WO2003033122A2 - Apparatus for fluid purification and methods of manufacture and use thereof - Google Patents

Apparatus for fluid purification and methods of manufacture and use thereof Download PDF

Info

Publication number
WO2003033122A2
WO2003033122A2 PCT/US2002/033111 US0233111W WO03033122A2 WO 2003033122 A2 WO2003033122 A2 WO 2003033122A2 US 0233111 W US0233111 W US 0233111W WO 03033122 A2 WO03033122 A2 WO 03033122A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
purifying
pressure vessel
purification
ion exchange
Prior art date
Application number
PCT/US2002/033111
Other languages
French (fr)
Other versions
WO2003033122A3 (en
Inventor
Li-Shiang Liang
Emile Montminy
Original Assignee
United States Filter Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Filter Corporation filed Critical United States Filter Corporation
Priority to CN02820175.2A priority Critical patent/CN1568220B/en
Priority to EP02773780A priority patent/EP1436069B1/en
Priority to DE60239141T priority patent/DE60239141D1/en
Priority to AU2002337876A priority patent/AU2002337876A1/en
Priority to CA2461558A priority patent/CA2461558C/en
Priority to AT02773780T priority patent/ATE497830T1/en
Publication of WO2003033122A2 publication Critical patent/WO2003033122A2/en
Publication of WO2003033122A3 publication Critical patent/WO2003033122A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure

Definitions

  • This invention relates to devices able to purify fluids electrically and, more particularly, to such devices contained within pressure vessels, as well as to methods of manufacture and use thereof.
  • Devices able to purify fluids using electrical fields are commonly used to treat water and other liquids containing dissolved ionic species.
  • Two types of devices are electrodialysis devices and electrodeionization devices. Within these devices are concentrating and diluting compartments, separated by anion and cation selective membranes. An applied electric field causes dissolved ions to migrate through the membranes, resulting in the liquid of the diluting compartment being depleted of ions while the liquid in the concentrating compartment is enriched with the transferred ions.
  • the liquid in the diluting compartment is desired (the "product” liquid), while the liquid in the concentrating compartment is discarded (the “reject” liquid).
  • the diluting and concentration compartments may also contain ion exchange resins.
  • Electrodeionization devices include "plate-and-frame" electrodeionization devices such as those disclosed by, for example, in U. S. Patent No. 4,931,160 by Giuffrida, in U. S. Patent No. 4,956,071 by Giuffrida et al. , and in U. S. Patent No. 5,316,637 by Ganzi et al. Electrodeionization devices having other geometries have been disclosed by, for example, in U. S. Patent No. 5,292,422 by Liang et al, in U. S. Patent No. 5,376,253 by Rychen et al, and in U. S. Patent No. 6,190,528 by Li et al
  • the present invention relates to devices able to purify liquids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof.
  • the present invention provides a fluid purification system.
  • the system comprises an electrical purification apparatus and a pressure vessel surrounding the electrical purification apparatus.
  • the apparatus is constructed and arranged to produce a non-radial flow therein.
  • the electrical purification apparatus comprises an electrodeionization device.
  • the system comprises an electrical purification apparatus secured within a pressure vessel.
  • the electrical purification apparatus comprises an ion exchange compartment comprising parallel sub-compartments.
  • the present invention provides a method.
  • the method is a method of purifying a fluid. The method comprises the steps of providing an electrical purification apparatus, pressurizing the apparatus, and passing the liquid to be purified through the apparatus.
  • the electrical purification apparatus is constructed and arranged to produce a non-radial flow therein.
  • the electrical purification apparatus comprises an electrodeionization device.
  • the present invention provides a method of facilitating purification of a liquid.
  • the method comprises the steps of providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein, and securing the apparatus in a pressure vessel.
  • the present invention provides a method of purifying a liquid.
  • the method comprises the steps of providing an electrical purification apparatus, securing the apparatus within a pressure vessel, and passing the liquid to be purified through the apparatus.
  • the electrical purification apparatus is constructed and arranged to produce a non-radial flow therein.
  • the present invention provides a system for purifying a liquid.
  • the system in one set of embodiments, comprises a pressure vessel, an electrical purification apparatus secured within the pressure vessel, a point of entry fluidly connected to the apparatus, and a point of use fluidly connected to the apparatus.
  • the electrical purification apparatus is constructed and arranged to produce a non-radial flow therein.
  • the electrical purification apparatus comprises an electrodeionization device.
  • the present invention provides method of facilitating purification of a liquid.
  • the method comprises the steps of providing a pressure vessel fluidly connectable to a point of entry, providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein, positioning the apparatus within the pressure vessel, and providing a point of use fluidly connectable to the apparatus.
  • the electrical purification apparatus comprises an electrodeionization device.
  • the present invention provides a system for purifying a liquid.
  • the system comprises an electrical purification apparatus comprising an ion exchange compartment, and a substantially cylindrical pressure vessel surrounding the apparatus.
  • the electrical purification apparatus is constructed and arranged to produce a non-radial flow therein.
  • the ion exchange compartment is constructed and arranged to produce a constant liquid velocity therein.
  • the electrical purification apparatus comprises an electrodeionization device.
  • the present invention provides an endblock.
  • the endblock comprises an endplate constructed and arranged to be secured to a pressure vessel, and an insulating material attached to the endplate.
  • the insulating material electrically insulates the endplate from an interior of the pressure vessel.
  • FIG. 1 is a schematic diagram of a system for purifying a liquid according to one embodiment of the present invention
  • FIG. 2 is an exploded perspective view of one embodiment of the present invention
  • FIG. 3 is a schematic diagram of one embodiment of the present invention, illustrating a pressure vessel containing an electrical purification apparatus with one inlet;
  • FIG. 4 is a schematic diagram of one embodiment of the present invention, illustrating a pressure vessel containing an electrical purification apparatus with two inlets;
  • FIG. 5 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus attached to a wall of a pressure vessel using a flange;
  • FIG. 6 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus affixed to a sidewall of a pressure vessel;
  • FIG. 7 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus affixed to a head of a pressure vessel;
  • FIG. 8 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus contained entirely within a pressure vessel.
  • the present invention relates to devices able to purify fluids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof.
  • Liquids or other fluids to be purified enter the purification device and, under the influence of an electric field, are treated to produce an ion-depleted liquid.
  • Species from the entering liquids are collected to produce an ion-concentrated liquid.
  • Increasing the exterior pressure on the device may reduce the pressure difference between the interior of the device and the exterior, which may reduce manufacturing costs or simplify construction.
  • FIG. 1 illustrates a system for purifying a liquid according to one embodiment of the invention.
  • the system 105 comprises an electrical purification apparatus 100, positioned within a pressure vessel 110.
  • Pressure vessel 110 may be pressurized or filled using any suitable technique, for example, by filling or partially filling the pressure vessel interior with a fluid or a solid material.
  • a fluid 120 originating from a point of entry 160 through inlet 130 enters apparatus 100 from within pressure vessel 110.
  • apparatus 100 may concentrate ions within certain compartments of the apparatus by the application of an electric field, which may promote the migration of ions through ion exchange membranes. This procedure results in an ion-concentrated liquid 140 and an ion- depleted liquid 150.
  • Fluid 135 entering pressure vessel 110 may be an organic compound, an aqueous solution, or water, such as fresh water, salt water, or wastewater, for example, from a water treatment plant, or a manufacturing facility.
  • the water may also be water from a reservoir, a holding tank, or the ocean.
  • the ion-depleted liquid may be purified water, such as water comprising less than 1 ppm, less than 500 ppb, less than 100 ppb, less than 50 ppb, less than 10 ppb, less than 5 ppb, or less than 1 ppb of contaminant.
  • the contaminant may be, for example, an ion difficult to remove from water, such as Mg + or Ca 2+ .
  • the ion-depleted liquid may be ultra-high purity water, for example, water with a resistivity of greater than 18 megohm-cm.
  • an "electrical purification apparatus” is an apparatus that can purify a fluid containing dissolved ionic species by applying an electrical potential to influence ion transport within the fluid.
  • Examples of an electrical purification apparatus include an electrodialysis device and an electrodeionization device.
  • the terms “electrodialysis” and “electrodeionization” are given their ordinary definitions as used in the art.
  • An electrodialysis device typically has several fluid compartments that are used to dilute or concentrate ions and other dissolved contaminants.
  • an electrically active media is additionally used within one or more fluid compartments to collect and discharge ionizable species, or to facilitate the transport of ions by ionic or electronic substitution mechanisms.
  • Electrodeionization devices can include media which can permanent or temporary charge, and can operate to cause electrochemical reactions designed to achieve or enhance performance.
  • Point of entry 160 may be any unit operation producing a fluid or operating on a fluid, such as, but not limited to, ultrafiltration, nanofiltration, sedimentation, distillation, humidification, reverse osmosis, dialysis, an electrodeionization apparatus, or an electrodialysis apparatus.
  • the point of entry may also be a reactor in some embodiments, where a fluid is generated, or a heat exchanging system, where a fluid is used for heating or cooling operations.
  • the point of entry may also be a reservoir of liquid, such as a storage vessel, a tank, or an outdoor holding pond, or, in the case of water, the point of entry may also be a natural or artificial body of water, such as a lake, a river, a canal, or an ocean.
  • a reverse osmosis device or a reservoir.
  • Point of use 170 may be any location in which a liquid is desired.
  • the point of use may be a spigot, a reservoir, or a unit operation in which a liquid is needed, such as may be found in a cooling system, a refrigeration system, or a manufacturing plant.
  • the liquid from point of use 170 may also be used in equipment that purifies or stores the liquid, for example, in bottles or a tank.
  • Point of use 170 may also be in a chemical plant, a city, or a building such as a house or an apartment complex, or it may be a discharge to the natural environment.
  • Between pressure vessel 110 and point of use 170 may be any number of additional operations or distribution networks, for example, an ultrafiltration device, a reservoir, or a water distribution system.
  • FIG. 1 may be modified as needed for a particular process.
  • additional inlets or outlets may be added to the pressure vessel or the electrical purification apparatus; pumps, reservoirs, valves, stirrers, surge tanks, sensors, or control elements may be added to the system to control liquid flow; or additional process units such as filtration or reverse osmosis units may be added to the system to further purify the liquid, without departing from the scope of the invention.
  • FIG. 2 illustrates an exploded diagram of another embodiment of the invention.
  • the pressure vessel 200 is shown as a cylinder that surrounds electrical purification apparatus 100.
  • Electrical purification apparatus 100 is also illustrated in FIG. 2 in an exploded view.
  • pressure vessel 200 as depicted in FIG. 2 is a cylinder that is only slightly larger than electrical purification apparatus 100, in other embodiments, pressure vessel 200 may have other shapes, and is not limited to the size of apparatus 100.
  • pressure vessel 200 may be spherical, or it may be cylindrical, for example, with hemispherical ends as depicted in FIG. 1, elliptically-shaped heads, or flat ends.
  • the pressure vessel may also be a line or a pipe, for example, a pipe that fluidly connects at least two unit operations.
  • a "pressure vessel” is any vessel that can withstand pressures above or below atmospheric pressure, such as pressures greater than or less than about 2 pounds per square inch (psi) from atmospheric pressure, pressures greater than or less than about 10 psi from atmospheric pressure, or pressures greater than or less than about 14 psi from atmospheric pressure. In some cases, the pressure vessel may be able to withstand even greater pressures.
  • the pressure vessel may be made of any material capable of withstanding these pressures, such as a metal or a plastic. Metals, such as stainless steel or aluminum, may be used to construct vessels in some embodiments, because such metals may be able to withstand larger forces.
  • polymeric materials such as polypropylene, polysulfone, polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride, fiberglass- reinforced plastic ("FRP") (for example filament-wound reinforced plastic vinyl polyester composite), or a polyolefin may be used, due to their inert or nonconducting nature, such as when liquid contamination is a primary concern, or when the fluid entering the pressure vessel is chemically reactive, for example, an acid or ultra-high purity water.
  • FRP fiberglass- reinforced plastic
  • Other polymers may be used as well.
  • pressure vessel 200 may be made out of a first material lined with a second material.
  • the first material may be any material able to withstand pressure, such as a metal or a plastic.
  • the second material lining the vessel may be, for example, inert to liquids or gases within the pressure vessel.
  • the pressure vessel may be made out of stainless steel with a coating of a polymer such as polytetrafluoroethylene.
  • Pressure vessel 200 may have additional functions, such as, but not limited to, enabling mixing or settling operations, facilitating chemical reactions, performing reverse osmosis, or having electrically insulating properties. Additional components, such as, but not limited to, relief valves, vacuum breakers or sensors, such as, for example, measuring conductivity, temperature, pressure, composition, or pH, may also be present on or within the pressure vessel, depending on the application.
  • electrical purification apparatus 100 includes ion exchange compartments 210, separated by ion selective membranes 220. Each end of electrical purification apparatus 100 may have an electrode 230 and an endblock 240. Optionally, when assembled, a series of tie rods 250 may run through the apparatus.
  • suitable methods may be used to secure apparatus 100 in other embodiments, such as flanges, welds, retaining rings, retaining pins, or adhesives.
  • Ion exchange compartments 210 may have the same size or different sizes.
  • the cross-section of ion exchange compartments 210 are depicted as being circular; however, other cross-sections are also within the scope of the present invention, for example, a rectangle, or a polygon such as a pentagon or a hexagon.
  • the shapes of the ion exchange compartments or chambers are not determined by the shape or size of pressure vessel 200.
  • Ion exchange compartments 210 may each have any number of inlets and outlets (not shown). In some embodiments, an alternating series of concentrating and diluting compartments are used; however, other arrangements, such as a series of two diluting compartments adjacent to two concentrating compartments, may also be used.
  • the materials forming the ion exchange compartments may be any suitable material, such as, but not limited to, a polymeric material, for example, polyvinyl chloride, chlorinated polyvinyl chloride, polypropylene, polysulfone, polyethylene, a polyolefin, or a glass-reinforced plastic or polymer, such as glass-reinforced polypropylene.
  • Ion exchange compartments 210 each may have any number of inlets or outlets (not shown) to allow liquid to flow through the compartment. In some embodiments, the inlets and outlets may be located on the periphery of ion compartments 210, to minimize stagnant liquid flow or "dead" volumes.
  • Ion exchange membranes 220 may allow the species of one charge to pass through but may generally restrict the motion of species carrying the opposite charge.
  • membranes that generally allow passage of cations (positive ions) over anions (negative ions) are cation membranes; membranes that generally allow passage of anions over cations are anion membranes.
  • the ion exchange membranes may comprise, for example, an ion exchange powder, a polyethylene powder binder, and a glycerin lubricant.
  • the ion exchange powder may be, for example, a cation exchange powder such as PUROLITETM C-100IP sodium resonium powder, available from the Purolite Company (Bala Cynwyd, PA); or an anion exchange powder such as PUROLITETM A- 430IP cholestyramine powder, available from the Purolite Company (Bala Cynwyd, PA).
  • the membranes may be formed by any suitable technique, for example, by mixing the raw materials, and forming and extruding the pellets made from the materials into composite sheets. Other types of membranes, such as neutral membranes, size-exclusion membranes, or membranes that are impermeable to specific ions can be used within the electrical purification apparatus in some embodiments of the invention.
  • an alternating series of cation and anion membranes separated by ion exchange membranes 210 are used; however, other arrangements, including those that use other types of membranes, such as size-exclusion membranes, may also be used in other embodiments.
  • the same liquid may be passed through both ion exchange compartments, or one liquid may be passed through one compartment and a different liquid passed through the other.
  • Straps, baffles, walls, ribs, or other components may be used to direct liquid flow within each ion exchange compartment.
  • straps 270 may be arranged to produce a series of parallel sub-compartments 260 within each ion exchange compartment 210, resulting in a net non-radial flow 275, where the net or uniform liquid flow is the average or bulk flow direction of the liquid, ignoring the perturbations to liquid flow caused by the presence of resin within sub-compartments 260.
  • sub-compartments 260 may be designed such that the width, height, or cross-sectional area of each flow channel does not vary substantially, for example, to cause a uniform liquid flow velocity profile throughout the compartment, which may allow more uniform mixing within the compartment, or more uniform transfer rates through the compartment to occur.
  • Sub-compartments 260 within ion exchange compartment 210 do not necessarily have to be parallel to each other, and they may have other shapes besides the rounded rectangles illustrated in FIG. 2, for example, but not limited to, square, circles, rectangles, triangles, ovals, or hexagons.
  • straps 270 may be arranged to produce a zigzag flow of liquid through the compartment to extend the path length of liquid flow within the compartment, or straps 270 may not be present at all.
  • Other non-radial flows 275 within sub-compartments 260 are also contemplated.
  • sub-compartments 260 may be arranged within ion exchange compartment 210 to form a triangular or a square array of sub-compartments, so that liquid flow within each sub-compartment 260 is not directed towards the center of ion exchange compartment 210.
  • "radial" refers to fluid flow that ultimately converges to or starts from the center, or close to the center, of the ion exchange compartment.
  • Non-radial flows within an ion exchange compartment may reduce the pressure or shear forces applied to the ion exchange membranes or the straps or baffles within the ion exchange compartment, compared to radial liquid flows, such as those described, for example, by Liang et al in U. S. Patent No. 5,292,422, the teachings of which are hereby incorporated by reference in their entirety.
  • Non-radial flows may thus, it is believed, extend the lifetimes of the ion exchange membranes, or allow the ion exchange compartment to be constructed out of lighter or less expensive materials.
  • the use of non-radial flows within the ion exchange compartments may also allow construction of the ion exchange compartments to be easier or simpler.
  • Non-radial flows within the ion exchange compartment may also allow uniform liquid flow velocity profiles within the compartment, which may result in more even or more predictable ion exchange, more rapid mixing, or shorter liquid residence times, for example, compared to radial liquid flows.
  • Ion exchange compartments with non-radial flows may also be simpler to manufacture, because fewer internal straps or baffles may be required to produce the non-radial flow, and inlets and outlets may be positioned at the periphery of the ion exchange compartment instead of the center, resulting in easier and simpler access. Inlets and outlets positioned at the periphery of the ion exchange compartments may also simplify the loading and replacement of any ion exchange resins that may be present within the compartment, for example, in electrodeionization devices.
  • an electric field is applied to the ion exchange compartments from electrodes 230, which may create a potential gradient that causes ions to migrate from the diluting compartments into the concentrating compartments.
  • the electric field may be applied perpendicularly to liquid flow 275.
  • the electric field may be uniformly applied across ion exchange compartments 210, resulting in a uniform, substantially constant electric field density across ion exchange compartments 210; or the electric field may be nonuniformly applied, resulting in a nonuniform current density.
  • the electric field may also be applied as a gradient, for example, increasing or decreasing across electrical purification apparatus 100 or along liquid flow 275.
  • the electric field may also be applied at a slight or sharp angle to the liquid flow.
  • Any one of the electrodes 230 may be used as a cathode or an anode.
  • the polarity of the electrodes may occasionally be reversed during operation, reversing the position of the cathode and the anode.
  • the electrodes may be made out of any material suitable for applying the electric field.
  • the electrodes may be used, for example, for extended periods of time without significant corrosion. Examples of materials include platinum, titanium or stainless steel.
  • the electrodes may also be coated in some embodiments, for example, with platinum, ruthenium oxide or iridium oxide.
  • the electrical purification apparatus is an electrodeionization device.
  • one or both of ion exchange compartments 210 may be filled with a resin (not shown).
  • the resin may be a cation, anion, or inert resin, and may be present as spherical beads or other discrete particles.
  • the resin may also be present in other geometries as well, such as powder, fibers, mats, or extruded screens.
  • the resin may comprise any material suitable for binding ions and other species from solutions, for example, silica, a zeolite, or a polymer, such as a poly(divinylbenzene-co-styrene).
  • the resin may include cation materials having weak base functional groups on their surface regions, such as tertiary alkyl amino groups.
  • the resins may also include anion resin materials, such as those containing Type II functional groups on their surface regions, for example, dimethyl ethanolamine, or Type I functional groups (quaternary ammonium groups) on their surface regions.
  • the resin within ion exchange compartment 210 can have a variety of arrangements including, but not limited to, layered packings as described by DiMascio et al. in U. S. Patent No.
  • ion exchange compartments 210 may contain additional components, such as baffles, meshes, or screens, which may be used to, for example, contain and direct the resin or control liquid flow within the compartment.
  • electrical purification apparatus 100 is assembled by the use of endblocks 240 on either end of the apparatus, held together by the use of tie bars 250, as would be found in a typical plate-and-frame construction, that is known in the art. See, for example, U. S. Patent No. 4,931,160 by Giuffrida, U. S. Patent No. 4,956,071 by Giuffrida et al , or U. S. Patent No. 5,316,637 by Ganzi et al.
  • the "plate” may be represented by ion exchange compartments 210 and the "frame" may be represented by endblocks 240.
  • Ion exchange membranes 220 are arranged in parallel to each other, with the space between them forming ion exchange compartments 210. During operation, each ion exchange compartment 210 has an internal pressure. These liquid pressures surrounding ion exchange compartment 210 may be essentially balanced, and the likelihood of stress-induced failures of internal components may be reduced. Tie bars 250 and endblocks 240 are not required for operation of electrical purification apparatus 100, and, in some embodiments, tie bars 250 or endblocks 240 may be absent. Other methods of securing apparatus 100 within pressure vessel 110 may be used as well, for example, by welding or thermal fusion. Mechanical flanges, adhesives, or other methods as previously described may also be used to assemble the apparatus.
  • Tie bars 250 or endblocks 240 may be made out of a metal, such as stainless steel, titanium, or aluminum.
  • the tie bars or the endplates may be made out of polymeric materials, such as polyvinyl chloride, chlorinated polyvinyl chloride, polypropylene, polysulfone, polyethylene, a polyolefin, a ceramic, or other inert or non-conducting materials, such as for safety reasons, cost, reliability, ease of manufacture, or ease of maintenance.
  • endblock 240 may be a composite of two or more different materials.
  • endblock 240 may be made out of two materials such as a metal and a polymer, which may, for example, prevent electrical shorting within the electrical purification apparatus.
  • endblock 240 may constructed out of three or more materials.
  • one material may provide structural strength
  • a second material may be an insulating material
  • a third material may be used as electrode 230.
  • the insulating material may be any material capable of electrical insulation, such as a polymer, for example, polyvinyl chloride or rubber.
  • the outer material may be any material, for example, a material to provide structural strength to the apparatus, such as a metal, for example, aluminum or stainless steel. Other arrangements for endblock 240 may also be envisioned.
  • Fluid 120 passes within pressure vessel 200 and outside electrical purification apparatus 100.
  • Fluid 120 may be any fluid.
  • fluid 120 may be air, nitrogen gas, an oil, a hydrocarbon, an aqueous solution, or water, such as fresh water, salt water, or wastewater.
  • the fluid filling or partially filling pressure vessel 110 may be one or more of the fluids exiting the electrical purification apparatus, it may be a fluid that enters apparatus 100, or it may be a fluid that does not enter the apparatus.
  • the pressure of fluid 120 within pressure vessel 200 may be greater than, less than, or equal to the pressure within apparatus 100.
  • pressure difference may be less than 500 psi, less than 100 psi, less than 50 psi, less than 10 psi, or less than 5 psi.
  • Either fluid 120 or apparatus 100 may have the greater pressure.
  • electrical purification apparatus 100 within pressure vessel 200 is pressurized structurally, for example, by filling and pressurizing the space between the apparatus and the pressure vessel with a solid material.
  • the solid material may be any material that can be used to fill and at least partially pressurize the space between the electrical purification apparatus and the pressure vessel, for instance, to apply a pressure to at least a portion of the electrical purification apparatus. If a solid material is used, the material may be inert, or may be formed from of a substance that is unreactive toward the fluids used in the electrical purification apparatus, especially during application of an electric field.
  • the solid material may comprise a polymeric material, such as, but not limited to, polypropylene, polysulfone, polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride or a polyolefin.
  • the solid material may comprise a material that is expanded or solidified during its formation.
  • a material may be placed between the electrical purification apparatus and the pressure vessel, and solidified in place, such as in a foam or an injection molding process.
  • the material is a polymer that is blown and expanded into place, for example, but not limited to, a polystyrene, polyethylene, or a polypropylene.
  • the material reacts to form a solid material, for example, an epoxy.
  • the solid material may be, in yet another set of embodiments, positioned in the pressure vessel during the fabrication process.
  • the solid material may be pressurized (e.g., compressed) in some embodiments. In certain embodiments, however, the solid material is not pressurized, but is used, for example, to prevent or reduce fluid leakage from the purification apparatus, or to occupy space or buffer the apparatus from the pressure vessel, for instance, against physical shock or changes in temperature.
  • the solid material allows forces generated in the electrical purification apparatus to be transmitted to the pressure vessel. These forces may include internal forces such as internal hydraulic pressures, or expansion forces from the swelling of resins in embodiments where resins are used, such as in electrodeionization devices.
  • an elastomeric solid is placed between the electrical purification apparatus and the pressure vessel during the fabrication process.
  • the solid material may be a thermoplastic elastomer such as, but not limited to, rubber, polystyrene, polybutadiene, polyisoprene, polybutadiene, polyisobutylene, a polyurethane, polychloroprene, or a silicone.
  • the present invention may have a variety of other configurations.
  • both a fluid and a solid material may be used between the electrical purification apparatus and the pressure vessel.
  • other means of applying an external pressure on the periphery of the electrical purification apparatus are contemplated.
  • a fluid may be pressurized, for example, by an upstream pump or by application of higher flow rates or hydrostatic pressure heads, instead of being confined within a pressure vessel.
  • a "pressurized fluid” refers to a fluid with a pressure greater than that of atmospheric pressure, typically at least greater than 2 psi over atmospheric pressure.
  • a different fluid may be used to pressurize the outside of the apparatus, such as water or air.
  • Electrical purification apparatus 100 may also have other configurations as well, for example, including additional components, such as additional electrodes; or other internal geometries, for example, having cylindrical or spherical ion exchange compartments.
  • additional components such as additional electrodes; or other internal geometries, for example, having cylindrical or spherical ion exchange compartments.
  • Different inlet and outlet configurations may also be used.
  • several liquids may be simultaneously passed through the apparatus to be concentrated and diluted, such as water, brine, an aqueous solution, or an organic solution.
  • Fluid 120 may additionally have other materials suspended or dissolved in it, such as may be present in sea water.
  • the fluid within the pressure vessel may be fed by one or more of the inlet fluids.
  • fluid 300 from a point of entry 160 first enters region 370 between pressure vessel 110 and electrical purification apparatus 100.
  • Electrical purification apparatus 100 is divided into concentrating compartments 310 and diluting or depleting compartments 320 by cation exchange membranes 330 and anion exchange membranes 340. If the electrical purification apparatus is an electrodeionization device, then one or both of compartments 310 and 320 may be filled with a resin.
  • At one end of the apparatus is an anode 360 and an endblock 240; at the other end is cathode 350 and an endblock 240.
  • the fluid from region 370 is passed from within the pressure vessel into both the concentrating 310 and diluting 320 compartments through inlets 315 and 325, respectively, where it is concentrated and diluted, respectively, under the influence of the applied electric potential.
  • the fluid then exits concentrating 310 and diluting 320 compartments through outlets 317 and 327 as ion-concentrated stream 140 and ion- depleted stream 150, respectively.
  • the ion-depleted stream may be retained as a product, while the ion- concentrated stream is discarded; however, in other applications, where concentrating operations may be desired, the ion-concentrated stream may be retained and the ion- depleted stream discarded.
  • ion-concentrated stream 140 and ion-depleted stream 150 each end at points of use 380 and 385, respectively.
  • region 370 may be an annular region between pressure vessel 110 and electrical purification apparatus 100, for example, if both the pressure vessel and the apparatus have cross circular-cross sections.
  • a smaller region 370 may be desired, for example, to minimize the amount of fluid within pressure vessel 110 that is not within electrical purification apparatus 100 in embodiments where a fluid is passed through region 370.
  • a larger region 370 between pressure vessel 110 and apparatus 100 may be desired.
  • a larger region 370 between pressure vessel 110 and electrical purification apparatus 100 may allow the fluid in the region have a higher or lower velocity profile, minimizing the amount of "dead" volume within the device.
  • a "dead" or stagnant volume may have a very low fluid velocity, for example, less than about 10 ft/s, or less than about 5 ft/s, which could allow the growth of microorganisms to occur.
  • baffles, straps, ribs, or other devices may be used within region 370 to alter or affect fluid flow therein, for example, to prevent the formation of dead zones, or to facilitate uniform fluid flow within the annular space.
  • FIG. 4 Another embodiment of the invention is illustrated in FIG. 4 as a cross-sectional view.
  • two separate inlet fluids 400, 410 are used, thus illustrating that multiple inlets may be used in accordance with the present invention.
  • One inlet fluid 400 from a point of entry 460 is used to fill region 370 between pressure vessel 110 and electrical purification apparatus 100. From region 370, the fluid enters concentrating compartments 310 through inlets 315.
  • the other inlet fluid 410 from point of entry 470 passes only through diluting compartments 320 of electrical purification apparatus 100, and does not enter region 370 between pressure vessel 110 and apparatus 100.
  • the two fluids pass through concentrating 310 and diluting 320 compartments and exit through outlets 317 and 327 to produce the ion-concentrated 140 and ion-depleted 150 liquids, respectively, and from there to points of use 380 and 385, respectively.
  • FIG. 5 Another embodiment of the invention is illustrated in FIG. 5 as a cross-sectional view.
  • two separate fluids 400, 410 from separate points of entry 460, 470, respectively, are used in electrical purification apparatus 100, but a third fluid or a solid material 500 is used to reduce the pressure difference between the inside of electrical purification apparatus 100 and pressure vessel 110, only a portion of which is illustrated in FIG. 5.
  • pressure vessel 110 is much larger than apparatus 100, does not conform to the shape of the apparatus, and does not entirely contain the apparatus.
  • one inlet fluid 400 enters concentrating compartments 310 through inlets 315 while a second inlet fluid 410 enters diluting compartments 320 through inlets 325.
  • Ion- concentrated liquid 140 from concentrating compartments 310 exits through outlets 317 to a point of use 170, while ion-depleted liquid 150 from diluting compartments 320 exits through outlets 327 to pressure vessel 110 and mixes with third fluid 500.
  • electrical purification apparatus 100 may be attached to the wall of pressure vessel 110 by means of a flange; however, other attachment methods, such as adhesives or tie rods, may also be used for attaching electrical purification apparatus 100.
  • any of the outlet fluids may be recirculated back to one of the inlets or into the pressure vessel, or, if a fluid is used to pressurize the exterior of the electrical purification apparatus, the fluid may not be connected in any fashion with either the inlet or the outlet fluids.
  • Other configurations may also be envisioned.
  • the inlets or the outlets may be connected to other electrical purification devices in series or in parallel, resulting in linked networks of electrical purification devices. Liquids could be passed through a series of electrical purification devices, each device subsequently concentrating or purifying the liquid.
  • FIG. 6 shows another embodiment of the invention.
  • electrical purification apparatus 100 has been mounted to the side wall of pressure vessel 110.
  • part of apparatus 100 is located outside of pressure vessel 110, permitting ready access to the apparatus, so that, for example, routine maintenance operations may be performed on electrical purification apparatus 100, or piping configurations may be easily altered, internally or externally.
  • electrical purification apparatus 100 has been mounted at the base of the pressure vessel 110. This may be advantageous in situations, for example, where pressure vessel 110 is large and access to electrical purification apparatus 100 at the bottom of the vessel may be more practical, safe, or cost-effective. In other embodiments, the apparatus may also be positioned at the top of pressure vessel 110.
  • electrical purification apparatus 100 is completely enclosed within pressure vessel 110.
  • two inlet liquids 800 enter apparatus 100, resulting in an ion-concentrated liquid 140 and an ion-depleted liquid 150.
  • Ion- concentrated liquid 140 may be passed into pressure vessel 110, while ion-depleted liquid 150 is discarded.
  • This configuration may be advantageous in certain situations, for example, where leakage from electrical purification apparatus 100 must be tightly controlled, for example, in the purification of toxic or biohazardous liquids. It will be understood that other configurations may also be possible, depending on the situation and the liquid to be concentrated or diluted.
  • Example 1 This example illustrates various conditions using one particular embodiment of the invention utilizing an electrodeionization device.
  • a continuous electrodeionization device having twelve diluting compartments and twelve concentration compartments was assembled.
  • the intermembrane spacing between the compartments was 0.161 inches.
  • the cation membrane within the device was a heterogeneous extruded cation exchange membrane.
  • the anion exchange membrane was a heterogeneous extruded anion exchange membrane.
  • the resin used in both the diluting compartment and the concentrating compartment was a mixture of Marathon A anion resin and Marathon C cation resin. The ratio between the anion and cation resin was 70:30.
  • the pressure vessel was constructed from polyvinyl chloride.
  • the pressure vessel was a cylinder with an inner diameter of about 12.4 inches.
  • the polyvinyl chloride cylinder was rated for a maximum pressure of 220 psi.
  • the spacer within the electodeionization device was constructed out of low density polyethylene.
  • the electrodes were constructed out of titanium coated with a ruthenium oxide coating.
  • the endplates on the pressure vessel were also constructed out of polyvinyl chloride.
  • Results for two sample runs using the particular electodeionization device are shown in Table 1.
  • the water fed to the device in Run 1 had a higher conductivity than the water used in Run 2, indicating that the water in Run 1 had a higher load of ions.
  • This electrodeionization device was able to successfully reduce the amount of silicon dioxide present in the inlet water by approximately 99%. Additionally, the resistivity of the ion-depleted fluid was found to be approximately 17 megohm-cm after electrodeionization.
  • this example illustrates that one embodiment of the invention may be used to reduce the concentration of silicon dioxide, as well as the resistivity of the sample stream of water.
  • An electrodeionization apparatus is constructed and housed in a cylindrical pressure vessel.
  • the spacers that form the diluting and concentrating compartments are circular in shape, with an outside diameter of 5.75 inches.
  • the thickness of each diluting compartments is 0.33 inches, and the thickness of each concentrating compartments is 0.18 inches.
  • Within each spacer are two compartments, each 3.5 inches long, and connected at one end to form a U-shaped flow path of 7 inches total length.
  • the spacers are molded from a glass-reinforced polypropylene.
  • the endblocks that house the electrodes are machined from a solid polyvinyl chloride (PNC) block.
  • the cylindrical vessel consists of a PVC Schedule 40 pipe, with an inside diameter of 6 inches.
  • the stack of spacers, membranes and endblocks are assembled and inserted into the pressure vessel, and secured within the vessel by retaining pins at both ends.
  • the electrodeionization apparatus is operated with permeate water from a reverse osmosis purification system as the feed.
  • the feed to the diluting compartments is introduced directly into the compartments at a pressure of 29 psi g .
  • the product fluid is at a pressure of 9 psi g .
  • the feed to the concentrating compartments is first introduced at 5 psi g into the annular space between the inside of the pressure vessel and the outside of the apparatus. The water is then directed into the concentrate compartments.
  • the effluent from the concentrating compartments i.e., the reject
  • the maximum pressure differential between the interior and the exterior of the apparatus is about 24 psi g (i.e., the pressure difference between the feed to the diluting compartment, and the feed to the annular space).
  • This pressure difference may be narrowed by increasing the feed pressure to the annular spacer, and therefore to the concentrating compartments.
  • the pressure difference is not significantly affected if the pressure of both of the feed streams is increased by the same amount.
  • the apparatus can be operated at feed pressure of up to 100 psi g into the diluting compartments.
  • feed pressure of up to 100 psi g into the diluting compartments.
  • the maximum pressure difference between the interior and the exterior of the diluting compartments is the pressure drop through the diluting compartments, about 20 psi.
  • the lower pressure differential allows the use of glass-filled polypropylene as the spacer material.

Abstract

The present invention generally relates to devices able to purify fluids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof. Liquids or other fluids to be purified enter the purification device and, under the influence of an electric field, are treated to produce an ion-depleted liquid. Species from the entering liquids are collected to produce an ion-concentrated liquid. Increasing the exterior pressure on the device may reduce the pressure difference between the interior of the device and the exterior, which may reduce manufacturing costs or simplify construction.

Description

APPARATUS FOR FLUID PURIFICATION AND METHODS OF MANUFACTURE AND USE THEREOF
BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates to devices able to purify fluids electrically and, more particularly, to such devices contained within pressure vessels, as well as to methods of manufacture and use thereof.
Description of the Related Art
Devices able to purify fluids using electrical fields are commonly used to treat water and other liquids containing dissolved ionic species. Two types of devices are electrodialysis devices and electrodeionization devices. Within these devices are concentrating and diluting compartments, separated by anion and cation selective membranes. An applied electric field causes dissolved ions to migrate through the membranes, resulting in the liquid of the diluting compartment being depleted of ions while the liquid in the concentrating compartment is enriched with the transferred ions. Typically, the liquid in the diluting compartment is desired (the "product" liquid), while the liquid in the concentrating compartment is discarded (the "reject" liquid). In electrodeionization, the diluting and concentration compartments may also contain ion exchange resins. The ion exchange resin may act as a path for ion transfer, and also may serve as an increased conductivity bridge between the membranes for movement of ions. Electrodeionization devices include "plate-and-frame" electrodeionization devices such as those disclosed by, for example, in U. S. Patent No. 4,931,160 by Giuffrida, in U. S. Patent No. 4,956,071 by Giuffrida et al. , and in U. S. Patent No. 5,316,637 by Ganzi et al. Electrodeionization devices having other geometries have been disclosed by, for example, in U. S. Patent No. 5,292,422 by Liang et al, in U. S. Patent No. 5,376,253 by Rychen et al, and in U. S. Patent No. 6,190,528 by Li et al
SUMMARY OF THE INVENTION
This invention relates to devices able to purify liquids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof. In one aspect, the present invention provides a fluid purification system. In one set of embodiments, the system comprises an electrical purification apparatus and a pressure vessel surrounding the electrical purification apparatus. The apparatus is constructed and arranged to produce a non-radial flow therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.
In another set of embodiments, the system comprises an electrical purification apparatus secured within a pressure vessel. The electrical purification apparatus comprises an ion exchange compartment comprising parallel sub-compartments. In another aspect, the present invention provides a method. In one set of embodiments, the method is a method of purifying a fluid. The method comprises the steps of providing an electrical purification apparatus, pressurizing the apparatus, and passing the liquid to be purified through the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.
In another set of embodiments, the present invention provides a method of facilitating purification of a liquid. The method comprises the steps of providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein, and securing the apparatus in a pressure vessel. In another set of embodiments, the present invention provides a method of purifying a liquid. The method comprises the steps of providing an electrical purification apparatus, securing the apparatus within a pressure vessel, and passing the liquid to be purified through the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. In another aspect, the present invention provides a system for purifying a liquid.
The system, in one set of embodiments, comprises a pressure vessel, an electrical purification apparatus secured within the pressure vessel, a point of entry fluidly connected to the apparatus, and a point of use fluidly connected to the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.
In another aspect, the present invention provides method of facilitating purification of a liquid. The method comprises the steps of providing a pressure vessel fluidly connectable to a point of entry, providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein, positioning the apparatus within the pressure vessel, and providing a point of use fluidly connectable to the apparatus. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.
In another aspect, the present invention provides a system for purifying a liquid. The system comprises an electrical purification apparatus comprising an ion exchange compartment, and a substantially cylindrical pressure vessel surrounding the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. The ion exchange compartment is constructed and arranged to produce a constant liquid velocity therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.
In another aspect, the present invention provides an endblock. The endblock comprises an endplate constructed and arranged to be secured to a pressure vessel, and an insulating material attached to the endplate. The insulating material electrically insulates the endplate from an interior of the pressure vessel.
Other advantages, novel features, and objects of the invention will become apparent from the following detailed description of non-limiting embodiments of the invention when considered in conjunction with the accompanying drawings, which are schematic and which are not intended to be drawn to scale. In the figures, each identical or nearly identical component that is illustrated in various figures typically is represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In cases where the present specification and a document incorporated by reference include conflicting disclosure, the present specification shall control.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred, non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings in which:
FIG. 1 is a schematic diagram of a system for purifying a liquid according to one embodiment of the present invention; FIG. 2 is an exploded perspective view of one embodiment of the present invention;
FIG. 3 is a schematic diagram of one embodiment of the present invention, illustrating a pressure vessel containing an electrical purification apparatus with one inlet;
FIG. 4 is a schematic diagram of one embodiment of the present invention, illustrating a pressure vessel containing an electrical purification apparatus with two inlets;
FIG. 5 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus attached to a wall of a pressure vessel using a flange;
FIG. 6 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus affixed to a sidewall of a pressure vessel;
FIG. 7 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus affixed to a head of a pressure vessel; and
FIG. 8 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus contained entirely within a pressure vessel.
DETAILED DESCRIPTION
The present invention relates to devices able to purify fluids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof. Liquids or other fluids to be purified enter the purification device and, under the influence of an electric field, are treated to produce an ion-depleted liquid. Species from the entering liquids are collected to produce an ion-concentrated liquid. Increasing the exterior pressure on the device may reduce the pressure difference between the interior of the device and the exterior, which may reduce manufacturing costs or simplify construction.
FIG. 1 illustrates a system for purifying a liquid according to one embodiment of the invention. The system 105 comprises an electrical purification apparatus 100, positioned within a pressure vessel 110. Pressure vessel 110 may be pressurized or filled using any suitable technique, for example, by filling or partially filling the pressure vessel interior with a fluid or a solid material. In the particular embodiment illustrated in FIG. 1, a fluid 120 originating from a point of entry 160 through inlet 130 enters apparatus 100 from within pressure vessel 110. During normal operation, apparatus 100 may concentrate ions within certain compartments of the apparatus by the application of an electric field, which may promote the migration of ions through ion exchange membranes. This procedure results in an ion-concentrated liquid 140 and an ion- depleted liquid 150. Ion-concentrated liquid 140 and ion-depleted liquid 150 leave the apparatus through outlets 145 and 155, respectively. Ion-depleted liquid 150 may be transferred to a point of use 170. Fluid 135 entering pressure vessel 110 may be an organic compound, an aqueous solution, or water, such as fresh water, salt water, or wastewater, for example, from a water treatment plant, or a manufacturing facility. The water may also be water from a reservoir, a holding tank, or the ocean. In some embodiments, the ion-depleted liquid may be purified water, such as water comprising less than 1 ppm, less than 500 ppb, less than 100 ppb, less than 50 ppb, less than 10 ppb, less than 5 ppb, or less than 1 ppb of contaminant. The contaminant may be, for example, an ion difficult to remove from water, such as Mg + or Ca2+. In another embodiment, the ion-depleted liquid may be ultra-high purity water, for example, water with a resistivity of greater than 18 megohm-cm.
As used herein, an "electrical purification apparatus" is an apparatus that can purify a fluid containing dissolved ionic species by applying an electrical potential to influence ion transport within the fluid. Examples of an electrical purification apparatus include an electrodialysis device and an electrodeionization device. The terms "electrodialysis" and "electrodeionization" are given their ordinary definitions as used in the art. An electrodialysis device typically has several fluid compartments that are used to dilute or concentrate ions and other dissolved contaminants. In an electrodeionization device, an electrically active media is additionally used within one or more fluid compartments to collect and discharge ionizable species, or to facilitate the transport of ions by ionic or electronic substitution mechanisms. Electrodeionization devices can include media which can permanent or temporary charge, and can operate to cause electrochemical reactions designed to achieve or enhance performance. Point of entry 160 may be any unit operation producing a fluid or operating on a fluid, such as, but not limited to, ultrafiltration, nanofiltration, sedimentation, distillation, humidification, reverse osmosis, dialysis, an electrodeionization apparatus, or an electrodialysis apparatus. The point of entry may also be a reactor in some embodiments, where a fluid is generated, or a heat exchanging system, where a fluid is used for heating or cooling operations. In certain embodiments, the point of entry may also be a reservoir of liquid, such as a storage vessel, a tank, or an outdoor holding pond, or, in the case of water, the point of entry may also be a natural or artificial body of water, such as a lake, a river, a canal, or an ocean. Between point of entry 160 and pressure vessel 110 may be any number of additional operations that may operate on the fluid, for example, a reverse osmosis device or a reservoir.
Point of use 170 may be any location in which a liquid is desired. For example, the point of use may be a spigot, a reservoir, or a unit operation in which a liquid is needed, such as may be found in a cooling system, a refrigeration system, or a manufacturing plant. The liquid from point of use 170 may also be used in equipment that purifies or stores the liquid, for example, in bottles or a tank. Point of use 170 may also be in a chemical plant, a city, or a building such as a house or an apartment complex, or it may be a discharge to the natural environment. Between pressure vessel 110 and point of use 170 may be any number of additional operations or distribution networks, for example, an ultrafiltration device, a reservoir, or a water distribution system.
It should be understood that the systems and methods of the present invention may be used in connection with any system where the purification of a liquid or liquids may be desired. Consequently, the system as illustrated in FIG. 1 may be modified as needed for a particular process. For example, additional inlets or outlets may be added to the pressure vessel or the electrical purification apparatus; pumps, reservoirs, valves, stirrers, surge tanks, sensors, or control elements may be added to the system to control liquid flow; or additional process units such as filtration or reverse osmosis units may be added to the system to further purify the liquid, without departing from the scope of the invention.
FIG. 2 illustrates an exploded diagram of another embodiment of the invention. In the embodiment shown in this figure, the pressure vessel 200 is shown as a cylinder that surrounds electrical purification apparatus 100. Electrical purification apparatus 100 is also illustrated in FIG. 2 in an exploded view.
Although pressure vessel 200 as depicted in FIG. 2 is a cylinder that is only slightly larger than electrical purification apparatus 100, in other embodiments, pressure vessel 200 may have other shapes, and is not limited to the size of apparatus 100. For example, pressure vessel 200 may be spherical, or it may be cylindrical, for example, with hemispherical ends as depicted in FIG. 1, elliptically-shaped heads, or flat ends. The pressure vessel may also be a line or a pipe, for example, a pipe that fluidly connects at least two unit operations. As used herein, a "pressure vessel" is any vessel that can withstand pressures above or below atmospheric pressure, such as pressures greater than or less than about 2 pounds per square inch (psi) from atmospheric pressure, pressures greater than or less than about 10 psi from atmospheric pressure, or pressures greater than or less than about 14 psi from atmospheric pressure. In some cases, the pressure vessel may be able to withstand even greater pressures. The pressure vessel may be made of any material capable of withstanding these pressures, such as a metal or a plastic. Metals, such as stainless steel or aluminum, may be used to construct vessels in some embodiments, because such metals may be able to withstand larger forces. However, in other embodiments, polymeric materials such as polypropylene, polysulfone, polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride, fiberglass- reinforced plastic ("FRP") (for example filament-wound reinforced plastic vinyl polyester composite), or a polyolefin may be used, due to their inert or nonconducting nature, such as when liquid contamination is a primary concern, or when the fluid entering the pressure vessel is chemically reactive, for example, an acid or ultra-high purity water. Other polymers may be used as well. In some embodiments, pressure vessel 200 may be made out of a first material lined with a second material. The first material may be any material able to withstand pressure, such as a metal or a plastic. The second material lining the vessel may be, for example, inert to liquids or gases within the pressure vessel. For example, the pressure vessel may be made out of stainless steel with a coating of a polymer such as polytetrafluoroethylene. Pressure vessel 200 may have additional functions, such as, but not limited to, enabling mixing or settling operations, facilitating chemical reactions, performing reverse osmosis, or having electrically insulating properties. Additional components, such as, but not limited to, relief valves, vacuum breakers or sensors, such as, for example, measuring conductivity, temperature, pressure, composition, or pH, may also be present on or within the pressure vessel, depending on the application.
In one set of embodiments, electrical purification apparatus 100 includes ion exchange compartments 210, separated by ion selective membranes 220. Each end of electrical purification apparatus 100 may have an electrode 230 and an endblock 240. Optionally, when assembled, a series of tie rods 250 may run through the apparatus. However, other suitable methods may be used to secure apparatus 100 in other embodiments, such as flanges, welds, retaining rings, retaining pins, or adhesives.
Ion exchange compartments 210 may have the same size or different sizes. In FIG. 2, the cross-section of ion exchange compartments 210 are depicted as being circular; however, other cross-sections are also within the scope of the present invention, for example, a rectangle, or a polygon such as a pentagon or a hexagon. In particular, the shapes of the ion exchange compartments or chambers are not determined by the shape or size of pressure vessel 200. Ion exchange compartments 210 may each have any number of inlets and outlets (not shown). In some embodiments, an alternating series of concentrating and diluting compartments are used; however, other arrangements, such as a series of two diluting compartments adjacent to two concentrating compartments, may also be used. The materials forming the ion exchange compartments may be any suitable material, such as, but not limited to, a polymeric material, for example, polyvinyl chloride, chlorinated polyvinyl chloride, polypropylene, polysulfone, polyethylene, a polyolefin, or a glass-reinforced plastic or polymer, such as glass-reinforced polypropylene. Ion exchange compartments 210 each may have any number of inlets or outlets (not shown) to allow liquid to flow through the compartment. In some embodiments, the inlets and outlets may be located on the periphery of ion compartments 210, to minimize stagnant liquid flow or "dead" volumes.
Ion exchange membranes 220 may allow the species of one charge to pass through but may generally restrict the motion of species carrying the opposite charge. For example, membranes that generally allow passage of cations (positive ions) over anions (negative ions) are cation membranes; membranes that generally allow passage of anions over cations are anion membranes. The ion exchange membranes may comprise, for example, an ion exchange powder, a polyethylene powder binder, and a glycerin lubricant. The ion exchange powder may be, for example, a cation exchange powder such as PUROLITE™ C-100IP sodium resonium powder, available from the Purolite Company (Bala Cynwyd, PA); or an anion exchange powder such as PUROLITE™ A- 430IP cholestyramine powder, available from the Purolite Company (Bala Cynwyd, PA). The membranes may be formed by any suitable technique, for example, by mixing the raw materials, and forming and extruding the pellets made from the materials into composite sheets. Other types of membranes, such as neutral membranes, size-exclusion membranes, or membranes that are impermeable to specific ions can be used within the electrical purification apparatus in some embodiments of the invention. In one set of embodiments, an alternating series of cation and anion membranes separated by ion exchange membranes 210 are used; however, other arrangements, including those that use other types of membranes, such as size-exclusion membranes, may also be used in other embodiments.
The same liquid may be passed through both ion exchange compartments, or one liquid may be passed through one compartment and a different liquid passed through the other. Straps, baffles, walls, ribs, or other components may be used to direct liquid flow within each ion exchange compartment. In one embodiment, depicted in FIG. 2, straps 270 may be arranged to produce a series of parallel sub-compartments 260 within each ion exchange compartment 210, resulting in a net non-radial flow 275, where the net or uniform liquid flow is the average or bulk flow direction of the liquid, ignoring the perturbations to liquid flow caused by the presence of resin within sub-compartments 260. In some embodiments, sub-compartments 260 may be designed such that the width, height, or cross-sectional area of each flow channel does not vary substantially, for example, to cause a uniform liquid flow velocity profile throughout the compartment, which may allow more uniform mixing within the compartment, or more uniform transfer rates through the compartment to occur. Sub-compartments 260 within ion exchange compartment 210 do not necessarily have to be parallel to each other, and they may have other shapes besides the rounded rectangles illustrated in FIG. 2, for example, but not limited to, square, circles, rectangles, triangles, ovals, or hexagons. In other embodiments, straps 270 may be arranged to produce a zigzag flow of liquid through the compartment to extend the path length of liquid flow within the compartment, or straps 270 may not be present at all. Other non-radial flows 275 within sub-compartments 260 are also contemplated. For example, sub-compartments 260 may be arranged within ion exchange compartment 210 to form a triangular or a square array of sub-compartments, so that liquid flow within each sub-compartment 260 is not directed towards the center of ion exchange compartment 210. As used herein, "radial" refers to fluid flow that ultimately converges to or starts from the center, or close to the center, of the ion exchange compartment.
Non-radial flows within an ion exchange compartment may reduce the pressure or shear forces applied to the ion exchange membranes or the straps or baffles within the ion exchange compartment, compared to radial liquid flows, such as those described, for example, by Liang et al in U. S. Patent No. 5,292,422, the teachings of which are hereby incorporated by reference in their entirety. Non-radial flows may thus, it is believed, extend the lifetimes of the ion exchange membranes, or allow the ion exchange compartment to be constructed out of lighter or less expensive materials. The use of non-radial flows within the ion exchange compartments may also allow construction of the ion exchange compartments to be easier or simpler. Non-radial flows within the ion exchange compartment may also allow uniform liquid flow velocity profiles within the compartment, which may result in more even or more predictable ion exchange, more rapid mixing, or shorter liquid residence times, for example, compared to radial liquid flows. Ion exchange compartments with non-radial flows may also be simpler to manufacture, because fewer internal straps or baffles may be required to produce the non-radial flow, and inlets and outlets may be positioned at the periphery of the ion exchange compartment instead of the center, resulting in easier and simpler access. Inlets and outlets positioned at the periphery of the ion exchange compartments may also simplify the loading and replacement of any ion exchange resins that may be present within the compartment, for example, in electrodeionization devices. Lesser amounts of piping and other fluid connections may be required for each ion exchange compartment, which may simplify construction in some cases. During operation, an electric field is applied to the ion exchange compartments from electrodes 230, which may create a potential gradient that causes ions to migrate from the diluting compartments into the concentrating compartments. The electric field may be applied perpendicularly to liquid flow 275. The electric field may be uniformly applied across ion exchange compartments 210, resulting in a uniform, substantially constant electric field density across ion exchange compartments 210; or the electric field may be nonuniformly applied, resulting in a nonuniform current density. The electric field may also be applied as a gradient, for example, increasing or decreasing across electrical purification apparatus 100 or along liquid flow 275. The electric field may also be applied at a slight or sharp angle to the liquid flow. Any one of the electrodes 230 may be used as a cathode or an anode. In some embodiments of the invention, the polarity of the electrodes may occasionally be reversed during operation, reversing the position of the cathode and the anode. The electrodes may be made out of any material suitable for applying the electric field. The electrodes may be used, for example, for extended periods of time without significant corrosion. Examples of materials include platinum, titanium or stainless steel. The electrodes may also be coated in some embodiments, for example, with platinum, ruthenium oxide or iridium oxide. In one set of embodiments, the electrical purification apparatus is an electrodeionization device. In these embodiments, one or both of ion exchange compartments 210 may be filled with a resin (not shown). The resin may be a cation, anion, or inert resin, and may be present as spherical beads or other discrete particles. The resin may also be present in other geometries as well, such as powder, fibers, mats, or extruded screens. The resin may comprise any material suitable for binding ions and other species from solutions, for example, silica, a zeolite, or a polymer, such as a poly(divinylbenzene-co-styrene). The resin may include cation materials having weak base functional groups on their surface regions, such as tertiary alkyl amino groups. The resins may also include anion resin materials, such as those containing Type II functional groups on their surface regions, for example, dimethyl ethanolamine, or Type I functional groups (quaternary ammonium groups) on their surface regions. These materials are commercially available, for example, as DOWEX™ WBA resin, available from the Dow Chemical Company (Midland, MI) or AMBERJET™ 4600 Type II resin available from the Rohm & Haas Corporation (Philadelphia, PA). Additionally, the resin within ion exchange compartment 210 can have a variety of arrangements including, but not limited to, layered packings as described by DiMascio et al. in U. S. Patent No.
5,858,191, the teachings of which are incorporated by reference. Other types of particles may be present as well, to, for example, catalyze reactions, adsorb substances, or filter out solids. It will furthermore be understood that a variety of configurations may exist within ion exchange compartments 210. For instance, the ion exchange compartments may contain additional components, such as baffles, meshes, or screens, which may be used to, for example, contain and direct the resin or control liquid flow within the compartment.
In one embodiment as illustrated in FIG. 2, electrical purification apparatus 100 is assembled by the use of endblocks 240 on either end of the apparatus, held together by the use of tie bars 250, as would be found in a typical plate-and-frame construction, that is known in the art. See, for example, U. S. Patent No. 4,931,160 by Giuffrida, U. S. Patent No. 4,956,071 by Giuffrida et al , or U. S. Patent No. 5,316,637 by Ganzi et al. In the present invention, the "plate" may be represented by ion exchange compartments 210 and the "frame" may be represented by endblocks 240. Ion exchange membranes 220 are arranged in parallel to each other, with the space between them forming ion exchange compartments 210. During operation, each ion exchange compartment 210 has an internal pressure. These liquid pressures surrounding ion exchange compartment 210 may be essentially balanced, and the likelihood of stress-induced failures of internal components may be reduced. Tie bars 250 and endblocks 240 are not required for operation of electrical purification apparatus 100, and, in some embodiments, tie bars 250 or endblocks 240 may be absent. Other methods of securing apparatus 100 within pressure vessel 110 may be used as well, for example, by welding or thermal fusion. Mechanical flanges, adhesives, or other methods as previously described may also be used to assemble the apparatus. Tie bars 250 or endblocks 240 may be made out of a metal, such as stainless steel, titanium, or aluminum. However, in other embodiments, the tie bars or the endplates may be made out of polymeric materials, such as polyvinyl chloride, chlorinated polyvinyl chloride, polypropylene, polysulfone, polyethylene, a polyolefin, a ceramic, or other inert or non-conducting materials, such as for safety reasons, cost, reliability, ease of manufacture, or ease of maintenance. In certain embodiments of the invention, endblock 240 may be a composite of two or more different materials. For example, endblock 240 may be made out of two materials such as a metal and a polymer, which may, for example, prevent electrical shorting within the electrical purification apparatus. In other embodiments, endblock 240 may constructed out of three or more materials. For example, one material may provide structural strength, a second material may be an insulating material, and a third material may be used as electrode 230. The insulating material may be any material capable of electrical insulation, such as a polymer, for example, polyvinyl chloride or rubber. The outer material may be any material, for example, a material to provide structural strength to the apparatus, such as a metal, for example, aluminum or stainless steel. Other arrangements for endblock 240 may also be envisioned.
In one set of embodiments, a fluid 120 passes within pressure vessel 200 and outside electrical purification apparatus 100. Fluid 120 may be any fluid. For example, fluid 120 may be air, nitrogen gas, an oil, a hydrocarbon, an aqueous solution, or water, such as fresh water, salt water, or wastewater. The fluid filling or partially filling pressure vessel 110 may be one or more of the fluids exiting the electrical purification apparatus, it may be a fluid that enters apparatus 100, or it may be a fluid that does not enter the apparatus. The pressure of fluid 120 within pressure vessel 200 may be greater than, less than, or equal to the pressure within apparatus 100. Smaller pressure differences between fluid 120 within pressure vessel 200 and electrical purification apparatus 100 may be used in some situations, for example, to reduce manufacturing costs or extend the lifetime of the apparatus, due to a reduction in pressure-induced stresses on apparatus 100. Thus, in one embodiment, the pressure difference may be less than 500 psi, less than 100 psi, less than 50 psi, less than 10 psi, or less than 5 psi. Either fluid 120 or apparatus 100 may have the greater pressure. Alternatively, there may be no substantial pressure difference between fluid 120 and apparatus 100. In another set of embodiments, electrical purification apparatus 100 within pressure vessel 200 is pressurized structurally, for example, by filling and pressurizing the space between the apparatus and the pressure vessel with a solid material. The solid material may be any material that can be used to fill and at least partially pressurize the space between the electrical purification apparatus and the pressure vessel, for instance, to apply a pressure to at least a portion of the electrical purification apparatus. If a solid material is used, the material may be inert, or may be formed from of a substance that is unreactive toward the fluids used in the electrical purification apparatus, especially during application of an electric field. For example, the solid material may comprise a polymeric material, such as, but not limited to, polypropylene, polysulfone, polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride or a polyolefin.
In one set of embodiments, the solid material may comprise a material that is expanded or solidified during its formation. As an example, a material may be placed between the electrical purification apparatus and the pressure vessel, and solidified in place, such as in a foam or an injection molding process. In one embodiment, the material is a polymer that is blown and expanded into place, for example, but not limited to, a polystyrene, polyethylene, or a polypropylene. In another embodiment, the material reacts to form a solid material, for example, an epoxy.
The solid material may be, in yet another set of embodiments, positioned in the pressure vessel during the fabrication process. The solid material may be pressurized (e.g., compressed) in some embodiments. In certain embodiments, however, the solid material is not pressurized, but is used, for example, to prevent or reduce fluid leakage from the purification apparatus, or to occupy space or buffer the apparatus from the pressure vessel, for instance, against physical shock or changes in temperature. In one embodiment, the solid material allows forces generated in the electrical purification apparatus to be transmitted to the pressure vessel. These forces may include internal forces such as internal hydraulic pressures, or expansion forces from the swelling of resins in embodiments where resins are used, such as in electrodeionization devices. In one embodiment, an elastomeric solid is placed between the electrical purification apparatus and the pressure vessel during the fabrication process. For example, the solid material may be a thermoplastic elastomer such as, but not limited to, rubber, polystyrene, polybutadiene, polyisoprene, polybutadiene, polyisobutylene, a polyurethane, polychloroprene, or a silicone. It should be noted that the present invention may have a variety of other configurations. For example, in certain embodiments of the invention, both a fluid and a solid material may be used between the electrical purification apparatus and the pressure vessel. As another example, other means of applying an external pressure on the periphery of the electrical purification apparatus are contemplated. If a fluid is used to pressurize the apparatus, the fluid may be pressurized, for example, by an upstream pump or by application of higher flow rates or hydrostatic pressure heads, instead of being confined within a pressure vessel. As used herein, a "pressurized fluid" refers to a fluid with a pressure greater than that of atmospheric pressure, typically at least greater than 2 psi over atmospheric pressure. As previously discussed, a different fluid may be used to pressurize the outside of the apparatus, such as water or air.
Electrical purification apparatus 100 may also have other configurations as well, for example, including additional components, such as additional electrodes; or other internal geometries, for example, having cylindrical or spherical ion exchange compartments. Different inlet and outlet configurations may also be used. For example, several liquids may be simultaneously passed through the apparatus to be concentrated and diluted, such as water, brine, an aqueous solution, or an organic solution. Fluid 120 may additionally have other materials suspended or dissolved in it, such as may be present in sea water.
The fluid within the pressure vessel may be fed by one or more of the inlet fluids. For example, in one particular embodiment illustrated in FIG. 3 as a cross-sectional view, fluid 300 from a point of entry 160 first enters region 370 between pressure vessel 110 and electrical purification apparatus 100. Electrical purification apparatus 100 is divided into concentrating compartments 310 and diluting or depleting compartments 320 by cation exchange membranes 330 and anion exchange membranes 340. If the electrical purification apparatus is an electrodeionization device, then one or both of compartments 310 and 320 may be filled with a resin. At one end of the apparatus is an anode 360 and an endblock 240; at the other end is cathode 350 and an endblock 240. The fluid from region 370 is passed from within the pressure vessel into both the concentrating 310 and diluting 320 compartments through inlets 315 and 325, respectively, where it is concentrated and diluted, respectively, under the influence of the applied electric potential. The fluid then exits concentrating 310 and diluting 320 compartments through outlets 317 and 327 as ion-concentrated stream 140 and ion- depleted stream 150, respectively. In some applications, for example, in water purification, the ion-depleted stream may be retained as a product, while the ion- concentrated stream is discarded; however, in other applications, where concentrating operations may be desired, the ion-concentrated stream may be retained and the ion- depleted stream discarded. In the embodiment illustrated in FIG. 3, ion-concentrated stream 140 and ion-depleted stream 150 each end at points of use 380 and 385, respectively.
In some embodiments of the invention, region 370 may be an annular region between pressure vessel 110 and electrical purification apparatus 100, for example, if both the pressure vessel and the apparatus have cross circular-cross sections. In some embodiments of the invention, a smaller region 370 may be desired, for example, to minimize the amount of fluid within pressure vessel 110 that is not within electrical purification apparatus 100 in embodiments where a fluid is passed through region 370. In other embodiments, however, a larger region 370 between pressure vessel 110 and apparatus 100 may be desired. For example, in a pharmaceutical application where a fluid passes between the pressure vessel and the electrical purification apparatus, a larger region 370 between pressure vessel 110 and electrical purification apparatus 100 may allow the fluid in the region have a higher or lower velocity profile, minimizing the amount of "dead" volume within the device. A "dead" or stagnant volume may have a very low fluid velocity, for example, less than about 10 ft/s, or less than about 5 ft/s, which could allow the growth of microorganisms to occur. In one set of embodiments, baffles, straps, ribs, or other devices may be used within region 370 to alter or affect fluid flow therein, for example, to prevent the formation of dead zones, or to facilitate uniform fluid flow within the annular space. Another embodiment of the invention is illustrated in FIG. 4 as a cross-sectional view. In this embodiment, two separate inlet fluids 400, 410 are used, thus illustrating that multiple inlets may be used in accordance with the present invention. One inlet fluid 400 from a point of entry 460 is used to fill region 370 between pressure vessel 110 and electrical purification apparatus 100. From region 370, the fluid enters concentrating compartments 310 through inlets 315. The other inlet fluid 410 from point of entry 470 passes only through diluting compartments 320 of electrical purification apparatus 100, and does not enter region 370 between pressure vessel 110 and apparatus 100. The two fluids pass through concentrating 310 and diluting 320 compartments and exit through outlets 317 and 327 to produce the ion-concentrated 140 and ion-depleted 150 liquids, respectively, and from there to points of use 380 and 385, respectively.
Another embodiment of the invention is illustrated in FIG. 5 as a cross-sectional view. Here, two separate fluids 400, 410 from separate points of entry 460, 470, respectively, are used in electrical purification apparatus 100, but a third fluid or a solid material 500 is used to reduce the pressure difference between the inside of electrical purification apparatus 100 and pressure vessel 110, only a portion of which is illustrated in FIG. 5. Additionally, pressure vessel 110 is much larger than apparatus 100, does not conform to the shape of the apparatus, and does not entirely contain the apparatus. As used herein, "contain," "surround," "positioned within," "secured within," and similar words and phrases includes configurations where the apparatus is only partially surrounded or enclosed in the pressure vessel, as well as situations where the electrical purification apparatus is completely surrounded or enclosed by the pressure vessel. In FIG. 5, one inlet fluid 400 enters concentrating compartments 310 through inlets 315 while a second inlet fluid 410 enters diluting compartments 320 through inlets 325. Ion- concentrated liquid 140 from concentrating compartments 310 exits through outlets 317 to a point of use 170, while ion-depleted liquid 150 from diluting compartments 320 exits through outlets 327 to pressure vessel 110 and mixes with third fluid 500. In this embodiment, electrical purification apparatus 100 may be attached to the wall of pressure vessel 110 by means of a flange; however, other attachment methods, such as adhesives or tie rods, may also be used for attaching electrical purification apparatus 100. It should be understood that many other configurations are possible. For example, any of the outlet fluids may be recirculated back to one of the inlets or into the pressure vessel, or, if a fluid is used to pressurize the exterior of the electrical purification apparatus, the fluid may not be connected in any fashion with either the inlet or the outlet fluids. Other configurations may also be envisioned. For example, the inlets or the outlets may be connected to other electrical purification devices in series or in parallel, resulting in linked networks of electrical purification devices. Liquids could be passed through a series of electrical purification devices, each device subsequently concentrating or purifying the liquid.
FIG. 6 shows another embodiment of the invention. In this embodiment, electrical purification apparatus 100 has been mounted to the side wall of pressure vessel 110. In this embodiment, part of apparatus 100 is located outside of pressure vessel 110, permitting ready access to the apparatus, so that, for example, routine maintenance operations may be performed on electrical purification apparatus 100, or piping configurations may be easily altered, internally or externally. In the embodiment illustrated in FIG. 7, electrical purification apparatus 100 has been mounted at the base of the pressure vessel 110. This may be advantageous in situations, for example, where pressure vessel 110 is large and access to electrical purification apparatus 100 at the bottom of the vessel may be more practical, safe, or cost-effective. In other embodiments, the apparatus may also be positioned at the top of pressure vessel 110. In FIG. 8, electrical purification apparatus 100 is completely enclosed within pressure vessel 110. In this embodiment, two inlet liquids 800 enter apparatus 100, resulting in an ion-concentrated liquid 140 and an ion-depleted liquid 150. Ion- concentrated liquid 140 may be passed into pressure vessel 110, while ion-depleted liquid 150 is discarded. This configuration may be advantageous in certain situations, for example, where leakage from electrical purification apparatus 100 must be tightly controlled, for example, in the purification of toxic or biohazardous liquids. It will be understood that other configurations may also be possible, depending on the situation and the liquid to be concentrated or diluted.
The function and advantages of these and other embodiments of the present invention will be more fully understood from the following examples. These examples are intended to be illustrative in nature and are not considered to be limiting in the scope of the invention.
Example 1 This example illustrates various conditions using one particular embodiment of the invention utilizing an electrodeionization device.
A continuous electrodeionization device having twelve diluting compartments and twelve concentration compartments was assembled. The intermembrane spacing between the compartments was 0.161 inches. The cation membrane within the device was a heterogeneous extruded cation exchange membrane. The anion exchange membrane was a heterogeneous extruded anion exchange membrane. The resin used in both the diluting compartment and the concentrating compartment was a mixture of Marathon A anion resin and Marathon C cation resin. The ratio between the anion and cation resin was 70:30.
The pressure vessel was constructed from polyvinyl chloride. The pressure vessel was a cylinder with an inner diameter of about 12.4 inches. The polyvinyl chloride cylinder was rated for a maximum pressure of 220 psi. The spacer within the electodeionization device was constructed out of low density polyethylene. The electrodes were constructed out of titanium coated with a ruthenium oxide coating. The endplates on the pressure vessel were also constructed out of polyvinyl chloride.
Results for two sample runs using the particular electodeionization device are shown in Table 1. The water fed to the device in Run 1 had a higher conductivity than the water used in Run 2, indicating that the water in Run 1 had a higher load of ions. This electrodeionization device was able to successfully reduce the amount of silicon dioxide present in the inlet water by approximately 99%. Additionally, the resistivity of the ion-depleted fluid was found to be approximately 17 megohm-cm after electrodeionization.
Thus, this example illustrates that one embodiment of the invention may be used to reduce the concentration of silicon dioxide, as well as the resistivity of the sample stream of water.
Figure imgf000019_0001
Figure imgf000020_0001
Example 2
One aπangement of the present invention is described in this example. An electrodeionization apparatus is constructed and housed in a cylindrical pressure vessel. The spacers that form the diluting and concentrating compartments are circular in shape, with an outside diameter of 5.75 inches. The thickness of each diluting compartments is 0.33 inches, and the thickness of each concentrating compartments is 0.18 inches. Within each spacer are two compartments, each 3.5 inches long, and connected at one end to form a U-shaped flow path of 7 inches total length. The spacers are molded from a glass-reinforced polypropylene.
The endblocks that house the electrodes are machined from a solid polyvinyl chloride (PNC) block. The cylindrical vessel consists of a PVC Schedule 40 pipe, with an inside diameter of 6 inches. The stack of spacers, membranes and endblocks are assembled and inserted into the pressure vessel, and secured within the vessel by retaining pins at both ends.
The electrodeionization apparatus is operated with permeate water from a reverse osmosis purification system as the feed. The feed to the diluting compartments is introduced directly into the compartments at a pressure of 29 psig. The product fluid is at a pressure of 9 psig. The feed to the concentrating compartments is first introduced at 5 psig into the annular space between the inside of the pressure vessel and the outside of the apparatus. The water is then directed into the concentrate compartments. The effluent from the concentrating compartments (i.e., the reject) is discharged to a drain. The maximum pressure differential between the interior and the exterior of the apparatus is about 24 psig (i.e., the pressure difference between the feed to the diluting compartment, and the feed to the annular space). This pressure difference may be narrowed by increasing the feed pressure to the annular spacer, and therefore to the concentrating compartments. The pressure difference is not significantly affected if the pressure of both of the feed streams is increased by the same amount.
The apparatus can be operated at feed pressure of up to 100 psig into the diluting compartments. With the apparatus housed inside a pressure vessel, and the feed into annular space also at 100 psig, the maximum pressure difference between the interior and the exterior of the diluting compartments is the pressure drop through the diluting compartments, about 20 psi. The lower pressure differential allows the use of glass-filled polypropylene as the spacer material.
Thus, this example illustrates an arrangement of the present invention.
Those skilled in the art would readily appreciate that all parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the systems and methods of the present invention are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. For example, additional inlets, outlets, membranes, or fluids may be added to the electrodeionization device, or the invention may be combined with reverse osmosis or ultrafiltration equipment. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described. The present invention is directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present invention.

Claims

1. A fluid purification system, comprising: an electrical purification apparatus constructed and aπanged to produce a non-radial flow therein; and a pressure vessel surrounding the electrical purification apparatus.
2. The purification system of claim 1, wherein the apparatus comprises an electrodeionization device.
3. The purification system of claim 1, wherein the apparatus comprises an electrodialysis device.
4. The purification system of claim 1, wherein the pressure vessel is substantially cylindrical.
The purification system of claim 1, further comprising an ion exchange compartment, the ion exchange compartment comprising an inlet and an outlet, the inlet and the outlet each disposed on a periphery of the ion exchange compartment.
The purification system of claim 5, wherein the inlet of the ion exchange compartment is positioned opposite to the outlet.
7. The purification system of claim 5, wherein the apparatus is constructed and arranged to produce a substantially constant average fluid velocity independent of distance from the inlet.
8. The purification system of claim 1, further comprising a solid material suπounding at least a portion of the apparatus.
The purification system of claim 8, wherein the solid material comprises an elastomeric material.
10. A fluid purification system, comprising: an electrical purification apparatus secured within a pressure vessel, wherein the apparatus comprises an ion exchange compartment comprising parallel sub-compartments.
11. The purification system of claim 10, wherein the apparatus comprises an electrodeionization device.
12. The purification system of claim 10, wherein the sub-compartments are constructed and arranged to produce a non-radial flow therein.
13. The purification system of claim 10, wherein the sub-compartments have a cross- sectional area that is substantially constant.
14. A method of purifying a liquid, comprising: providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein; pressurizing the apparatus; and passing the liquid to be purified through the apparatus.
15. The method of purifying a liquid of claim 14, wherein the apparatus comprises an electrodeionization device.
16. The method of purifying a liquid of claim 14, wherem the apparatus comprises an electrodialysis device.
17. The method of purifying a liquid of claim 14, wherein the step of pressurizing the apparatus comprises pressurizing the apparatus with a fluid.
18. The method of purifying a liquid of claim 14, wherein the step of pressurizing the apparatus comprises surrounding at least a portion of the apparatus with a solid material.
19. The method of purifying a liquid of claim 14, wherein the step of pressurizing the apparatus comprises pressurizing the apparatus with the liquid.
20. The method of purifying a liquid of claim 17, wherein the pressurized fluid has a pressure that is within 50 psi of a pressure of the liquid.
21. The method of purifying a liquid of claim 17, wherein the pressurized fluid has a pressure that is within 10 psi of a pressure of the liquid.
22. The method of purifying a liquid of claim 17, wherein the pressurized fluid has a pressure that is within 5 psi of a pressure of the liquid.
23. The method of purifying a liquid of claim 14, further comprising applying an electric field perpendicularly to the liquid fluid flow.
24. The method of purifying a liquid of claim 14, further comprising applying a substantially uniform electric field to the liquid.
25. A method of facilitating purification of a liquid, comprising: providing an electrical purification apparatus constructed and aπanged to produce a non-radial flow therein; and securing the apparatus in a pressure vessel.
26. The method of facilitating purification of a liquid claim 25, wherein the apparatus comprises an electrodeionization device.
27. The method of facilitating purification of a liquid of claim 25, wherein the step of securing the apparatus in a pressure vessel comprises securing the apparatus in a cylindrical vessel.
28. The method of facilitating purification of a liquid of claim 25, further comprising fluidly connecting the apparatus to a point of entry.
29. The method of facilitating purification of a liquid of claim 25, further comprising fluidly connecting the apparatus to a point of use.
30. The method of facilitating purification of a liquid of claim 25, further comprising injecting a solid material into the pressure vessel.
31. The method of facilitating purification of a liquid of claim 25, further comprising suπounding at least a portion of the apparatus with a solid material.
32. A method of purifying a liquid, comprising: providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein; securing the apparatus within a pressure vessel; and passing the liquid to be purified through the apparatus.
33. The method of purifying a liquid of claim 32, wherein the apparatus comprises an electrodeionization device.
34. The method of purifying a liquid of claim 32, further comprising applying an electric field perpendicularly to the liquid fluid flow.
35. The method of purifying a liquid of claim 32, further comprising applying a substantially uniform electric field to the liquid.
36. A system for purifying a liquid, comprising: a pressure vessel; an electrical purification apparatus secured within the pressure vessel, the apparatus constructed and arranged to produce a non-radial flow therein; a point of entry fluidly connected to the apparatus; and a point of use fluidly connected to the apparatus.
37. The system for purifying a liquid of claim 36, wherein the apparatus comprises an electrodeionization device.
38. The system for purifying a liquid of claim 36, wherein the apparatus further comprises an inlet fluidly connected to the pressure vessel.
39. The system for purifying a liquid of claim 36, wherein the apparatus further comprises an outlet fluidly connected to the pressure vessel.
40. The system for purifying a liquid of claim 36, wherein the apparatus further comprises an ion exchange compartment exposed to a liquid within the pressure vessel.
41. The system for purifying a liquid of claim 36, further comprising a reservoir fluidly connected to the point of entry.
42. The system for purifying a liquid of claim 36, further comprising a water distribution system fluidly connected to the apparatus.
43. The system for purifying a liquid of claim 36, further comprising an endplate constructed and arranged to be secured to the pressure vessel.
44. The system for purifying a liquid of claim 43, further comprising an insulating material attached to the endplate.
45. The system for purifying a liquid of claim 44, wherein the insulating material electrically insulates the endplate from an interior of the pressure vessel.
46. The system for purifying a liquid of claim 45, further comprising an electrode attached to the insulating material.
47. A method of facilitating purification of a liquid, comprising: providing a pressure vessel fluidly connectable to a point of entry; providing an electrical purification apparatus constructed and aπanged to produce a non-radial flow therein; positioning the apparatus within the pressure vessel; and providing a point of use fluidly connectable to the apparatus.
48. The method of facilitating purification of a liquid of claim 47, wherein the apparatus comprises an electrodeionization device.
49. A system for purifying a liquid, comprising: an electrical purification apparatus comprising an ion exchange compartment, the apparatus constructed and arranged to produce a non-radial flow therein, the ion exchange compartment constructed and arranged to produce a constant liquid velocity therein; and a substantially cylindrical pressure vessel surrounding the apparatus.
50. The system for purifying a liquid of claim 49, wherein the apparatus comprises an electrodeionization device.
51. An endblock, comprising: an endplate constructed and arranged to be secured to a pressure vessel; and an insulating material attached to the endplate, wherein the insulating material electrically insulates the endplate from an interior of the pressure vessel.
52. The endblock of claim 51 , further comprising: an electrode attached to the insulating material.
PCT/US2002/033111 2001-10-15 2002-10-15 Apparatus for fluid purification and methods of manufacture and use thereof WO2003033122A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN02820175.2A CN1568220B (en) 2001-10-15 2002-10-15 Apparatus for fluid purification and methods of manufacture and use thereof
EP02773780A EP1436069B1 (en) 2001-10-15 2002-10-15 Apparatus and method for fluid purification
DE60239141T DE60239141D1 (en) 2001-10-15 2002-10-15 DEVICE AND METHOD FOR CLEANING LIQUIDS
AU2002337876A AU2002337876A1 (en) 2001-10-15 2002-10-15 Apparatus for fluid purification and methods of manufacture and use thereof
CA2461558A CA2461558C (en) 2001-10-15 2002-10-15 Apparatus for fluid purification and methods of manufacture and use thereof
AT02773780T ATE497830T1 (en) 2001-10-15 2002-10-15 DEVICE AND METHOD FOR CLEANING LIQUIDS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32929601P 2001-10-15 2001-10-15
US60/329,296 2001-10-15

Publications (2)

Publication Number Publication Date
WO2003033122A2 true WO2003033122A2 (en) 2003-04-24
WO2003033122A3 WO2003033122A3 (en) 2003-07-31

Family

ID=23284755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/033111 WO2003033122A2 (en) 2001-10-15 2002-10-15 Apparatus for fluid purification and methods of manufacture and use thereof

Country Status (10)

Country Link
US (3) US7572359B2 (en)
EP (1) EP1436069B1 (en)
CN (1) CN1568220B (en)
AT (1) ATE497830T1 (en)
AU (1) AU2002337876A1 (en)
CA (1) CA2461558C (en)
DE (1) DE60239141D1 (en)
ES (1) ES2361004T3 (en)
PT (1) PT1436069E (en)
WO (1) WO2003033122A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824662B2 (en) 2001-05-29 2004-11-30 Usfilter Corporation Electrodeionization apparatus and method
EP1818378A1 (en) * 2006-02-09 2007-08-15 Michel Gallo Method of protecting against the scaling and corrosion of metal surfaces and device for water treatment
EP2465600A3 (en) * 2010-12-15 2012-10-24 Palo Alto Research Center Incorporated High-pressure electrodialysis device
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US8658043B2 (en) 2003-11-13 2014-02-25 Siemens Water Technologies Llc Water treatment system and method
US8894834B2 (en) 2003-11-13 2014-11-25 Evoqua Water Technologies Llc Water treatment system and method
US9011660B2 (en) 2007-11-30 2015-04-21 Evoqua Water Technologies Llc Systems and methods for water treatment
US9023185B2 (en) 2006-06-22 2015-05-05 Evoqua Water Technologies Llc Low scale potential water treatment

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147785B2 (en) * 2000-09-28 2006-12-12 Usfilter Corporation Electrodeionization device and methods of use
US7572359B2 (en) * 2001-10-15 2009-08-11 Siemens Water Technologies Holding Corp. Apparatus for fluid purification and methods of manufacture and use thereof
JP3794354B2 (en) 2002-07-08 2006-07-05 栗田工業株式会社 Electrodeionization equipment
US7501061B2 (en) * 2002-10-23 2009-03-10 Siemens Water Technologies Holding Corp. Production of water for injection using reverse osmosis
WO2005028760A2 (en) * 2003-09-19 2005-03-31 Usfilter Corporation Apparatus and method for connecting water treatment devices
US7582326B2 (en) * 2003-10-29 2009-09-01 Kraft Foods Global Brands Llc Method of deflavoring whey protein using membrane electrodialysis
US7604725B2 (en) * 2003-11-13 2009-10-20 Siemens Water Technologies Holding Corp. Water treatment system and method
US7563351B2 (en) 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
US7862700B2 (en) * 2003-11-13 2011-01-04 Siemens Water Technologies Holding Corp. Water treatment system and method
US7582198B2 (en) * 2003-11-13 2009-09-01 Siemens Water Technologies Holding Corp. Water treatment system and method
US7846340B2 (en) * 2003-11-13 2010-12-07 Siemens Water Technologies Corp. Water treatment system and method
US7329358B2 (en) * 2004-05-27 2008-02-12 Siemens Water Technologies Holding Corp. Water treatment process
US7658828B2 (en) * 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
US20060231406A1 (en) * 2005-04-13 2006-10-19 Usfilter Corporation Regeneration of adsorption media within electrical purification apparatuses
CN101163644A (en) * 2005-04-26 2008-04-16 费利克斯贝特彻有限两合公司 Method and device for verifying and limiting germination in humectant circuits
EP1885655B1 (en) * 2005-06-01 2014-12-17 Evoqua Water Technologies LLC Water treatment process by intermittent sanitization
NO20071748L (en) * 2006-04-06 2007-10-08 Christ Water Technology Ag Device for continuous electrochemical desalination with integrated membrane interval.
US10213744B2 (en) 2006-06-13 2019-02-26 Evoqua Water Technologies Llc Method and system for water treatment
US8114259B2 (en) * 2006-06-13 2012-02-14 Siemens Industry, Inc. Method and system for providing potable water
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US8277627B2 (en) 2006-06-13 2012-10-02 Siemens Industry, Inc. Method and system for irrigation
US7820024B2 (en) * 2006-06-23 2010-10-26 Siemens Water Technologies Corp. Electrically-driven separation apparatus
US7744760B2 (en) 2006-09-20 2010-06-29 Siemens Water Technologies Corp. Method and apparatus for desalination
WO2008048656A2 (en) * 2006-10-18 2008-04-24 Kinetico Incorporated Electroregeneration apparatus and water treatment method
JP2010540209A (en) * 2007-09-21 2010-12-24 シーメンス ウォーター テクノロジース コーポレイション Low energy system and method for desalinating seawater
JP2009090245A (en) * 2007-10-11 2009-04-30 Ebara Corp High pressure type electric type deionization device, high pressure type electric type deionization system, and method for producing high purity water
AU2009232342A1 (en) * 2008-04-03 2009-10-08 Evoqua Water Technologies Llc Low energy system and method of desalinating seawater
US8552719B2 (en) * 2009-08-03 2013-10-08 Microfier, Inc. Method and apparatus for the purification and analytical evaluation of highly purified liquids
US9169138B2 (en) 2010-08-07 2015-10-27 Saltworks Technologies Inc. Apparatus for compression of a stack and for a water treatment system
AU2011288890B2 (en) * 2010-08-07 2014-07-10 Saltworks Technologies Inc. Modular apparatus for a saltwater desalinating system, and method for using same
US8956521B2 (en) 2010-11-12 2015-02-17 Evoqua Water Technologies Llc Electrical purification apparatus having a blocking spacer
WO2012106607A1 (en) * 2011-02-04 2012-08-09 Siemens Industry, Inc. Electrical purification apparatus and methods of manufacturing same
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9724645B2 (en) 2012-02-02 2017-08-08 Tangent Company Llc Electrochemically regenerated water deionization
CA2904825A1 (en) 2013-03-15 2014-09-18 Evoqua Water Technologies Llc Flow distributors for electrochemical separation
CN103420459B (en) * 2013-05-22 2014-11-05 上海理工大学 Hybrid membrane desalination processing device and equipment, and desalination method
AU2014302507B2 (en) 2013-06-25 2018-12-06 Ionic Solutions Ltd. Process and apparatus for osmotic flow control in electrodialysis systems
CN104016451B (en) * 2014-06-24 2015-08-26 上海理工大学 The equipment and methods for using them of pressure field and the two film desalination of electric field synergistic effect
EP3672916A4 (en) 2017-08-21 2021-05-19 Evoqua Water Technologies LLC Treatment of saline water for agricultural and potable use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876707A (en) * 1959-03-26 1961-09-06 Permutit Co Ltd Improvements in electrodialytic and similar processes and apparatus
US3216920A (en) * 1960-11-28 1965-11-09 American Mach & Foundry Electrodialysis stack design
US3375182A (en) * 1959-05-22 1968-03-26 American Mach & Foundry Electrodialysis method and apparatus having radially symmetrical flow paths
US4202772A (en) * 1977-08-04 1980-05-13 Ionics, Incorporated Fluid distribution cell module
US5292422A (en) * 1992-09-15 1994-03-08 Ip Holding Company Modules for electrodeionization apparatus
US5858191A (en) * 1996-09-23 1999-01-12 United States Filter Corporation Electrodeionization apparatus and method
US6190528B1 (en) * 1998-03-19 2001-02-20 Xiang Li Helical electrodeionization apparatus

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US876707A (en) * 1907-04-08 1908-01-14 Andrew F Ford Rotary engine.
US2514415A (en) * 1946-02-27 1950-07-11 Carl H Rasch Storage battery paste with ion exchange expander
US2681320A (en) * 1950-12-23 1954-06-15 Rohm & Haas Permselective films of cationexchange resins
US2681319A (en) * 1951-01-10 1954-06-15 Rohm & Haas Permselective films of anionexchange resins
US2815320A (en) 1953-10-23 1957-12-03 Kollsman Paul Method of and apparatus for treating ionic fluids by dialysis
GB776469A (en) 1953-12-17 1957-06-05 Tno Process and apparatus for the electrolytic deionisation of salt-containing liquids
US2923394A (en) * 1954-02-24 1960-02-02 Ncr Co Calculating machines
US2854394A (en) 1954-11-01 1958-09-30 Kollsman Paul Method of and apparatus for fractionation by electrodialysis
NL95176C (en) 1955-07-30
GB845186A (en) 1955-11-09 1960-08-17 Permutit Co Ltd Improvements relating to electrodialysis cells and processes
US2788319A (en) * 1956-02-07 1957-04-09 Clayton Manufacturing Co Ion exchange method and apparatus
US2933674A (en) 1956-08-06 1960-04-19 Schlumberger Well Surv Corp Well logging systems
US2794777A (en) * 1956-08-27 1957-06-04 Clayton Manufacturing Co Electrolytic deionization
US3296112A (en) * 1957-07-16 1967-01-03 Kollsman Paul Method of modifying the chemical composition of substances by ion transfer
GB845185A (en) 1957-11-25 1960-08-17 Permutit Co Ltd Improvements relating to electrodialytic cells
GB877239A (en) 1957-12-24 1961-09-13 Permutit Co Ltd Improvements relating to electrodialytic cells
GB879181A (en) * 1958-02-03 1961-10-04 Permutit Co Ltd Improvements relating to the removal of dissolved solids from liquids
NL104556C (en) 1958-04-29
GB882601A (en) 1958-05-07 1961-11-15 Permutit Co Ltd Improvements relating to the treatment of aqueous liquids by electro-dialysis
GB880344A (en) 1958-06-19 1961-10-18 Permutit Co Ltd Improvements relating to electrodialytic cells
US3074864A (en) * 1959-04-21 1963-01-22 Gen Electric Methods of and apparatus for demineralizing raw water
GB893051A (en) 1959-04-30 1962-04-04 John Thompson Kennicott Ltd Improvements in or relating to an electrodialysis apparatus
GB942762A (en) 1960-05-13 1963-11-27 John Thompson Kennicott Ltd A method of packing a receptacle with comminuted material
US3099615A (en) * 1961-02-13 1963-07-30 Kollsman Paul Electrodialysis involving periodic current reversal
DE1225569B (en) 1961-05-20 1966-09-22 Paul Dosch Method and device for water softening for washing machines and dishwashers
NL288721A (en) 1962-02-19
US3165460A (en) * 1962-04-11 1965-01-12 American Mach & Foundry Electrolytic acid generator
DE1494902A1 (en) 1962-05-04 1969-06-26 American Mach & Foundry Polymeric products and processes for their manufacture
NL294289A (en) * 1962-06-20
DE1201055B (en) 1962-09-27 1965-09-16 Wolfen Filmfab Veb Process for the production of heterogeneous ion exchange membranes
US3341441A (en) 1964-01-07 1967-09-12 Ionics Method for preventing scale buildup during electrodialysis operation
US3291713A (en) 1964-05-27 1966-12-13 Ionics Removal of weakly basic substances from solution by electrodeionization
GB1137679A (en) 1965-02-24 1968-12-27 Wallace Tiernan Inc Procedures and apparatus for electrodialytic treatment of liquids
FR1547493A (en) 1967-07-25 1968-11-29 Improvements to the means for removing ions from a solution
US3375208A (en) * 1967-07-26 1968-03-26 Esb Inc Method for preparing a microporous thermoplastic resin material
US3630378A (en) 1968-05-24 1971-12-28 Dow Chemical Co Novel water treating and storage apparatus
US3627703A (en) 1968-10-31 1971-12-14 Mitsubishi Petrochemical Co Polypropylene resin composites and production thereof
US3645884A (en) * 1969-07-10 1972-02-29 Edwin R Gilliland Electrolytic ion exchange apparatus
US3755135A (en) 1971-01-20 1973-08-28 A Johnson Electric demineralizing apparatus
US3989615A (en) 1971-07-06 1976-11-02 Nippon Soda Company Limited Diaphragm process electrolytic cell
BE794634A (en) 1972-01-28 1973-07-26 Rhone Poulenc Sa DIAPHRAGM SEPARATOR
JPS5112313B2 (en) * 1972-09-01 1976-04-17
US3869376A (en) * 1973-05-14 1975-03-04 Alvaro R Tejeda System for demineralizing water by electrodialysis
JPS532160B2 (en) 1973-08-17 1978-01-25
US3870033A (en) * 1973-11-30 1975-03-11 Aqua Media Ultra pure water process and apparatus
US4089758A (en) * 1974-05-24 1978-05-16 Imperial Chemical Industries Limited Electrolytic process
US4167551A (en) 1974-10-21 1979-09-11 Mitsubishi Petrochemical Company Limited Process for the production of an ion exchange membrane
CH586059A5 (en) * 1974-11-29 1977-03-31 Yeda Res & Dev
US4032452A (en) * 1975-11-13 1977-06-28 Sybron Corporation Electrically regenerated ion exchange system
US4130473A (en) 1976-03-05 1978-12-19 Eddleman William L Electrode structure for use in metal in exchange apparatus useful in purifying spent acids and the like
US4102752A (en) * 1976-07-09 1978-07-25 Rugh Ii John L Municipal water supply system
US4116889A (en) 1976-08-19 1978-09-26 Allied Chemical Corporation Bipolar membranes and method of making same
US4119581A (en) 1977-02-23 1978-10-10 California Institute Of Technology Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer
US4191811A (en) * 1977-03-01 1980-03-04 Ionics, Incorported Ion exchange membranes based upon polyphenylene sulfide and fluorocarbon polymeric binder
IL52757A0 (en) 1977-08-16 1977-10-31 Yeda Res & Dev Dimensionally stable ion exchange membranes for electrodialysis
IL52758A0 (en) 1977-08-16 1977-10-31 Yeda Res & Dev Improved device for electrodialysis
US4153761A (en) * 1978-04-21 1979-05-08 The United States Of America As Represented By The Secretary Of The Army Method of removing foulants from ion exchange resins
JPS5512141A (en) 1978-07-13 1980-01-28 Mitsubishi Petrochem Co Ltd Manufacturing of ion exchange membrane
US4197206A (en) * 1978-09-13 1980-04-08 Karn William S Heat sealable ion permeable membranes
US4228000A (en) 1979-01-08 1980-10-14 Hoeschler Frank A Water treatment apparatus with means for automatic disinfection thereof
US4374232A (en) * 1979-01-26 1983-02-15 Gelman Sciences Inc. Graft copolymer membrane and processes of manufacturing and using the same
US4216073A (en) 1979-05-29 1980-08-05 Ionics Inc. Ion exchange resin containing activated carbon
DE2946284A1 (en) 1979-11-16 1981-05-21 Forschungsinstitut Berghof GmbH, 7400 Tübingen ELECTRODIALYSIS CELL PACKAGE
US4321145A (en) * 1980-06-11 1982-03-23 Carlson Lee G Ion exchange treatment for removing toxic metals and cyanide values from waste waters
US4330654A (en) * 1980-06-11 1982-05-18 The Dow Chemical Company Novel polymers having acid functionality
US4358545A (en) 1980-06-11 1982-11-09 The Dow Chemical Company Sulfonic acid electrolytic cell having flourinated polymer membrane with hydration product less than 22,000
US4298442A (en) 1980-08-04 1981-11-03 Ionics, Incorporated Electrodialysis process for silica removal
US4430226A (en) * 1981-03-09 1984-02-07 Millipore Corporation Method and apparatus for producing ultrapure water
US4465573A (en) 1981-05-12 1984-08-14 Hare Harry M O Method and apparatus for the purification of water
WO1983003984A1 (en) 1982-05-13 1983-11-24 Gerhard Kunz Method for the treatment of a liquid phase, particularly method for desalting aqueous solutions, as well as device for its implementation
DE3238280A1 (en) 1982-10-15 1984-04-19 Hans-Wilhelm Prof. Dr.-Ing. 1000 Berlin Lieber Process for desalting solutions
US4505797A (en) * 1983-03-24 1985-03-19 Ionics, Incorporated Ion-exchange membranes reinforced with non-woven carbon fibers
US4473450A (en) 1983-04-15 1984-09-25 Raychem Corporation Electrochemical method and apparatus
IL68773A0 (en) 1983-05-24 1983-12-30 Yeda Res & Dev Modular electrodialysis device
US4636296A (en) * 1983-08-18 1987-01-13 Gerhard Kunz Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions
JPS60132693A (en) * 1983-12-20 1985-07-15 Nippon Paint Co Ltd Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
US4610790A (en) 1984-02-10 1986-09-09 Sterimatics Company Limited Partnership Process and system for producing sterile water and sterile aqueous solutions
US4574049B1 (en) * 1984-06-04 1999-02-02 Ionpure Filter Us Inc Reverse osmosis system
DE3423653A1 (en) 1984-06-27 1986-01-09 Gerhard K. Dipl.-Chem. Dr.-Ing. 5628 Heiligenhaus Kunz Method and device for metering in ions into liquids, in particular aqueous solutions
USRE35741E (en) * 1984-07-09 1998-03-10 Millipore Corporation Process for purifying water
US4956071A (en) 1984-07-09 1990-09-11 Millipore Corporation Electrodeionization apparatus and module
EP0170895B1 (en) 1984-07-09 1989-03-22 Millipore Corporation Improved electrodeionization apparatus and method
US4931160A (en) * 1987-05-11 1990-06-05 Millipore Corporation Electrodeionization method and apparatus
US5154809A (en) 1984-07-09 1992-10-13 Millipore Corporation Process for purifying water
US4925541B1 (en) * 1984-07-09 1994-08-02 Millipore Corp Electrodeionization apparatus and method
GB8513114D0 (en) * 1985-05-23 1985-06-26 Ici Plc Membranes
US4614576A (en) 1985-10-22 1986-09-30 Ionics, Incorporated Microliter scale electrodialysis apparatus
US4671863A (en) * 1985-10-28 1987-06-09 Tejeda Alvaro R Reversible electrolytic system for softening and dealkalizing water
ZA87553B (en) 1986-01-31 1988-03-30 Water Res Commission Dewatering slurries
US4661411A (en) * 1986-02-25 1987-04-28 The Dow Chemical Company Method for depositing a fluorocarbonsulfonic acid polymer on a support from a solution
EP0253119A3 (en) 1986-06-13 1989-07-19 Asahi Glass Company Ltd. Ion exchange membrane for electrolysis
US4707240A (en) 1986-09-15 1987-11-17 Ionics Incorporated Method and apparatus for improving the life of an electrode
US4753681A (en) * 1986-09-30 1988-06-28 Millipore Corporation Method for defouling electrodeionization apparatus
US4804451A (en) * 1986-10-01 1989-02-14 Millipore Corporation Depletion compartment for deionization apparatus and method
US4747929A (en) * 1986-10-01 1988-05-31 Millipore Corporation Depletion compartment and spacer construction for electrodeionization apparatus
US4751153A (en) * 1987-01-02 1988-06-14 Continental Can Company, Inc. Frame for a cell construction
US4747955A (en) * 1987-04-13 1988-05-31 The Graver Company Purification of liquids with treated polyester fibers
US4808287A (en) * 1987-12-21 1989-02-28 Hark Ernst F Water purification process
US4849102A (en) * 1988-05-31 1989-07-18 Filtron Technology Corporation Bidirectional ultrafiltration apparatus
US4969983A (en) 1988-07-11 1990-11-13 Ionics, Incorporated Apparatus and process for the removal of acidic and basic gases from fluid mixtures using bipolar membranes
US4871431A (en) 1988-07-11 1989-10-03 Ionics, Incorporated Apparatus for the removal of dissolved solids from liquids using bipolar membranes
US4915803A (en) * 1988-09-26 1990-04-10 The Dow Chemical Company Combination seal and frame cover member for a filter press type electrolytic cell
US4964970A (en) 1988-10-05 1990-10-23 Hoh Water Technology Corp. Compact low volume water purification apparatus
US4983267A (en) * 1988-10-18 1991-01-08 Innova/Pure Water, Inc. Water deionization and contaminants removal or degradation
CN1021828C (en) 1989-01-24 1993-08-18 上海市合成树脂研究所 Continuous prepn. of ion exchange membrane used for different phase
US5489370A (en) * 1989-05-08 1996-02-06 Ionex Removal of ions from a bulk source by electropotential ion transport using a host receptor matrix
JPH02307514A (en) * 1989-05-19 1990-12-20 Babcock Hitachi Kk Electrodialyzer
US5254227A (en) 1989-06-16 1993-10-19 Olin Corporation Process for removing catalyst impurities from polyols
US5026465A (en) * 1989-08-03 1991-06-25 Ionics, Incorporated Electrodeionization polarity reversal apparatus and process
US5116509A (en) * 1989-09-08 1992-05-26 Millipore Corporation Electrodeionization and ultraviolet light treatment method for purifying water
JPH0647105B2 (en) 1989-12-19 1994-06-22 株式会社荏原総合研究所 Purification method and device for pure water or ultrapure water
US5092970A (en) * 1989-12-20 1992-03-03 Olin Corporation Electrochemical process for producing chlorine dioxide solutions from chlorites
US5106465A (en) * 1989-12-20 1992-04-21 Olin Corporation Electrochemical process for producing chlorine dioxide solutions from chlorites
US5084148A (en) * 1990-02-06 1992-01-28 Olin Corporation Electrochemical process for producing chloric acid - alkali metal chlorate mixtures
US5066375A (en) 1990-03-19 1991-11-19 Ionics, Incorporated Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack
US5120416A (en) * 1990-03-19 1992-06-09 Ionics, Incorporated Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack
US5203976A (en) * 1990-03-19 1993-04-20 Ionics, Incorporated Introducing and removing ion-exchange and other particulates rom an assembled electrodeionization stack
US5196115A (en) * 1990-04-23 1993-03-23 Andelman Marc D Controlled charge chromatography system
DE4016000C2 (en) 1990-05-18 1993-10-21 Hager & Elsaesser Device for the treatment of metal-containing liquids by ion exchange and simultaneous or periodic regeneration of the ion exchange resin by electrodialysis
US5032265A (en) * 1990-06-20 1991-07-16 Millipore Corporation Method and system for producing sterile aqueous solutions
AU658845B2 (en) 1990-08-20 1995-05-04 Abbott Laboratories Medical drug formulation and delivery system
FR2666245B1 (en) 1990-08-31 1992-10-23 Lyonnaise Eaux METHOD FOR CONTROLLING THE OPERATING MODES OF AN AUTOMATIC WATER FILTRATION APPARATUS ON TUBULAR MEMBRANES.
US5126026A (en) * 1990-09-28 1992-06-30 Allied-Signal Inc. Guard membranes for use in electrodialysis cells
FR2668077B1 (en) 1990-10-22 1992-12-04 Commissariat Energie Atomique REVERSE OSMOSIS OR NANOFILTRATION MEMBRANE AND MANUFACTURING METHOD THEREOF.
US5082472A (en) * 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
WO1992011089A1 (en) * 1990-12-17 1992-07-09 Ionpure Technologies Corporation Electrodeionization apparatus
US5176828A (en) * 1991-02-04 1993-01-05 Millipore Corporation Manifold segment stack with intermediate feed manifold
US5128043A (en) * 1991-02-13 1992-07-07 Wildermuth Glen W Method and apparatus for purifying liquids
DE69204187T2 (en) * 1991-03-13 1996-01-25 Ebara Corp Electrically regenerable demineralization device.
IL97543A (en) 1991-03-14 1994-11-11 Yeda Res & Dev Electrodialysis reversal process and apparatus with bipolar membranes for hard-water softening
US5259936A (en) 1991-06-19 1993-11-09 Millipore Corporation Purified ion exchange resins and process
US5211823A (en) * 1991-06-19 1993-05-18 Millipore Corporation Process for purifying resins utilizing bipolar interface
JPH05262902A (en) 1992-03-23 1993-10-12 Tanaka Kikinzoku Kogyo Kk Preparation of ion-exchange membrane
US5316740A (en) 1992-03-26 1994-05-31 Los Alamos Technical Associates, Inc. Electrolytic cell for generating sterilization solutions having increased ozone content
EP0570341B1 (en) 1992-05-15 1996-09-18 Christ AG Apparatus for the continuous electrochemical desalination of aqueous solutions
US5166220A (en) 1992-06-01 1992-11-24 Mcmahon John M Water softening process
AU629790B3 (en) 1992-06-29 1992-10-08 William Harold Jay An electrochemical process employing a modified polymeric foam to enhance the recoverability of metal values from solution
US5358640A (en) 1992-07-20 1994-10-25 Nalco Chemical Company Method for inhibiting scale formation and/or dispersing iron in reverse osmosis systems
US5346924B1 (en) 1992-09-23 2000-04-25 Ionpure Techn Corp Heterogenous ion exchange materials comprising polyethylene of linear low density or high density high molecular weight
US5346624A (en) 1993-01-11 1994-09-13 The Graver Company Method and apparatus for treatment of aqueous solutions
US5356849A (en) 1993-01-21 1994-10-18 Calgon Carbon Corporation Catalytic carbon
US5444031A (en) 1993-01-21 1995-08-22 Calgon Carbon Corporation Process for making catalytic carbon
JP2751090B2 (en) 1993-04-21 1998-05-18 日本錬水株式会社 Pure water production equipment
US5295422A (en) * 1993-04-23 1994-03-22 Jessie Chow Wrench having a greater driving strength
US5538611A (en) * 1993-05-17 1996-07-23 Marc D. Andelman Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor
US6402916B1 (en) 1993-10-27 2002-06-11 Richard L. Sampson Electrolytic process and apparatus controlled regeneration of modified ion exchangers to purify aqueous solutions and adjust ph
US5434020A (en) * 1993-11-15 1995-07-18 The Regents Of The University Of California Continuous-feed electrochemical cell with nonpacking particulate electrode
US5411641A (en) * 1993-11-22 1995-05-02 E. I. Du Pont De Nemours And Company Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
JP3187629B2 (en) 1993-12-16 2001-07-11 オルガノ株式会社 Reverse osmosis membrane treatment method
US5460728A (en) 1993-12-21 1995-10-24 Shell Oil Company Method for inhibiting the plugging of conduits by gas hydrates
US5518626A (en) * 1993-12-23 1996-05-21 United Technologies Corporation Process employing thermally sterilizable aqueous polishing agents
DE69522483T2 (en) * 1994-03-01 2002-04-25 Mitsubishi Chem Corp Method of demineralizing water or an aqueous liquid
IL109240A (en) * 1994-04-07 1998-02-22 Yeda Res & Dev Ion exchange membranes
US5503729A (en) * 1994-04-25 1996-04-02 Ionics Incorporated Electrodialysis including filled cell electrodialysis (electrodeionization)
US5584981A (en) 1994-05-06 1996-12-17 United Kingdom Atomic Energy Authority Electrochemical deionization
EP0683136A3 (en) * 1994-05-06 1998-05-13 AEA Technology plc Silver removal
EP0680932B1 (en) 1994-05-06 2001-08-08 AEA Technology plc Electrochemical deionisation
US5451309A (en) 1994-05-09 1995-09-19 B&W Nuclear Technologies, Inc. Ion exchange resin regeneration apparatus
US5425858A (en) * 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
DE69532281T2 (en) 1994-05-20 2004-09-30 United States Filter Corp., Palm Desert METHOD AND DEVICE FOR ELECTRICAL DEIONIZATION WITH POLARITY SWITCHING AND DOUBLE REVERSE
DE4418812C2 (en) 1994-05-30 1999-03-25 Forschungszentrum Juelich Gmbh Single and multiple electrolysis cells and arrangements thereof for the deionization of aqueous media
US5460725A (en) 1994-06-21 1995-10-24 The Dow Chemical Company Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture
US5538655A (en) * 1994-06-29 1996-07-23 Arthur D. Little, Inc. Molecular complexes for use as electrolyte components
US5520816A (en) 1994-08-18 1996-05-28 Kuepper; Theodore A. Zero waste effluent desalination system
US5458787A (en) 1994-10-27 1995-10-17 Uop Extraction of certain metal cations from aqueous solutions
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
WO1997046491A1 (en) 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
WO1997046492A1 (en) 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
MY113226A (en) 1995-01-19 2001-12-31 Asahi Glass Co Ltd Porous ion exchanger and method for producing deionized water
CA2215977A1 (en) * 1995-03-23 1996-09-26 Arthur L. Goldstein Improvements in membrane processes including electrodialysis
US5783050A (en) 1995-05-04 1998-07-21 Eltech Systems Corporation Electrode for electrochemical cell
US5766479A (en) 1995-08-07 1998-06-16 Zenon Environmental Inc. Production of high purity water using reverse osmosis
US5670053A (en) 1995-08-07 1997-09-23 Zenon Environmental, Inc. Purification of gases from water using reverse osmosis
JP3518112B2 (en) 1995-12-06 2004-04-12 東京瓦斯株式会社 Fuel cell water treatment equipment
GB9600633D0 (en) 1996-01-12 1996-03-13 Glegg Water Conditioning Inc Elecrodeionization apparatus having geometric arrangement of ion exchange material
GB9602625D0 (en) * 1996-02-09 1996-04-10 Clegg Water Conditioning Inc Modular apparatus for the demineralisation of liquids
KR100441461B1 (en) * 1996-03-21 2004-10-02 그레그 워터 콘디셔닝 인코오포레이티드 Method and Apparatus for Producing Deionized Water
US5593563A (en) * 1996-04-26 1997-01-14 Millipore Corporation Electrodeionization process for purifying a liquid
US6248226B1 (en) 1996-06-03 2001-06-19 Organo Corporation Process for producing deionized water by electrodeionization technique
RO114874B1 (en) 1996-06-21 1999-08-30 Sc Ind Etans Srl Process for making support boards for filter cells, fluid distribution system of micro- and ultrafiltration filter and mould for manufacturing the same
WO1998017590A1 (en) 1996-10-23 1998-04-30 Aquatronics, Inc. Electrodialyzer and process for desalination
JPH10128338A (en) 1996-10-29 1998-05-19 Ebara Corp Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
JP2000504273A (en) 1996-11-12 2000-04-11 ユナイテッド・ステイツ・フィルター・コーポレーション Electrodeionization apparatus and method
US5762774A (en) 1996-12-20 1998-06-09 Glegg Water Conditioning, Inc. Apparatus for the purification of liquids and a method of manufacturing and of operating same
US5788826A (en) 1997-01-28 1998-08-04 Pionetics Corporation Electrochemically assisted ion exchange
US6258278B1 (en) 1997-03-03 2001-07-10 Zenon Environmental, Inc. High purity water production
US6267891B1 (en) 1997-03-03 2001-07-31 Zenon Environmental Inc. High purity water production using ion exchange
JPH10277557A (en) 1997-04-10 1998-10-20 Asahi Glass Co Ltd Deionized water making apparatus
US5925240A (en) 1997-05-20 1999-07-20 United States Filter Corporation Water treatment system having dosing control
US5868944A (en) * 1997-06-19 1999-02-09 Oxygen8, Inc. Oxygenated water cooler
WO1998058727A1 (en) 1997-06-20 1998-12-30 Ionics, Incorporated Fluid purification devices and methods employing deionization followed by ionization followed by deionization
US6146524A (en) 1997-09-15 2000-11-14 Story; Craig W. Multi-stage ozone injection water treatment system
CN1136153C (en) * 1997-10-23 2004-01-28 星崎电机株式会社 Electrolyzed water production apparatus
US5971368A (en) 1997-10-29 1999-10-26 Fsi International, Inc. System to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized
GB9802732D0 (en) 1998-02-09 1998-04-08 Elga Ltd Electrodialysis apparatus
US6402917B1 (en) 1998-02-09 2002-06-11 Otv Societe Anonyme Electrodialysis apparatus
US6099716A (en) 1998-05-26 2000-08-08 Proton Energy Systems, Inc. Electrochemical cell frame
US6056878A (en) * 1998-08-03 2000-05-02 E-Cell Corporation Method and apparatus for reducing scaling in electrodeionization systems and for improving efficiency thereof
US6149788A (en) * 1998-10-16 2000-11-21 E-Cell Corporation Method and apparatus for preventing scaling in electrodeionization units
US6197174B1 (en) 1998-11-25 2001-03-06 E-Cell Corporation Method and apparatus for electrodeionization of water using mixed bed and single phase ion exchange materials in the diluting compartment
US6190553B1 (en) * 1998-12-01 2001-02-20 Sangeul Lee Purification system for disposal of polluted or waste water using water plants
US6458257B1 (en) * 1999-02-09 2002-10-01 Lynntech International Ltd Microorganism control of point-of-use potable water sources
US6284124B1 (en) 1999-01-29 2001-09-04 United States Filter Corporation Electrodeionization apparatus and method
US6190558B1 (en) * 1999-04-01 2001-02-20 Nimbus Water Systems, Inc. Reverse osmosis purification system
IT1309792B1 (en) 1999-04-22 2002-01-30 Eltek Spa HOUSEHOLD APPLIANCES USING WATER, IN PARTICULAR A WASHING MACHINE, WITH PERFECTED DEVICE FOR BLAST CHILLING
US6482304B1 (en) 1999-05-07 2002-11-19 Otv Societe Anonyme Apparatus and method of recirculating electrodeionization
EP1196353B1 (en) 1999-06-08 2011-02-09 E-Cell Corporation Sealing means for electrically driven water purification units and method of manufacturing thereof
US6235166B1 (en) * 1999-06-08 2001-05-22 E-Cell Corporation Sealing means for electrically driven water purification units
JP3389889B2 (en) 1999-07-13 2003-03-24 栗田工業株式会社 Electric deionizer
US6254741B1 (en) 1999-08-05 2001-07-03 Stuart Energy Systems Corporation Electrolytic cells of improved fluid sealability
US6379518B1 (en) 1999-08-11 2002-04-30 Kurita Water Industries Ltd. Electrodeionization apparatus and pure water producing apparatus
JP3570304B2 (en) 1999-08-11 2004-09-29 栗田工業株式会社 Sterilization method of deionized water production apparatus and method of producing deionized water
US6214204B1 (en) * 1999-08-27 2001-04-10 Corning Incorporated Ion-removal from water using activated carbon electrodes
DE19942347B4 (en) 1999-09-04 2004-07-22 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Electrochemically regenerable ion exchanger
US6187162B1 (en) * 1999-09-13 2001-02-13 Leon Mir Electrodeionization apparatus with scaling control
US6296751B1 (en) 1999-09-13 2001-10-02 Leon Mir Electrodeionization apparatus with scaling control
US6284399B1 (en) 1999-09-17 2001-09-04 Plug Power Llc Fuel cell system having humidification membranes
JP3508647B2 (en) 1999-10-07 2004-03-22 栗田工業株式会社 Electrodeionization equipment
JP4172117B2 (en) 1999-10-14 2008-10-29 栗田工業株式会社 Electrodeionization equipment
JP4110689B2 (en) 1999-10-14 2008-07-02 栗田工業株式会社 Electrodeionization equipment
JP3593932B2 (en) 1999-10-18 2004-11-24 栗田工業株式会社 High-purity water production apparatus and high-purity water production method
JP3801821B2 (en) 1999-10-29 2006-07-26 株式会社荏原製作所 Electric desalination equipment
US6503957B1 (en) 1999-11-19 2003-01-07 Electropure, Inc. Methods and apparatus for the formation of heterogeneous ion-exchange membranes
EP1106241A1 (en) 1999-12-10 2001-06-13 Asahi Glass Company Ltd. Electro-regenerating type apparatus for producing deionized water
US6627073B2 (en) 1999-12-16 2003-09-30 Sanyo Electric Co, Ltd. Water treatment device
FR2803284B1 (en) 2000-01-03 2002-04-12 Michel Bernard AUTOMATIC DRINKING WATER PURIFICATION DEVICE
US6274019B1 (en) 2000-03-08 2001-08-14 Organo Corporation Electrodeionization apparatus
US6375812B1 (en) * 2000-03-13 2002-04-23 Hamilton Sundstrand Corporation Water electrolysis system
GB0016846D0 (en) 2000-07-10 2000-08-30 United States Filter Corp Electrodeionisation Apparatus
KR100465580B1 (en) 2000-07-13 2005-01-13 쿠리타 고교 가부시키가이샤 Electro-deionization device and method for operating the same
US6391178B1 (en) 2000-07-13 2002-05-21 Millipore Corporation Electrodeionization system
EP1307406A4 (en) 2000-08-11 2007-02-21 Ionics Device and method for electrodialysis
US20020144954A1 (en) 2000-09-28 2002-10-10 Arba John W. Electrodeionization device and methods of use
US7147785B2 (en) * 2000-09-28 2006-12-12 Usfilter Corporation Electrodeionization device and methods of use
JP3794268B2 (en) 2001-01-05 2006-07-05 栗田工業株式会社 Electrodeionization apparatus and operation method thereof
US6607647B2 (en) 2001-04-25 2003-08-19 United States Filter Corporation Electrodeionization apparatus with expanded conductive mesh electrode and method
EP1254972A1 (en) 2001-05-01 2002-11-06 CSEM Centre Suisse d'Electronique et de Microtechnique SA Modular electrochemical cell
US6649037B2 (en) 2001-05-29 2003-11-18 United States Filter Corporation Electrodeionization apparatus and method
JP4507270B2 (en) 2001-06-26 2010-07-21 三浦工業株式会社 Water softening device and regeneration control method thereof
US6607668B2 (en) 2001-08-17 2003-08-19 Technology Ventures, Inc. Water purifier
US6795298B2 (en) * 2001-09-07 2004-09-21 Luxon Energy Devices Corporation Fully automatic and energy-efficient deionizer
CA2460241A1 (en) 2001-09-18 2003-03-27 Dupont Canada Inc. Modular fuel cell cartridge and stack
US7572359B2 (en) * 2001-10-15 2009-08-11 Siemens Water Technologies Holding Corp. Apparatus for fluid purification and methods of manufacture and use thereof
US20060166053A1 (en) 2001-11-21 2006-07-27 Badding Michael E Solid oxide fuel cell assembly with replaceable stack and packet modules
WO2003053859A1 (en) 2001-12-20 2003-07-03 Aquatech International Corporation Fractional deionization process
US20030155243A1 (en) 2002-02-21 2003-08-21 Eet Corporation Multi-path split cell spacer and electrodialysis stack design
US6808608B2 (en) 2002-03-13 2004-10-26 Dionex Corporation Water purifier and method
US6758954B2 (en) * 2002-04-11 2004-07-06 U.S. Filter Corporation Electrodeionization apparatus with resilient endblock
US20040188258A1 (en) 2002-05-17 2004-09-30 Yohei Takahashi Electric demineralizer
US6984466B2 (en) 2002-06-24 2006-01-10 Delphi Technologies, Inc. Manifold sizing and configuration for a fuel cell stack
US7232507B2 (en) 2002-09-04 2007-06-19 National Research Council Of Canada High volumetric efficiency electrochemical cell design for treatment of low concentrations of contaminants in low conductivity water
US7501061B2 (en) * 2002-10-23 2009-03-10 Siemens Water Technologies Holding Corp. Production of water for injection using reverse osmosis
KR101066939B1 (en) 2003-02-14 2011-09-23 쿠리타 고교 가부시키가이샤 Electric deionization apparatus and method of operating the same
US7943270B2 (en) 2003-06-10 2011-05-17 Celltech Power Llc Electrochemical device configurations
JP2005007348A (en) 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Electric deionizer
JP2005007347A (en) 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Electrodialysis type water purifier
US7846340B2 (en) * 2003-11-13 2010-12-07 Siemens Water Technologies Corp. Water treatment system and method
US7604725B2 (en) * 2003-11-13 2009-10-20 Siemens Water Technologies Holding Corp. Water treatment system and method
US7563351B2 (en) * 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
US7338595B2 (en) * 2003-11-13 2008-03-04 Culligan International Company Flow-through tank for water treatment
US7582198B2 (en) * 2003-11-13 2009-09-01 Siemens Water Technologies Holding Corp. Water treatment system and method
US7862700B2 (en) * 2003-11-13 2011-01-04 Siemens Water Technologies Holding Corp. Water treatment system and method
US20050103717A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US8377279B2 (en) * 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7083733B2 (en) * 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
FI116949B (en) 2004-09-10 2006-04-13 Stora Enso Oyj Method of marking the material, marking the material and verifying the authenticity of the product
US7459088B2 (en) * 2004-09-13 2008-12-02 The University Of South Carolina Water desalination process and apparatus
US7501064B2 (en) 2005-01-06 2009-03-10 Eet Integrated electro-pressure membrane deionization system
JP4469415B2 (en) 2007-03-15 2010-05-26 パナソニック株式会社 POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
WO2009077992A2 (en) 2007-12-17 2009-06-25 Ben Gurion University Of The Negev Research & Development Authority Apparatus and system for deionization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876707A (en) * 1959-03-26 1961-09-06 Permutit Co Ltd Improvements in electrodialytic and similar processes and apparatus
US3375182A (en) * 1959-05-22 1968-03-26 American Mach & Foundry Electrodialysis method and apparatus having radially symmetrical flow paths
US3216920A (en) * 1960-11-28 1965-11-09 American Mach & Foundry Electrodialysis stack design
US4202772A (en) * 1977-08-04 1980-05-13 Ionics, Incorporated Fluid distribution cell module
US5292422A (en) * 1992-09-15 1994-03-08 Ip Holding Company Modules for electrodeionization apparatus
US5858191A (en) * 1996-09-23 1999-01-12 United States Filter Corporation Electrodeionization apparatus and method
US6190528B1 (en) * 1998-03-19 2001-02-20 Xiang Li Helical electrodeionization apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0150, no. 92 (C-0811), 6 March 1991 (1991-03-06) & JP 02 307514 A (BABCOCK HITACHI KK), 20 December 1990 (1990-12-20) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824662B2 (en) 2001-05-29 2004-11-30 Usfilter Corporation Electrodeionization apparatus and method
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US8658043B2 (en) 2003-11-13 2014-02-25 Siemens Water Technologies Llc Water treatment system and method
US8864971B2 (en) 2003-11-13 2014-10-21 Evoqua Water Technologies Llc Water treatment system and method
US8894834B2 (en) 2003-11-13 2014-11-25 Evoqua Water Technologies Llc Water treatment system and method
EP1818378A1 (en) * 2006-02-09 2007-08-15 Michel Gallo Method of protecting against the scaling and corrosion of metal surfaces and device for water treatment
US9023185B2 (en) 2006-06-22 2015-05-05 Evoqua Water Technologies Llc Low scale potential water treatment
US9586842B2 (en) 2006-06-22 2017-03-07 Evoqua Water Technologies Llc Low scale potential water treatment
US9011660B2 (en) 2007-11-30 2015-04-21 Evoqua Water Technologies Llc Systems and methods for water treatment
US9637400B2 (en) 2007-11-30 2017-05-02 Evoqua Water Technologies Llc Systems and methods for water treatment
EP2465600A3 (en) * 2010-12-15 2012-10-24 Palo Alto Research Center Incorporated High-pressure electrodialysis device
US8784632B2 (en) 2010-12-15 2014-07-22 Palo Alto Research Center Incorporated High-pressure electrodialysis device

Also Published As

Publication number Publication date
PT1436069E (en) 2011-04-06
US20110303544A1 (en) 2011-12-15
CN1568220B (en) 2010-06-09
CA2461558A1 (en) 2003-04-24
CN1568220A (en) 2005-01-19
EP1436069B1 (en) 2011-02-09
US20080105548A1 (en) 2008-05-08
US20030089609A1 (en) 2003-05-15
EP1436069A2 (en) 2004-07-14
US8721862B2 (en) 2014-05-13
ES2361004T3 (en) 2011-06-13
AU2002337876A1 (en) 2003-04-28
WO2003033122A3 (en) 2003-07-31
DE60239141D1 (en) 2011-03-24
ATE497830T1 (en) 2011-02-15
US8101058B2 (en) 2012-01-24
US7572359B2 (en) 2009-08-11
CA2461558C (en) 2011-10-04

Similar Documents

Publication Publication Date Title
US7572359B2 (en) Apparatus for fluid purification and methods of manufacture and use thereof
US9463988B2 (en) Electrical purification apparatus having a blocking spacer
JP2000504273A (en) Electrodeionization apparatus and method
KR20150086298A (en) Electrochemical separation device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002773780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2461558

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20028201752

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002773780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP