-08-26 1999-07-20 Leo One Ip, L.L.C. Radio frequency sharing methods for satellite systems
US6072768A (en) * 1996-09-04 2000-06-06 Globalstar L.P. Automatic satellite/terrestrial mobile terminal roaming system and method
GB2317074B (en) 1996-09-09 1998-10-28 I Co Global Communications Communications apparatus and method
GB2317303B (en) * 1996-09-09 1998-08-26 I Co Global Communications Communications apparatus and method
US5761605A (en) * 1996-10-11 1998-06-02 Northpoint Technology, Ltd. Apparatus and method for reusing satellite broadcast spectrum for terrestrially broadcast signals
US5896558A (en) 1996-12-19 1999-04-20 Globalstar L.P. Interactive fixed and mobile satellite network
US6091933A (en) * 1997-01-03 2000-07-18 Globalstar L.P. Multiple satellite system power allocation by communication link optimization
US5872544A (en) * 1997-02-04 1999-02-16 Gec-Marconi Hazeltine Corporation Electronic Systems Division Cellular antennas with improved front-to-back performance
US5933421A (en) * 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
JPH10261987A (en) * 1997-03-19 1998-09-29 Fujitsu Ltd Two-layer constitution satellite communication system and its geostationary satellite
US5937332A (en) * 1997-03-21 1999-08-10 Ericsson, Inc. Satellite telecommunications repeaters and retransmission methods
EP0869628A1 (en) * 1997-04-01 1998-10-07 ICO Services Ltd. Interworking between telecommunications networks
GB2324218A (en) * 1997-04-09 1998-10-14 Ico Services Ltd Satellite acquisition in navigation system
US5884142A (en) * 1997-04-15 1999-03-16 Globalstar L.P. Low earth orbit distributed gateway communication system
US6032041A (en) * 1997-06-02 2000-02-29 Hughes Electronics Corporation Method and system for providing wideband communications to mobile users in a satellite-based network
US6134437A (en) * 1997-06-13 2000-10-17 Ericsson Inc. Dual-mode satellite/cellular phone architecture with physically separable mode
US6011951A (en) * 1997-08-22 2000-01-04 Teledesic Llc Technique for sharing radio frequency spectrum in multiple satellite communication systems
US6085094A (en) * 1997-08-29 2000-07-04 Nortel Networks Corporation Method for optimizing spectral re-use
US6052586A (en) * 1997-08-29 2000-04-18 Ericsson Inc. Fixed and mobile satellite radiotelephone systems and methods with capacity sharing
US5907541A (en) * 1997-09-17 1999-05-25 Lockheed Martin Corp. Architecture for an integrated mobile and fixed telecommunications system including a spacecraft
US6101385A (en) * 1997-10-09 2000-08-08 Globalstar L.P. Satellite communication service with non-congruent sub-beam coverage
US6052560A (en) * 1997-10-15 2000-04-18 Ericsson Inc Satellite system utilizing a plurality of air interface standards and method employing same
US6157834A (en) 1997-12-29 2000-12-05 Motorola, Inc. Terrestrial and satellite cellular network interoperability
US6418147B1 (en) * 1998-01-21 2002-07-09 Globalstar Lp Multiple vocoder mobile satellite telephone system
US6205337B1 (en) * 1998-05-06 2001-03-20 Alcatel Canada Inc. Use of sectorized polarization diversity as a means of increasing capacity in cellular wireless systems
US6411824B1 (en) * 1998-06-24 2002-06-25 Conexant Systems, Inc. Polarization-adaptive antenna transmit diversity system
US6735437B2 (en) * 1998-06-26 2004-05-11 Hughes Electronics Corporation Communication system employing reuse of satellite spectrum for terrestrial communication
US6418316B2 (en) * 1998-08-06 2002-07-09 Harris Corporation Increasing channel capacity of wireless local loop via polarization diversity antenna distribution scheme
US6775251B1 (en) * 1998-09-17 2004-08-10 Globalstar L.P. Satellite communication system providing multi-gateway diversity and improved satellite loading
US6198730B1 (en) * 1998-10-13 2001-03-06 Motorola, Inc. Systems and method for use in a dual mode satellite communications system
US6198921B1 (en) * 1998-11-16 2001-03-06 Emil Youssefzadeh Method and system for providing rural subscriber telephony service using an integrated satellite/cell system
US6377817B1 (en) * 1999-05-03 2002-04-23 Nokia Mobile Phones Ltd. Asymmetric data transmission for use in a multi-modulation environment
US6253080B1 (en) * 1999-07-08 2001-06-26 Globalstar L.P. Low earth orbit distributed gateway communication system
US7174127B2 (en) * 1999-08-10 2007-02-06 Atc Technologies, Llc Data communications systems and methods using different wireless links for inbound and outbound data
US20030149986A1 (en) * 1999-08-10 2003-08-07 Mayfield William W. Security system for defeating satellite television piracy
US6522865B1 (en) * 1999-08-10 2003-02-18 David D. Otten Hybrid satellite communications system
GB2365677A (en) * 2000-02-29 2002-02-20 Ico Services Ltd Satellite communications with satellite routing according to channels assignment
US6526278B1 (en) * 2000-03-03 2003-02-25 Motorola, Inc. Mobile satellite communication system utilizing polarization diversity combining
US6785510B2 (en) * 2000-03-09 2004-08-31 Salbu Resarch & Development (Proprietary) Limited Routing in a multi-station network
US6535105B2 (en) * 2000-03-30 2003-03-18 Avx Corporation Electronic device and process of making electronic device
US20040203393A1 (en) 2002-03-13 2004-10-14 Xiang Chen System and method for offsetting channel spectrum to reduce interference between two communication networks
US7558568B2 (en) * 2003-07-28 2009-07-07 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US6892068B2 (en) * 2000-08-02 2005-05-10 Mobile Satellite Ventures, Lp Coordinated satellite-terrestrial frequency reuse
US6859652B2 (en) * 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6628919B1 (en) * 2000-08-09 2003-09-30 Hughes Electronics Corporation Low-cost multi-mission broadband communications payload
US20030003815A1 (en) * 2000-12-20 2003-01-02 Yoshiko Yamada Communication satellite/land circuits selection communications system
US6950625B2 (en) * 2001-02-12 2005-09-27 Ico Services Limited Communications apparatus and method
US6714760B2 (en) 2001-05-10 2004-03-30 Qualcomm Incorporated Multi-mode satellite and terrestrial communication device
US6549759B2 (en) * 2001-08-24 2003-04-15 Ensemble Communications, Inc. Asymmetric adaptive modulation in a wireless communication system
US7181161B2 (en) * 2001-09-14 2007-02-20 Atc Technologies, Llc Multi-band/multi-mode satellite radiotelephone communications systems and methods
US7218931B2 (en) * 2001-09-14 2007-05-15 Atc Technologies, Llc Satellite radiotelephone systems providing staggered sectorization for terrestrial reuse of satellite frequencies and related methods and radiotelephone systems
US7593724B2 (en) * 2001-09-14 2009-09-22 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US7447501B2 (en) * 2001-09-14 2008-11-04 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7031702B2 (en) * 2001-09-14 2006-04-18 Atc Technologies, Llc Additional systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US6999720B2 (en) * 2001-09-14 2006-02-14 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US6684057B2 (en) * 2001-09-14 2004-01-27 Mobile Satellite Ventures, Lp Systems and methods for terrestrial reuse of cellular satellite frequency spectrum
US7062267B2 (en) * 2001-09-14 2006-06-13 Atc Technologies, Llc Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US7039400B2 (en) * 2001-09-14 2006-05-02 Atc Technologies, Llc Systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US7113778B2 (en) * 2001-09-14 2006-09-26 Atc Technologies, Llc Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7664460B2 (en) * 2001-09-14 2010-02-16 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US7155340B2 (en) * 2001-09-14 2006-12-26 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US6785543B2 (en) * 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US7006789B2 (en) * 2001-09-14 2006-02-28 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US6856787B2 (en) * 2002-02-12 2005-02-15 Mobile Satellite Ventures, Lp Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
US6937857B2 (en) * 2002-05-28 2005-08-30 Mobile Satellite Ventures, Lp Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US8121605B2 (en) * 2002-06-27 2012-02-21 Globalstar, Inc. Resource allocation to terrestrial and satellite services
US7068975B2 (en) * 2002-11-26 2006-06-27 The Directv Group, Inc. Systems and methods for sharing uplink bandwidth among satellites in a common orbital slot
US7092708B2 (en) 2002-12-12 2006-08-15 Atc Technologies, Llc Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US6975837B1 (en) 2003-01-21 2005-12-13 The Directv Group, Inc. Method and apparatus for reducing interference between terrestrially-based and space-based broadcast systems
US7444170B2 (en) 2003-03-24 2008-10-28 Atc Technologies, Llc Co-channel wireless communication methods and systems using nonsymmetrical alphabets
US7203490B2 (en) * 2003-03-24 2007-04-10 Atc Technologies, Llc Satellite assisted push-to-send radioterminal systems and methods
US6879829B2 (en) * 2003-05-16 2005-04-12 Mobile Satellite Ventures, Lp Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
DE602004012250T2 (en) * 2003-05-28 2009-03-19 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND SYSTEM FOR WIRELESS COMMUNICATION NETWORKS WITH FORWARDING
US20040240525A1 (en) 2003-05-29 2004-12-02 Karabinis Peter D. Wireless communications methods and apparatus using licensed-use system protocols with unlicensed-use access points
US7340213B2 (en) * 2003-07-30 2008-03-04 Atc Technologies, Llc Intra- and/or inter-system interference reducing systems and methods for satellite communications systems
US8670705B2 (en) * 2003-07-30 2014-03-11 Atc Technologies, Llc Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US20050041619A1 (en) * 2003-08-22 2005-02-24 Karabinis Peter D. Wireless systems, methods and devices employing forward- and/or return-link carriers having different numbers of sub-band carriers
US7113743B2 (en) * 2003-09-11 2006-09-26 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
WO2005032170A2 (en) * 2003-09-23 2005-04-07 Atc Technologies, Llc Systems and methods for mobility management in overlaid satellite and terrestrial communications systems
US8380186B2 (en) * 2004-01-22 2013-02-19 Atc Technologies, Llc Satellite with different size service link antennas and radioterminal communication methods using same
US7453920B2 (en) * 2004-03-09 2008-11-18 Atc Technologies, Llc Code synchronization in CDMA satellite wireless communications system using uplink channel detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1606956A4 *

Also Published As

Publication number Publication date
EP1606956A2 (en) 2005-12-21
AU2004223381A1 (en) 2004-10-07
WO2004086776A3 (en) 2007-11-01
EP1606956A4 (en) 2011-04-27
US20040192395A1 (en) 2004-09-30
AU2010201677A1 (en) 2010-05-20
US7444170B2 (en) 2008-10-28
CA2517067C (en) 2014-11-18
AU2010201677B2 (en) 2011-08-18
AU2004223381B2 (en) 2010-06-10
AU2004223381C1 (en) 2010-10-28
CA2517067A1 (en) 2004-10-07
MXPA05010287A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
AU2004223381C1 (en) Co-channel wireless communication methods and systems using nonsymmetrical alphabets
CA2863510C (en) Co-channel wireless communication methods and systems using nonsymmetrical alphabets
Cavers Single-user and multiuser adaptive maximal ratio transmission for Rayleigh channels
US8155233B1 (en) MIMO decoding in the presence of various interfering sources
EP1349297A1 (en) A closed loop multiple antenna system
US8265213B2 (en) Method and apparatus for cancellation of partially known interference using transmit diversity based interference cancellation
Wennstrom et al. Transmit antenna diversity in Ricean fading MIMO channels with co-channel interference
Toka et al. Performance analyses of MRT/MRC in dual-hop NOMA full-duplex AF relay networks with residual hardware impairments
Cavers Multiuser transmitter diversity through adaptive downlink beamforming
Wang et al. To cooperate or not: A capacity perspective
Jang et al. On BER analysis and comparison for OSTBC MIMO DF relaying networks
Al-Qahtani et al. Relay Selection in Distributed Orthogonal Space-Time Block Coded Networks
Al-Qahtani et al. Alamouti distributed space-time coding with relay selection
Abeden et al. Response of Channel Inversion Technique with Space Time Block Code in Multi-User MIMO
Ho et al. Two-way relaying with multiple antennas using covariance feedback
Roopa et al. Performance Improvement Of MIMO System Using OSTBC Scheme and ML Detection Technique Under Rayleigh Channel
Liang et al. Combining transmit beamforming, space-time block coding and delay spread reduction
Cavers Single User and Multiuser Adaptive Transmitter Diversity for Rayleigh Channels
Eldenferia et al. The performance of Space Time Block Coding (STBC) in MIMO relay network
Zhao et al. Linear transceiver design for relay-assisted broadcast systems with diagonal scaling
Kang et al. An Adaptive Cooperative Transmission Scheme According to the User Location
Yoon et al. Design of MIMO-OFDM multi-hop relaying with cooperative base station
Agubor et al. Comparative Analysis of Multiple and Single Antenna Applications in Mobile Wireless Communication
Pusane et al. Power control for orthogonal space-time coding with multiple receive antennas
Sohaib Energy efficient cooperative wireless communications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004758074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004223381

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2517067

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2004223381

Country of ref document: AU

Date of ref document: 20040317

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004223381

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/010287

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2004758074

Country of ref document: EP