WO2004032804A1 - Rate limiting barriers for implantable medical devices - Google Patents

Rate limiting barriers for implantable medical devices Download PDF

Info

Publication number
WO2004032804A1
WO2004032804A1 PCT/US2003/030349 US0330349W WO2004032804A1 WO 2004032804 A1 WO2004032804 A1 WO 2004032804A1 US 0330349 W US0330349 W US 0330349W WO 2004032804 A1 WO2004032804 A1 WO 2004032804A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
layer
rapamycin
polymer
stent
Prior art date
Application number
PCT/US2003/030349
Other languages
French (fr)
Inventor
Syed F.A. Hossainy
Fuh-Wei Tang
Houdin Dehnad
Original Assignee
Advanced Cardiovascular Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Cardiovascular Systems, Inc. filed Critical Advanced Cardiovascular Systems, Inc.
Priority to EP03754901A priority Critical patent/EP1549249A1/en
Priority to AU2003272701A priority patent/AU2003272701A1/en
Priority to JP2004543024A priority patent/JP2006501927A/en
Publication of WO2004032804A1 publication Critical patent/WO2004032804A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Definitions

  • This invention is directed to coatings for implantable medical devices, such as stents.
  • Percutaneous transluminal coronary angioplasty is a procedure for treating heart disease.
  • a catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery.
  • the catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion.
  • the balloon is inflated to a, predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the lumen wall.
  • the balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
  • a problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated.
  • thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation.
  • a stent is implanted in the lumen to maintain the vascular patency.
  • Stents are used not only as a mechanical intervention but also as a vehicle for providing biological therapy.
  • stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway.
  • stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents which have been applied in PTCA procedures include stents illustrated in U.S. Patent No. 4,733,665 issued to Palmaz, U.S. Patent No. 4,800,882 issued to Gianturco, and U.S. Patent No. 4,886,062 issued to Wiktor.
  • Biological therapy can be achieved by medicating the stents.
  • Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
  • One proposed method for medicating stents involves the use of a polymeric carrier coated onto the surface of a stent. A solution which includes a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent.
  • the solvent is allowed to evaporate, leaving on the stent surface a coating of the polymer and the therapeutic substance impregnated in the polymer.
  • a coating of the polymer and the therapeutic substance impregnated in the polymer is needed. More specifically, for the effective treatment of restenosis, it is important to maintain the concentration of the drug at a therapeutically effective level for an acceptable period of time. Hence, controlling a rate of release of the drug from the stent coating is important.
  • coatings for reducing the rate of release a therapeutic substance from implantable devices, such as stents are desired. The coatings should prolong the residence time of the drug in the patient.
  • a coating for an implantable medical device comprises poly(ethylene-co-vinyl alcohol) having a weight- average molecular weight between about 200,000 and about 250,000 Daltons.
  • a coating for an implantable medical device is provided, the coating comprises poly(ethylene-co-vinyl alcohol) having a polydispersity index between about 2.6 and about 3.0.
  • a coating for an implantable medical device comprises a first layer containing a polymer and a therapeutic substance, wherein a ratio between the therapeutic substance and the polymer in the first layer is between about 1 :1 and about 1 :25.
  • a method of coating a stent comprises forming a coating comprising a copolymer of ethylene and vinyl alcohol on the stent, the copolymer having a weight-average molecular weight between about 200,000 and about 250,000 Daltons or a polydispersity index between about 2.6 and about 3.0.
  • a coating for an implantable medical device can include a drug- polymer layer, a topcoat layer, and an optional primer and finishing coat layers.
  • the drug- polymer layer can be applied directly onto the stent and to serve as a reservoir for the sustained release of a therapeutic agent.
  • the topcoat layer serves as a rate limiting membrane which controls the rate of release of the drug.
  • the optional primer layer can be applied between the stent and the drug-polymer layer to improve the adhesion of the coating to the stent.
  • the optional finishing coat layer can be applied over the topcoat layer and can serve as the outermost layer of the coating. The finishing coat layer can be used for improving the biocompatibility of the underlying layer.
  • the process of the release of the drug includes at least three distinctive steps. First, the drug is absorbed by the polymer of the topcoat layer on the drug-polymer layer/topcoat layer interface. Next, the drug diffuses through the topcoat layer using empty spaces between the macromolecules of the topcoat layer polymer as pathways for migration. Finally, the drug arrives to the outer surface of the topcoat layer and desorbs from the outer surface. At this point, the drag is released into the blood stream. If the finishing coat layer is used, the drug can diffuse through the finishing coat layer in a similar fashion. Therefore, the optional finishing coat layer, if used, can also serve as a rate limiting barrier.
  • the topcoat layer has properties designed to provide an enhanced degree of control of the rate of release of the drug.
  • the topcoat layer can be made of a polymer having increased weight-average molecular weight (M w ), or an increased value of the polydispersity index (PDI), or both increased M w and the PDI value.
  • M w weight-average molecular weight
  • PDI polydispersity index
  • the term "increased" means as compared to the M w and/or the PDI value of the polymers currently used to make the topcoat layer.
  • M w molecular weight distribution
  • M n number-average molecular weight
  • a copolymer of ethylene and vinyl alcohol is one example of a polymer used to fabricate the optional primer layer, the drug-polymer layer, the topcoat layer and/or the finishing coat layer.
  • EVAL has the general formula -[CH 2 -CH 2 ] m -[CH 2 -CH(OH)] n -.
  • EVAL is a product of hydrolysis of ethylene- vinyl acetate copolymers and may also be a terpolymer including up to 5 molar % units derived from styrene, propylene and other suitable unsaturated monomers.
  • the topcoat layer can be made of a brand of EVAL having M w of between about 200,000 and about 250,000.
  • the brand of EVAL can have the PDI value of between about 2.6 and 3.0.
  • the brand of EVAL can have both M w of between about 200,000 and about 250,000 and the PDI value of between about 2.6 and 3.0. Theses ranges of M w and/or the PDI are expected to result in decrease of the release rate of the drug through the topcoat layer.
  • a grade of EVAL having M w of between about 160,000 and about 180,000 and the PDI - between about 2.2 and 2.4 can be used to make the optional primer layer and/or the drug-polymer layer.
  • suitable polymers can also be used to form the optional primer layer, the drag- polymer layer, the topcoat layer, and/or the optional finishing coat layer.
  • suitable polymers include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane; poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), co-poly(ether-esters) (e.g.
  • PEO/PLA polyalkylene oxalates, polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefms, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene fluoride and polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), copolymers of vinyl monomers with each other and olefins (such as ethylene-methyl methacrylate copolymers, acryl
  • the release rate can be modulated by adjusting the ratio between the drug and the polymer in the drug-polymer layer of the stent coating.
  • the ratio can be between about 1 :1 and about 1 :25, for example, about 1:1.25.
  • the coating can have a single drug-polymer layer or a plurality of sequentially applied drug-polymer sub-layers, where each drug-polymer sub-layer can have a different ratio between the drug and the polymer within the 1 : 1 to 1 :25 limits.
  • the drags contained in each sub-layer can also be different from the drags contained in any other sub-layer.
  • the decrease of the release rate can be achieved by inducing the process of transformation of the amorphous portions of the polymer of the topcoat layer to a crystalline form.
  • the topcoat can be heat-treated by annealing.
  • the annealing can be performed by using, for example, hot air.
  • the temperature used for heat treatment can be between about 130°C and 150°C, for example, 140°C.
  • the annealing cycles comprising between about 3 and about 7 seconds, for example, about 5 seconds of heating and about 10 to about 20 seconds, for example, about 15 seconds of keeping the heat off, can be used.
  • the heat-treatment can include, for example, 10 annealing cycles.
  • the amorphous portions of the polymer forming the topcoat layer are crystallized and re-aligned leading to tighter packing of the macromolecules.
  • the amount of free space between the macromolecules is reduced and the rate of diffusion of the drag through the topcoat layer is reduced. Consequently, the rate of release of the drug is reduced.
  • the finishing coat layer can include a therapeutically active agent or agents to provide the coating with the additional medical benefits.
  • suitable therapeutically active agents include poly(ethylene glycol) (PEG), heparin and hyaluronic acid.
  • PEG poly(ethylene glycol)
  • heparin heparin
  • hyaluronic acid A brand of heparin known under the trade name DURAFLO can be used.
  • DURAFLO can be obtained from Baxter Healthcare Corporation of Deerfield, Illinois.
  • the coating of the present invention has been described in conjunction with a stent.
  • the coating can also be used with a variety of other medical devices.
  • implantable medical device that can be used in conjunction with the embodiments of this invention include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, coronary shunts and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation).
  • grafts e.g., aortic grafts
  • artificial heart valves e.g., aortic grafts
  • cerebrospinal fluid shunts e.g., aortic grafts
  • pacemaker electrodes e.g., coronary shunts
  • endocardial leads e.g., FINELINE and ENDOTAK, available from Guidant Corporation.
  • the underlying structure of the device can be of virtually any design.
  • the device can be made of a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel- titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof.
  • Devices made from bioabsorbable or biostable polymers can also be used with the embodiments of the present invention.
  • MP35N and MP20N are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co. of Jenkintown, Pennsylvania.
  • MP35N consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum.
  • MP20N consists of 50%) cobalt, 20% nickel, 20% chromium, and 10%> molybdenum.
  • the polymer can be applied to the stent by dissolving the polymer in a solvent and applying the resulting composition on the stent or immersing the stent in the composition.
  • suitable solvents include N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), tethrahydrofurane (THF), dimethylsulphoxide (DMSO), or blends of these solvents with each other or with other solvents, for example, a blend of DMAC with ethanol.
  • the drug can include any substance capable of exerting a therapeutic or prophylactic effect for a patient.
  • the drug may include small molecule drugs, peptides, proteins, oligonucleotides, and the like.
  • the drug could be designed, for example, to inhibit the activity of vascular smooth muscle cells. It can be directed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells to inhibit restenosis.
  • drugs examples include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma- Aldrich of Milwaukee, Wisconsin, or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I ⁇ , actinomycin Xi, and actinomycin C ⁇ .
  • the active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g.
  • TAXOL ® by Bristol-Myers Squibb Co., Stamford, Conn.
  • docetaxel e.g. Taxotere ® , from Aventis S.A., Franlcfurt, Germany
  • methotrexate azathioprine
  • vincristine vincristine
  • vinblastine a cell wall
  • fluorouracil a cell wall
  • doxorubicin hydrochloride e.g. Adriamycin ® from Pharmacia & Upjohn, Peapack N. J.
  • mitomycin e.g. Mutamycin ® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiplatelets examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist
  • cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inl ibitors such as captopril (e.g. Capoten and Capozide ® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g.
  • calcium channel blockers such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3 -fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drag, brand name Mevacor ® from Merck & Co., Inc., Whitehouse Station, NJ), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide.
  • PDGF Platelet-Derived Growth Factor
  • an antiallergic agent is permirolast potassium.
  • Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, tacrolimus, dexamethasone, and rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of EVEROLIMUS available from Novartis), 40-O-(3- hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-ra ⁇ amycin, and 40-O-tetrazole- rapamycin.
  • Example 1 Some embodiments of the present invention are illustrated by the following Examples.
  • Example 1 Some embodiments of the present invention are illustrated by the following Examples.
  • a first composition can be prepared by mixing the following components:
  • composition can be applied onto stent a bare 13 mm TETRA stent (available from
  • the fan nozzle can be maintained at about 60°C with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.35 atm (about 20 psi).
  • the total amount of solids of the drag- polymer layer can be about 80 micrograms, including about 4 ⁇ g of EVEROLIMUS and about 76 ⁇ g of EVAL.
  • Solids means the amount of the dry residue deposited on the stent after all volatile organic compounds (e.g., the solvent) have been removed.
  • a primer e.g., the above formulation without the therapeutically active compound
  • a second composition comprising about 2.0 mass % of EVAL and the balance of DMAC can be prepared and applied onto the dried drag-polymer layer by spraying and dried, to form the topcoat layer.
  • the topcoat layer can have a total solids weight of about 475 ⁇ g.
  • a grade of EVAL having M w of about 206,000 (to be determined by the method of light scattering) and the PDI of about 2.8 can be used for making the topcoat layer.
  • a stent can be coated as described in Example 1.
  • the coating formed on the stent can be then heat-treated by annealing.
  • the annealing can be performed in cycles. Each annealing cycle includes treatment of the stent by directing to the topcoat a stream of hot air having a temperature of about 140°C for about 5 seconds followed by turning off the heat for about 15 seconds. A total often such annealing cycles can be performed.
  • a stent can be coated and annealed as described in Example 2.
  • a composition can then be coated and annealed as described in Example 2.
  • composition including:
  • a first composition was prepared by mixing the following components: (a) about 4.0 mass % of EVAL; and
  • the first composition was applied onto the surface of a bare 13 mm TETRA stent to form a primer layer.
  • the primer layer was baited at about 140°C for about one hour, yielding a primer layer with an average total amount of solids of about 160 ⁇ g.
  • a second composition was prepared by mixing the following components:
  • the drug-to-polymer (EVEROLIMUS :EVAL) ratio (mass) was about 1:1.25.
  • the second composition was applied onto the dried primer layer to form a first drug-polymer sublayer, followed by drying at about 50°C for about 2 hours.
  • the total amount of solids of the first drug-polymer sub-layer was about 331 ⁇ g.
  • a third composition was prepared by mixing the following components:
  • the stents were coated according to the process described in Example 4, where the weights of the two drug-polymer sub-layers and the drug-to-polymer ratios in the drag- polymer sub-layers varied as summarized in Table 1.

Abstract

A coating for a medical device, particularly for a drug eluting stent, is described. The coating comprises a polymer having a weight-average molecular weight between about 200,000 and about 250,000 Daltons or a polydispersity index between about 2.6 and about 3.0.

Description

RATE LIMITING BARRIERS FOR IMPLANTABLE MEDICAL DEVICES
BACKGROUND OF THE INVENTION
Field of the Invention This invention is directed to coatings for implantable medical devices, such as stents.
Description of the State of the Art
Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a, predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the lumen wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature. A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated.
Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation.
To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, a stent is implanted in the lumen to maintain the vascular patency.
Stents are used not only as a mechanical intervention but also as a vehicle for providing biological therapy. As a mechanical intervention, stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically, stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents which have been applied in PTCA procedures include stents illustrated in U.S. Patent No. 4,733,665 issued to Palmaz, U.S. Patent No. 4,800,882 issued to Gianturco, and U.S. Patent No. 4,886,062 issued to Wiktor. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results. One proposed method for medicating stents involves the use of a polymeric carrier coated onto the surface of a stent. A solution which includes a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent. The solvent is allowed to evaporate, leaving on the stent surface a coating of the polymer and the therapeutic substance impregnated in the polymer. To the extent that the mechanical functionality of stents has been optimized in recent years, continued improvements in the local delivery of drugs by a stent is needed. More specifically, for the effective treatment of restenosis, it is important to maintain the concentration of the drug at a therapeutically effective level for an acceptable period of time. Hence, controlling a rate of release of the drug from the stent coating is important. In view of the foregoing, coatings for reducing the rate of release a therapeutic substance from implantable devices, such as stents, are desired. The coatings should prolong the residence time of the drug in the patient. SUMMARY
According to one embodiment of this invention, a coating for an implantable medical device is provided, the coating comprises poly(ethylene-co-vinyl alcohol) having a weight- average molecular weight between about 200,000 and about 250,000 Daltons. According to another embodiment of this invention, a coating for an implantable medical device is provided, the coating comprises poly(ethylene-co-vinyl alcohol) having a polydispersity index between about 2.6 and about 3.0.
According to yet another embodiment of the invention, a coating for an implantable medical device is provided, the coating comprises a first layer containing a polymer and a therapeutic substance, wherein a ratio between the therapeutic substance and the polymer in the first layer is between about 1 :1 and about 1 :25.
According to yet another embodiment of the invention, a method of coating a stent is provided, the method comprises forming a coating comprising a copolymer of ethylene and vinyl alcohol on the stent, the copolymer having a weight-average molecular weight between about 200,000 and about 250,000 Daltons or a polydispersity index between about 2.6 and about 3.0.
DETAILED DESCRIPTION
A coating for an implantable medical device, such as a stent, can include a drug- polymer layer, a topcoat layer, and an optional primer and finishing coat layers. The drug- polymer layer can be applied directly onto the stent and to serve as a reservoir for the sustained release of a therapeutic agent. The topcoat layer serves as a rate limiting membrane which controls the rate of release of the drug. The optional primer layer can be applied between the stent and the drug-polymer layer to improve the adhesion of the coating to the stent. The optional finishing coat layer can be applied over the topcoat layer and can serve as the outermost layer of the coating. The finishing coat layer can be used for improving the biocompatibility of the underlying layer.
The process of the release of the drug includes at least three distinctive steps. First, the drug is absorbed by the polymer of the topcoat layer on the drug-polymer layer/topcoat layer interface. Next, the drug diffuses through the topcoat layer using empty spaces between the macromolecules of the topcoat layer polymer as pathways for migration. Finally, the drug arrives to the outer surface of the topcoat layer and desorbs from the outer surface. At this point, the drag is released into the blood stream. If the finishing coat layer is used, the drug can diffuse through the finishing coat layer in a similar fashion. Therefore, the optional finishing coat layer, if used, can also serve as a rate limiting barrier.
According to one embodiment of the present invention, the topcoat layer has properties designed to provide an enhanced degree of control of the rate of release of the drug. The topcoat layer can be made of a polymer having increased weight-average molecular weight (Mw), or an increased value of the polydispersity index (PDI), or both increased Mw and the PDI value. For the purposes of the present invention, the term "increased" means as compared to the Mw and/or the PDI value of the polymers currently used to make the topcoat layer.
All synthetic and many natural polymers have a distribution of molecular weights. The PDI, also known as the molecular weight distribution (MWD), is a ratio between Mw and the number-average molecular weight (Mn). Mw/Mn ratio has been classically used to define the breadth of the distribution of the molecular weight. Mn depends on a counting procedure and is commonly measured by osmometry yields, while Mw measures the weight. Light-scattering techniques are typically used to determine Mw.
A copolymer of ethylene and vinyl alcohol (EVAL) is one example of a polymer used to fabricate the optional primer layer, the drug-polymer layer, the topcoat layer and/or the finishing coat layer. EVAL has the general formula -[CH2-CH2]m-[CH2-CH(OH)]n-. EVAL is a product of hydrolysis of ethylene- vinyl acetate copolymers and may also be a terpolymer including up to 5 molar % units derived from styrene, propylene and other suitable unsaturated monomers. A brand of copolymer of ethylene and vinyl alcohol distributed commercially under the trade name EVAL by Aldrich Chemical Co. of Milwaukee, Wisconsin, and manufactured by EVAL Company of America of Lisle, Illinois, can be used.
In one embodiment, the topcoat layer can be made of a brand of EVAL having Mw of between about 200,000 and about 250,000. In another embodiment, the brand of EVAL can have the PDI value of between about 2.6 and 3.0. In yet another embodiment, the brand of EVAL can have both Mw of between about 200,000 and about 250,000 and the PDI value of between about 2.6 and 3.0. Theses ranges of Mw and/or the PDI are expected to result in decrease of the release rate of the drug through the topcoat layer. A grade of EVAL having Mw of between about 160,000 and about 180,000 and the PDI - between about 2.2 and 2.4 can be used to make the optional primer layer and/or the drug-polymer layer.
Other suitable polymers can also be used to form the optional primer layer, the drag- polymer layer, the topcoat layer, and/or the optional finishing coat layer. For any selected polymer, those having ordinary skill in the art will choose most appropriate Mw and the PDI. Representative examples of suitable polymers include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane; poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefms, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene fluoride and polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), copolymers of vinyl monomers with each other and olefins (such as ethylene-methyl methacrylate copolymers, acrylonitrile- styrene copolymers, ABS resins, and ethylene- vinyl acetate copolymers), polyamides (such as Nylon 66 and polycaprolactam), alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.
According to another embodiment of the present invention, the release rate can be modulated by adjusting the ratio between the drug and the polymer in the drug-polymer layer of the stent coating. In accordance with the present invention, the ratio can be between about 1 :1 and about 1 :25, for example, about 1:1.25. The coating can have a single drug-polymer layer or a plurality of sequentially applied drug-polymer sub-layers, where each drug-polymer sub-layer can have a different ratio between the drug and the polymer within the 1 : 1 to 1 :25 limits. The drags contained in each sub-layer can also be different from the drags contained in any other sub-layer.
According to yet another embodiment of the present invention, the decrease of the release rate can be achieved by inducing the process of transformation of the amorphous portions of the polymer of the topcoat layer to a crystalline form. To cause crystallization of the amorphous fragments of the topcoat polymer, the topcoat can be heat-treated by annealing. The annealing can be performed by using, for example, hot air. The temperature used for heat treatment can be between about 130°C and 150°C, for example, 140°C. The annealing cycles comprising between about 3 and about 7 seconds, for example, about 5 seconds of heating and about 10 to about 20 seconds, for example, about 15 seconds of keeping the heat off, can be used. The heat-treatment can include, for example, 10 annealing cycles.
As a result of the heat-treatment, the amorphous portions of the polymer forming the topcoat layer are crystallized and re-aligned leading to tighter packing of the macromolecules. The amount of free space between the macromolecules is reduced and the rate of diffusion of the drag through the topcoat layer is reduced. Consequently, the rate of release of the drug is reduced.
According to another embodiment of the present invention, the finishing coat layer, if used, can include a therapeutically active agent or agents to provide the coating with the additional medical benefits. Examples of suitable therapeutically active agents that can be incorporated in the finishing coat layer include poly(ethylene glycol) (PEG), heparin and hyaluronic acid. A brand of heparin known under the trade name DURAFLO can be used. DURAFLO can be obtained from Baxter Healthcare Corporation of Deerfield, Illinois.
The coating of the present invention has been described in conjunction with a stent.
However, the coating can also be used with a variety of other medical devices. Examples of the implantable medical device, that can be used in conjunction with the embodiments of this invention include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, coronary shunts and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), "MP35N," "MP20N," ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel- titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof. Devices made from bioabsorbable or biostable polymers can also be used with the embodiments of the present invention.
"MP35N" and "MP20N" are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co. of Jenkintown, Pennsylvania. "MP35N" consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. "MP20N" consists of 50%) cobalt, 20% nickel, 20% chromium, and 10%> molybdenum.
The polymer can be applied to the stent by dissolving the polymer in a solvent and applying the resulting composition on the stent or immersing the stent in the composition. Representative examples of some suitable solvents include N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), tethrahydrofurane (THF), dimethylsulphoxide (DMSO), or blends of these solvents with each other or with other solvents, for example, a blend of DMAC with ethanol.
The drug can include any substance capable of exerting a therapeutic or prophylactic effect for a patient. The drug may include small molecule drugs, peptides, proteins, oligonucleotides, and the like. The drug could be designed, for example, to inhibit the activity of vascular smooth muscle cells. It can be directed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells to inhibit restenosis.
Examples of drugs include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma- Aldrich of Milwaukee, Wisconsin, or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin Iι, actinomycin Xi, and actinomycin Cι. The active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S.A., Franlcfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N. J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist
antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ™ (Biogen, Inc.,
Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inl ibitors such as captopril (e.g. Capoten and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, NJ); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3 -fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drag, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, NJ), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, tacrolimus, dexamethasone, and rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of EVEROLIMUS available from Novartis), 40-O-(3- hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-raρamycin, and 40-O-tetrazole- rapamycin.
EXAMPLES
Some embodiments of the present invention are illustrated by the following Examples. Example 1
A first composition can be prepared by mixing the following components:
(a) about 3.8 mass % of EVAL;
(b) about 0.2 mass % of EVEROLIMUS; and
(c) the balance, DMAC solvent.
The composition can be applied onto stent a bare 13 mm TETRA stent (available from
Guidant Corp.) by spraying and dried to form a drug-polymer layer. A spray coater having an EFD 7803 spray valve with 0.014 inch fan nozzle with a VALVEMATE 7040 control system, manufactured by EFD, Inc. of East Providence, Rhode Island, can be used. The fan nozzle can be maintained at about 60°C with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.35 atm (about 20 psi). The total amount of solids of the drag- polymer layer can be about 80 micrograms, including about 4 μg of EVEROLIMUS and about 76 μg of EVAL. "Solids" means the amount of the dry residue deposited on the stent after all volatile organic compounds (e.g., the solvent) have been removed. A primer (e.g., the above formulation without the therapeutically active compound) can be optionally applied on the surface of the bare stent.
A second composition comprising about 2.0 mass % of EVAL and the balance of DMAC can be prepared and applied onto the dried drag-polymer layer by spraying and dried, to form the topcoat layer. The topcoat layer can have a total solids weight of about 475 μg. A grade of EVAL having Mw of about 206,000 (to be determined by the method of light scattering) and the PDI of about 2.8 can be used for making the topcoat layer.
Example 2
A stent can be coated as described in Example 1. The coating formed on the stent can be then heat-treated by annealing. The annealing can be performed in cycles. Each annealing cycle includes treatment of the stent by directing to the topcoat a stream of hot air having a temperature of about 140°C for about 5 seconds followed by turning off the heat for about 15 seconds. A total often such annealing cycles can be performed.
Example 3
A stent can be coated and annealed as described in Example 2. A composition can then
be prepared, the composition including:
(a) between about 0.1 mass %> and about 2.0 mass %, for example, about 1.75 mass % of EVAL ;
(b) between about 0.1 mass % and about 2.0 mass %, for example, about 0.25 mass % of PEG;
(c) between about 0.1 mass % and about 2.0 mass %>, for example, about 0.5 mass % of heparin, for example, DURAFLO; and
(d) the balance, a solvent blend comprising about 80 mass % of DMAC and about 20 mass %> of ethanol. The composition can be applied onto the annealed topcoat layer to form a finishing coat layer.
Example 4
A first composition was prepared by mixing the following components: (a) about 4.0 mass % of EVAL; and
(b) the balance, a mixture of solvents, DMAC and ethanol, in a ratio of DMAC to ethanol of about 80:20 by mass.
The first composition was applied onto the surface of a bare 13 mm TETRA stent to form a primer layer. The primer layer was baited at about 140°C for about one hour, yielding a primer layer with an average total amount of solids of about 160 μg.
A second composition was prepared by mixing the following components:
(c) about 4.0 mass % of EVAL;
(d) about 3.2 mass % of EVEROLIMUS; and
(e) the balance, a mixture of solvents, DMAC and ethanol, in a ratio of DMAC to ethanol of about 80:20 by mass.
The drug-to-polymer (EVEROLIMUS :EVAL) ratio (mass) was about 1:1.25. The second composition was applied onto the dried primer layer to form a first drug-polymer sublayer, followed by drying at about 50°C for about 2 hours. The total amount of solids of the first drug-polymer sub-layer was about 331 μg.
A third composition was prepared by mixing the following components:
(f) about 4.0 mass % of EVAL;
(g) about 1.33 mass % of EVEROLIMUS; and
(h) the balance, a mixture of solvents, DMAC and ethanol, in a ratio of DMAC to ethanol of about 80:20 by mass. The drag-to-polymer (EVEROLIMUS :EVAL) ratio (mass) was about 1:3. The third composition was applied onto the dried first drug-polymer sub-layer to form a second drug- polymer sub-layer, followed by drying at about 50°C for about 2 hours. The total amount of solids of the second drug-polymer sub-layer was about 50 μg. The combination of the first and the second drug-polymer layers comprised an overall drug-polymer layer in* which the drug-to-polymer ratio was about 1 : 1.4. Overall stent coating (i.e., the primer layer plus the two drag-polymer sub-layers) had the total amount of solids of about 543 μg and the drug-to-polymer ratio in the overall coating was about 1 :2.4.
Examples 5-13
The stents were coated according to the process described in Example 4, where the weights of the two drug-polymer sub-layers and the drug-to-polymer ratios in the drag- polymer sub-layers varied as summarized in Table 1.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Table 1. The Compositions of Examples 5-13
Figure imgf000015_0001
*^No EVEROLIMUS was used in sub-layer 2 in Examples 8 and 9; the second sub-layer served as a topcoat.

Claims

CLAIMSWHAT IS CLAIMED IS:
1. A coating for an implantable medical device, the coating comprising poly(ethylene-co- vinyl alcohol) having a weight-average molecular weight between about 200,000 and about 250,000 Daltons.
2. The coating of Claim 1, wherein the implantable medical device is a stent.
3. The coating of Claim 1 , additionally comprising a therapeutic substance.
4. The coating of Claim 3, wherein the therapeutic substance is selected from a group consisting of rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl- rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
5. The coating of Claim 1 , wherein poly(ethylene-co-vinyl alcohol) further has a polydispersity index between about 2.6 and about 3.0.
6. The coating of Claim 1, wherein the coating comprises a first layer and a second layer disposed over the first layer, wherein the first layer is made from a polymer and a therapeutic substance and the second layer is made from the poly(ethylene-co-vinyl alcohol) having a weight-average molecular weight between about 200,000 and about 250,000 Daltons.
7. The coating of Claim 6, wherein a ratio between the therapeutic substance and the polymer in the first layer is between about 1 : 1 and about 1 :25.
8. A coating for an implantable medical device, the coating comprising poly(ethylene-co- vinyl alcohol) having a polydispersity index between about 2.6 and about 3.0.
9. The coating of Claim 8, wherein the implantable medical device is a stent.
10. The coating of Claim 8, additionally comprising a therapeutic substance.
11. The coating of Claim 10, wherein the therapeutic substance is selected from a group consisting of rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl- rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
is
12. The coating of Claim 8, wherein the coating comprises a first layer and a second layer disposed over the first layer, wherein the first layer is made from a polymer and a therapeutic substance and the second layer is made from the poly(ethylene-co-vinyl alcohol) having a polydispersity index between about 2.6 and about 3.0.
13. The coating of Claim 12, wherein a ratio between the therapeutic substance and the polymer in the first layer is between about 1 : 1 and about 1 :25.
14. A coating for an implantable medical device, the coating comprising a first layer containing a polymer and a therapeutic substance, wherein a ratio between the therapeutic substance and the polymer in the first layer is between about 1 : 1 and about 1 :25.
15. The coating of Claim 14, wherein the implantable medical device is a stent.
16. The coating of Claim 14, wherein the therapeutic substance is selected from a group consisting of rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl- rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
17. The coating of Claim 14, additionally comprising a second layer disposed over the first layer, the second layer comprising poly(ethylene-co-vinyl alcohol) having a weight-average molecular weight between about 200,000 and about 250,000 Daltons or a polydispersity index between about 2.6 and about 3.0.
18. A method of coating a stent comprising forming a coating comprising a copolymer of ethylene and vinyl alcohol on the stent, the copolymer having a weight-average molecular weight between about 200,000 and about 250,000 Daltons or a polydispersity index between about 2.6 and about 3.0.
19. The method of Claim 18, wherein the coating further comprises a first layer containing a polymer and a therapeutic substance incorporated therein.
20. The method of Claim 19, wherein the therapeutic substance is selected from a group consisting of rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl- rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
PCT/US2003/030349 2002-10-09 2003-09-24 Rate limiting barriers for implantable medical devices WO2004032804A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03754901A EP1549249A1 (en) 2002-10-09 2003-09-24 Rate limiting barriers for implantable medical devices
AU2003272701A AU2003272701A1 (en) 2002-10-09 2003-09-24 Rate limiting barriers for implantable medical devices
JP2004543024A JP2006501927A (en) 2002-10-09 2003-09-24 Speed limiting barrier for implantable medical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/269,004 US7087263B2 (en) 2002-10-09 2002-10-09 Rare limiting barriers for implantable medical devices
US10/269,004 2002-10-09

Publications (1)

Publication Number Publication Date
WO2004032804A1 true WO2004032804A1 (en) 2004-04-22

Family

ID=32068689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/030349 WO2004032804A1 (en) 2002-10-09 2003-09-24 Rate limiting barriers for implantable medical devices

Country Status (5)

Country Link
US (1) US7087263B2 (en)
EP (1) EP1549249A1 (en)
JP (1) JP2006501927A (en)
AU (1) AU2003272701A1 (en)
WO (1) WO2004032804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102908171A (en) * 2011-08-02 2013-02-06 倍捷医疗科技江苏有限公司 Human body lumen therapeutic device
RU2775427C1 (en) * 2021-02-26 2022-06-30 Общество с ограниченной ответственностью "Ангиолайн Ресерч" Drug-eluting stent and method for production thereof

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
CA2723081C (en) 2002-02-18 2013-07-16 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer resin compositions and process for production thereof
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7074276B1 (en) 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US20060002968A1 (en) 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US6957152B1 (en) 2002-12-30 2005-10-18 Advanced Cardiovascular Systems, Inc. System and computer-based method for tracking an implantable medical device characteristic during a coating process
US20090093875A1 (en) 2007-05-01 2009-04-09 Abbott Laboratories Drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US20100030183A1 (en) * 2004-03-19 2010-02-04 Toner John L Method of treating vascular disease at a bifurcated vessel using a coated balloon
US8431145B2 (en) 2004-03-19 2013-04-30 Abbott Laboratories Multiple drug delivery from a balloon and a prosthesis
US20070027523A1 (en) * 2004-03-19 2007-02-01 Toner John L Method of treating vascular disease at a bifurcated vessel using coated balloon
US20050208093A1 (en) * 2004-03-22 2005-09-22 Thierry Glauser Phosphoryl choline coating compositions
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US20060062825A1 (en) * 2004-04-19 2006-03-23 Maria Maccecchini Method of implanting a sterile, active agent-coated material and composition made according to same
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US20060246109A1 (en) * 2005-04-29 2006-11-02 Hossainy Syed F Concentration gradient profiles for control of agent release rates from polymer matrices
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US8696564B2 (en) * 2004-07-09 2014-04-15 Cardiac Pacemakers, Inc. Implantable sensor with biocompatible coating for controlling or inhibiting tissue growth
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7244443B2 (en) 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US7604818B2 (en) 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7419504B2 (en) 2004-12-27 2008-09-02 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7202325B2 (en) * 2005-01-14 2007-04-10 Advanced Cardiovascular Systems, Inc. Poly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US20070237803A1 (en) * 2006-04-11 2007-10-11 Medtronic Vascular, Inc. Biodegradable Biocompatible Amphiphilic Copolymers for Coating and Manufacturing Medical Devices
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
WO2007132801A1 (en) * 2006-05-15 2007-11-22 Kaneka Corporation Stent
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8246973B2 (en) 2006-06-21 2012-08-21 Advanced Cardiovascular Systems, Inc. Freeze-thaw method for modifying stent coating
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US8952123B1 (en) 2006-08-02 2015-02-10 Abbott Cardiovascular Systems Inc. Dioxanone-based copolymers for implantable devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8293318B1 (en) 2006-08-29 2012-10-23 Abbott Cardiovascular Systems Inc. Methods for modulating the release rate of a drug-coated stent
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US20080175882A1 (en) * 2007-01-23 2008-07-24 Trollsas Mikael O Polymers of aliphatic thioester
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US10155881B2 (en) * 2007-05-30 2018-12-18 Abbott Cardiovascular Systems Inc. Substituted polycaprolactone for coating
US9737638B2 (en) * 2007-06-20 2017-08-22 Abbott Cardiovascular Systems, Inc. Polyester amide copolymers having free carboxylic acid pendant groups
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US7927621B2 (en) * 2007-06-25 2011-04-19 Abbott Cardiovascular Systems Inc. Thioester-ester-amide copolymers
US20090004243A1 (en) 2007-06-29 2009-01-01 Pacetti Stephen D Biodegradable triblock copolymers for implantable devices
US9814553B1 (en) 2007-10-10 2017-11-14 Abbott Cardiovascular Systems Inc. Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating
US20090104241A1 (en) * 2007-10-23 2009-04-23 Pacetti Stephen D Random amorphous terpolymer containing lactide and glycolide
US20090306120A1 (en) * 2007-10-23 2009-12-10 Florencia Lim Terpolymers containing lactide and glycolide
US20090110713A1 (en) * 2007-10-31 2009-04-30 Florencia Lim Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices
US8642062B2 (en) 2007-10-31 2014-02-04 Abbott Cardiovascular Systems Inc. Implantable device having a slow dissolving polymer
US8128983B2 (en) * 2008-04-11 2012-03-06 Abbott Cardiovascular Systems Inc. Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network
US20090297584A1 (en) * 2008-04-18 2009-12-03 Florencia Lim Biosoluble coating with linear over time mass loss
US8916188B2 (en) * 2008-04-18 2014-12-23 Abbott Cardiovascular Systems Inc. Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block
US20090285873A1 (en) * 2008-04-18 2009-11-19 Abbott Cardiovascular Systems Inc. Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide)
US8697113B2 (en) * 2008-05-21 2014-04-15 Abbott Cardiovascular Systems Inc. Coating comprising a terpolymer comprising caprolactone and glycolide
US8562669B2 (en) * 2008-06-26 2013-10-22 Abbott Cardiovascular Systems Inc. Methods of application of coatings composed of hydrophobic, high glass transition polymers with tunable drug release rates
US8076529B2 (en) 2008-09-26 2011-12-13 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix for intraluminal drug delivery
US8226603B2 (en) 2008-09-25 2012-07-24 Abbott Cardiovascular Systems Inc. Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery
US8500687B2 (en) 2008-09-25 2013-08-06 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
US8049061B2 (en) 2008-09-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery
US8092822B2 (en) * 2008-09-29 2012-01-10 Abbott Cardiovascular Systems Inc. Coatings including dexamethasone derivatives and analogs and olimus drugs
US8183337B1 (en) 2009-04-29 2012-05-22 Abbott Cardiovascular Systems Inc. Method of purifying ethylene vinyl alcohol copolymers for use with implantable medical devices
US8697110B2 (en) * 2009-05-14 2014-04-15 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks
US20110144577A1 (en) * 2009-12-11 2011-06-16 John Stankus Hydrophilic coatings with tunable composition for drug coated balloon
US8480620B2 (en) * 2009-12-11 2013-07-09 Abbott Cardiovascular Systems Inc. Coatings with tunable solubility profile for drug-coated balloon
US8951595B2 (en) * 2009-12-11 2015-02-10 Abbott Cardiovascular Systems Inc. Coatings with tunable molecular architecture for drug-coated balloon
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
CN108064175A (en) 2014-08-04 2018-05-22 米拉根医疗股份有限公司 Inhibitor of MYH7B and application thereof
BR112017004648A2 (en) 2014-09-08 2018-05-08 Miragen Therapeutics Inc mir-29 simulators and the uses of this

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734721A2 (en) * 1995-03-30 1996-10-02 Advanced Cardiovascular Systems, Inc. Method of incorporating drugs into a polymer component of stents
WO2001053414A1 (en) * 1998-11-10 2001-07-26 C.R. Bard, Inc. Silane copolymer compositions containing active agents
US20020123788A1 (en) * 2000-12-28 2002-09-05 Deborra Sanders Millare Sheath for a prosthesis and methods of forming the same

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR732895A (en) * 1932-10-18 1932-09-25 Consortium Elektrochem Ind Articles spun in polyvinyl alcohol
US4329383A (en) * 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
JPH0696023B2 (en) * 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
JP2561309B2 (en) 1988-03-28 1996-12-04 テルモ株式会社 Medical material and manufacturing method thereof
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
US5300295A (en) * 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5292516A (en) * 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) * 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5306501A (en) * 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
WO1991017724A1 (en) * 1990-05-17 1991-11-28 Harbor Medical Devices, Inc. Medical device polymer
US6060451A (en) * 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
ATE123658T1 (en) * 1990-06-15 1995-06-15 Cortrak Medical Inc DEVICE FOR DISPENSING MEDICATIONS.
US5112457A (en) * 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) * 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5462990A (en) * 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
US5330768A (en) * 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5573934A (en) * 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5417981A (en) * 1992-04-28 1995-05-23 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
KR960700309A (en) * 1993-01-08 1996-01-19 엠, 안드레아 라이안 BIODEGRADABLE THERMOPLASTIC POLYMER BLEND COMPOSITIONS WITH ACCELERATED BIODEGRADATION
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5886026A (en) * 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
WO1995010989A1 (en) * 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US6051576A (en) * 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US5567410A (en) * 1994-06-24 1996-10-22 The General Hospital Corporation Composotions and methods for radiographic imaging
US5670558A (en) * 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5788979A (en) * 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5649977A (en) * 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5569198A (en) * 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US6017577A (en) * 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5919570A (en) * 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US6231600B1 (en) * 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US6120536A (en) * 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6099562A (en) * 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
KR19990007861A (en) * 1995-04-19 1999-01-25 가타오카가즈노리 Heterotereric block copolymer and preparation method thereof
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US20020091433A1 (en) * 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
CA2178541C (en) * 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5820917A (en) * 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US5667767A (en) * 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5658995A (en) * 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
WO1997022371A1 (en) * 1995-12-18 1997-06-26 Collagen Corporation Crosslinked polymer compositions and methods for their use
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5955509A (en) * 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US6060518A (en) * 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6240616B1 (en) * 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US6056993A (en) * 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6110483A (en) * 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US6121027A (en) * 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6110188A (en) * 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
KR100314496B1 (en) * 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
WO2000010622A1 (en) 1998-08-20 2000-03-02 Cook Incorporated Coated implantable medical device
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6419692B1 (en) * 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6283947B1 (en) * 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6287628B1 (en) * 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6379381B1 (en) * 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6759054B2 (en) * 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US6790228B2 (en) * 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6251136B1 (en) * 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6283949B1 (en) * 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
US6818247B1 (en) * 2000-03-31 2004-11-16 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol-dimethyl acetamide composition and a method of coating a stent
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6395326B1 (en) * 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6585765B1 (en) * 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20020077693A1 (en) * 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6555157B1 (en) * 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6451373B1 (en) * 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6585926B1 (en) * 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
AU1129902A (en) * 2000-09-29 2002-04-08 Cordis Corp Coated medical devices
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6558733B1 (en) * 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6544543B1 (en) * 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6544582B1 (en) * 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6544223B1 (en) * 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6605154B1 (en) * 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US6572644B1 (en) * 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6565659B1 (en) * 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6641611B2 (en) * 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US20030065377A1 (en) * 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734721A2 (en) * 1995-03-30 1996-10-02 Advanced Cardiovascular Systems, Inc. Method of incorporating drugs into a polymer component of stents
WO2001053414A1 (en) * 1998-11-10 2001-07-26 C.R. Bard, Inc. Silane copolymer compositions containing active agents
US20020123788A1 (en) * 2000-12-28 2002-09-05 Deborra Sanders Millare Sheath for a prosthesis and methods of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102908171A (en) * 2011-08-02 2013-02-06 倍捷医疗科技江苏有限公司 Human body lumen therapeutic device
RU2775427C1 (en) * 2021-02-26 2022-06-30 Общество с ограниченной ответственностью "Ангиолайн Ресерч" Drug-eluting stent and method for production thereof

Also Published As

Publication number Publication date
US20040072922A1 (en) 2004-04-15
US7087263B2 (en) 2006-08-08
AU2003272701A1 (en) 2004-05-04
JP2006501927A (en) 2006-01-19
EP1549249A1 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US7087263B2 (en) Rare limiting barriers for implantable medical devices
US8003123B2 (en) Biologically absorbable coatings for implantable devices and methods for fabricating the same
US8551446B2 (en) Poly(vinyl acetal) coatings for implantable medical devices
EP1793877B1 (en) Medicated coatings for implantable medical devices including polyacrylates
US7247364B2 (en) Coating for implantable medical devices
US8192752B2 (en) Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US6709514B1 (en) Rotary coating apparatus for coating implantable medical devices
EP1517716B1 (en) Polyacrylates coatings for implantable medical devices
US7396539B1 (en) Stent coatings with engineered drug release rate
US7387810B2 (en) Method of forming rate limiting barriers for implantable devices
US7063884B2 (en) Stent coating
US8202530B2 (en) Biocompatible coatings for stents
US7604831B2 (en) Stent spin coating method
US8337937B2 (en) Stent spin coating method
US7875285B1 (en) Medicated coatings for implantable medical devices having controlled rate of release

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004543024

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003754901

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003754901

Country of ref document: EP