WO2004069409A2 - Automated sample analysis system and method - Google Patents

Automated sample analysis system and method Download PDF

Info

Publication number
WO2004069409A2
WO2004069409A2 PCT/US2004/002717 US2004002717W WO2004069409A2 WO 2004069409 A2 WO2004069409 A2 WO 2004069409A2 US 2004002717 W US2004002717 W US 2004002717W WO 2004069409 A2 WO2004069409 A2 WO 2004069409A2
Authority
WO
WIPO (PCT)
Prior art keywords
well plate
plate
sample
shelf
cabinet
Prior art date
Application number
PCT/US2004/002717
Other languages
French (fr)
Other versions
WO2004069409A3 (en
Inventor
Rhett L. Affleck
Mike Bodnar
Robert Kenjiro Leving
John E. Lillig
Robert K. Neeper
Original Assignee
Discovery Partners International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Discovery Partners International filed Critical Discovery Partners International
Publication of WO2004069409A2 publication Critical patent/WO2004069409A2/en
Publication of WO2004069409A3 publication Critical patent/WO2004069409A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/523Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for multisample carriers, e.g. used for microtitration plates
    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4027Concentrating samples by thermal techniques; Phase changes evaporation leaving a concentrated sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • G01N2035/00881Communications between instruments or with remote terminals network configurations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • G01N2035/042Plate elements with several rows of samples moved independently, e.g. by fork manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • G01N2035/0425Stacks, magazines or elevators for plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • G01N2035/0463Buffers [FIFO] or stacks [LIFO] for holding carriers between operations in incubators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators

Definitions

  • the invention relates to the field of sample analysis. More particularly, the invention relates to an automated biological sample analysis system. Description of the Related Art
  • sample production and analysis must be performed in controlled environments. Often the environment requires refrigeration. For example, in protein crystallography, samples are often incubated for long periods of time at controlled temperatures to induce production of crystals. Hundreds or thousands of samples in sample wells may be periodically viewed or otherwise analyzed to determine the existence of crystals in a sample well.
  • a technician removes each multi-well plate or sample storage receptacle from a storage location and views each sample well under a microscope.
  • the samples are typically incubated in a refrigerated environment and are highly sensitive to changes in the environment.
  • the samples are stored in a refrigerated laboratory and the technician removes the sample storage receptacles and views the sample wells under a microscope in the refrigerated room.
  • the need for a refrigerated room expands the amount of laboratory space that needs to be dedicated to protein crystallization and conversely, reduces the amount of laboratory space available for other experiments.
  • a heavy duty X/Y robot is placed in a temperature controlled room designed to store tens of thousands of sample plates, with each sample plate capable of containing hundreds of samples in individual sample wells.
  • the X/Y robot removes a sample from a storage location and transports it to a single imaging station.
  • the imaging station can be manually operated or can be an automated imaging system that takes an image of the sample.
  • the mega-incubator systems are designed for large-scale operations and lack the flexibility required in medium sized organizations.
  • the system is housed within a temperature controlled room and requires the entire system be maintained at the same temperature. Multiple samples cannot be tested at multiple temperatures.
  • the systems are confined to a single multi-well plate format and hardware in the robot and image system must be reconfigured for changes in the multi-well plate format.
  • sample imaging system that has the flexibility of manual plate handling and the efficiency of an automated system.
  • the sample imaging system needs to minimize the shock and vibration experienced by the samples.
  • the sample imaging system needs to maintain the samples at a stable environment for long periods of time. Additionally, the laboratory space needed to incubate and analyze the samples needs to be minimized.
  • an automated biological sample analysis system and method enables incubating and analyzing multiple samples for protein crystallization.
  • a temperature controlled cabinet houses sample storage, sample transport, and sample imaging systems. The system is automated and can be controlled by software, preferably running on a processor external to the cabinet that can be reconfigured remotely.
  • An array of storage shelves includes multiple shelf columns arranged around a core. Multiple banks of removable shelves arranged as magazines are accessed through a door on the cabinet. Each shelf stores a multi-well plate and different sizes can be stored in different shelves.
  • the core houses a sample transport system that includes a multi-axis robot that rotates about a vertical axis to access the shelves in the shelf array. The transport system retrieves and replaces the multi-well plates in the shelves and can move plates from the shelves to an imaging system where each sample can be automatically imaged.
  • a transport assembly retrieves storage receptacles from the array of shelves and transports the storage receptacle to a destination.
  • the destination can be another shelf, the imaging system, or an access shelf that is configured to allow removal of the storage receptacle from the cabinet through a plate access door.
  • the transport assembly includes a rotatable platform on which an elevator assembly is mounted.
  • the elevator assembly in conjunction with the rotatable platform, positions a plate handler at a height and angular position corresponding to a shelf or other location.
  • the plate handler retrieves a storage receptacle from the shelf or other location.
  • the plate handler can also place a storage plate on the shelf or other location.
  • a plate handler retrieves or places a storage receptacle, which can be a multi-well plate, from or to a location.
  • the plate handler can retrieve a multi-well plate from a shelf.
  • the plate handler includes fingers that lift a near edge of the multi- well plate above a resting surface while allowing a far edge of the multi-well plate to remain on the resting surface.
  • the plate handler slides the multi-well plate and lifts the far edge of the multi-well plate with a fulcrum.
  • the fulcrum contacts a bottom edge of the well late and lifts the far edge of the multi-well plate as the multi-well plate is slid towards a transport position.
  • the plate handler reverses the retrieval process.
  • an imaging system automatically images one or more wells in a multi-well plate or other storage receptacle.
  • An imaging device is connected to a lens and a mount that enables the imaging device and lens to move in a first axis.
  • An imaging station is configured to receive a multi-well plate and can move in a second axis substantially perpendicular to the first axis.
  • the lens is motor driven to allow for automated focusing.
  • the imaging system includes one or more illumination sources. One source can be positioned away from an imaging axis by a first distance.
  • a second illumination source can be positioned away from the imaging axis by a second distance.
  • the first and second illumination sources can be located on substantially opposite sides of the imaging axis.
  • the illumination sources can provide illumination independently.
  • the processor can control the illumination sources to provide illumination simultaneously.
  • the illumination sources can be xenon flash tubes and the processor can control the duration of the flash.
  • a capacitor or capacitor bank can provide the energy for the flash tubes.
  • a Silicon Controlled Rectifier (SCR) or thyristor can connect the capacitor to the flash tube.
  • the processor can control conduction through the SCR, and thus, energization of the flash tubes.
  • the processor can also interrupt the flow of current through the SCR to control the illumination, or intensity of light.
  • a shelf or storage location for the multi-well plates includes locating members for accommodating a plurality of multi-well plate sizes.
  • the shelf is configured to store one multi-well plate from a plurality of multi-well plate sizes.
  • the shelf can be an individual shelf that can be connected to other shelves to produce the shelf array.
  • the shelf includes a first ridge to position a multi-well plate of a first size.
  • the shelf contains a second ridge to position a multi-well plate of a second size.
  • the shelf can position a smaller multi-well plate in a recess defined by the first ridge.
  • the shelf can include a second recess to position a second, larger, multi-well plate.
  • the shelf can contain lateral recesses or gaps in the ridges to locate a multi-well plate and to minimize movement of the multi-well plate along a predetermined direction.
  • the shelf can also include a tab, or flag, extending from a wall of the shelf to interface with a sensor. The flag can interrupt an optical sensor of the transport assembly to allow the transport assembly to locate the plate handler in a position relative to the shelf.
  • a plate tray houses one or more multi- well plates and provides an outline dimension and interface that is analogous to a second multi- well plate.
  • a multi-well plate configuration which is not positioned by the shelf can be installed in the plate tray such that the shelf, plate handler, and transport assembly can manipulate the multi- well plates.
  • the sample analysis system handles the plate tray as if it were the multi-well plate of the same dimension.
  • a method of imaging one or more wells in a multi-well plate or sample storage receptacle includes retrieving the samples from a shelf using a transport assembly and transporting the multi-well plate to a destination, which can be another shelf, an optical assembly, or an access shelf.
  • the multi-well plate can be transported to an optical assembly and the optical assembly can image at least one of the wells or samples in the multi-well plate.
  • the transport assembly transports the multi-well plate back to a shelf and repositions the multi-well plate on the shelf.
  • a method of transporting a multi-well plate in an imaging system includes raising a first edge of a multi-well plate, transporting or sliding the multi-well plate onto a surface of the plate handler and raising a second edge of the multi-well plate with a fulcrum.
  • a method of imaging at least one well in a multi-well plate includes positioning a multi-well plate along a first axis, positioning an imaging device along a second axis, and capturing an image of at least one well on the multi-well plate.
  • Figure 1 is a functional block diagram of the automated sample analysis system.
  • Figure 2 is a partial view of the cabinet front.
  • Figure 3 is a partial view of the cabinet side.
  • Figure 4 is a partial view of the cabinet interior.
  • Figure 5 is a partial view of the cabinet interior.
  • Figure 6 is a view of the transport system.
  • Figure 7 is a view of the plate handler.
  • Figure 8 is a view of the plate handler with a multi-well plate.
  • Figures 9A-9B are views of a shelf.
  • Figure 10 is view of an array of stationary shelves.
  • Figure 11 is a view of a removable shelf magazine.
  • Figure 12 is a view of the optical system.
  • Figure 13 is a view of the environmental control assembly.
  • Figure 14 is a view of a plate tray.
  • Figure 15 is a functional block diagram of the controller. Detailed Description of the Preferred Embodiment
  • FIG. 1 is a functional block diagram of one embodiment of an automated sample analysis system 100.
  • the automated sample analysis system 100 includes a cabinet 102 including a removable shelf access door 110 and a shelf access door 112 that are typically mounted on a front of the cabinet 102 and provide access to an environmentally controlled chamber within the cabinet 102.
  • the environmentally controlled chamber of the cabinet 102 can also be referred to as the interior of the cabinet 102.
  • the cabinet 102 also includes spaces that are external to the environmentally controlled chamber.
  • the cabinet 102 includes an environmental control unit 160 mounted external to the environmentally controlled chamber.
  • the environmental control unit includes a refrigeration unit 162 and a heater 164.
  • the cabinet 102 houses a removable shelf system 120, a stationary shelf system 122, a transport assembly 130 and an optical assembly 140 within the environmentally controlled chamber.
  • the transport assembly 130 includes a plate handler 132, an elevator assembly 134, and a rotatable platform 136.
  • the optical assembly 140 includes an imaging device 142, a lens 144, a movable mount 146, an illumination module 152 and a sample mount 154.
  • a processor 170 and memory 172 are mounted in a controller 190 that is preferably external to the cabinet 102.
  • the processor 170 is connected to, and in communication with, the memory 172. Additionally, the processor 170 is connected to, and in communication with, a network interface module 174.
  • the network interface module 174 is connected to the cabinet 102 and allows the controller 190 to communicate and control various modules within the cabinet 102.
  • the network interface module 174 can also be connected to an external network 180 that is not a portion of the sample analysis system 100.
  • the sample analysis system 100 can be used to prepare and analyze numerous types of samples, including biological samples.
  • the sample analysis system 100 can be used to incubate and image protein samples.
  • the sample analysis system 100 can be used to incubate and monitor the protein samples for crystallization.
  • the automated sample analysis system 100 is not limited to use in protein crystallization imaging and can be used for other applications.
  • a user can prepare numerous sample storage receptacles for analysis by the automated sample analysis system 100.
  • the sample storage receptacles can be, for example, tube holders, multi-well plates, microtiter wells, gel plates, flat plates, plates having matrices of drop positions, and the like, or other means for sample storage.
  • a multi-well plate can be one of multiple formats compatible with the shelf systems, 120, 122 within the system 100.
  • the multi-well plate can be, for example, a standard multi-well plate such as a Linbro plate, a Douglas microbatch plate, a Greiner plate, a Corning plate, a 96/384 multi-well plate, or some other type of crystallography plate or sample storage plate.
  • the multi-well plates, or other sample storage receptacles typically are marked with an identifier.
  • the identifier can be a machine readable identifier, such as a barcode or RF tag.
  • the barcode can include information that correlates with the samples in the multi-well plate or can directly contain information about the multi-well plate or samples.
  • the barcode can include information regarding the type of multi-well plate. This information can then be used, for example, by the transport assembly 130 or the optical assembly 140.
  • the optical assembly 140 can use the multi-well plate identification to determine the number of wells in the multi-well plate and the spacing of the wells.
  • the multi- well plates can be loaded into a removable magazine that includes a number of shelves.
  • the removable magazine can, for example, include sixteen shelves and each shelf can hold one multi- well plate.
  • the removable magazine includes any number of shelves, such as 10, 12, 14, 18, 20, or 22, for example, and can hold multiple plates, such as in a plate tray (discussed below with respect to Figure 14), for example.
  • the removable magazine forms part of the removable shelf system 120.
  • the removable shelf system 120 can be configured to accept one or more removable magazines in order to facilitate removal and insertion of multi-well plates.
  • the number of magazines that the removable shelf system 120 can accommodate can be limited in order to minimize the change in environmental conditions experienced in the environmental chamber when the removable shelf access door 110 is opened and one or more magazines are removed.
  • the removable shelf system 120 can include two magazines, with each magazine having sixteen shelves.
  • the loaded magazine is then inserted into a corresponding location in the removable shelf system 120.
  • the transport assembly 130 then retrieves the plates from a shelf on the magazine and places the multi-well plate on a shelf in the stationary shelf system 122.
  • a barcode reader positioned on the plate handler 132 can read the barcode on the multi-well plate before placing the multi-well plate on a shelf in the stationary shelf system 122.
  • the transport assembly 130 can transmit the barcode to the controller 190 to enable the controller 190 to build a database or allocation table in the memory 172 of the shelf locations and associated multi-well plates contained within the shelves.
  • the controller 190 can control the transport assembly 130 to place multi-well plates retrieved from the removable magazine shelves to stationary shelves.
  • the controller 190 can control the transport assembly 130 to place load the stationary shelves in a predetermined order.
  • the controller 190 can control the transport assembly 130 to search the shelves in the stationary shelf system 122, using a predetermined sequence, for an empty shelf or may simply consult the allocation table stored in memory 172.
  • the transport assembly 1309 can then deliver the multi-well plate to the first empty shelf encountered.
  • the controller 190 can control the transport assembly 130 to deliver the multi-well plate to a specific empty shelf in the stationary shelf system 122.
  • a typical stationary shelf system 122 includes 300 shelves that can be used for multi-well plate storage.
  • the number of shelves in the stationary shelf system 122 is not limited to 300 but can be any number of shelves.
  • the stationary shelf system 122 is typically an array of shelves that are arranged in an arc or otherwise arranged around a core.
  • plates of various sizes may be used in the sample analysis system.
  • the dimensions of the shelves are large enough to hold all sizes of plates, hi another embodiment, some shelves are dimensioned to hold smaller plates and other shelves may be dimensioned to hold larger plates, this embodiment, the smaller plates may be stored in smaller shelves, thus reducing the amount of storage space that is unused when small plates are stored on shelves dimensioned to hold larger plates.
  • the magazine can be removed to be reloaded with additional multi-well plates.
  • the process can be repeated until all of the shelves in the stationary shelf system 122 contain a multi-well plate. Alternatively, some shelves in the stationary shelf system 122 can remain empty.
  • the system 100 operates with the removable magazines empty to allow multiple multi-well plates to be retrieved from locations and placed into the magazines for removal from the system 100. Alternatively, the system 100 can operate with the removable magazines loaded with multi-well plates to increase the total multi-well plate capacity of the system 100.
  • the controller 190 controls the transport assembly 130 to retrieve and transport multi-well plates from the removable magazines to the stationary shelves.
  • the transport assembly 130 can move multi-well plates in any order.
  • the transport assembly 130 has random access to the shelves.
  • the transport assembly 130 can perform the complementary task of removing multi-well plates from shelves in the stationary shelf assembly 122 and transporting and delivering the multi-well plates to shelves in the removable magazines.
  • the transport assembly 130 performs nearly all of the multi-well plate transportation within the system 100.
  • the transport assembly 130 can retrieve multi-well plates from, and transport multi- well plates to, a variety of locations.
  • the transport assembly 130 can transport a multi-well plate to a shelf that is accessible via the shelf access door 112.
  • the shelf access door 112 provides user access to a single shelf to allow removal or insertion of a single multi-well plate.
  • the shelf access door 112 provides an alternative to using the removable magazines to remove a multi-well plate.
  • the shelf access door 112 is typically much smaller than the removable shelf access door 110 and thus, minimizes the effects on the environmental chamber when opened.
  • the transport assembly 130 can also transport multi-well plates to, and retrieve multi-well plates from, an optical assembly 140. Tj ⁇ ically, the transport assembly moves plates between the optical assembly 140 and the stationary shelf system 122. However, the processor can control the transport assembly 130 to move plates between any originating locations to any destination.
  • the transport assembly 130 includes at least one plate handler 132, an elevator assembly 134, and a rotatable platform 136.
  • the transport assembly 130 is located within the controlled environment chamber of the cabinet 102 and is also located inside the arc defined by the stationary shelf system 122. Alternatively, where the stationary shelf system is arranged around a core, the transport assembly 130 is located within the core.
  • the transport assembly 130 includes a plate handler 132 that is configured to move a plate into and out of a shelf.
  • the plate handler 132 is mounted to the elevator assembly 134.
  • the elevator assembly 134 moves the plate handler up and down to the various heights corresponding to the heights of the shelves in the stationary shelf system 122.
  • the elevator assembly 134 is mounted on the rotatable platform 136.
  • the rotatable platform 136 can rotate about a vertical axis and can position the elevator assembly 134 and plate handler 132 at an angular position corresponding to a column of shelves in the stationary shelf system 122.
  • the transport assembly 130 is a four axis robot that can position a multi-well plate in X, Y, and Z axis and can rotate about a vertical axis extending through the rotatable platform 136.
  • multi plate sizes may be stored on the shelves and transported by the plate handler 132 to the optical assembly 140.
  • the optical assembly 140 includes a mount configured to support a plate of a standard size.
  • the optical assembly 140 may also include a moveable plate adapter having a footprint the size of a standard plate that is configured to support plates that are smaller than the standard size. Accordingly, when a plate that is smaller than the standard size is to be placed in on the mount of the optical assembly 140, the plate adapter may first be placed on the mount, by the plate handler 132, for example, and then the smaller plate may be placed on the plate adapter. . i this way, the optical assembly 140 is able to easily acquire images from various sizes of plates through the use of the plate adapter.
  • the optical assembly 140 includes multiple plate adapters, each having a footprint the size of a standard plate and each being configured to support a plate of a different, smaller size, h this embodiment, the plate handler 132 may select a plate adapter based on the size of the plate which is to be placed on the mount of the optical assembly 140.
  • the optical assembly 140 includes an imaging device 142, a lens 144, a movable mount 146, an illumination module 152, and a sample mount 154.
  • the optical assembly 140 is located within the environmentally controlled chamber of the cabinet 102.
  • the optical assembly 140 receives a multi-well plate from the transport assembly 130 at the sample mount 154.
  • the sample is moved in a first axis using the sample mount 154.
  • the movable mount 146 positions the imaging device 142 and lens 144 over at least one well of the multi-well plate.
  • the illumination module 152 lights the sample and the imaging device 142 captures the image of the sample.
  • the sample mount 154 is configured to position the multi-well plate in a predetermined axis.
  • the sample mount 154 can also include a filter mount that is configured to hold optical filters.
  • the filter mount can hold polarization plates or light filtering plates.
  • the sample mount 154 is configured to move along a linear axis.
  • the sample mount 154 can be configured to position the multi-well plate by moving on more than one axis.
  • the lens 144 is connected to the imaging device 142.
  • the imaging device 142 can be a camera or other image capture device.
  • the imaging device 142 can be a film camera, a digital camera, a CMOS camera, a Charge Coupled Device (CCD), and the like, or some other means for imaging.
  • the imaging device 142 can be a CMOS camera with a firewire interface.
  • the CMOS camera communicates with the controller 190 through the network interface 174 using a firewire connection.
  • Such a CMOS camera is capable of providing five images per second to the controller 190.
  • other practical limitations, such as the time required between successive illuminations in the illumination module 152 can reduce the throughput of the optical assembly 140.
  • Capacitors driving flash tubes in the illumination module 152 can require nearly one second to recharge. Additional constraints include the desire to minimize the acceleration and speed imposed on the multi-well plate, as well as auto focusing of the lens 144 and imaging device 142 prior to each image capture. Taking into account X/Y positioning of the samples in the multi-well plate, auto-focusing, imaging of each sample in the multi-well plate, and charging time of the illumination module 152, the optical assembly 140 can average approximately one image in five seconds. However, the image throughput increases if the optical assembly 140 takes more than one image per sample. Other factors can also affect the image throughput. For example, the controller 190 can implement an automatic sample location routine rather than using a predetermined map of sample positions.
  • the controller 170 can instruct the lens 144 and imaging device 142 to capture a zoomed image.
  • the optical assembly 140 can capture and transmit to the controller 190 on average one image in five seconds.
  • the optical assembly 140 can capture and transmit one image in as little as 0.2 seconds or as great as 12 seconds, and the time to capture and transmit an image can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 seconds.
  • the optical assembly 140 can capture and transmit one image, on average, in 5-12 seconds.
  • the imaging device 142 is not limited to capturing a visible image but can be configured to capture some other characteristic, such as radiation spectra, x-ray images, infrared images, ultraviolet images, spectrally filtered images, and the like.
  • the controller 190 can control a motorized zoom and motorized focus included on the lens 144.
  • the controller also controls a motorized aperture.
  • the imaging device includes a motorized filter wheel that may be rotated, either automatically or manually, in order to change a filter through which images are acquired.
  • the motorized filter wheel may include a polarization filter.
  • the lens 144 can advantageously have a zoom function, such as a 12-1 zoom and, in cooperation with the imaging device 142, can easily provide 3-4 micron optical resolution.
  • the lens 142 and imaging device 142 can be integrated as a single assembly, such as a camera or microscope having a lens.
  • the imaging device 142 in combination with the lens 144 provides a broad depth of field to allow imaging of objects such as protein crystals at varying depths within the sample well.
  • the imaging device 142 and lens 144 are mounted on the movable mount 146.
  • the movable mount 146 can move in a predetermined axis and can position the imaging device 142 and lens 144 at a location along the axis.
  • the movable mount 146 typically moves along a linear axis that is substantially perpendicular to the moving axis of the sample mount 154.
  • the movable mount 146 and sample mount 154 move across a plane that is substantially parallel to a plane defined by the multi-well plate located in the sample mount 154.
  • the controller 190 can control the movable mount 146 and the sample mount 154 to position a specific well in the multi-well plate to be within the view of the lens 144 and imaging device 142.
  • the optical assembly 140 also includes an illumination module 152 that illuminates the sample for imaging by the imaging device 142.
  • the samples that are to be imaged are often highly sensitive to temperature changes.
  • the illumination module 140 is configured to minimize the amount of heat transferred to the sample when the sample is illuminated.
  • the system can use incandescent or fluorescent light sources illuminating an optical light pipe, such as an optical fiber.
  • the optical fiber can then be routed to the sample such that the sample is illuminated by light travelling through the light pipe.
  • the light sources can remain illuminated during the entire multi-well plate imaging process.
  • such an illumination system can still generate too much heat exposure to the samples and can result in unsatisfactorily low levels of light.
  • LED sources can be used to illuminate the sample, but LED radiation occupies a narrow optical bandwidth and is typically low intensity. LEDs can emit nearly a single wavelength and can require expensive imaging systems to compensate for the lack of light.
  • the illumination module 152 can include one or more flash tubes to momentarily illuminate the sample with relatively high-intensity light during the period in which the imaging device 142 captures an image of the sample.
  • the flash tubes can be xenon flash tubes that provide a broad spectrum of light. The flash tubes are on only for a small fraction of a second per image and transfer almost no heat to the samples. Multiple tubes can be positioned to provide both on-axis and off-axis lighting of the sample.
  • a first xenon tube can be positioned a first distance from the imaging axis of the imaging device 142.
  • a second xenon tube can be positioned a second distance from the imaging axis of the imaging device 142.
  • the first and second distances are equal and the first xenon tube is positioned opposite the imaging axis from the second xenon tube.
  • the processor can control the flash tubes to provide on-axis or off-axis illumination of the sample.
  • One xenon tube can illuminate the sample to provide off-axis illumination.
  • Both xenon tubes can illuminate simultaneously to provide on-axis illumination.
  • a fan is advantageously provided to direct heat produced by the tubes outside of the cabinet 102.
  • the controller 190 can control the imaging device 142 to capture two images of the sample.
  • the imaging device 142 captures one image with the illumination module 152 lighting the sample with the first xenon flash tube.
  • the imaging device 142 captures a second image with the illumination module 152 lighting the sample with the second xenon flash tube.
  • the controller 190 can then combine the image data and perform an analysis based on the combined data.
  • the processor 170 can perform an accurate analysis of small objects in the sample using the combined data.
  • the processor 170 can, for example, use processor readable instructions stored in memory 172 to perform image analysis on a single image, multiple, or combined images. Alternatively, a user or operator can view the captured images.
  • the sample analysis system 100 also includes an environmental control unit 160 that is located within the cabinet 102 but not within the environmentally controlled chamber of the cabinet 102.
  • the environmental control unit 160 is mounted on the exterior of the cabinet 102.
  • a face plate or cover (not shown) can be used to shield the environmental control unit 160 to give the cabinet 102 a more pleasing appearance.
  • the environmental control unit 160 is typically configured to control a temperature within the environmentally controlled chamber, or interior, of the cabinet 102.
  • the environmental control unit 160 can, for example, maintain the temperature within the interior of the cabinet 102 at any temperature within the range of 4° to 40°C.
  • the environmental control unit 160 can preferably maintain the temperature to an accuracy of +/- 1°C or better.
  • the environmental control unit 160 can also be configured to control other aspects of the interior of the cabinet 102.
  • the environmental control unit 160 can be configured to control an atmosphere, humidity, pressure, and the like within the interior of the cabinet 102.
  • the atmosphere can be a dry nitrogen atmosphere for example.
  • One embodiment of the environmental control unit 160 includes a refrigeration unit 162 and a heater 164 to control the temperature within the interior of the cabinet 102. Because the environmental control unit 160 typically includes mechanical equipment such as fans, compressors, and pumps within the sub assemblies, the amount of vibration generated by the environmental control unit can be substantial.
  • the environmental control unit 160 is preferably mechanically isolated from the interior of the cabinet 102 to minimize the vibration transferred to the samples. One way to accomplish this is to have the environmental control unit 160 separately supported by the support surface that supports the cabinet 102. Thus, in operation, the environmental control unit 160 is not mounted to the cabinet 160 but instead, rests on a support surface.
  • the support surface can be, for example the ground, laboratory floor, or other means for supporting the cabinet 102.
  • the support surface can be isolated from the cabinet 102 support surface.
  • the cabinet 102 can be mounted to the floor and the environmental 1 control unit 160 can rest on a vibration dampened floor that is isolated from the laboratory floor.
  • the environmental control unit 160 is thus coupled to the cabinet 102 using the minimal number of connections required to transfer the heating or cooling air to the interior of the cabinet 102.
  • Control elements of the sample analysis system 100 are mounted outside of the cabinet 102 and are typically mounted remote from the cabinet 102.
  • the cabinet 102 can include a port that provides a connection to all the controllable assemblies contained by the cabinet 102.
  • the transport assembly 130, optical assembly 140, and environmental control unit 160 can all be controlled through a common communication bus.
  • each controlled device can be controlled using independent control lines, or independent control channels.
  • some of the controlled devices can be controlled through a common bus and others can be controlled using dedicated control lines or control channels.
  • the controller 190 can communicate with the various devices and assemblies using a common bus, dedicated lines, or channels.
  • the controller 190 communicates with the various devices associated with the cabinet 102 via a network interface 174.
  • the network interface 174 translates the processor 170 commands to the communication protocol used by the destination device. Conversely, the network interface 174 translates received communication messages to processor 170 readable data or messages.
  • the network interface 174 can also interface the processor 170 to an external network 180 that is not part of the sample analysis system 100.
  • the external network 180 can be, for example, a local area network or a wide area network, such as the Internet.
  • the processor 170 is also connected to the memory 172 that can include volatile memory and non-volatile memory.
  • the memory 172 can be a combination of integrated circuits, optical memory, and magnetic memory.
  • the memory 172 can store processor readable instructions, such as embedded code, that instruct the processor 170 to control the assemblies and devices of the cabinet 102.
  • the processor readable instructions can be configurable or can be a fixed configuration.
  • the processor readable instructions can be configured via a user interface to direct the processor 170 to instruct the transport assembly 130 to retrieve a specific multi-well plate and deliver it to the optical assembly 140.
  • the optical assembly 140 can then be controlled to image a particular well in the multi-well plate.
  • the controller 190 also stores captured images in memory 172.
  • the captured images can then be viewed on a display (not shown) or transmitted to a remote location for further analysis or display.
  • the memory 172 can include storage such as hard disk storage or RAID storage to store the captured images.
  • the memory 172 can include, for example, 500 GB of memory for image storage.
  • the controller 190 is typically housed within a computer, controller, or server.
  • the controller 190 can be located remote from the cabinet 102 and is typically not mounted to the cabinet 102 in order to minimize coupling of vibrations and heat generated by the controller 190 to the environmentally controlled chamber of the cabinet 102.
  • Figure 2 is a view of the front of the cabinet 102 that was detailed in Figure 1.
  • the front of the cabinet 102 includes the removable shelf access door 110 and the shelf access door 112.
  • the removable shelf access door 110 is shown in its open position.
  • Two removable magazines 22a and 220b are accessible through the removable shelf access door 110.
  • the two removable magazines 220a and 220b form part of the removable shelf system 120 discussed in conjunction with Figure 1.
  • the cabinet 102 is not limited to housing two removable magazines 220a and 220b.
  • the location of the removable shelf access door 110 is not limited to the front of the cabinet 102.
  • the size of the removable shelf access door 110 is directly related to the change in environmental conditions caused by opening the door.
  • the size and number of removable magazines 220a and 220b can then be determined based on the size of the removable shelf access door 110.
  • the front of the cabinet 102 also preferably includes the shelf access door 112 that provides access to one multi-well plate.
  • a single multi-well plate can be loaded into the cabinet 102 via the shelf access door 112.
  • the processor can control the transport assembly to deliver a single multi-well plate to the shelf access door for removal from the cabinet 102.
  • the shelf access door 112 is typically smaller than the removable shelf access door 110 to further minimize changes to the interior environment when the door is opened.
  • the placement of the shelf access door 112 is typically at a height and position that is convenient for user access. However, the placement of the shelf access door 112 is not limited to any particular location and is not limited to placement on the front of the cabinet 102.
  • the front of the cabinet 102 also includes a front door 240 that provides access for installation and maintenance.
  • the operation of the sample analysis system typically does not require accessing the front door 240.
  • the front door 240 can include an environmental monitor 230 that indicates, for example, the temperature of the interior of the cabinet 102.
  • the environmental monitor 230 can also provide local controls to allow a user to modify the interior environment. For example, the environmental monitor 230 can provide controls to change the temperature within the interior of the cabinet 102.
  • Below the front door 240 is a front access panel 250 that provides access to the portion of the environmental control unit (not shown) that is housed in the lower portion of the cabinet 102 outside of the environmentally controlled interior of the cabinet 102.
  • FIG. 3 is a side view of the cabinet 102 having a cut away view showing the placement of the environmental control unit 160 in a lower portion of the cabinet 102 behind the front access panel 250.
  • the environmental control unit 160 can include a refrigerant pump or compressor 320 and condenser 340.
  • a motorized fan 330 can cool the condenser 340.
  • Refrigerant lines 310 can carry the refrigerant to, for example, an evaporator (not shown) located in an upper portion of the cabinet 102.
  • the placement of at least a portion of the environmental control unit 160 near a support surface of the cabinet 102 allows for substantial mechanical isolation of the environmental control unit 160 from the remainder of the cabinet 102.
  • a mechanical isolation mount is further detailed with respect to Figure 13.
  • Figure 4 is a partial view of the interior of the cabinet 102 with the front door
  • the removable shelf system 120 and some of the shelves in the stationary shelf system 122 are not shown for the sake of clarity.
  • the interior of the cabinet 102 can be seen through the front door opening.
  • the interior of the cabinet 102 is the environmentally controlled chamber and all components within the interior of the cabinet 102 are within the environmentally controlled chamber.
  • a number of full shelf columns, for example 410, are placed in the cabinet 102 arranged at least partially around a core. Additionally, one or more partial shelf columns, for example 420, are used in locations where clearance or access is desired.
  • the full shelf columns, 410 and partial shelf columns 420 combine to form a shelf array. All shelves within the shelf array can be configured to store sample storage receptacles, such as multi-well plates. The system can have a capacity of 330 or more multi-well plates. Alternatively, some of the shelves can be dedicated to storing items other than multi-well plates and thus are not available for sample storage. For example, a row of shelves, such as the bottom row of shelves, can be excluded from sample storage and can be used to store polarizing filters or other light filters. The polarizing filters or light filters can be used with the optical assembly 140 when imaging a sample.
  • the transport assembly 130 is shown in the middle of the front door opening.
  • the transport assembly 130 is located in the core around which the shelves are arranged.
  • the rotatable platform 136 is shown near the bottom of the front door opening.
  • the elevator assembly 134 is mounted to the rotatable platform 136.
  • One or more plate handlers 132 can be mounted to the elevator assembly 134.
  • the elevator assembly is configured to raise at least one plate handler 132 up to the level of the highest shelf and can lower at least one plate handler 132 down to the level of the lowest shelf.
  • the rotatable platform 136 is configured to rotate about a vertical axis and can position the elevator assembly 134 at any angular position along the axis of rotation.
  • the rotatable platform 136 positions the elevator assembly 134 at the angular position of a shelf column, for example 410, and the elevator assembly positions the plate handler 132 at the height, or vertical position, of the desired shelf.
  • a multi-well plate retrieved by the transport assembly 130 can be transported to the optical assembly 140, shown here at the bottom right of the front door opening.
  • the optical assembly 140 includes an illumination module 152 mounted beneath a sample mount 154.
  • the sample mount 154 is configured to accept a multi-well plate from the transport assembly 130.
  • An imaging device 142 such as a CMOS camera, is connected to a lens 144 that is directed down towards the sample mount 154.
  • the lens is connected to a movable mount 146 that is configured to position the lens 144 and imaging device 142 along a first linear axis, which can be labeled an X-axis.
  • the sample mount 154 can position the multi-well plate in along a second linear axis, which may be labeled a Y-axis.
  • the optical assembly 140 is able to move a multi-well plate to any position in an X-Y plane.
  • the movable mount 146 and sample mount 154 move to allow the imaging device 142 to capture an image of any sample well on a multi-well plate.
  • Figure 5 is a partial view of portions of the system that are assembled in the interior of the cabinet 102.
  • the cabinet 102 and transport assembly 130 are not shown for purposes of clarity.
  • Figure 5 clearly shows the arrangement of shelves around the core.
  • the shelves are arranged in an arc, here substantially a circle.
  • Within the core, or interior to the arc is located the transport assembly 130.
  • the shelves are arranged as a plurality of full shelf columns 510a-510g arranged in an arc around a core.
  • a number of partial shelf columns 520a, 520b, and 530 are arranged to allow the transport assembly 130 to access the optical assembly 140 and access shelf 540, for example.
  • the partial shelf columns 520a, 520b, and 530 allow the maximum number of shelves to be mounted within the cabinet 102.
  • Two of the partial shelf columns 520a and 520b are mounted beneath the removable magazines 220a and 220b.
  • the two partial shelf columns 520a and 520b can be mounted to the front door 240, or can be mounted to the same platform on which the full shelf columns are mounted.
  • Another partial shelf column 530 is mounted above an access for the optical assembly 140.
  • the transport assembly 130 thus transports multi-well plates to and from the optical assembly 140 via the access provided below the partial shelf column 530.
  • Figure 6 is a view of the transport assembly 130 isolated from the other components of the sample analysis system.
  • the rotatable platform 136 is positioned using a belt 642 driven by an electric platform drive motor 640.
  • the belt 642 can be a cogged belt and the drive wheel on the electric platform drive motor 640 can be a cogged wheel.
  • the cogged drive wheel is typically much smaller than the rotatable platform 136 to provide increased sensitivity in angular position of the rotatable platform 136.
  • the rotatable platform 136 can include a receiver around the circumference of the platform to receive the cogged belt.
  • the receiver can be a driven wheel attached to the rotatable platform 136.
  • the drive wheel in the platform drive motor 640 is typically cogged to mate with the cogged belt 642
  • the receiver on the rotatable platform 136 is typically not cogged.
  • the periodic placement of cogs on the cog belt can create vibrations when the rotatable platform 136 is rotated. This induced vibration can then be transferred to a multi-well plate or sample that is being transported by the transport assembly 130.
  • some, a majority, or all of the cogs can be eliminated from the receiver on the rotatable platform 136.
  • the receiver on the rotatable platform 136 can include no cogs, or a minimal number of cogs to ensure the belt 642 does not slip in the receiver.
  • the processor can control the platform drive motor 640 to position the rotatable platform 136 at an angular position.
  • the controller 190 can position the rotatable platform at an angular position by reading position sensors that are placed on the rotatable platform 136.
  • the processor 136 can read one or more sensors and determine the angular position of the rotatable platform 136.
  • the rotatable platform 136 is not limited to being driven using a belt
  • the rotatable platform 136 can also be driven using hydraulics, pneumatics, gears, chains, crank arms, friction wheels, clutches, propeller shafts, ratchets, and the like, or some other means for driving.
  • the elevator assembly 134 is mounted to the rotatable platform 136.
  • the rotatable platform 136 is shown below the elevator assembly 134 but could also be mounted above or around the elevator assembly 134.
  • the elevator assembly 134 includes a top plate 636, a base plate 634, first and second frame members 630a and 630b, first and second support rods 610a and 610b, and an acme screw 620.
  • the top plate 636, base plate 634 and first and second frame members 630a and 630b cooperate to form a frame to support portions of the elevator assembly 130 and plate handlers 132a and 132b.
  • the height of the frame members 630a and 630b determine the reach of the elevator assembly 134.
  • the first and second support rods 610a and 610b also form part of the elevator assembly 134 frame and are also used as guides for the plate handlers 132a and 132b.
  • a screw drive motor 624 rotates the acme screw 620 to position the height of the plate handlers 312a-b.
  • the plate handlers 132a-b are mounted on a base that includes a threaded portion that mates with the acme screw 620.
  • the screw drive motor 624 rotates the acme screw 620 and raises or lowers the plate handlers 132a-b depending on the direction of rotation.
  • the controller 190 can determine a height of the plate handlers 132a-b based on a predetermined screw pitch calibration.
  • a relatively steep screw pitch is preferred so that the elevator assembly 134 will exhibit 1, 2, 5, 10, 15, 20, or more millimeters of vertical movement per screw rotation.
  • the large pitch keeps rotation speed low and minimizes vibration that can be transferred to the samples.
  • the processor can determine the height of the plate handlers 132a-b based on sensors positioned on the plate handlers 132a-b.
  • the elevator assembly 134 can raise and lower the plate handlers 132a-b using alternative means.
  • the elevator assembly 134 can use hydraulic pistons, pneumatic pistons, linear actuators, slides, conveyers, chain or belt drive conveyers, or other means for raising or lowering the plate handlers 132a-b.
  • Figure 7 is a view of two plate handlers 132a-b connected together.
  • An upper plate handler 132a includes an upper base 710a, a fulcrum 740, a first slide assembly 762, a first slide motor 720a and a first slide conveyer 722a.
  • the first slide assembly 762 includes a plate stop 734 and fingers 730a-730b.
  • a sensor such as an optical sensor 754, can be attached to one or more of the plate handlers 132a-b to sense a position of the plate handler 132a-b.
  • the first slide assembly 762 cooperates with the fulcrum 740 and elevator assembly 134 to lift and reposition a multi-well plate from a location, such as a shelf, to a position on the plate handler 132a.
  • the fulcrum 740 can include a stepped upper surface 742 that corresponds with the various multi-well plate sizes handled by the plate handler 132a.
  • the lower plate handler 132b is configured similar to the upper plate handler 132a.
  • the lower plate handler 132b includes a lower base 710b, a fulcrum (not shown), a second slide assembly 764, a second slide motor 720b and a second slide conveyer 722b.
  • the second slide assembly 764 includes a plate stop (not shown) and fingers (not shown).
  • the lower plate handler 132b is shown having a multi-well plate 780 positioned on the plate handler 132b. However, the multi-well plate 780 does not form a part of the plate handler 132b and is shown to illustrate the position of the multi-well plate 780 on the lower plate handler 132b.
  • Two support bearings 762 and 764 are mounted on the lower base 710b.
  • the support bearings 762 and 764 ride on and align the plate handlers 132a-b with the support rods 610a-610b of the elevator assembly 134.
  • the lower base 710b also includes a coupling mount 766 to mount the threaded coupler that interfaces with the elevator screw 620.
  • a barcode reader 750 can be mounted to one or more of the plate handlers 132a-b to read barcodes placed on the multi- well plates.
  • the plate handlers 132a-b preferably do not grasp and lift the multi-well plates, but rather, gently transition the multi-well plates from the shelves to the plate handler 132a- b, thus minimizing shock and vibration experienced by the plate.
  • a plate handler, for example 132a lifts a first or near edge of the target plate and pulls the plate onto the plate handler 132a using the slide assembly 762.
  • the plate handler 132a is initially positioned at the shelf opening with the plate handler 132a below the multi-well plate so that the fingers 730a-b of the slide assembly 762 will slide underneath the near edge of the multi-well plate.
  • the slide assembly 762 is then moved towards the multi-well plate until the stop 734 senses the slide assembly 762 is against the multi- well plate.
  • the plate handler 132a is then raised to lift the near edge of the multi-well plate. The far edge of the multi-well plate continues to contact the shelf.
  • the fulcrum 740 contacts the bottom edge of the plate.
  • the slide assembly 762 continues to pull the plate onto the plate handler 132a and the movement of the plate causes the fulcrum 740 to lift the second, or far, edge of the target plate. If the height of the fulcrum 740 is slightly higher than the support edge of the fingers 730a-b, the second edge of the multi-well plate will be higher than the first edge when the plate is positioned on the plate handler 132a.
  • the process is performed in the reverse order to place a multi-well plate from the plate handler 132a to a destination.
  • the plate handler 132a is positioned to have the first edge of the multi-well plate slightly below the surface of the shelf and the second or far edge of the multi-well plate above the surface of the shelf.
  • the slide assembly 762 pushes the second, or far, edge of the multi-well plate onto the shelf.
  • the multi-well plate lifts off of the fulcrum 740 as the slide assembly 762 continues to push the multi-well plate onto the shelf until the multi-well plate is completely positioned on the shelf or other destination.
  • the slide assembly 762 is positioned using a slide motor 720a and slide conveyer 722a.
  • the slide conveyer 722a can be a belt, such as a cogged belt, and the slide assembly 762 can be coupled to the slide conveyer 722a using a clamp 724.
  • the slide motor 720a can drive the slide conveyer with a cogged wheel.
  • the slide motor 720a can include an optical encoder to facilitate position determination.
  • the controller 190 can determine the position of the slide assembly 762 by initially calibrating the number of encoder pulses required to move the slide assembly 762 from a first extreme to the opposite extreme. Then, the controller 190 can control the position of the slide assembly 762 by tracking the number of encoder counts. Alternatively, the controller 190 can determine the position of the slide assembly 762 using sensors connected to the slide assembly 762 or base 710a.
  • the inclusion of two plate handlers 132a-b in the transport assembly 130 is advantageous because a first multi-well plate can be imaged by the optical assembly 140 while the transport assembly retrieves a second multi-well plate, for example using the lower plate handler 132b. Then, after the optical assembly 140 completes the imaging of the first multi-well plate, the transport assembly 130 can position the first multi-well plate on the upper plate handler 132a and transfer the second multi-well plate to the optical assembly 140 from the lower multi-well plate 132b without moving from the optical assembly 140. The transport assembly 130 can then replace the first multi-well plate to a shelf and retrieve another multi-well plate to be imaged. Thus, the throughput of the sample imaging system is increased through the inclusion of two plate handlers 132a-b.
  • the controller 190 can direct the transport assembly 130 to use the upper plate handler 132a to retrieve multi-well plates from shelves and to use the lower plate handler 132b to replace multi-well plates to shelves. Then, the processor can use the barcode reader 750 to read the barcode on the multi-well plate when it is retrieved. In this manner, the barcode on the multi-well plate can be read every time the multi-well plate is handled.
  • Figure 8 is a duplicate of Figure 7 except that the upper plate handler 132a is shown with a multi-well plate 802 positioned on the plate handler 132a.
  • the barcode 810 on the multi-well plate is shown against the stop 734 of the upper plate handler 132a.
  • Figures 9A-9B are different views of a shelf 900, such as a shelf 900 that can be used in the removable shelf system 120 or the stationary shelf system 122.
  • One or more shelves 900 can be connected to one another using hardware positioned through alignment tabs 960a and 960b integral to the sides, for example 902, of the shelf 900.
  • Multiple shelves can be connected together to form the full shelf column 410 or the partial shelf column 420 shown in Figure 4.
  • the shelf 900 includes two side walls 902, 904 and a rear wall 906.
  • a shelf opening opposite the rear wall 906 is the shelf opening through which multi-well plates are positioned or retrieved.
  • the shelf 900 also includes a bottom surface 910 that supports the multi- well plate when it is placed in the shelf 900.
  • the bottom surface 910 includes a recess 912 or cutout at the front of the shelf 900 opposite the rear wall 906.
  • the recess 912 in the bottom surface 910 allows the fingers 730a and 730b of the slide assembly 762 to be positioned beneath the front edge of a multi-well plate stored on the shelf 900.
  • the bottom surface 910 includes multiple rails that allow the shelf 900 to accommodate multiple multi-well plate formats.
  • the rails can be continuous or can be interrupted.
  • the rails are advantageously continuous to allow a multi-well plate to smoothly slide along the rail.
  • the rails can have a single recess or step placed near the shelf 900 opening to retain a multi-well plate positioned in the shelf 900.
  • the recess or step is advantageous when the shelf 900 is used in a removable shelf 900, such as in the removable magazine 220a shown in Figure 2.
  • the largest multi-well plate format that can be accommodated by the shelf 900 rests on a first pair of rails 930a and 930b that protrude from the bottom surface 910 of the shelf 900.
  • the first pair of rails 930a-b extend substantially the length of the shelf 900 and are substantially parallel to the shelf 900 sides 902 and 904.
  • the first pair of rails 930a-b do not need to be parallel to the sides 902 and 904 but should extend from near the opening of the shelf 900 to the rear wall 906 of the shelf 900 in order to support a multi-well plate placed in the shelf 900. It is advantageous for the first pair of rails 930a-b to be substantially parallel to facilitate positioning of a smaller multi-well plate format.
  • the side walls 902 and 904 of the shelf 900 align the largest multi-well plate accommodated by the shelf 900.
  • the largest multi-well plate format rests on the first rails 930a-b and is aligned within the shelf 900 using the side walls 902 and 904.
  • the shelf 900 can accommodate a second smaller multi-well plate format without any changes to the shelf 900.
  • a second pair of rails 920a-b is positioned in between the first pair of rails 930a-b.
  • the second pair of rails 920a-b extend to a height that is below the height of the first pair of rails 930a-b.
  • a raised stop 950 is positioned near the rear wall 906 of the shelf 900.
  • the raised stop 950 has a height that is greater than the height of the second pair of rails 920a-b but is less than the height of the first pair of rails 930a-b.
  • the raised stop 950 can be a ridge or wider surface. The wider surface can extend to the rear wall 906.
  • a smaller multi-well plate format is thus supported by the second pair of rails 920a-b.
  • the first pair of rails 930a-b and the raised stop 950 are positioned to align the smaller multi-well plate format within the shelf 900.
  • the second pair of rails 920a-b can taper towards the bottom surface 910 as the rails 920a-b approach the raised stop 950.
  • the tapered rails 920a-b ensure the raised stop 950 provides a more positive stop for a multi-well plate.
  • Another advantage of the rails is to provide a smaller sliding surface on which the multi-well plates slide when they are removed and inserted.
  • the multi-well plates slide primarily or solely on the rails, thus reducing vibration transferred to the multi-well plate when it is moved.
  • the shelf 900 can accommodate additional multi-well plate sizes by including additional rails.
  • multi-well plate trays such as the tray discussed in relation to Figure 14, can be used to accommodate additional multi-well plate sizes.
  • a pair of rails is shown for each multi-well plate size, the shelf 900 can include a single rail for each multi-well plate format and can align the multi-well plate using one side wall, for example 904, of the shelf 900. Then, rather than centering each multi-well plate format in the shelf 900, the multi- well plates are biased against one side wall 904 of the shelf 900.
  • the shelf 900 can also include a flag 940 or tab that the transport assembly 130 uses to determine the position of the plate handler 132 in relation to the shelf 900.
  • the flag 740 can interrupt a light source in the optical sensor 754 on the plate handler 132.
  • the plate handler 132 then has a known relationship to the shelf 900 when the light source from the optical sensor 754 is interrupted.
  • the placement of the optical sensor 754 on the plate handler 132 and the placement of the flag 940 on the shelf 900 can be arranged such that the plate handler 132 is in position to retrieve or deliver a multi-well plate to the shelf 900 at the point the optical sensor 754 detects interruption of the light source.
  • Figure 9B shows multiple views of the shelf 900, including a top view, a side view and two section views.
  • the A-A section view shows the relationship of the height of the first pair of rails 930a-b in relation to the height of the second pair of rails 920a-b and the raised stop 950.
  • the B-B section shows the placement of the flag 940 on the shelf 900.
  • FIG 10 is a view of a stationary shelf array 1000 that can form a part of the stationary shelf system 122 described in Figure 1 and shown in Figure 5.
  • the stationary shelf array 1000 includes multiple full shelf columns 1022, 1024, 1026, 1028, 1030, and 1032 arranged around a core.
  • Each of the full shelf columns, for example 1022, can be the full shelf column 510a shown in Figure 5.
  • a partial shelf column 1034 is shown joined to the full shelf columns.
  • Detail area 1010 shows the relationship of the single shelves, 900a-900c in the stationary shelf array 1000.
  • the shelves, 900a-c are stacked vertically and are arranged along side other vertical shelf stacks.
  • Figure 11 shows three views of a removable magazine 220a. The front, side, and top views are shown.
  • the removable magazine 220a includes a top plate 1110, a bottom plate 1120, a handle 1140, and multiple shelves 900a-900p. Sixteen shelves 900a-p are shown in the removable magazine 220a. However, the number of shelves 900a-p in the removable magazine 220a is not limited to sixteen, but can be any number.
  • the removable magazine 220a includes attachment hardware 1130a and 1130b that passes through the alignment tabs on each of the shelves 900a-p.
  • the hardware 1130a-b can include threaded rods and nuts that clamp the top plate 1110, shelves 900a-, and bottom plate 1120 together to form a solid assembly.
  • the handle 1140 can be attached to the shelves 900a-p and can include a release pin 1150 or lever that is activated by a button 1152 integrated with the handle 1140.
  • the release pin 1150 locates the removable magazine 220a in the cabinet 102 when the magazine 220a is inserted. The user can release the removable magazine 220a from the cabinet by depressing the button 1152 on the handle 1140.
  • Figure 12 is a view of the optical assembly 140.
  • the optical assembly 140 includes an imaging device 142 mounted to a first lens 120 and second lens 1212.
  • the first lens 1210 and second lens 1212 combine to form the lens 144 of the optical assembly 140.
  • two lenses 1210, 1212 are shown, one or more lenses can be used as the lens 144 of the optical assembly 140.
  • the imaging device 142 and lenses, 1210 and 1212 are connected to a movable mount 146.
  • the movable mount 146 includes first and second support shafts 1232 and 1234 and a screw 1240 driven by a screw drive motor 1220.
  • Bearings 1250 and 1252 are attached to, and support the imaging device 142 and lenses 1210, 1212.
  • a drive nut 1242 attached to the imaging device 142 and lenses 1210 and 1212 is coupled to the screw 1240.
  • the drive motor 1220 rotates the screw 1240 and the rotating motion of the screw 1240 is transferred as linear motion of the imaging device 142 and lenses 1210, 1212.
  • the screw 1240 and support shafts 1232 , 1234 are aligned to a linear axis that can be characterized as an X-axis.
  • the optical assembly 140 also includes a sample mount 154, here shown with a multi-well plate positioned on top of it.
  • the sample mount 154 moves along a second linear axis substantially perpendicular to the X-axis.
  • the second linear axis can be characterized as a Y-axis.
  • the sample mount 154 can also be positioned using a screw drive motor and associated screw assembly (not shown).
  • the illumination module 152 is placed beneath the sample mount 154.
  • the controller 190 can control the illumination module 152 to illuminate the samples in the multi-well plate.
  • the controller 190 can control the illumination module 152 via a communication bus connector 1264.
  • the illumination module 152 includes a housing 1260 having a window 1262.
  • the housing 1260 encloses the illumination source, which can be, for example, xenon flash tubes.
  • the window 1262 can be a glass window, such as a heat reflecting glass, to reduce the thermal radiation transferred to the samples.
  • the housing 1260 provides further thermal isolation of the illumination sources to the samples.
  • a fan can be positioned in the housing 1260 to provide further thermal control of the illumination sources. The fan can draw air in from the environmentally controlled portion of the cabinet and can exhaust heated air external to the cabinet.
  • FIG. 13 is a functional block diagram of the environmental control unit 160 and details its placement on the bottom of the cabinet 102.
  • the environmental control unit 160 can include a refrigeration unit 162 having a compressor 1310 and fan 1312.
  • the refrigeration unit 162 can be mounted to a support 1320 that is in turn mounted to a base plate 1330.
  • the various mounts can be mechanical isolation mounts to reduce the amount of vibration and shock transmitted by the refrigeration unit 162 to the base plate 1330 or cabinet 102.
  • the base plate 1330 includes isolation mounts 1332a-b that are used to position the base plate 1330 and the associated equipment on a support surface.
  • the support surface can be the ground on which the cabinet 102 is mounted.
  • the mechanical coupling between the environmental control unit 160 and the cabinet 102 is minimized by not hard mounting or supporting the environmental control unit 160 with the cabinet 102 during operation of the automated sample analysis system. However, to facilitate moving the cabinet 102 and associated environmental control unit 160, the environmental control unit 160 can be lifted off of the support surface and supported by the cabinet 102.
  • the base plate 1330 is attached to first ends of a first cable 1352 and a second cable 1354.
  • the second ends of the first cable 1352 and second cable 1354 are connected to a spool 1342.
  • the spool 1342 is connected to a lever arm 1340.
  • the lever arm 1340 operates to rotate the spool 1342 thereby drawing or releasing the first and second cables 1352 and 1354.
  • the first cable 1352 is routed from the spool 1342 to a near end of the base plate 1330.
  • the second cable 1354 is routed through a pulley 1344 to a far end of the base plate 1330.
  • the action of drawing the first and second cables 1352 and 1354 onto the spool 1342 effectively shortens the cable lengths and causes the base plate to rise off of the support surface.
  • the lever arm 1340 is moved to a second position, the first and second cables 1352 and 1354 are released from the spool 1342.
  • the action of releasing the first and second cables 1352 and 1354 from the spool 1342 effectively lengthens the cable lengths and causes the base plate to lower to the support surface.
  • the first and second cables 1352 and 1354 can be slack when the base plate 1330 rests on the support surface. Mechanical coupling between the base plate 1330 and the cabinet 102 are minimized by having the first and second cables 1352 and 1354 slack when the base plate 1330 is placed on the support surface.
  • the spool 1342 can be a shaft that extends the length of the cabinet 102 around which the cables can be wrapped. A similar cable configuration can then be installed on the far end of the shaft to enable the base plate 1330 to be lifted and supported by four cables. Alternatively, a duplicate lever arm, spool, and cable assembly can be positioned on the opposite side of the base plate 1330 to independently lift the opposite side of the base plate 1330.
  • the mechanical isolation of the base plate 1330 and environmental control unit 160 is not limited to a cable configuration.
  • a chain lift, hydraulic lift, pneumatic lift, belts, springs, cushions, and the like, or some other means for isolation can be used to mechanically isolate the environmental control unit 160 from the cabinet 102.
  • FIG 14 is a view of a plate tray 1400.
  • the plate tray 1400 substantially duplicates those areas of a multi-well plate that interface with the automated sample analysis system.
  • the plate fray 1400 has the outside dimensions about equal to a standard multi-well plate size that is supported by the automated sample analysis system.
  • the plate tray 1400 can also include a front edge configured similar to the multi-well plate of the same outside dimension in order to interface with the fingers of the plate handlers.
  • the plate tray 1400 can have side wall dimensions or height dimensions that mimic the dimensions of a multi-well plate for alternative plate handlers that utilize those features of the multi-well plate.
  • the plate tray 1400 includes recesses or cutout areas configured to hold one or more multi-well plates having at least one smaller dimension.
  • the plate tray 1400 includes two recessed areas 1410, 1420 that are configured to support smaller multi-well plates.
  • the recessed areas 1410, 1420 can extend entirely, or partially, through the plate tray 1400.
  • a first recessed area 1410 includes two spring fingers 1412, 1414 that locate and support the multi-well plate against an opposite wall of the recessed area 1410.
  • the spring fingers 1412 and 1414 allow a user to insert and remove multi-well plates from the plate tray 1400 with minimal force.
  • the spring fingers 1412, 1414 maintain sufficient force on the multi-well plate to secure it in the plate tray 1400.
  • the second recessed area 1420 includes similar spring fingers 1422, 1424 to locate and secure a second multi-well plate in the plate tray 1400.
  • Figure 15 is a functional block diagram of the controller 190 of Figure 1.
  • the functional block diagram of Figure 15 shows more details of the controller 190.
  • the controller 190 includes a processor 170 in communication with a memory 172 and network interface 174 as previously described. Additionally, the controller 190 includes a database 1510, web server 1520, database access module 1530, scheduler 1540, and message client module 1550.
  • the web server 1520 provides another network interface. Typically, the web server 1520 interfaces with the Internet. The web server 1520 allows a user connected to the internet to access the controller 190. The web server 1520 allows a user to, for example, view sample images and modify sample scheduling using a web browser. When the network is the Internet, the user can view sample images and modify sample scheduling using a web browser in communication with the Internet from any location around the world.
  • the scheduler 1540 and database access module 1530 cooperate to schedule image capture of the samples stored in the shelves of the cabinet.
  • the scheduler 1540 optimizes and schedules the plate handling tasks for all samples in the cabinet.
  • the scheduler 1540 optimizes image capture throughput while accommodating user set priorities.
  • the scheduler 1540 maintains a schedule of imaging tasks.
  • the imaging task schedule can include a schedule profile that defines an imaging schedule.
  • the imaging schedule can also include an imaging profile that defines parameters of the image capture. For example, the imaging profile can specify a particular optical filter to be used during image capture of some of the samples on a multi-well plate.
  • the imaging schedule can also include priority levels for each sample.
  • the priority can be predetermined by user input, or can be updated dynamically based, for example, on the degree to which a sample is overdue for image capture.
  • the user priority rating and the dynamically determined priority level can be used as factors in determining a combined priority level.
  • the scheduler 1540 can weight the user priority rating and sum it with a weighted dynamically determined priority level in order to determine the combined priority level.
  • the scheduler 1540 also maintains a schedule of plate handling tasks. Although the majority of plate handling is performed in conjunction with imaging, the fransport assembly can also handle plates for other tasks. For example, multi-well plates are moved from the magazines to the stationary shelves when the multi-well plates are first supplied to the system. Additionally, one or more plates can be moved to or from the access shelf for delivery or replacement.
  • the scheduler 1540 also updates the schedules upon receipt of messages from other modules. For example, the scheduler 1540 can receive new or updated schedule items from the web server 1520. Additionally, the scheduler 1540 can receive a message via the network interface 174 indicating the optical assembly is finished imaging a multi-well plate. Similarly, the scheduler 1540 can receive a message from the network interface 174 indicating the transport assembly has completed a plate movement.
  • the scheduler 1540 also monitors incoming messages and provides task assignments upon request by sub-systems.
  • the scheduler 1540 can also send change messages to the sub-systems.
  • the scheduler 1540 can manage a priority list stored in the database or other memory of all samples in the system.
  • the priority list can also indicate a desired time for capturing images from the sample.
  • the scheduler 1540 can use a predetermined formula or decision basis to determine the next multi-well plate that will be imaged.
  • the scheduler 1540 can then request that the transport assembly retrieve the desired multi-well plate.
  • the scheduler 1540 can, for example, use multi-well plate size, imaging device settings, and lens settings as factors in determining the next multi-well plate to image. Imaging throughput may be more efficient when similar sized multi-well plates are imaged in succession or if similar lens settings are used when imaging successive multi-well plates. Thus, the priority rating is not the only factor used in determining the next multi-well plate to image.
  • the scheduler 1540 can also maintain usage statistics.
  • the scheduler 1540 can store statistics regarding average image duration, average plate movement duration, and scheduling backlog.
  • the scheduling backlog can, for example, include the number of hours or minutes per day scheduled over the next three months, or some other period of time.
  • the schedules can, for example, be stored in the database 1510.
  • the scheduler 1540 can access the database 1510 using the database access module 1530, or can access the database 1510 independent of the database access module 1530.
  • the database access module 1530 operates as the database interface for other modules.
  • the database access module 1530 can operate as a single point of access to the database 1510.
  • the database access module 1530 can then arbitrate simultaneous accesses and can prioritize database 1510 accesses, for example, based on the module requesting the access.
  • a message client module 1550 operates as the message interface. Internal modules direct messages to other internal modules using the message client module 1550. Additionally, external modules can send messages to the internal modules via the network interface to the message client module 1550. For example, the optical assembly or transport assembly can send messages to the scheduler 1540 using the network interface 174. The incoming messages are delivered to the message client module 1550 where they are then delivered to the scheduler 1540.
  • the database 1510 is used to store messages and the schedules associated with the scheduler.
  • the database 1510 can also be used to store administrative data, such as user profiles, passwords, and system setup information.
  • the database 1510 can be one or more storage devices and can be common with, or independent of, the memory 172.
  • the automated sample analysis system described above is a stand alone system that is able to operate a number of laboratory tests independent of user interaction. Once a set of multi-well plates has been loaded and scheduled for imaging, the system is able to operate without any further user intervention.
  • the automated sample analysis system is particularly advantageous in processes such as protein structure determination using crystallography.
  • samples are subject to incubation, crystallization, imaging, data collection, and crystal recognition.
  • the automated sample analysis system can be configured to perform nearly all of these tasks independent of user supervision.
  • the samples can be loaded in the cabinet interior where they are incubated at a controlled environment for extensive periods of time.
  • the controller can schedule the samples for periodic imaging.
  • the controller can then collect the multiple images and can perform data analysis on the captured images to help perform crystal recognition.
  • a user can continue to image the crystals or can remove the crystals from the system for further analysis.
  • the controller can communicate image information, such as crystal recognition information, to the scheduler 1540 in order to allow the scheduler 1540 to adjust the schedule according to the crystal recognition. Further information regarding imaging of samples is included in Provisional Patent Application No. 60/474989, titled "IMAGE ANALYSIS SYSTEM AND METHOD,” filed on May 30, 2003.
  • the size of the cabinet and the arrangement of the multi-well plates in the cabinet make the automated sample analysis system particularly advantageous for use in low to middle throughput laboratory environments.
  • the amount of floor space occupied by the system is minimal.
  • the footprint of the cabinet can be 100cm x 85cm or less.
  • the systems are advantageously modular and can be combined with other systems for increased capacity or temperature variation.
  • one or more automated sample analysis systems can be combined and operated as a single system.
  • One of the systems can be designated a master system and the others can be designated slave systems.
  • the systems are mechanically identical and can be controlled using a common bus connection.
  • a master system can control the slave system over the same common bus.
  • the bus can be connected to multiple systems and each of the systems can be controlled independently over the bus.
  • a user To use the automated sample analysis system a user initially loads multi-well plates in a removable magazine. The user then inserts the removable magazine into the cabinet via the removable shelf access door. The controller can then automatically initiate a process to remove the multi-well plates from the removable magazine and place them into empty shelves in the stationary shelf system. Alternatively, the user can program the controller to initiate a process whereby the multi-well plates are removed from the removable magazine and placed in specific empty shelves within the stationary shelf system.
  • the controller controls the transport assembly to remove the shelves from the removable magazine.
  • the transport assembly includes multiple plate handlers, as described above, more than one multi-well plate can be transported simultaneously.
  • a first plate handler removes a first multi-well plate from the removable magazine and a second plate handler removes a second multi-well plate from the removable magazine.
  • One or more of the plate handlers can include a barcode reader that reads a barcode affixed to the multi- well plates.
  • the controller can then build an allocation table that relates a barcode, and thus a multi-well plate, with a shelf location.
  • the transport assembly then transports the multi-well plates to shelves in the stationary shelf system.
  • the transport assembly initially locates the first plate handler at a first shelf.
  • the controller rotates the elevator assembly, using a rotatable platform, to an angular position corresponding to a column of shelves in the stationary shelf system.
  • the plate handler can include an optical sensor that provides an indication of the height of the plate handler relative to the shelf opening.
  • the first plate handler then inserts the first multi-well plate into the shelf.
  • the same process is repeated for the second plate handler having the second multi-well plate. The entire process is repeated until all of the multi-well plates are removed from the removable magazine and placed into shelves in the stationary shelf system.
  • the user can input an imaging schedule into the controller and can define the environmental conditions within the cabinet interior.
  • the controller then controls the environmental control unit to produce the desired environmental conditions within the cabinet interior.
  • the controller can also implement the imaging schedule.
  • the controller controls the transport assembly to retrieve multi-well plates from the stationary shelf system.
  • the controller then directs the transport assembly to fransport the multi-well plates to the optical assembly.
  • the controller then controls the optical assembly to image one or more samples on the multi-well plates.
  • the optical assembly transmits the captured images to the controller where they are stored in memory for further processing or for viewing by a user.
  • the controller controls the transport assembly to retrieve two multi- well plates, one for each plate handler in the transport system.
  • the transport assembly can read the barcodes from the multi-well plates before retrieving them with the plate handlers.
  • the fransport assembly then transports the two plates to the optical assembly.
  • the plate handler then positions the first multi-well plate into the optical assembly.
  • the optical assembly then positions the multi- well plate for imaging by moving the multi-well plate in a first axis and moving an imaging device in a second axis, this manner, the optical assembly can place each sample in the filed of the imaging device.
  • the controller controls the imaging device to capture an image at the same time that the controller controls the illumination module to supply illumination to the sample.
  • the optical assembly then transmits the captured image to the controller for storage.
  • the controller can control the optical assembly to capture one or more images from one or more samples in the multi- well plate.
  • the optical assembly captures at least one image of each sample in the multi- well plate.
  • the optical assembly takes, typically, approximately 5-12 seconds to capture and transmit an image to the controller.
  • the optical assembly takes approximately 15 minutes to capture one image of all samples in a 96 sample multi-well plate.
  • the optical system can capture and transmit all 96 images in the 96 sample multi-well plate in as little as 4 minutes or less in some instances.
  • the controller then controls the plate handler to remove the first plate from the optical assembly.
  • the controller then controls the transport assembly to position the second multi- well plate from the second plate handler onto the optical assembly.
  • the controller then controls the optical assembly to capture images of the samples on the second multi-well plate.
  • the controller controls the transport assembly to replace the first multi-well plate in its shelf.
  • the controller then controls the transport assembly to remove the next multi-well plate scheduled for imaging.
  • the transport assembly then transports this next multi-well plate to the optical assembly where it waits while the optical assembly completes imaging of the samples in the currently positioned multi-well plate. In this manner the transport assembly can retrieve and reposition multi-well plates while the optical assembly is imaging the samples on a different multi-well plate.
  • the transport assembly does not need to quickly move the plates and, for example, can move the plates at a rate of less than 5, 2, 1, 0.8, 0.6, 0.5, 0.3, 0.2, or 0.1 cm sec.
  • the operator or user can determine a maximum acceleration that the multi-well plates are to be subjected to and adjust the system to maintain a plate acceleration below the predetermined maximum.
  • the system can then continue to retrieve multi-well plates and capture images of the samples according to the schedule.
  • the system can operate indefinitely according to the schedule or can have a defined end. In this manner, the automated sample analysis system is able to efficiently and thoroughly conduct repeated sample analysis without user interaction.
  • connections, mechanical connections, couplings, and connections have been described with respect to various devices or elements.
  • the connections and couplings can be direct or indirect.
  • a connection between a first and second device can be a direct connection or can be an indirect connection.
  • An indirect connection can include interposed elements that can process the signals from the first device to the second device.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field pro rammable gate array
  • a general-purpose processor can be a microprocessor, but in the alternative, the processor can be any processor, controller, microcontroller, or state machine.
  • a processor can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium.
  • An exemplary storage medium can be coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium can be integral to the processor.
  • the processor and the storage medium can reside in an ASIC.

Abstract

An automated biological sample analysis system and method for use in incubating and analyzing multiple samples for protein crystallization. A temperature controlled cabinet houses sample storage, sample transport, and sample imaging systems. The operation of the system is automated and can be controlled by software, which can be reconfigured remotely. An array of storage shelves includes multiple shelf columns arranged around a core. Multiple banks of removable shelves arranged as magazines are accessed through a door on the cabinet. Each shelf stores a multi-well plate and different sizes can be stored in different shelves. The core houses a sample transport system that includes a multi-axis robot that rotates about a vertical axis to access the shelves in the shelf array. The transport system retrieves and replaces the multi-well plates in the shelves and can move plates from the shelves to an imaging system where each sample can be automatically imaged.

Description

AUTOMATED SAMPLE ANALYSIS SYSTEM AND METHOD
Background of the Invention Field of the Invention
[0001] The invention relates to the field of sample analysis. More particularly, the invention relates to an automated biological sample analysis system. Description of the Related Art
[0002] Modern chemistry and biology laboratories produce and analyze multiple samples concurrently in order to accelerate the development cycle. The samples are often produced and stored in a sample storage, such as the individual wells in a multi-well plate. A laboratory may simultaneously have tens of thousands of samples prepared for analysis. Automation is needed to provide rapid storage and retrieval of any multi-well plate. However, the amount of laboratory space is limited and it is desirable for an automated system to occupy minimal laboratory space.
[0003] However, some types of sample production and analysis must be performed in controlled environments. Often the environment requires refrigeration. For example, in protein crystallography, samples are often incubated for long periods of time at controlled temperatures to induce production of crystals. Hundreds or thousands of samples in sample wells may be periodically viewed or otherwise analyzed to determine the existence of crystals in a sample well.
[0004] In a manual process, a technician removes each multi-well plate or sample storage receptacle from a storage location and views each sample well under a microscope. The samples are typically incubated in a refrigerated environment and are highly sensitive to changes in the environment. Thus, typically, the samples are stored in a refrigerated laboratory and the technician removes the sample storage receptacles and views the sample wells under a microscope in the refrigerated room. The need for a refrigerated room expands the amount of laboratory space that needs to be dedicated to protein crystallization and conversely, reduces the amount of laboratory space available for other experiments.
[0005] Other problems associated with manually examining each sample well include low throughput and high susceptibility to sample damage due to handling. A technician is unable to process thousands of samples in a short period of time. Additionally, protein crystals are extremely fragile and sensitive to the growth environment. A technician is unable to uniformly handle each sample storage receptacle. The technician transmits different levels of shock and vibration to each of the sample wells when transporting and handling the samples. Even with the utmost of care, the technician can damage the samples due to the amount of shock and vibration imparted by handling the samples. [0006] Some large-scale automated systems minimize the amount of manual handling experienced by a sample. These mega-incubators are designed for extremely large-scale operations. A heavy duty X/Y robot is placed in a temperature controlled room designed to store tens of thousands of sample plates, with each sample plate capable of containing hundreds of samples in individual sample wells. The X/Y robot removes a sample from a storage location and transports it to a single imaging station. The imaging station can be manually operated or can be an automated imaging system that takes an image of the sample.
[0007] The mega-incubator systems are designed for large-scale operations and lack the flexibility required in medium sized organizations. For example, the system is housed within a temperature controlled room and requires the entire system be maintained at the same temperature. Multiple samples cannot be tested at multiple temperatures. Additionally, the systems are confined to a single multi-well plate format and hardware in the robot and image system must be reconfigured for changes in the multi-well plate format.
[0008] What is needed is a sample imaging system that has the flexibility of manual plate handling and the efficiency of an automated system. The sample imaging system needs to minimize the shock and vibration experienced by the samples. The sample imaging system needs to maintain the samples at a stable environment for long periods of time. Additionally, the laboratory space needed to incubate and analyze the samples needs to be minimized.
Summary of the Invention
[0009] According to one aspect of the invention, an automated biological sample analysis system and method enables incubating and analyzing multiple samples for protein crystallization. A temperature controlled cabinet houses sample storage, sample transport, and sample imaging systems. The system is automated and can be controlled by software, preferably running on a processor external to the cabinet that can be reconfigured remotely. An array of storage shelves includes multiple shelf columns arranged around a core. Multiple banks of removable shelves arranged as magazines are accessed through a door on the cabinet. Each shelf stores a multi-well plate and different sizes can be stored in different shelves. The core houses a sample transport system that includes a multi-axis robot that rotates about a vertical axis to access the shelves in the shelf array. The transport system retrieves and replaces the multi-well plates in the shelves and can move plates from the shelves to an imaging system where each sample can be automatically imaged.
[0010] In another aspect of the invention, a transport assembly retrieves storage receptacles from the array of shelves and transports the storage receptacle to a destination. The destination can be another shelf, the imaging system, or an access shelf that is configured to allow removal of the storage receptacle from the cabinet through a plate access door. The transport assembly includes a rotatable platform on which an elevator assembly is mounted. The elevator assembly, in conjunction with the rotatable platform, positions a plate handler at a height and angular position corresponding to a shelf or other location. The plate handler retrieves a storage receptacle from the shelf or other location. The plate handler can also place a storage plate on the shelf or other location.
[0011] hi another aspect of the invention, a plate handler retrieves or places a storage receptacle, which can be a multi-well plate, from or to a location. The plate handler can retrieve a multi-well plate from a shelf. The plate handler includes fingers that lift a near edge of the multi- well plate above a resting surface while allowing a far edge of the multi-well plate to remain on the resting surface. The plate handler slides the multi-well plate and lifts the far edge of the multi-well plate with a fulcrum. The fulcrum contacts a bottom edge of the well late and lifts the far edge of the multi-well plate as the multi-well plate is slid towards a transport position. To place a multi- well plate the plate handler reverses the retrieval process.
[0012] In another aspect of the invention, an imaging system automatically images one or more wells in a multi-well plate or other storage receptacle. An imaging device is connected to a lens and a mount that enables the imaging device and lens to move in a first axis. An imaging station is configured to receive a multi-well plate and can move in a second axis substantially perpendicular to the first axis. The lens is motor driven to allow for automated focusing. The imaging system includes one or more illumination sources. One source can be positioned away from an imaging axis by a first distance. A second illumination source can be positioned away from the imaging axis by a second distance. The first and second illumination sources can be located on substantially opposite sides of the imaging axis. The illumination sources can provide illumination independently. The processor can control the illumination sources to provide illumination simultaneously.
[0013] The illumination sources can be xenon flash tubes and the processor can control the duration of the flash. A capacitor or capacitor bank can provide the energy for the flash tubes. A Silicon Controlled Rectifier (SCR) or thyristor can connect the capacitor to the flash tube. The processor can control conduction through the SCR, and thus, energization of the flash tubes. The processor can also interrupt the flow of current through the SCR to control the illumination, or intensity of light.
[0014] In another aspect of the invention, a shelf or storage location for the multi-well plates includes locating members for accommodating a plurality of multi-well plate sizes. The shelf is configured to store one multi-well plate from a plurality of multi-well plate sizes. The shelf can be an individual shelf that can be connected to other shelves to produce the shelf array. The shelf includes a first ridge to position a multi-well plate of a first size. The shelf contains a second ridge to position a multi-well plate of a second size. The shelf can position a smaller multi-well plate in a recess defined by the first ridge. The shelf can include a second recess to position a second, larger, multi-well plate. The shelf can contain lateral recesses or gaps in the ridges to locate a multi-well plate and to minimize movement of the multi-well plate along a predetermined direction. The shelf can also include a tab, or flag, extending from a wall of the shelf to interface with a sensor. The flag can interrupt an optical sensor of the transport assembly to allow the transport assembly to locate the plate handler in a position relative to the shelf.
[0015] In still another aspect of the invention, a plate tray houses one or more multi- well plates and provides an outline dimension and interface that is analogous to a second multi- well plate. A multi-well plate configuration which is not positioned by the shelf can be installed in the plate tray such that the shelf, plate handler, and transport assembly can manipulate the multi- well plates. The sample analysis system handles the plate tray as if it were the multi-well plate of the same dimension.
[0016] In another aspect of the invention a method of imaging one or more wells in a multi-well plate or sample storage receptacle includes retrieving the samples from a shelf using a transport assembly and transporting the multi-well plate to a destination, which can be another shelf, an optical assembly, or an access shelf. The multi-well plate can be transported to an optical assembly and the optical assembly can image at least one of the wells or samples in the multi-well plate. The transport assembly transports the multi-well plate back to a shelf and repositions the multi-well plate on the shelf.
[0017] h still another aspect of the invention, a method of transporting a multi-well plate in an imaging system includes raising a first edge of a multi-well plate, transporting or sliding the multi-well plate onto a surface of the plate handler and raising a second edge of the multi-well plate with a fulcrum.
[0018] In still another aspect of the invention, a method of imaging at least one well in a multi-well plate includes positioning a multi-well plate along a first axis, positioning an imaging device along a second axis, and capturing an image of at least one well on the multi-well plate.
Brief Description of the Drawings
[0019] The above-described aspects and other aspects, features and advantages of the invention will be apparent upon review of the following detailed description and the accompanying drawings.
[0020] Figure 1 is a functional block diagram of the automated sample analysis system.
[0021] Figure 2 is a partial view of the cabinet front.
[0022] Figure 3 is a partial view of the cabinet side.
[0023] Figure 4 is a partial view of the cabinet interior.
[0024] Figure 5 is a partial view of the cabinet interior.
[0025] Figure 6 is a view of the transport system. [0026] Figure 7 is a view of the plate handler.
[0027] Figure 8 is a view of the plate handler with a multi-well plate.
[0028] Figures 9A-9B are views of a shelf.
[0029] Figure 10 is view of an array of stationary shelves.
[0030] Figure 11 is a view of a removable shelf magazine.
[0031] Figure 12 is a view of the optical system.
[0032] Figure 13 is a view of the environmental control assembly.
[0033] Figure 14 is a view of a plate tray.
[0034] Figure 15 is a functional block diagram of the controller. Detailed Description of the Preferred Embodiment
[0035] Figure 1 is a functional block diagram of one embodiment of an automated sample analysis system 100. The automated sample analysis system 100 includes a cabinet 102 including a removable shelf access door 110 and a shelf access door 112 that are typically mounted on a front of the cabinet 102 and provide access to an environmentally controlled chamber within the cabinet 102. The environmentally controlled chamber of the cabinet 102 can also be referred to as the interior of the cabinet 102.
[0036] The cabinet 102 also includes spaces that are external to the environmentally controlled chamber. For example, the cabinet 102 includes an environmental control unit 160 mounted external to the environmentally controlled chamber. The environmental control unit includes a refrigeration unit 162 and a heater 164.
[0037] The cabinet 102 houses a removable shelf system 120, a stationary shelf system 122, a transport assembly 130 and an optical assembly 140 within the environmentally controlled chamber. The transport assembly 130 includes a plate handler 132, an elevator assembly 134, and a rotatable platform 136. The optical assembly 140 includes an imaging device 142, a lens 144, a movable mount 146, an illumination module 152 and a sample mount 154.
[0038] A processor 170 and memory 172 are mounted in a controller 190 that is preferably external to the cabinet 102. The processor 170 is connected to, and in communication with, the memory 172. Additionally, the processor 170 is connected to, and in communication with, a network interface module 174. The network interface module 174 is connected to the cabinet 102 and allows the controller 190 to communicate and control various modules within the cabinet 102. The network interface module 174 can also be connected to an external network 180 that is not a portion of the sample analysis system 100.
[0039] The sample analysis system 100 can be used to prepare and analyze numerous types of samples, including biological samples. For example, the sample analysis system 100 can be used to incubate and image protein samples. The sample analysis system 100 can be used to incubate and monitor the protein samples for crystallization. Although the following description details use of the automated sample analysis system 100 in protein crystallization incubation and imaging, the automated sample analysis system 100 is not limited to use in protein crystallization imaging and can be used for other applications.
[0040] A user can prepare numerous sample storage receptacles for analysis by the automated sample analysis system 100. The sample storage receptacles can be, for example, tube holders, multi-well plates, microtiter wells, gel plates, flat plates, plates having matrices of drop positions, and the like, or other means for sample storage. For example, a multi-well plate can be one of multiple formats compatible with the shelf systems, 120, 122 within the system 100. The multi-well plate can be, for example, a standard multi-well plate such as a Linbro plate, a Douglas microbatch plate, a Greiner plate, a Corning plate, a 96/384 multi-well plate, or some other type of crystallography plate or sample storage plate. The multi-well plates, or other sample storage receptacles, typically are marked with an identifier. The identifier can be a machine readable identifier, such as a barcode or RF tag. The barcode can include information that correlates with the samples in the multi-well plate or can directly contain information about the multi-well plate or samples. For example, the barcode can include information regarding the type of multi-well plate. This information can then be used, for example, by the transport assembly 130 or the optical assembly 140. For example, the optical assembly 140 can use the multi-well plate identification to determine the number of wells in the multi-well plate and the spacing of the wells.
[0041] After the samples are prepared and placed in the multi-well plates, the multi- well plates can be loaded into a removable magazine that includes a number of shelves. The removable magazine can, for example, include sixteen shelves and each shelf can hold one multi- well plate. In another embodiment, the removable magazine includes any number of shelves, such as 10, 12, 14, 18, 20, or 22, for example, and can hold multiple plates, such as in a plate tray (discussed below with respect to Figure 14), for example. The removable magazine forms part of the removable shelf system 120. The removable shelf system 120 can be configured to accept one or more removable magazines in order to facilitate removal and insertion of multi-well plates. The number of magazines that the removable shelf system 120 can accommodate can be limited in order to minimize the change in environmental conditions experienced in the environmental chamber when the removable shelf access door 110 is opened and one or more magazines are removed. The removable shelf system 120 can include two magazines, with each magazine having sixteen shelves.
[0042] The loaded magazine is then inserted into a corresponding location in the removable shelf system 120. The transport assembly 130 then retrieves the plates from a shelf on the magazine and places the multi-well plate on a shelf in the stationary shelf system 122. A barcode reader positioned on the plate handler 132 can read the barcode on the multi-well plate before placing the multi-well plate on a shelf in the stationary shelf system 122. The transport assembly 130 can transmit the barcode to the controller 190 to enable the controller 190 to build a database or allocation table in the memory 172 of the shelf locations and associated multi-well plates contained within the shelves. The controller 190 can control the transport assembly 130 to place multi-well plates retrieved from the removable magazine shelves to stationary shelves. The controller 190 can control the transport assembly 130 to place load the stationary shelves in a predetermined order. Alternatively, the controller 190 can control the transport assembly 130 to search the shelves in the stationary shelf system 122, using a predetermined sequence, for an empty shelf or may simply consult the allocation table stored in memory 172. The transport assembly 1309 can then deliver the multi-well plate to the first empty shelf encountered. In still another alternative, the controller 190 can control the transport assembly 130 to deliver the multi-well plate to a specific empty shelf in the stationary shelf system 122. A typical stationary shelf system 122 includes 300 shelves that can be used for multi-well plate storage. The number of shelves in the stationary shelf system 122 is not limited to 300 but can be any number of shelves. The stationary shelf system 122 is typically an array of shelves that are arranged in an arc or otherwise arranged around a core.
[0043] As described further below, plates of various sizes may be used in the sample analysis system. In one embodiment, the dimensions of the shelves are large enough to hold all sizes of plates, hi another embodiment, some shelves are dimensioned to hold smaller plates and other shelves may be dimensioned to hold larger plates, this embodiment, the smaller plates may be stored in smaller shelves, thus reducing the amount of storage space that is unused when small plates are stored on shelves dimensioned to hold larger plates.
[0044] Once the transport assembly 130 has placed all of the multi-well plates from the magazines to locations in the stationary shelf system 122, the magazine can be removed to be reloaded with additional multi-well plates. The process can be repeated until all of the shelves in the stationary shelf system 122 contain a multi-well plate. Alternatively, some shelves in the stationary shelf system 122 can remain empty. Typically, the system 100 operates with the removable magazines empty to allow multiple multi-well plates to be retrieved from locations and placed into the magazines for removal from the system 100. Alternatively, the system 100 can operate with the removable magazines loaded with multi-well plates to increase the total multi-well plate capacity of the system 100.
[0045] As noted above, the controller 190 controls the transport assembly 130 to retrieve and transport multi-well plates from the removable magazines to the stationary shelves. The transport assembly 130 can move multi-well plates in any order. The transport assembly 130 has random access to the shelves. Additionally, the transport assembly 130 can perform the complementary task of removing multi-well plates from shelves in the stationary shelf assembly 122 and transporting and delivering the multi-well plates to shelves in the removable magazines. The transport assembly 130 performs nearly all of the multi-well plate transportation within the system 100. The transport assembly 130 can retrieve multi-well plates from, and transport multi- well plates to, a variety of locations. For example, the transport assembly 130 can transport a multi-well plate to a shelf that is accessible via the shelf access door 112. The shelf access door 112 provides user access to a single shelf to allow removal or insertion of a single multi-well plate. The shelf access door 112 provides an alternative to using the removable magazines to remove a multi-well plate. The shelf access door 112 is typically much smaller than the removable shelf access door 110 and thus, minimizes the effects on the environmental chamber when opened.
[0046] The transport assembly 130 can also transport multi-well plates to, and retrieve multi-well plates from, an optical assembly 140. Tjφically, the transport assembly moves plates between the optical assembly 140 and the stationary shelf system 122. However, the processor can control the transport assembly 130 to move plates between any originating locations to any destination.
[0047] The transport assembly 130 includes at least one plate handler 132, an elevator assembly 134, and a rotatable platform 136. The transport assembly 130 is located within the controlled environment chamber of the cabinet 102 and is also located inside the arc defined by the stationary shelf system 122. Alternatively, where the stationary shelf system is arranged around a core, the transport assembly 130 is located within the core.
[0048] The transport assembly 130 includes a plate handler 132 that is configured to move a plate into and out of a shelf. The plate handler 132 is mounted to the elevator assembly 134. The elevator assembly 134 moves the plate handler up and down to the various heights corresponding to the heights of the shelves in the stationary shelf system 122. The elevator assembly 134 is mounted on the rotatable platform 136. The rotatable platform 136 can rotate about a vertical axis and can position the elevator assembly 134 and plate handler 132 at an angular position corresponding to a column of shelves in the stationary shelf system 122. Thus, the transport assembly 130 is a four axis robot that can position a multi-well plate in X, Y, and Z axis and can rotate about a vertical axis extending through the rotatable platform 136.
[0049] In one embodiment, multi plate sizes may be stored on the shelves and transported by the plate handler 132 to the optical assembly 140. In one embodiment, the optical assembly 140 includes a mount configured to support a plate of a standard size. The optical assembly 140 may also include a moveable plate adapter having a footprint the size of a standard plate that is configured to support plates that are smaller than the standard size. Accordingly, when a plate that is smaller than the standard size is to be placed in on the mount of the optical assembly 140, the plate adapter may first be placed on the mount, by the plate handler 132, for example, and then the smaller plate may be placed on the plate adapter. . i this way, the optical assembly 140 is able to easily acquire images from various sizes of plates through the use of the plate adapter. In one embodiment, the optical assembly 140 includes multiple plate adapters, each having a footprint the size of a standard plate and each being configured to support a plate of a different, smaller size, h this embodiment, the plate handler 132 may select a plate adapter based on the size of the plate which is to be placed on the mount of the optical assembly 140.
[0050] The optical assembly 140 includes an imaging device 142, a lens 144, a movable mount 146, an illumination module 152, and a sample mount 154. The optical assembly 140 is located within the environmentally controlled chamber of the cabinet 102. The optical assembly 140 receives a multi-well plate from the transport assembly 130 at the sample mount 154. The sample is moved in a first axis using the sample mount 154. The movable mount 146 positions the imaging device 142 and lens 144 over at least one well of the multi-well plate. The illumination module 152 lights the sample and the imaging device 142 captures the image of the sample.
[0051] The sample mount 154 is configured to position the multi-well plate in a predetermined axis. The sample mount 154 can also include a filter mount that is configured to hold optical filters. For example, the filter mount can hold polarization plates or light filtering plates. Typically, the sample mount 154 is configured to move along a linear axis. However, the sample mount 154 can be configured to position the multi-well plate by moving on more than one axis.
[0052] The lens 144 is connected to the imaging device 142. The imaging device 142 can be a camera or other image capture device. For example, the imaging device 142 can be a film camera, a digital camera, a CMOS camera, a Charge Coupled Device (CCD), and the like, or some other means for imaging. For example the imaging device 142 can be a CMOS camera with a firewire interface. The CMOS camera communicates with the controller 190 through the network interface 174 using a firewire connection. Such a CMOS camera is capable of providing five images per second to the controller 190. However, other practical limitations, such as the time required between successive illuminations in the illumination module 152 can reduce the throughput of the optical assembly 140. Capacitors driving flash tubes in the illumination module 152 can require nearly one second to recharge. Additional constraints include the desire to minimize the acceleration and speed imposed on the multi-well plate, as well as auto focusing of the lens 144 and imaging device 142 prior to each image capture. Taking into account X/Y positioning of the samples in the multi-well plate, auto-focusing, imaging of each sample in the multi-well plate, and charging time of the illumination module 152, the optical assembly 140 can average approximately one image in five seconds. However, the image throughput increases if the optical assembly 140 takes more than one image per sample. Other factors can also affect the image throughput. For example, the controller 190 can implement an automatic sample location routine rather than using a predetermined map of sample positions. Additionally, the controller 170 can instruct the lens 144 and imaging device 142 to capture a zoomed image. Thus, taking into account the various factors, the optical assembly 140 can capture and transmit to the controller 190 on average one image in five seconds. Alternatively, the optical assembly 140 can capture and transmit one image in as little as 0.2 seconds or as great as 12 seconds, and the time to capture and transmit an image can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 seconds. The optical assembly 140 can capture and transmit one image, on average, in 5-12 seconds.
[0053] The imaging device 142 is not limited to capturing a visible image but can be configured to capture some other characteristic, such as radiation spectra, x-ray images, infrared images, ultraviolet images, spectrally filtered images, and the like. The controller 190 can control a motorized zoom and motorized focus included on the lens 144. In one embodiment, the controller also controls a motorized aperture. In another embodiment, the imaging device includes a motorized filter wheel that may be rotated, either automatically or manually, in order to change a filter through which images are acquired. For example, the motorized filter wheel may include a polarization filter. The lens 144 can advantageously have a zoom function, such as a 12-1 zoom and, in cooperation with the imaging device 142, can easily provide 3-4 micron optical resolution. Alternatively, the lens 142 and imaging device 142 can be integrated as a single assembly, such as a camera or microscope having a lens. When used with a high-intensity light source, as described below, the imaging device 142 in combination with the lens 144 provides a broad depth of field to allow imaging of objects such as protein crystals at varying depths within the sample well.
[0054] The imaging device 142 and lens 144 are mounted on the movable mount 146.
The movable mount 146 can move in a predetermined axis and can position the imaging device 142 and lens 144 at a location along the axis. The movable mount 146 typically moves along a linear axis that is substantially perpendicular to the moving axis of the sample mount 154. Typically, the movable mount 146 and sample mount 154 move across a plane that is substantially parallel to a plane defined by the multi-well plate located in the sample mount 154. Thus, the controller 190 can control the movable mount 146 and the sample mount 154 to position a specific well in the multi-well plate to be within the view of the lens 144 and imaging device 142.
[0055] The optical assembly 140 also includes an illumination module 152 that illuminates the sample for imaging by the imaging device 142. The samples that are to be imaged are often highly sensitive to temperature changes. The illumination module 140 is configured to minimize the amount of heat transferred to the sample when the sample is illuminated. The system can use incandescent or fluorescent light sources illuminating an optical light pipe, such as an optical fiber. The optical fiber can then be routed to the sample such that the sample is illuminated by light travelling through the light pipe. The light sources can remain illuminated during the entire multi-well plate imaging process. However, such an illumination system can still generate too much heat exposure to the samples and can result in unsatisfactorily low levels of light. LED sources can be used to illuminate the sample, but LED radiation occupies a narrow optical bandwidth and is typically low intensity. LEDs can emit nearly a single wavelength and can require expensive imaging systems to compensate for the lack of light.
[0056] In one preferred embodiment, the illumination module 152 can include one or more flash tubes to momentarily illuminate the sample with relatively high-intensity light during the period in which the imaging device 142 captures an image of the sample. The flash tubes can be xenon flash tubes that provide a broad spectrum of light. The flash tubes are on only for a small fraction of a second per image and transfer almost no heat to the samples. Multiple tubes can be positioned to provide both on-axis and off-axis lighting of the sample. For example, a first xenon tube can be positioned a first distance from the imaging axis of the imaging device 142. A second xenon tube can be positioned a second distance from the imaging axis of the imaging device 142. hi one embodiment, the first and second distances are equal and the first xenon tube is positioned opposite the imaging axis from the second xenon tube.
[0057] When two xenon tubes are positioned off the imaging axis, the processor can control the flash tubes to provide on-axis or off-axis illumination of the sample. One xenon tube can illuminate the sample to provide off-axis illumination. Both xenon tubes can illuminate simultaneously to provide on-axis illumination. A fan is advantageously provided to direct heat produced by the tubes outside of the cabinet 102.
[0058] Off-axis lighting tends to create subtle shadows on small objects in the target area viewed by the image device 142. The shadows caused by off-axis lighting make the objects much more visible than simple direct lighting of the sample from below. The controller 190 can control the imaging device 142 to capture two images of the sample. The imaging device 142 captures one image with the illumination module 152 lighting the sample with the first xenon flash tube. The imaging device 142 captures a second image with the illumination module 152 lighting the sample with the second xenon flash tube. The controller 190 can then combine the image data and perform an analysis based on the combined data. The processor 170 can perform an accurate analysis of small objects in the sample using the combined data. The processor 170 can, for example, use processor readable instructions stored in memory 172 to perform image analysis on a single image, multiple, or combined images. Alternatively, a user or operator can view the captured images.
[0059] The sample analysis system 100 also includes an environmental control unit 160 that is located within the cabinet 102 but not within the environmentally controlled chamber of the cabinet 102. Thus, the environmental control unit 160 is mounted on the exterior of the cabinet 102. A face plate or cover (not shown) can be used to shield the environmental control unit 160 to give the cabinet 102 a more pleasing appearance. [0060] The environmental control unit 160 is typically configured to control a temperature within the environmentally controlled chamber, or interior, of the cabinet 102. The environmental control unit 160 can, for example, maintain the temperature within the interior of the cabinet 102 at any temperature within the range of 4° to 40°C. The environmental control unit 160 can preferably maintain the temperature to an accuracy of +/- 1°C or better. The environmental control unit 160 can also be configured to control other aspects of the interior of the cabinet 102. For example, the environmental control unit 160 can be configured to control an atmosphere, humidity, pressure, and the like within the interior of the cabinet 102. The atmosphere can be a dry nitrogen atmosphere for example.
[0061] One embodiment of the environmental control unit 160 includes a refrigeration unit 162 and a heater 164 to control the temperature within the interior of the cabinet 102. Because the environmental control unit 160 typically includes mechanical equipment such as fans, compressors, and pumps within the sub assemblies, the amount of vibration generated by the environmental control unit can be substantial. The environmental control unit 160 is preferably mechanically isolated from the interior of the cabinet 102 to minimize the vibration transferred to the samples. One way to accomplish this is to have the environmental control unit 160 separately supported by the support surface that supports the cabinet 102. Thus, in operation, the environmental control unit 160 is not mounted to the cabinet 160 but instead, rests on a support surface. The support surface can be, for example the ground, laboratory floor, or other means for supporting the cabinet 102. Alternatively, the support surface can be isolated from the cabinet 102 support surface. For example, the cabinet 102 can be mounted to the floor and the environmental1 control unit 160 can rest on a vibration dampened floor that is isolated from the laboratory floor. The environmental control unit 160 is thus coupled to the cabinet 102 using the minimal number of connections required to transfer the heating or cooling air to the interior of the cabinet 102.
[0062] Control elements of the sample analysis system 100 are mounted outside of the cabinet 102 and are typically mounted remote from the cabinet 102. The cabinet 102 can include a port that provides a connection to all the controllable assemblies contained by the cabinet 102. For example, the transport assembly 130, optical assembly 140, and environmental control unit 160 can all be controlled through a common communication bus. Alternatively, each controlled device can be controlled using independent control lines, or independent control channels. In another alternative, some of the controlled devices can be controlled through a common bus and others can be controlled using dedicated control lines or control channels. Similarly, the controller 190 can communicate with the various devices and assemblies using a common bus, dedicated lines, or channels.
[0063] The controller 190 communicates with the various devices associated with the cabinet 102 via a network interface 174. The network interface 174 translates the processor 170 commands to the communication protocol used by the destination device. Conversely, the network interface 174 translates received communication messages to processor 170 readable data or messages. The network interface 174 can also interface the processor 170 to an external network 180 that is not part of the sample analysis system 100. The external network 180 can be, for example, a local area network or a wide area network, such as the Internet.
[0064] The processor 170 is also connected to the memory 172 that can include volatile memory and non-volatile memory. The memory 172 can be a combination of integrated circuits, optical memory, and magnetic memory. The memory 172 can store processor readable instructions, such as embedded code, that instruct the processor 170 to control the assemblies and devices of the cabinet 102. The processor readable instructions can be configurable or can be a fixed configuration. For example, the processor readable instructions can be configured via a user interface to direct the processor 170 to instruct the transport assembly 130 to retrieve a specific multi-well plate and deliver it to the optical assembly 140. The optical assembly 140 can then be controlled to image a particular well in the multi-well plate. The controller 190 also stores captured images in memory 172. The captured images can then be viewed on a display (not shown) or transmitted to a remote location for further analysis or display. The memory 172 can include storage such as hard disk storage or RAID storage to store the captured images. The memory 172 can include, for example, 500 GB of memory for image storage.
[0065] The controller 190 is typically housed within a computer, controller, or server. The controller 190 can be located remote from the cabinet 102 and is typically not mounted to the cabinet 102 in order to minimize coupling of vibrations and heat generated by the controller 190 to the environmentally controlled chamber of the cabinet 102.
[0066] Figure 2 is a view of the front of the cabinet 102 that was detailed in Figure 1.
The front of the cabinet 102 includes the removable shelf access door 110 and the shelf access door 112. The removable shelf access door 110 is shown in its open position. Two removable magazines 22a and 220b are accessible through the removable shelf access door 110. The two removable magazines 220a and 220b form part of the removable shelf system 120 discussed in conjunction with Figure 1. The cabinet 102 is not limited to housing two removable magazines 220a and 220b. Also, the location of the removable shelf access door 110 is not limited to the front of the cabinet 102. However, because the removable shelf access door 110 provides access to the environmentally controlled interior of the cabinet 102, the size of the removable shelf access door 110 is directly related to the change in environmental conditions caused by opening the door. The size and number of removable magazines 220a and 220b can then be determined based on the size of the removable shelf access door 110.
[0067] The front of the cabinet 102 also preferably includes the shelf access door 112 that provides access to one multi-well plate. A single multi-well plate can be loaded into the cabinet 102 via the shelf access door 112. Additionally, the processor can control the transport assembly to deliver a single multi-well plate to the shelf access door for removal from the cabinet 102. The shelf access door 112 is typically smaller than the removable shelf access door 110 to further minimize changes to the interior environment when the door is opened. The placement of the shelf access door 112 is typically at a height and position that is convenient for user access. However, the placement of the shelf access door 112 is not limited to any particular location and is not limited to placement on the front of the cabinet 102.
[0068] The front of the cabinet 102 also includes a front door 240 that provides access for installation and maintenance. The operation of the sample analysis system typically does not require accessing the front door 240. The front door 240 can include an environmental monitor 230 that indicates, for example, the temperature of the interior of the cabinet 102. The environmental monitor 230 can also provide local controls to allow a user to modify the interior environment. For example, the environmental monitor 230 can provide controls to change the temperature within the interior of the cabinet 102. Below the front door 240 is a front access panel 250 that provides access to the portion of the environmental control unit (not shown) that is housed in the lower portion of the cabinet 102 outside of the environmentally controlled interior of the cabinet 102.
[0069] Figure 3 is a side view of the cabinet 102 having a cut away view showing the placement of the environmental control unit 160 in a lower portion of the cabinet 102 behind the front access panel 250. The environmental control unit 160 can include a refrigerant pump or compressor 320 and condenser 340. A motorized fan 330 can cool the condenser 340. Refrigerant lines 310 can carry the refrigerant to, for example, an evaporator (not shown) located in an upper portion of the cabinet 102. The placement of at least a portion of the environmental control unit 160 near a support surface of the cabinet 102 allows for substantial mechanical isolation of the environmental control unit 160 from the remainder of the cabinet 102. A mechanical isolation mount is further detailed with respect to Figure 13.
[0070] Figure 4 is a partial view of the interior of the cabinet 102 with the front door
240 removed. The removable shelf system 120 and some of the shelves in the stationary shelf system 122 are not shown for the sake of clarity. The interior of the cabinet 102 can be seen through the front door opening. The interior of the cabinet 102 is the environmentally controlled chamber and all components within the interior of the cabinet 102 are within the environmentally controlled chamber.
[0071] A number of full shelf columns, for example 410, are placed in the cabinet 102 arranged at least partially around a core. Additionally, one or more partial shelf columns, for example 420, are used in locations where clearance or access is desired. The full shelf columns, 410 and partial shelf columns 420 combine to form a shelf array. All shelves within the shelf array can be configured to store sample storage receptacles, such as multi-well plates. The system can have a capacity of 330 or more multi-well plates. Alternatively, some of the shelves can be dedicated to storing items other than multi-well plates and thus are not available for sample storage. For example, a row of shelves, such as the bottom row of shelves, can be excluded from sample storage and can be used to store polarizing filters or other light filters. The polarizing filters or light filters can be used with the optical assembly 140 when imaging a sample.
[0072] The transport assembly 130 is shown in the middle of the front door opening.
The transport assembly 130 is located in the core around which the shelves are arranged. The rotatable platform 136 is shown near the bottom of the front door opening. The elevator assembly 134 is mounted to the rotatable platform 136. One or more plate handlers 132 can be mounted to the elevator assembly 134. Thus, the elevator assembly is configured to raise at least one plate handler 132 up to the level of the highest shelf and can lower at least one plate handler 132 down to the level of the lowest shelf. The rotatable platform 136 is configured to rotate about a vertical axis and can position the elevator assembly 134 at any angular position along the axis of rotation. Thus, the rotatable platform 136 positions the elevator assembly 134 at the angular position of a shelf column, for example 410, and the elevator assembly positions the plate handler 132 at the height, or vertical position, of the desired shelf.
[0073] A multi-well plate retrieved by the transport assembly 130 can be transported to the optical assembly 140, shown here at the bottom right of the front door opening. The optical assembly 140 includes an illumination module 152 mounted beneath a sample mount 154. The sample mount 154 is configured to accept a multi-well plate from the transport assembly 130.
[0074] An imaging device 142, such as a CMOS camera, is connected to a lens 144 that is directed down towards the sample mount 154. The lens is connected to a movable mount 146 that is configured to position the lens 144 and imaging device 142 along a first linear axis, which can be labeled an X-axis. As described in connection with Figure 1, the sample mount 154 can position the multi-well plate in along a second linear axis, which may be labeled a Y-axis. Thus, the optical assembly 140 is able to move a multi-well plate to any position in an X-Y plane. The movable mount 146 and sample mount 154 move to allow the imaging device 142 to capture an image of any sample well on a multi-well plate.
[0075] Figure 5 is a partial view of portions of the system that are assembled in the interior of the cabinet 102. The cabinet 102 and transport assembly 130 are not shown for purposes of clarity. Figure 5 clearly shows the arrangement of shelves around the core. The shelves are arranged in an arc, here substantially a circle. Within the core, or interior to the arc is located the transport assembly 130.
[0076] The shelves are arranged as a plurality of full shelf columns 510a-510g arranged in an arc around a core. A number of partial shelf columns 520a, 520b, and 530 are arranged to allow the transport assembly 130 to access the optical assembly 140 and access shelf 540, for example. The partial shelf columns 520a, 520b, and 530 allow the maximum number of shelves to be mounted within the cabinet 102.
[0077] Two of the partial shelf columns 520a and 520b are mounted beneath the removable magazines 220a and 220b. The two partial shelf columns 520a and 520b can be mounted to the front door 240, or can be mounted to the same platform on which the full shelf columns are mounted.
[0078] Another partial shelf column 530 is mounted above an access for the optical assembly 140. The transport assembly 130 thus transports multi-well plates to and from the optical assembly 140 via the access provided below the partial shelf column 530.
[0079] Figure 6 is a view of the transport assembly 130 isolated from the other components of the sample analysis system. The rotatable platform 136 is positioned using a belt 642 driven by an electric platform drive motor 640. The belt 642 can be a cogged belt and the drive wheel on the electric platform drive motor 640 can be a cogged wheel. The cogged drive wheel is typically much smaller than the rotatable platform 136 to provide increased sensitivity in angular position of the rotatable platform 136.
[0080] The rotatable platform 136 can include a receiver around the circumference of the platform to receive the cogged belt. Alternatively, the receiver can be a driven wheel attached to the rotatable platform 136. Although the drive wheel in the platform drive motor 640 is typically cogged to mate with the cogged belt 642, the receiver on the rotatable platform 136 is typically not cogged. The periodic placement of cogs on the cog belt can create vibrations when the rotatable platform 136 is rotated. This induced vibration can then be transferred to a multi-well plate or sample that is being transported by the transport assembly 130. To minimize vibrations, some, a majority, or all of the cogs can be eliminated from the receiver on the rotatable platform 136. For example, the receiver on the rotatable platform 136 can include no cogs, or a minimal number of cogs to ensure the belt 642 does not slip in the receiver.
[0081] The processor can control the platform drive motor 640 to position the rotatable platform 136 at an angular position. Alternatively, the controller 190 can position the rotatable platform at an angular position by reading position sensors that are placed on the rotatable platform 136. The processor 136 can read one or more sensors and determine the angular position of the rotatable platform 136.
[0082] Of course, the rotatable platform 136 is not limited to being driven using a belt
642. The rotatable platform 136 can also be driven using hydraulics, pneumatics, gears, chains, crank arms, friction wheels, clutches, propeller shafts, ratchets, and the like, or some other means for driving. [0083] The elevator assembly 134 is mounted to the rotatable platform 136. The rotatable platform 136 is shown below the elevator assembly 134 but could also be mounted above or around the elevator assembly 134. The elevator assembly 134 includes a top plate 636, a base plate 634, first and second frame members 630a and 630b, first and second support rods 610a and 610b, and an acme screw 620.
[0084] The top plate 636, base plate 634 and first and second frame members 630a and 630b cooperate to form a frame to support portions of the elevator assembly 130 and plate handlers 132a and 132b. The height of the frame members 630a and 630b determine the reach of the elevator assembly 134.
[0085] The first and second support rods 610a and 610b also form part of the elevator assembly 134 frame and are also used as guides for the plate handlers 132a and 132b. A screw drive motor 624 rotates the acme screw 620 to position the height of the plate handlers 312a-b. The plate handlers 132a-b are mounted on a base that includes a threaded portion that mates with the acme screw 620. The screw drive motor 624 rotates the acme screw 620 and raises or lowers the plate handlers 132a-b depending on the direction of rotation. The controller 190 can determine a height of the plate handlers 132a-b based on a predetermined screw pitch calibration. A relatively steep screw pitch is preferred so that the elevator assembly 134 will exhibit 1, 2, 5, 10, 15, 20, or more millimeters of vertical movement per screw rotation. The large pitch keeps rotation speed low and minimizes vibration that can be transferred to the samples. Alternatively, the processor can determine the height of the plate handlers 132a-b based on sensors positioned on the plate handlers 132a-b. The elevator assembly 134 can raise and lower the plate handlers 132a-b using alternative means. For example, the elevator assembly 134 can use hydraulic pistons, pneumatic pistons, linear actuators, slides, conveyers, chain or belt drive conveyers, or other means for raising or lowering the plate handlers 132a-b.
[0086] Figure 7 is a view of two plate handlers 132a-b connected together. An upper plate handler 132a includes an upper base 710a, a fulcrum 740, a first slide assembly 762, a first slide motor 720a and a first slide conveyer 722a. The first slide assembly 762 includes a plate stop 734 and fingers 730a-730b. A sensor, such as an optical sensor 754, can be attached to one or more of the plate handlers 132a-b to sense a position of the plate handler 132a-b.
[0087] The first slide assembly 762 cooperates with the fulcrum 740 and elevator assembly 134 to lift and reposition a multi-well plate from a location, such as a shelf, to a position on the plate handler 132a. The fulcrum 740 can include a stepped upper surface 742 that corresponds with the various multi-well plate sizes handled by the plate handler 132a.
[0088] The lower plate handler 132b is configured similar to the upper plate handler 132a. The lower plate handler 132b includes a lower base 710b, a fulcrum (not shown), a second slide assembly 764, a second slide motor 720b and a second slide conveyer 722b. The second slide assembly 764 includes a plate stop (not shown) and fingers (not shown). The lower plate handler 132b is shown having a multi-well plate 780 positioned on the plate handler 132b. However, the multi-well plate 780 does not form a part of the plate handler 132b and is shown to illustrate the position of the multi-well plate 780 on the lower plate handler 132b.
[0089] Two support bearings 762 and 764 are mounted on the lower base 710b. The support bearings 762 and 764 ride on and align the plate handlers 132a-b with the support rods 610a-610b of the elevator assembly 134. The lower base 710b also includes a coupling mount 766 to mount the threaded coupler that interfaces with the elevator screw 620. A barcode reader 750 can be mounted to one or more of the plate handlers 132a-b to read barcodes placed on the multi- well plates.
[0090] The plate handlers 132a-b preferably do not grasp and lift the multi-well plates, but rather, gently transition the multi-well plates from the shelves to the plate handler 132a- b, thus minimizing shock and vibration experienced by the plate. A plate handler, for example 132a, lifts a first or near edge of the target plate and pulls the plate onto the plate handler 132a using the slide assembly 762.
[0091] The plate handler 132a is initially positioned at the shelf opening with the plate handler 132a below the multi-well plate so that the fingers 730a-b of the slide assembly 762 will slide underneath the near edge of the multi-well plate. The slide assembly 762 is then moved towards the multi-well plate until the stop 734 senses the slide assembly 762 is against the multi- well plate. The plate handler 132a is then raised to lift the near edge of the multi-well plate. The far edge of the multi-well plate continues to contact the shelf. As the slide assembly 762 pulls the plate onto the plate handler 132a, the fulcrum 740 contacts the bottom edge of the plate. The slide assembly 762 continues to pull the plate onto the plate handler 132a and the movement of the plate causes the fulcrum 740 to lift the second, or far, edge of the target plate. If the height of the fulcrum 740 is slightly higher than the support edge of the fingers 730a-b, the second edge of the multi-well plate will be higher than the first edge when the plate is positioned on the plate handler 132a.
[0092] The process is performed in the reverse order to place a multi-well plate from the plate handler 132a to a destination. The plate handler 132a is positioned to have the first edge of the multi-well plate slightly below the surface of the shelf and the second or far edge of the multi-well plate above the surface of the shelf. The slide assembly 762 pushes the second, or far, edge of the multi-well plate onto the shelf. The multi-well plate lifts off of the fulcrum 740 as the slide assembly 762 continues to push the multi-well plate onto the shelf until the multi-well plate is completely positioned on the shelf or other destination.
[0093] The slide assembly 762 is positioned using a slide motor 720a and slide conveyer 722a. The slide conveyer 722a can be a belt, such as a cogged belt, and the slide assembly 762 can be coupled to the slide conveyer 722a using a clamp 724. The slide motor 720a can drive the slide conveyer with a cogged wheel. The slide motor 720a can include an optical encoder to facilitate position determination. The controller 190 can determine the position of the slide assembly 762 by initially calibrating the number of encoder pulses required to move the slide assembly 762 from a first extreme to the opposite extreme. Then, the controller 190 can control the position of the slide assembly 762 by tracking the number of encoder counts. Alternatively, the controller 190 can determine the position of the slide assembly 762 using sensors connected to the slide assembly 762 or base 710a.
[0094] The inclusion of two plate handlers 132a-b in the transport assembly 130 is advantageous because a first multi-well plate can be imaged by the optical assembly 140 while the transport assembly retrieves a second multi-well plate, for example using the lower plate handler 132b. Then, after the optical assembly 140 completes the imaging of the first multi-well plate, the transport assembly 130 can position the first multi-well plate on the upper plate handler 132a and transfer the second multi-well plate to the optical assembly 140 from the lower multi-well plate 132b without moving from the optical assembly 140. The transport assembly 130 can then replace the first multi-well plate to a shelf and retrieve another multi-well plate to be imaged. Thus, the throughput of the sample imaging system is increased through the inclusion of two plate handlers 132a-b.
[0095] Additionally, the controller 190 can direct the transport assembly 130 to use the upper plate handler 132a to retrieve multi-well plates from shelves and to use the lower plate handler 132b to replace multi-well plates to shelves. Then, the processor can use the barcode reader 750 to read the barcode on the multi-well plate when it is retrieved. In this manner, the barcode on the multi-well plate can be read every time the multi-well plate is handled.
[0096] Figure 8 is a duplicate of Figure 7 except that the upper plate handler 132a is shown with a multi-well plate 802 positioned on the plate handler 132a. The barcode 810 on the multi-well plate is shown against the stop 734 of the upper plate handler 132a.
[0097] Figures 9A-9B are different views of a shelf 900, such as a shelf 900 that can be used in the removable shelf system 120 or the stationary shelf system 122. One or more shelves 900 can be connected to one another using hardware positioned through alignment tabs 960a and 960b integral to the sides, for example 902, of the shelf 900. Multiple shelves can be connected together to form the full shelf column 410 or the partial shelf column 420 shown in Figure 4.
[0098] The shelf 900 includes two side walls 902, 904 and a rear wall 906. A shelf opening opposite the rear wall 906 is the shelf opening through which multi-well plates are positioned or retrieved. The shelf 900 also includes a bottom surface 910 that supports the multi- well plate when it is placed in the shelf 900. The bottom surface 910 includes a recess 912 or cutout at the front of the shelf 900 opposite the rear wall 906. The recess 912 in the bottom surface 910 allows the fingers 730a and 730b of the slide assembly 762 to be positioned beneath the front edge of a multi-well plate stored on the shelf 900.
[0099] The bottom surface 910 includes multiple rails that allow the shelf 900 to accommodate multiple multi-well plate formats. The rails can be continuous or can be interrupted. The rails are advantageously continuous to allow a multi-well plate to smoothly slide along the rail. The rails can have a single recess or step placed near the shelf 900 opening to retain a multi-well plate positioned in the shelf 900. The recess or step is advantageous when the shelf 900 is used in a removable shelf 900, such as in the removable magazine 220a shown in Figure 2.
[0100] The largest multi-well plate format that can be accommodated by the shelf 900 rests on a first pair of rails 930a and 930b that protrude from the bottom surface 910 of the shelf 900. The first pair of rails 930a-b extend substantially the length of the shelf 900 and are substantially parallel to the shelf 900 sides 902 and 904. The first pair of rails 930a-b do not need to be parallel to the sides 902 and 904 but should extend from near the opening of the shelf 900 to the rear wall 906 of the shelf 900 in order to support a multi-well plate placed in the shelf 900. It is advantageous for the first pair of rails 930a-b to be substantially parallel to facilitate positioning of a smaller multi-well plate format. The side walls 902 and 904 of the shelf 900 align the largest multi-well plate accommodated by the shelf 900. Thus, the largest multi-well plate format rests on the first rails 930a-b and is aligned within the shelf 900 using the side walls 902 and 904.
[0101] The shelf 900 can accommodate a second smaller multi-well plate format without any changes to the shelf 900. A second pair of rails 920a-b is positioned in between the first pair of rails 930a-b. The second pair of rails 920a-b extend to a height that is below the height of the first pair of rails 930a-b. A raised stop 950 is positioned near the rear wall 906 of the shelf 900. The raised stop 950 has a height that is greater than the height of the second pair of rails 920a-b but is less than the height of the first pair of rails 930a-b. The raised stop 950 can be a ridge or wider surface. The wider surface can extend to the rear wall 906.
[0102] A smaller multi-well plate format is thus supported by the second pair of rails 920a-b. The first pair of rails 930a-b and the raised stop 950 are positioned to align the smaller multi-well plate format within the shelf 900. The second pair of rails 920a-b can taper towards the bottom surface 910 as the rails 920a-b approach the raised stop 950. The tapered rails 920a-b ensure the raised stop 950 provides a more positive stop for a multi-well plate.
[0103] Another advantage of the rails is to provide a smaller sliding surface on which the multi-well plates slide when they are removed and inserted. Thus, instead of sliding on the entire lower surface of the shelf 900, the multi-well plates slide primarily or solely on the rails, thus reducing vibration transferred to the multi-well plate when it is moved.
[0104] . The shelf 900 can accommodate additional multi-well plate sizes by including additional rails. Alternatively, multi-well plate trays, such as the tray discussed in relation to Figure 14, can be used to accommodate additional multi-well plate sizes. Additionally, although a pair of rails is shown for each multi-well plate size, the shelf 900 can include a single rail for each multi-well plate format and can align the multi-well plate using one side wall, for example 904, of the shelf 900. Then, rather than centering each multi-well plate format in the shelf 900, the multi- well plates are biased against one side wall 904 of the shelf 900.
[0105] The shelf 900 can also include a flag 940 or tab that the transport assembly 130 uses to determine the position of the plate handler 132 in relation to the shelf 900. The flag 740 can interrupt a light source in the optical sensor 754 on the plate handler 132. The plate handler 132 then has a known relationship to the shelf 900 when the light source from the optical sensor 754 is interrupted. The placement of the optical sensor 754 on the plate handler 132 and the placement of the flag 940 on the shelf 900 can be arranged such that the plate handler 132 is in position to retrieve or deliver a multi-well plate to the shelf 900 at the point the optical sensor 754 detects interruption of the light source.
[0106] Figure 9B shows multiple views of the shelf 900, including a top view, a side view and two section views. The A-A section view shows the relationship of the height of the first pair of rails 930a-b in relation to the height of the second pair of rails 920a-b and the raised stop 950. The B-B section shows the placement of the flag 940 on the shelf 900.
[0107] Figure 10 is a view of a stationary shelf array 1000 that can form a part of the stationary shelf system 122 described in Figure 1 and shown in Figure 5. The stationary shelf array 1000 includes multiple full shelf columns 1022, 1024, 1026, 1028, 1030, and 1032 arranged around a core. Each of the full shelf columns, for example 1022, can be the full shelf column 510a shown in Figure 5. A partial shelf column 1034 is shown joined to the full shelf columns. Detail area 1010 shows the relationship of the single shelves, 900a-900c in the stationary shelf array 1000. The shelves, 900a-c are stacked vertically and are arranged along side other vertical shelf stacks.
[0108] Figure 11 shows three views of a removable magazine 220a. The front, side, and top views are shown. The removable magazine 220a includes a top plate 1110, a bottom plate 1120, a handle 1140, and multiple shelves 900a-900p. Sixteen shelves 900a-p are shown in the removable magazine 220a. However, the number of shelves 900a-p in the removable magazine 220a is not limited to sixteen, but can be any number.
[0109] The removable magazine 220a includes attachment hardware 1130a and 1130b that passes through the alignment tabs on each of the shelves 900a-p. The hardware 1130a-b can include threaded rods and nuts that clamp the top plate 1110, shelves 900a-, and bottom plate 1120 together to form a solid assembly.
[0110] The handle 1140 can be attached to the shelves 900a-p and can include a release pin 1150 or lever that is activated by a button 1152 integrated with the handle 1140. The release pin 1150 locates the removable magazine 220a in the cabinet 102 when the magazine 220a is inserted. The user can release the removable magazine 220a from the cabinet by depressing the button 1152 on the handle 1140.
[0111] Figure 12 is a view of the optical assembly 140. The optical assembly 140 includes an imaging device 142 mounted to a first lens 120 and second lens 1212. The first lens 1210 and second lens 1212 combine to form the lens 144 of the optical assembly 140. Although two lenses 1210, 1212 are shown, one or more lenses can be used as the lens 144 of the optical assembly 140.
[0112] The imaging device 142 and lenses, 1210 and 1212, are connected to a movable mount 146. The movable mount 146 includes first and second support shafts 1232 and 1234 and a screw 1240 driven by a screw drive motor 1220. Bearings 1250 and 1252 are attached to, and support the imaging device 142 and lenses 1210, 1212. A drive nut 1242 attached to the imaging device 142 and lenses 1210 and 1212 is coupled to the screw 1240. The drive motor 1220 rotates the screw 1240 and the rotating motion of the screw 1240 is transferred as linear motion of the imaging device 142 and lenses 1210, 1212. The screw 1240 and support shafts 1232 , 1234 are aligned to a linear axis that can be characterized as an X-axis.
[0113] The optical assembly 140 also includes a sample mount 154, here shown with a multi-well plate positioned on top of it. The sample mount 154 moves along a second linear axis substantially perpendicular to the X-axis. The second linear axis can be characterized as a Y-axis. The sample mount 154 can also be positioned using a screw drive motor and associated screw assembly (not shown).
[0114] The illumination module 152 is placed beneath the sample mount 154. The controller 190 can control the illumination module 152 to illuminate the samples in the multi-well plate. The controller 190 can control the illumination module 152 via a communication bus connector 1264. The illumination module 152 includes a housing 1260 having a window 1262. The housing 1260 encloses the illumination source, which can be, for example, xenon flash tubes. The window 1262 can be a glass window, such as a heat reflecting glass, to reduce the thermal radiation transferred to the samples. The housing 1260 provides further thermal isolation of the illumination sources to the samples. A fan can be positioned in the housing 1260 to provide further thermal control of the illumination sources. The fan can draw air in from the environmentally controlled portion of the cabinet and can exhaust heated air external to the cabinet.
[0115] Figure 13 is a functional block diagram of the environmental control unit 160 and details its placement on the bottom of the cabinet 102. The environmental control unit 160 can include a refrigeration unit 162 having a compressor 1310 and fan 1312. The refrigeration unit 162 can be mounted to a support 1320 that is in turn mounted to a base plate 1330. The various mounts can be mechanical isolation mounts to reduce the amount of vibration and shock transmitted by the refrigeration unit 162 to the base plate 1330 or cabinet 102. [0116] The base plate 1330 includes isolation mounts 1332a-b that are used to position the base plate 1330 and the associated equipment on a support surface. The support surface can be the ground on which the cabinet 102 is mounted.
[0117] The mechanical coupling between the environmental control unit 160 and the cabinet 102 is minimized by not hard mounting or supporting the environmental control unit 160 with the cabinet 102 during operation of the automated sample analysis system. However, to facilitate moving the cabinet 102 and associated environmental control unit 160, the environmental control unit 160 can be lifted off of the support surface and supported by the cabinet 102.
[0118] One embodiment of the lifting and support mechanism is illustrated in Figure
13. The base plate 1330 is attached to first ends of a first cable 1352 and a second cable 1354. The second ends of the first cable 1352 and second cable 1354 are connected to a spool 1342. The spool 1342 is connected to a lever arm 1340. The lever arm 1340 operates to rotate the spool 1342 thereby drawing or releasing the first and second cables 1352 and 1354. The first cable 1352 is routed from the spool 1342 to a near end of the base plate 1330. The second cable 1354 is routed through a pulley 1344 to a far end of the base plate 1330. When the lever arm 1340 is moved to a first position, the first and second cables 1352 and 1354 are drawn onto the spool 1342. The action of drawing the first and second cables 1352 and 1354 onto the spool 1342 effectively shortens the cable lengths and causes the base plate to rise off of the support surface. Conversely, when the lever arm 1340 is moved to a second position, the first and second cables 1352 and 1354 are released from the spool 1342. The action of releasing the first and second cables 1352 and 1354 from the spool 1342 effectively lengthens the cable lengths and causes the base plate to lower to the support surface. The first and second cables 1352 and 1354 can be slack when the base plate 1330 rests on the support surface. Mechanical coupling between the base plate 1330 and the cabinet 102 are minimized by having the first and second cables 1352 and 1354 slack when the base plate 1330 is placed on the support surface.
[0119] The spool 1342 can be a shaft that extends the length of the cabinet 102 around which the cables can be wrapped. A similar cable configuration can then be installed on the far end of the shaft to enable the base plate 1330 to be lifted and supported by four cables. Alternatively, a duplicate lever arm, spool, and cable assembly can be positioned on the opposite side of the base plate 1330 to independently lift the opposite side of the base plate 1330.
[0120] The mechanical isolation of the base plate 1330 and environmental control unit 160 is not limited to a cable configuration. A chain lift, hydraulic lift, pneumatic lift, belts, springs, cushions, and the like, or some other means for isolation can be used to mechanically isolate the environmental control unit 160 from the cabinet 102.
[0121] Figure 14 is a view of a plate tray 1400. The plate tray 1400 substantially duplicates those areas of a multi-well plate that interface with the automated sample analysis system. For example, the plate fray 1400 has the outside dimensions about equal to a standard multi-well plate size that is supported by the automated sample analysis system. The plate tray 1400 can also include a front edge configured similar to the multi-well plate of the same outside dimension in order to interface with the fingers of the plate handlers. The plate tray 1400 can have side wall dimensions or height dimensions that mimic the dimensions of a multi-well plate for alternative plate handlers that utilize those features of the multi-well plate.
[0122] The plate tray 1400 includes recesses or cutout areas configured to hold one or more multi-well plates having at least one smaller dimension. For example, the plate tray 1400 includes two recessed areas 1410, 1420 that are configured to support smaller multi-well plates. The recessed areas 1410, 1420 can extend entirely, or partially, through the plate tray 1400. A first recessed area 1410 includes two spring fingers 1412, 1414 that locate and support the multi-well plate against an opposite wall of the recessed area 1410. The spring fingers 1412 and 1414 allow a user to insert and remove multi-well plates from the plate tray 1400 with minimal force. The spring fingers 1412, 1414 maintain sufficient force on the multi-well plate to secure it in the plate tray 1400. The second recessed area 1420 includes similar spring fingers 1422, 1424 to locate and secure a second multi-well plate in the plate tray 1400.
[0123] Figure 15 is a functional block diagram of the controller 190 of Figure 1. The functional block diagram of Figure 15 shows more details of the controller 190. The controller 190 includes a processor 170 in communication with a memory 172 and network interface 174 as previously described. Additionally, the controller 190 includes a database 1510, web server 1520, database access module 1530, scheduler 1540, and message client module 1550.
[0124] The web server 1520 provides another network interface. Typically, the web server 1520 interfaces with the Internet. The web server 1520 allows a user connected to the internet to access the controller 190. The web server 1520 allows a user to, for example, view sample images and modify sample scheduling using a web browser. When the network is the Internet, the user can view sample images and modify sample scheduling using a web browser in communication with the Internet from any location around the world.
[0125] The scheduler 1540 and database access module 1530 cooperate to schedule image capture of the samples stored in the shelves of the cabinet. The scheduler 1540 optimizes and schedules the plate handling tasks for all samples in the cabinet. The scheduler 1540 optimizes image capture throughput while accommodating user set priorities. The scheduler 1540 maintains a schedule of imaging tasks. The imaging task schedule can include a schedule profile that defines an imaging schedule. The imaging schedule can also include an imaging profile that defines parameters of the image capture. For example, the imaging profile can specify a particular optical filter to be used during image capture of some of the samples on a multi-well plate. The imaging schedule can also include priority levels for each sample. The priority can be predetermined by user input, or can be updated dynamically based, for example, on the degree to which a sample is overdue for image capture. Alternatively, the user priority rating and the dynamically determined priority level can be used as factors in determining a combined priority level. For example, the scheduler 1540 can weight the user priority rating and sum it with a weighted dynamically determined priority level in order to determine the combined priority level.
[0126] The scheduler 1540 also maintains a schedule of plate handling tasks. Although the majority of plate handling is performed in conjunction with imaging, the fransport assembly can also handle plates for other tasks. For example, multi-well plates are moved from the magazines to the stationary shelves when the multi-well plates are first supplied to the system. Additionally, one or more plates can be moved to or from the access shelf for delivery or replacement.
[0127] The scheduler 1540 also updates the schedules upon receipt of messages from other modules. For example, the scheduler 1540 can receive new or updated schedule items from the web server 1520. Additionally, the scheduler 1540 can receive a message via the network interface 174 indicating the optical assembly is finished imaging a multi-well plate. Similarly, the scheduler 1540 can receive a message from the network interface 174 indicating the transport assembly has completed a plate movement.
[0128] The scheduler 1540 also monitors incoming messages and provides task assignments upon request by sub-systems. The scheduler 1540 can also send change messages to the sub-systems. The scheduler 1540 can manage a priority list stored in the database or other memory of all samples in the system. The priority list can also indicate a desired time for capturing images from the sample. The scheduler 1540 can use a predetermined formula or decision basis to determine the next multi-well plate that will be imaged. The scheduler 1540 can then request that the transport assembly retrieve the desired multi-well plate. The scheduler 1540 can, for example, use multi-well plate size, imaging device settings, and lens settings as factors in determining the next multi-well plate to image. Imaging throughput may be more efficient when similar sized multi-well plates are imaged in succession or if similar lens settings are used when imaging successive multi-well plates. Thus, the priority rating is not the only factor used in determining the next multi-well plate to image.
[0129] The scheduler 1540 can also maintain usage statistics. For example, the scheduler 1540 can store statistics regarding average image duration, average plate movement duration, and scheduling backlog. The scheduling backlog can, for example, include the number of hours or minutes per day scheduled over the next three months, or some other period of time.
[0130] The schedules can, for example, be stored in the database 1510. The scheduler 1540 can access the database 1510 using the database access module 1530, or can access the database 1510 independent of the database access module 1530. The database access module 1530 operates as the database interface for other modules. The database access module 1530 can operate as a single point of access to the database 1510. The database access module 1530 can then arbitrate simultaneous accesses and can prioritize database 1510 accesses, for example, based on the module requesting the access.
[0131] A message client module 1550 operates as the message interface. Internal modules direct messages to other internal modules using the message client module 1550. Additionally, external modules can send messages to the internal modules via the network interface to the message client module 1550. For example, the optical assembly or transport assembly can send messages to the scheduler 1540 using the network interface 174. The incoming messages are delivered to the message client module 1550 where they are then delivered to the scheduler 1540.
[0132] The database 1510 is used to store messages and the schedules associated with the scheduler. The database 1510 can also be used to store administrative data, such as user profiles, passwords, and system setup information. The database 1510 can be one or more storage devices and can be common with, or independent of, the memory 172.
[0133] The automated sample analysis system described above is a stand alone system that is able to operate a number of laboratory tests independent of user interaction. Once a set of multi-well plates has been loaded and scheduled for imaging, the system is able to operate without any further user intervention.
[0134] The automated sample analysis system is particularly advantageous in processes such as protein structure determination using crystallography. In such a process, samples are subject to incubation, crystallization, imaging, data collection, and crystal recognition. The automated sample analysis system can be configured to perform nearly all of these tasks independent of user supervision.
[0135] The samples can be loaded in the cabinet interior where they are incubated at a controlled environment for extensive periods of time. The controller can schedule the samples for periodic imaging. The controller can then collect the multiple images and can perform data analysis on the captured images to help perform crystal recognition. Once the crystal samples are identified by the system, a user can continue to image the crystals or can remove the crystals from the system for further analysis. Additionally, the controller can communicate image information, such as crystal recognition information, to the scheduler 1540 in order to allow the scheduler 1540 to adjust the schedule according to the crystal recognition. Further information regarding imaging of samples is included in Provisional Patent Application No. 60/474989, titled "IMAGE ANALYSIS SYSTEM AND METHOD," filed on May 30, 2003.
[0135] The size of the cabinet and the arrangement of the multi-well plates in the cabinet make the automated sample analysis system particularly advantageous for use in low to middle throughput laboratory environments. The amount of floor space occupied by the system is minimal. For example, the footprint of the cabinet can be 100cm x 85cm or less. Additionally, the systems are advantageously modular and can be combined with other systems for increased capacity or temperature variation.
[0136] For example, one or more automated sample analysis systems can be combined and operated as a single system. One of the systems can be designated a master system and the others can be designated slave systems. The systems are mechanically identical and can be controlled using a common bus connection. A master system can control the slave system over the same common bus. Thus the bus can be connected to multiple systems and each of the systems can be controlled independently over the bus.
[0137] To use the automated sample analysis system a user initially loads multi-well plates in a removable magazine. The user then inserts the removable magazine into the cabinet via the removable shelf access door. The controller can then automatically initiate a process to remove the multi-well plates from the removable magazine and place them into empty shelves in the stationary shelf system. Alternatively, the user can program the controller to initiate a process whereby the multi-well plates are removed from the removable magazine and placed in specific empty shelves within the stationary shelf system.
[0138] Regardless of the process, the controller controls the transport assembly to remove the shelves from the removable magazine. Where the transport assembly includes multiple plate handlers, as described above, more than one multi-well plate can be transported simultaneously. A first plate handler removes a first multi-well plate from the removable magazine and a second plate handler removes a second multi-well plate from the removable magazine. One or more of the plate handlers can include a barcode reader that reads a barcode affixed to the multi- well plates. The controller can then build an allocation table that relates a barcode, and thus a multi-well plate, with a shelf location. The transport assembly then transports the multi-well plates to shelves in the stationary shelf system.
[0139] The transport assembly initially locates the first plate handler at a first shelf. The controller rotates the elevator assembly, using a rotatable platform, to an angular position corresponding to a column of shelves in the stationary shelf system. The plate handler can include an optical sensor that provides an indication of the height of the plate handler relative to the shelf opening. The first plate handler then inserts the first multi-well plate into the shelf. The same process is repeated for the second plate handler having the second multi-well plate. The entire process is repeated until all of the multi-well plates are removed from the removable magazine and placed into shelves in the stationary shelf system.
[0140] The user can input an imaging schedule into the controller and can define the environmental conditions within the cabinet interior. The controller then controls the environmental control unit to produce the desired environmental conditions within the cabinet interior. The controller can also implement the imaging schedule.
[0141] To image the samples in the multi-well plates, the controller controls the transport assembly to retrieve multi-well plates from the stationary shelf system. The controller then directs the transport assembly to fransport the multi-well plates to the optical assembly. The controller then controls the optical assembly to image one or more samples on the multi-well plates. The optical assembly transmits the captured images to the controller where they are stored in memory for further processing or for viewing by a user.
[0142] Initially, the controller controls the transport assembly to retrieve two multi- well plates, one for each plate handler in the transport system. The transport assembly can read the barcodes from the multi-well plates before retrieving them with the plate handlers. The fransport assembly then transports the two plates to the optical assembly. The plate handler then positions the first multi-well plate into the optical assembly. The optical assembly then positions the multi- well plate for imaging by moving the multi-well plate in a first axis and moving an imaging device in a second axis, this manner, the optical assembly can place each sample in the filed of the imaging device. The controller controls the imaging device to capture an image at the same time that the controller controls the illumination module to supply illumination to the sample. The optical assembly then transmits the captured image to the controller for storage. The controller can control the optical assembly to capture one or more images from one or more samples in the multi- well plate. Typically, the optical assembly captures at least one image of each sample in the multi- well plate. The optical assembly takes, typically, approximately 5-12 seconds to capture and transmit an image to the controller. Thus, the optical assembly takes approximately 15 minutes to capture one image of all samples in a 96 sample multi-well plate. The optical system can capture and transmit all 96 images in the 96 sample multi-well plate in as little as 4 minutes or less in some instances.
[0143] The controller then controls the plate handler to remove the first plate from the optical assembly. The controller then controls the transport assembly to position the second multi- well plate from the second plate handler onto the optical assembly. The controller then controls the optical assembly to capture images of the samples on the second multi-well plate. Concurrently, the controller controls the transport assembly to replace the first multi-well plate in its shelf. The controller then controls the transport assembly to remove the next multi-well plate scheduled for imaging. The transport assembly then transports this next multi-well plate to the optical assembly where it waits while the optical assembly completes imaging of the samples in the currently positioned multi-well plate. In this manner the transport assembly can retrieve and reposition multi-well plates while the optical assembly is imaging the samples on a different multi-well plate. Thus, it is advantageous to have at least two plate handlers in the transport assembly. Because the optical assembly takes approximately 15 minutes to image all samples in a 96 sample plate, the transport assembly does not need to quickly move the plates and, for example, can move the plates at a rate of less than 5, 2, 1, 0.8, 0.6, 0.5, 0.3, 0.2, or 0.1 cm sec. Alternatively, the operator or user can determine a maximum acceleration that the multi-well plates are to be subjected to and adjust the system to maintain a plate acceleration below the predetermined maximum.
[0144] The system can then continue to retrieve multi-well plates and capture images of the samples according to the schedule. The system can operate indefinitely according to the schedule or can have a defined end. In this manner, the automated sample analysis system is able to efficiently and thoroughly conduct repeated sample analysis without user interaction.
[0145] Electrical connections, mechanical connections, couplings, and connections have been described with respect to various devices or elements. The connections and couplings can be direct or indirect. A connection between a first and second device can be a direct connection or can be an indirect connection. An indirect connection can include interposed elements that can process the signals from the first device to the second device.
[0146] Those of skill in the art will understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that can be referenced throughout the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[0147] Those of skill will further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled persons can implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
[0148] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein can be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field pro rammable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor can be a microprocessor, but in the alternative, the processor can be any processor, controller, microcontroller, or state machine. A processor can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[0149] The steps of a method or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium. An exemplary storage medium can be coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC.
[0150] The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims

WHAT IS CLAIMED IS:
1. An automated multi-well plate imaging system comprising: a cabinet configured to selectively provide a stabilized temperature within an interior of the cabinet; a plurality of shelves within the interior of the cabinet, each shelf configured to store a multi-well plate; a transport assembly, within the cabinet, configured to retrieve the multi-well plate from one of the plurality of shelves and transport the multi-well plate to a destination; and an optical assembly configured to receive the multi-well plate from the transport assembly as the destination and image at least a portion of the multi-well plate.
2. The system of claim 1, further comprising a filter plate that is moved by the transport assembly to a location between the multi-well plate and an imaging device at the optical assembly.
3. The system of claim 2, wherein the filter plate comprises a polarization filter.
4. The system of claim 1, further comprising a plate adapter that is moveable by the transport assembly to a location at the optical assembly; the plate adapter being configured to hold a small multi-well plate having smaller dimensions than the multi-well plate.
5. The system of claim 1, further comprising a plate tray configured to house one or more multi-well plates.
6. The system of Claim 1, further comprising: a thermal regulation unit configured to maintain the stabilized temperature within an interior of the cabinet; and an isolation assembly connected to the thermal regulation unit and the cabinet and configured to substantially mechanically isolate the thermal regulation unit from the cabinet during an operating period and mechanically locate the thermal regulation unit to the cabinet during a cabinet transport period.
7. An automated multi-well plate imaging system comprising: a plurality of stationary shelves arranged in an arc, each of the plurality of stationary shelves configured to store a multi-well plate; a transport assembly having a rotatable platform mounted within the inside of the arc, the elevator assembly configured to retrieve a first multi-well plate from the plurality of stationary shelves and transport the first multi-well plate to a destination.
8. The system of Claim 7, wherein the plurality of stationary shelves are arranged in substantially a circular arc and wherein the rotatable platform includes an axis of rotation located at substantially a center of the circular arc.
9. A method of imaging at least a portion of a multi-well plate, the method comprising: storing the multi-well plate on a shelf at a selected environment; retrieving the multi-well plate from the shelf using an automated multi-well plate transport assembly; transporting, at the selected environment, the multi-well plate to an optical assembly using the automated multi-well plate transport assembly; autonomously imaging, at the selected environment, at least a portion of the multi- well plate using the optical assembly; and transporting the multi-well plate from the optical assembly to the shelf using the automated multi-well plate transport assembly; and repositioning the multi-well plate in the shelf.
10. A multi-well plate transport assembly for use in a crystallization imaging system, the assembly comprising: a rotatable platform; an elevator assembly mounted on the rotatable platform; and a plate handler connected to the elevator assembly and configured to refrieve a multi-well plate from a first location and deliver the multi-well plate to a second location.
11. The multi-well plate transport assembly of Claim 10, further comprising another plate handler connected to the elevator assembly and configured to retrieve a multi-well plate, wherein the elevator assembly is configured to move the first and second plate handlers at least up and down in order to refrieve multi-well plates.
12. A method of transporting a multi-well plate in an automated crystallization imaging system, the method comprising: rotating a plate handler to a first predetermined angular position; transporting the plate handler to a first vertical position; retrieving the multi-well plate from a shelf using the plate handler; transporting the plate handler to a second vertical position; rotating the plate handler to a second angular position; and delivering the multi-well plate to a destination.
13. A method of transporting a multi-well plate in an automated crystallization imaging system, the method comprising: positioning a plate handler at a first shelf; retrieving a first multi-well plate having a first size from the first shelf using the plate handler; transporting the first multi-well plate to a destination; delivering the first multi-well plate to the destination; positioning the plate handler at a second shelf; and retrieving a second multi-well plate having a second size from the second shelf.
14. A method of transporting a multi-well plate in an automated crystallization imaging system, the method comprising: raising a first edge of the multi-well plate above a surface of a shelf while maintaining contact between a second edge of the multi-well plate and the surface of the shelf; transporting the multi-well plate onto a surface of a plate handler while maintaining contact between the second edge and the surface of the shelf; and raising the second edge of the shelf above the surface of the shelf using a fulcrum.
15. An optical assembly for use in an automated crystallization imaging system, the optical assembly comprising: an automated movable mount configured to be selectively positioned along a first axis; a lens having motorized focus attached to the movable mount; an imaging device attached to the lens and configured to automatically capture an image within the lens focal length.
16. The optical assembly of Claim 15, further comprising an automated multi-well plate positioning device configured to selectively position a multi-well plate along a second axis substantially perpendicular to the first axis.
17. An optical assembly for use in an automated crystallization imaging system, the optical assembly comprising: a mount configured to support a multi-well plate; a lens attached to a movable mount, wherein the movable mount is configured to selectively move the lens in a first direction and in a second direction perpendicular to the first direction; an imaging device coupled to the lens and configured to automatically capture an image of at least a portion of the multi-well plate using the lens, wherein selective movement of the lens in the first direction and the second direction allows movement of the lens so that the imaging device may captures images of substantially any portion of the multi-well plate.
18. A method of automated imaging at least a portion of a multi-well plate, the method comprising: positioning the multi-well plate along a first axis; positioning an imaging device along a second axis substantially perpendicular to the first axis; and capturing an image of at least a portion of the multi-well plate.
19. An optical assembly for use in an automated crystallization imaging system, the optical assembly comprising: an imaging device configured to capture an image of at least a portion of a multi- well plate; and a lighting device configured to illuminate the at least a portion of the multi-well plate with an adjustable light intensity.
20. A device for use in an automated crystallization imaging system, the device comprising: an imaging device; an area of interest on a multi-well plate; an optical axis extending from a lens of the imaging device to the area of interest on the multi-well plate; a first light source positioned away from the imaging axis by a first distance so that light emitted from the first light source that is incident on the area of interest on the multi- well plate is off-axis from the imaging axis.
21. The device of Claim 20, wherein the area of interest on the multi-well plate includes at least a portion of a well.
22. The device of Claim 20, further comprising: a second light source positioned away from the imaging axis by a second distance, the second light source positioned substantially opposite the imaging axis from the first light source.
23. A method of adjusting a light intensity in an automated crystallization imaging system, the method comprising: charging a first capacitor; connecting the first capacitor to a flash tube to generate flash illumination; and controlling a period of time the first capacitor is connected to the flash tube to adjust the illumination from the flash tube.
24. A shelf for use in an automated crystallization imaging system, the shelf comprising: a support surface having a recess to provide access to at least a portion of a bottom of a multi-well plate positioned on the shelf; a first rail on the support surface configured to position, on the support surface, a first multi-well plate having a first outline.
25. The shelf of Claim 24, wherein the first rail comprises outer walls on opposites sides of the support surface.
26. The shelf of Claim 24, further comprising first and second side surfaces having mounting guides configured to align a first shelf with a second shelf along a vertical axis.
27. A refrigerated sample storage cabinet, comprising: a plurality of sample shelves inside the cabinet; and a compressor assembly associated with the cabinet, wherein the compressor assembly is movable from a first position to a second position, wherein, in the first position, the compressor assembly is mounted to the cabinet, and in the second position, the compressor assembly is not mounted to the cabinet but instead the compressor assembly and the cabinet are both adapted to sit separately on a floor or other support surface, thereby providing vibration isolation between the cabinet and the compressor assembly.
28. A robotic sample analysis system, comprising: a sample analysis station; a sample storage area containing a plurality of sample holders; a robotic sample moving assembly adapted to transport sample holders between the analysis station and the storage area, the sample moving assembly including a first receptacle and a second receptacle, each receptacle adapted to receive and transport a sample holder; and software controlling the operation of the sample moving assembly such that while a first sample holder is in the analysis station, the sample moving assembly retrieves a second sample holder into the second receptacle, and then moves the first sample holder from the analysis station into the first receptacle and moves the second sample holder into the analysis station prior to returning the first sample holder into the storage area and retrieving a third sample holder.
29. A self-contained sample storage and analysis station, comprising: a temperature-controlled cabinet; a plurality of fixed sample storage receptacles arranged at least partially around a central core area in the cabinet; at least one accessible sample receptacle located on at least one side of the central core area, wherein the accessible sample receptacle is accessible from outside of the cabinet, such that a sample outside of the cabinet can be inserted into the cabinet via the accessible sample receptacle; a robotic sample mover located in the central core area, the robotic sample mover being rotatable about a vertical axis and movable up and down that axis to move samples between the accessible sample receptacle and the fixed sample storage receptacles.
30. A method for performing protein crystallography, comprising: storing a plurality of crystallography sample plates in sample storage receptacles in a temperature-controlled cabinet, said cabinet also having a robotic sample handler and an imaging station therein; retrieving a sample plate with the robotic sample handler by sliding the sample plate horizontally from its sample storage receptacle onto a sample plate holder; robotically moving the sample plate and sample plate holder to the imaging station; and horizontally sliding the sample plate into the imaging station.
PCT/US2004/002717 2003-01-31 2004-01-30 Automated sample analysis system and method WO2004069409A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US44458503P 2003-01-31 2003-01-31
US44458603P 2003-01-31 2003-01-31
US44451903P 2003-01-31 2003-01-31
US60/444,586 2003-01-31
US60/444,585 2003-01-31
US60/444,519 2003-01-31
US47498903P 2003-05-30 2003-05-30
US60/474,989 2003-05-30

Publications (2)

Publication Number Publication Date
WO2004069409A2 true WO2004069409A2 (en) 2004-08-19
WO2004069409A3 WO2004069409A3 (en) 2009-04-02

Family

ID=32854497

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2004/003239 WO2004069984A2 (en) 2003-01-31 2004-01-30 Automated imaging system and method
PCT/US2004/002617 WO2004071067A2 (en) 2003-01-31 2004-01-30 Data communication in a laboratory environment
PCT/US2004/002633 WO2004070653A2 (en) 2003-01-31 2004-01-30 Image analysis system and method
PCT/US2004/002717 WO2004069409A2 (en) 2003-01-31 2004-01-30 Automated sample analysis system and method

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/US2004/003239 WO2004069984A2 (en) 2003-01-31 2004-01-30 Automated imaging system and method
PCT/US2004/002617 WO2004071067A2 (en) 2003-01-31 2004-01-30 Data communication in a laboratory environment
PCT/US2004/002633 WO2004070653A2 (en) 2003-01-31 2004-01-30 Image analysis system and method

Country Status (2)

Country Link
US (4) US7596251B2 (en)
WO (4) WO2004069984A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047326B3 (en) * 2005-09-30 2006-11-02 Binder Gmbh Climate-controlled test cupboard for long-term storage stability tests on prescription medicines has spherical light detectors
DE102006044091A1 (en) * 2006-09-20 2008-04-03 Carl Zeiss Microimaging Gmbh Control module and control system for influencing sample environment parameters of an incubation system, method for controlling a microscope assembly and computer program product
DE102007023325A1 (en) * 2007-05-16 2008-11-20 Leica Microsystems Cms Gmbh Optical device, especially laser scanning microscope with light source and swinging ventilation unit for cooling it generally useful for microscopic examination minimizes effect of swinging on image quality
EP2852820A4 (en) * 2012-05-31 2016-03-30 Bti Holdings Inc Universal multi-detection system for microplates
US9557217B2 (en) 2007-02-13 2017-01-31 Bti Holdings, Inc. Universal multidetection system for microplates
CN111024696A (en) * 2019-12-11 2020-04-17 上海睿钰生物科技有限公司 Algae analysis method

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158888B2 (en) 2001-05-04 2007-01-02 Takeda San Diego, Inc. Determining structures by performing comparisons between molecular replacement results for multiple different biomolecules
WO2003008103A1 (en) * 2001-07-18 2003-01-30 Irm, Llc High throughput incubation devices
US7632467B1 (en) * 2001-12-13 2009-12-15 Kardex Engineering, Inc. Apparatus for automated storage and retrieval of miniature shelf keeping units
US7433546B2 (en) * 2004-10-25 2008-10-07 Apple Inc. Image scaling arrangement
TWI267623B (en) * 2002-08-01 2006-12-01 Ming-Liau Yang Component monitoring method
US20040138827A1 (en) * 2002-09-23 2004-07-15 The Regents Of The University Of California Integrated, intelligent micro-instrumentation platform for protein crystallization
DE10353966A1 (en) * 2003-11-19 2005-06-30 Siemens Ag Method for access to a data processing system
US20050168353A1 (en) * 2004-01-16 2005-08-04 Mci, Inc. User interface for defining geographic zones for tracking mobile telemetry devices
TW200606811A (en) * 2004-06-25 2006-02-16 Ssd Co Ltd Image mixing apparatus and pixel mixer
IL162921A0 (en) * 2004-07-08 2005-11-20 Hi Tech Solutions Ltd Character recognition system and method
US20060024746A1 (en) * 2004-07-14 2006-02-02 Artann Laboratories, Inc. Methods and devices for optical monitoring and rapid analysis of drying droplets
US8775823B2 (en) 2006-12-29 2014-07-08 Commvault Systems, Inc. System and method for encrypting secondary copies of data
US7639401B2 (en) * 2004-12-15 2009-12-29 Xerox Corporation Camera-based method for calibrating color displays
US7639260B2 (en) * 2004-12-15 2009-12-29 Xerox Corporation Camera-based system for calibrating color displays
EP1671530B1 (en) * 2004-12-18 2008-01-16 Deere & Company Harvesting machine
JP2006202209A (en) * 2005-01-24 2006-08-03 Toshiba Corp Image compression method and image compression device
KR100602972B1 (en) 2005-02-15 2006-07-20 한국과학기술연구원 Protein crystal inspection system
EP1889111A2 (en) * 2005-05-25 2008-02-20 Massachusetts Institute of Technology Multifocal imaging systems and methods
US7275594B2 (en) * 2005-07-29 2007-10-02 Intelliserv, Inc. Stab guide
US7930369B2 (en) 2005-10-19 2011-04-19 Apple Inc. Remotely configured media device
JP4923541B2 (en) * 2005-11-30 2012-04-25 株式会社ニコン microscope
US7636466B2 (en) * 2006-01-11 2009-12-22 Orbotech Ltd System and method for inspecting workpieces having microscopic features
DE102006001881A1 (en) 2006-01-13 2007-07-19 Roche Diagnostics Gmbh Packaging cassette for reagent carriers
US8050953B2 (en) 2006-06-07 2011-11-01 Ricoh Company, Ltd. Use of a database in a network-based project schedule management system
US8799043B2 (en) 2006-06-07 2014-08-05 Ricoh Company, Ltd. Consolidation of member schedules with a project schedule in a network-based management system
US8577171B1 (en) * 2006-07-31 2013-11-05 Gatan, Inc. Method for normalizing multi-gain images
US7853100B2 (en) * 2006-08-08 2010-12-14 Fotomedia Technologies, Llc Method and system for photo planning and tracking
US7670555B2 (en) * 2006-09-08 2010-03-02 Rex A. Hoover Parallel gripper for handling multiwell plate
US7826652B2 (en) * 2006-12-19 2010-11-02 Cytyc Corporation Method for forming an optimally exposed image of cytological specimen
US8107675B2 (en) * 2006-12-29 2012-01-31 Cognex Corporation Trigger system for data reading device
US9152433B2 (en) 2007-03-15 2015-10-06 Ricoh Company Ltd. Class object wrappers for document object model (DOM) elements for project task management system for managing project schedules over a network
US8826282B2 (en) * 2007-03-15 2014-09-02 Ricoh Company, Ltd. Project task management system for managing project schedules over a network
US20080235719A1 (en) * 2007-03-16 2008-09-25 Sharma Yugal K Image analysis for use with automated audio extraction
EP1972874B1 (en) * 2007-03-20 2019-02-13 Liconic Ag Automated substance warehouse
WO2008116070A2 (en) * 2007-03-20 2008-09-25 Chroma Technology Corporation Light source
GB0705652D0 (en) * 2007-03-23 2007-05-02 Trek Diagnostics Systems Ltd Test plate reader
US7882177B2 (en) * 2007-08-06 2011-02-01 Yahoo! Inc. Employing pixel density to detect a spam image
CA2708211C (en) * 2007-08-17 2015-01-06 Oral Cancer Prevention International, Inc. Feature dependent extended depth of focusing on semi-transparent biological specimens
KR100945884B1 (en) * 2007-11-14 2010-03-05 삼성중공업 주식회사 Embedded robot control system
CN101470326B (en) * 2007-12-28 2010-06-09 佛山普立华科技有限公司 Shooting apparatus and its automatic focusing method
US20090217241A1 (en) * 2008-02-22 2009-08-27 Tetsuro Motoyama Graceful termination of a web enabled client
US20090217240A1 (en) * 2008-02-22 2009-08-27 Tetsuro Motoyama Script generation for graceful termination of a web enabled client by a web server
US8321257B2 (en) * 2008-05-16 2012-11-27 Ricoh Company, Ltd. Managing project schedule data using separate current and historical task schedule data
US8706768B2 (en) 2008-05-16 2014-04-22 Ricoh Company, Ltd. Managing to-do lists in task schedules in a project management system
US8352498B2 (en) 2008-05-16 2013-01-08 Ricoh Company, Ltd. Managing to-do lists in a schedule editor in a project management system
US20090287522A1 (en) * 2008-05-16 2009-11-19 Tetsuro Motoyama To-Do List Representation In The Database Of A Project Management System
US7941445B2 (en) * 2008-05-16 2011-05-10 Ricoh Company, Ltd. Managing project schedule data using separate current and historical task schedule data and revision numbers
US8862489B2 (en) * 2008-09-16 2014-10-14 Ricoh Company, Ltd. Project management system with inspection functionality
US20100070328A1 (en) * 2008-09-16 2010-03-18 Tetsuro Motoyama Managing Project Schedule Data Using Project Task State Data
WO2010081536A1 (en) * 2009-01-13 2010-07-22 Bcs Biotech S.P.A. A biochip reader for qualitative and quantitative analysis of images, in particular for the analysis of single or multiple biochips
JP5324934B2 (en) * 2009-01-16 2013-10-23 株式会社ソニー・コンピュータエンタテインメント Information processing apparatus and information processing method
KR20100109195A (en) * 2009-03-31 2010-10-08 삼성전자주식회사 Method for adjusting bright of light sources and bio-disk drive using the same
EP2738609A3 (en) * 2009-07-01 2018-01-17 Nikon Corporation Exposure condition determining method and surface inspection apparatus
JP5576631B2 (en) * 2009-09-09 2014-08-20 キヤノン株式会社 Radiographic apparatus, radiographic method, and program
WO2011066269A1 (en) * 2009-11-24 2011-06-03 Siemens Healthcare Diagnostics Inc. Automated, refrigerated specimen inventory management system
US8759084B2 (en) 2010-01-22 2014-06-24 Michael J. Nichols Self-sterilizing automated incubator
DE102010060634B4 (en) * 2010-11-17 2013-07-25 Andreas Hettich Gmbh & Co. Kg Air conditioning room for a time-controlled storage of samples and methods for time-controlled storage of samples
US8396876B2 (en) 2010-11-30 2013-03-12 Yahoo! Inc. Identifying reliable and authoritative sources of multimedia content
US9522396B2 (en) 2010-12-29 2016-12-20 S.D. Sight Diagnostics Ltd. Apparatus and method for automatic detection of pathogens
WO2012114635A1 (en) * 2011-02-24 2012-08-30 三洋電機株式会社 Conveyance device and culture device
US9286914B2 (en) 2011-06-01 2016-03-15 International Business Machines Corporation Cartridge for storing biosample capillary tubes and use in automated data storage systems
US8640964B2 (en) 2011-06-01 2014-02-04 International Business Machines Corporation Cartridge for storing biosample plates and use in automated data storage systems
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US8380541B1 (en) 2011-09-25 2013-02-19 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US20130073221A1 (en) * 2011-09-16 2013-03-21 Daniel Attinger Systems and methods for identification of fluid and substrate composition or physico-chemical properties
CN106840812B (en) 2011-12-29 2019-12-17 思迪赛特诊断有限公司 Methods and systems for detecting pathogens in biological samples
US9449380B2 (en) 2012-03-20 2016-09-20 Siemens Medical Solutions Usa, Inc. Medical image quality monitoring and improvement system
JP5994337B2 (en) * 2012-03-30 2016-09-21 ソニー株式会社 Fine particle sorting device and delay time determination method
JP6034073B2 (en) * 2012-07-03 2016-11-30 株式会社Screenホールディングス Image analysis apparatus and image analysis method
US9250254B2 (en) 2012-09-30 2016-02-02 International Business Machines Corporation Biosample cartridge with radial slots for storing biosample carriers and using in automated data storage systems
GB2509758A (en) * 2013-01-14 2014-07-16 Stratec Biomedical Ag A laboratory module for storing and moving samples
US11187713B2 (en) * 2013-01-14 2021-11-30 Stratec Se Laboratory module for storing and feeding to further processing of samples
CN109813923A (en) * 2013-02-18 2019-05-28 赛拉诺斯知识产权有限责任公司 System and method for acquiring and transmitting measurement result
HU230739B1 (en) * 2013-02-28 2018-01-29 3Dhistech Kft. Apparatus and method for automatic staining masking, digitizing of slides
US9483655B2 (en) 2013-03-12 2016-11-01 Commvault Systems, Inc. File backup with selective encryption
EP2784476B1 (en) * 2013-03-27 2016-07-20 Ul Llc Device and method for storing sample bodies
EP3869257A1 (en) 2013-05-23 2021-08-25 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
US9809898B2 (en) * 2013-06-26 2017-11-07 Lam Research Corporation Electroplating and post-electrofill systems with integrated process edge imaging and metrology systems
IL227276A0 (en) * 2013-07-01 2014-03-06 Parasight Ltd A method and system for preparing a monolayer of cells, particularly suitable for diagnosis
JP2016530620A (en) * 2013-07-25 2016-09-29 セラノス, インコーポレイテッド System and method for a distributed clinical laboratory
EP3039477B1 (en) 2013-08-26 2021-10-20 S.D. Sight Diagnostics Ltd. Digital microscopy systems, methods and computer program products
US9822460B2 (en) 2014-01-21 2017-11-21 Lam Research Corporation Methods and apparatuses for electroplating and seed layer detection
EP3100025B1 (en) 2014-01-30 2021-03-03 BD Kiestra B.V. System and method for imaging biological samples disposed in culture media
US11041871B2 (en) 2014-04-16 2021-06-22 Bd Kiestra B.V. System and method for incubation and reading of biological cultures
DE102014011941B3 (en) * 2014-08-14 2015-08-20 Ika-Werke Gmbh & Co. Kg Shelf and incubator
EP3186778B1 (en) 2014-08-27 2023-01-11 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
DE102014217328A1 (en) * 2014-08-29 2016-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for imaging in microscopy
US9405928B2 (en) * 2014-09-17 2016-08-02 Commvault Systems, Inc. Deriving encryption rules based on file content
EP3227740B1 (en) * 2014-12-04 2024-02-14 ChemoMetec A/S Image cytometer
JP6952683B2 (en) 2015-09-17 2021-10-20 エス.ディー.サイト ダイアグノスティクス リミテッド Methods and devices for detecting entities in body samples
US9735035B1 (en) 2016-01-29 2017-08-15 Lam Research Corporation Methods and apparatuses for estimating on-wafer oxide layer reduction effectiveness via color sensing
EP3223019B1 (en) * 2016-03-22 2021-07-28 Beckman Coulter, Inc. Method, computer program product, and system for establishing a sample tube set
US11733150B2 (en) 2016-03-30 2023-08-22 S.D. Sight Diagnostics Ltd. Distinguishing between blood sample components
US11307196B2 (en) 2016-05-11 2022-04-19 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements
BR112018072627A2 (en) 2016-05-11 2019-02-19 S D Sight Diagnostics Ltd performing optical measurements on a sample
US20180077242A1 (en) * 2016-09-09 2018-03-15 Andrew Henry Carl Network communication technologies for laboratory instruments
US10935779B2 (en) * 2016-10-27 2021-03-02 Scopio Labs Ltd. Digital microscope which operates as a server
CA3044294A1 (en) * 2016-11-18 2018-05-24 Cepheid Sample processing module array handling system and methods
US20190358623A1 (en) * 2017-02-07 2019-11-28 Shilps Scieces Private Limited A system for microdroplet manipulation
US11276163B2 (en) 2017-05-02 2022-03-15 Alvitae LLC System and method for facilitating autonomous control of an imaging system
EP3422288B1 (en) 2017-06-26 2020-02-26 Tecan Trading Ag Imaging a well of a microplate
CN107818559B (en) * 2017-09-22 2021-08-20 太原理工大学 Crystal inoculation state detection method and crystal inoculation state image acquisition device
CA3081669A1 (en) 2017-11-14 2019-05-23 S.D. Sight Diagnostics Ltd Sample carrier for optical measurements
US10456788B2 (en) * 2018-01-26 2019-10-29 Yury Sherman Apparatus for disruption of cell and tissue samples in multi-well plates
EP3575742B1 (en) * 2018-05-29 2022-01-26 Global Scanning Denmark A/S A 3d object scanning using structured light
CA3108903A1 (en) * 2018-08-07 2020-02-13 Britescan, Llc Portable scanning device for ascertaining attributes of sample materials
EP3844550A4 (en) 2018-08-29 2022-06-22 Etaluma, Inc. Illumination display as illumination source for microscopy
US11010591B2 (en) * 2019-02-01 2021-05-18 Merck Sharp & Dohme Corp. Automatic protein crystallization trial analysis system
US20200271682A1 (en) * 2019-02-27 2020-08-27 Alpha Space Test and Research Alliance, LLC Systems and Methods for Environmental Factor Interaction Characterization
US11379697B2 (en) 2020-05-20 2022-07-05 Bank Of America Corporation Field programmable gate array architecture for image analysis
US11295430B2 (en) 2020-05-20 2022-04-05 Bank Of America Corporation Image analysis architecture employing logical operations
DE102021112938A1 (en) * 2021-05-19 2022-11-24 Bmg Labtech Gmbh microplate reader
CN113340904A (en) * 2021-06-01 2021-09-03 贵州中烟工业有限责任公司 Method for detecting shrinkages of tobacco flakes
CN113963513A (en) * 2021-10-13 2022-01-21 公安部第三研究所 Robot system for realizing intelligent inspection in chemical industry and control method thereof
GB2613008A (en) 2021-11-19 2023-05-24 Agilent Technologies Inc Object handler in particular in an analytical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012665A (en) * 1974-09-24 1977-03-15 Canon Kabushiki Kaisha Electronic flash device with capacitor discharge cut-off before full discharge
US5471561A (en) * 1992-08-08 1995-11-28 International Business Machines Corporation Automated storage library with rotatable arm and oblique angle effectors
US6271022B1 (en) * 1999-03-12 2001-08-07 Biolog, Inc. Device for incubating and monitoring multiwell assays
US6455861B1 (en) * 1998-11-24 2002-09-24 Cambridge Research & Instrumentation, Inc. Fluorescence polarization assay system and method
US20020155625A1 (en) * 2001-04-18 2002-10-24 Chapman Robert G. Method and apparatus for detection of molecular events using temperature control of detection environment

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419904Y2 (en) * 1971-11-29 1979-07-20
JPS5126027A (en) * 1974-08-27 1976-03-03 Canon Kk
US4199013A (en) 1977-04-01 1980-04-22 Packard Instrument Company, Inc. Liquid sample aspirating and/or dispensing system
US4422151A (en) * 1981-06-01 1983-12-20 Gilson Robert E Liquid handling apparatus
US4609017A (en) 1983-10-13 1986-09-02 Coulter Electronics, Inc. Method and apparatus for transporting carriers of sealed sample tubes and mixing the samples
US4815845A (en) * 1986-04-16 1989-03-28 Westinghouse Electric Corp. Axial alignment aid for remote control operations and related method
US5105424A (en) * 1988-06-02 1992-04-14 California Institute Of Technology Inter-computer message routing system with each computer having separate routinng automata for each dimension of the network
GB8816982D0 (en) 1988-07-16 1988-08-17 Probus Biomedical Ltd Bio-fluid assay apparatus
US5468110A (en) * 1990-01-24 1995-11-21 Automated Healthcare, Inc. Automated system for selecting packages from a storage area
US5199840A (en) * 1990-08-01 1993-04-06 John Castaldi Automated storage and retrieval system
JPH04216886A (en) * 1990-12-17 1992-08-06 Lintec Corp Self-adhesive sheet resistant to blistering
DE69329424T2 (en) * 1992-11-06 2001-04-19 Biolog Inc TEST DEVICE FOR LIQUID AND SUSPENSION SAMPLES
JP3314440B2 (en) * 1993-02-26 2002-08-12 株式会社日立製作所 Defect inspection apparatus and method
US5614129A (en) * 1993-04-21 1997-03-25 California Institute Of Technology Potassium lithium tantalate niobate photorefractive crystals
US5539975A (en) * 1993-09-08 1996-07-30 Allen-Bradley Company, Inc. Control system and equipment configuration for a modular product assembly platform
US5544256A (en) * 1993-10-22 1996-08-06 International Business Machines Corporation Automated defect classification system
US5552890A (en) * 1994-04-19 1996-09-03 Tricor Systems, Inc. Gloss measurement system
US6800452B1 (en) * 1994-08-08 2004-10-05 Science Applications International Corporation Automated methods for simultaneously performing a plurality of signal-based assays
US5557097A (en) * 1994-09-20 1996-09-17 Neopath, Inc. Cytological system autofocus integrity checking apparatus
US6226032B1 (en) * 1996-07-16 2001-05-01 General Signal Corporation Crystal diameter control system
JPH1042204A (en) * 1996-07-25 1998-02-13 Hitachi Ltd Video signal processor
US5921739A (en) * 1997-02-10 1999-07-13 Keip; Charles P. Indexing parts tray device
US5985214A (en) * 1997-05-16 1999-11-16 Aurora Biosciences Corporation Systems and methods for rapidly identifying useful chemicals in liquid samples
US6529612B1 (en) * 1997-07-16 2003-03-04 Diversified Scientific, Inc. Method for acquiring, storing and analyzing crystal images
DE69823116D1 (en) * 1997-08-05 2004-05-19 Canon Kk Image processing method and device
US5961716A (en) * 1997-12-15 1999-10-05 Seh America, Inc. Diameter and melt measurement method used in automatically controlled crystal growth
AU1752499A (en) * 1997-12-23 1999-07-19 Dako A/S Cartridge device for processing a sample mounted on a surface of a support member
US6175652B1 (en) * 1997-12-31 2001-01-16 Cognex Corporation Machine vision system for analyzing features based on multiple object images
US6267722B1 (en) * 1998-02-03 2001-07-31 Adeza Biomedical Corporation Point of care diagnostic systems
US6368475B1 (en) * 2000-03-21 2002-04-09 Semitool, Inc. Apparatus for electrochemically processing a microelectronic workpiece
JP2000333905A (en) * 1999-05-31 2000-12-05 Nidek Co Ltd Ophthalmic device
US6788411B1 (en) * 1999-07-08 2004-09-07 Ppt Vision, Inc. Method and apparatus for adjusting illumination angle
US6203082B1 (en) * 1999-07-12 2001-03-20 Rd Automation Mounting apparatus for electronic parts
US6360792B1 (en) * 1999-10-04 2002-03-26 Robodesign International, Inc. Automated microplate filling device and method
US7133906B2 (en) 2000-02-17 2006-11-07 Lumenare Networks System and method for remotely configuring testing laboratories
US6701845B2 (en) * 2000-03-17 2004-03-09 Nikon Corporation & Nikon Technologies Inc. Print system and handy phone
JP2001284416A (en) * 2000-03-30 2001-10-12 Nagase & Co Ltd Low temperature test device
US7352889B2 (en) * 2000-10-30 2008-04-01 Ganz Brian L Automated storage and retrieval device and method
US6985616B2 (en) 2001-10-18 2006-01-10 Robodesign International, Inc. Automated verification and inspection device for sequentially inspecting microscopic crystals
US6637473B2 (en) 2000-10-30 2003-10-28 Robodesign International, Inc. Automated storage and retrieval device and method
US20020102149A1 (en) * 2001-01-26 2002-08-01 Tekcel, Inc. Random access storage and retrieval system for microplates, microplate transport and micorplate conveyor
US7842246B2 (en) * 2001-06-29 2010-11-30 Meso Scale Technologies, Llc Assay plates, reader systems and methods for luminescence test measurements
DE10157121A1 (en) 2001-11-21 2003-05-28 Richard Balzer Dynamic storage and material flow system has part systems coupled at one or more points
US6860940B2 (en) * 2002-02-11 2005-03-01 The Regents Of The University Of California Automated macromolecular crystallization screening
ITMO20020076A1 (en) 2002-03-29 2003-09-29 Ronflette Sa AUTOMATED WAREHOUSE
US6871922B1 (en) * 2002-10-28 2005-03-29 Feliks Pustilnikov Rotating shelf assembly
GB0415307D0 (en) 2004-07-08 2004-08-11 Rts Thurnall Plc Automated store

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012665A (en) * 1974-09-24 1977-03-15 Canon Kabushiki Kaisha Electronic flash device with capacitor discharge cut-off before full discharge
US5471561A (en) * 1992-08-08 1995-11-28 International Business Machines Corporation Automated storage library with rotatable arm and oblique angle effectors
US6455861B1 (en) * 1998-11-24 2002-09-24 Cambridge Research & Instrumentation, Inc. Fluorescence polarization assay system and method
US6271022B1 (en) * 1999-03-12 2001-08-07 Biolog, Inc. Device for incubating and monitoring multiwell assays
US20020155625A1 (en) * 2001-04-18 2002-10-24 Chapman Robert G. Method and apparatus for detection of molecular events using temperature control of detection environment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047326B3 (en) * 2005-09-30 2006-11-02 Binder Gmbh Climate-controlled test cupboard for long-term storage stability tests on prescription medicines has spherical light detectors
DE102006044091A1 (en) * 2006-09-20 2008-04-03 Carl Zeiss Microimaging Gmbh Control module and control system for influencing sample environment parameters of an incubation system, method for controlling a microscope assembly and computer program product
US8249727B2 (en) 2006-09-20 2012-08-21 Carl Zeiss Microimaging Gmbh Control system for influencing test-environment parameters, method for controlling a microscope system and computer control program for same
US9557217B2 (en) 2007-02-13 2017-01-31 Bti Holdings, Inc. Universal multidetection system for microplates
US10072982B2 (en) 2007-02-13 2018-09-11 Biotek Instruments, Inc. Universal multidetection system for microplates
DE102007023325A1 (en) * 2007-05-16 2008-11-20 Leica Microsystems Cms Gmbh Optical device, especially laser scanning microscope with light source and swinging ventilation unit for cooling it generally useful for microscopic examination minimizes effect of swinging on image quality
DE102007023325B4 (en) * 2007-05-16 2010-04-08 Leica Microsystems Cms Gmbh Optical device, in particular a microscope
EP2852820A4 (en) * 2012-05-31 2016-03-30 Bti Holdings Inc Universal multi-detection system for microplates
CN111024696A (en) * 2019-12-11 2020-04-17 上海睿钰生物科技有限公司 Algae analysis method
US11573187B2 (en) 2019-12-11 2023-02-07 Shanghai Ruiyu Biotech Co., Ltd. Method for analysis of algae

Also Published As

Publication number Publication date
US7596251B2 (en) 2009-09-29
WO2004069984A2 (en) 2004-08-19
WO2004071067A3 (en) 2005-01-27
WO2004070653A2 (en) 2004-08-19
US20040218804A1 (en) 2004-11-04
WO2004069409A3 (en) 2009-04-02
US20040253742A1 (en) 2004-12-16
WO2004070653A3 (en) 2005-01-06
US20040260782A1 (en) 2004-12-23
US20040256963A1 (en) 2004-12-23
WO2004069984A3 (en) 2005-05-26
WO2004071067A2 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US7596251B2 (en) Automated sample analysis system and method
AU2011203176B2 (en) Automated system and method of processing biological specimens
US7793842B2 (en) Device and method for reading bar codes on an object
US20200333364A1 (en) Automated system for storing, retrieving and managing samples
US6982431B2 (en) Sample analysis systems
EP2166830B1 (en) Seed sorter
US7670555B2 (en) Parallel gripper for handling multiwell plate
US11280803B2 (en) Slide management system
WO2005045749B1 (en) Automated storage and retrieval device and method
US6469311B1 (en) Detection device for light transmitted from a sensed volume
WO1999004228A9 (en) Light detection device
US20100291663A1 (en) Culture apparatus
US8128870B2 (en) Drug discovery screening apparatus
WO2012103174A2 (en) Iris control system for conducting the identification of bacteria in biological samples
TWI813285B (en) Integrated nucleic acid processing apparatus
CN117025387A (en) PCR instrument
EP1231472A1 (en) Integrated fluid delivery and analysis system
CN215438625U (en) Chip feeding equipment
CN217837011U (en) Article selection device
CN217025959U (en) Molecular detection all-in-one machine equipment
CN113984758A (en) Sperm analyzer based on computer image processing technology
CN113371455A (en) Chip feeding equipment
CN116297589A (en) XRD analysis equipment and system
WO2023023552A1 (en) High throughput microscope assembly
CN114793538A (en) Biomaterial evaluation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase