WO2004058111A2 - Coolant control for rapid induction of mild hypothermia - Google Patents

Coolant control for rapid induction of mild hypothermia Download PDF

Info

Publication number
WO2004058111A2
WO2004058111A2 PCT/US2003/040213 US0340213W WO2004058111A2 WO 2004058111 A2 WO2004058111 A2 WO 2004058111A2 US 0340213 W US0340213 W US 0340213W WO 2004058111 A2 WO2004058111 A2 WO 2004058111A2
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
patient
temperature
air
valve
Prior art date
Application number
PCT/US2003/040213
Other languages
French (fr)
Other versions
WO2004058111A3 (en
Inventor
Stephen M. Chester
Martin S. Abbenhouse
Stephen W. Radons
Original Assignee
Medtronic Physio-Control Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Physio-Control Corp. filed Critical Medtronic Physio-Control Corp.
Priority to AU2003301002A priority Critical patent/AU2003301002A1/en
Publication of WO2004058111A2 publication Critical patent/WO2004058111A2/en
Publication of WO2004058111A3 publication Critical patent/WO2004058111A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/10Cooling bags, e.g. ice-bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0059Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit
    • A61F2007/0063Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit for cooling
    • A61F2007/0064Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit for cooling of gas

Definitions

  • the invention relates to medical devices that control the temperature of a patient, and more particularly, to medical devices that cool one or more parts of the body of a patient.
  • hypothermia Some medical conditions may be treated by hypothermia.
  • hypothermic therapy within the first few minutes of the onset of a condition may mean the difference between life and death.
  • prompt hypothermic therapy may make a dramatic difference in the quality of life of the patient.
  • Stroke is an example of a medical condition that may be treated by prompt administration of hypothermic therapy. Many patients that suffer strokes die as a result of the stroke, and a significant fraction of those who survive suffer some degree of neurological damage. The neurological damage to the patient may be slowed by the application of hypothermic therapy.
  • the invention is directed to techniques for controlling the temperature of a coolant delivered to a patient in a hypothermic therapy system.
  • the invention is directed to techniques for controlling the temperature of a coolant that is delivered to a patient in a gaseous form.
  • one or more cooling garments are placed in contact with the body of a patient, and the cooling garments receive the gaseous coolant.
  • the coolant circulates proximate to the patient and absorbs heat from the patient. As the coolant moves away from the patient, the coolant carries the heat away, thereby cooling the patient.
  • the degree of cooling is a function of the temperature of the coolant. If the temperature of the coolant is too low, the coolant can harm the patient by causing frostbite or other problems.
  • the invention is directed to systems and methods for controlling the temperature of the coolant.
  • the coolant originally is introduced in a pressurized liquid form at ambient temperature. When allowed to expand to ambient pressure through a valve, the coolant undergoes a state change from liquid to gaseous form, resulting in a significant drop in temperature.
  • a controller controls the temperature of the coolant delivered to the patient by controlling the flow of coolant through the valve and by combining the expanded coolant with ambient air.
  • the coolant and air are generally mixed in a plenum or chamber. The combination of coolant and air supplied to the patient cools the patient without causing frostbite or other problems.
  • the controller controls the amount of coolant, air or both as a function of signals from sensors.
  • the sensors are temperature sensors in the plenum, in the garments, or on the patient.
  • the sensors may also respond to other measures of interest, such as heart rate, blood pressure or blood oxygenation.
  • an operator such as a rescue worker applies the cooling garments to the patient "in the field," i.e., away from a hospital.
  • the rescue worker brings the coolant to the site in pressurized liquid form at ambient temperature. A very short distance away from the patient, the pressurized coolant is allowed to expand and cool, is mixed with ambient air, and is then applied to the patient.
  • the invention is not limited to application in the field. On the contrary, the invention may be adapted to a hospital setting as well.
  • the invention is directed to a device that includes a valve to receive a pressurized coolant at a first temperature and to discharge a depressurized gaseous coolant at a second temperature.
  • the device also includes a plenum to receive the depressurized gaseous coolant and to combine the depressurized gaseous coolant with air at a third temperature, and a garment for placing in contact with a body of a patient to circulate the combined gaseous coolant and air proximate to the body of the patient.
  • the invention is directed to a system comprising a valve to receive a pressurized coolant at a first temperature and to discharge a depressurized gaseous coolant at a second temperature, and a plenum to receive the depressurized gaseous coolant and to combine the depressurized gaseous coolant with air at a third temperature.
  • the system also includes a controller to control the valve as a function of a signal from a temperature sensor.
  • the temperature sensor may disposed, for example, in the plenum or in a cooling garment.
  • the supplied coolant may be at ambient temperature, and may be cooled and temperature-regulated proximate to the patient.
  • the temperature of the coolant delivered to the patient can be controlled by regulation of the flow of coolant or by regulation of the ambient air combined with the coolant, or both. Moreover, the temperature of the coolant may be regulated to support different cooling modes.
  • FIG. 1 is a diagram of a patient wearing exemplary cooling garments for which coolant can be controlled, according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram of one or more cooling systems, according to embodiments of the invention.
  • FIG. 3 is a schematic diagram of a cooling system according to an exemplary embodiment of the invention.
  • FIG. 4 is a flow diagram illustrating a cooling technique according one embodiment of the invention.
  • FIG. 1 is a diagram showing the midsection of a patient 10 receiving cooling therapy with cooling garments.
  • FIG. 1 shows patient 10 wearing a lower body gear 12 and an upper body gear 14.
  • lower body gear 12 will be described in detail, it is assumed for simplicity that lower body gear 12 and upper body gear 14 have similar construction and operate in a similar fashion.
  • the invention is not limited to use with the particular cooling garments shown in FIG. 1, however.
  • lower body gear 12 includes a shell 16 that surrounds at least a portion of the body of patient 10, such as an upper thigh.
  • Shell 16 may be constructed of a flexible material that may conform to the shape of the body of patient 10.
  • Shell 16 may further be constructed of an outer material, such as canvas, and an inner material, such as a vinyl liner.
  • Fasteners (not shown), such as a zipper, Velcro, an adhesive, a button, a clip, a strap, a buckle or the like, hold lower body gear 12 and adjust to fit lower body gear 12 on bodies of varying shapes and sizes.
  • lower body gear 12 defines a space 18 between shell 16 and the body of patient 10.
  • Lower body gear 12 may include a spacer (not shown) that separates at least a portion of lower body gear 12 from the body of patient 10 to maintain space 18.
  • Lower body gear 12 includes a coolant port 20 that receives a coolant delivery conduit 22. Coolant port 20 brings coolant delivery conduit 22 into fluid communication with garment space 18.
  • the coolant delivered to lower body gear 12 via coolant delivery conduit 22 includes a chilled gas that circulates in space 18.
  • the chilled gas may include a mixture of coolant and ambient air.
  • the chilled gas absorbs heat from the body of patient 10.
  • Supply of the chilled gas via delivery conduit 22 forces the chilled gas in space 18 to exit lower body gear 12 via one or more exit ports 24.
  • a sealing member 26 in contact the body of patient 10 substantially prevents the chilled gas from escaping from lower body gear 12 by a route other than through exit ports 24.
  • Lower body gear 12 may include one or more temperature sensors 28.
  • Temperature sensor 28 may respond to the temperature of the chilled gas in space 18, or the temperature of the chilled gas entering space 18 through coolant port 20, or the body temperature of patient 10, or any combination thereof.
  • a lead extends from temperature sensor 28 along coolant delivery conduit 22 to a controller, as will be described below.
  • Lower body gear 12 or upper body gear 14 may also include other sensors (not shown), such as sensors that respond to oxygen saturation levels, blood flow, heart rate, respiration, electrocardiogram (ECG) or the like.
  • FIG. 2 is a schematic diagram of a cooling system 40.
  • cooling system 40 in FIG. 2 comprises a body cooling sub-system 42 and a head cooling sub-system 44.
  • Body cooling sub-system 42 includes lower body gear 12 and upper body gear 14.
  • Coolant delivery conduit 22 for lower body gear 12 and coolant delivery conduit 46 for upper body gear 14 receive coolant gas from a single cooling assembly 48, disposed proximate to patient 10.
  • cooling assembly 48 can be disposed within two meters of patient 10.
  • Cooling assembly 48 receives pressurized coolant from a coolant supply 50, which may be remote from patient 10. Coolant from coolant supply 50 arrives in cooling assembly 48 via supply conduit 52.
  • the coolant in coolant supply 50 may be a pressurized coolant at ambient temperature.
  • the coolant in coolant supply 50 is a "pressurized liquid gas," i.e., a pressurized liquid that, at ambient temperature and pressure, exist in a gas state.
  • the coolant may include, for example, carbon dioxide, nitrogen, air, or oxygen. Other coolants are also possible.
  • the invention encompasses other coolants as well, including pressurized coolants in gaseous form, the invention will be described in terms of pressurized liquid gas coolant.
  • the pressurized liquid gas in coolant supply 50 moves under pressure via supply conduit 52 to cooling assembly 48. While moving through supply conduit 52, the coolant is at an ambient temperature. At cooling assembly 48, the coolant expands to ambient pressure. The coolant also undergoes a state change, from liquid to gas. As the coolant expands, the temperature of the coolant drops. In other words, the coolant remains in a liquid form at ambient temperature until the coolant is proximate to patient 10, when the coolant expands and cools. Cooling garments 12 and 14 receive the cooled coolant.
  • cooling assembly 48 By expanding the coolant in close proximity to patient 10, body cooling sub-system 42 enhances cooling efficiency. Coolant transported in supply conduit 52 is at ambient temperature, so there is less risk that ambient temperature will unpredictably affect the cooling capability of the coolant as the coolant travels to cooling assembly 48. Accordingly, supply conduit 52 need not be insulated to prevent heat transfer. The ambient temperature of the environment may affect the coolant as the coolant is distributed to cooling garments 12 and 14 via coolant delivery conduits 22 and 46, but coolant delivery conduits 22 and 46 are relatively short because cooling assembly 48 is proximate to patient 10. Coolant delivery conduits 22 and 46 may, but need not be, insulated. Additional advantages may result from cooling assembly 48 being proximate to patient 10, as discussed below.
  • Expansion of the coolant in cooling assembly 48 causes a significant drop in coolant temperature, especially when the coolant undergoes a state change.
  • Pressurized liquid carbon dioxide for example, may cool to approximately -78°C (-108°F) upon expansion to one atmosphere.
  • the expansion of the coolant represents an efficient technique for dropping the temperature of the coolant, but it is possible for the cooled coolant to be cold enough to do harm. In particular, it is possible for the temperature of the coolant to fall so low that application of the cooled coolant gas to patient 10 may cause frostbite.
  • an intake port 54 receives air at ambient temperature from the environment, and cooling assembly 48 mixes the ambient air with the cooled coolant to produce a coolant-air mixture at a desired temperature.
  • the coolant-air mixture is delivered to the patient via delivery conduits 22 and 46.
  • Head cooling sub-system 44 like body cooling sub-system 42, includes a coolant supply 56 and a supply conduit 58.
  • a headgear cooling garment 60 circulates cooled gas around the head of patient 10.
  • Head cooling sub-system 44 includes a cooling assembly 62 proximate to patient 10, and in the example shown in FIG. 2, cooling assembly 62 is directly coupled to cooling headgear 60.
  • the pressurized liquid gas in coolant supply 56 moves under pressure via supply conduit 58 to cooling assembly 62, where the coolant expands to ambient pressure and the temperature of the coolant drops.
  • the coolant may be mixed with ambient air received through an intake port 58, and cooling assembly 62 supplies the coolant-air mixture directly to cooling headgear 60.
  • head cooling sub-system 44 is a subsystem separate from body cooling sub-system 42.
  • the invention encompasses embodiments in which all cooling garments share a single coolant supply or a single cooling assembly.
  • FIG. 3 is a schematic diagram of a cooling system 70, which may be adapted to cool patient 10 via body garments 12, 14 or headgear 60. Pressurized coolant from coolant supply 72 is transported to cooling assembly 74 via supply conduit 76. Pressurized coolant is generally at a relatively high temperature, typically ambient temperature.
  • Valve 78 may be any of several kinds of controllable valves, such as an electronically controlled needle valve, gate valve or ball valve. Valve 78 may be of any size or capacity, and may have cryogenic capabilities.
  • the coolant cools.
  • the coolant also undergoes a state change from a liquid to a gaseous state.
  • the depressurized gaseous coolant may be very cold, and may cause frostbite if applied to patient 10 directly. Accordingly the depressurized gaseous coolant may be directed into a plenum 82, and ambient air may be drawn into plenum 82 through an intake port 84.
  • An intake valve 86 under the control of controller 80, regulates the quantity of ambient air introduced into plenum 82.
  • the ambient air may be drawn in into plenum 82 by movement of gases through plenum 82, creating a pressure gradient according to Bernoulli's principles.
  • the ambient air may also be drawn actively into plenum 82 with an air- moving device such as a fan (not shown).
  • the depressurized gaseous coolant mixes with the ambient air in plenum 82, creating a coolant-air mixture.
  • the temperature of the coolant-air mixture is greater than that of the chilled coolant, and less than that of the ambient air.
  • Controller 80 monitors the temperature of the coolant-air mixture in plenum 82 via a temperature sensor 88. Controller 80 controls valves 78 and 86 as a function of a signal from plenum temperature sensor 88 to introduce coolant and ambient air into plenum 82 to generate a coolant-air mixture at a desired temperature. In particular, controller 80 controls valve 78 to keep coolant in supply conduit 76 under pressure, and to expand the coolant at a controlled rate. In addition, controller 80 controls valve 86 to control the rate of air flow into plenum 82. By controlling valves 78 and 86, controller 80 controls not only the rate of flow of coolant and air through system 70, but also the temperature of the coolant- air mixture.
  • system 70 may include temperature sensors 90 in cooling garments 92. Temperature sensors 90 in cooling garments 92 may respond to the temperature of the coolant-air mixture entering or circulating in cooling garments 92, or the body temperature of patient 10, or any combination thereof.
  • Controller 80 may set a desired temperature for the coolant-air mixture as a function of signals from temperature sensors 90, or control valves 78 and 86, or a combination of both. In this way, controller 80 keeps the coolant-air mixture cool enough to cool patient 10, but not so cold as to cause frostbite.
  • Controller 80 may also set a desired temperature or control valves 78 and 86 as a function of one or more signals from one or more other sensors (not shown). For example, controller 80 may control valves 78 and 86 as a function of sensors that respond to the vital signs of patient 10 or to the blood oxygenation of patient 10.
  • Controller 80 may further set a desired temperature or control valves 78 and 86 as a function of instructions from an operator.
  • An operator may interact with controller 80 via one or more input devices 94 and one or more output devices 96.
  • Input device 94 may comprise, for example, a button, keyboard, touch screen voice recognition module or pointing device.
  • Output device 96 may comprise, for example, a display, a touch screen, a speaker, a synthetic speech module or an indicator light.
  • An operator may, for example, direct that cooling assembly 74 apply a specific cooling protocol, such as a "blast cooling mode," that cools patient 10 rapidly. In a blast cooling mode, cooling assembly 74 supplies garments 92 with a coolant-air mixture that would, given prolonged exposure, cause frostbite.
  • Controller 80 limits the time of exposure, however, and after a time interval controls valves 78 and 86 to raise the temperature of the coolant-air mixture to a temperature that will cool patient 10 without causing frostbite.
  • Controller 80 may support several cooling modes, including a gradual cooling mode, a localized cooling mode, or a rewarming mode in which the amount of coolant delivered to patient 10 is scaled back and the amount of ambient air delivered to patient 10 is increased. An operator may also use input device 94 to direct cooling assembly 74 to discontinue cooling operations.
  • plenum 82 includes multiple exit ports 98 for supplying independent coolant delivery conduits 100 which convey the combined gaseous coolant and air from plenum 82 to cooling garments 92.
  • cooling assembly 74 may include a motor 102.
  • motor 102 is a gas motor driven by the kinetic energy associated with the expansion of pressurized liquid coolant into a gaseous state.
  • Motor 102 in turn drives another device, such as a motor-driven device 104 in plenum 82.
  • Motor- driven device 104 in plenum 82 may, for example, scrape or flex the sides of plenum 82 to remove ice crystals that can form in plenum 82.
  • Plenum 82 or coolant delivery conduits may include a drip leg or other reservoir (not shown) into which ice crystals and other particulate matter may be deposited.
  • Motor-driven device 104 in plenum 82 may also include a fan to promote mixing of depressurized gaseous coolant with air drawn through air intake 84.
  • Motor 102 may drive a fan (not shown) to actively draw air into intake port 84.
  • Motor 102 may also serve as an air-moving device, drawing air through an intake port 106 and pumping the air into plenum 82.
  • Controller 80 may control motor 102, and may further control which device or devices will be driven by motor 102.
  • Cooling assembly 74 may include an air dryer (not shown) that dries air drawn through intakes 84 or 106. An air dryer reduces the formation of ice crystals in plenum 82.
  • Plenum 82 may be formed of any material, such as metal or plastic. Because plenum 82 may be in close proximity to patient 10, plenum 82 may be made from a soft material, such as rubber or silicone, to reduce discomfort to patient 10 should patient 10 come in contact with plenum 82. [0046] The invention is not limited to the specific embodiments depicted in the figures. For example, a single coolant supply can supply coolant to more than one cooling assembly, or a single cooling assembly may include more than one plenum or more than one valve for expanding the pressurized coolant. A single garment may be associated with a dedicated cooling assembly, or several cooling garments may be associated with a single cooling assembly, or several cooling assemblies may be associated with a single cooling garment.
  • a single cooling assembly associated with a single cooling garment may support localized and specialized cooling of regions of the body of patient 10, thereby supporting site-by-site cooling.
  • a system that includes one cooling assembly associated with a several cooling garments may be easily portable.
  • the components of system 70 may be modular, e.g., cooling assembly 74 may be coupled to a desired number of cooling garments 92.
  • Temperature sensors other than those depicted in FIG. 3 may be deployed as well.
  • a temperature sensor may be deployed in the mouth, ear or rectum of patient 10.
  • a temperature sensor may also be disposed to sense the temperature of the ambient air.
  • cooling system 70 may include sensors other than temperature sensors and sensors other than sensors that respond to conditions of the patient.
  • a variation of cooling system 70 may include, for example, a humidity sensor that responds to the humidity of the ambient air, an ice sensor that responds to the presence of ice in plenum 82, or a flow rate sensor that responds to the flow of coolant to patient 10.
  • Cooling system 74 may also include a battery or a line power adapter. Cooling system 74 may further include a heater to deliver warmed air to patient 10 via cooling garments 92.
  • FIG. 4 is a flow diagram illustrating a technique for controlling the temperature of a cooling gas delivered to a patient in a hypothermic therapy system.
  • Cooling assembly 74 receives pressurized coolant from a coolant supply and supply conduit (110). When received, the coolant is typically at a temperature insufficient to cool patient 10, such as ambient temperature. Cooling assembly 74 expands the pressurized coolant through valve 78, under the control of controller 80 (112). If the received coolant is in the form of compressed liquid gas, expansion causes the coolant to undergo a state change, becoming a depressurized coolant in gaseous form. When expanded, the coolant cools.
  • cooling assembly 74 When expansion causes the coolant to become too cold for application to patient 10, cooling assembly 74 combines the depressurized coolant in gaseous form with ambient air (114). The combination of depressurized gaseous coolant and air results in a gas that can cool patient 10 without causing injury. Air drawn through intake port 84 and intake valve 86, for example, under the control of controller 80, may be mixed with depressurized gaseous coolant in plenum 82. Cooling assembly 74 delivers the depressurized gaseous coolant, combined with the ambient air, to patient 10 (116). A cooling garment may circulate the depressurized gaseous coolant proximate to patient 10, cooling patient 10.
  • Controller 80 can control the flow of pressurized coolant as a function of a signal from a sensor.
  • controller 80 can monitor a temperature proximate to patient 10 or proximate to plenum 82, and can increase or decrease the amount of coolant expanded as a function of signals from temperature sensors.
  • the invention may provide one or more advantages.
  • the invention can be adapted to emergency use in the field. It is unnecessary to bring bulky refrigeration apparatus to the site to of the emergency. The coolant need not arrive at the site in a refrigerated condition. Rather, expansion of the coolant proximate to the patient generates cooled coolant near the site where the cooled coolant will be needed.
  • the invention is well-suited for application outside a hospital setting, the invention also may be applied in a hospital setting such as an emergency room or intensive care unit.
  • the temperature of the coolant delivered to the patient can be controlled by regulation of the flow of coolant or by regulation of the ambient air combined with the coolant, or both. Expanded coolant, which by itself might cause frostbite, can be brought to a safer temperature.
  • the invention supports many cooling modes. The patient may be cooled gradually, rapidly at a moderate pace, or any combination thereof.
  • FIG. 2 for example, a cooling assembly is incorporated with a cooling garment.
  • a cooling assembly may also be incorporated with other rescue devices as well, such as a defibrillator or a monitor.
  • the invention may support a variety of cooling garments, and is not limited to the garments depicted herein.
  • the cooling garments may be, for example, loose- fitting, or hard-shelled, or directed to other parts of the body of the patient.

Abstract

The invention is directed to techniques and apparatus for controlling the temperature of a coolant delivered to a patient in a hypothermic therapy system, including a hypothermic therapy system that can be applied to a patient outside or inside a hospital setting. In general, the coolant is in a pressurized form at ambient temperature, and is expanded proximate to the patient to cause the coolant to cool. Cooling garments placed in contact with the body of the patient circulate the cooled coolant proximate to the patient to cool the patient. A controller controls the temperature of the coolant by mixing the coolant with ambient air, for example, to reduce the risk of harm the patient.

Description

COOLANT CONTROL FOR RAPID INDUCTION OF MILD
HYPOTHERMIA
[0001] This application claims the benefit of U.S. Provisional Application Serial No. 60/436,433, filed December 23, 2002, the entire content of which is incorporated herein by reference.
TECHNICAL FIELD
[0002] The invention relates to medical devices that control the temperature of a patient, and more particularly, to medical devices that cool one or more parts of the body of a patient.
BACKGROUND
[0003] Some medical conditions may be treated by hypothermia. In many cases, hypothermic therapy within the first few minutes of the onset of a condition may mean the difference between life and death. In some cases, in which the patient is spared death, prompt hypothermic therapy may make a dramatic difference in the quality of life of the patient.
[0004] Stroke is an example of a medical condition that may be treated by prompt administration of hypothermic therapy. Many patients that suffer strokes die as a result of the stroke, and a significant fraction of those who survive suffer some degree of neurological damage. The neurological damage to the patient may be slowed by the application of hypothermic therapy.
SUMMARY
[0005] In general, the invention is directed to techniques for controlling the temperature of a coolant delivered to a patient in a hypothermic therapy system. In particular, the invention is directed to techniques for controlling the temperature of a coolant that is delivered to a patient in a gaseous form. In a typical embodiment, one or more cooling garments are placed in contact with the body of a patient, and the cooling garments receive the gaseous coolant. The coolant circulates proximate to the patient and absorbs heat from the patient. As the coolant moves away from the patient, the coolant carries the heat away, thereby cooling the patient.
[0006] The degree of cooling is a function of the temperature of the coolant. If the temperature of the coolant is too low, the coolant can harm the patient by causing frostbite or other problems. The invention is directed to systems and methods for controlling the temperature of the coolant.
[0007] For a typical system, the coolant originally is introduced in a pressurized liquid form at ambient temperature. When allowed to expand to ambient pressure through a valve, the coolant undergoes a state change from liquid to gaseous form, resulting in a significant drop in temperature. A controller controls the temperature of the coolant delivered to the patient by controlling the flow of coolant through the valve and by combining the expanded coolant with ambient air. The coolant and air are generally mixed in a plenum or chamber. The combination of coolant and air supplied to the patient cools the patient without causing frostbite or other problems.
[0008] The controller controls the amount of coolant, air or both as a function of signals from sensors. In many circumstances, the sensors are temperature sensors in the plenum, in the garments, or on the patient. The sensors may also respond to other measures of interest, such as heart rate, blood pressure or blood oxygenation. [0009] In a typical application, an operator such as a rescue worker applies the cooling garments to the patient "in the field," i.e., away from a hospital. The rescue worker brings the coolant to the site in pressurized liquid form at ambient temperature. A very short distance away from the patient, the pressurized coolant is allowed to expand and cool, is mixed with ambient air, and is then applied to the patient. Because the coolant depressurizes and cools proximate to the patient, there is less risk that ambient conditions will unpredictably affect the temperature of the coolant before the coolant can be applied to the patient. [0010] The invention is not limited to application in the field. On the contrary, the invention may be adapted to a hospital setting as well.
[0011] In one embodiment, the invention is directed to a device that includes a valve to receive a pressurized coolant at a first temperature and to discharge a depressurized gaseous coolant at a second temperature. The device also includes a plenum to receive the depressurized gaseous coolant and to combine the depressurized gaseous coolant with air at a third temperature, and a garment for placing in contact with a body of a patient to circulate the combined gaseous coolant and air proximate to the body of the patient.
[0012] In another embodiment, the invention is directed to a system comprising a valve to receive a pressurized coolant at a first temperature and to discharge a depressurized gaseous coolant at a second temperature, and a plenum to receive the depressurized gaseous coolant and to combine the depressurized gaseous coolant with air at a third temperature. The system also includes a controller to control the valve as a function of a signal from a temperature sensor. The temperature sensor may disposed, for example, in the plenum or in a cooling garment. [0013] The invention may bring about one or more advantages. The invention offers an efficient cooling system without the need for a bulky refrigeration apparatus to regulate the temperature of the coolant. The supplied coolant may be at ambient temperature, and may be cooled and temperature-regulated proximate to the patient. The temperature of the coolant delivered to the patient can be controlled by regulation of the flow of coolant or by regulation of the ambient air combined with the coolant, or both. Moreover, the temperature of the coolant may be regulated to support different cooling modes.
[0014] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF DRAWINGS
[0015] FIG. 1 is a diagram of a patient wearing exemplary cooling garments for which coolant can be controlled, according to an embodiment of the invention. [0016] FIG. 2 is a schematic diagram of one or more cooling systems, according to embodiments of the invention.
[0017] FIG. 3 is a schematic diagram of a cooling system according to an exemplary embodiment of the invention. [0018] FIG. 4 is a flow diagram illustrating a cooling technique according one embodiment of the invention.
DETAILED DESCRIPTION
[0019] FIG. 1 is a diagram showing the midsection of a patient 10 receiving cooling therapy with cooling garments. In particular, FIG. 1 shows patient 10 wearing a lower body gear 12 and an upper body gear 14. Although lower body gear 12 will be described in detail, it is assumed for simplicity that lower body gear 12 and upper body gear 14 have similar construction and operate in a similar fashion. The invention is not limited to use with the particular cooling garments shown in FIG. 1, however.
[0020] In the embodiment shown in FIG. 1, lower body gear 12 includes a shell 16 that surrounds at least a portion of the body of patient 10, such as an upper thigh. Shell 16 may be constructed of a flexible material that may conform to the shape of the body of patient 10. Shell 16 may further be constructed of an outer material, such as canvas, and an inner material, such as a vinyl liner. Fasteners (not shown), such as a zipper, Velcro, an adhesive, a button, a clip, a strap, a buckle or the like, hold lower body gear 12 and adjust to fit lower body gear 12 on bodies of varying shapes and sizes. When in place, lower body gear 12 defines a space 18 between shell 16 and the body of patient 10. Lower body gear 12 may include a spacer (not shown) that separates at least a portion of lower body gear 12 from the body of patient 10 to maintain space 18.
[0021] Lower body gear 12 includes a coolant port 20 that receives a coolant delivery conduit 22. Coolant port 20 brings coolant delivery conduit 22 into fluid communication with garment space 18. The coolant delivered to lower body gear 12 via coolant delivery conduit 22 includes a chilled gas that circulates in space 18. The chilled gas may include a mixture of coolant and ambient air. The chilled gas absorbs heat from the body of patient 10. Supply of the chilled gas via delivery conduit 22 forces the chilled gas in space 18 to exit lower body gear 12 via one or more exit ports 24. A sealing member 26 in contact the body of patient 10 substantially prevents the chilled gas from escaping from lower body gear 12 by a route other than through exit ports 24. [0022] Lower body gear 12 may include one or more temperature sensors 28. Examples of temperature sensors include thermistors, piezo-electric transducers, thermocouples, infrared sensors, and the like. Temperature sensor 28 may respond to the temperature of the chilled gas in space 18, or the temperature of the chilled gas entering space 18 through coolant port 20, or the body temperature of patient 10, or any combination thereof. In one embodiment, a lead (not shown) extends from temperature sensor 28 along coolant delivery conduit 22 to a controller, as will be described below. Lower body gear 12 or upper body gear 14 may also include other sensors (not shown), such as sensors that respond to oxygen saturation levels, blood flow, heart rate, respiration, electrocardiogram (ECG) or the like.
[0023] FIG. 2 is a schematic diagram of a cooling system 40. For purposes of illustration, cooling system 40 in FIG. 2 comprises a body cooling sub-system 42 and a head cooling sub-system 44. Body cooling sub-system 42 includes lower body gear 12 and upper body gear 14. Coolant delivery conduit 22 for lower body gear 12 and coolant delivery conduit 46 for upper body gear 14 receive coolant gas from a single cooling assembly 48, disposed proximate to patient 10. In a typical embodiment, cooling assembly 48 can be disposed within two meters of patient 10. Cooling assembly 48 receives pressurized coolant from a coolant supply 50, which may be remote from patient 10. Coolant from coolant supply 50 arrives in cooling assembly 48 via supply conduit 52.
[0024] The coolant in coolant supply 50 may be a pressurized coolant at ambient temperature. In some embodiments of the invention, the coolant in coolant supply 50 is a "pressurized liquid gas," i.e., a pressurized liquid that, at ambient temperature and pressure, exist in a gas state. The coolant may include, for example, carbon dioxide, nitrogen, air, or oxygen. Other coolants are also possible. Although the invention encompasses other coolants as well, including pressurized coolants in gaseous form, the invention will be described in terms of pressurized liquid gas coolant.
[0025] The pressurized liquid gas in coolant supply 50 moves under pressure via supply conduit 52 to cooling assembly 48. While moving through supply conduit 52, the coolant is at an ambient temperature. At cooling assembly 48, the coolant expands to ambient pressure. The coolant also undergoes a state change, from liquid to gas. As the coolant expands, the temperature of the coolant drops. In other words, the coolant remains in a liquid form at ambient temperature until the coolant is proximate to patient 10, when the coolant expands and cools. Cooling garments 12 and 14 receive the cooled coolant.
[0026] By expanding the coolant in close proximity to patient 10, body cooling sub-system 42 enhances cooling efficiency. Coolant transported in supply conduit 52 is at ambient temperature, so there is less risk that ambient temperature will unpredictably affect the cooling capability of the coolant as the coolant travels to cooling assembly 48. Accordingly, supply conduit 52 need not be insulated to prevent heat transfer. The ambient temperature of the environment may affect the coolant as the coolant is distributed to cooling garments 12 and 14 via coolant delivery conduits 22 and 46, but coolant delivery conduits 22 and 46 are relatively short because cooling assembly 48 is proximate to patient 10. Coolant delivery conduits 22 and 46 may, but need not be, insulated. Additional advantages may result from cooling assembly 48 being proximate to patient 10, as discussed below. [0027] Expansion of the coolant in cooling assembly 48 causes a significant drop in coolant temperature, especially when the coolant undergoes a state change. Pressurized liquid carbon dioxide, for example, may cool to approximately -78°C (-108°F) upon expansion to one atmosphere. The expansion of the coolant represents an efficient technique for dropping the temperature of the coolant, but it is possible for the cooled coolant to be cold enough to do harm. In particular, it is possible for the temperature of the coolant to fall so low that application of the cooled coolant gas to patient 10 may cause frostbite.
[0028] Accordingly, an intake port 54 receives air at ambient temperature from the environment, and cooling assembly 48 mixes the ambient air with the cooled coolant to produce a coolant-air mixture at a desired temperature. The coolant-air mixture is delivered to the patient via delivery conduits 22 and 46. [0029] Head cooling sub-system 44, like body cooling sub-system 42, includes a coolant supply 56 and a supply conduit 58. A headgear cooling garment 60 circulates cooled gas around the head of patient 10. Head cooling sub-system 44 includes a cooling assembly 62 proximate to patient 10, and in the example shown in FIG. 2, cooling assembly 62 is directly coupled to cooling headgear 60. [0030] The pressurized liquid gas in coolant supply 56 moves under pressure via supply conduit 58 to cooling assembly 62, where the coolant expands to ambient pressure and the temperature of the coolant drops. The coolant may be mixed with ambient air received through an intake port 58, and cooling assembly 62 supplies the coolant-air mixture directly to cooling headgear 60.
[0031] As shown in the example of FIG. 2, head cooling sub-system 44 is a subsystem separate from body cooling sub-system 42. The invention encompasses embodiments in which all cooling garments share a single coolant supply or a single cooling assembly.
[0032] FIG. 3 is a schematic diagram of a cooling system 70, which may be adapted to cool patient 10 via body garments 12, 14 or headgear 60. Pressurized coolant from coolant supply 72 is transported to cooling assembly 74 via supply conduit 76. Pressurized coolant is generally at a relatively high temperature, typically ambient temperature.
[0033] Coolant expands at valve 78, under the control of controller 80. Valve 78 may be any of several kinds of controllable valves, such as an electronically controlled needle valve, gate valve or ball valve. Valve 78 may be of any size or capacity, and may have cryogenic capabilities.
[0034] As the coolant passes through valve 78 and expands, the coolant cools. In the case of a pressurized liquid gas coolant, the coolant also undergoes a state change from a liquid to a gaseous state. The depressurized gaseous coolant may be very cold, and may cause frostbite if applied to patient 10 directly. Accordingly the depressurized gaseous coolant may be directed into a plenum 82, and ambient air may be drawn into plenum 82 through an intake port 84. An intake valve 86, under the control of controller 80, regulates the quantity of ambient air introduced into plenum 82. The ambient air may be drawn in into plenum 82 by movement of gases through plenum 82, creating a pressure gradient according to Bernoulli's principles. The ambient air may also be drawn actively into plenum 82 with an air- moving device such as a fan (not shown). The depressurized gaseous coolant mixes with the ambient air in plenum 82, creating a coolant-air mixture. The temperature of the coolant-air mixture is greater than that of the chilled coolant, and less than that of the ambient air.
[0035] Controller 80 monitors the temperature of the coolant-air mixture in plenum 82 via a temperature sensor 88. Controller 80 controls valves 78 and 86 as a function of a signal from plenum temperature sensor 88 to introduce coolant and ambient air into plenum 82 to generate a coolant-air mixture at a desired temperature. In particular, controller 80 controls valve 78 to keep coolant in supply conduit 76 under pressure, and to expand the coolant at a controlled rate. In addition, controller 80 controls valve 86 to control the rate of air flow into plenum 82. By controlling valves 78 and 86, controller 80 controls not only the rate of flow of coolant and air through system 70, but also the temperature of the coolant- air mixture.
[0036] In place or in addition to a temperature sensor 88 in plenum 82, system 70 may include temperature sensors 90 in cooling garments 92. Temperature sensors 90 in cooling garments 92 may respond to the temperature of the coolant-air mixture entering or circulating in cooling garments 92, or the body temperature of patient 10, or any combination thereof.
[0037] Controller 80 may set a desired temperature for the coolant-air mixture as a function of signals from temperature sensors 90, or control valves 78 and 86, or a combination of both. In this way, controller 80 keeps the coolant-air mixture cool enough to cool patient 10, but not so cold as to cause frostbite. [0038] Controller 80 may also set a desired temperature or control valves 78 and 86 as a function of one or more signals from one or more other sensors (not shown). For example, controller 80 may control valves 78 and 86 as a function of sensors that respond to the vital signs of patient 10 or to the blood oxygenation of patient 10.
[0039] Controller 80 may further set a desired temperature or control valves 78 and 86 as a function of instructions from an operator. An operator may interact with controller 80 via one or more input devices 94 and one or more output devices 96. Input device 94 may comprise, for example, a button, keyboard, touch screen voice recognition module or pointing device. Output device 96 may comprise, for example, a display, a touch screen, a speaker, a synthetic speech module or an indicator light. An operator may, for example, direct that cooling assembly 74 apply a specific cooling protocol, such as a "blast cooling mode," that cools patient 10 rapidly. In a blast cooling mode, cooling assembly 74 supplies garments 92 with a coolant-air mixture that would, given prolonged exposure, cause frostbite. Controller 80 limits the time of exposure, however, and after a time interval controls valves 78 and 86 to raise the temperature of the coolant-air mixture to a temperature that will cool patient 10 without causing frostbite. [0040] Controller 80 may support several cooling modes, including a gradual cooling mode, a localized cooling mode, or a rewarming mode in which the amount of coolant delivered to patient 10 is scaled back and the amount of ambient air delivered to patient 10 is increased. An operator may also use input device 94 to direct cooling assembly 74 to discontinue cooling operations. [0041] In the example of FIG. 3, plenum 82 includes multiple exit ports 98 for supplying independent coolant delivery conduits 100 which convey the combined gaseous coolant and air from plenum 82 to cooling garments 92. Although plenum 82 may have a single exit port, plenum 82 may also have multiple exit ports for distribution of combined gaseous coolant and air to various cooling garments. [0042] Optionally, cooling assembly 74 may include a motor 102. In the example of FIG. 3, motor 102 is a gas motor driven by the kinetic energy associated with the expansion of pressurized liquid coolant into a gaseous state. Motor 102 in turn drives another device, such as a motor-driven device 104 in plenum 82. Motor- driven device 104 in plenum 82 may, for example, scrape or flex the sides of plenum 82 to remove ice crystals that can form in plenum 82. Plenum 82 or coolant delivery conduits may include a drip leg or other reservoir (not shown) into which ice crystals and other particulate matter may be deposited. Motor-driven device 104 in plenum 82 may also include a fan to promote mixing of depressurized gaseous coolant with air drawn through air intake 84. [0043] Motor 102 may drive a fan (not shown) to actively draw air into intake port 84. Motor 102 may also serve as an air-moving device, drawing air through an intake port 106 and pumping the air into plenum 82. Controller 80 may control motor 102, and may further control which device or devices will be driven by motor 102. [0044] Cooling assembly 74 may include an air dryer (not shown) that dries air drawn through intakes 84 or 106. An air dryer reduces the formation of ice crystals in plenum 82.
[0045] Plenum 82 may be formed of any material, such as metal or plastic. Because plenum 82 may be in close proximity to patient 10, plenum 82 may be made from a soft material, such as rubber or silicone, to reduce discomfort to patient 10 should patient 10 come in contact with plenum 82. [0046] The invention is not limited to the specific embodiments depicted in the figures. For example, a single coolant supply can supply coolant to more than one cooling assembly, or a single cooling assembly may include more than one plenum or more than one valve for expanding the pressurized coolant. A single garment may be associated with a dedicated cooling assembly, or several cooling garments may be associated with a single cooling assembly, or several cooling assemblies may be associated with a single cooling garment. The invention encompasses all of these variations, each of which may be associated with advantages. A single cooling assembly associated with a single cooling garment, for example, may support localized and specialized cooling of regions of the body of patient 10, thereby supporting site-by-site cooling. A system that includes one cooling assembly associated with a several cooling garments may be easily portable. In one embodiment of the invention, the components of system 70 may be modular, e.g., cooling assembly 74 may be coupled to a desired number of cooling garments 92.
[0047] Temperature sensors other than those depicted in FIG. 3 may be deployed as well. For example, a temperature sensor may be deployed in the mouth, ear or rectum of patient 10. A temperature sensor may also be disposed to sense the temperature of the ambient air. In addition, cooling system 70 may include sensors other than temperature sensors and sensors other than sensors that respond to conditions of the patient. A variation of cooling system 70 may include, for example, a humidity sensor that responds to the humidity of the ambient air, an ice sensor that responds to the presence of ice in plenum 82, or a flow rate sensor that responds to the flow of coolant to patient 10. [0048] Cooling system 74 may also include a battery or a line power adapter. Cooling system 74 may further include a heater to deliver warmed air to patient 10 via cooling garments 92.
[0049] FIG. 4 is a flow diagram illustrating a technique for controlling the temperature of a cooling gas delivered to a patient in a hypothermic therapy system. Cooling assembly 74 receives pressurized coolant from a coolant supply and supply conduit (110). When received, the coolant is typically at a temperature insufficient to cool patient 10, such as ambient temperature. Cooling assembly 74 expands the pressurized coolant through valve 78, under the control of controller 80 (112). If the received coolant is in the form of compressed liquid gas, expansion causes the coolant to undergo a state change, becoming a depressurized coolant in gaseous form. When expanded, the coolant cools. [0050] When expansion causes the coolant to become too cold for application to patient 10, cooling assembly 74 combines the depressurized coolant in gaseous form with ambient air (114). The combination of depressurized gaseous coolant and air results in a gas that can cool patient 10 without causing injury. Air drawn through intake port 84 and intake valve 86, for example, under the control of controller 80, may be mixed with depressurized gaseous coolant in plenum 82. Cooling assembly 74 delivers the depressurized gaseous coolant, combined with the ambient air, to patient 10 (116). A cooling garment may circulate the depressurized gaseous coolant proximate to patient 10, cooling patient 10. [0051] Controller 80 can control the flow of pressurized coolant as a function of a signal from a sensor. For example, controller 80 can monitor a temperature proximate to patient 10 or proximate to plenum 82, and can increase or decrease the amount of coolant expanded as a function of signals from temperature sensors. [0052] The invention may provide one or more advantages. In particular, the invention can be adapted to emergency use in the field. It is unnecessary to bring bulky refrigeration apparatus to the site to of the emergency. The coolant need not arrive at the site in a refrigerated condition. Rather, expansion of the coolant proximate to the patient generates cooled coolant near the site where the cooled coolant will be needed. Although the invention is well-suited for application outside a hospital setting, the invention also may be applied in a hospital setting such as an emergency room or intensive care unit.
[0053] Moreover, the temperature of the coolant delivered to the patient can be controlled by regulation of the flow of coolant or by regulation of the ambient air combined with the coolant, or both. Expanded coolant, which by itself might cause frostbite, can be brought to a safer temperature. In addition, the invention supports many cooling modes. The patient may be cooled gradually, rapidly at a moderate pace, or any combination thereof.
[0054] These embodiments are illustrative of the practice of the invention. Various modifications may be made without departing from the scope of the claims. For example, the invention may be combined with other apparatus, and need not stand alone. In FIG. 2, for example, a cooling assembly is incorporated with a cooling garment. A cooling assembly may also be incorporated with other rescue devices as well, such as a defibrillator or a monitor.
[0055] The invention may support a variety of cooling garments, and is not limited to the garments depicted herein. The cooling garments may be, for example, loose- fitting, or hard-shelled, or directed to other parts of the body of the patient. These and other embodiments are within the scope of the following claims.

Claims

CLAIMS:
1. A device comprising: a valve (78) configured to receive a pressurized coolant at a first temperature and to discharge a depressurized gaseous coolant at a second temperature; a plenum (82) configured to receive the depressurized gaseous coolant and to combine the depressurized gaseous coolant with air at a third temperature; and a garment (92) configured for placing in contact with a body of a patient to circulate the combined gaseous coolant and air proximate to the body of the patient.
2. The device of claim 1 , in which the coolant comprises at least one of oxygen, nitrogen, air and carbon dioxide.
3. The device of claim 1 , in which the pressurized coolant comprises a pressurized liquid gas.
4. The device of claim 1, further comprising a coolant supply (72) configured to store the pressurized coolant and a supply conduit (76) configured to transport the pressurized coolant to the valve.
5. The device of claim 1 , in which the valve is disposed less than two meters from the garment.
6. The device of claim 1, further comprising a coolant delivery conduit (100) configured to convey the combined gaseous coolant and air from the plenum to the garment.
7. The device of claim 1 , further comprising: an air intake port (84); and an air intake valve (86) configured to control passage of air through the air intake port and into the plenum.
8. The device of claim 1 , further comprising a sensor (88) configured to sense a temperature in the plenum.
9. The device of claim 1 , further comprising a motor (102), in which the discharge of the depressurized gaseous coolant from the valve drives the motor.
10. The device of claim 1, further comprising an air-moving device to move at least one of the depressurized gaseous coolant and the air.
11. A system comprising: a valve (78) configured to receive a pressurized coolant at a first temperature and to discharge a depressurized gaseous coolant at a second temperature; a plenum (82) configured to receive the depressurized gaseous coolant and to combine the depressurized gaseous coolant with air at a third temperature; and a controller (80) configured to control the valve as a function of a signal from a temperature sensor.
12. The system of claim 11 , in which the temperature sensor (88) is disposed in the plenum.
13. The system of claim 11 , further comprising a garment (92) configured for placing in contact with a body of a patient to circulate the combined gaseous coolant and air proximate to the body of the patient.
14. The system of claim 13, in which the temperature sensor (90) is disposed in the garment.
15. The system of claim 13, in which the valve is disposed less than two meters from the garment.
16. The system of claim 11, further comprising an input device (94), in which the controller receives commands from an operator via the input device.
17. The system of claim 11 , further comprising a coolant supply (72) configured to supply the pressurized coolant to the valve.
18. The system of claim 17, further comprising a supply conduit (76) configured to transport the pressurized coolant from the coolant supply to the valve.
19. The system of claim 11 , further comprising a motor (102), in which the discharge of the depressurized gaseous coolant from the valve drives the motor.
20. The system of claim 11 , in which the coolant comprises at least one of oxygen, nitrogen, air and carbon dioxide.
21. The system of claim 11 , in which the pressurized coolant comprises a pressurized liquid gas.
22. The system of claim 11, further comprising: an air intake port (84); and an air intake valve (86) configured to control passage of air through the air intake port and into the plenum.
23. The system of claim 22, in which the controller controls the air intake valve as a function of a signal from the temperature sensor.
24. The system of claim 11 , further comprising a second sensor, in which the controller controls the valve as a function of a signal from the second sensor.
25. The system of claim 24, in which the second sensor comprises at least one of an oxygen saturation sensor, a blood flow sensor, a heart rate sensor, a respiration sensor and an electrocardiogram sensor.
PCT/US2003/040213 2002-12-23 2003-12-18 Coolant control for rapid induction of mild hypothermia WO2004058111A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003301002A AU2003301002A1 (en) 2002-12-23 2003-12-18 Coolant control for rapid induction of mild hypothermia

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US43643302P 2002-12-23 2002-12-23
US60/436,433 2002-12-23
US10/632,122 2003-07-31
US10/632,122 US7056282B2 (en) 2002-12-23 2003-07-31 Coolant control for rapid induction of mild hypothermia

Publications (2)

Publication Number Publication Date
WO2004058111A2 true WO2004058111A2 (en) 2004-07-15
WO2004058111A3 WO2004058111A3 (en) 2004-08-26

Family

ID=32685455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/040213 WO2004058111A2 (en) 2002-12-23 2003-12-18 Coolant control for rapid induction of mild hypothermia

Country Status (3)

Country Link
US (1) US7056282B2 (en)
AU (1) AU2003301002A1 (en)
WO (1) WO2004058111A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206556A (en) * 2011-06-07 2011-10-20 Kci Licensing Inc Portable cooling system for treatment
EP2462906A1 (en) * 2010-12-13 2012-06-13 Hilotherm Holding AG Tempering device for thermal treatment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465351B2 (en) * 2004-07-01 2013-06-18 Nike, Inc. Pneumatic cooling apparel system
US8602855B2 (en) 2004-07-01 2013-12-10 Nike, Inc. Air delivery apparatus and method
CA2715667A1 (en) 2008-02-20 2009-08-27 Unomedical A/S Insertion device with horizontally moving part
US8480724B2 (en) * 2009-05-06 2013-07-09 Deborah C Bly Assembly and method for treating and preventing moisture related skin dermatitis
CN103037724A (en) 2010-06-29 2013-04-10 罗纳托·罗森塔尔 Therapeutic brain cooling system and spinal cord cooling system
WO2013016437A2 (en) 2011-07-25 2013-01-31 Neurosave, Inc. Non-invasive systems, devices, and methods for selective brain cooling
JP6150802B2 (en) * 2011-09-05 2017-06-21 クール セラピューティクス, インコーポレイテッド Stomach, skin, and peritoneal delivery of frozen mist to induce hyperthermia
GB201301816D0 (en) * 2013-02-01 2013-03-20 Univ Singapore Prevention & Treatment of Neuropathy
US11246746B2 (en) 2017-12-21 2022-02-15 Stryker Corporation Thermal transfer device for providing thermal treatment to a patient
US20200146880A1 (en) * 2018-11-14 2020-05-14 Joseph Jones Portable Limb, Head, Chest Cooling System
US11717074B2 (en) 2020-07-09 2023-08-08 United States Of America As Represented By The Secretary Of The Air Force Personal hydration system with cooling or warming capability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261399A (en) * 1991-05-22 1993-11-16 Klatz Ronald M Brain cooling device and method for performing the same
US5449379A (en) * 1993-07-21 1995-09-12 Alternative Compression Technologies, Inc. Apparatus for applying a desired temperature and pressure to an injured area
US6044648A (en) * 1997-09-19 2000-04-04 Forma Scientific, Inc. Cooling device having liquid refrigerant injection ring
US20010051801A1 (en) * 1997-02-27 2001-12-13 Lehmann John W. Cryosurgical catheter

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504674A (en) 1966-12-22 1970-04-07 Emil S Swenson Method and apparatus for performing hypothermia
US3587544A (en) 1969-10-27 1971-06-28 Green Bay Res Corp Engine vapor recycling device with internal temperature regulation
US3587577A (en) * 1970-05-09 1971-06-28 Oleg Alexandrovich Smirnov Device for applying selective and general hypothermy to and reheating of human body through the common integuments thereof
US3648765A (en) 1970-11-24 1972-03-14 Us Navy Temperature control system for space suit
US3871381A (en) 1971-12-30 1975-03-18 Donald J Roslonski Cold compress device
US3830222A (en) 1972-07-07 1974-08-20 Johnson Res Foundation Method and apparatus for observing rates of reaction of oxygen in living tissues
US3811777A (en) 1973-02-06 1974-05-21 Johnson Res Foundation Medical Time-sharing fluorometer and reflectometer
US4138743A (en) 1975-02-25 1979-02-13 Acurex Corporation Liquid cooled helmet
US3963351A (en) 1975-04-14 1976-06-15 Britton Chance Multi-channel optical time-sharing apparatus having a rotating filter wheel with position-encoding means
US4023905A (en) 1975-12-29 1977-05-17 Britton Chance Flash photolysis split beam spectrophotometer
US4118946A (en) 1976-11-23 1978-10-10 Eddie Sam Tubin Personnel cooler
US4281645A (en) 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
US4172495A (en) 1977-08-03 1979-10-30 Energy Systems Corporation Slurry cooling of helmets
AU3963078A (en) * 1977-09-25 1980-03-13 Kurio Medikaru Kk Apparatus for refrigeration treatment
US4162405A (en) 1978-05-23 1979-07-24 Britton Chance Flying spot fluoro-meter for oxidized flavoprotein and reduced pyridine nucleotide
US4191028A (en) 1978-06-22 1980-03-04 United States Of America As Represented By The Secretary Of The Navy Dry ice, liquid pulse pump cooling system
US4416285A (en) 1978-11-29 1983-11-22 Oximetrix, Inc. Improved optical catheter and method for making same
US4425916A (en) 1979-06-01 1984-01-17 Therapeutic Products, Inc. Cap structure for creating temperature controlled environment for reducing alopecia
US4378797A (en) 1980-04-14 1983-04-05 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4382446A (en) 1980-10-23 1983-05-10 Kay Laboratories, Inc. Heat transfer devices for the scalp
EP0061843A3 (en) 1981-03-28 1983-08-24 Yoshiro Nakamatsu Apparatus for increasing brain activity
US4452250A (en) 1982-04-29 1984-06-05 Britton Chance NMR System for the non-invasive study of phosphorus metabilism
US4441502A (en) 1982-08-19 1984-04-10 Britton Chance NMR System for determining relationship between work output and oxidative phosphorylation capability in an exercising body member
GB2130489B (en) 1982-11-19 1986-02-19 Sumitomo Rubber Ind Head cooling cap
US4765338A (en) 1982-12-29 1988-08-23 Turner Richard W Reuseable heat transfer devices for the scalp
US5140989A (en) 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US4768516A (en) 1983-10-14 1988-09-06 Somanetics Corporation Method and apparatus for in vivo evaluation of tissue composition
US5139025A (en) 1983-10-14 1992-08-18 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US4570638A (en) 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US5217013A (en) 1983-10-14 1993-06-08 Somanetics Corporation Patient sensor for optical cerebral oximeter and the like
US4725147A (en) 1984-09-17 1988-02-16 Somanetics Corporation Calibration method and apparatus for optical-response tissue-examination instrument
US4638436A (en) 1984-09-24 1987-01-20 Labthermics Technologies, Inc. Temperature control and analysis system for hyperthermia treatment
GB8502016D0 (en) 1985-01-28 1985-02-27 Saggers M J Skull helmet
US4869250A (en) 1985-03-07 1989-09-26 Thermacor Technology, Inc. Localized cooling apparatus
DE3678212D1 (en) 1985-05-27 1991-04-25 Sumitomo Rubber Ind DEFORMABLE HOOD COOLING HOOD.
US4750493A (en) 1986-02-28 1988-06-14 Brader Eric W Method of preventing brain damage during cardiac arrest, CPR or severe shock
US4920963A (en) 1986-02-28 1990-05-01 Brader Eric W Apparatus for preventing brain damage during cardiac arrest, CPR or severe shock
US4865038A (en) 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
US4981136A (en) 1986-11-25 1991-01-01 Performance Predictions, Inc. Nuclear magnetic resonance apparatus for evaluating muscle efficiency and maximum power of muscle of a living animal
DE3704339A1 (en) 1987-02-12 1988-08-25 Eden Medizinische Elektronik G DEVICE FOR DETERMINING THE LOCATION OF AN OBJECT
DE3809084C2 (en) 1988-03-18 1999-01-28 Nicolay Gmbh Sensor for the non-invasive measurement of the pulse frequency and / or the oxygen saturation of the blood and method for its production
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US4904237A (en) 1988-05-16 1990-02-27 Janese Woodrow W Apparatus for the exchange of cerebrospinal fluid and a method of treating brain and spinal cord injuries
US5122974A (en) 1989-02-06 1992-06-16 Nim, Inc. Phase modulated spectrophotometry
US5873821A (en) * 1992-05-18 1999-02-23 Non-Invasive Technology, Inc. Lateralization spectrophotometer
US4972331A (en) 1989-02-06 1990-11-20 Nim, Inc. Phase modulated spectrophotometry
US5596987A (en) 1988-11-02 1997-01-28 Noninvasive Technology, Inc. Optical coupler for in vivo examination of biological tissue
US5402778A (en) 1993-01-19 1995-04-04 Nim Incorporated Spectrophotometric examination of tissue of small dimension
CA1331483C (en) 1988-11-02 1994-08-16 Britton Chance User-wearable hemoglobinometer for measuring the metabolic condition of a subject
US5564417A (en) 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5792051A (en) 1988-12-21 1998-08-11 Non-Invasive Technology, Inc. Optical probe for non-invasive monitoring of neural activity
US5187672A (en) 1989-02-06 1993-02-16 Nim Incorporated Phase modulation spectroscopic system
US5353799A (en) 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
US5782755A (en) 1993-11-15 1998-07-21 Non-Invasive Technology, Inc. Monitoring one or more solutes in a biological system using optical techniques
US5553614A (en) 1988-12-21 1996-09-10 Non-Invasive Technology, Inc. Examination of biological tissue using frequency domain spectroscopy
US5555885A (en) * 1988-12-21 1996-09-17 Non-Invasive Technology, Inc. Examination of breast tissue using time-resolved spectroscopy
US5119815A (en) 1988-12-21 1992-06-09 Nim, Incorporated Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation
US5386827A (en) 1993-03-30 1995-02-07 Nim Incorporated Quantitative and qualitative in vivo tissue examination using time resolved spectroscopy
US5110721A (en) 1989-02-10 1992-05-05 The Research Foundation Of State University Of New York Method for hypothermic organ protection during organ retrieval
US5090415A (en) 1989-02-14 1992-02-25 Hamamatsu Photonics Kabushiki Kaisha Examination apparatus
US5081991A (en) 1989-03-14 1992-01-21 Performance Predictions, Inc. Methods and apparatus for using nuclear magnetic resonance to evaluate the muscle efficiency and maximum power of a subject during locomotion
US5902235A (en) * 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
US5080098A (en) 1989-12-18 1992-01-14 Sentinel Monitoring, Inc. Non-invasive sensor
EP0613652B1 (en) 1990-02-15 1997-04-16 Hewlett-Packard GmbH Apparatus and method for non-invasive measurement of oxygen saturation
US5062428A (en) 1990-06-04 1991-11-05 Nim Incorporated Method and device for in vivo diagnosis detecting IR emission by body organ
US5395314A (en) 1990-10-10 1995-03-07 Life Resuscitation Technologies, Inc. Brain resuscitation and organ preservation device and method for performing the same
US5149321A (en) 1990-10-10 1992-09-22 Klatz Ronald M Brain resuscitation device and method for performing the same
US5584804A (en) 1990-10-10 1996-12-17 Life Resuscitation Technologies, Inc. Brain resuscitation and organ preservation device and method for performing the same
US5827222A (en) 1990-10-10 1998-10-27 Life Resuscitation Technologies, Inc. Method of treating at least one of brain and associated nervous tissue injury
US6030412A (en) * 1991-05-22 2000-02-29 Life Science Holdings, Inc. Apparatus and method for cooling the brain, brain stem and associated neurologic tissues
US6277143B1 (en) * 1991-05-22 2001-08-21 Life Science Holdings, Inc. Brain cooling apparatus and method for cooling the brain
US5269758A (en) 1992-04-29 1993-12-14 Taheri Syde A Intravascular catheter and method for treatment of hypothermia
EP0614645A4 (en) 1992-08-31 1996-04-03 Hitachi Ltd Optical ct apparatus.
US5383918A (en) 1992-08-31 1995-01-24 Panetta; Thomas F. Hypothermia reducing body exclosure
US5261243A (en) * 1992-09-28 1993-11-16 Lockheed Corporation Supplemental cooling system for avionic equipment
EP0690692A4 (en) 1992-12-01 1999-02-10 Somanetics Corp Patient sensor for optical cerebral oximeters
US5477853A (en) 1992-12-01 1995-12-26 Somanetics Corporation Temperature compensation method and apparatus for spectroscopic devices
US6110168A (en) * 1993-02-10 2000-08-29 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modifications
US5287705A (en) * 1993-02-16 1994-02-22 Thermo King Corporation Air conditioning and refrigeration systems utilizing a cryogen
US5713941A (en) 1993-04-27 1998-02-03 Cancer Research Institute Apparatus for inducing whole body hyperthermia and method for treatment utilizing said whole body hyperthermia inducing apparatus
US5350417A (en) 1993-05-18 1994-09-27 Augustine Medical, Inc. Convective thermal blanket
AU7170094A (en) 1993-05-20 1994-12-20 Somanetics Corporation Improved electro-optical sensor for spectrophotometric medical devices
WO1994027493A1 (en) 1993-05-28 1994-12-08 Somanetics Corporation Method and apparatus for spectrophotometric cerebral oximetry
US5673701A (en) 1994-10-07 1997-10-07 Non Invasive Technology, Inc. Optical techniques for examination of biological tissue
US6058324A (en) * 1993-06-17 2000-05-02 Non-Invasive Technology, Inc. Examination and imaging of biological tissue
US5820558A (en) 1994-12-02 1998-10-13 Non-Invasive Technology, Inc. Optical techniques for examination of biological tissue
US5365607A (en) 1993-08-26 1994-11-22 Benevento Jr Vincenzo P Cap having evaporative cooling interior apparatus
US5626618A (en) 1993-09-24 1997-05-06 The Ohio State University Mechanical adjunct to cardiopulmonary resuscitation (CPR), and an electrical adjunct to defibrillation countershock, cardiac pacing, and cardiac monitoring
US5409005A (en) 1993-10-07 1995-04-25 Medasonics, Inc. Transcranial doppler probe wheel and track/bar fixation assembly
US5871526A (en) * 1993-10-13 1999-02-16 Gibbs; Roselle Portable temperature control system
AU700802B2 (en) * 1993-10-29 1999-01-14 Trustees Of The University Of Pennsylvania, The Object imaging using diffuse light
US5658324A (en) 1994-04-14 1997-08-19 Promdx Technology Inc. System and method for the reduction of secondary trauma
US5603728A (en) 1994-06-20 1997-02-18 Pachys; Freddy Scalp cooling/heating apparatus
US5716386A (en) 1994-06-27 1998-02-10 The Ohio State University Non-invasive aortic impingement and core and cerebral temperature manipulation
US5486204A (en) 1994-09-20 1996-01-23 University Of Texas Health Science Center Houston Method of treating a non-penetrating head wound with hypothermia
US5697367A (en) 1994-10-14 1997-12-16 Somanetics Corporation Specially grounded sensor for clinical spectrophotometric procedures
US5683438A (en) 1995-03-10 1997-11-04 Stanford University Apparatus and method for core body warming of mammals experiencing hypothermia
US5755756A (en) 1995-09-15 1998-05-26 Freedman, Jr.; Robert J. Hypothermia-inducing resuscitation unit
US5730730A (en) 1995-09-29 1998-03-24 Darling, Jr.; Phillip H. Liquid flow rate control device
US5700828A (en) 1995-12-07 1997-12-23 Life Resuscitation Technologies, Inc. Treatment or prevention of anoxic or ischemic brain injury with melatonin-containing compositions
GB2308813B (en) * 1996-01-05 1999-12-29 Boc Group Plc Garments for controlling body temperature
US6090132A (en) * 1996-08-15 2000-07-18 Fox; James Allan Method and apparatus for inducing hypothermia
US6010528A (en) * 1996-08-30 2000-01-04 Augustine Medical, Inc. Support apparatus which cradles a body portion for application of localized cooling to high contact-pressure body surface areas
US5916242A (en) * 1996-11-04 1999-06-29 Schwartz; George R. Apparatus for rapid cooling of the brain and method of performing same
WO1998057139A2 (en) * 1997-06-10 1998-12-17 Auckland Uniservices Limited Brain rescue instrument and method
US5860292A (en) * 1997-08-26 1999-01-19 Augustine Medical, Inc. Inflatable thermal blanket for convectively cooling a body
US5802865A (en) 1997-09-05 1998-09-08 The Sharper Image Evaporative personal cooler
US6458150B1 (en) * 1999-02-19 2002-10-01 Alsius Corporation Method and apparatus for patient temperature control
US6188930B1 (en) * 1998-09-11 2001-02-13 Medivance Incorporated Method and apparatus for providing localized heating of the preoptic anterior hypothalamus
TW514521B (en) * 1998-10-16 2002-12-21 Coolsystems Inc Compliant heat exchange splint and control unit
US6183501B1 (en) * 1998-12-18 2001-02-06 Jeffrey W. Latham Head and spine cooling device
IL131834A0 (en) * 1999-09-09 2001-03-19 M T R E Advanced Technology Lt Method and system for improving cardiac output of a patient
US6402775B1 (en) * 1999-12-14 2002-06-11 Augustine Medical, Inc. High-efficiency cooling pads, mattresses, and sleeves
US6209144B1 (en) * 2000-01-10 2001-04-03 Eddie R. Carter Protective garment
US6389828B1 (en) * 2000-03-15 2002-05-21 Michael R. Thomas Cryogenic cooling chamber apparatus and method
US6354099B1 (en) * 2000-04-11 2002-03-12 Augustine Medical, Inc. Cooling devices with high-efficiency cooling features
EP1278490B1 (en) * 2000-04-20 2007-09-12 The Board Of Trustees Of The Leland Stanford Junior University Method and device for cooling body core
US6409745B1 (en) * 2000-12-14 2002-06-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Field-deployable forced air warming system
US6692518B2 (en) * 2002-02-27 2004-02-17 Medivance Incorporated Patient temperature control system
US7052509B2 (en) * 2002-04-29 2006-05-30 Medcool, Inc. Method and device for rapidly inducing and then maintaining hypothermia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261399A (en) * 1991-05-22 1993-11-16 Klatz Ronald M Brain cooling device and method for performing the same
US5449379A (en) * 1993-07-21 1995-09-12 Alternative Compression Technologies, Inc. Apparatus for applying a desired temperature and pressure to an injured area
US20010051801A1 (en) * 1997-02-27 2001-12-13 Lehmann John W. Cryosurgical catheter
US6044648A (en) * 1997-09-19 2000-04-04 Forma Scientific, Inc. Cooling device having liquid refrigerant injection ring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2462906A1 (en) * 2010-12-13 2012-06-13 Hilotherm Holding AG Tempering device for thermal treatment
CH704202A1 (en) * 2010-12-13 2012-06-15 Hilotherm Holding Ag Temperature control unit for thermal treatments.
JP2011206556A (en) * 2011-06-07 2011-10-20 Kci Licensing Inc Portable cooling system for treatment

Also Published As

Publication number Publication date
WO2004058111A3 (en) 2004-08-26
US20050101911A1 (en) 2005-05-12
AU2003301002A1 (en) 2004-07-22
US7056282B2 (en) 2006-06-06

Similar Documents

Publication Publication Date Title
US7056282B2 (en) Coolant control for rapid induction of mild hypothermia
US7087075B2 (en) Feedback system for rapid induction of mild hypothermia
US7666213B2 (en) Apparatus for altering the body temperature of a patient
US7892271B2 (en) Apparatus for altering the body temperature of a patient
AU2012282278B2 (en) Headwear for removing heat from a person's scalp in order to prevent hair loss
US7547320B2 (en) Apparatus for altering the body temperature of a patient
US7637931B2 (en) Portable therapeutic cooling system
US20110238143A1 (en) System and method for altering and maintaining the body temperature of a patient
US20080082150A1 (en) Apparatus for Altering the Body Temperature of a Patient
US20040064169A1 (en) User interface for medical device
MXPA05000452A (en) Apparatus for altering the body temperature of a patient.
US8182520B2 (en) Apparatus for altering the body temperature of a patient
AU2005334100A1 (en) Portable therapeutic cooling system
JP2001147063A (en) Personal cooling device
CA2661523A1 (en) Apparatus for altering the body temperature of a patient
JPH04361748A (en) Partial cooling device for patient running temperature

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP