WO2003082366A1 - Tissue engineering scaffold material, aritficial vessel, cuff member and coating for implants - Google Patents

Tissue engineering scaffold material, aritficial vessel, cuff member and coating for implants Download PDF

Info

Publication number
WO2003082366A1
WO2003082366A1 PCT/JP2003/003594 JP0303594W WO03082366A1 WO 2003082366 A1 WO2003082366 A1 WO 2003082366A1 JP 0303594 W JP0303594 W JP 0303594W WO 03082366 A1 WO03082366 A1 WO 03082366A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
porous
dimensional network
network structure
growth factor
Prior art date
Application number
PCT/JP2003/003594
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhide Nakayama
Eisuke Tatsumi
Yasushi Nemoto
Original Assignee
Japan As Represented By President Of National Cardiovascular Center
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002091793A external-priority patent/JP2003284767A/en
Priority claimed from JP2002259849A external-priority patent/JP2004097268A/en
Priority claimed from JP2002259848A external-priority patent/JP2004097267A/en
Application filed by Japan As Represented By President Of National Cardiovascular Center, Bridgestone Corporation filed Critical Japan As Represented By President Of National Cardiovascular Center
Priority to AU2003221090A priority Critical patent/AU2003221090C1/en
Priority to DE10392444T priority patent/DE10392444T5/en
Priority to CA2484012A priority patent/CA2484012C/en
Publication of WO2003082366A1 publication Critical patent/WO2003082366A1/en
Priority to US10/950,620 priority patent/US20050107868A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges

Definitions

  • Tissue engineering scaffold material artificial blood vessel, cuff member, and bioimplant member coating material
  • the present invention relates to a tissue engineering scan holder material, an artificial blood vessel, a cuff member, and a living body implanting member covering material.
  • the present invention firstly relates to a porous tissue engineering scaffold capable of easily engrafting and culturing cells and stably organizing cells, and an artificial blood vessel using this scaffold.
  • the scaffold material for tissue engineering and the artificial blood vessel of the present invention can be used not only in basic research in biotechnology, but also as a medical material used as an artificial skeleton base material in replacement medicine using artificial organs and regenerative medicine using tissue engineering. It is particularly useful for artificial blood vessels having a good patency rate even with a small diameter of 6 mm or less, utilizing the property that vascular endothelial cells take over the entire inner wall.
  • a material for tissue engineering there has been used a material such as a polystyrene Petri dish or a polyester mesh coated with an extracellular matrix such as collagen, which has been widely used mainly in monolayer culture.
  • Culture modes other than monolayer culture include spheroid morphology by shaking culture and embedded culture using collagen gel.
  • embedded culture using collagen gel is cultivated in vivo. In other words, it was possible to grow cells in a three-dimensional morphology, and it was also possible to conduct basic research on cell functions that were insufficient with monolayer culture.
  • tubes made of polyester resin or PTFE resin mesh have been put into practical use for a long time, and research is being conducted to reduce the diameter and improve the patency rate.
  • the mainstream technologies studied to date are those using segmented polyurethane tubing, which has a proven track record as an antithrombotic material, and an artificial vascular material in which an antithrombotic substance such as heparin is immobilized on the surface using a graft chain or the like. And so on.
  • Collagen gel for embedded culture is not a porous structure such as a three-dimensional network structure
  • a problem that cell engraftment cannot be obtained uniformly over the entire surface, or the distribution of engraftment cannot be adjusted.
  • a method for producing a porous material having a three-dimensional network structure a salt-containing method, a bubble method, and the like are known. There has not yet been obtained a hold member made of a three-dimensional network structure.
  • the cell engraftment structure obtained by collagen gel embedding culture has no physical strength in the collagen gel itself, which is the carrier material, and can be used to evaluate cell functions. However, it cannot be used for such uses, for example, for artificial blood vessels.
  • the present invention relates to a cuff member capable of invading cells from a living tissue and capable of firmly adhering to the living tissue, and more particularly to a therapy for subcutaneously inserting a force-Eureta catheter.
  • the present invention relates to cuff members useful for living skin insertion such as blood circulation using assisted heart, peritoneal dialysis, central parenteral nutrition, transcannula DDS and transcatheter DDS.
  • force-nucleating catheters used in therapies such as ventricular assist devices and peritoneal dialysis are used to perform subcutaneous puncture into the body. Need to be detained.
  • a force member also referred to as a skin cuff
  • the puncture area is sealed tightly.
  • a pliable velor made mainly of polyester fiber is wound around a puncture input neuron, and the pliable velor and the subcutaneous tissue are fixed at the insertion portion by fixing the force velore.
  • a fiber bur is made of polyester fiber, etc., as a force member, fixed at the skin insertion position of the catheter, and the catheter is indwelled by joining the subcutaneous tissue so as to press the cuff member.
  • Some of these fabric velours are impregnated with collagen or the like to achieve more robust adhesion.
  • a cuff member made of a member having excellent biocompatibility is fixed to the subcutaneous tissue at the puncture site.
  • the blood circulation method using a ventilator is a therapy that assists blood circulation with a pulsation pump installed outside the patient
  • the vibration of the pulsation pump equivalent to about 1.5 Hz is transmitted to the force neuron.
  • the insertion portion of the force neuron is always subjected to a mechanical load due to vibration.
  • stress is generated at the adhesive interface between the subcutaneous tissue and the cuff member in an attempt to remove it. .
  • a typical example of a problem that is considered to be due to a decrease in the adhesion between the cuff member and the subcutaneous tissue due to these stress loads is an infection problem such as a tunnel infection.
  • the number of experiences of troubles is very large.
  • the development of a cuff member that can prevent infection is an urgent issue in this therapy.
  • the present invention covers the surface of a living body-implanted member such as an artificial valve, an artificial valve ring, an artificial blood vessel, an artificial breast, an artificial bone, an artificial joint, an artificial heart and the like, and its accompanying components.
  • the present invention relates to a covering material for a living body implanted member for mitigating a foreign substance reaction from a living body.
  • bio-implantable members such as artificial valves, artificial valve rings, artificial blood vessels, artificial breasts, artificial bones, artificial joints and artificial hearts, and their accompanying components.
  • Investigations have been focused on materials that are chemically inert and do not or do not irritate surrounding tissues and are immunologically ignored by the living body. Examples of such materials include metal materials such as titanium, stainless steel, and platinum; ceramic materials such as hydroxyapatite; and polymer materials such as polytetrafluoroethylene, polyester, and polypropylene.
  • Has been Metallic materials are used, for example, for stents to be placed in blood vessels, bone fixation bolts, and artificial joints.
  • Ceramic materials are used, for example, as artificial joints and artificial bones for filling and replacing joint and bone defects.
  • High-molecular materials are used to secure blood flow after resection of an aneurysm, sutures used for suturing sutures that cannot be removed without re-incision, artificial trachea, breasts lost due to resection of breast cancer It has been put to practical use in artificial breasts used for prosthetic surgery and breast augmentation in plastic surgery.
  • Metal materials to be implanted in the living body are mainly composed of stainless steel, which has good protection against water, but contain various electrolytes, proteins, and lipids in long-term indwelling in blood vessels. ⁇ is generated by constant exposure to blood, which may also be a factor irritating surrounding tissues.
  • the mainstream of artificial breasts that are currently in practical use are silicone packs filled with saline, etc., which often contract and contract due to thickening of the encapsulated collagen tissue on the surface after subcutaneous implantation.
  • the silicone bag is deformed in the living body, and there is a problem that peripheral tissues are pressed, an inflammatory reaction is caused, and breast cancer is recurred.
  • an artificial trachea a tube made of a silicon tube has been put into practical use, but it has no affinity with the living trachea, and has a problem that it is detached by long-term implantation and causes infection at the interface. Was.
  • the invention according to the first aspect is a tissue engineering scan material comprising a homogeneous porous body having a three-dimensional network structure, wherein cells can be uniformly engrafted over the entire surface of the porous structure, Excellent physical strength, not only for basic research in the field of tissue engineering, but also for artificial blood vessels, especially when applied to small-diameter artificial blood vessels with an inner diameter of 6 mni or less, a high patency rate over a long period of time It is an object of the present invention to provide a tissue engineering scan hold material capable of forming an artificial blood vessel capable of maintaining the above condition, and an artificial blood vessel using the tissue engineering scan hold material.
  • the tissue engineering scan hold material of the present invention is a tissue engineering scan hold material made of a thermoplastic resin, wherein the thermoplastic resin has an average pore diameter of 100 to 65 ⁇ m and an apparent density of 0 to 0 1 to It is characterized by forming a porous three-dimensional network structure of 0.5 g Z cm 3 with communication.
  • the tissue engineering scan hold material of the present invention has a porous three-dimensional network structure of a thermoplastic resin having the above-mentioned specific average pore diameter and apparent density, so that cells and cells are transferred to the pores of the porous three-dimensional network structure.
  • the collagen suspension can easily penetrate. Therefore, cells can be seeded uniformly over the entire porous three-dimensional network structure.For example, it is possible to obtain an artificial peritoneum consisting of two layers of mesothelial cells and fibroblasts. It can also be used to analyze the mechanism of Dali cosulation and for basic studies on dialysis.
  • tissue engineering scaffold material when used as an artificial blood vessel, vascular endothelial cells can be present on the inner wall of the artificial blood vessel, and occlusion is unlikely to occur, resulting in the realization of a small-diameter artificial blood vessel. Is possible.
  • the artificial blood vessel of the present invention is made of the above-described carrier material of the present invention, and has a high patency rate even with a small bore of 6 mm or less in inner diameter, and is effective for coronary artery bypass surgery, peripheral artery reconstruction surgery, and the like. Can be applied.
  • the cells easily invade and engraft from the subcutaneous tissue of the living body and adhere to the subcutaneous tissue by constructing capillaries, and as a result, the downgrowth is achieved. Control the progress of infection and reduce the risk of various infection troubles including tunnel infection It is an object to provide a head member.
  • the cuff member of the present invention is formed of a base resin made of a thermoplastic resin or a thermosetting resin, has an average pore diameter of 100 ⁇ m to 100 ⁇ m, and an apparent density of 0.01 to 0.1 ⁇ m. It is characterized by having a porous three-dimensional network structure of 5 g Z cm 3 which is communicable.
  • the cuff member of the present invention has an interconnected porous three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin having the above-mentioned specific average pore diameter and apparent density, the porous three-dimensional Cells easily penetrate into the pores of the network and engraft them, resulting in strong adhesion to living tissue.
  • the cells easily invade from the subcutaneous tissue of the living body, adhere to the tissue, and are adhered to the tissue, whereby the adhesion with the living tissue can be obtained robustly. It is an object of the present invention to provide a living body implanting member covering material capable of preventing a bad effect on a living body by being implanted in a living body.
  • the covering material for a living body implanted member of the present invention is formed of a base resin made of a thermoplastic resin or a thermosetting resin, has an average pore diameter of 100 to 100 ⁇ m, and has an apparent density of 0 It is characterized by having a porous three-dimensional network structure having a communicability of 1 to 0.5 g Z cm 3 .
  • the coating material for a living body implanting member of the present invention has a continuous porous three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin having the above-mentioned specific average pore diameter and apparent density. Cells can easily invade and engraft into the pores of the three-dimensional reticulated network, and capillaries can be constructed, and robust adhesion to living tissue can be obtained.
  • the coating material for a living body implantation member of the present invention has a porous three-dimensional network structure layer capable of invasion and engraftment of cells and construction of capillaries.
  • the artificial implant, artificial valve ring, artificial blood vessel, artificial breast, artificial bone, artificial joint, artificial heart, and the like, and their accompanying parts are embedded in the living body using the biological implantable member covering material of the present invention.
  • the members to be treated it is possible to alleviate foreign body reaction from the surrounding tissue to these members.
  • a living body implanting member is one that is implanted in a living body, and includes a system constructed from various components.
  • the actuator Enoregergy converter
  • the left and right blood pumps as pumps, atrial cuffs, atrial connectors, arterial grafts and arterial connectors
  • Internal coil in the transcutaneous energy transmission system internal unit in the transcutaneous information transmission system, internal battery in the battery system, internal control unit in the control system, volume displacement (volume displacement)
  • the system has a compliance chamber, a displacement chamber, and a vent tube.
  • it consists of multiple parts such as internal unit connection cables and connectors. In the present invention, all of these are referred to as living body implanted members.
  • the implantable body covering material of the present invention can mitigate a foreign body reaction by coating the outer surface of the transmitter when implanting the transmitter into an animal body for an animal ecology survey in addition to a clinical purpose. It is also possible.
  • FIG. 1 is an SEM image (magnification: 20) of the entire tubular structure of the carrier material manufactured in Example 1.
  • FIG. 2 is a stereomicroscopic image (100 ⁇ magnification) of the microstructure inside the tubular structure of the carrier material manufactured in Example 1.
  • FIG. 3 is an SEM image (magnification: 20) of the surface layer of the inner wall of the tubular structure of the carrier material manufactured in Example 1.
  • FIG. 4 is an SEM image (at a magnification of 20) of the outer surface layer of the tubular structure of the carrier material manufactured in Example 1.
  • FIG. 5 is an optical microscope image ( ⁇ 10) of the porous three-dimensional network material containing cells produced in Example 2 after culturing for 3 days.
  • FIG. 6 is an optical micrograph ( ⁇ 10) showing that in Example 2, the internal tissue had survived over the entire surface even after one week of additional culture.
  • FIG. 7 is a photograph of a scene in Example 3 in which blood flow was secured by an artificial blood vessel and pulsation occurred.
  • FIG. 8 is a photograph showing that thrombus was not formed inside the artificial blood vessel one week after transplantation in Example 3.
  • FIG. 9 is a SEM image (magnification: 50) of the surface layer portion of the annular structure manufactured in Comparative Example 1.
  • FIG. 10 is an SEM image (50%) of the microstructure inside the annular structure manufactured in Comparative Example 1. Times).
  • FIG. 11 is an optical microscope cross-sectional image ( ⁇ 10) of the tubular structure material containing cells produced in Comparative Example 2 after culturing for 3 days.
  • FIG. 12 is a SEM image (magnification: 50) of the surface of the cuff member manufactured in Example 4 on the tissue contact side.
  • FIG. 13 is a SEM image (magnification: 50) of the internal cross section of the cuff member manufactured in Example 4.
  • FIG. 14 is a distribution diagram obtained by measuring the pore size distribution of the cuff member manufactured in Example 4.
  • FIG. 15 is a photograph immediately after the operation of embedding the cuff member manufactured in Example 4 into the incised area of the goat chest, suturing the subcutaneous tissue and penetrating and fixing it.
  • Fig. 16a is an enlarged photograph of the tissue around the test piece when the forceps member manufactured in Example 4 was implanted into the goat chest incision site for 2 weeks and extracted
  • Fig. 16b is the texture for comparison. It is an enlarged photograph of an enlarged photograph of a structure around a test piece when a test is similarly performed using a cloth.
  • tissue engineering scaffold and the artificial blood vessel of the present invention will be described in detail.
  • the three-dimensional network structure portion made of a thermoplastic resin constituting the tissue engineering skid holder of the present invention has an average pore diameter of 100 to 650 ⁇ m and an apparent density of 0.01 to 0.5 gZ cm 3 .
  • the structure be a porous three-dimensional network having a continuous pore structure.Even if the entire structure from the inner wall to the outer wall has a similar structure, there is a difference between the vicinity of the inner wall and the vicinity of the outer wall. Is also good.
  • the average pore diameter may be partially changed from the apparent density to the apparent density. For example, it may have so-called anisotropy in which the average pore diameter gradually changes from the inner wall toward the outer wall.
  • this average pore size of the porous three-dimensional network structure composed of the thermoplastic resin is 100 to 650 mu m, although the apparent density is 0. 01 ⁇ 0 5 gZ cm 3, preferably an average pore size 1 00 ⁇ 400;. Im And more preferably 100 to 300 / zm.
  • the apparent density is within the range of 0.01 to 0.5 gZ cm 3 , the cell viability is good and the physical properties are excellent.
  • Strength to maintain the force elastic characteristics approximate to a living body obtained preferably 0. 0 1 ⁇ 0. 2 g Z cm 3, more preferably 0. 0 1 ⁇ 0. Lg Z cm 3.
  • the pore size distribution is monodisperse, and it is desirable that pores having a pore size of 150 to 300 m, which is an important pore size for cell invasion, have a high contribution ratio.
  • the contribution ratio of pores having a pore diameter of 150 to 300 ⁇ m is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more. %, The cells easily invade, and the invaded cells easily adhere and grow, which is effective for use as a scaffold material and an artificial blood vessel.
  • the contribution ratio of pores having a pore diameter of 150 to 300 ⁇ in the average pore diameter of the porous three-dimensional network structure is based on the total number of pores in the method for measuring the average pore diameter in Example 1 described later. It refers to the ratio of the number of pores with a pore size of 150 to 300 ⁇ .
  • porous three-dimensional network structure having an average pore size, apparent density and pore size distribution, cells and collagen suspension culture solution easily penetrate into pores, and cells adhere to and grow on the porous structure layer. It is possible to obtain a good carrier material which is easy to perform. Therefore, when it is formed into a tubular shape, cells can be engrafted to the whole from the inner wall to the outer periphery, so that an artificial blood vessel with a low risk of occlusion and a high patency rate can be realized. .
  • thermoplastic resin constituting the tissue engineering carrier material of the present invention examples include a polyurethane resin, a polyamide resin, a polyacid resin, a polyolefin resin, a polyester resin, a fluorine resin, an acrylamide resin, a methacryl resin, and the like. Derivatives can be exemplified.One of these may be used alone, or two or more thereof may be used in combination.
  • the resin is a polyurethane resin. It is preferable because an artificial blood vessel having excellent properties and physical properties can be obtained.
  • the segmented polyurethane resin is synthesized from three components, polyol, diisocyanate, and chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule.
  • the scaffold material and artificial blood vessel obtained by using polyurethane resin have an S—S curve that is elastically similar to a living blood vessel (higher compliance and lower elasticity in the low blood pressure region, and higher blood pressure in the high blood pressure region than in the low blood pressure region).
  • thermoplastic resin has a hydrolyzable or biodegradable property, it is gradually decomposed and absorbed after the transplantation of the artificial blood vessel into the living body, and finally, the resin base material with the engrafted cells remaining. It is also possible to exclude itself from the living body.
  • the porous three-dimensional network structure composed of such a thermoplastic resin includes collagen type I, collagen type II, collagen type III, collagen type IV, atherocollagen, fibronectin, gelatin, hyaluronic acid, and heparin.
  • One or more selected from the group consisting of polydimethylacrylamide and polyvinylpyrrolidone may be retained, and further, fibroblast growth factor, interleukin-1, tumor growth factor, epithelial growth Factor and double One or more cytokines selected from the group consisting of fibroblast growth factors may be retained, and furthermore, embryonic stem cells, vascular end
  • fine pores can be provided in the skeleton itself made of a thermoplastic resin for constructing the porous three-dimensional network structure layer.
  • Such micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for holding collagen and cell growth factors, etc., resulting in increased cell engraftment Is possible.
  • the micropores in this case are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure in the present invention.
  • the shape of the tissue engineering scaffold material of the present invention is not particularly limited.
  • it can be used as an artificial blood vessel.
  • this tubular structure has an inner diameter of 0.3 to 15 111111 and an outer diameter of 0.4 to 20 mm, preferably an inner diameter of 0.3 to: LO mm and an outer diameter of 0.4 to 15 mm. More preferably, the inner diameter is 0.3-6 mm and the outer diameter is 0.4-: L 0 mm, particularly preferably, the inner diameter is 0.3-2.5 mm, the outer diameter is 0.4-: L 0 mm, particularly preferably the inner diameter. 0.3-1.5 mm, outer diameter 0.4- 10 mm. Even with such a small-diameter artificial blood vessel, a high patency rate can be maintained over a long period of time.
  • the artificial blood vessel of the present invention comprising the scaffold material of the present invention may be one in which the outside is coated with another tubular structure.
  • the present invention provides When the density of impregnation of collagen or other material into the material is low, or when the thickness of the carrier material is thin, blood leakage is prevented for a certain period after transplantation, and cell adhesion and engraftment are sufficiently performed to prevent blood leakage. It can be absorbed by the living body when the possibility of bleeding is low, and can give a supplementary effect when it disappears.
  • tubular structure for coating for example, chitosan, polylactic acid resin, polyester resin, polyamide resin, polyurethane resin, fibronectin, gelatin, hyaluronic acid, keratanic acid, chondroitin, chondroitin sulfate, Chondroitin Sulfate B, copolymer of hydroxymethyl methacrylate and dimethylaminoethyl methacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, polyacrylamide, polydimethylacrylamide, polybutylpyrroli And a tube formed from one or more selected from the group consisting of don, cross-linked collagen and fibrous mouth.
  • the thickness (outer diameter) of the tubular structure for coating such as the chitosan tube And the inner diameter is about 5 ⁇ 500 ⁇ It is preferable.
  • the artificial blood vessel of the present invention is novel in that it has a high patency and can secure a stable blood flow even if it has a small diameter that cannot be achieved by the conventional technology. There is no problem if it is applied to more than one.
  • thermoplastic resin structure having the structure is not limited to the following method. Further, according to the following method, it is possible to produce a thermoplastic resin substrate having a three-dimensional network structure of various shapes required as a carrier material for tissue engineering, such as a planar substrate.
  • a porous three-dimensional network structure made of a thermoplastic polyurethane resin first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent that is a good solvent for the polyurethane resin are used.
  • a polymer dope Concrete Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, a water-soluble polymer compound is mixed and dispersed in this solution.
  • organic solvent examples include N, N-dimethylformamide, N-methyl-12-pyrrolidinone, tetrahydrofuran, and the like.However, this is not limited as long as the thermoplastic polyurethane resin can be dissolved, and the amount of the organic solvent is reduced. Alternatively or without use, it is also possible to melt the polyurethane resin by the action of heat and to mix the pore former there.
  • water-soluble polymer compound as a pore-forming agent examples include polyethylene glycol, polypropylene propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, lipoxymethinoresenolellose, hydroxypropynolecellulose, and methyl cellulose paste.
  • examples thereof include cellulose and ethylcellulose, but are not limited as long as they are uniformly dispersed with a thermoplastic resin to form a polymer dope.
  • lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate can be used instead of the water-soluble polymer compound.
  • a crystal nucleating agent for a polymer to promote the formation of secondary particles during coagulation, that is, the formation of a skeleton of a porous body.
  • the polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent for the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are added to the coagulation bath. Extract and remove molecular compounds. By removing part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network structure material made of a polyurethane resin can be obtained.
  • the poor solvent used here include water, lower alcohols, and low carbon number ketones.
  • the solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
  • a tube molding jig consisting of a core rod with a diameter of 1.2 mm ⁇ and a cylindrical stopper made of medical polypropylene resin that can fix this core rod to the center of the paper tube, 23 g of the polymer dope was added.
  • the polyurethane resin is extracted by removing the internal NMP solvent from the paper tube surface by putting it into refluxing methanol and continuing refluxing for 72 hours. Coagulated.
  • the methanol was replaced with a new solution at any time while maintaining the reflux state.
  • methyl cellulose, methanol and residual NMP were extracted and removed.
  • Fresh water was supplied from time to time for washing. This was dried at room temperature under reduced pressure (20 mmHg (2.7 kPa)) for 24 hours to obtain a tubular porous three-dimensional network-shaped scan that can be used as an artificial blood vessel according to an embodiment of the present invention. Hold material was obtained.
  • Figures 1 to 4 show images of this carrier material taken with a scanning electron microscope (3)] manufactured by [011], JMS-5800 LV, or a stereo microscope (VH-6300, manufactured by KEYENCE).
  • the base material of the obtained skid holder material has a hole diameter of about 200 ⁇ m, an inner diameter of 1.2 mm ⁇ , an outer diameter of 3.2 mm ⁇ , and a structure It can be seen that the inside (Fig. 2), the inner wall surface layer (Fig. 3) and the outer surface layer (Fig. 4) have a porous three-dimensional network structure with almost the same structure, and that the whole is a homogeneous porous body.
  • the average pore diameter and the apparent density of the obtained carrier material were measured by the following methods. In the measurement of the average pore diameter and the apparent density, the sample was cut at room temperature using a double-blade razor (Feather, high stainless steel).
  • the three-dimensional network structure which is a feature of the present invention, is a structure that is excellent in continuity between holes.
  • the evaluation of water permeability as an index of the continuity was performed as follows.
  • Bovine blood vessel-derived smooth muscle cells (cell density: 6 ⁇ 10 6 ce 11 s ZmL) in DMEM (medium component) solution (containing 10% FCS (fetal calf serum)) and collagen type I solution (0.3% acidic Solution, manufactured by Koken Co., Ltd.) and mixed in equal amounts while cooling on ice. (Cell density: 3 ⁇ 10 6 ce 11 s / mL).
  • tubular porous three-dimensional network-structured carrier material (inner diameter: 1.2 ⁇ , outer diameter: 3.2 mm ⁇ , length: 2 cm) produced in Example 1 is bound by a clamp, and the other end is clamped.
  • the suspension (lmL) of the smooth muscle cells was injected until it oozed from the side wall of the tubular structure of the carrier material. All injection operations were performed on ice and repeated several times to fill the inside of the tubular structure with a collagen solution containing smooth muscle cells. Then, remove the clamp, pass a 1.2 mm mandrel made of SUS440 through the center of the tubular structure of the carrier material, and incubate at 37 ° C in an incubator at 37 ° C. A three-dimensional network structure material was obtained.
  • FIG. 5 shows a cross-sectional structure image obtained by culturing the porous three-dimensional network structure material containing cells obtained in this manner for 3 days and then observing the same with an optical microscope. From Fig. 5, it can be seen that cells are distributed all over the prepared structural material. It was observed that the structure containing these cells survived without necrosis even after additional culture for one week.
  • tubular porous three-dimensional network-structured scaffold material (inner diameter: 1.2 ⁇ , outer diameter: 3.2mm ⁇ i), length: 2cm) produced in Example 1,
  • a collagen type I aqueous solution (0.15% by weight) was injected from the other end, and the inside of the structure was filled with the collagen solution.
  • the clamp was removed, a 1.2 mm ⁇ mandrel made of S US440 was passed through the center of the tubular structure of the carrier material, and the collagen solution was gelled by holding it in the incubator at 37 ° C. Then, a tubular structure whose network structure was filled with collagen gel was produced.
  • the abdominal aorta of the rat was peeled off by about 3 cm, its ends were tied up with clamps to cut off the blood flow, then the central part of the artery was cut off, and the space between them was joined end-to-end with the tubular structure.
  • pulsation occurred and functioned as an artificial blood vessel (Figure 7).
  • the artificial blood vessel was excised, and the lumen surface of the tubular tissue was observed.
  • the thrombus was not adhered or formed on the lumen surface, it was extremely smooth (FIG. 8).
  • Thermoplastic polyurethane resin (Nippon Miractran Co., Ltd., Miractran E 980 PN AT) was dissolved by heating in tetrahydrafuran (manufactured by Wako Pure Chemical Industries, Ltd., THF) at 60 ° C. to obtain a 5.0% solution (weight / weight). 12 g of Na C in 16 mL of this THF solution
  • a suspension was prepared by dispersing one particle (the particle diameter was adjusted to 100 to 200 ⁇ by sieving).
  • a 1.2 mm ⁇ mandrel made of SUS440 was immersed in this suspension, dried, and a tube was formed around the mandrel with polyurethane containing NaC1 particles. After this was sufficiently dried, it was thoroughly washed with ion-exchanged water, and NaC1 embedded in the tube was dissolved and removed. Reduce the pressure at room temperature for 24 hours (20 mmHg (2.
  • Example 1 According to the appearance observation by SEM, the thing of Example 1 has a three-dimensional network structure in which the surface layer and the inside are the same, whereas in this comparative example, a dense layer is generated in the surface layer part ( (Fig. 9), the surface layer and the inside are completely different structures.
  • the internal structure is a three-dimensional net-like structure in which spherical holes are gathered and the wall of the hole penetrates where adjacent holes come into contact. was not ( Figure 10).
  • Example 2 The water permeability measured in the same manner as in Example 1 was 11.22 ⁇ 0.46 gZ60 seconds, and 20.08 ⁇ 0.96 g / 120 seconds, which were lower than those of Example 1. Indicated. This was presumed to be due to poor communication between the holes in the surface layer and the effect of the dense layer existing in the surface layer.
  • FIG. 11 shows a cross-sectional tissue image obtained by culturing the thus obtained tubular structural material containing cells for 3 days and then observing it with an optical microscope. From Fig. 11, the inside of the fabricated structural material Shows that almost no cells are present, but only on the inner wall.
  • a tissue engineering scan hold material comprising a homogeneous porous body having a three-dimensional network structure, and capable of uniformly engrafting cells throughout the inside of the porous structure.
  • Excellent physical strength not only for basic research in the field of biological tissue engineering, but also for artificial blood vessels, especially for artificial blood vessels with a small diameter of 6 mm or less
  • the present invention provides a tissue-engineering scaffold capable of forming an artificial blood vessel capable of maintaining the above conditions, and an artificial blood vessel using the tissue-engineering scaffold.
  • the communicating three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin constituting the force member of the present invention has an average pore diameter of 100 to 1000 / xm and an apparent density of 0.01 to 0.
  • a porous three-dimensional network structure of 5 g / cm 3 may be used, and even if the entire surface has a similar structure in the cross section in the thickness direction, it may be on one side and the other side. It may have a different structure.
  • the average pore diameter ⁇ apparent density may partially change.
  • the average pore diameter ⁇ apparent density gradually changes from one surface side to the other surface side. May be provided.
  • large pores that greatly deviate from the average pore diameter may exist on the contact surface side with the living tissue.
  • pores of about 500 to 2000 ⁇ are preferable, and since these pores are present near the surface layer on the side of the living tissue, it becomes easy to uniformly impregnate the extracellular matrix such as collagen to a deep part, and also from the tissue. It works in favor of cell invasion and the construction of capillaries. However, such pores having a large pore diameter are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure in the present invention.
  • the porous three-dimensional network has an average pore size of 100 to 1000 ⁇ m and an apparent density of 0.01 to 0.5 gZcm 3 , but the preferred average pore size is 200 to 600 ⁇ , more preferably 200 to 500 ⁇ . It is. If the apparent density within 0. 01 ⁇ 0. 5 g / cm 3 range, when a cellular engraftment properties good, maintaining excellent physical strength, cell invasion, engraft, and organized Although elastic properties similar to those of subcutaneous tissue can be obtained, it is preferably 0.05 to 0.3 g / cm 3 , more preferably 0.05 to 0.2 gZcm 3 .
  • the pore size distribution should be as high as 150 to 400 ⁇ , which is an important pore size for cell invasion.
  • the contribution rate of the pores of 100 ⁇ m is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more, This is preferable because it easily invades, and the invading cells easily adhere and grow.
  • the contribution ratio of pores having a pore diameter of 150 to 400 ⁇ in the average pore diameter of the porous three-dimensional network structure is defined as the pore diameter 15 to the total number of pores in the method for measuring the average pore diameter in Example 1 described later. Refers to the ratio of the number of pores of 0 to 400 ⁇ m.
  • porous three-dimensional network having an average pore size, apparent density, and pore size distribution, cells can easily penetrate into pores, and cells can easily adhere to and grow on the porous three-dimensional network.
  • the capillaries are constructed, and a good cuff member can be obtained in which the adhesion between the subcutaneous tissue and the catheter or force neur at the puncture site is strong and strong.
  • 0.2 to 500 mm can be used, preferably 0.2 to 100 mm, more preferably 0.2 to 50 mm, and particularly preferably.
  • the thickness is 0.2 to 10 mm, particularly preferably 0.2 to 5 mm. With such a thickness, the physical strength required for the cuff member, cell invasion, organization, and adhesion to the subcutaneous tissue Properties and bacterial barrier properties can be satisfied at a high level.
  • Resins, epoxy resins, polyimide resins, ataryl resins, methacrylic resins, and one or more of their derivatives can be exemplified, but a polyurethane resin is preferred, and a segmented polyurethane resin is particularly preferred.
  • the segmented polyurethane resin is synthesized from three components, a polyol, a diisocyanate, and a chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule.
  • the elastic properties that can be obtained when resin is used are the stress generated at the interface between the subcutaneous tissue and the cuff member when the patient, catheter or force neurator moves, or when the skin around the insertion site is moved during disinfection or the like. Expected to have the effect of attenuating Wear.
  • a layer having the specific porous three-dimensional network structure as a first layer, and further laminate a second layer having a different structure on the first layer.
  • a fiber aggregate or a flexible film, or a porous three-dimensional network structure layer having an average pore diameter different from the porous three-dimensional network structure of the first layer and an apparent density can be used. It is.
  • the fiber aggregate examples include a nonwoven fabric and a woven fabric, and the thickness is 0.1 to: 100 mm, preferably 0.1 to 50 mm, more preferably 0.1 to 10 mm, Particularly preferably, the thickness is 0.1 to 5 mm. With such a thickness, good flexibility can be obtained when laminated with the porous three-dimensional network structure layer, and the bonding strength with the subcutaneous tissue is robust. And is preferred.
  • the non-woven fabric or the woven fabric preferably has a porosity in the range of 100 to 500 cc / cm 2 / min in terms of flexibility, suture strength with subcutaneous tissue, and the like.
  • the porosity is a value measured according to JISL 104, and may also be called air permeability or air permeability.
  • fiber aggregate one or more selected from the group consisting of polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, acrylic resin, methacrylic resin and derivatives thereof
  • a synthetic resin consisting of fibers derived from natural products such as fibrous mouth, chitin, chitosan, cellulose, and one or more selected from these derivatives. Can also be used. Synthetic fibers and fibers derived from natural products may be used in combination.
  • the flexible film examples include a thermoplastic resin film, specifically, a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluorine resin, a urea resin, a phenol resin, an epoxy resin, and a polyimide.
  • a thermoplastic resin film specifically, a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluorine resin, a urea resin, a phenol resin, an epoxy resin, and a polyimide.
  • a thermoplastic resin film specifically, a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluorine resin, a urea resin, a phenol resin, an epoxy resin, and a polyimide.
  • resins acrylic resins and methacrylic resins and derivatives thereof or
  • the film examples include two or more films, and preferably one or two or more films selected from the group consisting of polyester resin, fluorine resin, polyurethane resin, acrylic resin, vinyl chloride, fluorine resin, and silicon resin. Film.
  • an advantageous force member can be obtained in terms of flexibility and physical strength, and preferably 0.1 to 10 Omm. 0 mm, more preferably 0.1 mm to 5 O mm, even more preferably 0.1 mn! 110 mm.
  • the flexible film not only a solid film but also a porous film or a foam can be used.
  • a cuff member having a high bacterial barrier property and advantageous for infection control can be obtained.
  • the porous three-dimensional network When the second layer has a porous three-dimensional network having an average pore diameter and an apparent density different from the porous three-dimensional network of the first layer, the porous three-dimensional network has an average pore diameter of 0.1.
  • a porous three-dimensional network structure having an apparent density of about 0.01 to 1.0 g Z c ⁇ 3 at 2200 ⁇ can be used.
  • the thickness of the porous three-dimensional network structure layer as the second layer is preferably 0.2 to 2 Omm.
  • the second layer is an average of the fiber aggregate, the flexible film, and the porous three-dimensional network structure of the first layer.
  • a method of bonding using an adhesive especially laminating a hot melt nonwoven fabric between the first and second layers And a method of pressing under heating.
  • a hot-melt nonwoven fabric for example, a polyamide-type thermo-adhesive sheet such as PA101 manufactured by Nittobo Co., Ltd. can be used.
  • the polymer dope can be continuously laminated and formed by laminating and molding a fiber aggregate or a flexible film.
  • the second layer two or more layers of a fiber assembly, a flexible film, and a porous three-dimensional network structure layer may be provided, and the porosity of the first layer may be provided through the second layer. It may have a three-layer structure in which three-dimensional network structure layers are stacked.
  • collagen type I collagen type II, collagen type III, collagen type IV, atelocollagen, fibronectin, gelatin, hyaluronic acid, henolin, keratanic acid , Chondroitin, chondroitin sulphate, chondroitin sulphate B, elastin, heparan sulphate, laminin, tombospondin, vitronectin, osteonetatin, entacti Group consisting of methacrylate, hydroxymethacrylate and dimethylaminoethynolemethacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, polyacrylamide, polydimethylacrylamide and polybutylpyrrolidone
  • One or more selected from the group consisting of interferons, antivirals, antibacterials and antibiotics may be retained, and further, embryonic stem cells (which may be differentiated), One or more cells selected from the group consisting of vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells may be adhered.
  • fine holes can be provided in the skeleton itself made of a thermoplastic resin or a thermosetting resin constituting the porous three-dimensional network structure layer.
  • micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for holding collagen and cell growth factors, etc., and as a result, it is possible to increase cell engraftment is there.
  • the fine pores in this case are not included in the calculation of the average pore diameter of the porous three-dimensional network structure layer in the present invention.
  • thermoplastic polyurethane resin In order to produce a porous three-dimensional network made of a thermoplastic polyurethane resin, first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent which is a good solvent for the polyurethane resin are used. To produce a polymer dope. Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, A water-soluble polymer compound is mixed and dispersed.
  • organic solvent examples include N, N-dimethylformamide, N-methyl-12-pyrrolidinone, tetrahydrofuran, and the like.However, this is not limited as long as the thermoplastic polyurethane resin can be dissolved, and the amount of the organic solvent is reduced. Alternatively or without use, it is also possible to melt the polyurethane resin by the action of heat and to mix the pore former there.
  • water-soluble polymer compound as a pore-forming agent examples include polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, canolepoxymethylcenorelose, hydroxypropinoresenorelose, methinoresenoleose, Ethyl cellulose and the like can be mentioned, but this is not limited as long as it is uniformly dispersed with a thermoplastic resin to form a polymer dope.
  • lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate can be used instead of the water-soluble polymer compound.
  • a crystal nucleating agent for a polymer to promote the formation of secondary particles during coagulation, that is, the formation of a skeleton of a porous body.
  • the polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent for the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are added to the coagulation bath. Extract and remove molecular compounds. By removing part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network structure material made of a polyurethane resin can be obtained.
  • the poor solvent used here include water, lower alcohols, and low carbon number ketones.
  • the solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
  • the communicating three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin constituting the covering material for a living body implantation member of the present invention has an average pore diameter of 100 to 100 ⁇ and an apparent density of A porous three-dimensional network structure of 0.01 to 0.5 g Z cm 3 may be used.
  • the other surface side may have a different structure.
  • the average pore diameter / apparent density may partially change.
  • the average pore diameter may be changed from one surface side to the other surface side. It may have a so-called anisotropy in which the soot diameter ⁇ the apparent density gradually changes.
  • a large-diameter hole that largely deviates from the average pore diameter may exist on the contact surface side with the living tissue.
  • pores having a size of about 500 to 2000 ⁇ are preferable, and since these pores are present near the surface layer on the side of the living tissue, it is easy to uniformly impregnate the extracellular matrix such as collagen to a deep portion. It is advantageous for the invasion of cells from the inside and the construction of capillaries. However, such large-diameter pores are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure in the present invention.
  • the average pore diameter of the porous three-dimensional network structure is 100 to 1000 m, an apparent density of 0.01 to 0.5 is a gZ cm 3, preferably an average pore size 200 to 600 mu m, more preferably 200 ⁇ 500 ⁇ m. If the apparent density within 0. 0 1 ⁇ 0. 5 g Roh cm 3 range, a cellular engraftment properties good, maintaining excellent physical strength, cell invasion, engraft, and organized In this case, elastic properties similar to those of the subcutaneous tissue can be obtained, but are preferably 0.05 to 0.3 g / cm 3 , more preferably 0.05 to 0.2 g / cm 3 .
  • the pore size distribution should be as high as 150 to 400 ⁇ m, which is an important pore size for cell invasion, and 150 to 400 ⁇ m.
  • the contribution ratio of the cells is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more, the cells can easily enter and Is preferred because it is easy to adhere and grow.
  • the contribution ratio of pores having a pore diameter of 150 to 400 / im in the average pore diameter of the porous three-dimensional network structure is a pore diameter of 150 to 400 m with respect to the total number of pores in the method for measuring the average pore diameter in Example 1 described later. Indicates the ratio of the number of holes.
  • porous three-dimensional network having an average pore size, apparent density, and pore size distribution, cells can easily penetrate into pores, and cells can easily adhere to and grow on the porous three-dimensional network.
  • a capillary is constructed, and a strong and good adhesion with the living body can be obtained in the portion where the living body implanting member is embedded.
  • the thickness of the porous three-dimensional network structure may be 0.5 to 50 Omm, preferably 0.5 to: L 00 mm, more preferably 0.5 to 50 mm, and particularly preferably 0.5 to 10 mm. , Particularly preferably 0.5 to 5 mm, such a thickness.
  • thermoplastic resin or thermosetting resin constituting such a porous three-dimensional network structure portion examples include polyurethane resin, polyamide resin, polylactic acid resin, polymalic acid resin, polyglycolic acid resin, polyolefin resin, and polyester. Resins, fluororesins, urine resins, phenolic resins, epoxy resins, polyimide resins, acrylic resins, methacrylic resins, and one or more of their derivatives can be exemplified, but polyurethane resins are preferred, and segmentation is particularly preferred. Polyurethane resins are preferred.
  • the segmented polyurethane resin is synthesized from three components of a polyol, a diisocyanate and a chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule.
  • the elastic properties obtained when resin is used can be expected to have the effect of attenuating the stress generated at the interface between the living tissue and the living body implanted member.
  • a layer in which the specific porous three-dimensional network structure is formed is a first layer, and a second layer having a different structure is further laminated on the first layer. It is also possible.
  • a porous three-dimensional network structure layer having a different average pore size and apparent density from the porous three-dimensional network structure of the first layer can be used.
  • the porous three-dimensional network structure of the covering material for a living body implanted member of the present invention includes collagen type I, collagen type ⁇ , collagen type III, collagen type IV, athero-type collagen, fibronectin, gelatin, hyaluronic acid, heparin, Keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate ⁇ , elastin, heparan sulfate, laminin, thrombospondin, vitronectin, osteonetatin, entactin, copolymer of hydroxyethyl methacrylate and dimethylaminoethyl methacrylate, hydroxyxetil Holds one or more selected from the group consisting of methacrylate and methacrylic acid copolymers, alginic acid, polyatarylamide, polydimethylacrylamide and polybutylpyrrolidone Platelet-derived growth factor, epidermal growth factor, transforming growth factor a
  • fine pores can be provided in a skeleton itself made of a thermoplastic resin or a thermosetting resin for constructing the porous three-dimensional network structure layer.
  • Such micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for retaining collagen and cell growth factors, etc., and as a result, it is possible to increase cell viability. is there.
  • the micropores in this case are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure layer in the present invention.
  • a porous three-dimensional network structure made of a thermoplastic polyurethane resin first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent that is a good solvent for the polyurethane resin are used.
  • a polymer dope Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, a water-soluble polymer compound is mixed and dispersed in this solution.
  • the organic solvent include N, N-dimethylformamide, N-methyl-1-pyrrolidinone, tetrahydrofuran, and the like.
  • the organic solvent include N, N-dimethylformamide, N-methyl-1-pyrrolidinone, tetrahydrofuran, and the like.
  • the organic solvent include N, N-dimethylformamide, N-methyl-1-pyrrolidinone, tetrahydrofuran, and the like.
  • this does not apply as long as the thermoplastic polyurethan
  • Water-soluble polymer compounds as pore-forming agents include polyethylene glycol, poly Propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, canolepoximethi / resenorelose, hydroxypropinoresenorelose, methylcellulose, ethylcellulose, etc. This does not apply as long as it forms a merdope.
  • lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate can be used instead of the water-soluble polymer compound. It is also possible to use a crystal nucleating agent for a polymer to promote the formation of secondary particles during coagulation, that is, the formation of a skeleton of a porous body.
  • the polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent for the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are added to the coagulation bath. Extract and remove molecular compounds. By removing part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network structure material made of a polyurethane resin can be obtained.
  • the poor solvent used here include water, lower alcohols, and low carbon number ketones.
  • the solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
  • the living body implantable member covering material of the present invention cells easily invade from living tissues, survive and become organized, so that adhesion to living tissues can be obtained robustly, As a result, it is possible to prevent adverse effects on the living body caused by embedding the living body implanting member in the living body.
  • the cuff member of the present invention and the bioimplant covering material constituting the surface thereof will be described more specifically with reference to examples.
  • the present invention is not limited to the following examples unless it exceeds the gist thereof. It is not limited in any way by the examples.
  • the polyurethane resin was coagulated by throwing it into refluxing methanol and continuing refluxing for 72 hours to extract and remove the NMP solvent from the upper and lower surfaces of the filter paper for chemical experiments.
  • the methanol was replaced with a new solution at any time while maintaining the reflux state.
  • the solidified polyurethane resin was removed from the Teflon frame, and washed with purified water for 72 hours in the Japanese Pharmacopoeia to extract and remove methylcellulose, methanol and remaining NMP. Fresh water was supplied as needed for washing water. This was dried under reduced pressure (20 mmHg) at room temperature for 24 hours to obtain a porous three-dimensional network structure material made of a thermoplastic polyurethane resin.
  • This porous three-dimensional network structure material is the bioimplant covering material of the present effort.
  • Figs. 1 and 2 are images of the covering member of the living body implanted member on the surface of the force-cuff member taken by a scanning electron microscope (SM200, manufactured by Topcon Corporation). It can be seen that the body implanting member covering material has a porous three-dimensional network structure with a pore diameter of about 35 ⁇ .
  • the average pore size and apparent density of the obtained cuff member with a thickness of 2.3 mm and a porous three-dimensional network structure (that is, the covering material for a bioimplant member) were measured by the following method, and the results are shown in Table 1.
  • Table 1 was measured in the following method, and the results are shown in Table 1.
  • the three-dimensional network structure manufactured in Example 4 and before the second layer was laminated was cut into a rectangular parallelepiped of about 10 mm ⁇ 10 mm ⁇ 3 mm using a double-edged razor.
  • the volume was determined from the dimensions obtained by measuring this sample with a projector (Nikon, V-12), and the weight was divided by the volume to determine the volume.
  • the first porous three-dimensional network structure layer is a porous three-dimensional network structure mainly composed of pores having a size effective for cell adhesion.
  • test piece was cut and used after ethylene oxide gas sterilization. After the operation, the test site was disinfected twice a day with acidic water or isodine. Samples were provided with free water, and an appropriate amount (approximately lkg) of Hay Cube was fed as feed 5 times a day. Two weeks after the operation, the previously implanted test piece and surrounding tissue were removed under general anesthesia. The test piece and the surrounding tissue adhered densely, and it was difficult to peel off each other. No findings such as infection or inflammation were observed in the surrounding area.
  • Fig. 5a shows a magnified photograph of the cuff member surface (that is, the covering material of the living body implanting member) that has been engrafted with a loupe.
  • An indistinct milky layer indicated by the arrow in Fig. 5a is also continuous inside the cuff member, and the inside of the cuff member is filled with transparent tissue, and the granulation tissue infiltrates. It was confirmed that.
  • Fig. 5b shows an enlarged photograph of the loupe when a test was performed in the same manner as above using a single woven fabric (the polyester fabric velor used in Example 4 (Pardy, Poveyy Double 'Velor Fabric)) alone.
  • a so-called down-growth phenomenon was observed in which the milky white layer infiltrated only from the epidermis in a deeper direction along the surface of the woven fabric.
  • the milky white layer was continuously present near the epidermis, and that the downgrowth was suppressed.
  • the porous three-dimensional network structure layer of the bioimplant member covering material on the surface of the forceps member of the present invention has extracellular matrices such as fibroblasts, macrophages, and collagen fibers extended from surrounding fibers.
  • the granulation tissue, mainly consisting of, was infiltrated, and angiogenesis was confirmed.
  • the cuff member of the present invention is organized by infiltration of living cells into the porous three-dimensional network structure layer, isolates the wound from the outside, and protects against exacerbation factors such as bacterial infection in the healing process. Was done.
  • the cuff member of the present invention As described in detail above, according to the cuff member of the present invention, cells easily invade and survive from the subcutaneous tissue of a living body, and a capillary is constructed, whereby adhesion to the subcutaneous tissue is obtained, and the As a result, the wound is isolated from the outside world, and exacerbated by factors such as bacterial infection during the healing process.
  • a cuff member that suppresses the progress of pengurose and is free from various troubles such as tunnel infection is provided.
  • Such a cuff member of the present invention can be used for a blood circulation method using an assisted artificial heart, which is a therapy for subcutaneously puncturing force-neutral catheters, peritoneal dialysis therapy, central parenteral nutrition, transcannula DDS and transcatheter DDS. It can be suitably used for a living skin penetration part such as.
  • an assisted artificial heart which is a therapy for subcutaneously puncturing force-neutral catheters, peritoneal dialysis therapy, central parenteral nutrition, transcannula DDS and transcatheter DDS. It can be suitably used for a living skin penetration part such as.

Abstract

It is intended to provide a scaffold material for tissue engineering uses, an artificial vessel, a cuff member and a coating for implants. The scaffold material for tissue engineering uses is made of a thermoplastic resin and has an open cell porous three-dimensional network structure with an average pore size of 100 to 650 μm and an apparent density of 0.01 to 0.5 g/cm3. The artificial vessel is made of the scaffold material. The cuff member and the coating for implants are each made of a thermoplastic resin or a thermosetting resin and have a part of an open cell porous three-dimensional network structure with an average pore size of 100 to 1000 μm and an apparent density of 0.01 to 0.5 g/cm3.

Description

明細書 組織工学用スキヤホールド材、 人工血管、 カフ部材及び生体埋込部材被覆材 技術分野  Description Tissue engineering scaffold material, artificial blood vessel, cuff member, and bioimplant member coating material
本発明は、 組織工学用スキヤホールド材、 人工血管、 カフ部材及び生体埋込部材 被覆材に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a tissue engineering scan holder material, an artificial blood vessel, a cuff member, and a living body implanting member covering material. Background art
本発明は、 第 1に、 細胞の生着、 培養が容易で安定して組織化できる多孔性の組 織工学用スキヤホールド材と、 このスキヤホールド材を用いた人工血管に関するも のである。 本発明の組織工学用スキヤホールド材及ぴ人工血管は、 バイオテクノロ ジ一の基礎研究のみならず、 人工臓器による置換医療、 組織工学による再生医療に おける人工骨格基材として使用される医用材料にも有用であり、 特に、 血管内皮細 胞が内壁全面に生着する性質を利用して、 内径 6 mm以下の小口径であっても、 開 存率の良好な人工血管に有用である。  The present invention firstly relates to a porous tissue engineering scaffold capable of easily engrafting and culturing cells and stably organizing cells, and an artificial blood vessel using this scaffold. The scaffold material for tissue engineering and the artificial blood vessel of the present invention can be used not only in basic research in biotechnology, but also as a medical material used as an artificial skeleton base material in replacement medicine using artificial organs and regenerative medicine using tissue engineering. It is particularly useful for artificial blood vessels having a good patency rate even with a small diameter of 6 mm or less, utilizing the property that vascular endothelial cells take over the entire inner wall.
従来、 組織工学用スキヤホールド材としては、 ポリスチレン製シャーレ、 ポリエ ステル製メッシュなどの基材にコラーゲンなどの細胞外マトリックスをコーティン グしたものがあり、 単層培養を中心に広く利用されていた。 単層培養以外の培養形 態としては、 振盪培養によるスフェロイド形態やコラーゲンゲルを利用した包埋培 養があり、 特に、 コラーゲンゲルを利用した包埋培養は、 インビポ (i n V i v o ) 様に培養すること、 即ち、 三次元形態で細胞を増殖させることが可能で、 単層 培養では不十分であつた細胞機能の基礎研究をも可能とした。  Conventionally, as a material for tissue engineering, there has been used a material such as a polystyrene Petri dish or a polyester mesh coated with an extracellular matrix such as collagen, which has been widely used mainly in monolayer culture. Culture modes other than monolayer culture include spheroid morphology by shaking culture and embedded culture using collagen gel.Especially, embedded culture using collagen gel is cultivated in vivo. In other words, it was possible to grow cells in a three-dimensional morphology, and it was also possible to conduct basic research on cell functions that were insufficient with monolayer culture.
従来の人工血管は、 ポリエステル樹脂や P T F E樹脂製のメッシュからなるチュ ーブが古くから実用化されており、 小口径化や開存率向上などを課題として研究が 進められている。 現在までに検討されている技術の主流は、 抗血栓材料として実績 のあるセグメント化ポリウレタンチューブを使用したもの、 グラフト鎖などを利用 してへパリンなどの抗血栓物質を表面に固定した人工血管材料などである。  For conventional artificial blood vessels, tubes made of polyester resin or PTFE resin mesh have been put into practical use for a long time, and research is being conducted to reduce the diameter and improve the patency rate. The mainstream technologies studied to date are those using segmented polyurethane tubing, which has a proven track record as an antithrombotic material, and an artificial vascular material in which an antithrombotic substance such as heparin is immobilized on the surface using a graft chain or the like. And so on.
包埋培養用のコラーゲンゲルは、三次元網状構造体のような多孔構造体ではなく、 細胞の生着が全面に均一に得られない、 又は生着の分布を調整できないという問題 がある。 三次元網状構造を有する多孔性材料の作製方法としては、 含塩法や気泡法 などが知られているが、 孔径ゃ孔密度を厳密にかつ任意に調節することは困難であ り、 適当な三次元網状構造体よりなるスキヤホールド材は未だに得られていない。 コラ一ゲンゲル包埋培養によつて得た細胞生着構造体は、 スキヤホールド材であ るコラーゲンゲル自体に物理的強度がなく、細胞機能の評価には使用可能であるが、 機械的な負荷がかかる用途、例えば、人工血管などに利用することはできなかった。 Collagen gel for embedded culture is not a porous structure such as a three-dimensional network structure, There is a problem that cell engraftment cannot be obtained uniformly over the entire surface, or the distribution of engraftment cannot be adjusted. As a method for producing a porous material having a three-dimensional network structure, a salt-containing method, a bubble method, and the like are known. There has not yet been obtained a hold member made of a three-dimensional network structure. The cell engraftment structure obtained by collagen gel embedding culture has no physical strength in the collagen gel itself, which is the carrier material, and can be used to evaluate cell functions. However, it cannot be used for such uses, for example, for artificial blood vessels.
自家血管の代替材としての人工血管は既に広く臨床応用されているものの、 小口 径の人工血管では開存性が悪いために、 冠状動脈のバイパス術、 末梢動脈再建術で 必要な小口径血管に関しては、自家静脈の移植術が採用されているのが現状である。 現在主流の小口径化検討技術のように抗血栓性のみを追求しても、 これら従来の人 ェ血管内壁には繊維性コラーゲンからなる擬内膜が形成されるのみで、 内皮の形成 にまでは至らず、この結果、小口径の人工血管では開存率が低いものとなる。また、 内壁に細胞が侵入できる孔が存在しないため、 たとえ吻合部からパンヌスが侵延し ても内壁には接着せずに浮遊し、 これが閉塞の要因となる症例も多く報告されてい る。  Although artificial blood vessels as substitutes for autologous blood vessels have already been widely used in clinical applications, small-diameter artificial blood vessels have poor patency, so small-diameter blood vessels required for coronary artery bypass surgery and peripheral artery reconstruction At present, autologous vein transplantation has been adopted. Even if only antithrombotic properties are pursued as in the current mainstream technology for examining small diameters, these conventional human blood vessel linings only form a pseudo-intimal membrane made of fibrous collagen, leading to the formation of endothelium. As a result, the patency rate of a small-diameter artificial blood vessel is low. In addition, there are many cases in which pannus invades from the anastomosis part without adhering to the inner wall, which causes occlusion, because there is no hole in the inner wall through which cells can enter.
本発明は、 第 2に、 生体組織からの細胞の侵入が可能で、 生体組織と頑強な癒着 が得られるカフ部材に係り、 特に、 力-ユーレゃカテーテル類を皮下刺入する療法 である捕助人工心臓による血液循環法、 腹膜透析療法、 中心静脈栄養法、 経カニュ ーレ D D S及ぴ経カテーテル D D Sなどの生体皮膚刺入部に有用なカフ部材に関す る。  Secondly, the present invention relates to a cuff member capable of invading cells from a living tissue and capable of firmly adhering to the living tissue, and more particularly to a therapy for subcutaneously inserting a force-Eureta catheter. The present invention relates to cuff members useful for living skin insertion such as blood circulation using assisted heart, peritoneal dialysis, central parenteral nutrition, transcannula DDS and transcatheter DDS.
近年発達した補助人工心臓や腹膜透析などの療法で使用される力ニューレゃカテ 一テルは、 尿道カテーテル、 経消化管的栄養法及び気道確保術などと異なり、 皮下 刺入を行って生体内に留置する必要がある。 生体内への留置が長期間へ及ぶ場合、 生体内と外界を隔て、 生体内への細菌の侵入や体液水分の揮発を防止するために力 フ部材 (スキンカフなどともいう) を利用して疑似的に刺入部を密閉することが行 われている。 従来、 補助人工心臓による血液循環法では、 主としてポリエステル繊 維からなるフアプリックベロアを刺入力ニューレに巻き付け、 刺入部において該フ アプリックベロアと皮下組織を鏠合することで固定し、力ニューレを留置している。 腹膜透析療法においても、 ポリエステル繊維からなるフアブッリクべロアなどを力 フ部材としてカテーテルの皮膚刺入位置に固定し、 このカフ部材を圧迫するように 皮下組織を鏠合することでカテーテルを留置している。 これらフアブリックベロア にはコラーゲンなどを含浸させ、 より頑強な癒着を狙ったものもある。 また、 生体 適合性に優れる部材からなるカフ部材を刺入部の皮下組織に固定させる方法もある。 Unlike recently developed urinary catheters, enteral feeding, and airway management, force-nucleating catheters used in therapies such as ventricular assist devices and peritoneal dialysis are used to perform subcutaneous puncture into the body. Need to be detained. When the indwelling in a living body is for a long period of time, a force member (also referred to as a skin cuff) is used to separate the inside of the living body from the outside world and prevent the invasion of bacteria into the living body and volatilization of body fluid moisture. The puncture area is sealed tightly. Conventionally, in a blood circulation method using an assisted artificial heart, a pliable velor made mainly of polyester fiber is wound around a puncture input neuron, and the pliable velor and the subcutaneous tissue are fixed at the insertion portion by fixing the force velore. Has been detained. Also in peritoneal dialysis therapy, a fiber bur is made of polyester fiber, etc., as a force member, fixed at the skin insertion position of the catheter, and the catheter is indwelled by joining the subcutaneous tissue so as to press the cuff member. I have. Some of these fabric velours are impregnated with collagen or the like to achieve more robust adhesion. There is also a method in which a cuff member made of a member having excellent biocompatibility is fixed to the subcutaneous tissue at the puncture site.
しかしながら、 補助人工心臓による血液循環法は、 患者体外に設置された脈動ポ ンプによって血液循環を補助する療法であるため、 約 1 . 5 H zに相当する脈動ポ ンプの振動が力ニューレに伝達している。 即ち、 力ニューレの刺入部は、 常時、 振 動による力学的負荷を受けている。 更に、 患者自身の体位の変化、 刺入部の消毒作 業時などに力ニューレが動くことによつても皮下組織とカフ部材の接着界面にはこ れを剥離しようとする応力が生じている。 これらの応力負荷によってカフ部材と皮 下組織の癒着性が低下することが要因と判断されるトラブルの代表例に、 トンネル 感染などの感染トラブルがあり、 補助人工心臓療法の症例の中でも、 これら感染ト ラブルの経験数は非常に多くなっている。 心不全ではなく細菌感染によって療法を 中止せざるを得ない症例が多い現状において、 本療法においては感染を防止できる カフ部材の開発が急務であるといえる。  However, since the blood circulation method using a ventilator is a therapy that assists blood circulation with a pulsation pump installed outside the patient, the vibration of the pulsation pump equivalent to about 1.5 Hz is transmitted to the force neuron. are doing. In other words, the insertion portion of the force neuron is always subjected to a mechanical load due to vibration. Furthermore, due to changes in the patient's own body position and the movement of the force neuron during disinfection of the puncture site, stress is generated at the adhesive interface between the subcutaneous tissue and the cuff member in an attempt to remove it. . A typical example of a problem that is considered to be due to a decrease in the adhesion between the cuff member and the subcutaneous tissue due to these stress loads is an infection problem such as a tunnel infection. The number of experiences of troubles is very large. With the current situation in which treatment must be discontinued due to bacterial infection rather than heart failure, the development of a cuff member that can prevent infection is an urgent issue in this therapy.
皮下刺入を行ってカテーテルを長期間留置する腹膜透析療法においても、 カフ部 材に大きな課題がある。 即ち、 この療法では、 透析液を注排液するために力テーテ ルを腹腔内に留置するが、 生体がカテーテルを異物と認識することにより力テーテ ルを排除しょうとする作用が働き、 皮下組織とカテーテルが癒着せず、 表皮がカテ 一テルに沿って腹腔内へ入り込むダウングロース現象が生じてしまう。 このダウン グロースのポケットは、 消毒液の到達を困難なものとし、 表皮炎症やトンネル感染 の要因となり、 最終的には腹膜炎の誘発にも繋がっている。 緑膿菌性の腹膜炎を頻 繁に経験した患者において S E P (硬化性被繭性腹膜炎) の発症率が高いという報 告もあることを考慮すれば、 カフ部材の改良による感染防止は腹膜透析療法の大き な課題であるといえる。  Even in peritoneal dialysis therapy, in which a catheter is placed for a long time by subcutaneous insertion, there is a major problem with the cuff material. In other words, in this therapy, a force table is placed in the abdominal cavity in order to inject and drain the dialysate, but when the living body recognizes the catheter as a foreign substance, it acts to remove the force table, and the subcutaneous tissue The catheter does not adhere and the epidermis enters the abdominal cavity along the catheter, causing a downgrowth phenomenon. These pockets of downgrowth make it difficult to reach the disinfectant solution, cause epidermal inflammation and tunnel infections, and ultimately also induce peritonitis. Considering that there is a report that the incidence of SEP (sclerosing cocoon peritonitis) is high in patients who frequently experience Pseudomonas aeruginosa peritonitis, the prevention of infection by improving cuff members is It can be said that this is a major issue.
上述の如く、 コラーゲンを主成分とするカフ部材などが開発されているが、 この ようなカフ部材の場合、 生理食塩水、 アルコール、 イソジン、 血液、 体液など液体 を吸収することで体積が減少し、 カテーテル刺入部に皮下組織を増殖させることが 困難であり、 その結果、 ダウングロースの抑制効果は得られていない。 本発明は、 第 3に、 人工弁、 人工弁リング、 人工血管、 人工乳房、 人工骨、 人工 関節及び人工心臓などや並びにその付帯部品類などの生体埋込部材の表面を被覆す ることで、生体からの異物反応などを緩和するための生体埋込部材被覆材に関する。 従来、 人工弁、 人工弁リング、 人工血管、 人工乳房、 人工骨、 人工関節及ぴ人工 心臓などや並びにその付帯部品類などの生体埋込部材の構成材料については、 溶出 物がない又は少なく、 化学的に不活性で周辺組織を刺激しない又は刺激が少なく、 免疫学的に生体から無視される材料を中心に検討されてきた。 このような材料とし ては、 チタニウム、 ステンレス、 白金などの金属材料、 ヒドロキシァパタイ トなど のセラミック材料並びにポリ四フッ化工チレン、 ポリエステル及びポリプロピレン などの高分子材料などがあり、 様々な用途で実用化されている。 金属材料は、 例え ば、 血管内へ留置するステント、 骨固定用ボルト、 人工関節に利用されている。 セ ラミック材料は、 例えば、 人工関節、 人工骨として関節や骨の欠損部分の充填、 代 替などに利用されている。 高分子材料は、 動脈瘤切除後に血流を確保するための人 ェ血管、 再度の切開を行わなければ抜糸が不可能な部位の縫合に使用する縫合糸、 人工気管、 乳癌切除により失った乳房の補綴術や形成外科の豊胸術に使用する人工 乳房などに実用化されている。 As described above, cuff members and the like containing collagen as a main component have been developed.In such cuff members, the volume is reduced by absorbing liquids such as physiological saline, alcohol, isodine, blood, and body fluid. The subcutaneous tissue may grow at the catheter insertion site It is difficult, and as a result, the effect of suppressing downgrowth has not been obtained. Thirdly, the present invention covers the surface of a living body-implanted member such as an artificial valve, an artificial valve ring, an artificial blood vessel, an artificial breast, an artificial bone, an artificial joint, an artificial heart and the like, and its accompanying components. The present invention relates to a covering material for a living body implanted member for mitigating a foreign substance reaction from a living body. Conventionally, there are no or few eluting materials for the constituent materials of bio-implantable members such as artificial valves, artificial valve rings, artificial blood vessels, artificial breasts, artificial bones, artificial joints and artificial hearts, and their accompanying components. Investigations have been focused on materials that are chemically inert and do not or do not irritate surrounding tissues and are immunologically ignored by the living body. Examples of such materials include metal materials such as titanium, stainless steel, and platinum; ceramic materials such as hydroxyapatite; and polymer materials such as polytetrafluoroethylene, polyester, and polypropylene. Has been Metallic materials are used, for example, for stents to be placed in blood vessels, bone fixation bolts, and artificial joints. Ceramic materials are used, for example, as artificial joints and artificial bones for filling and replacing joint and bone defects. High-molecular materials are used to secure blood flow after resection of an aneurysm, sutures used for suturing sutures that cannot be removed without re-incision, artificial trachea, breasts lost due to resection of breast cancer It has been put to practical use in artificial breasts used for prosthetic surgery and breast augmentation in plastic surgery.
生体内に埋め込む金属材料、 例えば、 血管内へ留置するステントは、 防鲭性の良 好なステンレスを主成分とするが、 長期間の血管内留置において種々の電解質、 タ ンパク質、 脂質を含有する血液に常時曝されることによって鲭を発生し、 これが周 辺組織を刺激する要因にもなることがある。  Metal materials to be implanted in the living body, for example, stents to be placed in blood vessels, are mainly composed of stainless steel, which has good protection against water, but contain various electrolytes, proteins, and lipids in long-term indwelling in blood vessels.鲭 is generated by constant exposure to blood, which may also be a factor irritating surrounding tissues.
現在実用化されている人工乳房の主流は、 生理食塩水を充填したシリコンパック などであるが、 これらは皮下埋め込み後のその表層で被包化コラーゲン組織が肥厚 して拘縮することが多く、 この場合、 シリコンバックは生体内で変形をきたし、 周 辺組織を圧迫したり、炎症反応を惹起したり、乳癌を再発したりする問題があった。 人工気管としては、 シリコンチューブからなるものが実用化されているが、 これ は生体気管との間で親和性がなく、 長期間の埋め込みによって脱離したり、 界面に おいて感染を引き起こす問題があった。  The mainstream of artificial breasts that are currently in practical use are silicone packs filled with saline, etc., which often contract and contract due to thickening of the encapsulated collagen tissue on the surface after subcutaneous implantation. In this case, the silicone bag is deformed in the living body, and there is a problem that peripheral tissues are pressed, an inflammatory reaction is caused, and breast cancer is recurred. As an artificial trachea, a tube made of a silicon tube has been put into practical use, but it has no affinity with the living trachea, and has a problem that it is detached by long-term implantation and causes infection at the interface. Was.
埋め込み型人工心臓の場合には、 例えば、 駆動モーターの振動慣性によって生体 組織との境界面で炎症、 感染がおこるポケット感染が問題となっている。 発明の開示 In the case of an implantable artificial heart, for example, Pocket infection, which causes inflammation and infection at the interface with tissues, has become a problem. Disclosure of the invention
第 1ァスぺクトに係る発明は、 三次元網状構造を有する均質な多孔体からなり、 その多孔構造の内部の全面に均一に細胞が生着し得る組織工学用スキヤホールド材 であって、 物理的強度にも優れ、 生体組織工学分野の基礎研究のみならず、 人工血 管、 特に、 内径 6 mni以下の小口径の人工血管に適用した場合であっても、 長期に 亘り高い開存率を維持し得る人工血管を構成することができる組織工学用スキヤホ ールド材と、 この組織工学用スキヤホールド材を用いた人工血管を提供することを 目的とする。  The invention according to the first aspect is a tissue engineering scan material comprising a homogeneous porous body having a three-dimensional network structure, wherein cells can be uniformly engrafted over the entire surface of the porous structure, Excellent physical strength, not only for basic research in the field of tissue engineering, but also for artificial blood vessels, especially when applied to small-diameter artificial blood vessels with an inner diameter of 6 mni or less, a high patency rate over a long period of time It is an object of the present invention to provide a tissue engineering scan hold material capable of forming an artificial blood vessel capable of maintaining the above condition, and an artificial blood vessel using the tissue engineering scan hold material.
本発明の組織工学用スキヤホールド材は、 熱可塑性樹脂製の組織工学用スキヤホ ールド材であって、該熱可塑性樹脂が平均孔径 1 0 0〜 6 5 0 μ m、見掛け密度 0 - 0 1〜0 . 5 g Z c m 3の、 連通性のある多孔性三次元網状構造を形成しているこ とを特徴とする。 The tissue engineering scan hold material of the present invention is a tissue engineering scan hold material made of a thermoplastic resin, wherein the thermoplastic resin has an average pore diameter of 100 to 65 μm and an apparent density of 0 to 0 1 to It is characterized by forming a porous three-dimensional network structure of 0.5 g Z cm 3 with communication.
本発明の組織工学用スキヤホールド材は、 上記特定の平均孔径及び見掛け密度を 有する熱可塑性樹脂の多孔性三次元網状構造を有するため、 この多孔性三次元網状 構造部の空孔部分へ細胞やコラーゲン浮遊液が容易に浸透し得る。 このため、 多孔 性三次元網状構造部の全体に均一に細胞が播種可能であり、 例えば、 中皮細胞と繊 維芽細胞の二層からなる人工腹膜を得ることも可能であり、 腹膜透析におけるダリ コシレーションのメカニズムの解析や透析の基礎検討への使用も期待できる。また、 この組織工学用スキヤホールド材を人工血管として使用しだ場合、 人工血管内壁に 血管内皮細胞を存在させることが可能であり、 閉塞が起こりにくく、 結果として小 口径の人工血管を実現することが可能である。  The tissue engineering scan hold material of the present invention has a porous three-dimensional network structure of a thermoplastic resin having the above-mentioned specific average pore diameter and apparent density, so that cells and cells are transferred to the pores of the porous three-dimensional network structure. The collagen suspension can easily penetrate. Therefore, cells can be seeded uniformly over the entire porous three-dimensional network structure.For example, it is possible to obtain an artificial peritoneum consisting of two layers of mesothelial cells and fibroblasts. It can also be used to analyze the mechanism of Dali cosulation and for basic studies on dialysis. In addition, when this tissue engineering scaffold material is used as an artificial blood vessel, vascular endothelial cells can be present on the inner wall of the artificial blood vessel, and occlusion is unlikely to occur, resulting in the realization of a small-diameter artificial blood vessel. Is possible.
本発明の人工血管は、このような本発明のスキヤホールド材からなるものであり、 内径 6 mm以下の小口径でも開存率が高く、 冠状動脈のバイパス術、 末梢動脈再建 術等に有効に適用することができる。  The artificial blood vessel of the present invention is made of the above-described carrier material of the present invention, and has a high patency rate even with a small bore of 6 mm or less in inner diameter, and is effective for coronary artery bypass surgery, peripheral artery reconstruction surgery, and the like. Can be applied.
第 2アスペク トに係る発明は、 生体皮下糸且織から細胞が容易に侵入、 生着し、 毛 細血管が構築されることで皮下組織との癒着が頑強に得られ、 その結果、 ダウング ロースの進行を抑制し、 トンネル感染を始めとする各種の感染トラブルの少ない力 フ部材を提供することを目的とする。 In the invention according to the second aspect, the cells easily invade and engraft from the subcutaneous tissue of the living body and adhere to the subcutaneous tissue by constructing capillaries, and as a result, the downgrowth is achieved. Control the progress of infection and reduce the risk of various infection troubles including tunnel infection It is an object to provide a head member.
本発明のカフ部材は、 熱可塑性樹脂又は熱硬化性樹脂よりなる基材樹脂で形成さ れた、 平均孔径 1 Ο Ο〜1 Ο 0 0 μ πιで、 見掛け密度が 0 . 0 1〜0 . 5 g Z c m 3の、 連通性のある多孔性三次元網状構造部を有することを特徴とする。 The cuff member of the present invention is formed of a base resin made of a thermoplastic resin or a thermosetting resin, has an average pore diameter of 100 μm to 100 μm, and an apparent density of 0.01 to 0.1 μm. It is characterized by having a porous three-dimensional network structure of 5 g Z cm 3 which is communicable.
本発明のカフ部材は、 上記特定の平均孔径及び見掛け密度を有する、 熱可塑性樹 脂又は熱硬化性樹脂からなる、連通性のある多孔性三次元網状構造部を有するため、 この多孔性三次元網状構造部の空孔部分へ細胞が容易に侵入して生着し、 生体組織 と頑強な癒着が得られる。  Since the cuff member of the present invention has an interconnected porous three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin having the above-mentioned specific average pore diameter and apparent density, the porous three-dimensional Cells easily penetrate into the pores of the network and engraft them, resulting in strong adhesion to living tissue.
第 3アスペクトに係る発明は、 生体皮下組織から細胞が容易に侵入、 生着して組 織化されることにより、 生体組織との癒着が頑強に得られ、 その結果、 生体埋込部 材を生体内に埋め込むことによる生体への悪影響を防止することができる生体埋込 部材被覆材を提供することを目的とする。  In the invention according to the third aspect, the cells easily invade from the subcutaneous tissue of the living body, adhere to the tissue, and are adhered to the tissue, whereby the adhesion with the living tissue can be obtained robustly. It is an object of the present invention to provide a living body implanting member covering material capable of preventing a bad effect on a living body by being implanted in a living body.
本発明の生体埋込部材被覆材は、 熱可塑性樹脂又は熱硬化性樹脂よりなる基材樹 脂で形成された、 平均孔径 1 0 0〜1 0 0 0 ^ mで、 見掛け密度が 0 · 0 1〜 0 . 5 g Z c m 3の、 連通性のある多孔性三次元網状構造部を有することを特徴とする。 本発明の生体埋込部材被覆材は、 上記特定の平均孔径及び見掛け密度を有する、 熱可塑性樹脂又は熱硬化性樹脂からなる、 連通性のある多孔性三次元網状構造部を 有するため、 この多孔性三次元網状構造部の空孔部分へ細胞が容易に侵入して生着 し、 また毛細血管の構築が可能であり、 生体組織と頑強な癒着が得られる。 The covering material for a living body implanted member of the present invention is formed of a base resin made of a thermoplastic resin or a thermosetting resin, has an average pore diameter of 100 to 100 ^ m, and has an apparent density of 0 It is characterized by having a porous three-dimensional network structure having a communicability of 1 to 0.5 g Z cm 3 . The coating material for a living body implanting member of the present invention has a continuous porous three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin having the above-mentioned specific average pore diameter and apparent density. Cells can easily invade and engraft into the pores of the three-dimensional reticulated network, and capillaries can be constructed, and robust adhesion to living tissue can be obtained.
本発明の生体埋込部材被覆材は、 細胞の侵入生着及び毛細血管の構築が可能な多 孔性三次元網状構造層を有している。  The coating material for a living body implantation member of the present invention has a porous three-dimensional network structure layer capable of invasion and engraftment of cells and construction of capillaries.
従って、 本発明の生体埋込部材被覆材を用いて、 人工弁、 人工弁リング、 人工血 管、 人工乳房、 人工骨、 人工関節及び人工心臓などや並びにその付帯部品類などの 生体内に埋め込まれる部材を被覆することにより、 これらの部材に対する周辺組織 からの異物反応を緩和することが可能である。  Therefore, the artificial implant, artificial valve ring, artificial blood vessel, artificial breast, artificial bone, artificial joint, artificial heart, and the like, and their accompanying parts are embedded in the living body using the biological implantable member covering material of the present invention. By covering the members to be treated, it is possible to alleviate foreign body reaction from the surrounding tissue to these members.
生体埋込み部材とは生体内へ埋込むものをいい、 種々の部品類から構築させるシ ステムを包含するものである。 例えば、 人工心臓システムに関していえば、 体内駆 動ュニットとしてのァクチユエ一ター(エネノレギーコンバーター)、ポンプとしての 左右血液ポンプ、 心房カフ、 心房コネクター、 動脈グラフト及ぴ動脈コネクター、 経皮的エネノレギー伝送システムのなかの体内二次コイル、 経皮的情報伝達システム のなかの体内ユニット、 バッテリーシステムのなかの体内バッテリー、 制御システ ムのなかの体内制御ユニット、 容積置換 (ボリュームディスプレースメント) シス テムにはコンプライアンスチャンバ、 容積置換チャンバ、 ベントチューブがあり、 ほかにも体内ュニット接続ケーブル及びコネクターなど多点の部品類からなるもの である。 本発明では、 これらすベてを生体內埋込み部材という。 A living body implanting member is one that is implanted in a living body, and includes a system constructed from various components. For example, when it comes to artificial heart systems, the actuator (Enoregergy converter) as an internal drive unit, the left and right blood pumps as pumps, atrial cuffs, atrial connectors, arterial grafts and arterial connectors, Internal coil in the transcutaneous energy transmission system, internal unit in the transcutaneous information transmission system, internal battery in the battery system, internal control unit in the control system, volume displacement (volume displacement) ) The system has a compliance chamber, a displacement chamber, and a vent tube. In addition, it consists of multiple parts such as internal unit connection cables and connectors. In the present invention, all of these are referred to as living body implanted members.
本発明の生体埋込部材被覆材は、 臨床的目的以外にも動物の生態調査のために発 信機などを動物体内へ埋め込む際に該発信機の外表面を被覆することで異物反応を 緩和することも可能である。 図面の簡単な説明  The implantable body covering material of the present invention can mitigate a foreign body reaction by coating the outer surface of the transmitter when implanting the transmitter into an animal body for an animal ecology survey in addition to a clinical purpose. It is also possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1で製造されたスキヤホールド材の管状構造体の全体の S EM像 ( 2 0倍) である。  FIG. 1 is an SEM image (magnification: 20) of the entire tubular structure of the carrier material manufactured in Example 1.
図 2は、 実施例 1で製造されたスキヤホールド材の管状構造体の内部の微細構造 の実体顕微鏡像 (1 0 0倍) である。  FIG. 2 is a stereomicroscopic image (100 × magnification) of the microstructure inside the tubular structure of the carrier material manufactured in Example 1.
図 3は、 実施例 1で製造されたスキヤホールド材の管状構造体の内壁の表層の S EM像 (2 0倍) である。  FIG. 3 is an SEM image (magnification: 20) of the surface layer of the inner wall of the tubular structure of the carrier material manufactured in Example 1.
図 4は、 実施例 1で製造されたスキヤホールド材の管状構造体の外周の表層の S EM像 (2 0倍) である。  FIG. 4 is an SEM image (at a magnification of 20) of the outer surface layer of the tubular structure of the carrier material manufactured in Example 1.
図 5は、 実施例 2で製造された細胞を含む多孔性三次元網状構造材料の 3日間培 養後の光学顕微鏡像 (1 0倍) である。  FIG. 5 is an optical microscope image (× 10) of the porous three-dimensional network material containing cells produced in Example 2 after culturing for 3 days.
図 6は、 実施例 2において、 1週間の追加培養後にも内部組織が全面に生着して いたことを示す光学顕微鏡写真 (1 0倍) である。  FIG. 6 is an optical micrograph (× 10) showing that in Example 2, the internal tissue had survived over the entire surface even after one week of additional culture.
図 7は、 実施例 3において、 人工血管によって血流が確保されて拍動が起こった 場面の写真である。  FIG. 7 is a photograph of a scene in Example 3 in which blood flow was secured by an artificial blood vessel and pulsation occurred.
図 8は、 実施例 3において、 移植 1週間後の人工血管内部に血栓が生成していな いことを示す写真である。  FIG. 8 is a photograph showing that thrombus was not formed inside the artificial blood vessel one week after transplantation in Example 3.
図 9は、比較例 1で製造された環状構造体の表層部の S EM像(5 0倍)である。 図 1 0は、 比較例 1で製造された環状構造体の内部の微細構造の S EM像 ( 5 0 倍) である。 FIG. 9 is a SEM image (magnification: 50) of the surface layer portion of the annular structure manufactured in Comparative Example 1. FIG. 10 is an SEM image (50%) of the microstructure inside the annular structure manufactured in Comparative Example 1. Times).
図 11は、 比較例 2で製造された細胞を含む管状構造材料の 3日間培養後の光学 顕微鏡断面像 (10倍) である。  FIG. 11 is an optical microscope cross-sectional image (× 10) of the tubular structure material containing cells produced in Comparative Example 2 after culturing for 3 days.
図 12は、 実施例 4で製造されたカフ部材の組織接触側の表面の S E M像 ( 50 倍) である。  FIG. 12 is a SEM image (magnification: 50) of the surface of the cuff member manufactured in Example 4 on the tissue contact side.
図 13は、 実施例 4で製造されたカフ部材の内部断面の S EM像 (50倍) であ る。  FIG. 13 is a SEM image (magnification: 50) of the internal cross section of the cuff member manufactured in Example 4.
図 14は、 実施例 4で製造されたカフ部材の孔径分布を測定して得られた分布図 である。  FIG. 14 is a distribution diagram obtained by measuring the pore size distribution of the cuff member manufactured in Example 4.
図 15は、 実施例 4で製造されたカフ部材をャギ胸部切開部位へ埋込み、 皮下組 織を縫合して貫通固定する手術を終えた直後の写真である。  FIG. 15 is a photograph immediately after the operation of embedding the cuff member manufactured in Example 4 into the incised area of the goat chest, suturing the subcutaneous tissue and penetrating and fixing it.
図 16 aは、実施例 4で製造された力フ部材をャギ胸部切開部位へ 2週間埋込み、 摘出した時の試験片周辺組織の拡大写真であり、 図 16 bは、 '比較のため織布を用 いて同様に試験を行った場合の試験片周辺組織の拡大写真の拡大写真である。 発明の好ましい形態  Fig. 16a is an enlarged photograph of the tissue around the test piece when the forceps member manufactured in Example 4 was implanted into the goat chest incision site for 2 weeks and extracted, and Fig. 16b is the texture for comparison. It is an enlarged photograph of an enlarged photograph of a structure around a test piece when a test is similarly performed using a cloth. Preferred embodiments of the invention
以下に、 本発明の組織工学用スキヤホールド材及び人工血管の形態を詳細に検討 する。  Hereinafter, the forms of the tissue engineering scaffold and the artificial blood vessel of the present invention will be described in detail.
本発明の組織工学用スキヤホールド材を構成する熱可塑性樹脂からなる三次元網 状構造部は、 平均孔径 100〜650 μ mで、 見掛け密度が 0. 01〜0. 5 gZ cm3の、 連通性の、 即ち、 連続気孔性の多孔性三次元網状構造であれば良く、 内 壁から外壁にいたる全体が類似の構造を有してもいても、 内壁付近と外壁付近とで 相違していても良い。 また、 部分的に平均孔径ゃ見掛け密度が変化するものであつ ても良く、 例えば、 内壁から外壁方向へ向けて平均孔径が徐々に変化する、 所謂、 異方性を有していても良い。 The three-dimensional network structure portion made of a thermoplastic resin constituting the tissue engineering skid holder of the present invention has an average pore diameter of 100 to 650 μm and an apparent density of 0.01 to 0.5 gZ cm 3 . In other words, it is only necessary that the structure be a porous three-dimensional network having a continuous pore structure.Even if the entire structure from the inner wall to the outer wall has a similar structure, there is a difference between the vicinity of the inner wall and the vicinity of the outer wall. Is also good. Further, the average pore diameter may be partially changed from the apparent density to the apparent density. For example, it may have so-called anisotropy in which the average pore diameter gradually changes from the inner wall toward the outer wall.
この熱可塑性樹脂からなる多孔性三次元網状構造の平均孔径は 100〜650 μ mで、 見掛け密度は 0. 01〜0. 5 gZ cm3であるが、 好ましい平均孔径は 1 00〜400;im、 より好ましくは 100〜300 /zmである。 見掛け密度として は 0. 01〜0. 5 gZ cm3範囲内であれば、 細胞生着性が良好で、 優れた物理 的強度を維持し、生体に近似した弾性特性が得られる力 好ましくは 0 . 0 1〜0 . 2 g Z c m 3、 より好ましくは 0 . 0 1〜0 . l g Z c m3である。 In this average pore size of the porous three-dimensional network structure composed of the thermoplastic resin is 100 to 650 mu m, although the apparent density is 0. 01~0 5 gZ cm 3, preferably an average pore size 1 00~400;. Im And more preferably 100 to 300 / zm. As long as the apparent density is within the range of 0.01 to 0.5 gZ cm 3 , the cell viability is good and the physical properties are excellent. Strength to maintain the force elastic characteristics approximate to a living body obtained preferably 0. 0 1~0. 2 g Z cm 3, more preferably 0. 0 1~0. Lg Z cm 3.
また、 平均孔径の概念において、 孔径の分布は単分散の方が好ましく、 細胞の侵 入に重要な孔径サイズである孔径 1 5 0〜3 0 0 mの孔の寄与率が高いことが望 ましい。 孔径 1 5 0〜3 0 0 μ mの孔の寄与率が 1 0 %以上、 好ましくは 2 0 %以 上、より好ましくは 3 0 %以上、更に好ましくは 4 0 %以上、特に好ましくは 5 0 % 以上あると、 細胞が侵入し易く、 また、 侵入した細胞が接着、 成長しやすいため、 スキヤホールド材及ぴ人工血管としての用途に有効である。  In the concept of the average pore size, it is preferable that the pore size distribution is monodisperse, and it is desirable that pores having a pore size of 150 to 300 m, which is an important pore size for cell invasion, have a high contribution ratio. No. The contribution ratio of pores having a pore diameter of 150 to 300 μm is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more. %, The cells easily invade, and the invaded cells easily adhere and grow, which is effective for use as a scaffold material and an artificial blood vessel.
なお、 多孔性三次元網状構造の平均孔径における孔径 1 5 0〜3 0 0 μ πιの孔の 寄与率とは、 後述の実施例 1における平均孔径の測定方法における、 全孔の数に対 する孔径 1 5 0〜3 0 0 μ πιの孔の数の割合を指す。  The contribution ratio of pores having a pore diameter of 150 to 300 μπι in the average pore diameter of the porous three-dimensional network structure is based on the total number of pores in the method for measuring the average pore diameter in Example 1 described later. It refers to the ratio of the number of pores with a pore size of 150 to 300 μπι.
このような平均孔径、見掛け密度及ぴ孔径分布の多孔性三次元網状構造であれば、 細胞 ·コラーゲン浮遊培養液等が容易に空孔部分へ浸透し、 多孔性構造層へ細胞が 接着、 成長しやすい良好なスキヤホールド材を得ることができる。 従って、 これを 管状に成形した場合には、 内壁から外周にいたる全体に細胞を生着させることがで きるため、 閉塞の危険性の低い、 開存率の高い人工血管を実現することができる。 本発明の組織工学用スキヤホールド材を構成する熱可塑性樹脂としては、 ポリゥ レタン樹脂、 ポリアミ ド樹脂、 ポリ季し酸樹脂、 ポリオレフイン樹脂、 ポリエステル 樹脂、 フ 素樹脂、 アタリル樹脂、 メタクリル樹脂並びにそれらの誘導体を例示す ることができ、 これらは 1種を単独で使用しても良く、 2種以上を併用しても良い が、 好ましくは、 ポリウレタン樹脂であり、 中でもセグメント化ポリウレタン樹脂 が抗血栓性や物理特性などの点でも優れた人工血管を得ることができ、 好ましい。 セグメント化ポリウレタン樹脂は、 ポリオール、 ジィソシァネート及ぴ鎖延長剤 の 3成分から合成され、 いわゆるハードセグメント部分とソフトセグメント部分を 分子内に有するブロックポリマー構造によるエラストマ一特性を有するため、 この ようなセグメント化ポリウレタン樹脂を使用した場合に得られるスキヤホールド材 及び人工血管は、 弾性力学的に生体血管に近似な S— S曲線 (低血圧領域では高い コンプライアンスで低弾性であり、 高血圧領域では低血圧領域よりも低いコンプラ  With such a porous three-dimensional network structure having an average pore size, apparent density and pore size distribution, cells and collagen suspension culture solution easily penetrate into pores, and cells adhere to and grow on the porous structure layer. It is possible to obtain a good carrier material which is easy to perform. Therefore, when it is formed into a tubular shape, cells can be engrafted to the whole from the inner wall to the outer periphery, so that an artificial blood vessel with a low risk of occlusion and a high patency rate can be realized. . Examples of the thermoplastic resin constituting the tissue engineering carrier material of the present invention include a polyurethane resin, a polyamide resin, a polyacid resin, a polyolefin resin, a polyester resin, a fluorine resin, an acrylamide resin, a methacryl resin, and the like. Derivatives can be exemplified.One of these may be used alone, or two or more thereof may be used in combination.Preferably, the resin is a polyurethane resin. It is preferable because an artificial blood vessel having excellent properties and physical properties can be obtained. The segmented polyurethane resin is synthesized from three components, polyol, diisocyanate, and chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule. The scaffold material and artificial blood vessel obtained by using polyurethane resin have an S—S curve that is elastically similar to a living blood vessel (higher compliance and lower elasticity in the low blood pressure region, and higher blood pressure in the high blood pressure region than in the low blood pressure region). Low compliance
>高弾性である特性) を示す管状構造体に成形することも可能であり、 抗 血栓性や物理特性にも優れている。 > Highly elastic properties). Also excellent in thrombotic and physical properties.
また、 熱可塑性樹脂が加水分解性又は生分解性を有するものであれば、 人工血管 の生体移植後に徐々に分解、 吸収され、 最終的には生着した細胞を残したまま樹脂 製の基材自体を生体から排除することも可能である。  If the thermoplastic resin has a hydrolyzable or biodegradable property, it is gradually decomposed and absorbed after the transplantation of the artificial blood vessel into the living body, and finally, the resin base material with the engrafted cells remaining. It is also possible to exclude itself from the living body.
このような熱可塑性樹脂で構成される多孔性三次元網状構造部には、 コラーゲン タイプ I、 コラーゲンタイプ II、 コラーゲンタイプ III、 コラーゲンタイプ IV、 ァ テロ型コラーゲン、 フイブロネクチン、 ゼラチン、 ヒアノレロン酸、 へパリン、 ケラ タン酸、 コンドロイチン、 コンドロイチン硫酸、 コンドロイチン硫酸 B、 ヒドロキ シェチルメタクリレートとジメチルァミノェチルメタクリレートの共重合体、 ヒ ド 口キシェチルメタクリレートとメタタリル酸の共重合体、 アルギン酸、 ポリアタリ ルアミド、 ポリジメチルァクリルアミド及ぴポリビニルピロリ ドンからなる群から 選択される 1種又は 2種以上が保持されていても良く、更には繊維芽細胞増殖因子、 インターロイキン一 1、 腫瘍増殖因子 、 上皮増殖因子及び二倍体繊維芽細胞増殖 因子よりなる群から選ばれる 1種又は 2種以上のサイトカイン類が保持されていて も良く、 更に、 胚性幹細胞、 血管内皮細胞、 中胚葉性細胞、 平滑筋細胞、 末梢血管 細胞及び中皮細胞よりなる群から選ばれる 1種又は 2種以上の細胞が接着されてい ても良い。 胚性幹細胞は分化されたものであっても良い。  The porous three-dimensional network structure composed of such a thermoplastic resin includes collagen type I, collagen type II, collagen type III, collagen type IV, atherocollagen, fibronectin, gelatin, hyaluronic acid, and heparin. Keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate B, copolymer of hydroxymethyl methacrylate and dimethylaminoethyl methacrylate, copolymer of hydridic xylethyl methacrylate and methacrylic acid, alginic acid, polyatarylamide, One or more selected from the group consisting of polydimethylacrylamide and polyvinylpyrrolidone may be retained, and further, fibroblast growth factor, interleukin-1, tumor growth factor, epithelial growth Factor and double One or more cytokines selected from the group consisting of fibroblast growth factors may be retained, and furthermore, embryonic stem cells, vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells And one or more cells selected from the group consisting of mesothelial cells and mesothelial cells. Embryonic stem cells may be differentiated.
また、 本発明の組織工学用スキヤホールド材は、 その多孔性三次元網状構造層を 構築する熱可塑性樹脂からなる骨格自体にも微細な孔を設けることが可能である。 このような微細孔は、 骨格表面を平滑な表面でなく複雑な凹凸のある表面とし、 コ ラーゲンや細胞増殖因子などの保持にも有効であり、 結果として細胞の生着性を上 げることが可能である。 ただし、 この場合の微細孔は、 本発明でいう多孔性三次元 網状構造部の平均孔径の計算の概念に導入されるものではない。  In the tissue engineering scan hold material of the present invention, fine pores can be provided in the skeleton itself made of a thermoplastic resin for constructing the porous three-dimensional network structure layer. Such micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for holding collagen and cell growth factors, etc., resulting in increased cell engraftment Is possible. However, the micropores in this case are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure in the present invention.
本発明の組織工学用スキヤホールド材の形状には特に制限はないが、 例えば管状 構造体とした場合、 人工血管として使用することができる。  The shape of the tissue engineering scaffold material of the present invention is not particularly limited. For example, in the case of a tubular structure, it can be used as an artificial blood vessel.
この場合、 この管状構造体は内径 0 . 3〜 1 5 111111で外径0 . 4〜 2 0 mm、 好 ましくは内径 0 . 3〜 : L O mmで外径 0 . 4〜 1 5 mm、 更に好ましくは内径 0 . 3〜 6 mmで外径 0 . 4〜 : L 0 mm、 特に好ましくは内径 0 . 3〜 2 . 5 mmで外 径 0 . 4〜: L 0 mm、 とりわけ好ましくは内径 0 . 3〜 1 . 5 mmで外径 0 . 4〜 1 0 mmである。 このような小口径の人工血管であっても長期に亘り、 高い開存率 を維持することができる。 In this case, this tubular structure has an inner diameter of 0.3 to 15 111111 and an outer diameter of 0.4 to 20 mm, preferably an inner diameter of 0.3 to: LO mm and an outer diameter of 0.4 to 15 mm. More preferably, the inner diameter is 0.3-6 mm and the outer diameter is 0.4-: L 0 mm, particularly preferably, the inner diameter is 0.3-2.5 mm, the outer diameter is 0.4-: L 0 mm, particularly preferably the inner diameter. 0.3-1.5 mm, outer diameter 0.4- 10 mm. Even with such a small-diameter artificial blood vessel, a high patency rate can be maintained over a long period of time.
本発明のスキャホールド材からなる本発明の人工血管は、 その外側を別の管状構 造体で被覆したものであっても良く、 このような被覆層を設けることにより、 本努 明のスキヤホールド材へのコラーゲンなどの含浸密度が低い場合やスキヤホールド 材の肉厚が薄い場合などに、移植後の一定期間血液のリークを防止し、細胞の接着、 生着が十分に行われて血液リークの可能性が低くなった頃に生体に吸収され、 消滅 するといつた補助的な効果を与えることも可能である。 この被覆用の管状構造体と しては、特に制限はないが、例えば、キトサン、ポリ乳酸樹脂、ポリエステル樹脂、 ポリアミド樹脂、ポリウレタン樹脂、フイブロネクチン、ゼラチン、 ヒアルロン酸、 ケラタン酸、 コンドロイチン、 コンドロイチン硫酸、 コンドロイチン硫酸 B、 ヒ ド 口キシェチルメタクリレートとジメチルアミノエチルメタクリレートの共重合体、 ヒドロキシェチルメタクレートとメタクリル酸の共重合体、 アルギン酸、 ポリアク リルァミ ド、 ポリジメチルァクリルアミ ド、 ポリビュルピロリ ドン、 架橋コラーゲ ン及ぴフイブ口インからなる群から選択される 1種又は 2種以上から形成されたチ ユーブが挙げられ、 このキトサンチューブ等の被覆用の管状構造体の厚さ (外径と 内径の差) は 5〜 5 0 0 πι程度であることが好ましい。  The artificial blood vessel of the present invention comprising the scaffold material of the present invention may be one in which the outside is coated with another tubular structure. By providing such a coating layer, the present invention provides When the density of impregnation of collagen or other material into the material is low, or when the thickness of the carrier material is thin, blood leakage is prevented for a certain period after transplantation, and cell adhesion and engraftment are sufficiently performed to prevent blood leakage. It can be absorbed by the living body when the possibility of bleeding is low, and can give a supplementary effect when it disappears. Although there is no particular limitation on the tubular structure for coating, for example, chitosan, polylactic acid resin, polyester resin, polyamide resin, polyurethane resin, fibronectin, gelatin, hyaluronic acid, keratanic acid, chondroitin, chondroitin sulfate, Chondroitin Sulfate B, copolymer of hydroxymethyl methacrylate and dimethylaminoethyl methacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, polyacrylamide, polydimethylacrylamide, polybutylpyrroli And a tube formed from one or more selected from the group consisting of don, cross-linked collagen and fibrous mouth. The thickness (outer diameter) of the tubular structure for coating such as the chitosan tube And the inner diameter is about 5 ~ 500 πι It is preferable.
本発明の人工血管は、 従来技術で達成できなかつた小口径のものでも開存性が高 く、 安定した血流を確保できる点でも新規なものであるが、 大口径、 例えば内径 6 mmを超えるものに適用しても何ら問題はない。  The artificial blood vessel of the present invention is novel in that it has a high patency and can secure a stable blood flow even if it has a small diameter that cannot be achieved by the conventional technology. There is no problem if it is applied to more than one.
以下に、 本発明のスキヤホールド材又は人工血管の管状構造体を構成する熱可塑 性ポリウレタン樹脂よりなる多孔性三次元網状構造の製造方法の一例を挙げるが、 本発明に係わる多孔性三次元網状構造の熱可塑性樹脂製構造体の製造方法は何ら以 下の方法に限定されるものではない。 また、 以下の方法に準拠すれば平面状基材な ど組織工学用のスキヤホールド材料として要求される様々な形状の三次元網状構造 の熱可塑性樹脂製基材を製造することができる。  Hereinafter, an example of a method for producing a porous three-dimensional network structure made of a thermoplastic polyurethane resin constituting the tubular member of the scaffold material or the artificial blood vessel of the present invention will be described. The method for producing the thermoplastic resin structure having the structure is not limited to the following method. Further, according to the following method, it is possible to produce a thermoplastic resin substrate having a three-dimensional network structure of various shapes required as a carrier material for tissue engineering, such as a planar substrate.
熱可塑性ポリウレタン樹脂よりなる多孔性三次元網状構造体を製造するには、 ま ず、 ポリウレタン樹脂と、 孔形成剤としての後述の水溶性高分子化合物と、 ポリウ レタン樹脂の良溶媒である有機溶媒とを混合してポリマードープを製造する。 具体 的には、 ポリウレタン樹脂を有機溶媒に混合して均一溶液とした後、 この溶液中に 水溶性高分子化合物を混合分散させる。 有機溶媒としては、 N、 N—ジメチルホル ムアミ ド、 N—メチル一 2—ピロリジノン、 テトラヒ ドロフランなどがあるが、 熱 可塑性ポリウレタン樹脂を溶解することができればこの限りではなく、 また、 有機 溶媒を減量するか又は使用せずに熱の作用でポリウレタン樹脂を融解し、 ここに孔 形成剤を混合することも可能である。 To manufacture a porous three-dimensional network structure made of a thermoplastic polyurethane resin, first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent that is a good solvent for the polyurethane resin are used. To produce a polymer dope. Concrete Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, a water-soluble polymer compound is mixed and dispersed in this solution. Examples of the organic solvent include N, N-dimethylformamide, N-methyl-12-pyrrolidinone, tetrahydrofuran, and the like.However, this is not limited as long as the thermoplastic polyurethane resin can be dissolved, and the amount of the organic solvent is reduced. Alternatively or without use, it is also possible to melt the polyurethane resin by the action of heat and to mix the pore former there.
孔形成剤としての水溶性高分子化合物としては、 ポリエチレングリコール、 ポリ プロピレンダリコーノレ、 ポリ ビエルアルコール、 ポリ ビニルピロリ ドン、 アルギン 酸、 力ルポキシメチノレセノレロース、 ヒ ドロキシプロピノレセルロース、 メチルセノレ口 ース、 ェチルセルロースなどが挙げられるが、 熱可塑性樹脂と均質に分散してポリ マードープを形成するものであればこの限りではない。 また、 熱可塑性樹脂の種類 によっては、 水溶性高分子化合物でなく、 フタル酸エステル、 パラフィンなどの親 油性化合物や塩化リチウム、 炭酸カルシウムなどの無機塩類を使用することも可能 である。また、高分子用の結晶核剤などを利用して凝固時の二次粒子の生成、即ち、 多孔体の骨格形成を助長することも可能である。  Examples of the water-soluble polymer compound as a pore-forming agent include polyethylene glycol, polypropylene propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, lipoxymethinoresenolellose, hydroxypropynolecellulose, and methyl cellulose paste. Examples thereof include cellulose and ethylcellulose, but are not limited as long as they are uniformly dispersed with a thermoplastic resin to form a polymer dope. Depending on the type of thermoplastic resin, lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate can be used instead of the water-soluble polymer compound. It is also possible to use a crystal nucleating agent for a polymer to promote the formation of secondary particles during coagulation, that is, the formation of a skeleton of a porous body.
熱可塑性ポリウレタン樹脂、 有機溶媒及び水溶性高分子化合物などより製造され たポリマードープは、 次いで熱可塑性ポリウレタン樹脂の貧溶媒を含有する凝固浴 中に浸漬し、 凝固浴中に有機溶媒及び水溶性高分子化合物を抽出除去する。 このよ うに有機溶媒及び水溶性高分子化合物の一部又は全部を除去することにより、 ポリ ゥレタン樹脂からなる多孔性三次元網状構造材料を得ることができる。 ここで用い る貧溶媒としては、 水、 低級アルコール、 低炭素数のケトン類などが例示できる。 凝固したポリウレタン樹脂は、 最終的には、 水などで洗浄して残留する有機溶媒や 孔形成剤を除去すれば良い。  The polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent for the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are added to the coagulation bath. Extract and remove molecular compounds. By removing part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network structure material made of a polyurethane resin can be obtained. Examples of the poor solvent used here include water, lower alcohols, and low carbon number ketones. The solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
以下に実施例及び比較例を説明するが、 本発明はその要旨を超えない限り、 以下 の実施例により何ら限定されるものではない。  Hereinafter, Examples and Comparative Examples will be described, but the present invention is not limited to the following Examples at all without departing from the gist thereof.
〔実施例 1〕  (Example 1)
熱可塑性ポリウレタン樹脂 (日本ミラクトラン社製、 ミラクトラン E 9 8 0 P N AT) を N—メチルー 2—ピロリジノン (関東化学社製、 ペプチド合成用試薬、 N M P ) にディゾルバー (約 2 0 0 O r p m) を使用して室温下で溶解して 5 . 0 % 溶液 (重量 Z重量) を得た。 この NMP溶液約 1. 0 k gをプラネタリーミキサーDissolver (approx. 200 O rpm) of thermoplastic polyurethane resin (Nippon Miractran Co., Ltd., Miractran E980PNAT) as N-methyl-2-pyrrolidinone (Kanto Chemical Co., Ltd., peptide synthesis reagent, NMP) And dissolve at room temperature 5.0% A solution (weight Z weight) was obtained. About 1.0 kg of this NMP solution
(井上製作所製、 2. OL仕込み、 PLM— 2型) に秤量して入れ、 ポリウレタン 樹脂と同重量相当のメチルセルロース (関東化学社製、 試薬、 25 c pグレード) を 40°Cで 20分間混合し、その後攪拌を継続したまま 10分間、 2 OmmHg (2. 7 k P a) まで減圧して脱泡し、 ポリマードープを得た。 (Inoue Seisakusho, 2. OL preparation, PLM-2 type) weighed and mixed with the same weight of polyurethane resin as methyl cellulose (Kanto Chemical Co., reagent, 25 cp grade) at 40 ° C for 20 minutes. Then, while stirring was continued, the pressure was reduced to 2 OmmHg (2.7 kPa) for 10 minutes to remove bubbles, thereby obtaining a polymer dope.
化学実験用濾紙 (東洋濾紙社製、 定性分析用、 2番) で作成した内径 3. 5 mm φ、 外径 4. 6 mm φ、 長さ 6 Ommの筒状の紙管と、 3113440製の直径1. 2 mm φの芯棒と、 この芯棒を紙管の中心部分に固定できる医用ポリプロピレン樹 脂製の円柱状密栓から構成させるチューブ成形治具中に、 上記ポリマードープを 2 3ゲージの針を使用して射出注入し、 その後密栓した後、 還流状態にあるメタノー ル中へ投入して 72時間還流を継続して、 紙管面から内部の NMP溶媒を抽出除去 することによりポリウレタン樹脂を凝固させた。 この際、 メタノールは還流状態を 維持したまま、 随時新液と交換した。 72時間後、 チューブ成形治具を還流状態の メタノールから乾燥させることなく室温下のメタノール浴中に移し、 浴内でチュ一 ブ成形治具から内容物を取り出し、 日本薬局方精製水中で 72時間洗浄することに よりメチルセルロース、 メタノール及び残留する NMPを抽出除去した。 洗浄用の 水は随時新液を供給した。 これを室温下で 24時間減圧 ( 20 mmH g (2. 7 k P a))乾燥させて、本発明の一実施形態である、人工血管として使用可能な管状の 多孔性三次元網状構造のスキヤホールド材を得た。  A 3.5 mm inner diameter, 4.6 mm outer diameter, 6 Omm long cylindrical paper tube made with a filter paper for chemical experiments (manufactured by Toyo Roshi Kaisha, for qualitative analysis, No. 2) and a 3113440 In a tube molding jig consisting of a core rod with a diameter of 1.2 mm φ and a cylindrical stopper made of medical polypropylene resin that can fix this core rod to the center of the paper tube, 23 g of the polymer dope was added. After injecting and injecting using a needle, and then sealing, the polyurethane resin is extracted by removing the internal NMP solvent from the paper tube surface by putting it into refluxing methanol and continuing refluxing for 72 hours. Coagulated. At this time, the methanol was replaced with a new solution at any time while maintaining the reflux state. After 72 hours, transfer the tube-forming jig from the refluxed methanol to a methanol bath at room temperature without drying, remove the contents from the tube-forming jig in the bath, and place in purified water of Japanese Pharmacopoeia for 72 hours. By washing, methyl cellulose, methanol and residual NMP were extracted and removed. Fresh water was supplied from time to time for washing. This was dried at room temperature under reduced pressure (20 mmHg (2.7 kPa)) for 24 hours to obtain a tubular porous three-dimensional network-shaped scan that can be used as an artificial blood vessel according to an embodiment of the present invention. Hold material was obtained.
図 1〜4は、 このスキヤホールド材を走查型電子顕微鏡 (】 £01^社製3£]^、 JMS- 5800 LV) 又は実体顕微鏡 (キーエンス社製、 VH— 6300) にて 撮影した像であるが、 この図 1〜4より、 得られたスキヤホールド材の基材が、 孔 径約 200 μ mで、 内径が 1. 2 mm φ、 外径が 3. 2 mm φで、 構造体内部 (図 2)、 内壁表層 (図 3) 及ぴ外周表層 (図 4) ともほぼ同一の構造の多孔性三次元網 状構造で、 全体が均質な多孔質体であることが分かる。  Figures 1 to 4 show images of this carrier material taken with a scanning electron microscope (3)] manufactured by [011], JMS-5800 LV, or a stereo microscope (VH-6300, manufactured by KEYENCE). However, according to Figs. 1-4, the base material of the obtained skid holder material has a hole diameter of about 200 μm, an inner diameter of 1.2 mmφ, an outer diameter of 3.2 mmφ, and a structure It can be seen that the inside (Fig. 2), the inner wall surface layer (Fig. 3) and the outer surface layer (Fig. 4) have a porous three-dimensional network structure with almost the same structure, and that the whole is a homogeneous porous body.
得られたスキヤホールド材について、 下記方法により平均孔径及び見掛け密度の 測定を行った。 なお、 平均孔径と見掛け密度の測定において、 試料の切断は両刃力 ミソリ (フェザー社製、 ハイステンレス) を使用して室温下で行った。  The average pore diameter and the apparent density of the obtained carrier material were measured by the following methods. In the measurement of the average pore diameter and the apparent density, the sample was cut at room temperature using a double-blade razor (Feather, high stainless steel).
[平均孔径の測定] 両刃力ミソリで切断した試料の平面 (切断面) を実体顕微鏡 (キーエンス社製、[Measurement of average pore size] The plane (cut surface) of the sample cut with a double-edged razor is converted into a stereomicroscope (Keyence,
VH- 6300) にて撮影した写真を使用して、 同一平面上の個々の孔を三次元網 状構造の骨格から包囲された図形として画像処理 (画像処理装置はニレコ社の LU ZEX APを使用し、 画像取り込み CCDカメラは SONYの LE N 50を使 用した。) し、個々の図形の面積を測定した。 これを真円面積とし、対応する円の直 径を求め孔径とした。 多孔体の骨格部分に穿孔した微細孔を無視して同一平面上の 連通孔のみを測定した結果、 平均孔径は 169±55 ;tmと計測された。 同時に、 孔径分布における孔径 150〜300 μπιの寄与率は 71. 2%と計測され、 細胞 接着に有効なサイズの孔を主体とする多孔体であることが確認された。 Using the photos taken with VH-6300), image processing of individual holes on the same plane as a figure surrounded by a skeleton of a three-dimensional network structure. (Image processing device uses NIRECO's LU ZEX AP.) The image was captured using a SONY LEN 50 CCD camera.) Then, the area of each figure was measured. This was defined as the true circle area, and the diameter of the corresponding circle was determined as the hole diameter. The average pore diameter was measured to be 169 ± 55; tm, ignoring the micropores drilled in the skeleton of the porous body and ignoring the micropores drilled in the same plane. At the same time, the contribution ratio of 150 to 300 μπι in the pore size distribution was measured to be 71.2%, confirming that the porous body was mainly composed of pores of a size effective for cell adhesion.
[見掛け密度の測定]  [Measurement of apparent density]
約 10 mm長さに両刃力ミソリで切断した試料を投影機(N i k o n、 V— 12) にて測定して得た寸法より体積を求め、その重量を体積で除した値から求めた結果、 0. 077±0. 002 g/cm3と計算された。 As a result of calculating the volume from the dimensions obtained by measuring a sample cut with a double-edge razor to a length of about 10 mm with a projector (Nikon, V-12), and dividing the weight by the volume, 0.077 ± 0.002 g / cm 3 was calculated.
本発明の特徴である三次元網状構造は、 孔と孔の連通性に優れる構造であるが、 この連通性の指標となる透水性の評価を以下のように行った。  The three-dimensional network structure, which is a feature of the present invention, is a structure that is excellent in continuity between holes. The evaluation of water permeability as an index of the continuity was performed as follows.
[透水性の評価]  [Evaluation of water permeability]
まず、 10 mmの長さに上記と同様に切断した試料の片側の末端部を密栓し、 も う一端の開孔から、 内径 0. 3πιιηφ、 外径 1. 2πιπιφ、 長さ 40mmの針を、 試料の管状構造体の有効透過面が管長で 0. 50 mmとなるように調整して揷入し た。 この針に長さ 50mm、 直径 5πιπιφのシリコンチューブと、 25 gの水を入 れた直径 2 ΟΗΙΠΙΦ, 長さ 90 mmのガートルを連結し、 2 5 °Cで蒸留水の透過性 を測定した。 透水量は 13 · 47±0. 33 gZ60秒、 24. 64±0. 35 g /120秒であった。 この試料を装着していない無負荷状態での透水量が、 13. 70Z60秒、 24. 87/120秒であることから、 このスキヤホールド材は良 好な透水性を有する、 連通性の高い三次元網状構造体であることが確認された。 〔実施例 2〕  First, seal the end of one side of the sample cut in the same way as above to a length of 10 mm, and insert a needle with an inner diameter of 0.3πιιηφ, an outer diameter of 1.2πιπιφ, and a length of 40mm from the opening at the other end. The tube was adjusted so that the effective transmission surface of the tubular structure was 0.50 mm in tube length. The needle was connected to a 50 mm long, 5πιπιφ diameter silicon tube and a 25 mm diameter water-filled, 2 mm diameter, 90 mm long girdle, and the permeability of distilled water was measured at 25 ° C. Permeability was 13.47 ± 0.33 gZ for 60 seconds and 24.64 ± 0.35 g / 120 seconds. Since the amount of water permeation under no load without this sample is 13.70Z60 seconds and 24.87 / 120 seconds, this carrier material has good water permeability and is highly tertiary. It was confirmed that it was an original network structure. (Example 2)
牛血管由来平滑筋細胞 (細胞密度: 6 X 106 c e 1 1 s ZmL) の DMEM (培 地成分)溶液(10%FCS (牛胎児血清)入り) とコラーゲンタイプ I溶液(0. 3%酸性溶液、高研製)を氷上冷却しながら等量で混合し、平滑筋細胞の浮遊液(細 胞密度: 3 X 106 c e 1 1 s /mL) を調製した。 Bovine blood vessel-derived smooth muscle cells (cell density: 6 × 10 6 ce 11 s ZmL) in DMEM (medium component) solution (containing 10% FCS (fetal calf serum)) and collagen type I solution (0.3% acidic Solution, manufactured by Koken Co., Ltd.) and mixed in equal amounts while cooling on ice. (Cell density: 3 × 10 6 ce 11 s / mL).
実施例 1で作製した管状の多孔性三次元網目構造のスキヤホールド材(内径: 1. 2ηιηιφ、 外径: 3. 2 mm φ、 長さ : 2 cm) の一端をクランプにて縛り、 他端 より上記平滑筋細胞の浮遊液 (lmL) をスキヤホールド材の管状構造の側壁から しみ出るまで注入した。 注入操作は全て氷上で行い、 数回繰り返すことで管状構造 体の内部まで平滑筋細胞を含むコラーゲン溶液で満たした。 その後、 クランプを取 り外し、 スキヤホールド材の管状構造体の中心に SUS 440製の 1. 2 mm の 心棒を通し、 37°Cでインキユウベータ一内で培養を行い、 細胞を含む多孔性三次 元網目構造材料を得た。  One end of the tubular porous three-dimensional network-structured carrier material (inner diameter: 1.2ηιηιφ, outer diameter: 3.2 mm φ, length: 2 cm) produced in Example 1 is bound by a clamp, and the other end is clamped. The suspension (lmL) of the smooth muscle cells was injected until it oozed from the side wall of the tubular structure of the carrier material. All injection operations were performed on ice and repeated several times to fill the inside of the tubular structure with a collagen solution containing smooth muscle cells. Then, remove the clamp, pass a 1.2 mm mandrel made of SUS440 through the center of the tubular structure of the carrier material, and incubate at 37 ° C in an incubator at 37 ° C. A three-dimensional network structure material was obtained.
このようにして得られた細胞を含む多孔性三次元網目構造材料を 3日間培養した 後光学顕微鏡にて観察した断面組織像を図 5に示す。 図 5より、 作製した構造材料 の内部に細胞が一面に分布していることが分かる。 この細胞を含む構造体は 1週間 追加培養を行っても内部組織は壊死することなく生着していることが観察された FIG. 5 shows a cross-sectional structure image obtained by culturing the porous three-dimensional network structure material containing cells obtained in this manner for 3 days and then observing the same with an optical microscope. From Fig. 5, it can be seen that cells are distributed all over the prepared structural material. It was observed that the structure containing these cells survived without necrosis even after additional culture for one week.
(図 6)。 (Figure 6).
〔実施例 3〕  (Example 3)
実施例 1にて作製した管状の多孔性三次元網目構造のスキヤホールド材 (内径: 1. 2πιπιφ、 外径: 3. 2mm<i)、 長さ : 2 cm) の一端をクランプにて縛り、 他端よりコラーゲンタイプ I水溶液 (0. 1 5重量%) を注入し、 構造体内部まで コラーゲン溶液で満たした。 その後、 クランプを除去し、 スキヤホールド材の管状 構造体の中心に S US 440製の 1. 2 mm φの心棒を通し、 37 °Cでインキユウ ベータ一内に保持させることで、 コラーゲン溶液をゲル化させ、 網目構造がコラー ゲンゲルで満たされた管状構造体を作製した。  One end of the tubular porous three-dimensional network-structured scaffold material (inner diameter: 1.2πιπιφ, outer diameter: 3.2mm <i), length: 2cm) produced in Example 1, A collagen type I aqueous solution (0.15% by weight) was injected from the other end, and the inside of the structure was filled with the collagen solution. After that, the clamp was removed, a 1.2 mm φ mandrel made of S US440 was passed through the center of the tubular structure of the carrier material, and the collagen solution was gelled by holding it in the incubator at 37 ° C. Then, a tubular structure whose network structure was filled with collagen gel was produced.
ラットの腹部大動脈を約 3 cm剥離し、 その両端をクランプにて縛り、 血流を遮 断させた後、 動脈の中央部を切断し、 その間を上記管状構造体で端々接合した。 ク ランプを除去した後、血流を再開すると、拍動が起り、人工血管として機能した(図 7)。 この人工血管を 1週間後に摘出し、管状組織体の内腔面を観察すると、 内腔面 には全く血栓が付着、 形成されず、 極めて平滑であった (図 8)。  The abdominal aorta of the rat was peeled off by about 3 cm, its ends were tied up with clamps to cut off the blood flow, then the central part of the artery was cut off, and the space between them was joined end-to-end with the tubular structure. When the blood flow was resumed after removal of the clamp, pulsation occurred and functioned as an artificial blood vessel (Figure 7). One week later, the artificial blood vessel was excised, and the lumen surface of the tubular tissue was observed. When the thrombus was not adhered or formed on the lumen surface, it was extremely smooth (FIG. 8).
〔比較例 1〕  (Comparative Example 1)
熱可塑性ポリウレタン樹脂 (日本ミラクトラン社製、 ミラクトラン E 980 PN AT) をテトラヒドラフラン (和光純薬工業社製、 THF) に 60°Cで加熱溶解し て 5. 0%溶液 (重量/重量) を得た。 この THF溶液 16mLに 12 gの Na CThermoplastic polyurethane resin (Nippon Miractran Co., Ltd., Miractran E 980 PN AT) was dissolved by heating in tetrahydrafuran (manufactured by Wako Pure Chemical Industries, Ltd., THF) at 60 ° C. to obtain a 5.0% solution (weight / weight). 12 g of Na C in 16 mL of this THF solution
1粒子 (ふるい処理により粒子径を 100〜200 μπιに揃えたもの) を分散させ た懸濁液を調製した。 この懸濁液中に SUS 440製の 1. 2 mm φ心棒を浸漬、 乾燥させ、 心棒の周りを N a C 1粒子を含むポリウレタンでチューブ状に皮膜化し た。 これを充分乾燥させた後、 イオン交換水にて良く洗浄し、 チューブ内に包埋さ れた N a C 1を溶解除去した。 これを室温下で 24時間減圧 ( 20 mmH g (2.A suspension was prepared by dispersing one particle (the particle diameter was adjusted to 100 to 200 μπι by sieving). A 1.2 mm φ mandrel made of SUS440 was immersed in this suspension, dried, and a tube was formed around the mandrel with polyurethane containing NaC1 particles. After this was sufficiently dried, it was thoroughly washed with ion-exchanged water, and NaC1 embedded in the tube was dissolved and removed. Reduce the pressure at room temperature for 24 hours (20 mmHg (2.
7 k P a)) 乾燥させて、 内径 1. 2πιπιφ、 外径 3. 2 mm φの多孔性管状構造体 を得た。 7 kP a)) After drying, a porous tubular structure having an inner diameter of 1.2πιπιφ and an outer diameter of 3.2 mmφ was obtained.
この多孔性管状構造体について、 実施例 1と同様の方法で平均孔径と見掛け密度 を測定したところ、 平均孔径は 121 ±65 μΐηであるものの、 孔径 150〜30 0 μπιの孔の寄与率は 31. 8%であった。 また、 見掛け密度は 0. 086±0. 004 g/c m3であった。 When the average pore size and apparent density of this porous tubular structure were measured in the same manner as in Example 1, the average pore size was 121 ± 65 μΐη, but the contribution ratio of pores with a pore size of 150 to 300 μπι was 31. 8%. The apparent density was 0.086 ± 0.004 g / cm 3 .
S EMによる外観観察では、 実施例 1のものが表層と内部が同一の三次元網状構 造を有しているのに対して、本比較例では、表層部に緻密層が生成しており(図 9)、 表層部分と内部とは全く異なる構造であり、 内部構造は球状の孔が集合し、 隣接す る孔と孔が接触した部分で孔の壁が貫通しており、三次元網状構造ではなかった(図 10)。  According to the appearance observation by SEM, the thing of Example 1 has a three-dimensional network structure in which the surface layer and the inside are the same, whereas in this comparative example, a dense layer is generated in the surface layer part ( (Fig. 9), the surface layer and the inside are completely different structures.The internal structure is a three-dimensional net-like structure in which spherical holes are gathered and the wall of the hole penetrates where adjacent holes come into contact. Was not (Figure 10).
また、 実施例 1と同様の方法で測定した透水性は、 11. 22±0. 46 gZ6 0秒、 20. 08±0. 96 g/120秒で、 実施例 1のものよりも低い値を示し た。 この原因は、 表層部分の孔同士の連通性が低いことと、 表層部に存在する緻密 層の影響と推定された。  The water permeability measured in the same manner as in Example 1 was 11.22 ± 0.46 gZ60 seconds, and 20.08 ± 0.96 g / 120 seconds, which were lower than those of Example 1. Indicated. This was presumed to be due to poor communication between the holes in the surface layer and the effect of the dense layer existing in the surface layer.
〔比較例 2〕  (Comparative Example 2)
実施例 2と同様にして調製した平滑筋細胞の浮遊液 (細胞密度: 3 X 106 c e 1 1 s/mL) を、 比較例 1で作製した多孔性管状構造体 (内径: 1. 2mm<i)、 外径: 3. 2mm φ、 長さ : 2 cm) に、 実施例 2と同様にして注入した後、 培養 を行って、 細胞を含む管状構造材料を得た。 A suspension of smooth muscle cells (cell density: 3 × 10 6 ce 11 s / mL) prepared in the same manner as in Example 2 was used for the porous tubular structure (inner diameter: 1.2 mm < i), an outer diameter of 3.2 mm φ, and a length of 2 cm) was injected in the same manner as in Example 2, followed by culturing to obtain a tubular structural material containing cells.
このようにして得られた細胞を含む管状構造材料を 3日間培養した後光学顕微鏡 にて観察した断面組織像を図 1 1に示す。 図 11より、 作製した構造材料の内部に は細胞は殆ど存在せず、 内壁面にのみ存在していることが分かる。 FIG. 11 shows a cross-sectional tissue image obtained by culturing the thus obtained tubular structural material containing cells for 3 days and then observing it with an optical microscope. From Fig. 11, the inside of the fabricated structural material Shows that almost no cells are present, but only on the inner wall.
以上詳述した通り、 本発明によれば、 三次元網状構造を有する均質な多孔体から なり、 その多孔構造の内部の全面に均一に細胞が生着し得る組織工学用スキヤホー ルド材であって、 物理的強度にも優れ、 生体組織工学分野の基礎研究のみならず、 人工血管、 特に、 内径 6 mm以下の小口径の人工血管に適用した場合であっても、 長期に亘り高い開存率を維持し得る人工血管を構成することができる組織工学用ス キヤホールド材と、 この組織工学用スキヤホールド材を用いた人工血管が提供され る。  As described in detail above, according to the present invention, there is provided a tissue engineering scan hold material comprising a homogeneous porous body having a three-dimensional network structure, and capable of uniformly engrafting cells throughout the inside of the porous structure. Excellent physical strength, not only for basic research in the field of biological tissue engineering, but also for artificial blood vessels, especially for artificial blood vessels with a small diameter of 6 mm or less The present invention provides a tissue-engineering scaffold capable of forming an artificial blood vessel capable of maintaining the above conditions, and an artificial blood vessel using the tissue-engineering scaffold.
以下に本発明のカフ部材の好ましレ、形態を詳細に説明する。  Hereinafter, preferred embodiments and configurations of the cuff member of the present invention will be described in detail.
本発明の力フ部材を構成する熱可塑性樹脂又は熱硬化性樹脂からなる、 連通性の ある三次元網状構造部は、 平均孔径が 100〜1000 /xm、 見掛け密度が 0. 0 1〜0. 5 g/c m3の多孔性三次元網状構造であれば良く、 厚み方向の切断断面 において、 その全面が類似の構造を有してもいても、 一方の面側と他方の面側にお いて異なる構造を有していても良い。 また、 部分的に平均孔径ゃ見掛け密度が変化 するものであっても良く、 例えば、 一方の面側から他方の面側に向けて平均孔径ゃ 見掛け密度が徐々に変化する、 所謂、 異方性を有していても良い。 また、 生体組織 との接触面側には平均孔径を大きく外れる大孔径の孔が存在しても構わない。 この ような孔としては 500〜2000 μπι程度の孔が好ましく、 これらが生体組織側 の表層近くに存在することでコラーゲンなどの細胞外マトリックスを深部まで均質 に含浸させること容易となり、 また、 組織からの細胞の侵入や毛細血管の構築など に有利に働くこととなる。 ただし、 このような大孔径の孔は、 本発明でいう多孔性 三次元網状構造の平均孔径の計算の概念に導入されるものではない。 The communicating three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin constituting the force member of the present invention has an average pore diameter of 100 to 1000 / xm and an apparent density of 0.01 to 0. A porous three-dimensional network structure of 5 g / cm 3 may be used, and even if the entire surface has a similar structure in the cross section in the thickness direction, it may be on one side and the other side. It may have a different structure. Further, the average pore diameter ゃ apparent density may partially change. For example, the average pore diameter ゃ apparent density gradually changes from one surface side to the other surface side. May be provided. In addition, large pores that greatly deviate from the average pore diameter may exist on the contact surface side with the living tissue. As such pores, pores of about 500 to 2000 μπι are preferable, and since these pores are present near the surface layer on the side of the living tissue, it becomes easy to uniformly impregnate the extracellular matrix such as collagen to a deep part, and also from the tissue. It works in favor of cell invasion and the construction of capillaries. However, such pores having a large pore diameter are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure in the present invention.
多孔性三次元網状構造の平均孔径は 100〜1000 μ mで、 見掛け密度が 0. 01〜0. 5 gZc m3であるが、 好ましい平均孔径は 200〜600 μηι、 より 好ましくは 200〜500 μπιである。 見掛け密度としては 0. 01〜0. 5 g/ cm3範囲内であれば、 細胞生着性が良好で、 優れた物理的強度を維持し、 細胞が 侵入、 生着し、 組織化した際に皮下組織と近似した弾性特性が得られるが、 好まし くは 0. 05〜0. 3 g/cm3、 より好ましくは 0. 05〜0. 2 gZcm3であ る。 平均孔径が同一であっても孔径の分布としては、 細胞の侵入に重要な孔径サイズ である 1 5 0〜4 0 0 μ πιの孔の寄与率が高いことが望ましく、 孔径 1 5 0〜4 0 0 μ mの孔の寄与率が 1 0 %以上、 好ましくは 2 0 %以上、 より好ましくは 3 0 % 以上、 更に好ましくは 4 0 %以上、 特に好ましくは 5 0 %以上であると、 細胞が侵 入し易く、 また、 侵入した細胞が接着、 成長しやすいため、 好ましい。 The porous three-dimensional network has an average pore size of 100 to 1000 μm and an apparent density of 0.01 to 0.5 gZcm 3 , but the preferred average pore size is 200 to 600 μηι, more preferably 200 to 500 μπι. It is. If the apparent density within 0. 01~0. 5 g / cm 3 range, when a cellular engraftment properties good, maintaining excellent physical strength, cell invasion, engraft, and organized Although elastic properties similar to those of subcutaneous tissue can be obtained, it is preferably 0.05 to 0.3 g / cm 3 , more preferably 0.05 to 0.2 gZcm 3 . Even if the average pore size is the same, the pore size distribution should be as high as 150 to 400 μπι, which is an important pore size for cell invasion. When the contribution rate of the pores of 100 μm is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more, This is preferable because it easily invades, and the invading cells easily adhere and grow.
多孔性三次元網状構造の平均孔径における孔径 1 5 0〜4 0 0 μ πιの孔の寄与率 とは、 後述の実施例 1における平均孔径の測定方法における、 全孔の数に対する孔 径 1 5 0〜4 0 0 μ mの孔の数の割合を指す。  The contribution ratio of pores having a pore diameter of 150 to 400 μπι in the average pore diameter of the porous three-dimensional network structure is defined as the pore diameter 15 to the total number of pores in the method for measuring the average pore diameter in Example 1 described later. Refers to the ratio of the number of pores of 0 to 400 μm.
このような平均孔径、見掛け密度及ぴ孔径分布の多孔性三次元網状構造であれば、 細胞が容易に空孔部分へ浸透し、 多孔性三次元網状構造部へ細胞が接着、 成長し易 く、 毛細血管の構築がなされ、 刺入部において皮下組織とカテーテルや力ニューレ との癒着が頑強で良好なカフ部材を得ることができる。  With such a porous three-dimensional network having an average pore size, apparent density, and pore size distribution, cells can easily penetrate into pores, and cells can easily adhere to and grow on the porous three-dimensional network. The capillaries are constructed, and a good cuff member can be obtained in which the adhesion between the subcutaneous tissue and the catheter or force neur at the puncture site is strong and strong.
多孔性三次元網状構造部の厚みとしては 0 . 2〜5 0 O mmが使用可能であるが、 好ましくは 0 . 2〜1 0 0 mm、 より好ましくは 0 . 2〜 5 0 mm、 特に好ましく は 0 . 2〜1 0 mm、 とりわけ好ましくは 0 . 2〜 5 mmであり、 このような厚み であれば、 カフ部材として必要な物理的強度、 細胞の侵入、 組織化、 皮下組織との 癒着性、 細菌バリア性などを高いレベルで満足させることができる。  As the thickness of the porous three-dimensional network structure, 0.2 to 500 mm can be used, preferably 0.2 to 100 mm, more preferably 0.2 to 50 mm, and particularly preferably. The thickness is 0.2 to 10 mm, particularly preferably 0.2 to 5 mm. With such a thickness, the physical strength required for the cuff member, cell invasion, organization, and adhesion to the subcutaneous tissue Properties and bacterial barrier properties can be satisfied at a high level.
このような多孔性三次元網状構造部を構成する熱可塑性樹脂又は熱硬化性樹脂と しては、ポリウレタン樹脂、ポリアミ ド樹脂、ポリ乳酸樹脂、ポリオレフイン樹脂、 ポリエステル樹脂、 フッ素樹脂、 尿素樹脂、 フエノール樹脂、 ェポシキ樹脂、 ポリ ィミド樹脂、 アタリル樹脂及びメタクリル樹脂並びにそれらの誘導体の 1種又は 2 種以上が例示できるが、 好ましくはポリウレタン樹脂であり、 中でもセグメント化 ポリウレタン樹脂が好適である。  Examples of the thermoplastic resin or the thermosetting resin that constitutes such a porous three-dimensional network structure portion include polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, urea resin, and phenol. Resins, epoxy resins, polyimide resins, ataryl resins, methacrylic resins, and one or more of their derivatives can be exemplified, but a polyurethane resin is preferred, and a segmented polyurethane resin is particularly preferred.
セグメント化ポリウレタン樹脂は、 ポリオール、 ジィソシァネート及び鎖延長剤 の 3成分から合成され、 いわゆるハードセグメント部分とソフトセグメント部分を 分子内に有するブロックポリマー構造によるエラストマ一特性を有するため、 この ようなセグメント化ポリウレタン樹脂を使用した場合に得られる弾性特性は、 患者 やカテーテル又は力ニューレが動いた場合や、 消毒作業時等に刺入部周辺の皮膚を 動かした場合に皮下組織とカフ部材の界面に生じる応力を減衰させる効果が期待で きる。 The segmented polyurethane resin is synthesized from three components, a polyol, a diisocyanate, and a chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule. The elastic properties that can be obtained when resin is used are the stress generated at the interface between the subcutaneous tissue and the cuff member when the patient, catheter or force neurator moves, or when the skin around the insertion site is moved during disinfection or the like. Expected to have the effect of attenuating Wear.
本発明のカフ部材には、 上記特定の多孔性三次元網状構造を形成した層を第 1の 層とし、 この第 1の層に更に異なる構造の第 2の層を積層することも可能である。 この第 2の層としては、 繊維集合体や可撓性フィルム、 更には、 第 1の層の多孔性 三次元網状構造とは平均孔径ゃ見掛け密度が異なる多孔性三次元網状構造層が使用 可能である。  In the cuff member of the present invention, it is also possible to use a layer having the specific porous three-dimensional network structure as a first layer, and further laminate a second layer having a different structure on the first layer. . As the second layer, a fiber aggregate or a flexible film, or a porous three-dimensional network structure layer having an average pore diameter different from the porous three-dimensional network structure of the first layer and an apparent density can be used. It is.
繊維集合体としては、 例えば不織布や織布が例示でき、 その厚みとしては 0 . 1 〜: 1 0 0 mm、 好ましくは 0 . 1〜 5 0 mm、 より好ましくは 0 . 1〜 1 0 mm、 とりわけ好ましくは 0 . l〜5 mmであり、 このような厚みであれば、 多孔性三次 元網状構造層と積層した際に良好な可撓性が得られ、 皮下組織との鏠合強度も頑強 であり、 好ましい。  Examples of the fiber aggregate include a nonwoven fabric and a woven fabric, and the thickness is 0.1 to: 100 mm, preferably 0.1 to 50 mm, more preferably 0.1 to 10 mm, Particularly preferably, the thickness is 0.1 to 5 mm. With such a thickness, good flexibility can be obtained when laminated with the porous three-dimensional network structure layer, and the bonding strength with the subcutaneous tissue is robust. And is preferred.
不織布又は織布の有孔性としては 1 0 0〜 5 0 0 0 c c / c m 2/m i nの範囲 のものであれば可撓性、 皮下組織との縫合強度など点で好ましい。 なお、 この有孔 性は、 J I S L 1 0 0 4により測定される値で、 通気性や通気量ということもあ る。 The non-woven fabric or the woven fabric preferably has a porosity in the range of 100 to 500 cc / cm 2 / min in terms of flexibility, suture strength with subcutaneous tissue, and the like. The porosity is a value measured according to JISL 104, and may also be called air permeability or air permeability.
繊維集合体としては、 ポリウレタン樹脂、 ポリアミド樹脂、 ポリ乳酸樹脂、 ポリ ォレフィン樹脂、 ポリエステル樹脂、 フッ素樹脂、 アクリル樹脂及ぴメタクリル樹 脂並びにこれらの誘導体よりなる群から選択される 1種又は 2種以上からなる合成 樹脂製であっても良く、 また、 フイブ口イン、 キチン、 キトサン及ぴセルロース並 びにこれらの誘導体から選択される 1種又は 2種以上のような天然物由来の繊維か らなるものも使用可能である。 合成繊維と天然物由来の繊維とを併用したものであ つても良い。  As the fiber aggregate, one or more selected from the group consisting of polyurethane resin, polyamide resin, polylactic acid resin, polyolefin resin, polyester resin, fluororesin, acrylic resin, methacrylic resin and derivatives thereof A synthetic resin consisting of fibers derived from natural products such as fibrous mouth, chitin, chitosan, cellulose, and one or more selected from these derivatives. Can also be used. Synthetic fibers and fibers derived from natural products may be used in combination.
可撓性フィルムとしては、 熱可塑性樹脂フィルム、 具体的には、 ポリウレタン樹 脂、 ポリアミド樹脂、 ポリ乳酸樹脂、 ポリオレフイン樹脂、 ポリエステル樹脂、 フ ッ素樹脂、 尿素樹脂、 フヱノール樹脂、 ェポシキ樹脂、 ポリイミ ド樹脂、 アクリル 樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる群から選択される 1種又は Examples of the flexible film include a thermoplastic resin film, specifically, a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluorine resin, a urea resin, a phenol resin, an epoxy resin, and a polyimide. One selected from the group consisting of resins, acrylic resins and methacrylic resins and derivatives thereof or
2種以上よりなるフィルムが例示でき、 好ましくは、 ポリエステル樹脂、 フッ素樹 脂、 ポリウレタン樹脂、 アクリル樹脂、 塩化ビニール、 フッ素樹脂及びシリコン樹 脂よりなる群から選択される 1種又は 2種以上よりなるフィルムである。 このような可撓性フィルムの厚みとしては、 0 . 1〜5 0 O mmであると可撓性、 物理的強度の点で有利な力フ部材が得られ、 好ましくは 0 . 1〜 1 0 0 mm、 より 好ましくは 0 . l mm〜5 O mm、さらに好ましくは 0 . 1 mn!〜 1 0 mmである。 可撓性フィルムとしては中実フィルムのみならず多孔膜や発泡体も使用可能であ る。 中実の可撓性フィルムと積層した場合には、 細菌バリア性が大きく、 感染管理 に有利なカフ部材が得られる。 Examples of the film include two or more films, and preferably one or two or more films selected from the group consisting of polyester resin, fluorine resin, polyurethane resin, acrylic resin, vinyl chloride, fluorine resin, and silicon resin. Film. When the thickness of such a flexible film is 0.1 to 50 Omm, an advantageous force member can be obtained in terms of flexibility and physical strength, and preferably 0.1 to 10 Omm. 0 mm, more preferably 0.1 mm to 5 O mm, even more preferably 0.1 mn! 110 mm. As the flexible film, not only a solid film but also a porous film or a foam can be used. When laminated with a solid flexible film, a cuff member having a high bacterial barrier property and advantageous for infection control can be obtained.
平均孔径ゃ見掛け密度が第 1の層の多孔性三次元網状構造とは異なる多孔性三次 元網状構造を第 2の層とする場合、 この多孔性三次元網状構造としては、 平均孔径 0 . 1〜2 0 0 μ πιで見掛け密度 0 . 0 1〜1 . 0 g Z c πι 3程度の多孔性三次元 網状構造を用いることができる。 この第 2の層としての多孔性三次元網状構造層の 厚みは 0 . 2〜 2 O mmであることが好ましい。 When the second layer has a porous three-dimensional network having an average pore diameter and an apparent density different from the porous three-dimensional network of the first layer, the porous three-dimensional network has an average pore diameter of 0.1. A porous three-dimensional network structure having an apparent density of about 0.01 to 1.0 g Z c πι 3 at 2200 μππ can be used. The thickness of the porous three-dimensional network structure layer as the second layer is preferably 0.2 to 2 Omm.
これらの第 2の層を多孔性三次元網状構造層に積層する方法としては、 該第 2の 層が繊維集合体、 可撓性フィルム、 第 1の層の多孔性三次元網状構造とは平均孔径 や見掛け密度が異なる多孔性三次元網状構造層の場合には、 粘着剤を使用して接着 する方法、 特にホットメルト不織布を第 1の層と第 2の層との間に挟みこんで積層 し、 加熱下で圧着する方法などが挙げられる。 このようなホットメルト不織布とし ては、 例えば、 日東紡社製 P A 1 0 0 1のようなポリアミド型熱粘着シートなどが 使用可能である。 他にも、 溶剤を使用して接触表面の表層部を溶解して接着する方 法、 熱によって表層部を溶融して接着する方法、 超音波や高周波を利用する方法な どが例示できる。 また、 第 1の層の製造時に、 ポリマードープと繊維集合体や可撓 性フィルムを積層して成形するなど、 連続的に積層形成することができる。  As a method of laminating the second layer on the porous three-dimensional network structure layer, the second layer is an average of the fiber aggregate, the flexible film, and the porous three-dimensional network structure of the first layer. In the case of a porous three-dimensional network structure layer with different pore sizes and apparent densities, a method of bonding using an adhesive, especially laminating a hot melt nonwoven fabric between the first and second layers And a method of pressing under heating. As such a hot-melt nonwoven fabric, for example, a polyamide-type thermo-adhesive sheet such as PA101 manufactured by Nittobo Co., Ltd. can be used. Other examples include a method of dissolving and bonding the surface layer of the contact surface using a solvent, a method of melting and bonding the surface layer by heat, and a method of using ultrasonic waves or high frequency. Further, at the time of manufacturing the first layer, the polymer dope can be continuously laminated and formed by laminating and molding a fiber aggregate or a flexible film.
第 2の層としては、 繊維集合体、 可撓性フィルム、 多孔性三次元網状構造層が 2 層以上設けられていても良く、 また、 第 2の層を介して第 1の層の多孔性三次元網 状構造層が積層された 3層構造であっても良い。  As the second layer, two or more layers of a fiber assembly, a flexible film, and a porous three-dimensional network structure layer may be provided, and the porosity of the first layer may be provided through the second layer. It may have a three-layer structure in which three-dimensional network structure layers are stacked.
本発明のカフ部材の多孔性三次元網状構造部には、 コラーゲンタイプ I、 コラー ゲンタイプ II、コラーゲンタイプ III、コラーゲンタイプ IV、ァテロ型コラーゲン、 フイブロネクチン、 ゼラチン、 ヒアノレロン酸、 へノ リン、 ケラタン酸、 コンドロイ チン、 コンドロイチン硫酸、 コンドロイチン硫酸 B、 エラスチン、 へパラン硫酸、 ラミニン、 ト口ンボスポンジン、 ビトロネクチン、 ォステオネタチン、 ェンタクチ ン、 ヒ ドロキシェチ^ メタクリレートとジメチルアミノエチノレメタクリレートの共 重合体、ヒドロキシェチルメタクリレートとメタタリル酸の共重合体、アルギン酸、 ポリアクリルアミ ド、 ポリジメチルァクリルァミド及びポリビュルピロリ ドンより なる群から選択される 1種又は 2種以上が保持されていても良く、 更に血小板由来 増殖因子、 上皮増殖因子、 形質転換増殖因子 α、 インスリン様増殖因子、 インスリ ン様増殖因子結合蛋白、肝細胞増殖因子、血管内皮増殖因子、アンジォポイエチン、 神経増殖因子、 脳由来神経栄養因子、 毛様体神経栄養因子、 形質転換増殖因子 i3、 潜在型形質転換増殖因子 i3、 ァクチビン、 骨形質タンパク、 繊維芽細胞増殖因子、 腫瘍増殖因子 J3、 二倍体繊維芽細胞増殖因子、 へパリン結合性上皮増殖因子様増殖 因子、 シュヮノーマ由来増殖因子、 アンフィレグリン、 ベータ一セルリン、 ェピグ レリン、 リンホトキシン、 エリスロェポイエチン、 腫瘍壌死因子 α、 インターロイ キン一 1 、 インターロイキン一 6、 インターロイキン一 8、 インターロイキン一In the porous three-dimensional network structure of the cuff member of the present invention, collagen type I, collagen type II, collagen type III, collagen type IV, atelocollagen, fibronectin, gelatin, hyaluronic acid, henolin, keratanic acid , Chondroitin, chondroitin sulphate, chondroitin sulphate B, elastin, heparan sulphate, laminin, tombospondin, vitronectin, osteonetatin, entacti Group consisting of methacrylate, hydroxymethacrylate and dimethylaminoethynolemethacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, polyacrylamide, polydimethylacrylamide and polybutylpyrrolidone One or more selected from the group consisting of: platelet-derived growth factor, epidermal growth factor, transforming growth factor α, insulin-like growth factor, insulin-like growth factor binding protein, hepatocyte proliferation Factor, vascular endothelial growth factor, angiopoietin, nerve growth factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, transforming growth factor i3, latent transforming growth factor i3, activin, bone plasma protein, fiber Blast growth factor, tumor growth factor J3, diploid fibroblast growth factor, heparin binding Sexual epidermal growth factor-like growth factor, schwannoma-derived growth factor, amphiregulin, beta-cellulin, epigrelin, lymphotoxin, erythropoietin, tumor necrosis factor α, interleukin-1, interleukin-6, interleukin 1-8, Interleukin 1
1 7、 インターフェロン、 抗ウィルス剤、 抗菌剤及び抗生物質よりなる群から選択 される 1種又は 2種以上が保持されていても良く、 更に、 胚性幹細胞 (分化されて いても良い。)、 血管内皮細胞、 中胚葉性細胞、 平滑筋細胞、 末梢血管細胞、 及ぴ中 皮細胞よりなる群から選択される 1種又は 2種以上の細胞が接着されていても良い。 本発明の力フ部材は、 その多孔性三次元網状構造層を構成する熱可塑性樹脂又は 熱硬化性樹脂からなる骨格自体にも微細な孔を設けることが可能である。 このよう な微細孔は、 骨格表面を平滑な表面でなく複雑な凹凸のある表面とし、 コラーゲン や細胞増殖因子などの保持にも有効であり、 結果として細胞の生着性を上げること が可能である。 ただし、 この場合の微細孔は、 本発明でいう多孔性三次元網状構造 層の平均孔径の計算へ算入されない。 17. One or more selected from the group consisting of interferons, antivirals, antibacterials and antibiotics may be retained, and further, embryonic stem cells (which may be differentiated), One or more cells selected from the group consisting of vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells may be adhered. In the force member according to the present invention, fine holes can be provided in the skeleton itself made of a thermoplastic resin or a thermosetting resin constituting the porous three-dimensional network structure layer. Such micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for holding collagen and cell growth factors, etc., and as a result, it is possible to increase cell engraftment is there. However, the fine pores in this case are not included in the calculation of the average pore diameter of the porous three-dimensional network structure layer in the present invention.
以下に、 本発明のカフ部材を構成する熱可塑性ポリウレタン樹脂よりなる多孔性 三次元網状構造体の製造方法の一例を挙げるが、 本発明のカフ部材の製造方法は何 ら以下の方法に限定されるものではない。  Hereinafter, an example of a method for producing a porous three-dimensional network structure made of a thermoplastic polyurethane resin constituting the cuff member of the present invention will be described, but the method for producing a cuff member of the present invention is not limited to the following method. Not something.
熱可塑性ポリゥレタン樹脂よりなる多孔性三次元網状構造体を製造するには、 ま ず、 ポリウレタン樹脂と、 孔形成剤としての後述の水溶性高分子化合物と、 ポリウ レタン樹脂の良溶媒である有機溶媒とを混合してポリマードープを製造する。 具体 的には、 ポリウレタン樹脂を有機溶媒に混合して均一溶液とした後、 この溶液中に 水溶性高分子化合物を混合分散させる。 有機溶媒としては、 N、 N—ジメチルホル ムアミ ド、 N—メチル一 2—ピロリジノン、 テトラヒ ドロフランなどがあるが、 熱 可塑性ポリウレタン樹脂を溶解することができればこの限りではなく、 また、 有機 溶媒を減量するか又は使用せずに熱の作用でポリウレタン樹脂を融解し、 ここに孔 形成剤を混合することも可能である。 In order to produce a porous three-dimensional network made of a thermoplastic polyurethane resin, first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent which is a good solvent for the polyurethane resin are used. To produce a polymer dope. Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, A water-soluble polymer compound is mixed and dispersed. Examples of the organic solvent include N, N-dimethylformamide, N-methyl-12-pyrrolidinone, tetrahydrofuran, and the like.However, this is not limited as long as the thermoplastic polyurethane resin can be dissolved, and the amount of the organic solvent is reduced. Alternatively or without use, it is also possible to melt the polyurethane resin by the action of heat and to mix the pore former there.
孔形成剤としての水溶性高分子化合物としては、 ポリエチレングリコール、 ポリ プロピレングリコール、 ポリビニルアルコール、 ポリ ビニルピロリ ドン、 アルギン 酸、 カノレポキシメチルセノレロース、 ヒ ドロキシプロピノレセノレロース、 メチノレセノレ口 ース、 ェチルセルロースなどが挙げられるが、 熱可塑性樹脂と均質に分散してポリ マードープを形成するものであればこの限りではない。 また、 熱可塑性樹脂の種類 によっては、 水溶性高分子化合物でなく、 フタル酸エステル、 パラフィンなどの親 油性化合物や塩化リチウム、 炭酸カルシウムなどの無機塩類を使用することも可能 である。また、高分子用の結晶核剤などを利用して凝固時の二次粒子の生成、即ち、 多孔体の骨格形成を助長することも可能である。  Examples of the water-soluble polymer compound as a pore-forming agent include polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, canolepoxymethylcenorelose, hydroxypropinoresenorelose, methinoresenoleose, Ethyl cellulose and the like can be mentioned, but this is not limited as long as it is uniformly dispersed with a thermoplastic resin to form a polymer dope. Depending on the type of thermoplastic resin, lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate can be used instead of the water-soluble polymer compound. It is also possible to use a crystal nucleating agent for a polymer to promote the formation of secondary particles during coagulation, that is, the formation of a skeleton of a porous body.
熱可塑性ポリウレタン樹脂、 有機溶媒及び水溶性高分子化合物などより製造され たポリマードープは、 次いで熱可塑性ポリウレタン樹脂の貧溶媒を含有する凝固浴 中に浸漬し、 凝固浴中に有機溶媒及び水溶性高分子化合物を抽出除去する。 このよ うに有機溶媒及び水溶性高分子化合物の一部又は全部を除去することにより、 ポリ ウレタン樹脂からなる多孔性三次元網状構造材料を得ることができる。 ここで用い る貧溶媒としては、 水、 低級アルコール、 低炭素数のケトン類などが例示できる。 凝固したポリウレタン樹脂は、 最終的には、 水などで洗浄して残留する有機溶媒や 孔形成剤を除去すれば良い。  The polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent for the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are added to the coagulation bath. Extract and remove molecular compounds. By removing part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network structure material made of a polyurethane resin can be obtained. Examples of the poor solvent used here include water, lower alcohols, and low carbon number ketones. The solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
以下に本努明の生体埋込部材被覆材の好ましい形態を詳細に説明する。  Hereinafter, a preferred embodiment of the living body implantable member covering material of the present invention will be described in detail.
本発明の生体埋込部材被覆材を構成する熱可塑性樹脂又は熱硬化性樹脂からなる、 連通性のある三次元網状構造部は、 平均孔径が 1 0 0〜1 0 0 0 ιη、 見掛け密度 が 0 . 0 1〜0 . 5 g Z c m 3の多孔性三次元網状構造であれば良く、 厚み方向の 切断断面において、 その全面が類似の構造を有してもいても、 一方の面側と他方の 面側において異なる構造を有していても良い。 また、 部分的に平均孔径ゃ見掛け密 度が変化するものであっても良く、 例えば、 一方の面側から他方の面側に向けて平 均孔径ゃ見掛け密度が徐々に変化する、 所謂、 異方性を有していても良い。 また、 生体組織との接触面側には平均孔径を大きく外れる大孔径の孔が存在しても構わな い。 このような孔としては 500〜2000 μπι程度の孔が好ましく、 これらが生 体組織側の表層近くに存在することでコラーゲンなどの細胞外マトリックスを深部 まで均質に含浸させること容易となり、 また、 組織からの細胞の侵入や毛細血管の 構築などに有利に働くこととなる。 ただし、 このような大孔径の孔は、 本発明でい う多孔性三次元網状構造の平均孔径の計算の概念に導入されるものではない。 The communicating three-dimensional network structure portion made of a thermoplastic resin or a thermosetting resin constituting the covering material for a living body implantation member of the present invention has an average pore diameter of 100 to 100 ιη and an apparent density of A porous three-dimensional network structure of 0.01 to 0.5 g Z cm 3 may be used. The other surface side may have a different structure. In addition, the average pore diameter / apparent density may partially change. For example, the average pore diameter may be changed from one surface side to the other surface side. It may have a so-called anisotropy in which the soot diameter 孔 the apparent density gradually changes. Further, a large-diameter hole that largely deviates from the average pore diameter may exist on the contact surface side with the living tissue. As such pores, pores having a size of about 500 to 2000 μπι are preferable, and since these pores are present near the surface layer on the side of the living tissue, it is easy to uniformly impregnate the extracellular matrix such as collagen to a deep portion. It is advantageous for the invasion of cells from the inside and the construction of capillaries. However, such large-diameter pores are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure in the present invention.
多孔性三次元網状構造の平均孔径は 100〜1000 mで、 見掛け密度が 0. 01〜0. 5 gZ cm3であるが、 好ましい平均孔径は 200〜600 μ m、 より 好ましくは 200〜500〃mである。 見掛け密度としては 0. 0 1〜0. 5 gノ cm3範囲内であれば、 細胞生着性が良好で、 優れた物理的強度を維持し、 細胞が 侵入、 生着し、 組織化した際に皮下組織と近似した弾性特性が得られるが、 好まし くは 0. 05〜0. 3 g/cm3、 より好ましくは 0. 05〜0. 2 g/ cm3であ る。 The average pore diameter of the porous three-dimensional network structure is 100 to 1000 m, an apparent density of 0.01 to 0.5 is a gZ cm 3, preferably an average pore size 200 to 600 mu m, more preferably 200~500〃 m. If the apparent density within 0. 0 1~0. 5 g Roh cm 3 range, a cellular engraftment properties good, maintaining excellent physical strength, cell invasion, engraft, and organized In this case, elastic properties similar to those of the subcutaneous tissue can be obtained, but are preferably 0.05 to 0.3 g / cm 3 , more preferably 0.05 to 0.2 g / cm 3 .
平均孔径が同一であっても孔径の分布としては、 細胞の侵入に重要な孔径サイズ である 1 50〜400 μ mの孔の寄与率が高いことが望ましく、 孔径 150〜40 0 μ mの孔の寄与率が 10 %以上、 好ましくは 20 %以上、 より好ましくは 30 % 以上、 更に好ましくは 40%以上、 特に好ましくは 50%以上であると、 細胞が侵 入し易く、 また、 侵入した細胞が接着、 成長しやすいため、 好ましい。  Even if the average pore size is the same, the pore size distribution should be as high as 150 to 400 μm, which is an important pore size for cell invasion, and 150 to 400 μm. When the contribution ratio of the cells is 10% or more, preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more, the cells can easily enter and Is preferred because it is easy to adhere and grow.
多孔性三次元網状構造の平均孔径における孔径 1 50〜400 /imの孔の寄与率 とは、 後述の実施例 1における平均孔径の測定方法における、 全孔の数に対する孔 径 1 50〜400 mの孔の数の割合を指す。  The contribution ratio of pores having a pore diameter of 150 to 400 / im in the average pore diameter of the porous three-dimensional network structure is a pore diameter of 150 to 400 m with respect to the total number of pores in the method for measuring the average pore diameter in Example 1 described later. Indicates the ratio of the number of holes.
このような平均孔径、見掛け密度及ぴ孔径分布の多孔性三次元網状構造であれば、 細胞が容易に空孔部分へ浸透し、 多孔性三次元網状構造部へ細胞が接着、 成長し易 く、 毛細血管の構築がなされ、 生体埋込部材を埋め込んだ部分において生体との頑 強かつ良好な癒着を得ることができる。  With such a porous three-dimensional network having an average pore size, apparent density, and pore size distribution, cells can easily penetrate into pores, and cells can easily adhere to and grow on the porous three-dimensional network. A capillary is constructed, and a strong and good adhesion with the living body can be obtained in the portion where the living body implanting member is embedded.
多孔性三次元網状構造部の厚みとしては 0.5〜50 Ommが使用可能であるが、 好ましくは 0. 5〜: L 00mm、 より好ましくは 0. 5〜 50 mm、 特に好ましく は 0. 5〜10mm、 とりわけ好ましくは 0. 5〜 5 mmであり、 このような厚み であれば、 生体埋込部材被覆材として必要な物理的強度、 細胞の侵入、 組織化、 生 体組織との癒着性などを高いレベル満足することができる。 The thickness of the porous three-dimensional network structure may be 0.5 to 50 Omm, preferably 0.5 to: L 00 mm, more preferably 0.5 to 50 mm, and particularly preferably 0.5 to 10 mm. , Particularly preferably 0.5 to 5 mm, such a thickness Then, a high level of physical strength, cell invasion, organization, adhesion to biological tissue, and the like required as a covering material for a living body implanted member can be satisfied.
このような多孔性三次元網状構造部を構成する熱可塑性樹脂又は熱硬化性樹脂と しては、 ポリウレタン樹脂、 ポリアミ ド樹脂、 ポリ乳酸樹脂、 ポリリンゴ酸樹脂、 ポリグリコール酸樹脂、 ポリオレフイン樹脂、 ポリエステル樹脂、 フッ素樹脂、 尿 素樹脂、 フエノール樹脂、 ェポシキ樹脂、 ポリイミド樹脂、 アクリル樹脂及びメタ クリル樹脂並びにそれらの誘導体の 1種又は 2種以上が例示できるが、 好ましくは ポリウレタン樹脂であり、 中でもセグメント化ポリウレタン樹脂が好適である。 セグメント化ポリウレタン樹脂は、 ポリオール、 ジイソシァネート及び鎖延長剤 の 3成分から合成され、 いわゆるハードセグメント部分とソフトセグメント部分を 分子内に有するプロックポリマー構造によるエラストマ一特性を有するため、 この ようなセグメント化ポリウレタン樹脂を使用した場合に得られる弾性特性は、 生体 組織と生体埋込部材の界面に生じる応力を減衰させる効果が期待できる。  Examples of the thermoplastic resin or thermosetting resin constituting such a porous three-dimensional network structure portion include polyurethane resin, polyamide resin, polylactic acid resin, polymalic acid resin, polyglycolic acid resin, polyolefin resin, and polyester. Resins, fluororesins, urine resins, phenolic resins, epoxy resins, polyimide resins, acrylic resins, methacrylic resins, and one or more of their derivatives can be exemplified, but polyurethane resins are preferred, and segmentation is particularly preferred. Polyurethane resins are preferred. The segmented polyurethane resin is synthesized from three components of a polyol, a diisocyanate and a chain extender, and has an elastomer characteristic of a block polymer structure having a so-called hard segment portion and a soft segment portion in a molecule. The elastic properties obtained when resin is used can be expected to have the effect of attenuating the stress generated at the interface between the living tissue and the living body implanted member.
本発明の生体埋込部材被覆材には、 上記特定の多孔性三次元網状構造を形成した 層を第 1の層とし、 この第 1の層に更に異なる構造の第 2の層を積層することも可 能である。 この第 2の層としては、 第 1の層の多孔性三次元網状構造とは平均孔径 や見掛け密度が異なる多孔性三次元網状構造層が使用可能である。  In the covering material for a living body implanted member of the present invention, a layer in which the specific porous three-dimensional network structure is formed is a first layer, and a second layer having a different structure is further laminated on the first layer. It is also possible. As the second layer, a porous three-dimensional network structure layer having a different average pore size and apparent density from the porous three-dimensional network structure of the first layer can be used.
本発明の生体埋込部材被覆材の多孔性三次元網状構造部には、 コラーゲンタイプ I、 コラーゲンタイプ π、 コラーゲンタイプ III、 コラーゲンタイプ IV、 ァテロ型 コラーゲン、 フイブロネクチン、ゼラチン、 ヒアルロン酸、へパリン、 ケラタン酸、 コンドロイチン、 コンドロイチン硫酸、 コンドロイチン硫酸 Β、 エラスチン、 へパ ラン硫酸、 ラミニン、 トロンボスポンジン、 ビトロネクチン、 ォステオネタチン、 ェンタクチン、 ヒドロキシェチルメタクリレートとジメチルアミノエチルメタクリ レートの共重合体、 ヒ ドロキシェチルメタクリレートとメタタリル酸の共重合体、 アルギン酸、 ポリアタリルァミ ド、 ポリジメチルァクリルアミ ド及ぴポリビュルピ ロリ ドンよりなる群から選択される 1種又は 2種以上が保持されていても良く、 更 に、 血小板由来増殖因子、 上皮増殖因子、 形質転換増殖因子 a、 インスリン様増殖 因子、 インスリン様増殖因子結合蛋白、 肝細胞増殖因子、 血管内皮増殖因子、 アン ジォポイエチン、 神経増殖因子、 脳由来神経栄養因子、 毛様体神経栄養因子、 形質 転換増殖因子 J3、 潜在型形質転換増殖因子 、 ァクチビン、 骨形質タンパク、 繊維 芽細胞増殖因子、 腫瘍増殖因子 、 二倍体繊維芽細胞増殖因子、 へパリン結合性上 皮増殖因子様増殖因子、 シュヮノーマ由来増殖因子、 アンフィレグリン、 ベータ一 セルリン、 ェピグレリン、 リンホトキシン、 エリスロェポイエチン、 腫瘍壊死因子 α、 インターロイキン一 1 j3、 インターロイキン一 6、 インターロイキン一 8、 ィ ンターロイキン一 1 7、 インターフェロン、 抗ウィルス剤、 抗菌剤及ぴ抗生物質よ りなる群から選択される 1種又は 2種以上が保持されていても良く、 更に、 胚性幹 細胞 (分化されていても良い。)、 血管内皮細胞、 中胚葉性細胞、 平滑筋細胞、 末梢 血管細胞、 及び中皮細胞よりなる群から選択される 1種又は 2種以上の細胞が接着 されていても良い。 The porous three-dimensional network structure of the covering material for a living body implanted member of the present invention includes collagen type I, collagen type π, collagen type III, collagen type IV, athero-type collagen, fibronectin, gelatin, hyaluronic acid, heparin, Keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate Β, elastin, heparan sulfate, laminin, thrombospondin, vitronectin, osteonetatin, entactin, copolymer of hydroxyethyl methacrylate and dimethylaminoethyl methacrylate, hydroxyxetil Holds one or more selected from the group consisting of methacrylate and methacrylic acid copolymers, alginic acid, polyatarylamide, polydimethylacrylamide and polybutylpyrrolidone Platelet-derived growth factor, epidermal growth factor, transforming growth factor a, insulin-like growth factor, insulin-like growth factor binding protein, hepatocyte growth factor, vascular endothelial growth factor, angiopoietin, nerve growth Factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, trait Transforming growth factor J3, latent transforming growth factor, activin, bone plasma protein, fibroblast growth factor, tumor growth factor, diploid fibroblast growth factor, heparin-binding epidermal growth factor-like growth factor, schwanoma Derived growth factors, amphiregulin, beta-cellulin, epiglerin, lymphotoxin, erythropoietin, tumor necrosis factor α, interleukin-1 j3, interleukin-6, interleukin-18, interleukin-17, interferon , One or more selected from the group consisting of antiviral agents, antibacterial agents and antibiotics may be retained, and further, embryonic stem cells (which may be differentiated), blood vessels One or two selected from the group consisting of endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells Or more of the cells may be bonded.
また、 本発明の生体埋込部材被覆材は、 その多孔性三次元網状構造層を構築する 熱可塑性樹脂又は熱硬化性樹脂からなる骨格自体にも微細な孔を設けることが可能 である。 このような微細孔は、 骨格表面を平滑な表面でなく複雑な凹凸のある表面 とし、 コラーゲンや細胞増殖因子などの保持にも有効であり、 結果として細胞の生 着性を上げることが可能である。 ただし、 この場合の微細孔は、 本発明でいう多孔 性三次元網状構造層の平均孔径の計算の概念へ導入されるものではない。  Further, in the covering material for a living body implanted member of the present invention, fine pores can be provided in a skeleton itself made of a thermoplastic resin or a thermosetting resin for constructing the porous three-dimensional network structure layer. Such micropores make the skeletal surface not a smooth surface but a complex uneven surface, and it is also effective for retaining collagen and cell growth factors, etc., and as a result, it is possible to increase cell viability. is there. However, the micropores in this case are not introduced into the concept of calculating the average pore diameter of the porous three-dimensional network structure layer in the present invention.
以下に、 本発明の生体埋込部材被覆材を構成する熱可塑性ポリウレタン樹脂より なる多孔性三次元網状構造体の製造方法の一例を挙げるが、 本発明の生体埋込部材 被覆材の製造方法は何ら以下の方法に限定されるものではない。  Hereinafter, an example of a method for producing a porous three-dimensional network structure made of a thermoplastic polyurethane resin constituting the bioimplantable member covering material of the present invention will be described. The method is not limited to the following method.
熱可塑性ポリウレタン樹脂よりなる多孔性三次元網状構造体を製造するには、 ま ず、 ポリウレタン樹脂と、 孔形成剤としての後述の水溶性高分子化合物と、 ポリウ レタン樹脂の良溶媒である有機溶媒とを混合してポリマードープを製造する。 具体 的には、 ポリウレタン樹脂を有機溶媒に混合して均一溶液とした後、 この溶液中に 水溶性高分子化合物を混合分散させる。 有機溶媒としては、 N、 N—ジメチルホル ムアミ ド、 N—メチル一2—ピロリジノン、 テトラヒドロフランなどがあるが、 熱 可塑性ポリウレタン樹脂を溶解することができればこの限りではなく、 また、 有機 溶媒を減量するか又は使用せずに熱の作用でポリウレタン樹脂を融解し、 ここに孔 形成剤を混合することも可能である。  To manufacture a porous three-dimensional network structure made of a thermoplastic polyurethane resin, first, a polyurethane resin, a water-soluble polymer compound described later as a pore-forming agent, and an organic solvent that is a good solvent for the polyurethane resin are used. To produce a polymer dope. Specifically, after a polyurethane resin is mixed with an organic solvent to form a uniform solution, a water-soluble polymer compound is mixed and dispersed in this solution. Examples of the organic solvent include N, N-dimethylformamide, N-methyl-1-pyrrolidinone, tetrahydrofuran, and the like. However, this does not apply as long as the thermoplastic polyurethane resin can be dissolved. Alternatively, it is also possible to melt the polyurethane resin by the action of heat without using it, and to mix the pore-forming agent therein.
孔形成剤としての水溶性高分子化合物としては、 ポリエチレングリコール、 ポリ プロピレングリコール、 ポリビュルアルコール、 ポリビニルピロリ ドン、 アルギン 酸、 カノレポキシメチ /レセノレロース、 ヒ ドロキシプロピノレセノレロース、 メチルセル口 ース、 ェチルセルロースなどが挙げられるが、 熱可塑性樹脂と均質に分散してポリ マードープを形成するものであればこの限りではない。 また、 熱可塑性樹脂の種類 によっては、 水溶性高分子化合物でなく、 フタル酸エステル、 パラフィンなどの親 油性化合物や塩化リチウム、 炭酸カルシウムなどの無機塩類を使用することも可能 である。また、高分子用の結晶核剤などを利用して凝固時の二次粒子の生成、即ち、 多孔体の骨格形成を助長することも可能である。 Water-soluble polymer compounds as pore-forming agents include polyethylene glycol, poly Propylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, alginic acid, canolepoximethi / resenorelose, hydroxypropinoresenorelose, methylcellulose, ethylcellulose, etc. This does not apply as long as it forms a merdope. Depending on the type of thermoplastic resin, lipophilic compounds such as phthalic acid esters and paraffin, and inorganic salts such as lithium chloride and calcium carbonate can be used instead of the water-soluble polymer compound. It is also possible to use a crystal nucleating agent for a polymer to promote the formation of secondary particles during coagulation, that is, the formation of a skeleton of a porous body.
熱可塑性ポリウレタン樹脂、 有機溶媒及び水溶性高分子化合物などより製造され たポリマードープは、 次いで熱可塑性ポリウレタン樹脂の貧溶媒を含有する凝固浴 中に浸漬し、 凝固浴中に有機溶媒及び水溶性高分子化合物を抽出除去する。 このよ うに有機溶媒及び水溶性高分子化合物の一部又は全部を除去することにより、 ポリ ウレタン樹脂からなる多孔性三次元網状構造材料を得ることができる。 ここで用い る貧溶媒としては、 水、 低級アルコール、 低炭素数のケトン類などが例示できる。 凝固したポリウレタン樹脂は、 最終的には、 水などで洗浄して残留する有機溶媒や 孔形成剤を除去すれば良い。  The polymer dope produced from a thermoplastic polyurethane resin, an organic solvent, and a water-soluble polymer compound is then immersed in a coagulation bath containing a poor solvent for the thermoplastic polyurethane resin, and the organic solvent and the water-soluble polymer are added to the coagulation bath. Extract and remove molecular compounds. By removing part or all of the organic solvent and the water-soluble polymer compound in this manner, a porous three-dimensional network structure material made of a polyurethane resin can be obtained. Examples of the poor solvent used here include water, lower alcohols, and low carbon number ketones. The solidified polyurethane resin may be finally washed with water or the like to remove the remaining organic solvent and pore-forming agent.
以上詳述した通り、 本発明の生体埋込部材被覆材によれば、 生体組織から細胞が 容易に侵入、生着して器質化されることにより、生体組織との癒着が頑強に得られ、 その結果、 生体埋込部材を生体内に埋め込むことによる生体への悪影響を防止する ことができる。  As described in detail above, according to the living body implantable member covering material of the present invention, cells easily invade from living tissues, survive and become organized, so that adhesion to living tissues can be obtained robustly, As a result, it is possible to prevent adverse effects on the living body caused by embedding the living body implanting member in the living body.
以下に実施例を挙げて本発明のカフ部材及ぴその表面を構成している生体埋込部 材被覆材をより具体的に説明するが、 本発明はその要旨を超えない限り、 以下の実 施例により何ら限定されるものではない。  Hereinafter, the cuff member of the present invention and the bioimplant covering material constituting the surface thereof will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. It is not limited in any way by the examples.
〔実施例 4〕  (Example 4)
熱可塑性ポリウレタン樹脂 (日本ミラクトラン社製、 ミラクトラン E 9 8 0 P N A T) を N—メチ — 2—ピロリジノン (関東化学社製、 ペプチド合成用試薬、 Ν M P ) にディゾルバー (約 2 0 0 0 r p m) を使用して室温下で溶解して 7 . 5 % 溶液 (重量 Z重量) を得た。 この NMP溶液約 1 . 0 k gをプラネタリーミキサー (井上製作所製、 2 . 0 L仕込み、 P LM— 2型) に秤量して入れ、 ポリウレタン 樹脂の半分重量相当のメチルセルロース (関東化学社製、試薬、 50 c pグレード) を 40°Cで 20分間攪拌して、 攪拌を継続したまま 10分間 2 OmmHg (2. 7 k P a) まで減圧して脱泡する操作を加え、 ポリマードープを得た。 Dissolver (about 2000 rpm) was added to N-methyl-2-pyrrolidinone (Kanto Chemical Co., Ltd., peptide synthesis reagent, ΝMP) from thermoplastic polyurethane resin (Milactran E980 PNAT, manufactured by Nippon Milactran). This was used and dissolved at room temperature to obtain a 7.5% solution (weight Z weight). Approximately 1.0 kg of this NMP solution is weighed and placed in a planetary mixer (manufactured by Inoue Seisakusho, 2.0 L, PLM-2 type). Stir methyl cellulose (reagent, 50 cp grade, manufactured by Kanto Chemical Co., Ltd.) equivalent to half the weight of the resin at 40 ° C for 20 minutes, and reduce the pressure to 2 OmmHg (2.7 kPa) for 10 minutes while stirring is continued. An operation of defoaming was added to obtain a polymer dope.
別に、 厚み 3 mmで、 内側の 14 OmmX 14 Omm部分を打抜いた 1 5 Omm X 15 Ommのテフロン製の四角枠を二枚重ね、 これらの間に 1 5 OmmX 1 50 mm角の化学実験用濾紙 (東洋濾紙社製、 定量分析用、 1番) を挟み固定した。 こ こに前記ポリマードープを流延し、 ガラス棒にて液切りした後、 1 5 OmmX 1 5 Omm角の化学実験用濾紙(東洋濾紙社製、定量分析用、 1番)を載せて固定した。 これを還流状態にあるメタノール中へ投入して 72時間還流を継続して上下両面の 化学実験用濾紙面から NMP溶媒を抽出除去することでポリウレタン樹脂を凝固さ せた。 なお、 メタノールは還流状態を維持したまま、 随時新液と交換した。  Separately, two 15-mm X 15-Omm Teflon square frames with a thickness of 3 mm and punched out of the inner 14 Omm X 14 Omm section are stacked, and a 15-Omm X 150-mm square filter paper for chemical experiment ( Toyo Roshi Kaisha, for quantitative analysis, No. 1) was fixed. The polymer dope was cast here, drained with a glass rod, and fixed with a 15 Omm X 15 Omm square filter paper for chemical experiments (manufactured by Toyo Roshi Kaisha, for quantitative analysis, No. 1). . The polyurethane resin was coagulated by throwing it into refluxing methanol and continuing refluxing for 72 hours to extract and remove the NMP solvent from the upper and lower surfaces of the filter paper for chemical experiments. The methanol was replaced with a new solution at any time while maintaining the reflux state.
72時間後、 テフロン枠から固化したポリウレタン樹脂を取り出し、 日本薬局方 精製水中で 72時間洗浄することによりメチルセルロース、 メタノール及ぴ残留す る NMPを抽出除去した。 洗浄用の水は随時新液を供給した。 これを、 室温下で 2 4時間減圧 (20mmHg) 乾燥させて、 熱可塑性ポリウレタン樹脂製の多孔性三 次元網状構造材料を得た。 この多孔性三次元網状構造材料は、 本努明の生体埋込部 材被覆材である。  After 72 hours, the solidified polyurethane resin was removed from the Teflon frame, and washed with purified water for 72 hours in the Japanese Pharmacopoeia to extract and remove methylcellulose, methanol and remaining NMP. Fresh water was supplied as needed for washing water. This was dried under reduced pressure (20 mmHg) at room temperature for 24 hours to obtain a porous three-dimensional network structure material made of a thermoplastic polyurethane resin. This porous three-dimensional network structure material is the bioimplant covering material of the present effort.
次に、 14 OmmX 140 mmのポリエステル製フアブリックベロア(バード社、 ポベィキー ·ダブノレ ·ベロア .ファブリック、 有孔性 3800 c c/c m2/m i n、厚み 1. 5mm) にテトラヒドロフラン (関東化学社、試薬特級) を含浸させ、 2本ロールで絞ることにより含浸量を 0. 104±0. 002 g/cm2とし、 こ こに前記多孔性三次元網状構造材料(生体埋込部材被覆材)を重ね合わせ、荷重 1. 0 k gZcni2で圧着させることにより本発明のカフ部材を得た。 Next, a 14 OmmX 140 mm polyester fabric velor (Bird, Poveyy Dubnore Velor Fabric, perforated 3800 cc / cm 2 / min, thickness 1.5 mm) was added to tetrahydrofuran (Kanto Chemical Co., Ltd., special grade reagent). ) And squeezing with two rolls to obtain an impregnation amount of 0.104 ± 0.002 g / cm 2, and superimposing the porous three-dimensional mesh structure material (covering material for living body embedded member) on this to obtain a cuff member of the present invention by compression under a load 1. 0 k gZcni 2.
図 1及び図 2は、この力フ部材表面の生体埋込部材被覆材の走査型電子顕微鏡(ト プコン社製、 SM200) にて撮影した像であるが、 得られたカフ部材の表面の生 体埋込部材被覆材が孔径約 35 Ο μπιの多孔性三次元網状構造であることが分かる。 得られたカフ部材の厚み 2. 3 mmの多孔性三次元網状構造部分 (即ち、 生体埋 込部材被覆材) について、 下記方法により平均孔径及び見掛け密度の測定を行い、 結果を表 1に示した。 なお、 平均孔径と見掛け密度の測定において、 試料の切断は 両刃力ミソリ (フェザー社製、 ハイステンレス) を使用して室温下で行った。 Figs. 1 and 2 are images of the covering member of the living body implanted member on the surface of the force-cuff member taken by a scanning electron microscope (SM200, manufactured by Topcon Corporation). It can be seen that the body implanting member covering material has a porous three-dimensional network structure with a pore diameter of about 35 μμπι. The average pore size and apparent density of the obtained cuff member with a thickness of 2.3 mm and a porous three-dimensional network structure (that is, the covering material for a bioimplant member) were measured by the following method, and the results are shown in Table 1. Was. In the measurement of average pore size and apparent density, the sample was cut The test was performed at room temperature using a double-edged power razor (Feather, high stainless steel).
[平均孔径の測定]  [Measurement of average pore size]
両刃力ミソリで切断した試料の平面 (切断面) を電子顕微鏡 (トプコン社製、 S M200) にて撮影した写真を使用して、 同一平面上の個々の孔を三次元網状構造 の骨格から包囲された図形として画像処理 (画像処理装置はニレコ社の LUZEX APを使用し、 画像取り込み CCDカメラは SONYの LE N50を使用した。) し、 個々の図形の面積を測定した。 これを真円面積とし、 対応する円の直径を求め 孔径とした。 多孔体の骨格部分に穿孔した微細孔は無視して同一平面上の連通孔の みを測定した。 同時に、 測定した全孔において孔径分布を測定し、 図示したのが図 3である。 更に孔径分布測定結果から、 孔径 150〜400 m孔の寄与率を計測 した。 - Using a photo taken by an electron microscope (SM200, manufactured by Topcon) of a plane (cut surface) of a sample cut with a double-edged razor, individual holes on the same plane are surrounded by a skeleton of a three-dimensional network structure. The images were processed (using a Nireco LUZEX AP image processor and the SONY LE N50 CCD camera was used as the image processing device), and the area of each figure was measured. This was defined as the area of a perfect circle, and the diameter of the corresponding circle was determined as the hole diameter. Fine pores perforated in the skeleton of the porous body were ignored, and only the communicating holes on the same plane were measured. At the same time, the pore size distribution was measured for all the measured pores, and is shown in Fig. 3. In addition, the contribution ratio of 150 to 400 m pores was measured from the pore size distribution measurement results. -
[見掛け密度の測定] [Measurement of apparent density]
実施例 4で製造し、 第 2の層を積層する前の三次元網状構造体を約 1 OmmX l 0 mm X 3 mmの直方体に両刃力ミソリで切断した。 この試料を投影機 (N i k o n、 V— 1 2) にて測定して得た寸法より体積を求め、 その重量を体積で除した値 から求めた。  The three-dimensional network structure manufactured in Example 4 and before the second layer was laminated was cut into a rectangular parallelepiped of about 10 mm × 10 mm × 3 mm using a double-edged razor. The volume was determined from the dimensions obtained by measuring this sample with a projector (Nikon, V-12), and the weight was divided by the volume to determine the volume.
表 1 table 1
Figure imgf000030_0001
Figure imgf000030_0001
表 1より、 第 1の多孔性三次元網状構造層は、 細胞接着に有効なサイズの孔を主 体とする多孔性三次元網状構造であることが明らかである。  From Table 1, it is clear that the first porous three-dimensional network structure layer is a porous three-dimensional network structure mainly composed of pores having a size effective for cell adhesion.
〔実施例 5〕  (Example 5)
検体には成ャギ (雌、 体重 54 k g) を用い、 剃毛された左側胸部より腹部表皮 を試験部位とした。 手術時、 検体は左側 立にて、 通常手技を用い速やかに気管内 揷管を行い、 イソフルレンによる全身麻酔下にて維持された。 胸腹部周囲表皮をィ ソジン消毒後、 表皮を 2 Omm切開し、 実施例 4で作成したカフ部材の試料片の半 分を埋込み、皮下組織を縫合して貫通固定した (図 4)。 該カフ部材は、 1 OmmX Adult goats (female, weighing 54 kg) were used as test samples, and the abdominal epidermis from the shaved left chest was used as the test site. At the time of surgery, the specimens were placed on the left side, and the endotracheal tube was quickly performed using normal procedures, and maintained under general anesthesia with isoflurane. After disinfection of the epidermis around the thorax and abdomen, the epidermis was incised by 2 Omm, half of the sample piece of the cuff member prepared in Example 4 was embedded, and the subcutaneous tissue was sutured and fixed through (Fig. 4). The cuff member is 1 OmmX
10mmの試験片に切断し、エチレンォキサイトガス滅菌を施したものを使用した。 術後、 試験部位は酸性水又はイソジンにて 1日 2回の消毒を行った。 検体は自由給 水とし、 飼料としてヘイキューブを一日 5回、 適量 (約 l k g ) を給仕した。 術後 2週間後に、 全身麻酔下にて先に埋め込まれた試験片及び周囲の組織を摘出した。 試験片と周囲の組織は密に生着し、 互いの剥離は困難であった。 また周囲に感染、 炎症等の所見は認められなかった。 A 10 mm test piece was cut and used after ethylene oxide gas sterilization. After the operation, the test site was disinfected twice a day with acidic water or isodine. Samples were provided with free water, and an appropriate amount (approximately lkg) of Hay Cube was fed as feed 5 times a day. Two weeks after the operation, the previously implanted test piece and surrounding tissue were removed under general anesthesia. The test piece and the surrounding tissue adhered densely, and it was difficult to peel off each other. No findings such as infection or inflammation were observed in the surrounding area.
図 5 aに、 このカフ部材表面 (即ち、 生体埋込部材被覆材) の生着部分をルーペ で拡大した写真を示す。 図 5 aの中の矢印で示される境界の不明瞭な乳白色の層が カフ部材の内部にも連続しており、 また、 カフ部材内部が透明な組織で充満してお り肉芽組織が浸潤していることが確認された。  Fig. 5a shows a magnified photograph of the cuff member surface (that is, the covering material of the living body implanting member) that has been engrafted with a loupe. An indistinct milky layer indicated by the arrow in Fig. 5a is also continuous inside the cuff member, and the inside of the cuff member is filled with transparent tissue, and the granulation tissue infiltrates. It was confirmed that.
図 5 bは織布(実施例 4で用いたポリエステル製フアブリックベロア(パード社、 ポベイキー ·ダブル'ベロア ·フアブリック)) 単体を用いて上記と同様に試験を行 つた場合のルーペによる拡大写真を示し、 織布の表面に沿って乳白色の層が表皮か ら深い方向でのみ浸潤している、 いわゆるダウングロース現象が確認された。  Fig. 5b shows an enlarged photograph of the loupe when a test was performed in the same manner as above using a single woven fabric (the polyester fabric velor used in Example 4 (Pardy, Poveyy Double 'Velor Fabric)) alone. As shown in the figure, a so-called down-growth phenomenon was observed in which the milky white layer infiltrated only from the epidermis in a deeper direction along the surface of the woven fabric.
これに対して、 本発明のカフ部材では、 乳白色の層が表皮近くまで連続して存在 し、 ダウングロースが抑制されていることが確認された。  On the other hand, in the cuff member of the present invention, it was confirmed that the milky white layer was continuously present near the epidermis, and that the downgrowth was suppressed.
上記試験後、 摘出された試料片は、 1 0 %中性緩衝ホルマリンにて速やかに固定 され、 常法にて H E染色標本を作成し、 光学顕微鏡にて観察した。 その結果、 本発 明の力フ部材の表面の生体埋込部材被覆材の多孔性三次元網状構造層には、 周囲糸且 織より伸展した線維芽細胞、 マクロファージおよび膠原線維などの細胞外基質を主 体とする肉芽組織が浸潤し、 また血管新生が確認された。  After the above test, the extirpated sample pieces were immediately fixed in 10% neutral buffered formalin, and HE stained specimens were prepared in a conventional manner, and observed with an optical microscope. As a result, the porous three-dimensional network structure layer of the bioimplant member covering material on the surface of the forceps member of the present invention has extracellular matrices such as fibroblasts, macrophages, and collagen fibers extended from surrounding fibers. The granulation tissue, mainly consisting of, was infiltrated, and angiogenesis was confirmed.
また、 4週間後に同様の手技にて得た標本から、 埋没された試験片内には多量の 肉芽組織が伸展し、 より成熟した結合組織が形成されていることが認められ、 更な る器質化が進んでいることが確認された。  Four weeks later, a specimen obtained by the same procedure showed that a large amount of granulation tissue had spread within the buried test piece, and that a more mature connective tissue had been formed. It has been confirmed that the conversion is progressing.
以上により、 本発明のカフ部材は多孔性三次元網状構造層へ生体細胞が浸潤する ことにより器質化し、 創傷部を外界と隔絶し、 治癒機転における細菌感染等の増悪 因子を防御することが示唆された。  The above suggests that the cuff member of the present invention is organized by infiltration of living cells into the porous three-dimensional network structure layer, isolates the wound from the outside, and protects against exacerbation factors such as bacterial infection in the healing process. Was done.
以上詳述した通り、 本発明のカフ部材によれば、 生体皮下組織から細胞が容易に 侵入、 生着し、 毛細血管が構築されることで皮下組織との癒着が頑強に得られ、 そ の結果、 創傷部を外界と隔絶し、 治癒機転における細菌感染等の増悪因子を防御ダ ゥングロースの進行を抑制し、 トンネル感染を始めとする各種の感染トラブルの少 ないカフ部材が提供される。 As described in detail above, according to the cuff member of the present invention, cells easily invade and survive from the subcutaneous tissue of a living body, and a capillary is constructed, whereby adhesion to the subcutaneous tissue is obtained, and the As a result, the wound is isolated from the outside world, and exacerbated by factors such as bacterial infection during the healing process. A cuff member that suppresses the progress of pengurose and is free from various troubles such as tunnel infection is provided.
このような本発明のカフ部材は、 力ニューレゃカテーテル類を皮下刺入する療法 である捕助人工心臓による血液循環法、 腹膜透析療法、 中心静脈栄養法、 経カニュ ーレ D D S及び経カテーテル D D Sなどの生体皮膚刺入部に好適に使用することが できる。  Such a cuff member of the present invention can be used for a blood circulation method using an assisted artificial heart, which is a therapy for subcutaneously puncturing force-neutral catheters, peritoneal dialysis therapy, central parenteral nutrition, transcannula DDS and transcatheter DDS. It can be suitably used for a living skin penetration part such as.

Claims

請求の範囲 The scope of the claims
1. 熱可塑性樹脂製の組織工学用スキヤホールド材であって、 該熱可塑性樹脂が 平均孔径 100〜6 50 m、 見掛け密度 0. 0 1〜0. 5 gZ c m3の、 連通性 のある多孔性三次元網状構造を形成していることを特徴とする組織工学用スキヤホ ールド材。 1. A tissue engineering scan holder made of a thermoplastic resin, wherein the thermoplastic resin has an average pore size of 100 to 650 m, an apparent density of 0.01 to 0.5 gZ cm 3 , and a continuous porous material. 1. A tissue-holding material for a tissue engineering, characterized by forming a conductive three-dimensional network structure.
2. 請求項 1において、 該多孔性三次元網状構造の平均孔径が 1 00〜400 μ mで、 見掛け密度が 0. 01〜0. 5 gZcm3であることを特徴とする組織工学 用スキヤホールド材。 2. The scaffold for tissue engineering according to claim 1, wherein the porous three-dimensional network structure has an average pore diameter of 100 to 400 μm and an apparent density of 0.01 to 0.5 gZcm 3 . Wood.
3. 請求項 2において、 該多孔性三次元網状構造の平均孔径が 100〜300 μ mであることを特徴とする組織工学用スキヤホールド材。  3. The scaffold for tissue engineering according to claim 2, wherein the porous three-dimensional network structure has an average pore diameter of 100 to 300 μm.
4. 請求項 1ないし 3のいずれか 1項において、 該多孔性三次元網状構造の見掛 け密度が 0. 01〜0. 2 g/ c m3であることを特徴とする組織工学用スキヤホ ールド材。 4. In any one of claims 1 to 3, the apparent only density of the porous three-dimensional network structure is 0. 01~0. 2 g / tissue engineering Sukiyaho Rudo, characterized in that cm is 3 Wood.
5. 請求項 4において、 該多孔性三次元網状構造の見掛け密度が 0. 01〜 0. l gZcm3であることを特徴とする組織工学用スキャホールド材。 5. The scaffold for tissue engineering according to claim 4, wherein the apparent density of the porous three-dimensional network structure is 0.01 to 0.1 lgZcm 3 .
6. 請求項 1ないし 5のいずれか 1項において、 該多孔性三次元網状構造の平均 孔径における孔径 1 50〜300 μπιの孔の寄与率が 10%以上であることを特徴 とする組織工学用スキヤホールド材。  6. The tissue engineering according to any one of claims 1 to 5, wherein a contribution ratio of pores having a pore diameter of 150 to 300 μπι in the average pore diameter of the porous three-dimensional network structure is 10% or more. Scan hold material.
7. 請求項 6において、 該多孔性三次元網状構造の平均孔径における孔径 150 〜300 μπιの孔の寄与率が 20%以上であることを特徴とする組織工学用スキヤ ホールド材。  7. The carrier for tissue engineering according to claim 6, wherein a contribution ratio of pores having a pore diameter of 150 to 300 μπι in the average pore diameter of the porous three-dimensional network structure is 20% or more.
8. 請求項 7において、 該多孔性三次元網状構造の平均孔径における孔径 150 〜300 μπιの孔の寄与率が 30%以上であることを特徴とする組織工学用スキヤ ホールド材。  8. The carrier for tissue engineering according to claim 7, wherein a contribution ratio of pores having a pore diameter of 150 to 300 μπι in the average pore diameter of the porous three-dimensional network structure is 30% or more.
9. 請求項 8において、 該多孔性三次元網状構造の平均孔径における孔径 150 〜300 の孔の寄与率が 40%以上であることを特徴とする組織工学用スキヤ ホールド材。  9. The scaffold for tissue engineering according to claim 8, wherein a contribution ratio of pores having a pore diameter of 150 to 300 in the average pore diameter of the porous three-dimensional network structure is 40% or more.
10. 請求項 9において、 該多孔性三次元網状構造の平均孔径における孔径 15 0〜3 0 0 μ πιの孔の寄与率が 5 0 %以上であることを特徴とする組織工学用スキ ャホールド材。 10. The pore size of the porous three-dimensional network structure at an average pore size of claim 9 A scaffold for tissue engineering, wherein the contribution of pores of 0 to 300 μπι is 50% or more.
1 1 . 請求項 1ないし 1 0のいずれか 1項において、 該熱可塑性樹脂がポリウレ タン樹脂、 ポリアミ ド樹脂、 ポリ乳酸樹脂、 ポリオレフイン樹脂、 ポリエステル樹 脂、 フッ素樹脂、 アクリル樹脂及ぴメタクリル樹脂並びにこれらの誘導体からなる 群から選択される 1種又は 2種以上であることを特徴とする組織工学用スキヤホー ルド材。  11. The thermoplastic resin according to any one of claims 1 to 10, wherein the thermoplastic resin is a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, an acrylic resin, and a methacrylic resin. A scan-holding material for tissue engineering, which is one or more selected from the group consisting of these derivatives.
1 2 . 請求項 1 1において、 該熱可塑性樹脂がポリウレタン樹脂であることを特 徴とする組織工学用スキヤホールド材。  12. The scaffold for tissue engineering according to claim 11, wherein the thermoplastic resin is a polyurethane resin.
1 3 . 請求項 1 2において、 該ポリウレタン樹脂がセグメント化ポリウレタン樹 脂であることを特徴とする組織工学用スキヤホールド材。  13. The tissue engineering scan holder material according to claim 12, wherein the polyurethane resin is a segmented polyurethane resin.
1 4 . 請求項 1ないし 1 3のいずれか 1項において、 該多孔性三次元網状構造部 に、 コラーゲンタイプ I、 コラーゲンタイプ II、 コラーゲンタイプ III、 コラーゲ ンタイプ IV、 ァテロ型コラーゲン、 フイブロネクチン、 ゼラチン、 ヒアルロン酸、 へパリン、 ケラタン酸、 コンドロイチン、 コンドロイチン硫酸、 コンドロイチン硫 酸 Β、 ヒドロキシェチルメタクリレートとジメチルアミノエチルメタクリレートの 共重合体、 ヒドロキシェチルメタタリレートとメタクリル酸の共重合体、 アルギン 酸、 ポリアタリルァミ ド、 ポリジメチルァクリルァミ ド及ぴポリビニルピロリ ドン からなる群から選択される 1種又は 2種以上が保持されていることを特徴とする組 織工学用スキヤホールド材。  14. The method according to any one of claims 1 to 13, wherein the porous three-dimensional network structure comprises collagen type I, collagen type II, collagen type III, collagen type IV, athero-type collagen, fibronectin, gelatin, Hyaluronic acid, heparin, keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate Β, copolymer of hydroxyethyl methacrylate and dimethylaminoethyl methacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, A scaffold for tissue engineering, wherein one or more members selected from the group consisting of polyatarylamide, polydimethylacrylamide and polyvinylpyrrolidone are retained.
1 5 . 請求項 1 4において、 該多孔性三次元網状構造部に、 更に繊維芽細胞増殖 因子、 インターロイキン一 1、 腫瘍増殖因子 i3、 上皮増殖因子及び二倍体繊維芽細 胞増殖因子からなる群から選択される 1種又は 2種以上が保持されていることを特 徴とする組織工学用スキヤホールド材。  15. The method according to claim 14, wherein the porous three-dimensional network structure further comprises fibroblast growth factor, interleukin-1, tumor growth factor i3, epidermal growth factor, and diploid fibroblast growth factor. A tissue engineering scan material characterized in that one or more selected from the group consisting of:
1 6 . 請求項 1 5において、 該多孔性三次元網状構造部に細胞接着されているこ とを特徴とする組織工学用スキヤホールド材。  16. The tissue engineering scan holder material according to claim 15, wherein cells are adhered to the porous three-dimensional network structure.
1 7 . 請求項 1 6において、該細胞が胚性幹細胞、血管内皮細胞、中胚葉性細胞、 平滑筋細胞、 末梢血管細胞及ぴ中皮細胞からなる群から選択される 1種又は 2種以 上であることを特徴とする組織工学用スキヤホールド材。 17. The cell of claim 16, wherein the cell is one or more selected from the group consisting of embryonic stem cells, vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells A material for a scaffold for tissue engineering, which is characterized by being above.
18. 請求項 1 7において、 該胚性幹細胞が分化されたものであることを特徴と する組織工学用スキヤホールド材。 18. The tissue engineering scan material according to claim 17, wherein the embryonic stem cells are differentiated.
1 9. 請求項 1ないし 18のいずれか 1項において、 形状が管状構造であること を特徴とする糸且織工学用スキヤホールド材。  1 9. The scaffold for yarn and textile engineering according to any one of claims 1 to 18, wherein the shape is a tubular structure.
20. 請求項 1 9において、 該管状構造体の内径が 0. 3〜 1 5mmで、 外径が 20. The tubular structure according to claim 19, wherein the inner diameter of the tubular structure is 0.3 to 15 mm and the outer diameter is
0. 4〜2 Ommであることを特徴とする組織工学用スキヤホールド材。 A scaffold for tissue engineering, which has a thickness of 0.4 to 2 Omm.
21. 請求項 20において、 該管状構造体の内径が 0. 3〜 10 mmで、 外径が 21. In Claim 20, the inner diameter of the tubular structure is 0.3 to 10 mm and the outer diameter is
0. 4〜1 5 mmであることを特徴とする組織工学用スキヤホールド材。 A scaffold for tissue engineering, having a thickness of 0.4 to 15 mm.
22. 請求項 21において、該管状構造体の内径が 0. 3〜 6 mmで、外径が 0. 22. The tubular structure according to claim 21, wherein the inner diameter of the tubular structure is 0.3 to 6 mm and the outer diameter is 0.3.
4〜 10mmであることを特徴とする組織工学用スキヤホールド材。 A scaffold for tissue engineering, which is 4 to 10 mm.
23. 請求項 22において、 該管状構造体の内径が 0. 3〜2. 5 mmで、 外径 が 0. 4〜1 Ommであることを特徴とする組織工学用スキヤホールド材。  23. The tissue engineering scan holder material according to claim 22, wherein the tubular structure has an inner diameter of 0.3 to 2.5 mm and an outer diameter of 0.4 to 1 Omm.
24. 請求項 23において、 該管状構造体の内径が 0. 3〜1. 5 mmで、 外径 が 0. 4〜1 Ommであることを特徴とする組織工学用スキヤホールド材。  24. The tissue engineering scan holder material according to claim 23, wherein the inner diameter of the tubular structure is 0.3 to 1.5 mm and the outer diameter is 0.4 to 1 Omm.
25. 請求項 1ないし 24のいずれか 1項のスキヤホールド材からなることを特 徴とする人工血管。  25. An artificial blood vessel characterized by being made of the carrier material according to any one of claims 1 to 24.
26. 請求項 25において、 該スキヤホールド材の外側が更に別の管状構造体で 被覆されていることを特徴とする人工血管。  26. The artificial blood vessel according to claim 25, wherein the outside of the carrier is covered with another tubular structure.
27. 請求項 26において、該スキヤホールド材の外側を被覆する管状構造体が、 キトサン、ポリ乳酸樹脂、ポリエステル樹脂、ポリアミ ド樹脂、ポリウレタン樹脂、 フイブロネクチン、 ゼラチン、 ヒアノレロン酸、 ケラタン酸、 コンドロイチン、 コン ドロイチン硫酸、 コンドロイチン硫酸 B、 ヒ ドロキシェチルメタタリレートとジメ チルアミノエチルメタクリレートの共重合体、 ヒドロキシェチルメタクレートとメ タクリル酸の共重合体、 アルギン酸、 ポリアタリルァミ ド、 ポリジメチルァクリル アミド、 ポリビュルピロリ ドン、 架橋コラーゲン及ぴフイブ口インからなる群から 選択される 1種又は 2種以上から形成されたチューブであることを特徴とする人工 血管。  27. The tubular structure according to claim 26, wherein the tubular structure covering the outside of the carrier material is chitosan, polylactic acid resin, polyester resin, polyamide resin, polyurethane resin, fibronectin, gelatin, hydranolonic acid, keratanic acid, chondroitin, and condon. Droitin sulfate, chondroitin sulfate B, copolymer of hydroxyxetyl methacrylate and dimethylaminoethyl methacrylate, copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, polyatarylamide, polydimethylacrylamide, An artificial blood vessel, which is a tube formed of one or more selected from the group consisting of polybulpyrrolidone, cross-linked collagen and fibrous mouth.
28. 熱可塑性樹脂又は熱硬化性樹脂よりなる基材樹脂で形成された、 平均孔径 100〜 1000 mで、 見掛け密度が 0. 01〜0. 5 g Z c m3の、 連通性の ある多孔性三次元網状構造部を有することを特徴とするカフ部材。 28. Made of a thermoplastic or thermosetting resin, with an average pore diameter of 100 to 1000 m and an apparent density of 0.01 to 0.5 g Z cm 3 A cuff member having a porous three-dimensional network structure.
29. 請求項 28において、 該多孔性三次元網状構造の平均孔径が 200〜 60 0 μιηで、 見掛け密度が 0. 01〜0. 5 gZcm3であることを特徴とするカフ 部材。 29. The cuff member according to claim 28, wherein the porous three-dimensional network structure has an average pore diameter of 200 to 600 µιη and an apparent density of 0.01 to 0.5 gZcm 3 .
30. 請求項 29において、 該多孔性三次元網状構造の平均孔径が 200〜 50 0 μηιで、 見掛け密度が 0. 01〜0. 5 gZcm3であることを特徴とするカフ 部材。 30. The cuff member according to claim 29, wherein the porous three-dimensional network structure has an average pore size of 200 to 500 μηι and an apparent density of 0.01 to 0.5 gZcm 3 .
31. 請求項 28ないし 30のいずれか 1項において、 該多孔性三次元網状構造 の見掛け密度が 0. 05〜0. 3 g/cm3であることを特徴とするカフ部材。 31. In any one of claims 28 to 30, an apparent density of the porous three-dimensional network structure is 0. from 05 to 0. 3 g / cuff member characterized by cm 3.
32. 請求項 31において、 該多孔性三次元網状構造の見掛け密度が 0. 05〜 0. 2 gZcm3であることを特徴とするカフ部材。 32. The cuff member according to claim 31, wherein the apparent density of the porous three-dimensional network structure is 0.05 to 0.2 gZcm 3 .
33. 請求項 28ないし 32のいずれか 1項において、 該多孔性三次元網状構造 の平均孔径における孔径 1 50〜400 μπιの孔の寄与率が 10%以上であること を特徴とするカフ部材。  33. The cuff member according to any one of claims 28 to 32, wherein a contribution ratio of pores having a pore diameter of 150 to 400 μπι in the average pore diameter of the porous three-dimensional network structure is 10% or more.
34. 請求項 33において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 μηιの孔の寄与率が 20 %以上であることを特徴とするカフ部材。  34. The cuff member according to claim 33, wherein a contribution ratio of pores having a pore diameter of 150 to 400 µηι in the average pore diameter of the porous three-dimensional network structure is 20% or more.
35. 請求項 34において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 μπιの孔の寄与率が 30%以上であることを特徴とするカフ部材。 35. The cuff member according to claim 34, wherein a contribution ratio of pores having a pore diameter of 150 to 400 μπι in the average pore diameter of the porous three-dimensional network structure is 30% or more.
36. 請求項 35において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 zmの孔の寄与率が 40 %以上であることを特徴とするカフ部材。 36. The cuff member according to claim 35, wherein a contribution ratio of pores having a pore diameter of 150 to 400 zm in the average pore diameter of the porous three-dimensional network structure is 40% or more.
37. 請求項 36において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 mの孔の寄与率が 50 %以上であることを特徴とするカフ部材。 37. The cuff member according to claim 36, wherein a contribution ratio of pores having a pore diameter of 150 to 400 m in an average pore diameter of the porous three-dimensional network structure is 50% or more.
38. 請求項 28ないし 37のいずれか 1項において、 該多孔性三次元網状構造 部の厚みが 0. 2〜50 Ommであることを特徴とするカフ部材。 38. The cuff member according to any one of claims 28 to 37, wherein the thickness of the porous three-dimensional network structure is 0.2 to 50 Omm.
39. 請求項 38において、 該多孔性三次元網状構造部の厚みが 0. 2〜 100 mmであることを特徴とする力フ部材。 39. The force member according to claim 38, wherein the thickness of the porous three-dimensional network structure is 0.2 to 100 mm.
40. 請求項 39において、 該多孔性三次元網状構造部の厚みが 0 · 2〜 50 m mであることを特徴とするカフ部材。  40. The cuff member according to claim 39, wherein the thickness of the porous three-dimensional network structure is 0.2 to 50 mm.
41. 請求項 40において、 該多孔性三次元網状構造部の厚みが 0. 2〜 10 m mであることを特徴とするカフ部材。 41. The method according to claim 40, wherein the thickness of the porous three-dimensional network structure is 0.2 to 10 m. A cuff member characterized by m.
42. 請求項 41において、 該多孔性三次元網状構造部の厚みが 0. 2〜 5 mm であることを特徴とするカフ部材。  42. The cuff member according to claim 41, wherein the thickness of the porous three-dimensional network structure is 0.2 to 5 mm.
43. 請求項 28ないし 42のいずれか 1項において、 該基材樹脂が、 ポリウレ タン樹脂、 ポリアミド樹脂、 ポリ乳酸樹脂、 ポリオレフイン樹脂、 ポリエステル樹 脂、 フッ素樹脂、 尿素樹脂、 フエノール樹脂、 ェポシキ樹脂、 ポリイミド樹脂、 ァ クリル樹脂及ぴメタクリル樹脂並びにこれらの誘導体よりなる群から選択される 1 種又は 2種以上であることを特徴とする力フ部材。  43. The method according to any one of claims 28 to 42, wherein the base resin is a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, a urea resin, a phenol resin, an epoxy resin, A force member comprising at least one member selected from the group consisting of a polyimide resin, an acrylic resin, a methacrylic resin, and derivatives thereof.
44. 請求項 43において、 該基材樹脂がポリウレタン樹脂であることを特徴と するカフ部材。  44. The cuff member according to claim 43, wherein the base resin is a polyurethane resin.
45. 請求項 44において、 該ポリウレタン樹脂がセグメント化ポリウレタン樹 脂であることを特徴とするカフ部材。  45. The cuff member according to claim 44, wherein the polyurethane resin is a segmented polyurethane resin.
46. 請求項 28ないし 45のいずれか 1項において、 該多孔性三次元網状構造 よりなる第 1の層と、 該第 1の層とは異なる第 2の層との積層体であることを特徴 とするカフ部材。  46. The laminate according to any one of claims 28 to 45, wherein the laminate is a laminate of a first layer having the porous three-dimensional network structure and a second layer different from the first layer. Cuff member.
47. 請求項 46において、 該第 2の層が繊維集合体、 可撓性フィルム、 及ぴ、 前記第 1の層の多孔性三次元網状構造とは異なる平均孔径及び/又は見掛け密度の 多孔性三次元網状構造層よりなる群から選択される 1種又は 2種以上であることを 特徴とするカフ部材。  47. The porosity according to claim 46, wherein the second layer is a fiber aggregate, a flexible film, and a porous material having an average pore size and / or an apparent density different from the porous three-dimensional network structure of the first layer. A cuff member comprising one or more members selected from the group consisting of a three-dimensional network structure layer.
48. 請求項 47において、 該繊維集合体が不織布又は織布であることを特徴と するカフ部材。  48. The cuff member according to claim 47, wherein the fiber aggregate is a nonwoven fabric or a woven fabric.
49. 請求項 48において、 該不織布又は織布の厚みが 0. l〜100mmであ ることを特徴とするカフ部材。  49. The cuff member according to claim 48, wherein the nonwoven fabric or the woven fabric has a thickness of 0.1 to 100 mm.
50. 請求項 49において、 該不織布又は織布の厚みが 0. l〜50mmである ことを特徴とするカフ部材。  50. The cuff member according to claim 49, wherein said nonwoven fabric or woven fabric has a thickness of 0.1 to 50 mm.
51. 請求項 50において、 該不織布又は織布の厚みが 0. :!〜 10. Ommで あることを特徴とするカフ部材。  51. The cuff member according to claim 50, wherein the nonwoven fabric or the woven fabric has a thickness of 0:!
52. 請求項 51において、 該不織布又は織布の厚みが 0. 1〜5. Ommであ ることを特徴とするカフ部材。 52. The cuff member according to claim 51, wherein the nonwoven fabric or the woven fabric has a thickness of 0.1 to 5. Omm.
53. 請求項 48ないし 52のいずれか 1項において、 該不織布又は織布の有孔 性が 100〜 5000 c c/c mVm i nであることを特徴とするカフ部材。53. The cuff member according to any one of claims 48 to 52, wherein the nonwoven fabric or the woven fabric has a porosity of 100 to 5000 cc / cmVmin.
54. 請求項 46ないし 53のいずれか 1項において、 該繊維集合体がポリウレ タン樹脂、 ポリアミド樹脂、 ポリ乳酸樹脂、 ポリオレフイン樹脂、 ポリエステル樹 脂、 フッ素樹脂、 アクリル樹脂及びメタクリル樹脂並びにこれらの誘導体よりなる 群から選択される 1種又は 2種以上で構成されることを特徴とする力フ部材。54. The fiber assembly according to any one of claims 46 to 53, wherein the fiber aggregate is made of a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, an acrylic resin, a methacrylic resin, and derivatives thereof. A force member comprising one or more members selected from the group consisting of:
55. 請求項 46ないし 53のいずれか 1項において、 該繊維集合体がフイブ口 イン、 キチン、 キトサン及びセルロース並びにこれらの誘導体よりなる群から選択 される 1種又は 2種以上で構成されることを特徴とするカフ部材。 55. The fiber assembly according to any one of claims 46 to 53, wherein the fiber aggregate is composed of one or more selected from the group consisting of fiber mouth, chitin, chitosan, cellulose, and derivatives thereof. A cuff member characterized by the above-mentioned.
56. 請求項 46ないし 55のいずれか 1項において、 該可撓性フィルムが熱可 塑性樹脂フィルムであることを特徴とする力フ部材。  56. The force member according to any one of claims 46 to 55, wherein the flexible film is a thermoplastic resin film.
57. 請求項 56において、 該熱可塑性樹脂がポリウレタン樹脂、 ポリアミド樹 脂、 ポリ乳酸樹脂、 ポリオレフイン樹脂、 ポリエステル樹脂、 フッ素樹脂、 尿素樹 脂、 フエノール樹脂、 ェポシキ樹脂、 ポリイミ ド樹脂、 シリコン樹脂、 アクリル樹 脂及ぴメタクリル樹脂並びにこれらの誘導体よりなる群から選択される 1種又は 2 種以上であることを特徴とする力フ部材。  57. The thermoplastic resin according to claim 56, wherein the thermoplastic resin is a polyurethane resin, a polyamide resin, a polylactic acid resin, a polyolefin resin, a polyester resin, a fluororesin, a urea resin, a phenol resin, an epoxy resin, a polyimide resin, a silicone resin, or an acrylic resin. A force member comprising at least one member selected from the group consisting of a resin, a methacrylic resin, and a derivative thereof.
58. 請求項 57において、 該熱可塑性樹脂がポリ塩化ビニール、 ポリウレタン 樹脂、 フッ素樹脂及びシリコン樹脂よりなる群から選択される 1種又は 2種以上で あることを特徴とするカフ部材。  58. The cuff member according to claim 57, wherein the thermoplastic resin is at least one member selected from the group consisting of polyvinyl chloride, polyurethane resin, fluorine resin and silicone resin.
59. 請求項 46ないし 58のいずれか 1項において、 該可撓性フィルムの厚み が 0. 1〜50 Oramであることを特徴とするカフ部材。  59. The cuff member according to any one of claims 46 to 58, wherein the thickness of the flexible film is 0.1 to 50 Oram.
60. 請求項 59において、 該可撓性フィルムの厚みが 0. l〜100mmであ ることを特徴とするカフ部材。  60. The cuff member according to claim 59, wherein the thickness of the flexible film is 0.1 to 100 mm.
6 1. 請求項 60において、 該可撓性フィルムの厚みが 0. l〜50mmである ことを特徴とするカフ部材。  6 1. The cuff member according to claim 60, wherein the thickness of the flexible film is 0.1 to 50 mm.
62. 請求項 61において、 該可撓性フィルムの厚みが 0. l〜10mmである ことを特徴とするカフ部材。  62. The cuff member according to claim 61, wherein the thickness of the flexible film is 0.1 to 10 mm.
63. 請求項 46ないし 62のいずれか 1項において、 該第 2の層の多孔性三次 元網状構造層の平均孔径が 0. 1〜200 μπιで、 見掛け密度が 0. 01〜1. 0 g / c m 3であることを特徴とするカフ部材。 63. The method according to any one of claims 46 to 62, wherein the porous three-dimensional network structure layer of the second layer has an average pore size of 0.1 to 200 μπι and an apparent density of 0.01 to 1.0. cuff member which is a g / cm 3.
6 4 . 請求項 4 6ないし 6 3のいずれか 1項において、 該第 2の層の多孔性三次 元網状構造層の厚みが 0 . 2〜2 O mmであることを特徴とするカフ部材。  64. The cuff member according to any one of claims 46 to 63, wherein the thickness of the porous three-dimensional network structure layer of the second layer is 0.2 to 2 Omm.
6 5 . 請求項 2 8ないし 6 4のいずれか 1項において、 該多孔性三次元網状構造 部に、 コラーゲンタイプ I、 コラーゲンタイプ II、 コラーゲンタイプ III、 コラー ゲンタイプ IV、ァテロ型コラーゲン、フイブロネクチン、ゼラチン、ヒアルロン酸、 へパリン、 ケラタン酸、 コンドロイチン、 コンドロイチン硫酸、 コンドロイチン硫 酸 B、 エラスチン、 へパラン硫酸、 ラミニン、 トロンポスポンジン、 ビトロネクチ ン、 ォステオネクチン、 ェンタクチン、 ヒ ドロキシェチルメタクリレートとジメチ ルアミノエチルメタクリレートの共重合体、 ヒドロキシェチルメタクリレートとメ タクリル酸の共重合体、 アルギン酸、 ポリアクリルアミド、 ポリジメチルアクリル アミド及ぴポリビニルピロリ ドンよりなる群から選択される 1種又は 2種以上が保 持されていることを特徴とするカフ部材。 65. The method according to any one of claims 28 to 64, wherein the porous three-dimensional network structure comprises collagen type I, collagen type II, collagen type III, collagen type IV, athero-type collagen, fibronectin, Gelatin, hyaluronic acid, heparin, keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate B, elastin, heparan sulfate, laminin, thrombospondin, vitronectin, osteonectin, gentactin, hydroxyxethyl methacrylate and dimethylethylamino One selected from the group consisting of a copolymer of ethyl methacrylate, a copolymer of hydroxyethyl methacrylate and methacrylic acid, alginic acid, polyacrylamide, polydimethylacrylamide and polyvinylpyrrolidone A cuff member characterized by holding two or more types.
6 6 . 請求項 6 5において、 該多孔性三次元網状構造部に更に血小板由来増殖因 子、 上皮増殖因子、 形質転換増殖因子 α、 インスリン様増殖因子、 インスリン様增 殖因子結合蛋白、 肝細胞増殖因子、 血管内皮増殖因子、 アンジォポイエチン、 神経 増殖因子、 脳由来神経栄養因子、 毛様体神経栄養因子、 形質転換増殖因子 j3、 潜在 型形質転換増殖因子 )3、 ァクチビン、 骨形質タンパク、 繊維芽細胞増殖因子、 腫瘍 増殖因子 、二倍体繊維芽細胞増殖因子、へパリン結合性上皮増殖因子様増殖因子、 シュヮノーマ由来増殖因子、アンフィレグリン、ベーターセノレリン、ェピグレリン、 リンホトキシン、 エリスロェポイエチン、 腫瘍壊死因子 α、 インターロイキン一 1 β、 インターロイキン一 6、 インターロイキン一 8、 インターロイキン一 1 7、 ィ ンターフェロン、 抗ウィルス剤、 抗菌剤及ぴ抗生物質よりなる群から選択される 1 種又は 2種以上が保持されていることを特徴とするカフ部材。  66. The method of claim 65, wherein the porous three-dimensional network further comprises a platelet-derived growth factor, an epidermal growth factor, a transforming growth factor α, an insulin-like growth factor, an insulin-like growth factor-binding protein, and a hepatocyte. Growth factor, vascular endothelial growth factor, angiopoietin, nerve growth factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, transforming growth factor j3, latent transforming growth factor) 3, activin, bone plasma protein , Fibroblast growth factor, tumor growth factor, diploid fibroblast growth factor, heparin-binding epidermal growth factor-like growth factor, sphinoma-derived growth factor, amphiregulin, beta-senorellin, epigrelin, lymphotoxin, erythroe Poietin, tumor necrosis factor α, interleukin-1β, interleukin-6, interleukin-18, interleukin Ikin one 1 7, it centers Feron, antiviral agents, cuff member, characterized in that one selected from the group consisting of antimicrobial agents 及 Pi antibiotics or two or more are held.
6 7 . 請求項 6 6において、 該多孔性三次元網状構造部に細胞接着されているこ とを特徴とするカフ部材。  67. The cuff member according to claim 66, wherein cells are adhered to the porous three-dimensional network structure.
6 8 . 請求項 6 7において、該細胞が胚性幹細胞、血管内皮細胞、中胚葉性細胞、 平滑筋細胞、 末梢血管細胞及び中皮細胞よりなる群から選択される 1種又は 2種以 上であることを特徴とするカフ部材。 68. The method of claim 67, wherein the cell is one or more selected from the group consisting of embryonic stem cells, vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells. A cuff member characterized by the following.
69. 請求項 68において、 該胚性幹細胞が分化されたものであることを特徴と するカフ部材。 69. The cuff member according to claim 68, wherein the embryonic stem cells are differentiated.
70. 熱可塑性樹脂又は熱硬化性樹脂よりなる基材樹脂で形成された、 平均孔径 100〜1000 μπιで、 見掛け密度が 0. 01〜0. 5 g/ cm3の、 連通性の ある多孔性三次元網状構造部を有することを特徴とする生体埋込部材被覆材。 70. Heat formed by thermoplastic resin or a base resin made of a thermosetting resin, an average pore diameter of 100 to 1000 Myupaiiota, apparent density 0.01 to 0. Of 5 g / cm 3, porosity of communicability A bioimplantable member covering material having a three-dimensional network structure.
71. 請求項 70において、 該多孔性三次元網状構造の平均孔径が 200〜 60 Ο μπιで、 見掛け密度が 0. 01〜0. 5 g/cm3であることを特徴とする生体 埋込部材被覆材。 71. The living body implanting member according to claim 70, wherein the porous three-dimensional network structure has an average pore diameter of 200 to 60 μμπι and an apparent density of 0.01 to 0.5 g / cm 3 . Coating material.
72. 請求項 71において、 該多孔性三次元網状構造の平均孔径が 200〜 50 Ο μπιで、 見掛け密度が 0. 01〜0. 5 g/cm3であることを特徴とする生体 埋込部材被覆材。 72. The living body implanting member according to claim 71, wherein the porous three-dimensional network structure has an average pore size of 200 to 50 μμπι and an apparent density of 0.01 to 0.5 g / cm 3 . Coating material.
73. 請求項 70ないし 72のいずれか 1項において、 該多孔性三次元網状構造 の見掛け密度が 0. 05〜0. 3 g/c m3であることを特徴とする生体埋込部材 被覆材。 73. The covering material for living body implantation member according to any one of claims 70 to 72, wherein the apparent density of the porous three-dimensional network structure is 0.05 to 0.3 g / cm 3 .
74. 請求項 73において、 該多孔性三次元網状構造の見掛け密度が 0. 05〜 0. 2 gZ cm3であることを特徴とする生体埋込部材被覆材。 74. The covering material for living body implantation member according to claim 73, wherein the apparent density of the porous three-dimensional network structure is 0.05 to 0.2 gZ cm 3 .
75. 請求項 70ないし 74のいずれか 1項において、 該多孔性三次元網状構造 の平均孔径における孔径 1 50〜400 /zmの孔の寄与率が 10%以上であること を特徴とする生体埋込部材被覆材。  75. The bioimplant according to any one of claims 70 to 74, wherein the contribution of pores having a pore diameter of 150 to 400 / zm to the average pore diameter of the porous three-dimensional network structure is 10% or more. Included member covering material.
76. 請求項 75において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 mの孔の寄与率が 20 %以上であることを特徴とする生体埋込部材 被覆材。  76. The coating material for living body implantation according to claim 75, wherein the contribution rate of pores having a pore diameter of 150 to 400 m in the average pore diameter of the porous three-dimensional network structure is 20% or more.
77. 請求項 76において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 mの孔の寄与率が 30 %以上であることを特徴とする生体埋込部材 被覆材。  77. The coating material for living body implantation according to claim 76, wherein a contribution ratio of pores having a pore diameter of 150 to 400 m in the average pore diameter of the porous three-dimensional network structure is 30% or more.
78. 請求項 77において、 該多孔性三次元網状構造の平均孔径における孔径 1 50〜400 mの孔の寄与率が 40 %以上であることを特徴とする生体埋込部材  78. The living body implanting member according to claim 77, wherein a contribution ratio of pores having a pore diameter of 150 to 400 m in an average pore diameter of the porous three-dimensional network structure is 40% or more.
79. 請求項 78において、 該多孔性三次元網状構造の平均孔径における孔径 1 5 0〜4 0 0 μ ηιの孔の寄与率が 5 0 %以上であることを特徴とする生体埋込部材 被覆材。 79. The porous three-dimensional network structure of claim 78, wherein A coating material for a living body implanted member, wherein a contribution ratio of pores of 50 to 400 μηι is 50% or more.
8 0 . 請求項 7 0ないし 7 9のいずれか 1項において、 該多孔性三次元網状構造 部の厚みが 0 . 5〜5 0 0 mmであることを特徴とする生体埋込部材被覆材。  80. The bioimplantable member covering material according to any one of claims 70 to 79, wherein the thickness of the porous three-dimensional network structure is 0.5 to 500 mm.
8 1 . 請求項 8 0において、 該多孔性三次元網状構造部の厚みが 0 . 5〜 1 0 0 mmであることを特徴とする生体埋込部材被覆材。 81. The covering material for living body implantation member according to claim 80, wherein the thickness of the porous three-dimensional network structure is 0.5 to 100 mm.
8 2 . 請求項 8 1において、 該多孔性三次元網状構造部の厚みが 0 . 5〜 5 0 m mであることを特徴とする生体埋込部材被覆材。  82. The covering material for living body implantation member according to claim 81, wherein the thickness of the porous three-dimensional network structure is 0.5 to 50 mm.
8 3 . 請求項 8 2において、 該多孔性三次元網状構造部の厚みが 0 . 5〜 1 0 m mであることを特徴とする生体埋込部材被覆材。  83. The covering material for living body implantation member according to claim 82, wherein the thickness of the porous three-dimensional network structure is 0.5 to 10 mm.
8 4 . 請求項 8 3において、 該多孔性三次元網状構造部の厚みが 0 . 5〜 5 mm であることを特徴とする生体埋込部材被覆材。  84. The covering material for living body implantation member according to claim 83, wherein the thickness of the porous three-dimensional network structure is 0.5 to 5 mm.
8 5 . 請求項 7 0ないし 8 4のいずれか 1項において、 該基材樹脂が、 ポリウレ タン樹脂、 ポリアミド樹脂、 ポリ乳酸樹脂、 ポリリンゴ酸榭脂、 ポリグリコール酸 樹脂、 ポリオレフイン樹脂、 ポリエステル樹脂、 フッ素樹脂、 尿素樹脂、 フエノー ル樹脂、 ェポシキ樹脂、 ポリイミ ド樹脂、 アクリル樹脂及ぴメタクリル樹脂並びに これらの誘導体よりなる群から選択される 1種又は 2種以上であることを特徴とす る生体埋込部材被覆材。  85. The method according to any one of claims 70 to 84, wherein the base resin is a polyurethane resin, a polyamide resin, a polylactic acid resin, a polymalic acid resin, a polyglycolic acid resin, a polyolefin resin, a polyester resin. Bioimplant characterized by one or more selected from the group consisting of fluororesin, urea resin, phenolic resin, epoxy resin, polyimide resin, acrylic resin, methacrylic resin and derivatives thereof Included member covering material.
8 6 . 請求項 8 5において、 該基材樹脂がポリウレタン樹脂であることを特徴と する生体埋込部材被覆材。  86. The bioimplantable member covering material according to claim 85, wherein the base resin is a polyurethane resin.
8 7 . 請求項 8 6において、 該ポリウレタン樹脂がセグメント化ポリウレタン樹 脂であることを特徴とする生体埋込部材被覆材。  87. The bioimplantable member covering material according to claim 86, wherein the polyurethane resin is a segmented polyurethane resin.
8 8 . 請求項 7 0ないし 8 7のいずれか 1項において、 該多孔性三次元網状構造 よりなる第 1の層と、 該第 1の層とは異なる第 2の層との積層体であることを特徴 とする生体埋込部材被覆材。  88. The laminate according to any one of claims 70 to 87, comprising a first layer comprising the porous three-dimensional network structure and a second layer different from the first layer. A covering material for a living body implanted member, characterized in that:
8 9 . 請求項 7 0ないし 8 8のいずれか 1項において、 該多孔性三次元網状構造 部に、 コラーゲンタイプ I、 コラーゲンタイプ II、 コラーゲンタイプ III、 コラー ゲンタイプ IV、ァテロ型コラーゲン、フイブロネクチン、ゼラチン、ヒアルロン酸、 へパリン、 ケラタン酸、 コンドロイチン、 コンドロイチン硫酸、 コンドロイチン硫 酸 B、 エラスチン、 へパラン硫酸、 ラミニン、 トロンポスポンジン、 ビトロネクチ ン、 ォステオネクチン、 ェンタクチン、 ヒ ドロキシェチノレメタクリレートとジメチ ルァミノェチルメタクリレートの共重合体、 ヒ ドロキシェチルメタクリレートとメ タクリル酸の共重合体、 アルギン酸、 ポリアクリルアミド、 ポリジメチルァクリル アミド及ぴポリビニルピロリ ドンよりなる群から選択される 1種又は 2種以上が保 持されていることを特徴とする生体埋込部材被覆材。 89. The method according to any one of claims 70 to 88, wherein the porous three-dimensional network has collagen type I, collagen type II, collagen type III, collagen type IV, athero-type collagen, fibronectin, Gelatin, hyaluronic acid, heparin, keratanic acid, chondroitin, chondroitin sulfate, chondroitin sulfate Acid B, elastin, heparan sulfate, laminin, thrompospondin, vitronectin, osteonectin, entactin, copolymer of hydroxyxetinole methacrylate and dimethylaminoethyl methacrylate, hydroxyxethyl methacrylate and methacrylic acid Characterized in that one or more members selected from the group consisting of copolymers of alginic acid, polyacrylamide, polydimethylacrylamide and polyvinylpyrrolidone are retained. .
9 0 . 請求項 8 9において、 該多孔性三次元網状構造部に更に、 血小板由来増殖 因子、 上皮増殖因子、 形質転換増殖因子 、 インスリン様増殖因子、 インスリン様 増殖因子結合蛋白、 肝細胞増殖因子、 血管内皮増殖因子、 アンジォポイエチン、 神 経増殖因子、 脳由来神経栄養因子、 毛様体神経栄養因子、 形質転換増殖因子 i3、 潜 在型形質転換増殖因子 3、 ァクチビン、 骨形質タンパク、 繊維芽細胞増殖因子、 腫 瘍増殖因子 、 二倍体繊維芽細胞増殖因子、 へパリン結合性上皮増殖因子様増殖因 子、 シュヮノーマ由来増殖因子、 アンフィレグリン、 ベーターセノレリン、 ェピグレ リン、 リンホトキシン、 エリスロェポイエチン、 腫瘍壌死因子 Q;、 インターロイキ ン一 1 ]3、 インターロイキン一 6、 インターロイキン一 8、 インターロイキン一 1 7、 インターフヱロン、 抗ウィルス剤、 抗菌剤及び抗生物質よりなる群から選択さ れる 1種又は 2種以上が保持されていることを特徴とする生体埋込部材被覆材。  90. The method of claim 89, wherein the porous three-dimensional network further comprises platelet-derived growth factor, epidermal growth factor, transforming growth factor, insulin-like growth factor, insulin-like growth factor binding protein, hepatocyte growth factor. , Vascular endothelial growth factor, angiopoietin, neuronal growth factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, transforming growth factor i3, latent transforming growth factor 3, activin, bone plasma protein, Fibroblast growth factor, tumor growth factor, diploid fibroblast growth factor, heparin-binding epidermal growth factor-like growth factor, sphinoma-derived growth factor, amphiregulin, beta-senorellin, epigrelin, lymphotoxin, Erythropoietin, tumor death factor Q ;, interleukin-1 1) 3, interleukin-1 6, interleukin-1 8, a A bioimplant coating material comprising one or more members selected from the group consisting of interleukin-17, interferon, antiviral agents, antibacterial agents and antibiotics.
9 1 . 請求項 9 0において、 該多孔性三次元網状構造部に細胞接着されているこ とを特徴とする生体埋込部材被覆材。 91. The bioimplantable member covering material according to claim 90, wherein cells are adhered to the porous three-dimensional network structure.
9 2 . 請求項 9 1において、該細胞が胚性幹細胞、血管内皮細胞、中胚葉性細胞、 平滑筋細胞、 末梢血管細胞及び中皮細胞よりなる群から選択される 1種又は 2種以 上であることを特徴とする生体埋込部材被覆材。  92. In Claim 91, the cell is one or more selected from the group consisting of embryonic stem cells, vascular endothelial cells, mesodermal cells, smooth muscle cells, peripheral vascular cells, and mesothelial cells. A biological implantable member covering material, characterized in that:
9 3 . 請求項 9 2において、 該胚性幹細胞が分化されたものであることを特徴と する生体埋込部材被覆材。  93. The covering material according to claim 92, wherein the embryonic stem cells are differentiated.
PCT/JP2003/003594 2002-03-28 2003-03-25 Tissue engineering scaffold material, aritficial vessel, cuff member and coating for implants WO2003082366A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003221090A AU2003221090C1 (en) 2002-03-28 2003-03-25 Tissue engineering scaffold material, artificial vessel, cuff member and coating for implants
DE10392444T DE10392444T5 (en) 2002-03-28 2003-03-25 Scaffold for tissue processing, artificial blood vessel, cuff and biological implant covering member
CA2484012A CA2484012C (en) 2002-03-28 2003-03-25 Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
US10/950,620 US20050107868A1 (en) 2002-03-28 2004-09-28 Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-91793 2002-03-28
JP2002091793A JP2003284767A (en) 2002-03-28 2002-03-28 Scaffolding material for system engineering and artificial blood vessel
JP2002-259849 2002-09-05
JP2002259849A JP2004097268A (en) 2002-09-05 2002-09-05 Coating material for biological implantation member
JP2002259848A JP2004097267A (en) 2002-09-05 2002-09-05 Cuff member
JP2002-259848 2002-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/950,620 Continuation US20050107868A1 (en) 2002-03-28 2004-09-28 Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member

Publications (1)

Publication Number Publication Date
WO2003082366A1 true WO2003082366A1 (en) 2003-10-09

Family

ID=28678731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003594 WO2003082366A1 (en) 2002-03-28 2003-03-25 Tissue engineering scaffold material, aritficial vessel, cuff member and coating for implants

Country Status (5)

Country Link
AU (1) AU2003221090C1 (en)
CA (1) CA2484012C (en)
DE (1) DE10392444T5 (en)
TW (1) TW200400811A (en)
WO (1) WO2003082366A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084742A1 (en) * 2004-03-08 2005-09-15 Japan As Represented By President Of National Cardiovascular Center Cuff member
WO2007124622A1 (en) * 2006-04-28 2007-11-08 Wuhan University Of Technology The 3d porous layered scaffold for tissue engineering and the preparation thereof
CN104841013A (en) * 2015-05-04 2015-08-19 东华大学 Composite nanofiber/nano yarn double-layer intravascular stent and preparation method thereof
US10253615B2 (en) 2014-02-18 2019-04-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and a system for ultrasonic inspection of well bores

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011000249A (en) * 2008-07-06 2011-03-30 Mast Biosurgery Ag Rosorbable membrane implanting methods for reducing adhesions.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052851U (en) * 1983-09-20 1985-04-13 日本バイリーン株式会社 Peritoneal dialysis catheter
JPH02265935A (en) * 1989-04-06 1990-10-30 Nitta Gelatin Inc Production of collagen sponge
WO1990015636A1 (en) * 1989-06-02 1990-12-27 Baxter International Inc. Porous percutaneous access device
WO1996008222A1 (en) * 1993-04-15 1996-03-21 Li Shu Tung Resorbable vascular wound dressings
JPH0984871A (en) * 1995-09-25 1997-03-31 Terumo Corp Medical tube and manufacture thereof
WO1999025391A2 (en) * 1997-11-14 1999-05-27 Bonetec Corporation Biodegradable polymer scaffold
WO1999052356A1 (en) * 1998-04-09 1999-10-21 Charlotte-Mecklenberg Hospital Authority Creation of three-dimensional tissues
WO2000062829A1 (en) * 1999-04-16 2000-10-26 Rutgers, The State University Porous polymer scaffolds for tissue engineering
EP1086664A2 (en) * 1999-09-24 2001-03-28 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
JP2001129076A (en) * 1999-11-01 2001-05-15 Terumo Corp Cuff member for intra-abdominal indwelling catheter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052851U (en) * 1983-09-20 1985-04-13 日本バイリーン株式会社 Peritoneal dialysis catheter
JPH02265935A (en) * 1989-04-06 1990-10-30 Nitta Gelatin Inc Production of collagen sponge
WO1990015636A1 (en) * 1989-06-02 1990-12-27 Baxter International Inc. Porous percutaneous access device
WO1996008222A1 (en) * 1993-04-15 1996-03-21 Li Shu Tung Resorbable vascular wound dressings
JPH0984871A (en) * 1995-09-25 1997-03-31 Terumo Corp Medical tube and manufacture thereof
WO1999025391A2 (en) * 1997-11-14 1999-05-27 Bonetec Corporation Biodegradable polymer scaffold
WO1999052356A1 (en) * 1998-04-09 1999-10-21 Charlotte-Mecklenberg Hospital Authority Creation of three-dimensional tissues
WO2000062829A1 (en) * 1999-04-16 2000-10-26 Rutgers, The State University Porous polymer scaffolds for tissue engineering
EP1086664A2 (en) * 1999-09-24 2001-03-28 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
JP2001129076A (en) * 1999-11-01 2001-05-15 Terumo Corp Cuff member for intra-abdominal indwelling catheter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084742A1 (en) * 2004-03-08 2005-09-15 Japan As Represented By President Of National Cardiovascular Center Cuff member
JPWO2005084742A1 (en) * 2004-03-08 2007-11-29 国立循環器病センター総長 Cuff member
JP4779968B2 (en) * 2004-03-08 2011-09-28 独立行政法人国立循環器病研究センター Cuff member
WO2007124622A1 (en) * 2006-04-28 2007-11-08 Wuhan University Of Technology The 3d porous layered scaffold for tissue engineering and the preparation thereof
US10253615B2 (en) 2014-02-18 2019-04-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and a system for ultrasonic inspection of well bores
CN104841013A (en) * 2015-05-04 2015-08-19 东华大学 Composite nanofiber/nano yarn double-layer intravascular stent and preparation method thereof

Also Published As

Publication number Publication date
DE10392444T5 (en) 2005-05-25
AU2003221090A1 (en) 2003-10-13
CA2484012C (en) 2012-06-26
AU2003221090C1 (en) 2009-11-05
CA2484012A1 (en) 2003-10-09
AU2003221090B2 (en) 2008-11-20
AU2003221090B9 (en) 2009-05-21
TW200400811A (en) 2004-01-16

Similar Documents

Publication Publication Date Title
US20050107868A1 (en) Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
US20230061170A1 (en) Fiber scaffolds for use creating implantable structures
EP0457430B1 (en) Collagen constructs
JP2678945B2 (en) Artificial blood vessel, method for producing the same, and substrate for artificial blood vessel
US20070198053A1 (en) Cuff member
JP2005511796A (en) Porous polymer prosthesis and method for producing the same
JP2010088792A (en) Cuff member and cuff member unit
US20050084511A1 (en) Lumen formation-inducible material and instrument to be inserted into the body
WO2003082366A1 (en) Tissue engineering scaffold material, aritficial vessel, cuff member and coating for implants
JP2004097267A (en) Cuff member
Watanabe et al. Development of biotube vascular grafts incorporating cuffs for easy implantation
JP2007037764A (en) Prosthetic valve
JP2003284767A (en) Scaffolding material for system engineering and artificial blood vessel
JP2011188989A (en) Cuff member and cuff member unit
JP2010069224A (en) Cuff member, and cuff member unit
JP2011160826A (en) Cuff member and cuff member unit
JP2004097268A (en) Coating material for biological implantation member
JP2007098116A (en) Cuff member and cuff member unit
JP4277939B2 (en) Cell growth factor-producing cell-embedded medical material
JP2004097687A (en) Resin base material for living body, and production method therefor
CN111700710B (en) Template for tissue engineering material and tissue engineering material
JP2008295480A (en) Tube with cuff member
JPH07299084A (en) Artificial prosthesis
CN105477680A (en) Preparation method of in-vivo artificial blood vessel
JP4483545B2 (en) Artificial blood vessel and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003221090

Country of ref document: AU

Ref document number: 2484012

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10950620

Country of ref document: US

122 Ep: pct application non-entry in european phase