WO2002077735A1 - Commande a distance d'objets pouvant etre commandes et appareil de diagnostic - Google Patents

Commande a distance d'objets pouvant etre commandes et appareil de diagnostic Download PDF

Info

Publication number
WO2002077735A1
WO2002077735A1 PCT/JP2002/002886 JP0202886W WO02077735A1 WO 2002077735 A1 WO2002077735 A1 WO 2002077735A1 JP 0202886 W JP0202886 W JP 0202886W WO 02077735 A1 WO02077735 A1 WO 02077735A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
control
unit
diagnostic
controlled object
Prior art date
Application number
PCT/JP2002/002886
Other languages
English (en)
French (fr)
Inventor
Hideo Nagata
Yasuyuki Inoue
Ken'ichi Yasuda
Hiroyuki Handa
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to KR1020037012400A priority Critical patent/KR100721642B1/ko
Priority to DE60220998T priority patent/DE60220998T2/de
Priority to US10/472,942 priority patent/US7127325B2/en
Priority to EP02705495A priority patent/EP1376284B1/en
Publication of WO2002077735A1 publication Critical patent/WO2002077735A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33284Remote diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33286Test, simulation analysator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning

Definitions

  • the present invention relates to a remote adjustment and diagnosis device that performs adjustment, maintenance, diagnosis, and the like of a control target such as a robot, a servomotor, and an NC device installed at a remote place.
  • the workers on the user side may not be able to respond sufficiently. For example, even if a different load can be applied to the controlled object, it may be necessary to newly adjust the servo gain, and depending on the adjustment method, the controlled object oscillates, and therefore does not have the adjustment know-how. Workers on the user side could be dangerous. For this reason, workers on the maker side and workers on the service center on the maker side near the user's factory had to go to the site, which required time, labor and cost.
  • a management computer owned by a maker and a machine possessed by a user are used.
  • a program for periodic diagnosis or failure diagnosis owned by the machine tool manufacturer 92 is provided.
  • a program for periodic diagnosis or failure diagnosis is transmitted from the management computer 921 with the built-in to the machine tool 913a or its terminal 911 via the commercial communication line 93.
  • the management computer 921 executes a dedicated analysis program based on this information to automatically analyze the periodic diagnosis or failure diagnosis program for the machine tool 913a, and then uses the analysis results to the machine tool 913 owned by the user. a or to the terminal via the commercial communication line 93.
  • the display devices 9 12 and 9 22 for the periodic diagnosis and failure diagnosis programs are connected to the machine tool 9 13 a owned by the user 91 or its terminal device and the management computer 92 1 owned by the manufacturer 92. In this configuration, information necessary for periodic diagnosis, failure diagnosis, and failure repair is transmitted in an interactive manner via the display devices 912 and 922.
  • Japanese Patent Application Laid-Open No. 7-16032 discloses a method for storing a waveform of a motion data of a robot and extracting a feature amount in comparison with a reference waveform.
  • the mouth pot controller uses a data file that communicates with the robot controller to store the history of the operation data of the robot body, and compares the feature amount of the acquired operation data waveform with the base waveform.
  • a waveform feature extraction unit to be extracted a standard data creation unit that creates standard data modeled from the reference waveform and the feature amount; and a standard data adjustment that adjusts the standard data according to the operation data.
  • a waveform diagnosis unit that compares the adjusted standard data and the operation data and performs a waveform diagnosis of the operation data while looking up a preset waveform diagnosis comment table. Connect a workstation.
  • 5-35751 is mainly for periodic diagnosis or failure diagnosis of a machine tool to be controlled at a remote place, and the control target has a specific servo gain / absorption. It does not correspond to adjusting the control parameters of a control target in a remote place, such as in the evening.
  • the feature amount is extracted by comparing the operation data of the robot with a reference waveform, and the comment table for waveform diagnosis is looked up.
  • the results can be reflected in robot gain adjustment and application-specific parameter adjustment, and operation can be confirmed, as in the prior art. Has not become.
  • the waveform of the operation data can be obtained only by a predetermined operation, it is not possible to cope with the periodic diagnosis and the failure diagnosis during the playback operation by the work program created by the user on the user side.
  • the present invention makes it possible to easily adjust the control gain and the application-specific adjustment of the control target from a remote analysis computer, respond to the user's request for adjustment without losing time, and use a large measuring instrument. It is an object of the present invention to provide a remote adjustment and diagnosis device that can perform necessary adjustments, does not require stopping the factory line, and can perform failure diagnosis during normal playback operation.
  • a remote control and diagnostic device for a controlled object is a remote controlled and diagnosed device for a controlled object having a controlled object and a controller for controlling the controlled object.
  • Means for controlling the control object by transmitting to the controller via It is characterized by.
  • the remote adjustment and diagnosis device for a controlled object wherein the analysis computer creates an operation command for adjusting a control parameter of the controlled object, and transmits an operation command to the diagnosis computer.
  • a control parameter adjustment unit that adjusts a control parameter based on the result of the simulator unit.
  • the remote adjustment and diagnosis device for a controlled object wherein the diagnostic computer stores a state quantity storage unit for storing a state quantity of the controlled object, and a controller state for determining a state of the controller.
  • a determining unit, a data receiving unit that receives an operation command for adjusting a control parameter transmitted from the analysis computer, and a data transmission unit that transmits a state quantity of a control target to the analysis computer It is characterized by having.
  • the adjustment performed by the manufacturer's side at the user's side at the factory is performed by the manufacturer's analysis computer. Can be done easily. Also, without stopping the factory line, it is possible to immediately respond to the maintenance and adjustment requests of the workers on the user side.
  • the servo gain is adjusted when an environment such as mounting a load on the control target by a user-side operator is adjusted.
  • the surprising gain can be adjusted accurately and safely according to the load.
  • control parameter is a condition parameter specific to an application.
  • know-how is obtained by adjusting the application-specific condition parameters when the control target application / work is changed. Workers on the manufacturer side can set the conditions, greatly reducing time and maintaining and improving quality.
  • the remote control and diagnostic device of the control object described in claim 6 by using the same control object as the user side for the adjustment, it is possible to cope with the adjustment that requires a large measuring instrument and to reduce the factory line. Time and effort can be greatly reduced without stopping.
  • the remote adjustment and diagnosis device for a controlled object comprising the analysis computer generates an operation command for the controlled object, and a data transmission unit that transmits the operation command to the diagnosis computer.
  • a data receiving unit that receives a state quantity of a control target from the diagnostic computer; a data recording unit that selectively stores data transmitted by the data transmitting unit and data received by the data receiving unit.
  • a control parameter adjustment section that adjusts the control parameters of the control object.
  • the adjustment performed by the manufacturer's worker at the user's factory is performed by the manufacturer's analysis computer. Can be done easily. In addition, since the user operates the control target itself, highly accurate adjustment can be performed even with the aging of the control target. 10.
  • the state computer of the controlled object is automatically transmitted periodically to the analyzing computer, so that the user uses the analyzing computer.
  • the time and effort required from analyzing the cause of an abnormality in the controlled object to solving the problem can be significantly reduced because the system can periodically monitor the controlled object and respond promptly to abnormal situations or transmission requests. Can be.
  • the apparatus for remotely adjusting and diagnosing a controlled object according to claim 10, wherein, during playback operation of the controlled object, an operation command and a state quantity of the controlled object are transmitted from the diagnosing computer to the analyzing computer, and control is performed. It is characterized by having a failure diagnosis prediction unit that determines and estimates the presence or absence of an abnormality from the target state quantity.
  • the remote adjustment and diagnosis device for a controlled object during normal playback operation, the state quantity of the controlled object on the user side is sequentially transmitted to the analysis computer, and a failure estimation determination is performed. It can monitor the status of the control object on the side and prevent failures before they occur.
  • the remote control and diagnostic device for a controlled object when performing control parameter adjustment, the condition of position restriction of the controlled object in a rectangular coordinate system or a joint coordinate system on the controller is determined.
  • a condition setting unit to be set and a position restriction condition set by the condition setting unit are transferred to the diagnostic computer, and the control parameter adjustment received from the analysis computer in the diagnostic computer is performed.
  • a condition matching unit that checks whether the operation command interferes with the condition of the position restriction, and transmits an operation command interference signal and the condition of the position restriction to the analysis computer from the data transmission unit when the operation command interferes with the condition. And re-creating an operation signal for adjusting the control parameters in accordance with the operation instruction interference signal and the position restriction condition in the instruction generation unit of the analysis computer.
  • the remote adjustment and diagnosis apparatus for a control object according to claim 11, the condition of the position restriction of the control object in a rectangular coordinate system or a joint coordinate system set by a user at a remote location in a condition setting unit of the controller. And the operation command created by the command generation unit of the analysis computer is compared and collated by the condition collation unit, and when there is interference, an operation instruction interference signal and the position restriction condition set by a user are analyzed. Since the operation command is re-created by returning it to the computer for use, it is possible to prohibit the user from adjusting the control parameters at a position that is determined to be dangerous in advance, thereby improving safety.
  • the condition generation unit is provided in the analysis computer, and the command generation unit of the analysis computer is used for the control parameter adjustment.
  • the position limiting condition set by the condition setting unit is transmitted to the analysis computer, and the control parameter adjustment condition created by the command generation unit of the analysis computer is sent. It is characterized in that it is checked whether the operation command interferes with the condition of the position limitation by the condition matching unit, and when it does, the operation command for adjusting the control parameter is recreated.
  • the remote control and diagnostic device for a controlled object when the operation command for adjusting the control parameters created by the analysis generating unit and the command generating unit for evening is created, the user It is possible to check if there is any interference with the position restriction conditions, and if it does, it can be recreated, so that the exchange between the diagnostic computer and the analysis computer is reduced and the control parameters are adjusted Time can be reduced.
  • a device for remotely adjusting and diagnosing a controlled object including the motor according to claim 13 is the device for remotely adjusting and diagnosing a controlled object according to any one of claims 1 to 12, wherein the diagnostic computer includes: It is characterized by having a control parameter storage section capable of storing a plurality of control parameters.
  • the apparatus for remotely adjusting and diagnosing a controlled object including the motor according to claim 13, since the previously adjusted control parameters can be stored in the diagnostic computer, the controlled object can be changed by changing a factory line or the like. Even when returned to the original application, there is no need for readjustment using an analysis computer, and time can be reduced.
  • a device for remotely adjusting and diagnosing an object to be controlled including a motor according to claim 14 is the device for remotely adjusting and diagnosing an object to be controlled according to claim 13, wherein the state of the object to be controlled by an operation command is provided in the diagnostic computer. It is characterized by having a simulator unit that reproduces the operation and state from the quantity using the model of the control target.
  • the previous control parameter stored in the control parameter storage unit of the diagnosis convenience store is actually used as the control target.
  • Safety can be improved because the simulator can check the voltage before use.
  • FIG. 1 is a diagram showing a first embodiment of the present invention
  • FIG. 2 is a diagram showing a second embodiment of the present invention
  • FIG. 3 is a diagram showing a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a third embodiment of the present invention
  • FIG. 5 is a diagram illustrating a fourth embodiment of the present invention
  • FIG. 6 is a diagram illustrating a fourth embodiment of the present invention.
  • FIG. 7 is a diagram showing a fifth embodiment of the present invention
  • FIG. 7 is a diagram showing a sixth embodiment of the present invention
  • FIG. 8 is a diagram showing a seventh embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an eighth embodiment of the present invention
  • FIG. 10 is a diagram illustrating a ninth embodiment of the present invention
  • FIG. It is a figure which shows the control apparatus of.
  • a robot 11 installed on a line of a factory on the user side 1 and a controller 12 controlling the robot 11 1
  • a diagnostic computer 13 connected to the controller 12 to obtain the control state of the robot 11 and a service provided by the manufacturer 2 far away from the factory of the user 1 where the robot 11 is installed.
  • An analysis computer 23 installed in the center (hereinafter referred to as the “manufacturer's side”), and a commercial communication line such as a telephone line or the Internet connecting the computers 13 and 23 or a LAN, etc. It consists of a dedicated line or a communication function 31 such as wireless communication. According to the first embodiment, no new capital investment is required by using the existing communication system in this way.
  • the diagnostic computer 13 may be a personal computer or a type built in the controller 12, and the controller 12 has a function of storing the state quantity of the diagnostic computer 13 and transmitting and receiving data.
  • the space for installing the diagnostic computer 13 may be omitted by holding the diagnostic computer.
  • the analysis computer 23 sends an operation command to the command computer 23 for creating an operation command for control parameter overnight adjustment of the robot 11 and an operation command to the diagnostic computer 13.
  • the command generation unit 2 32 generates an operation command of a specific operation pattern when adjusting the servo gain. For example, when performing an application-specific condition parameter such as arc welding, the adjustment is performed. Generates welding conditions and operation commands. Alternatively, data stored in advance in the memory of the analysis combination 23 may be read and used as an operation command.
  • the simulator 2 3 1 has input in advance the model (length, weight and rigidity of each link, model of motor, speed reducer, welding machine, etc.) of the remote location, and sends the same operation command as the actual machine. By inputting, it is possible to create a control state quantity that is the same as or approximate to the actual machine in the simulator section 23 1.
  • the control parameter adjustment section 2 3 3 compares the control state quantity obtained by the simulator section 2 3 1 with the control state quantity of the robot 11 sent from the diagnostic computer 13, and the difference is small. Adjust the control parameters (support gain) so that it is as follows. For example, if the actual position deviation of the robot 11 is larger than the position deviation of the model of the simulation section 231, the position gain is increased.
  • the diagnostic computer 13 has a state quantity storage unit 132 for storing the state quantity of the control target, and whether the controller to be controlled is in a state capable of performing maintenance and adjustment.
  • Controller status judging unit 13 to judge the operation, data receiving unit 14 to receive the operation command sent from the analysis computer 23, and data transmission to send the state quantity to be controlled to the analysis computer 23 It consists of 15 parts.
  • the diagnostic computer 13 stores the control parameters sent from the analyzing computer 23 in the controller 12 and responds to the command from the analyzing computer 23. It also has a function of determining whether the controller 12 is in a state where control parameters can be adjusted.
  • the operator at the maker side 2 issues a command to determine whether the control parameters of the robot 11 can be adjusted to the diagnostic computer 13 at a remote location using the command generation unit 23 of the analysis computer 23. Generate This state determination command is transmitted from the data transmitting unit 25 to the data receiving unit 14 of the diagnostic computer 13 via a commercial communication line 31 such as a telephone line ((1) in the figure).
  • the controller state determination unit 13 1 of the diagnostic computer 13 determines that the control parameters can be adjusted from the state of the robot 11 connected to the controller 12, an adjustable signal is sent.
  • the data is transmitted from the data transmission unit 15 to the data reception unit 24 of the analysis computer 23.
  • the analyzing computer 23 Upon receiving this signal, the analyzing computer 23 transmits an operation command to the data receiving unit 14 of the diagnostic computer 13 (2 in the figure).
  • the controller status judgment unit 13 1 of the diagnostic combination 13 will instruct the user 1 on the user 1 to adjust the control parameters. And so on.
  • the diagnostic computer 13 sends the sent operation command 2 and the control parameters in the initial state to the controller 12 and stores them, and as soon as the controller 12 is ready, the robot 11 operates the robot 11 according to the operation command. Let it do.
  • the control state quantities (for example, position FB, speed FB, torque command, etc.) of the robot 11 during this operation are transferred from the controller 12 to the diagnostic computer 13 at a specific sampling cycle, and the state quantity storage unit 1 It is stored in 32.
  • the configuration may be such that the control state quantities during operation are all stored in the controller 12, transferred to the diagnostic computer 13 collectively after the operation according to the operation command, and stored in the state quantity storage section 13 2 .
  • the diagnosis computer 13 Upon completion of the operation of the robot 11 or in response to a command from the analysis computer 23, the diagnosis computer 13 stores the control state quantities of the robot 11 stored in the state quantity storage section 13 2 into data.
  • the data is transferred from the overnight transmission section 15 to the analysis computer 23 via a commercial communication line 31 such as a telephone line (3 in the figure).
  • the control state quantity to be transferred may be configured so that only necessary information such as the position FB and the torque command can be selected and transferred in order to reduce the amount of information and increase the communication speed.
  • the simulator section 23 of the analysis computer 23 is composed of the operation command created by the command generation section 23 2, the control state quantity of the robot 11 received by the data receiving section 24, and the remote robot 11 1. Using the same model, the operation of the remote robot 11 is reproduced.
  • the control parameter adjustment unit 23 of the analysis computer 23 compares the operation waveform simulated from the operation command and the model with the operation waveform of the control state quantity obtained from the actual machine. This automatically determines whether the control parameters are optimal. This determination may be made by an operator of the maker 2 operating the analysis computer 23.
  • the analysis computer 23 diagnoses the control parameters from the data transmission unit 25 through the commercial communication line 31 such as a telephone line. To the data receiving unit 14 of the computer 13 (4 in the figure). The diagnostic computer 13 completes the control parameter adjustment by sending the stored control parameters to the controller and storing them. Here, for confirmation, the robot 11 again performs the operation according to the operation command for controlling the control parameters overnight, and entrusts the judgment to the operator on the user side 1. Parameter adjustment can be performed, and control It is also possible to confirm whether the operation of the robot 11 after parameter adjustment is at a level that can be satisfied by the user.
  • the control parameter adjusting unit 23 of the analysis computer 23 adjusts the control parameters so as to approach the optimal operation waveform of the simulation.
  • the adjusted control parameters are transmitted from the data transmission unit 25 to the diagnostic computer 13 'via the commercial communication line 31.
  • the diagnostic computer 13 sends the control parameters received by the data receiving unit 14 to the controller and stores them therein, and operates the mouth bot 11.
  • the control state quantity of the robot 11 is transmitted to the analysis computer 23 as in the previous adjustment, and the operation waveform simulated again by the simulator section 23 1 of the analysis computer 23 and the control state quantity
  • the operation waveforms are compared, and the above processing is repeated until the control parameter adjustment section 2 3 3 determines that the operation waveform is optimal.
  • the adjustment of the control parameters which had conventionally been performed by the worker on the maker side 2 at the factory on the user side 1, can be performed by the analysis unit 2 3 on the main side 2 3 Can be done easily. Also, without stopping the factory line, it is possible to immediately respond to the maintenance and adjustment requests of the operator on the user side.
  • the operator at the maker side 2 judges whether the servo gain adjustment of the robot 11 can be performed for the diagnostic convenience store 13 at the remote location by the command generation unit 23 of the analysis computer 23. Generate a command.
  • This state determination command is transmitted from the data transmitting unit 25 to the data receiving unit of the diagnostic computer via the commercial communication line 32 such as a telephone line (1 in the figure).
  • a support gain adjustable signal is output as data.
  • the data is transmitted from the transmitting unit 15 to the data receiving unit 24 of the analysis computer 23.
  • the analysis computer 23 adjusts the gain.
  • the diagnostic computer 1 3 The controller state determination unit 1331 performs a process such as giving an instruction to the worker on the user side 1 to perform the sapo gain adjustment.
  • the diagnostic computer 13 sends the received operation command for gain adjustment and the initial support gain to the controller 12 for storage, and the controller 12 is ready for the next stage. The operation according to the operation command is performed.
  • the control state quantities (for example, position FB, speed FB, torque command, etc.) of the mouth pot 11 during this operation are transferred from the controller 12 to the diagnostic computer 13 at a specific sampling period, and the state quantity is stored. It is stored in the section 1 32. Alternatively, all the control state quantities during the operation are stored in the controller 12, and after completion of the operation according to the operation command, they are collectively transferred to the diagnostic computer 13 and stored in the state quantity storage unit 13 2. good.
  • the diagnosis computer 13 Upon completion of the operation of the robot 11 or in response to a command from the analysis computer 23, the diagnosis computer 13 stores the control state of the robot 11 stored in the state storage unit 13
  • the data is transferred from the data transmission unit 15 to the analysis computer 23 via a commercial communication line 32 such as a telephone line (3 in the figure).
  • the control state quantity to be transferred may be configured so that only necessary information such as the position FB and the torque command can be selected and transferred in order to reduce the amount of information and increase the communication speed.
  • the simulator 2 3 1 of the analysis computer 2 3 is the same as the operation state created by the command generator 2 3 2 and the control state quantity of the robot 11 received by the data receiver 24 and the robot 11 at the remote location. Using the model of the above, the operation of the remote robot 11 is reproduced.
  • the control parameter adjustment unit 23 of the analysis computer 23 compares the operation waveform simulated from the operation command and the model with the operation waveform of the control state quantity obtained from the actual machine to optimize the servo gain. Automatically determine if it is. This determination may be made by an operator of the maker 2 operating the analysis computer 23.
  • the computer 23 for analysis analyzes the servo gain from the data transmission unit 25 through a commercial communication line 32 such as a telephone line.
  • the data is transmitted to the data receiving unit 14 (4 in the figure).
  • the diagnostic computer 13 completes the servo gain adjustment by sending the servo gain sent to the controller 12 and storing it.
  • the mouth pot 11 is operated again by the operation command for gain adjustment, and the judgment is left to the operator on the user side 1. Can be adjusted, and it can be confirmed whether the operation of the robot after the gain adjustment is at a level satisfactory to the user.
  • the parameter adjuster 233 adjusts the servo gain so that it approaches the optimal operation waveform of the simulation.
  • the adjusted servo gain is transmitted from the data transmission unit 25 to the diagnostic computer 13 via the commercial communication line 32.
  • the diagnostic computer 13 sends the support gain received by the data receiving unit 14 to the controller 12 and stores it therein, and operates the robot 11.
  • the control state quantity of the robot 11 is transmitted to the analysis computer 23 as in the previous adjustment, and the operation waveform and the control state quantity simulated again by the simulator section 23 1 of the analysis computer 23 are obtained.
  • the above operation waveforms are compared, and the above processing is repeated until the control parameter adjusting section 233 determines that the operation waveform is the optimum.
  • Fig. 3 shows a case where the operation is reproduced using the same real machine 21 as the robot 11 at a remote place, instead of the simulator section 23 1 of the analysis computer 23 of Figs. 1 and 2. ing.
  • the simulator section 23 1 of the analysis computer 23 of Figs. 1 and 2. ing.
  • a certain amount of control parameters can be adjusted in advance and the time can be reduced. be able to.
  • the simulation gain is adjusted in the simulation unit 231, based on the control state quantity operated by the robot 11 on the user side 1, and the measurement is performed using the obtained simulation gain. If the support gain is sent to the user side 1 after confirming the operation with the actual device 21 on the side 2, the security will be higher.
  • control is not performed by the command generation unit 23 of the analysis computer 23 and operation commands are sent from the controller 12 using actual operation commands in the controller 12. Get the state quantity.
  • the diagnostic computer 13 sends the operation command and the control state quantity in the actual work to the analysis computer 23 when the control state quantity can be obtained, and thereafter, as described above, within the analysis computer 23. Optimize control parameters.
  • the control parameters can be adjusted without stopping the factory line.
  • each block will be described assuming that adjustment of welding conditions of arc welding by a robot is performed as adjustment of condition parameters specific to an application.
  • the condition parameters of the welding conditions include a welding speed, a welding torch angle, and a feed speed of a welding wire feed motor.
  • the worker on the user side 1 registers the shape, material, and the like of the workpiece on which the arc welding is to be performed, in the controller 12 or the diagnostic computer 13. Data such as the shape and material of the registered work is sent from the The signal is transmitted to the command generator 2 32 of the analysis computer 23 of the maker 2 via the communication line 32 (1 in the figure).
  • the operator uses the command generation unit 23 of the analysis computer 23 to issue a state determination command to the remote diagnosis computer 13 to determine whether the welding conditions for arc welding can be adjusted by the robot 11 using the robot 11. Generate This state determination command is transmitted from the data transmission unit 25 to the data reception unit 14 of the diagnostic computer 13 via the commercial communication line 32 (2 in the figure).
  • the diagnostic computer 13 determines that the welding conditions can be adjusted based on the state of the connected robot 11, the diagnostic computer 13 transmits a signal indicating that the welding conditions can be adjusted from the data transmission unit 15 to the analysis computer 23. Upon receiving this signal, the analysis computer 23 sends the initial values of the welding conditions to the diagnosis computer 13 (3 in the figure).
  • the diagnostic computer 13 performs processing such as instructing the operator on the user side 1 to adjust welding conditions. .
  • the diagnostic computer 13 sends the initial values of the welding conditions received by the data receiving unit 14 to the controller 12 for storage. As soon as the controller 12 is ready, the robot 11 is made to perform the initial welding conditions and the arc welding by the program created by the user 1.
  • the welding state quantities during this arc welding (for example, other welding voltages and welding currents at the welding speed) are transferred from the controller 12 to the diagnostic computer 13 at a specific sampling cycle, and the state quantity storage unit 13 Alternatively, the welding state quantity during arc welding is stored in the controller 12 and transferred to the state quantity storage section 13 2 of the diagnostic computer 13 after welding is completed. Is stored.
  • the diagnosis computer 13 sends the welding state quantity stored in the state quantity storage section 13 2 to the data transmission section 1. 5 to the analysis computer 23 via the commercial communication line 32 (3 in the figure).
  • the welding state quantity to be transferred may have a configuration in which a welding voltage, a welding current, a welding speed, and the like can be selected as necessary.
  • the user's 1 worker's satisfaction and opinions on the welding results of the work are also input to the diagnostic combo 13 and transferred to the analysis computer 23, so that the user 1's It becomes possible to approach the work that the worker is satisfied with in a shorter time.
  • the simulator 2 3 1 of the analysis computer 2 3 uses the welding conditions created by the command generator 2 3 2 and the transferred welding state quantity to reproduce the arc welding by the remote port 11.
  • the control parameter adjustment unit of the analysis computer 23 compares the result of the simulation (the welding state quantity) from the welding conditions with the transferred welding state quantity to determine the optimum value. Automatically determines whether penetration or joining has been performed. Refuse. Further, the determination may be made by an operator of the manufacturer 2 operating the analysis computer 23.
  • the welding conditions welding speed, welding torch angle, feed speed of the welding wire feed motor, etc.
  • the welding conditions may be adjusted so that the user side 1 has the desired specifications (penetration and joining state). If the same work as the work on the side 1 is on the maker's side 2, actual welding can be performed to measure the joint strength and check the penetration shape of the cross section.
  • the analysis computer 23 transmits the welding conditions from the data transmission unit 25 to the diagnosis computer 13 via the commercial communication line (see FIG. 5).
  • the diagnostic computer 13 completes the adjustment of the welding conditions by sending the welding conditions received in the data reception to the controller 12 and storing them.
  • the robot 11 again performs the arc welding based on the welding conditions, and leaves the judgment to the operator on the user side 1, so that the welding conditions can be adjusted more reliably. It is also possible to confirm whether the state of the arc welding after adjusting the welding conditions is at a level that can be satisfied by the user 1.
  • the control parameter adjustment unit of the analysis computer 23 adjusts the welding conditions so as to approach the optimal result of the simulation.
  • the adjusted welding conditions are transmitted from the data transmission unit 25 to the diagnostic computer 13 via the commercial communication line.
  • the diagnostic computer 13 sends the welding conditions received in the overnight reception to the controller 12 for storage, and executes the arc welding again.
  • the welding state quantity of the arc welding at this time is transmitted to the analysis computer 23 as in the previous adjustment, and the welding state quantity is compared with the result of the simulation again in the simulation part of the analysis computer 23. The above process is repeated until the control parameter adjustment section determines that the welding conditions are optimal.
  • the function of each block is explained assuming failure diagnosis prediction during playback operation.
  • the analysis computers 2 and 3 are configured by a data transmission unit 25, a data reception unit 24, a simulator unit 231, and an operation command and a state quantity of the robot 11. It is composed of a failure diagnosis and prediction unit 234 for judging and estimating whether or not the operation is abnormal.
  • the operation command created by the worker on the user side 1 and the control state quantity of the robot 11 are stored in the state quantity storage unit 132 at a specific sampling cycle.
  • the data is transmitted from the data transmission unit 15 of the diagnosis computer 13 to the analysis computer 23.
  • the failure diagnosis prediction unit 2 3 4 of the analysis computer 23 compares the operation waveform of the simulation based on the operation command with the control state amount of the robot 11 and, when there is a deviation equal to or more than a specific threshold value, It judges that the operation or setting of the robot 11 is abnormal, and sends a request for emergency stop or control parameter adjustment to the controller 12 via the diagnostic computer 13.
  • the amount of state that changes over time such as wear of the reducer, can be determined by storing the past control state amount and extracting the fluctuation amount. Becomes possible.
  • the analysis computer 23 includes an instruction generation unit 232 that creates an operation instruction for the robot 11 and an operation instruction to the diagnostic computer 13.
  • a data transmitting unit 25 that receives the state quantity of the robot 11 by an operation command from the diagnostic computer 13, and a control parameter of the remote robot 11. It is composed of a control parameter adjustment unit 23 that adjusts the evening, and a data storage unit 235 that selectively stores data transmitted by the data transmission unit 25 and data received by the data reception unit 24. I have.
  • the command generator 2 32 generates an operation command of a specific operation pattern when adjusting the servo gain, and when adjusting an application-specific condition parameter such as arc welding, for example. Generate welding conditions and operation commands.
  • the data stored in the data storage unit 235 of the analysis computer 23 may be read in advance and used as an operation command.
  • control parameter adjusting unit 2 3 3 compares the position command value of the mouth pot 11 with the position feedback value in the control state amount of the robot 11 sent from the diagnostic computer 13. Then, adjust the control parameter (support gain) so that the difference becomes smaller. Furthermore, as described in claim 8, the command generation unit 23 of the analysis computer 23 has a remote operation function, and can operate the control target itself used in a remote place. .
  • the data transmission unit 15 of the diagnostic computer 13 periodically transmits the state quantity of the control target to the analysis computer 23, and the controller state disconnection unit.
  • the state quantity of the control target can also be transmitted when 13 1 is determined to be abnormal or when a transmission request is met.
  • the diagnostic computer 13 connected to the controller 1 2 of the robot 11 used by the user 1 1 stores the state quantity of the robot 11 by the determined amount constantly in the robot 11 service cycle. Repeat the storing in parts 1 3 2. Diagnostic computer 13 automatically and regularly transmits the latest state quantity stored at a predetermined date and time (once a day or once a week) to the analysis computer 23 and the information that the communication is normal. (1 in Fig. 6).
  • the analyzing computer 23 determines that the data is normal and regular data from the diagnostic computer 13 and records the state quantity, and further calculates position deviation, velocity deviation, and the like.
  • the analysis computer 23 determines that the position deviation and the speed deviation are normal when the position deviation and speed deviation are within the set range, and warns the manufacturer that there is a possibility that an abnormality may occur if the position deviation or speed deviation exceeds the set range.
  • the details of the inspection request are also displayed on the diagnostic computer 13.
  • the diagnostic computer connected to the controller of the robot used by the user side is connected to the controller of the robot, and the state quantity of the robot is constantly determined by the servo cycle of the robot.
  • the storage in the state quantity storage unit 1 3 2 is repeated.
  • the controller state determination unit 13 1 of the diagnostic computer 13 determines an abnormal state, it transmits to the analysis computer 23 that an abnormality has occurred prior to regular transmission ((in the figure).
  • the analysis computer 23 receives the data and judges that the data is abnormal data from the diagnosis computer 13 and stores the state quantity, and further calculates the position deviation and the speed deviation.
  • the person in charge of the maker 2 investigates and solves the problem with reference to the past data that stored the cause of the abnormality in the analysis computer 23, and notifies the person in charge of the maker 2 through the computer 23 for analysis.
  • a warning is also sent to the diagnostic computer 13 ((2) in the figure) to display the cause of the abnormality or the content of the inspection request.
  • the diagnostic computer 13 (2) in the figure
  • the analysis computer 23 notifies the user 1 via the diagnostic computer 13 to the user 1 of the need for repair and the details of the repair. Ask the intention of 1.
  • the person in charge of the maker 2 goes out to repair the control target of the user 1 and performs repair.
  • the user 1 confirms the displayed contents, and when making adjustments, uses the diagnostic computer 13 to make an adjustment request to the analysis computer 23 (3 in the figure).
  • the person in charge of the maker 2 who has confirmed the adjustment request generates an adjustment command, sends an operation command to the diagnostic computer 13 (3 in the figure), and operates the mouth pot 11.
  • the worker on the maker side 2 checks the environment around the robot 11 with the camera on the user side 1, and determines in advance whether to automatically generate the operation command or generate the operation command by remote control.
  • the control state quantity of the robot 11 during this operation is transferred from the controller 12 to the diagnostic convenience store 13 at a specific sampling cycle, and is stored in the state quantity storage unit 132.
  • all the control state quantities during operation are stored in the controller 12 and are transferred to the diagnostic computer 13 collectively after the end of the operation according to the operation command, and are stored in the state quantity storage section 13 2 A configuration in which the information is stored may be used.
  • the diagnostic computer 13 Upon completion of the operation of the mouth pot 11 or in response to a command from the analysis computer 23, the diagnostic computer 13 stores the control state quantity of the robot 11 stored in the state quantity storage unit 13 The data is transferred from the data transmission unit 15 to the analysis convenience store 23 via a commercial communication line such as a telephone line (5 in the figure).
  • control state quantity to be transferred may be configured so that only necessary information such as the position FB and the torque command can be selected and transferred in order to increase the communication speed by reducing the amount of information.
  • the analysis computer 23 compares the waveform of the control value with the feedback value from the control state of the robot 11 received by the data receiving unit 24 to determine whether the control parameters are optimal. Set automatically. Further, the setting may be made by an operator of the maker 2 operating the analysis computer 23.
  • control parameters set here are transmitted to the receiving unit 14 of the diagnostic computer 13. (6 in the figure).
  • the diagnostic computer 13 sends the received control parameters to the controller 12 for storage.
  • the robot 11 again performs the operation according to the operation command for the control parameter overnight adjustment so that the operator 1 can delegate the decision to the control parameter more reliably. It is also possible to confirm whether the operation of the robot 11 after the control parameter overnight adjustment is at a level that can be satisfied by the user 1.
  • control parameters are adjusted so as to approach the optimal operation waveform by repeating the transfer of the control state quantity and the setting of the control parameters in (5). I do.
  • the adjustment of the control parameters which was conventionally performed by the operator on the main side 2 going to the factory on the user side 1, can be used to adjust the control parameters for the analysis side 2 3 Can be done easily.
  • the control parameters are adjusted using the actual machine actually used by the user 1, it is possible to cope with the aging of the robot 11 1, and the maintenance and adjustment of the user 1 Can respond immediately.
  • the operation command for control parameter adjustment created by the analysis computer 23 interferes with the position restriction condition based on the position restriction condition set by the controller 12 by the user 1 at the remote location.
  • the operation of re-creating the operation command if it checks whether or not the operation command interferes with the position limit condition will be described.
  • the user 1 in a remote place needs to set conditions such as position restriction in the work area of the robot 11 to be controlled according to the work.
  • this is a position restriction when the end effector of the robot 11 enters a narrow part.
  • the control parameter adjustment is a servo gain
  • the end effector of the mouth pot 11 enters the narrow portion, and the peripheral device or work in the narrow portion
  • a condition for restricting the position in the rectangular coordinate system is used.
  • the user 1 at a remote location must use a rectangular coordinate system to store the position information of peripheral devices and workpieces in advance so that the end effector and arm of the robot 11 do not enter the locations of peripheral devices and workpieces in narrow spaces. Is registered in the condition setting section 1 2 1 of the controller 1 2 as the condition of the position restriction. The position restriction condition is transferred from the controller 12 to the diagnostic computer 13 (1 in the figure).
  • the controller state determination unit 13 1 of the diagnostic computer 13 determines that the gain can be adjusted based on the state of the robot 11 connected to the controller 12, the servo gain adjustable signal is output.
  • the data is transmitted from the data transmission unit 15 to the data reception unit 24 of the analysis computer 23.
  • the computer 23 for analysis receives the signal indicating that the servo gain can be adjusted, the gain adjustment operation command created by the command generator 23 for control parameter adjustment is sent to the data receiver 14 of the diagnostic computer 13. Send it (2 in the figure).
  • the condition matching unit 133 checks whether the operation command for servo gain adjustment does not interfere with the position restriction condition registered in advance. At this time, if the operation command for servo gain adjustment is an angle command for each joint, it is converted to a position in the working coordinate system by using an arithmetic expression such as forward conversion and collated with the position restriction condition. be able to.
  • the operation command for servo gain adjustment is transferred to the controller 12 (3 in the figure), and the operation for servo gain adjustment is performed.
  • the data transmission unit 15 transmits the operation command interference signal and the position restriction condition to the analysis computer 23 (4 in the figure).
  • the operation command is not transferred to Controller 12.
  • the command generation unit 2332 regenerates the operation signal for the servo gain adjustment which does not interfere with the condition of the position limit.
  • the re-created servo gain adjustment operation command is transmitted to the diagnostic computer 13 again (5 in the figure) and checked by the condition matching unit 13 3. If they do not collide, the recreated operation command is transferred to the controller 12 (6 in the figure), and the operation for servo gain adjustment is performed. In the case of interference, the user 1 sets the conditions further finely in the condition setting section 21 on the controller 12 and repeats the above (1) to (4) until an operation command that does not interfere is created.
  • the remote side user 1 registers the position restriction conditions registered in the condition setting section 12 1 of the controller 12 via the diagnostic computer 13 via the diagnostic computer 13 Send to 3 to create an operation command for control parameter overnight adjustment so as not to interfere with the condition of position restriction.
  • a description will be given by taking as an example the adjustment of the sapo gain.
  • the user 1 at a remote location should use the rectangular coordinate system to store the position information of peripheral devices and workpieces in a rectangular coordinate system so that the end-effector and arm of the robot 11 do not enter the locations of peripheral devices and workpieces in narrow spaces in advance. It is registered in the condition setting section 1 2 1 of the controller 1 2 as the restriction condition. The conditions of this rice limit are transferred from the controller 12 to the diagnostic computer 13 (1 in the figure).
  • the data is transmitted from the data transmitting unit 15 of the diagnostic computer 13 to the data receiving unit 24 of the analyzing computer 23 via the commercial communication line 32 (2 in the figure). Set to 32.
  • the command generation unit 23 of the analysis computer 23 sends an operation command for servo gain adjustment as a control parameter adjustment so as to satisfy the condition of position restriction on the rectangular coordinate system received from the diagnosis computer 13. create.
  • the operation command for servo gain adjustment is collated with the condition of the position limit by the condition collator 2 36.
  • the operation command for the servo gain adjustment is an angle command for each joint
  • the operation command is converted into a position in the working coordinate system by using an arithmetic expression such as a forward conversion and collated with the position restriction condition. be able to.
  • the data is sent from the data transmitting unit 25 to the data receiving unit 14 of the diagnostic computer 13 via the commercial communication line 32 (3 in the figure).
  • the operation command is transferred to the controller 12 ((1) in the figure), and the operation for adjusting the support gain is performed.
  • a control parameter storage unit 134 is provided in the diagnostic computer 13 of the user 1, and the control parameters (the support parameters) used for the previous application are stored here. And all application-specific condition parameters).
  • the robot is used as the control target and the current application (for example, welding application) of the robot is to be returned to the previous application (for example, handling application) by changing the factory line.
  • a control parameter change request is sent to the diagnostic computer 13 via the controller 12 (2 in the figure).
  • control parameter storage section 134 When a control parameter switching request is sent to the control parameter storage section 134 installed in the diagnostic computer 13 according to the eighth embodiment, the control parameter storage section 134 has registered Create data 3 ⁇ 4 for handling purposes from the data of the control parameters, or transfer the list data created and stored to controller 12 (2 in the figure).
  • control parameter selection information is transferred to the control parameter storage section 134 of the diagnostic computer 13 (3 in the figure).
  • control parameter selection information is sent to the control parameter storage section 134
  • the data of the control parameter selected from the data list for the handling application is transferred to the controller 12 ( ⁇ in the figure).
  • a simulator 13 5 is provided in the diagnostic computer 13 to control the control parameters used in the previous application (support parameters and application-specific condition parameters). Before using it for the controlled object, the simulator section 135 allows the operator to check the movement of the controlled object.
  • the current use for example, welding use
  • the previous use for example, handling use
  • the worker on the user side 1 sends a control parameter switching request to the diagnostic computer 13 via the controller 12 (1 in the figure).
  • control parameter storage section 13 4 When a control parameter switching request is sent to the control parameter storage section 13 4 installed in the diagnostic computer 13, the control parameter storage section 13 4 stores the control parameter data registered so far. Creates a data list for handling applications from, or transfers the list of data created and stored to controller 12 (2 in the figure).
  • the operator selects one piece of data corresponding to the desired eight-ring operation.
  • the simulator confirmation command is issued. Issued from La 12
  • the control parameter overnight selection information and the simulator confirmation instruction are transferred to the control parameter overnight storage section 134 of the diagnostic computer 13 (3 in the figure).
  • control parameter selection information and the simulation confirmation command are sent to the control parameter storage section 13 4, the control parameter data selected from the data list for handling applications is transferred to the simulator section 13 5 In the middle, a simulation is performed on the simulator using the same model as the currently used port 12. The operator determines from the simulation whether the selected control parameters are correct.
  • the confirmation OK signal is transferred from the simulator section 135 to the control parameter storage section 134 (5 in the figure), and data related to the handling application
  • the data of the control parameter selected from the list is transferred to the controller 13 1 ( ⁇ in the figure).
  • control parameters can be confirmed by simulation in advance, so that the control target based on the wrong control parameter is selected.
  • the runaway can prevent damage to workers and controlled objects.
  • a diagnostic computer 13 is connected to the controlled object, and the remote control diagnostic device is connected via a commercial line.
  • the analysis computer 23 on the side 2 and adjusting the control parameters of the control target from the analysis computer 23 the worker on the manufacturer 2 goes to the factory on the user 1 in the past. Can be easily adjusted from the analysis computer 23 of the maker 2.
  • the operator on the user side 1 adjusts the serpo gain when an environment such as mounting a load on the controlled object is established, so that a rough adjustment is made before shipment from the factory. It is possible to accurately and safely adjust the support gain that has been adjusted according to the load.
  • the remote adjustment diagnosis apparatus for a controlled object knows-how is obtained by adjusting the application-specific condition parameters at the time of changing the application network of the controlled object. Workers on the maker side 2 can set the conditions, greatly reducing time and maintaining and improving quality.
  • the remote control diagnosis apparatus for controlling objects according to claim 6 by using the same control object as that of the user 1 for adjustment, it is possible to cope with adjustments requiring a large measuring instrument, and to reduce the factory line. Time and effort can be greatly reduced without stopping.
  • the adjustment can be easily performed from the analysis computer 23 on the manufacturer side 2 using the controlled object on the user side 1, so that the aging of the controlled object can be performed. Adjustments can be made flexibly and with high precision even for changes.
  • the stored data Period can be guessed, and failures can be prevented. That is, it is possible to prevent a factory line from being stopped.
  • the command generation unit 23 of the analysis computer 23 has a remote operation function, and the user side who is using the analysis computer 23 in a remote place through the analysis computer 23.
  • the data transmitting unit 15 of the diagnostic computer 13 periodically transmits the state quantity of the controlled object to the analyzing computer 23, By transmitting the state quantity of the control target even when the controller status determination unit 13 1 determines that there is an abnormality or when the transmission request is met, the analysis computer can determine the control target used by the user 1 Monitoring can be performed periodically, and characteristics can be grasped by performing analysis using a statistical method for each control target.
  • the characteristics of each control target can be grasped by the manufacturer 2, so that it is possible to prevent the control target used by the user 1 from deteriorating and the performance from being deteriorated due to aging.
  • the time, effort and cost required can be significantly reduced.
  • the state quantity immediately before the occurrence of the abnormality is stored in the analysis computer 23, so that the manufacturer 2 can easily clarify the cause of the abnormality by analyzing the waveform of the state quantity. In other words, because the cause of the abnormality can be quickly clarified, failures and damages can be dealt with promptly, and time, labor and cost can be reduced as compared with the conventional case.
  • the remote adjustment diagnosis apparatus for a controlled object described in claim 10 during normal playback operation, the state quantity of the controlled object on the user side 1 is sequentially transmitted to the analysis computer 23 to make a failure estimation determination.
  • the state of the control target on the user side 1 can be monitored, and a failure can be prevented.
  • the control target in a rectangular coordinate system or a joint coordinate system set by the user 1 at a remote place by the condition setting unit 121 of the controller 12
  • the position restriction condition of the above and the operation command created by the command generation unit 23 of the analysis computer 23 are compared and collated by the condition collation unit 13 3 . If there is interference, the operation command interference signal and the user In order to re-create the operation command by returning the position restriction condition set by 1 to the analysis computer 23, it is prohibited to adjust the control parameters at the position where the user 1 has previously judged that it is dangerous. And safety can be further improved.
  • the remote control and diagnostic device for control objects described in claim 12 when the operation command for control parameter adjustment created by the command generation unit 23 of the analysis computer 23 is created, the user side 1 It is possible to check if there is any conflict with the position restriction conditions of the above, and if there is a conflict, it can be recreated.Therefore, the communication between the diagnostic computer 13 and the analysis computer 23 is reduced, and the The time required for overnight adjustment can be reduced. According to the remote adjustment and diagnosis apparatus for a controlled object according to claim 13, since the previously adjusted control parameters can be stored in the diagnosis convenience store, the control object can be changed by changing a factory line or the like. Even if it is returned to the above application, there is no need for readjustment using an analysis computer, and the time can be reduced.
  • control parameters stored in the storage unit for storing the control parameters in the evening are used for the actual control.
  • the safety can be improved because confirmation can be made beforehand in the simulator section.
  • the present invention is useful as a remote adjustment and diagnostic device for adjusting, maintaining, diagnosing, and the like of a control target such as a mouth pot, a thermopowder installed at a remote location, and an NC device.

Description

明 細 書
遠隔調整及び診断装置
[技術分野]
本発明は、 遠隔地に設置されたロボットやサ一ボモータ、 N C装置などの制御対象 の調整、 保守、 診断等を行う遠隔調整及び診断装置に関するものである。
[背景技術]
従来、 遠隔地にあるユーザの工場のロボット、 サーポモータ、 N C装置などのモー 夕を含む制御対象の保守や診断、 調整を行う場合には、 ユーザ側の作業者では十分に 対応できない場合がある。 例えば、 制御対象に異なる負荷が付けられる程度でも新た にサ一ボゲインの調整が必要となる場合があり、調整の仕方によっては制御対象が発 振してしまうために、調整のノゥハウを持っていないユーザ側の作業者では危険を伴 う場合があった。 このため、 現地にメーカ側の作業者やユーザの工場近くにあるメー 力側のサ一ビスセンタの作業者が出向く必要があり、時間と労力とコストがかかって いた。
また、 急に制御対象の調整が必要になった場合でも、 メ一力の作業者が遠隔地 行 くまでに時間を要するため、 時間のロスが発生していた。 更に、 メーカ側の作業者が 現地で保守や診断、 調整する場合でも、 制御対象が入っている工場のラインを止める 必要があるため、 生産性にも影響が出ていた。 同様に、 工場のライン上に大型の測定 器を持ち込むような場合でもラインを止める必要があったり、物理的に狭いライン上 では測定器の持ち込みさえ困難な場合があった。
このような問題に対して、例えば特開平 5— 3 5 7 5 1号公報に開示されている先 行技術では、 図 1 1に示すように、 メーカの所有する管理コンピュータとユーザの所 有する工作機械またはその端末器とを商用通信回線で接続することにより、対話形式 で工作機械の定期診断、 故障診断ならびに故障の修復を行う方式がある。
この先行技術では、工作機械のユーザ 9 1から工作機械 9 1 3 aの定期診断要求ま たは故障診断要求があつたときに、工作機械メーカ 9 2の所有する定期診断もしくは 故障診断用のプログラムを内蔵した管理コンピュータ 9 2 1から工作機械 9 1 3 a またはその端末器 9 1 1へ商用通信回線 9 3を介して定期診断もしくは故障診断用 のプログラムを送出する。
そして、 このプログラムを工作機械 9 1 3 aにおいて実行した結果生成された定期 診断もしくは故障診断に要する情報を、再度商用通信回線 9 3を介して管理コンピュ —夕 9 2 1にフィードバックする。管理コンピュータ 9 2 1がこの情報に基づく専用 解析プログラムを実行することにより工作機械 9 1 3 aの定期診断もしくは故障診 断プログラムを自動解析し、 この解析結果をユーザの所有する工作機械 9 1 3 aまた はその端末器へ商用通信回線 9 3を介して送出する。
また、ユーザ 9 1の所有する工作機械 9 1 3 aもしくはその端末器とメーカ 9 2の 所有する管理コンピュータ 9 2 1に定期診断および故障診断用プログラムのデイス プレイ装置 9 1 2, 9 2 2を設け、 このディスプレイ装置 9 1 2 , 9 2 2を介して対 話形式で定期診断、 故障診断および故障修復に要する情報を伝達する構成である。 また、 産業用ロポッ卜の動作波形診断手段する方式として、 特開平 7— 1 6 0 3 2 3号公報に開示されている先行技術では、 ロポッ卜の動作データの波形を記憶し基準 波形と比蛟し特徴量を抽出する方式が開示されている。 この先行技術では、 口ポット コントローラに、 ロボッ卜のコントローラと通信してロボット本体の動作データの履 歴を記憶するデータファイルと、基举波形と比較して取り込んだ動作データの波形の 特徴量を抽出する波形特徴抽出部と、 前記基準波形と前記特徴量とからモデル化され た標準データを作成する標準データ作成部と、前記標準データを前記動作データに合 わせて調整する標準デ一夕調整部と、調整された前記標準デー夕と前記動作デ一夕を 比較して予め設定された波形診断用コメントテーブルをルックアップしながら前記 動作デ一夕の波形診断を行う波形診断部とを有するワークステーションを接続する。 ところが、 特開平 5— 3 5 7 5 1号公報記載の発明は、 遠隔地にある制御対象であ る工作機械の定期診断もしくは故障診断が主であり、制御対象のサーポゲインゃアブ リケ一ション固有のパラメ一夕など遠隔地にある制御対象の制御パラメータを調整 することには対応していない。
また、 定期診断や故障診断を行う際や大型の測定器を持ち込む際にも、 工場のライ ンを止める必要があるなどの問題がある。
また、 対話形式でユーザ側の作業者が対応する必要があるため、 作業者が不在の場 合には対応できず時間のロスが発生し、制御対象がプレイバック運転中には一切の処 理を行うことができず、 定期診断や故障診断の自動化にも対応できていない。
さらに、 特開平 7— 1 6 0 3 2 3号公報記載の発明では、 ロボッ卜の動作データか ら基準波形と比較することで特徴量を抽出して波形診断用コメントテーブルをルツ クアップしているが、 動作デ一夕の抽出とその波形の自動判断だけであるため、 前記 先行技術と同搽に、その結果をロボットのゲイン調整やアプリケーション固有のパラ メータの調整に反映し、 動作確認できる構成になっていない。
また、 予め決まった動作でしか動作データの波形を取ることしかできないため、 ュ —ザ側の作業者が作成した作業プログラムによるプレイバック運転中の定期診断や 故障診断にも対応することができない。
[発明の開示]
そこで、 本発明は、 制御対象のサ一ポゲイン調整やアプリケーション固有の調整を 遠隔地にある解析用コンピュータから簡単に行え、ユーザからの調整の希望に時間の ロスなく対応でき、 大型の測定器が必要となるような調整も可能で、 工場のラインを 止める必要が無く、通常のプレイバック運転時には故障診断を行うことができる遠隔 調整及び診断装置を提供することを目的とする。
本発明では上記問題点を解決するため、請求項 1記載の制御対象の遠隔調整及び診 断装置は、 制御対象と前記制御対象を制御するコントローラを有する制御対象の遠隔 調整及び診断装置において、 コントローラに接続し制御対象の状態量を取得する診断 用コンピュータと、 制御対象と遠隔に設置され、 制御対象の制御パラメ一夕を調整す る手段を有する解析用コンビュ一夕と、前記コンピュータ間を接続する通信機能とを 有し、 通信機能によって、 前記状態量を解析用コンピュータに送信し、 前記状態量を 基に前記制御対象の制御パラメ一夕を求め、 前記制御パラメ一夕を前記診断用コンビ ユー夕経由で前記コントローラに送信して前記制御対象を制御する手段を有するこ とを特徴としている。
請求項 2記載の制御対象の遠隔調整及び診断装置は、 前記解析用コンピュータは制 御対象の制御パラメータ調整用の動作指令を作成する指令生成部と、 前記診断用コン ピュー夕に動作指令を送信するデータ送信部と、前記診断用コンピュータから制御対 象の状態量を受信するデータ受信部と、動作指令による制御対象の状態量から制御対 象のモデルを用いて動作及び状態を再現するシミュレータ部と、 前記シミュレータ部 の結果から制御パラメータを調整する制御パラメータ調整部とを有することを特徴 としている。
請求項 3記載の制御対象の遠隔調整及び診断装置は、前記診断用コンピュ一タは制 御対象の状態量を記憶する状態量記億部と、前記コントローラの状態を判断するコン トロ一ラ状態判断部と、 前記解析用コンピュータから送られた制御パラメ一夕調整用 の動作指令を受信するデータ受信部と、前記解析用コンピュー夕に制御対象の状態量 を送信するデ一夕送信部とを有することを特徴としている。
このように、 請求項 1〜 3記載の制御対象の遠隔調整及び診断装置によれば、 メー 力側の作業者がユーザ側の工場に出向いて行っていた調整をメーカ側の解析用コン ピュー夕から簡単に行うことができる。 また、 工場のラインを止めることもなく、 ュ 一ザ側の作業者の保守や調整の要求に応じて、 即対応することができる。
請求項 4記載の制御対象の遠隔調整及び診断装置は、 前記制御パラメ一夕がサ一ボ ゲインであることを特徴としている。
以上の構成の遠隔調整及び診断装置によれば、ユーザ側の作業者が制御対象に負荷 を取り付けるなどの環境が整った時点でサーボゲインの調整を行うことにより、予め 工場出荷時に大まかに合わせてあったサーポゲインを負荷に合わせて精度良く安全 に調整することができる。
請求項 5記載の制御対象の遠隔調整及び診断装置は、 前記制御パラメ一夕がアプリ ケーション固有の条件パラメ一夕であることを特徴としている。
請求項 5記載の制御対象の遠隔調整及び診断装置によれば、制御対象のアプリケ一 ションゃワークを変更した時点でアプリケ一ション固有の条件パラメ一夕の調整を 行うことにより、 ノウハウを持ったメーカ側の作業者が条件出しを行え、 大幅な時間 短縮や品質の維持向上を行うことができる。
請求項 6記載の制御対象の遠隔調整及び診断装置は、 前記解析用コンピュータのシ ミュレー夕部の代わりに、 遠隔地と同じ制御対象を使用することを特徴としている。 請求項 6記載の制御対象の遠隔調整及び診断装置によれば、ユーザ側と同一の制御 対象を調整に用いることにより、 大型の測定器が必要な調整にも対応でき、 工場のラ ィンを止めることなく時間と労力を大幅に削減することが可能になる。
請求項 7記載の制御対象の遠隔調整及び診断装置は、 前記解析用コンピュータが、 前記制御対象の動作指令を作成する指令生成部と、 前記診断用コンピュータに前記動 作指令を送信するデータ送信部と、 前記診断用コンピュータから制御対象の状態量を 受信するデータ受信部と、 前記デ一夕送信部によって送信するデ一夕と前記データ受 信部によって受信するデータを選択的に記憶するデータ記傖部と、前記制御対象の制 御パラメ一夕を調整する制御パラメ一夕調整部と、 を有することを特徵としている。 請求項 8記載の制御対象の遠隔調整及び診断装置は、 前記解析用コンピュータの指 令生成部が遠隔操作機能を有し、遠隔地で使用している制御対象を操作することを特 徴としている。
請求項 1、 3、 7〜 8記載のモータを含む制御対象の遠隔調整及び診断装置によれ ば、 メーカ側の作業者がユーザ側の工場に出向いて行っていた調整をメーカ側の解析 用コンピュータから簡単に行うことができる。 また、 ユーザが使用している制御対象 自体を操作するため制御対象の経年変化に対しても高精度の調整が可能である。 請求項 9記載の制御対象の遠隔調整及び診断装置は、 前記診断用コンピュータのデ 一夕送信部が、 前記解析用コンピュータへ定期的に制御対象の状態量を送信するとと もに、 前記コントローラ状態判断部が異常と判断した場合や送信要求が合った場合に も制御対象の状態量を送信することを特徴としている。
請求項 9記載のモ一夕を含む制御対象の遠隔調整及び診断装置によれば、解析用コ ンピュー夕へ定期的に制御対象の状態量を自動送信するため、解析用コンピュータは ユーザが使用している制御対象を定期的に監視することができるとともに、異常事態 や送信要求時にも速やかに対応することができるため、 制御対象の異常原因解析から 問題解決までの時間と労力を著しく削減することができる。
請求項 1 0記載の制御対象の遠隔調整及び診断装置は、制御対象のプレイバック運 転時において、 動作指令と制御対象の状態量を前記診断用コンピュータから前記解析 用コンピュータに送信させて、制御対象の状態量から異常の有無を判断推定する故障 診断予知部を有することを特徴としている。
請求項 1 0記載の制御対象の遠隔調整及び診断装置によれば、通常のプレイバック 運転時にはユーザ側の制御対象の状態量を逐次、解析用コンピュータに送信させ故障 推定判断を行うことにより、 ユーザ側の制御対象の状態を監視でき、 故障を未然に防 ぐことができる。
請求項 1 1記載の制御対象の遠隔調整及び診断装置によれば、 制御パラメータ調整 を行う際に、 前記コント口一ラ上で直交座標系又は関節座標系における前記制御対象 の位置制限の条件を設定する条件設定部と、前記条件設定部で設定された位置制限の 条件を前記診断用コンピュータに転送し、前記診断用コンピュータ内で前記解析用コ ンピュー夕から受信した前記制御パラメ一夕調整用の動作指令が前記位置制限の条 件に干渉するかを照合する条件照合部を有し、干渉した場合に前記データ送信部から 前記解析用コンピュータに動作指令干渉信号と前記位置制限の条件を送信し、 前記解 析用コンピュータの前記指令生成部で前記動作指令干渉信号と前記位置制限の条件 により前記制御パラメ一夕調整用の動作信号を再作成することを特徴としている。 請求項 1 1記載の制御対象の遠隔調整及び診断装置によれば、遠隔地にいるユーザ が前記コントローラの条件設定部で設定した直交座標系又は関節座標系における前 記制御対象の位置制限の条件と、 前記解析用コンピュータの前記指令生成部で作成さ れた動作指令とを前記条件照合部で比較照合され、干渉した場合に動作指令干渉信号 とユーザが設定した前記位置制限の条件を前記解析用コンピュータに返信して前記 動作指令を再作成するため、 予めユーザが危険と判断している位置で制御パラメ一夕 の調整を行うことを禁止でき、 より安全上の向上が図ることができる。 請求項 1 2記載の制御対象の遠隔調整及び診断装置によれば、 前記条件照合部を前 記解析用コンピュータ内に持つことで、前記解析用コンピュータの前記指令生成部で 前記制御パラメータ調整用の動作指令作成する際に、前記条件設定部で設定された前 記位置制限の条件を前記解析用コンピュータに送信して、 前記解析用コンピュータの 前記指令生成部で作成された前記制御パラメータ調整用の動作指令が前記位置制限 の条件に前記条件照合部で干渉するかを照合し、干渉した場合に前記制御パラメータ 調整用の動作指令を再作成することを特徴としている。
請求項 1 2記載の制御対象の遠隔調整及び診断装置によれば、 前記解析用コンビュ ―夕の指令生成部で作成された制御パラメ一夕調整用の動作指令を作成する際に、 前 記ユーザの位置制限の条件と干渉するかをチェックして、干渉した場合に及び再作成 ができるので、 前記診断用コンピュータと前記解析用コンピュータ間のやり取りを少 なくして、 制御パラメ一夕の調整にかかる時間を短縮することができる。
請求項 1 3記載のモータを含む制御対象の遠隔調整及び診断装置は、請求項 1〜1 2のいずれか 1項記載の制御対象の遠隔調整及び診断装置において、前記診断用コン ピュータ内に、複数の制御パラメ一夕を記憶することのできる制御パラメ一夕記憶部 を有することを特徴としている。
請求項 1 3記載のモータを含む制御対象の遠隔調整及び診断装置によれば、 前記診 断用コンピュータ内に以前に調整した制御パラメータを記憶できるため、 工場のライ ンの変更などにより制御対象を元の用途に戻した場合でも解析用コンピュータを用 いた再調整の必要がなく、 時間の短縮を図ることができる。
請求項 1 4記載のモータを含む制御対象の遠隔調整及び診断装置は、請求項 1 3記 載の制御対象の遠隔調整及び診断装置において、 前記診断用コンピュータ内に、 動作 指令による制御対象の状態量から制御対象のモデルを用いて動作及び状態を再現す るシミュレータ部を有することを特徴としている。
請求項 1 4記載のモータを含む制御対象の遠隔調整及び診断装置によれば、 前記診 断用コンビュ一夕の前記制御パラメ一夕記憶部に記憶した以前の制御パラメータを、 実際に制御対象に使用する前にシミュレータ部で確 V認を取ることができるため、安 全性が向上する
[図面の簡単な説明]
図 1は、 本発明の第 1の実施の形態を示す図であり、 図 2は本発明の第 2の実施の 形態を示す図であり、 図 3は、 本発明の第 2の実施の形態の変形例を示す図であり、 図 4は、 本発明の第 3の実施の形態を示す図であり、 図 5は、 本発明の第 4の実施の 形態を示す図であり、 図 6は、 本発明の第 5の実施の形態を示す図であり、 図 7は、 本発明の第 6の実施の形態を示す図であり、 図 8は、 本発明の第 7の実施の形態を示 す図であり、 図 9は、 本発明の第 8の実施の形態を示す図であり、 図 1 0は、 本発明 の第 9の実施の形態を示す図であり、 図 1 1は、 従来の制御装置を示す図である。
[発明を実施するための最良の形態]
以下、 本発明の第 1の実施の形態を、 制御対象を口ポットとして図 1に示して説 明する。 第 1の実施の形態は、 請求項 1に記載するように、 ユーザ側 1の工場のライ ンに設置されたロボット 1 1とそのロボット 1 1を制御するコントローラ 1 2から なるロポット装置において、 コントローラ 1 2に接続しロポット 1 1の制御状態量を 取得する診断用コンピュータ 1 3と、 ロボット 1 1が設置されたユーザ側 1の工場と は遠く離れたメーカ側 2のサービスセンタ内 (以下、 「メーカ側」 と言う。) に設置さ れた解析用コンピュータ 2 3と、 両コンピュータ 1 3 , 2 3間を接続する電話回線や インターネッ卜のような商用通信回線や L A Nなどの専用回線、 あるいは無線通信な どの通信機能 3 1から構成されている。 第 1の実施の形態によれば、 このように既存 の通信システムを使用することで新たな設備投資を必要としない。
ここで、 診断用コンピュータ 1 3とコントローラ 1 2の間は、 ケ一ブルまたはバス 接続または無線形式などで接続する方法がある。診断用コンピュータ 1 3はパ一ソナ ルコンピュータや、 コントローラ 1 2に内蔵される形式のも であっても良く、 コン トローラ 1 2に診断用コンピュータ 1 3の状態量記憶とデータの送受信の機能を持 たせるようにすることで、 診断用コンピュータ 1 3の設置スペースを省略しても良い。 一方、 請求項 2に記載するように、 解析用コンピュータ 2 3はロポット 1 1の制御 パラメ一夕調整用の動作指令を作成する指令生成部 2 3 2と、診断用コンピュータ 1 3に動作指令を送信するデータ送信部 2 5と、診断用コンピュータ 1 3から動作指令 によるロポット 1 1の状態量を受信するデータ受信部 2 4と、 ロボット 1 1のモデル を用いてロボット 1 1の状態量から動作及び状態を再現するシミュレータ部 2 3 1 と、 シミュレータ部 2 3 1の結果から制御パラメータを調整する制御パラメ一夕調整 部 2 3 3から構成されている。
ここで、 指令生成部 2 3 2は、 サーポゲインの調整を行う場合には特定の動作パ夕 ーンの動作指令を生成し、例えばアーク溶接などアプリケーション固有の条件パラメ —夕の調整を行う場合には溶接条件及び動作指令を生成する。 または、 解析用コンビ ユー夕 2 3のメモリに予め記憶されていたデータを読み出して、 動作指令としても良 い。
シミュレータ部 2 3 1は遠隔地にあるロポッ卜についてのモデル(各リンクの長さ や重量や剛性、 モータや減速器や溶接機の型式等) を予め入力済みで、 実機と同一の 動作指令を入力することで、 シミュレータ部 2 3 1で実機と同一若しくは近似的な制 御状態量を作成することが可能である。
制御パラメ一夕調整部 2 3 3は、 シミュレータ部 2 3 1で得られた制御状態量と診 断用コンピュータ 1 3から送られてきたロポット 1 1の制御状態量を比較して、 差が 小さくなるように制御パラメ一夕 (サ一ポゲイン) を調整する。 例えば、 シミュレ一 夕部 2 3 1のモデルの位置偏差に比べて実際のロポット 1 1の位置偏差が大きい場 合には、 位置ゲインを大きくする。
更に、 請求項 3に記載するように、 診断用コンピュータ 1 3は制御対象の状態量を 記憶する状態量記憶部 1 3 2と、 制御対象のコントローラが保守や調整に対応可能な 状態であるかを判断するコントローラ状態判断部 1 3 1と、解析用コンピュータ 2 3 から送られた動作指令を受信するデータ受信部 1 4と、解析用コンピュータ 2 3に制 御対象の状態量を送信するデータ送信部 1 5から構成されている。
また、 診断用コンピュータ 1 3は、 解析用コンピュータ 2 3から送られてきた制御 パラメ一夕をコントローラ 1 2に記憶させ、解析用コンピュータ 2 3の指令に応じて コン.トローラ 1 2が制御パラメータ調整可能な状態であるかを判断する機能も併せ 持つ。
以下では、 制御パラメータの基本的な調整方法について、 各ブロックの働きを説明 する。
( 1 ) 調整準備の判断
メーカ側 2にいる作業者は、 解析用コンピュータ 2 3の指令生成部 2 3 2で、 遠隔 地にある診断用コンピュータ 1 3に対してロボット 1 1の制御パラメータの調整が 行えるかの状態判断指令を生成する。 この状態判断指令をデータ送信部 2 5から電話 回線などの商用通信回線 3 1を介して、診断用コンピュータ 1 3のデータ受信部 1 4 に送信される (図中の①)。
診断用コンビュ一タ 1 3のコントローラ状態判断部 1 3 1において、 コントローラ 1 2に接続されたロボット 1 1の状態から制御パラメ一夕の調整が行えると判断し た場合は、 調整可能の信号をデータ送信部 1 5から解析用コンピュータ 2 3のデータ 受信部 2 4へ送信する。 解析用コンピュータ 2 3は、 この信号を受けると動作指令を 診断用コンピュータ 1 3のデータ受信部 1 4に送信する (図中の②)。
非常停止中やプレイバック運転中などで調整が行えない場合は、診断用コンビユー 夕 1 3のコントローラ状態判断部 1 3 1はユーザ側 1の作業者に制御パラメータの 調整を行えるように指示を出す等の処理を行う。
( 2 ) 動作の実行及び制御状態量の記憶
診断用コンピュータ 1 3は送られてきた動作指令②と初期状態の制御パラメ一夕 をコントローラ 1 2に送り記憶させ、 コントローラ 1 2側の準備が出来次第、 ロボッ 卜 1 1に動作指令による動作を行わせる。 この動作中のロボッ卜 1 1の制御状態量 (例えば、 位置 F Bや速度 F B、 トルク指令など) は、 コントローラ 1 2から診断用 コンピュータ 1 3に特定のサンプリング周期で転送され、 状態量記憶部 1 3 2に記憶 される。 若しくは、 動作中の制御状態量はコントローラ 1 2内に全て記憶され、 動作 指令による動作終了後に一括して診断用コンピュータ 1 3に転送され状態量記億部 1 3 2に記憶される構成でも良い。
( 3 ) 制御状態量の転送
ロポット 1 1の動作終了時または解析用コンピュータ 2 3からの指令に応じて、診 断用コンピュータ 1 3は状態量記憶部 1 3 2に記憶しているロボット 1 1の制御状 態量を、 デ一夕送信部 1 5から電話回線などの商用通信回線 3 1を介して解析用コン ピュー夕 2 3へ転送する (図中の③)。 ここで、 転送する制御状態量は、 情報量を減 少させて通信速度を上げるために、位置 F Bやトルク指令などの必要な情報だけを選 択し転送できる構成でも良い。
( 4 ) 制御パラメータの調整
解析用コンピュータ 2 3のシミュレータ部 2 3 1は指令生成部 2 3 2で作成した 動作指令とデータ受信部 2 4で受信したロボッ卜 1 1の制御状態量と遠隔地のロボ ット 1 1と同一のモデルを用いて、 遠隔地のロボット 1 1の動作を再現させる。 ここ で、解析用コンピュータ 2 3の制御パラメータ調整部 2 3 3は動作指令とモデルから シミュレーションした動作波形と、 実機から取得した制御状態量の動作波形を比較す ることで、 制御パラメータが最適であるかどうかを自動的に判断する。 また、 この判 断は解析用コンピュータ 2 3を操作しているメーカ側 2の作業者が行う構成であつ ても良い。
( 5 ) 動作確認
制御パラメ一夕が最適であると判断された場合には、解析用コンピュータ 2 3はデ —夕送信部 2 5から電話回線などの商用通信回線 3 1を介して、 この制御パラメ一夕 を診断用コンピュータ 1 3のデータ受信部 1 4に送信する (図中の④)。 診断用コン ピュー夕 1 3は送られてきた制御パラメ一夕をコントローラに送り記憶させること で、 制御パラメ一夕調整を完了する。 ここで、 確認のために再度、 ロボット 1 1に制 御パラメ一夕調整用の動作指令による動作を行わせて、ユーザ側 1の作業者に判断を 委ねるようにすることで、 より確実に制御パラメ一夕の調整を行うことができ、 制御 パラメ一夕調整後のロボッ卜 1 1の動作がユーザの満足できるレベルにあるかを確 認することもできる。
( 6 ) 再調整
制御パラメータが最適でないと判断された場合には、解析用コンピュータ 2 3の制 御パラメ一夕調整部 2 3 3はシミュレーションの最適な動作波形に近づくように制 御パラメータを自己調整する。調整後の制御パラメ一タはデ一夕送信部 2 5から商用 通信回線 3 1を介して診断用コンピュータ 1 3'に送信される。診断用コンピュータ 1 3はデータ受信部 1 4で受信した制御パラメ一夕をコントローラに送り記憶させ、 口 ボット 1 1を動作させる。 この時のロポット 1 1の制御状態量は前回の調整時と同様 に解析用コンピュータ 2 3に送信され、解析用コンピュータ 2 3のシミュレータ部 2 3 1で再びシミュレーションした動作波形と、 制御状態量の動作波形を比較し、 制御 パラメ一夕調整部 2 3 3が最適な動作波形と判断するまで上記処理を繰り返す。 このようなシステムを構成することにより、従来はメーカ側 2の作業者がユーザ側 1の工場に出向いて行っていた制御パラメ一夕の調整をメ一力側 2の解析用コンビ ユー夕 2 3から簡単に行うことができる。 また、 工場のラインを止めることもなく、 ユーザ側 1の作業者の保守や調整の要求に応じて、 即対応することができる。
次に、 本発明の第 2の実施の形態を図 2に基づいて説明する。
ここでは、 請求項 4に記載するように、 口ポット 1 2のサ一ボゲイン調整を行うこ とを想定して各ブロックの働きを説明する。
( 1 ) 調整準備の判断
メーカ側 2にいる作業者は、 解析用コンピュータ 2 3の指令生成部 2 3 2で、 遠隔 地にある診断用コンビュ一夕 1 3に対してロボット 1 1のサーポゲイン調整が行え るかの状態判断指令を生成する。 この状態判断指令をデータ送信部 2 5から電話回線 などの商用通信回線 3 2を介して、診断用コンピュータのデ一夕受信部に送信される (図中の①)。
診断用コンピュータ 1 3のコント口一ラ状態判断部 1 3 1において、 コントローラ 1 2に接続されたロボット 1 1の状態からゲイン調整が行えると判断した場合は、サ —ポゲイン調整可能の信号をデータ送信部 1 5から解析用コンピュータ 2 3のデー 夕受信部 2 4へ送信する。 解析用コンピュータ 2 3は、 この信号を受けるとゲイン調 整用動作指令を診断用コンピュータ 1 3のデータ受信部 1 4に送信する (図中の②) 非常停止中やプレイバック運転中などでゲイン調整が行えない場合は、診断用コン ピュー夕 1 3のコントローラ状態判断部 1 3 1はユーザ側 1の作業者にサ一ポゲイ ン調整を行えるように指示を出す等の処理を行う。
( 2 ) ゲイン調整用動作の実行及び制御状態量の記憶
診断用コンピュータ 1 3は送られてきたゲイン調整用の動作指令と初期状態のサ —ポゲインをコントローラ 1 2に送り記憶させ、 コントローラ 1 2側の準備が出来次 第、 ロボット 1 1にゲイン調整用の動作指令による動作を行わせる。
この動作中の口ポット 1 1の制御状態量 (例えば、 位置 F Bや速度 F B、 トルク指 令など) は、 コントローラ 1 2から診断用コンピュータ 1 3に特定のサンプリング周 期で転送され、 状態量記憶部 1 3 2に記憶される。 若しくは、 動作中の制御状態量は コントローラ 1 2内に全て記憶され、動作指令による動作終了後に一括して診断用コ ンピュー夕 1 3に転送され状態量記憶部 1 3 2に記憶される構成でも良い。
( 3 ) 制御状態量の転送
ロボット 1 1の動作終了時または解析用コンピュータ 2 3からの命令に応じて、診 断用コンピュータ 1 3は状態量記憶部 1 3 2に記憶しているロポッ卜 1 1の制御状 態量を、 デ一夕送信部 1 5から電話回線などの商用通信回線 3 2を介して解析用コン ピュー夕 2 3へ転送する (図中の③)。 ここで、 転送する制御状態量は、 情報量を減 少させて通信速度を上げるために、位置 F Bやトルク指令などの必要な情報だけを選 択し転送できる構成でも良い。
( 4 ) ゲイン調整
解析用コンピュータ 2 3のシミュレータ部 2 3 1は指令生成部 2 3 2で作成した 動作指令とデータ受信部 2 4で受信したロポット 1 1の制御状態量と遠隔地のロボ ット 1 1と同一のモデルを用いて、 遠隔地のロボット 1 1の動作を再現させる。 ここ で、解析用コンピュータ 2 3の制御パラメ一タ調整部 2 3 3は動作指令とモデルから シミュレーションした動作波形と、実機から取得した制御状態量の動作波形を比較す ることで、 サーポゲインが最適であるかどうかを自動的に判断する。 また、 この判断 は解析用コンピュータ 2 3を操作しているメーカ側 2の作業者が行う構成であって も良い。
( 5 ) 動作確認
サーボゲインが最適であると判断された場合には、解析用コンピュータ 2 3はデ一 夕送信部 2 5から電話回線などの商用通信回線 3 2を介して、 このサーポゲインを診 断用コンピュータ 1 3のデータ受信部 1 4に送信する (図中の④)。 診断用コンビュ —タ 1 3は送られてきたサーボゲインをコントローラ 1 2に送り記憶させることで、 サーポゲイン調整を完了する。 ここで、 確認のために再度、 · 口ポット 1 1にゲイン調 整用の動作指令による動作を行わせて、 ユーザ側 1の作業者に判断を委ねるようにす ることで、 より確実にサーポゲインの調整を行うことができ、 ゲイン調整後のロボッ 卜の動作がユーザの満足できるレベルにあるかを確認することもできる。
( 6 ) 再調整
サーボゲインが最適でないと判断された場合には、解析用コンピュータ 2 3の制御 パラメータ調整部 2 3 3はシミュレーションの最適な動作波形に近づくようにサ一 ボゲインを自己調整する。調整後のサーポゲインはデータ送信部 2 5から商用通信回 線 3 2を介して診断用コンピュータ 1 3に送信される。診断用コンピュータ 1 3はデ —夕受信部 1 4で受信したサ一ポゲインをコントローラ 1 2に送り記憶させ、 ロボッ 卜 1 1を動作させる。 この時のロポット 1 1の制御状態量は前回の調整時と同様に解 析用コンピュータ 2 3に送信され、解析用コンピュータ 2 3のシミュレータ部 2 3 1 で再びシミュレーションした動作波形と、 制御状態量の動作波形を比較し、 制御パラ メータ調整部 2 3 3が最適な動作波形と判断するまで上記処理を繰り返す。
図 3は、 図 1および図 2の解析用コンピュータ 2 3のシミュレータ部 2 3 1の代わ りに、遠隔地にあるロボット 1 1と同一の実機 2 1を使用して動作を再現する場合を 示している。 このように、 シミュレータ部 2 3 1の代わりに遠隔地にある口ポットと 同一の実機を用いることで、予めある程度の制御パラメ一夕を事前に調整しておくこ とができ、 時間短縮を図ることができる。
更に、 シミュレーションでは現れない異音や振動などをユーザ側 1の作業者よりも 先にメーカ側 2の作業者が認識することが可能になるため、安全性についてもシミュ レ一夕部 2 3 1より効果がある。 大型の測定器を必要とする調整や保守の場合でも、 測定器をユーザ側の工場に運搬する必要が無く、 メーカ側の工場内で調整を行うこと が可能である。
また、 ここでは図示しないが、 シミュレーションと実機のロボットを併用する構成 であっても良い。 これは、 ュ一ザ側 1のロボッ卜 1 1で動作させた制御状態量からシ ミュレ一夕部 2 3 1でサ一ポゲインの調整を行い、得られたサ一ポゲインを用いてメ 一力側 2にある実機 2 1で動作確認してからユーザ側 1にサ一ポゲインを送るよう にすれば、 より安全性が高くなる。
プレイバック運転中などに調整を行う場合には、解析用コンピュータ 2 3の指令生 成部 2 3 2から動作指令を送信せずに、 コントローラ 1 2内にある実際の作業の動作 指令での制御状態量を取得する。診断用コンピュータ 1 3は制御状態量が取得できた 時点で、 実際の作業での動作指令と制御状態量を解析用コンピュータ 2 3に送信し、 後は前述のように解析用コンピュータ 2 3内で制御パラメータの最適化を行う。 この ように実際の動作指令を使用して制御状態量を取得することで、工場のラインを止め ることなく、 制御パラメ一夕の調整を行うことができる。
次に、 本発明の第 3の実施の形態を図 4に基づいて説明する。
ここでは、 請求項 5に記載するように、 アプリケーション固有の条件パラメ一夕の 調整として、 ロボットによるアーク溶接の溶接条件の調整を行うことを想定し、 各ブ ロックの働きを説明する。 ここで、 溶接条件の条件パラメータとしては、 溶接速度、 溶接トーチ角度、 溶接ワイヤ送給モータの送給速度などである。
( 1 ) ワークデータの取得
アーク溶接の条件はワーク形状や材質によって大きく異なるため、 事前にある程度 の条件を絞り込む必要がある。 そのため、 ユーザ側 1の作業者はアーク溶接を実施す るワークの形状や材質等をコントローラ 1 2若しくは診断用コンピュータ 1 3に登 録する。 登録されたワークの形状や材質等のデータは、 デ一夕送信部 1 5から商用通 信回線 3 2を介してメーカ側 2の解析用コンピュータ 2 3の指令生成部 2 3 2に送 信される (図中の①)。
( 2 ) 調整準備の判断
メーカ側 2にいる作業者は、遠隔地にあるロポット 1 1による調整が行えるかを調 ベる必要がある。 そこで作業者は、 解析用コンピュータ 2 3の指令生成部 2 3 2で、 遠隔地にある診断用コンピュータ 1 3に対してロポット 1 1によるアーク溶接の溶 接条件の調整が行えるかの状態判断指令を生成する。 この状態判断指令をデータ送信 部 2 5から商用通信回線 3 2を介して、診断用コンピュータ 1 3のデータ受信部 1 4 に送信される (図中の②〉。
診断用コンピュータ 1 3は、接続されたロボット 1 1の状態から溶接条件の調整が 行えると判断した場合は、溶接条件の調整可能の信号をデータ送信部 1 5から解析用 コンピュータ 2 3へ送信する。 この信号を受けると、 解析用コンピュータ 2 3は溶接 条件の初期値を診断用コンピュータ 1 3に送信する (図中の③)。
プレイバック運転中や非常停止中などで溶接条件の調整が行えない場合は、診断用 コンピュータ 1 3はユーザ側 1の作業者に溶接条件の調整を行えるように指示を出 す等の処理を行う。
( 3 ) アーク溶接の実行及び溶接状態量の記憶
診断用コンピュータ 1 3はデ一夕受信部 1 4で受信した溶接条件の初期値をコン トローラ 1 2に送り記憶させる。 コントローラ 1 2側の準備が出来次第、 ロボット 1 1に溶接条件の初期値とユーザ側 1の作業者が作成したプログラムによるアーク溶 接を行わせる。 このアーク溶接中の溶接状態量 (例えば、 溶接速度の他の溶接電圧や 溶接電流など〉 は、 コントローラ 1 2から診断用コンピュータ 1 3に特定のサンプリ ング周期で転送し、 状態量記憶部 1 3 2に記憶される。 若しくは、 アーク溶接中の溶 接状態量はコントローラ 1 2内に全て記憶されて、溶接終了後に一括して診断用コン ピュー夕 1 3の状態量記憶部 1 3 2に転送され記憶される。
( 4 ) 溶接状態量の転送
口ポット 1 1の動作終了時または解析用コンピュータ 2 3からの命令に応じて、診 断用コンピュータ 1 3は状態量記憶部 1 3 2に記憶している溶接状態量を、データ送 信部 1 5から商用通信回線 3 2を介して解析用コンピュータ 2 3へ転送する (図中の ④)。 ここで、 転送する溶接状態量は、 情報量を減少させ通信速度を上げるために、 溶接電圧や溶接電流、 溶接速度などを必要に応じて選択できる構成でも良い。 また、 ワークの溶接結果に対するユーザ側 1の作業者の満足度や意見なども診断用コンビ ユー夕 1 3に入力させ解析用コンピュータ 2 3へ転送させる構成にすることで、 ュ一 ザ側 1の作業者の満足するワークに、 より短時間で近づけることが可能となる。
( 5 ) 溶接条件の調整
解析用コンピュータ 2 3のシミュレータ部 2 3 1は指令生成部 2 3 2で作成した 溶接条件と転送されてきた溶接状態量を用いて、遠隔地のロポッ卜 1 1によるアーク 溶接を再現する。 ここで、 解析用コンピュータ 2 3の制御パラメータ調整部は、 ヮ一 クのデ一夕と溶接条件からシミュレーションした結果 (溶接状態量) と転送されてき た溶接状態量を比較することで、最適な溶け込みや接合が行えているかを自動的に判 断する。 また、 この判断は解析用コンピュータ 2 3を操作しているメーカ側 2の作業 者が行う構成であっても良い。 ここで、 ユーザ側 1が希望する仕様 (溶け込みや接合 状態〉 になるように溶接条件 (溶接速度や溶接トーチ角度、 溶接ワイヤ送給モータの 送給速度など) 調整しても良い。 更に、 ユーザ側 1のワークと同一のワークがメーカ 側 2にある場合には、 実際にアーク溶接を行うことで、 接合強度を測定したり断面の 溶け込み形状を確認することができる。
( 6 ) 条件確認
溶接条件が最適であると判断された場合には、解析用コンピュータ 2 3はデータ送 信部 2 5から商用通信回線を介して、 この溶接条件を診断用コンピュータ 1 3に送信 する (図中の⑤)。 診断用コンピュータ 1 3はデータ受信で受信した溶接条件をコン トローラ 1 2に送り記憶させることで、 溶接条件の調整を完了する。 ここで、 確認の ために再度、 ロボット 1 1に溶接条件によるアーク溶接を行わせて、 ユーザ側 1の作 業者に判断を委ねるようにすることで、 より確実に溶接条件の調整を行うことができ、 溶接条件調整後のアーク溶接の状態がユーザ側 1の満足できるレベルにあるかを確 認することもできる。
( 7 ) 再調整
溶接条件が最適でないと判断された場合には、解析用コンピュータ 2 3の制御パラ メータ調整部はシミュレーションの最適な結果に近づくように溶接条件を自己調整 する。調整後の溶接条件はデータ送信部 2 5から商用通信回線を介して診断用コンビ ユータ 1 3に送信される。診断用コンピュータ 1 3はデ一夕受信で受信した溶接条件 をコントローラ 1 2に送り記憶させ、 アーク溶接を再度実行する。 この時のアーク溶 接の溶接状態量は前回の調整時と同様に解析用コンピュータ 2 3に送信され、解析用 コンピュータ 2 3のシミュレ一ション部で再びシミュレーションした結果と溶接状 態量を比較し、 制御パラメ一夕調整部が最適な溶接条件と判断するまで上記処理を繰 り返す。
次に、 本発明の第 4の実施の形態を図 5に基づいて説明する。
ここでは、 プレイバック運転時の故障診断予知を想定して、 各ブロックの働きを説 明する。 請求項 7に記載するように、 解析用コンピュータ 2 ,3はデ一夕送信部 2 5と データ受信部 2 4とシミュレータ部 2 3 1と、 ロポット 1 1の動作指令と状態量から ロポット 1 1の動作が異常であるかの有無を判断推定する故障診断予知部 2 3 4か ら構成されている。
ロポット 1 1のプレイバック運転時において、ユーザ側 1の作業者が作成した動作 指令とロボット 1 1の制御状態量を特定のサンプリング周期で状態量記億部 1 3 2 に記憶しておく。 動作終了時または解析用コンピュータ 2 3からの指令に応じて、 診 断用コンピュータ 1 3のデータ送信部 1 5から解析用コンピュータ 2 3に送信させ る。 解析用コンピュータ 2 3の故障診断予知部 2 3 4は、 動作指令によるシミュレ一 ションの動作波形とロボット 1 1の制御状態量を比較して、特定のしきい値以上の偏 差がある場合にロボット 1 1の動作または設定が異常であると判断し、非常停止や制 御パラメ一夕調整の要求を診断用コンピュータ 1 3経由でコント口一ラ 1 2に送信 する。 また、 プレイパック運転時の同一の動作であっても過去の制御状態量を記憶して変 動量を抽出することで、減速器の磨耗など時間的に変化していく状態量も判断するこ とが可能になる。
例えば、 実機の口ポット 1 1の減速器内に異物が侵入した場合を考えると、 定期的 にトルク指令の波形を記憶して逐次比較しておけば、実機のトルク指令にノイズが発 生していることで異物の侵入を検出することができる。
次に、 図 6に示し、 請求項 7に記載するように、 解析用コンピュータ 2 3はロボッ ト 1 1の動作指令を作成する指令生成部 2 3 2と、診断用コンピュータ 1 3に動作指 令を送信するデ一ダ送信部 2 5と、診断用コンピュータ 1 3から動作指令によるロボ ッ卜 1 1の状態量を受信するデータ受信部 1 4と、遠隔地にあるロボット 1 1の制御 パラメ一夕を調整する制御パラメータ調整部 2 3 3と、データ送信部 2 5によって送 信するデータとデータ受信部 2 4によって受信するデータを選択的に記憶するデー 夕記憶部 2 3 5から構成されている。
ここで、 指令生成部 2 3 2は、 サーポゲインの調整を行う場合には特定の動作パタ ーンの動作指令を生成し、例えばアーク溶接などアプリケーション固有の条件パラメ 一夕の調整を行う場合には溶接条件及び動作指令を生成する。 または、 予め解析用コ ンピュー夕 2 3のデータ記憶部 2 3 5に記憶されていたデ一夕を読み出して、 動作指 令としても良い。
制御パラメ一夕調整部 2 3 3は、 例えば、 診断用コンピュータ 1 3から送られてき たロボット 1 1の制御状態量の内、 口ポット 1 1の位置指令値と位置フィ一ドバック 値を比較して、 差が小さくなるように制御パラメータ (サ一ポゲイン) を調整する。 更に、 請求項 8に記載するように、 解析用コンピュータ 2 3の指令生成部 2 3 2は 遠隔操作機能を有し、遠隔地で使用している制御対象自体を操作することが可能であ る。
このように遠隔地にある口ポット 1 1が狭隘な環境に設置されている場合、 自動に 動作指令を生成した際にロボッ卜 1 1と周囲のワークなどが干渉する問題が生じる ことがある。 このように自動動作指令生成では対処できない場合に、 遠隔地に設置し たカメラでロポット 1 1の動作を見ながら手動で遠隔操作し、動作指令を生成するこ とで干渉の問題を回避することができる。
また、請求項 9に記載するように、診断用コンピュータ 1 3のデータ送信部 1 5は、 解析用コンピュータ 2 3へ定期的に制御対象の状態量を送信するとともに、 コント口 ーラ状態 断部 1 3 1が異常と判断した場合や送信要求が合った場合にも制御対象 の状態量を送信することができる。
次に、 本発明の第 5の実施の形態を図 6に基づいて説明する。
ここでは制御パラメ一夕の基本的な調整方法について、 各ブロックの働きを説明す る。
( 1 ) 経年変化による調整準備の判断
ユーザ側 1が使用しているロポット 1 1のコントローラ 1 2に接続した診断用コ ンピュー夕 1 3は、 ロボット 1 1のサーポ周期でロボット 1 1の状態量を絶えず決め られた容量だけ状態量記憶部 1 3 2で記憶することを繰り返す。診断用コンピュータ 1 3は予め決められた日時 (1日あるいは週に一度) に決められた容量だけ記憶した 最新の状態量と正常な通信であるという情報を解析用コンピュータ 2 3へ自動に定 期送信する (図 6中の①)。
データを受信した解析用コンピュータ 2 3は、診断用コンピュータ 1 3からの正常 な定期的なデータであることを判断して状態量を記億し、更に位置偏差や速度偏差な どを計算する。解析用コンピュータ 2 3は位置偏差や速度偏差が決められた設定範囲 の場合には正常であると判断し、 設定範囲を越えた場合には異常を生じる可能性があ るといった警告をメーカ側 2の担当者に通達する (図 5中の②) とともに、 診断用コ ンピュー夕 1 3にも点検要求内容を表示する。
( 2 ) 異常時の調整準備の判断
ュ一ザ側 1が使用しているロポット 1 1のコントローラ 1 2に接続した診断用コ ンピュ一夕 1 3は、 ロボット 1 1のサーボ周期でロポット 1 1の状態量を絶えず決め られた容量だけ状態量記憶部 1 3 2で記憶することを繰り返す。診断用コンピュータ 1 3のコントローラ状態判断部 1 3 1が異常状態を判断した場合、定期送信よりも優 先的に異常を生じたことを解析用コンピュータ 2 3に送信する (図中の①)。
このとき、異常を生じた時刻直前の最新データも同時に解析用コンピュータ 2 3へ 送信する。 デ一夕を受信した解析用コンピュータ 2 3は、 診断用コンピュータ 1 3か らの異常時のデータであることを判断して状態量を記憶し、更に位置偏差や速度偏差 などを計算する。
メーカ側 2の担当者は異常の原因を解析用コンピュータ 2 3に記憶した過去のデ —夕を参考に究明および問題解決を行い、解析用コンピュータ 2 3を通じてメーカ側 2の担当者へ通達するとともに、 診断用コンピュータ 1 3にも警告を送信し (図中の ②) 異常の原因あるいは点検要求内容を表示する。 このとき、 異常の原因が周囲の物 体と衝突したり、 安全装置が動作した場合などは、 その内容を提示し、 対策を終了す る。
また、 異常の原因が制御対象の故障や破損など物理的な対応を要する場合、 解析用 コンピュータ 2 3から診断用コンピュータ 1 3を通じてユーザ側 1へ修理の必要性 と修理内容を通知し、 ユーザ側 1の意向を伺う。 ユーザ側 1が修理を要請した場合、 メーカ側 2の担当者は、 ユーザ側 1の制御対象の修理に出向き修理を行う。
( 3 ) ゲイン調整動作の実行及び制御状態量の記憶
ユーザ側 1は、 表示された内容を確認し、 調整を行う場合は診断用コンピュータ 1 3を用いて解析用コンピュータ 2 3へ調整要求する (図中の③)。 調整要求を確認し たメーカ側 2の担当者は調整用の指令を生成し、診断用コンピュータ 1 3へ動作指令 を送信し (図中の④)、 口ポット 1 1を動作させる。 このときメーカ側 2の作業者は ユーザ側 1にあるカメラでロボット 1 1周囲の環境を確かめ、動作指令を自動に生成 するか遠隔操作で動作指令を生成するかを予め判断する。
この動作中のロボット 1 1の制御状態量は、 コントローラ 1 2から診断用コンビュ 一夕 1 3に特定のサンプリング周期で転送され、 状態量記憶部 1 3 2に記憶される。 若しくは、 動作中の制御状態量はコントローラ 1 2内に全て記憶され、 動作指令によ る動作終了後に一括して診断用コンピュータ 1 3に転送され、 状態量記億部 1 3 2に 記憶される構成でも良い。
( 4 ) 制御状態量の転送
口ポット 1 1の動作終了時または解析用コンピュータ 2 3からの命令に応じて、 診 断用コンピュータ 1 3は状態量記憶部 1 3 2に記憶しているロポット 1 1の制御状 態量を、 デ一夕送信部 1 5から電話回線などの商用通信回線を介して解析用コンビュ 一夕 2 3へ転送する (図中の⑤)。
ここで、 転送する制御状態量は、 情報量を減少させて通信速度を上げるために、 位 置 F Bやトルク指令などの必要な情報だけを選択し転送できる構成でも良い。
( 5 ) 制御パラメータの設定
解析用コンピュータ 2 3では、 デ一夕受信部 2 4で受信したロボット 1 1の制御状 態量から指令直とフィードバック値の波形を比較することで、制御パラメ一夕が最適 であるかどうかを自動的に設定する。 また、 この設定は解析用コンピュータ 2 3を操 作しているメーカ側 2の作業者が行う構成であっても良い。
ここで設定した制御パラメ一夕を診断用コンピュータ 1 3の受信部 1 4へ送信す る。 (図中の⑥)。
診断用コンピュータ 1 3は受信した制御パラメータをコントローラ 1 2へ送り記 憶させる。 ここで、 確認のため再度、 ロボット 1 1に制御パラメ一夕調整用の動作指 令による動作を行なわせて、 ユーザ側 1の作業者に判断を委ねるようにすることで、 より確実に制御パラメータの調整を行うことができ、制御パラメ一夕調整後のロポッ ト 1 1の動作がユーザ側 1の満足できるレベルにあるかを確認することもできる。
( 6 ) 再調整
制御パラメ一夕が最適でないと判断された場合には、 (4 ) 制御状態量の転送と ( 5 ) の制御パラメ一夕の設定を繰り返し、 最適な動作波形に近づくように制御パラ メータを調整する。
このようなシステムを構成することにより、従来はメ一力側 2の作業者がユーザ側 1の工場に出向いて行っていた制御パラメ一夕の調整をメーカ側 2の解析用コンビ ユー夕 2 3から簡単に行うことができる。 また、 ユーザ側 1が実際に使用している実 機を用いて制御パラメ一夕を調整するためロボット 1 1の経年変化にも対処でき、 ュ —ザ側 1の作業者の保守や調整の要求に応じて、 即対応することができる。
次に、 本発明の第 6の実施の形態を図 7に基づいて説明する。
ここでは、遠隔地にいるユーザ側 1がコントローラ 1 2で設定した位置制限の条件 を元に、解析用コンピュータ 2 3で作成された制御パラメータ調整用の動作指令が位 置制限の条件に干渉するかどうかをチェックし、動作指令が位置制限の条件に干渉す る場合には動作指令を再作成する働きを説明する。
請求項 1 1に記載するように、遠隔地にいるユーザ側 1は作業に応じて制御対象で あるロポット 1 1の作業エリア内で位置制限などの条件設定を行う必要がある。例え ば、 狭隘部にロボット 1 1のエンドエフェク夕が入り込む場合の位置制限である。 前述の第 2の実施の形態で述べたように、制御パラメ一夕の調整がサ一ボゲインで ある場合で、 狭隘部に口ポット 1 1のエンドェフエクタが入り込んで、 狭隘部にある 周辺機器やワークなどにロボッ卜 1 1が接触する危険性がある例を基に説明を行う。 ここでは、 直交座標系における位置制限を行う条件を用いる。
( 1 ) 条件登録
遠隔地にいるユーザ側 1は、 予め狭隘部にある周辺機器やワークなど位置にロポッ ト 1 1のエンドエフェク夕やアームが入り込まないように、周辺機器やワークなどの 位置情報を直交座標系での位置制限の条件としてコン卜ローラ 1 2の条件設定部 1 2 1に登録する。 この位置制限の条件はコントローラ 1 2から診断用コンピュータ 1 3に転送される (図中の①)。
次に、 診断用コンピュータ 1 3のコントローラ状態判断部 1 3 1において、 コント ローラ 1 2に接続されたロボット 1 1の状態からゲイン調整が行えると判断した場 合は、サーボゲイン調整可能の信号をデータ送信部 1 5から解析用コンピュータ 2 3 のデータ受信部 2 4へ送信する。 解析用コンピュータ 2 3は、 このサーポゲイン調整 可能の信号を受けると、 制御パラメータ調整用として指令生成部 2 3 2で作成したゲ イン調整用動作指令を診断用コンピュータ 1 3のデータ受信部 1 4に送信する (図中 の②)。
( 2 ) 条件照合
サーボゲイン調整用の動作指令を診断用コンピュータ 1 3のデータ受信部 1 4で 受信した場合、 直ぐにロボット 1 1のコントローラ 1 2に転送しないで、 診断用コン ピュー夕 1 3内に設けた条件照合部 1 3 3に送る。 条件照合部 1 3 3では、 サーボゲ ィン調整用の動作指令が予め登録された位置制限の条件に干渉しないかをチェック する。 この際、 サーボゲイン調整用の動作指令が各関節の角度指令である場合には、 順変換などの演算式を用いることで、 作業座標系の位置に変換して、 位置制限の条件 と照合することができる。
特に干渉しない場合にはサ一ボゲイン調整用の動作指令はコントローラ 1 2に転 送され (図中の③)、 サ一ボゲイン調整用の動作を行う。
( 3 ) 動作指令再作成
動作指令が位置制限の条件と干渉した場合には、 データ送信部 1 5から解析用コン ピュー夕 2 3に動作指令千渉信号と前記位置制限の条件を送信し (図中の④)、 コン トローラ 1 2には動作指令を転送しない。
解析用コンピュータ 2 3で動作指令干渉信号と位置制限の条件を受信すると、指令 生成部 2 3 2で前記位置制限の条件と干渉しないサーポゲイン調整用の動作信号を 再作成する。
( 4 ) 再確認
この再作成したサーボゲイン調整用の動作指令をもう一度、診断用コンピュータ 1 3に送信して (図中の⑤)、 条件照合部 1 3 3でチェックする。 千渉しない場合は、 再作成された動作指令はコントローラ 1 2に転送され (図中の⑥)、 サーボゲイン調 整用の動作を行う。 干渉した場合には、 ユーザ側 1はコントローラ 1 2上の条件設定 部 2 1で更に条件を細かく設定して、干渉しない動作指令を作成するまで、上記(1 ) 〜 (4 ) を繰り返す。
後は、 前記実施の形態 2と同様に、 制御状態量の記憶 ·転送を行い、 ゲイン調整を 実施して、 診断用コンピュータ 1 3にサ一ボゲインを転送して、 動作確認を行う。 次に、 本発明の第 7の実施の形態を図 8に基づいて説明する。
請求項 1 2に記載するように、遠隔地にいるユーザ側 1がコントローラ 1 2の条件 設定部 1 2 1で登録した位置制限の条件を、診断用コンピュータ 1 3を経由して解析 用コンピュータ 2 3に送り、位置制限の条件に干渉しないように制御パラメ一夕調整 用の動作指令を作成する。 ここでは、 本発明の第 6の実施の形態と同様に、 サ一ポゲ インの調整を行うことを例にして説明を行う。
( 1 ) 条件登録 '
遠隔地にいるユーザ側 1は、予め狭隘部にある周辺機器やワークなど位置にロポッ ト 1 1のエンドェフエクタやアームが入り込まないように、周辺機器やワークなどの 位置情報を直交座標系での位置制限の条件としてコントローラ 1 2の条件設定部 1 2 1に登録する。 この位匱制限の条件はコントローラ 1 2から診断用コンピュータ 1 3に転送される (図中の①)。
次に、診断用コンピュータ 1 3のデータ送信部 1 5から商用通信回線 3 2を介して 解析用コンピュータ 2 3のデ一夕受信部 2 4に送信され (図中の②)、 指令生成部 2 3 2に設定される。
( 2 ) 動作指令作成
解析用コンピュータ 2 3の指令生成部 2 3 2で、診断用コンピュータ 1 3から受信 した直交座標系上での位置制限の条件を満たすように、制御パラメータ調整用として サーボゲイン調整用の動作指令を作成する。
( 3 ) 条件照合
サーボゲイン調整用の動作指令は条件照合部 2 3 6で位置制限の条件と照合され る。 このとき、 前記サーポゲイン調整用の動作指令が各関節の角度指令である場合に は、 順変換などの演算式を用いることで、 作業座標系の位置に変換して、 位置制限の 条件と照合することができる。 干渉しない場合には、 商用通信回線 3 2を介してデー 夕送信部 2 5から診断用コンピュータ 1 3のデ一夕受信部 1 4に送られる (図中の ③)。 この前記動作指令はコントローラ 1 2に転送され (図中の④)、 サ一ポゲイン調 整用の動作を行う。
干渉した場合には、 動作指令の再作成を行い、 条件照合部 2 3 6で干渉しなくなる まで、 再作成を繰り返す。
後は、 前記実施の形態 2と同様に、 制御状態量の記憶 ·転送を行い、 ゲイン調整を 実施して、 診断用コンピュータ 1 3にサ一ポゲインを転送して、 動作確認を行う。 次に、 本発明による第 8の実施の形態を図 9に基づいて説明する。
請求項 1 3に記載するように、 ユーザ側 1の診断用コンピュータ 1 3内に制御パラ メ一夕記憶部 1 3 4を設け、 ここに以前の用途に使甩した制御パラメータ (サ一ポゲ インやアプリケーション固有の条件パラメ一夕) を全て記憶できるようにする。 ここ では、 制御対象をロボットとして、 工場のラインの変更などにより、 .ロボットの現在 の用途 (例えば、 溶接用途) を以前の用途 (例えば、 ハンドリング用途) に戻したい 場合を例に説明する。
( 1 ) パラメ一夕切り換え要求
ユーザ側 1の作業者は、 口ポット 1 1を溶接用途からハンドリング用途に変更する 場合に、 コントローラ 1 2経由で診断用コンピュータ 1 3に制御パラメ一夕切り換え 要求を送る (図中の①)。
( 2 ) パラメータ一覧
第 8の実施の形態によって診断用コンピュータ 1 3内に設置された制御パラメ一 タ記憶部 1 3 4に制御パラメータ切り換え要求が送られると、制御パラメータ記憶部 1 3 4では現在までに登録された制御パラメ一夕のデータからハンドリング用途に 関するデーター ¾を作成、 若しくは作成して記憶されていた一覧デ一夕をコントロー ラ 1 2に転送する (図中の②)。
( 3 ) パラメータ選択
コントローラ 1 2に転送されてきた一覧データから、作業者は希望するハンドリン グ作業に見合ったデータを 1つ選択する。 この制御パラメータ選択情報は、 診断用コ ンピュー夕 1 3の制御パラメータ記憶部 1 3 4に転送される (図中の③)。
( 4 ) 制御パラメータ転送
制御パラメータ記憶部 1 3 4に制御パラメータ選択情報が送られると、ハンドリン グ用途に関するデ一夕一覧から選択された制御パラメ一夕のデータをコントローラ 1 2に転送する (図中の④)。
このように、 工場のラインの変更などにより制御対象を元の状態に戻した場合でも、 改めて解析用コンピュータを用いて制御パラメータの再調整の必要がなく、 時間の短 縮を図ることができる。
次に、 本発明による第 9の実施の形態を図 1 0に基づいて説明する。
請求項 1 4に記載するように、診断用コンピュータ 1 3内にシミュレータ部 1 3 5 を設け、 以前の用途で使用した制御パラメ一夕 (サ一ポゲインやアプリケーション固 有の条件パラメ一夕) を制御対象に使用する前に、 このシミュレータ部 1 3 5で作業 者が制御対象の動きを確認できるようにする。ここでは、第 8の実施の形態と同様に、 口ポットの現在の用途 (例えば、 溶接用途) を以前の用途 (例えば、 ハンドリング用 途) に戻したい場合を例に説明する。
( 1 ) パラメ一夕切り換え要求
ユーザ側 1の作業者は、 ロボット 1 1を溶接用途からハンドリング用途に変更する 場合に、 コントローラ 1 2経由で診断用コンピュータ 1 3に制御パラメ一夕切り換え 要求を送る (図中の①)。
( 2 ) パラメ一夕ー覽
診断用コンピュータ 1 3内に設置された制御パラメ一夕記憶部 1 3 4に制御パラ メータ切り換え要求が送られると、 制御パラメータ記憶部 1 3 4では、 現在までに登 録された制御パラメータのデータからハンドリング用途に関するデータ一覧を作成、 若しくは作成して記憶されていた一覧デ一夕をコントローラ 1 2に転送する (図中の ②)。
( 3 ) パラメ一夕選択
コントローラ 1 2に転送されてきた一覧データから、作業者は希望する八ンドリン グ作業に見合ったデータを 1つ選択する。 ここで、 作業者は選択した制御パラメ一夕 を用いたロポッ卜の動きを確認したい場合には、 シミュレータ確認命令をコントロー ラ 1 2から発行する。 この制御パラメ一夕選択情報とシミュレータ確認命令は、 診断 用コンピュータ 1 3の制御パラメ一夕記憶部 1 3 4に転送される (図中の③)。
( 4 ) パラメ一夕確認
制御パラメータ記憶部 1 3 4に制御パラメ一夕選択情報とシミュレー夕確認命令 が送られると、ハンドリング用途に関するデータ一覧から選択された制御パラメ一夕 のデータをシミュレータ部 1 3 5に転送し (図中の④〉、 シミュレータ部上で現在使 用しているロポッ卜 1 2と同じモデルを用いたシミュレーションが実行される。作業 者はこのシミュレーションにより、 選択した制御パラメータが正しいかを判断する。
( 5 ) 制御パラメ一夕転送
作業者がシミュレータ部 1 3 5に確認 O Kの入力を行なうと、 シミュレータ部 1 3 5から制御パラメータ記憶部 1 3 4に確認 O Kの信号が転送され (図中の⑤)、 ハン ドリング用途に関するデータ一覧から選択された制御パラメ一タのデ一夕をコント ローラ 1 3 1に転送する (図中の⑥)。
このように、 工場のラインの変更などにより制御対象を元の状態に戻した際に、 事 前に制御パラメ一夕をシミュレ一ションで確認することで、 間違って選択された制御 パラメータによる制御対象の暴走なので作業者や制御対象の損傷を防ぐことができ る。
以上述べたように、 請求項 1 、 2及び 3記載の制御対象の遠隔調整診断装置によれ ば、 制御対象に診断用コンピュータ 1 3を接続し、 商用回線を介して遠隔地にあるメ —力側 2の解析用コンピュータ 2 3と接続し、制御対象の制御パラメ一夕の調整を解 析用コンピュータ 2 3から行うにことより、従来はメーカ側 2の作業者がユーザ側 1 の工場に出向いて行っていた調整をメーカ側 2の解析用コンピュータ 2 3から簡単 に行うことができる。
また、 工場のラインを止めることもなく、 ュ一ザ側 1の作業者の保守や調整の要求 に応じて、 即対応することができる。
請求項 4記載の制御対象の遠隔調整診断装置によれば、ユーザ側 1の作業者が制御 対象に負荷を取り付けるなどの環境が整つた時点でサーポゲインの調整を行うこと により、 予め工場出荷時に大まかに合わせてあったサ一ポゲインを負荷に合わせて精 度良く安全に調整することができる。
請求項 5記載の制御対象の遠隔調整診断装置によれば、 制御対象のアプリケ一ショ ンゃワークを変更した時点でアプリケ一ション固有の条件パラメ一夕の調整を行う ことにより、 ノウハウを持ったメーカ側 2の作業者が条件出しを行え、 大幅な時間短 縮や品質の維持向上を行うことができる。
請求項 6記載の制御対象の遠隔調整診断装置によれば、ユーザ側 1と同一の制御対 象を調整に用いることにより、 大型の測定器が必要な調整にも対応でき、 工場のライ ンを止めることなく時間と労力を大幅に削減することが可能になる。
請求項 7記載の制御対象の遠隔診断装置によれば、調整をメーカ側 2の解析用コン ピュー夕 2 3からユーザ側 1の制御対象を使って簡単に行うことができるため、 制御 対象の経年変化に対しても柔軟かつ高精度に調整することができる。
また、 制御対象の状態量を時系列に記憶しているため、 記憶したデータから故障時 期を推測することができ、 ¾障を未然に防ぐことができる。 即ち、 工場のライン停止 を未然に防ぐことができる。
請求項 8記載の制御対象の遠隔診断装置によれば、解析用コンピュータ 2 3の指令 生成部 2 3 2に遠隔操作機能を有し、解析用コンピュータ 2 3を通して遠隔地で使用 しているユーザ側 1の制御対象を手動操作するため、制御対象の設置された環境が狭 隘な環境であり、 動作指令を自動に生成することが困難な場合においても、 制御対象 を手動で遠隔操作することで、 柔軟に動作指令を生成することができる。 即ち、 制御 対象が如何なる環境に設置されていても、遠隔地から迅速かつ柔軟に制御対象の調整 ができ、 時間と労力を著しく削減することができる。
請求項 9記載の制御対象の遠隔診断装置によれば、診断用コンピュータ, 1 3のデ一 夕送信部 1 5は、解析用コンピュータ 2 3へ定期的に制御対象の状態量を送信すると ともに、 コントローラ状態判断部 1 3 1が異常と判断した場合や送信要求が合った場 合にも制御対象の状態量を送信することにより、解析コンピュー夕はユーザ側 1が使 用している制御対象を定期的に監視することができ、 制御対象毎に統計的な手法を用 いた解析を行い特性を把握することができる。
このようにメーカ側 2で制御対象毎の特性を把握できるので、 ユーザ側 1が使用し ている制御対象の故障や経年変化による性能の低下を未然に防止することが可能と なり、 故障対策に必要であった時間と労力とコストを著しく削減することができる。 また、 異常時においても異常を生じる直前の状態量が解析用コンピュータ 2 3に記 憶されているためメーカ側 2では状態量の波形解析により異常の原因を容易に解明 することができる。 即ち、 異常の原因を迅速に解明することができるので、 故障や破 損に対しても迅速に対処でき、従来に比べ時間と労力とコストを削減することができ る。
請求項 1 0記載の制御対象の遠隔調整診断装置によれば、通常のプレイバック運転 時にはユーザ側 1の制御対象の状態量を逐次、解析用コンピュータ 2 3に送信させ故 障推定判断を行うことにより、 ユーザ側 1の制御対象の状態を監視でき、 故障を未然 に防ぐことができる。
請求項 1 1記載の制御対象の遠隔調整及び診断装置によれば、遠隔地にいるユーザ 側 1がコントローラ 1 2の条件設定部 1 2 1で設定した直交座標系又は関節座標系 における前記制御対象の位置制限の条件と、解析用コンピュータ 2 3の指令生成部 2 3 2で作成された動作指令とを条件照合部 1 3 3で比較照合され、干渉した場合に動 作指令干渉信号とユーザ側 1が設定した位置制限の条件を解析用コンピュータ 2 3 に返信して前記動作指令を再作成するため、予めユーザ側 1が危険と判断している位 置で制御パラメータの調整を行うことを禁止でき、 より安全性の向上を図ることがで きる。
請求項 1 2記載の制御対象の遠隔調整及び診断装置によれば、解析用コンピュータ 2 3の指令生成部 2 3 2で作成された制御パラメータ調整用の動作指令を作成する 際に、 ユーザ側 1の位置制限の条件と千渉するかをチェックして、 千渉した場合に及 び再作成ができるので、 診断用コンピュータ 1 3と解析用コンピュータ 2 3間のやり 取りを少なくして、 制御パラメ一夕の調整にかかる時間を短縮することができる。 請求項 1 3記載の制御対象の遠隔調整及び診断装置によれば、 前記診断用コンビュ 一夕内に以前に調整した制御パラメ一夕を記憶できるため、工場のラインの変更など により制御対象を元の用途に戻した場合でも解析用コンピュータを用いた再調整の 必要がなく、 時間の短縮を図ることができる。
請求項 1 4記載の制御対象の遠隔調整及び診断装置によれば、 前記診断用コンビュ —夕の前記制御パラメ一夕記憶部に記億した以前の制御パラメータを、実際に制御対 象に使用する前にシミュレ一タ部で確認を取ることができるため、安全性が向上する。
[産業上の利用可能性]
本発明は、 遠隔地に設置された口ポットゃサーポモ一夕、 N C装置などの制御対象 の調整、 保守、 診断等を行う遠隔調整及び診断装置として有用である。

Claims

請求の範囲
1 . モータを含む制御対象と前記制御対象を制御するコントローラを有するロボッ卜 装置において、
前記コントローラに接続し制御対象の状態量を取得する診断用コンピュータと、 前記制御対象と遠隔に設置され、 前記制御対象の制御パラメータを調整する手段を有 する解析用コンピュータと、 前記コンピュータ間を接続する通信機能と、 を有し、 前 記通信機能によって、 前記状態量を解析用コンピュータに送信し、 前記状態量を基に 前記制御対象の制御パラメータを求め、 前記制御パラメータを前記診断用コンビユー 夕経由で前記コントローラに送信して前記制御対象を制御することを特徴とする制 御対象の遠隔調整及び診断装置。
2 . 前記解析用コンピュータは、 前記制御対象の制御パラメ一夕調整用の動作指令を 作成する指令生成部と、 前記診断用コンピュータに前記動作指令を送信するデータ送 信部と、 前記診断用コンピュータから制御対象の状態量を受信するデータ受信部と、 前記動作指令による制御対象の状態量から制御対象のモデルを用いて動作及び状態 を再現するシミュレータ部と、 前記シミュレータ部の結果から制御パラメ一夕を調整 する制御パラメ一タ調整部と、 を有することを特徴とする請求項 1記載の制御対象の 遠隔調整及び診断装置。
3 . 前記診断用コンピュータは、 前記制御対象の状態量を記憶する状態量記憶部と、 前記コントローラの状態を判断するコントローラ状態判断部と、 前記解析用コンビュ 一夕から送られた動作指令を受信するデ一夕受信部と、前記解析用コンビュ一ダに制 御対象の状態量を送信するデータ送信部と、 を有することを特徴とする請求項 1また は 2記載の制御対象の遠隔調整及び診断装置。
4 . 前記制御パラメ一夕はサ一ポゲインであることを特徵とする請求項 1〜 3のいず れか 1項記載の制御対象の遠隔調整及び診断装置。
5 . 前記制御パラメ一夕はアプリケ一ション固有の条件パラメ一夕であることを特徵 とする請求項 1〜 3のいずれか 1項記載の制御対象の遠隔調整及び診断装置。
6 . 前記解析用コンピュータのシミュレー夕部の代わりに遠隔地と同じ制御対象を使 用することを特徴とする請求項 1〜 5のいずれか 1項記載の制御対象の遠隔調整及 び診断装置。
7 . 前記解析用コンピュータは、 前記制御対象の動作指令を作成する指令生成部と、 前記診断用コンピュータに前記動作指令を送信するデータ送信部と、 前記診断用コン ピュー夕から制御対象の状態量を受信するデータ受信部と、 前記データ送信部によつ て送信するデータと前記データ受信部によって受信するデータを選択的に記憶する データ記憶部と、 前記制御対象の制御パラメ一夕を調整する制御パラメ一夕調整部と、 を有することを特徴とする請求項 1記載の制御対象の遠隔調整及び診断装置。
8 . 前記解析用コンピュータの指令生成部は遠隔操作機能を有し、 遠隔地で使用して いる制御対象を操作することを特徴とする請求項 7記載の制御対象の遠隔調整及び 診断装置。
9 . 前記診断用コンピュータのデータ送信部は、 前記解析用コンピュータへ定期的に 制御対象の状態量を送信するとともに、 前記コントローラ状態判断部が異常と判断し た場合および Zまたは送信要求が合った場合に制御対象の状態量を送信することを 特徴とする請求項 2または 7記載の制御対象の遠隔調整及び診断装置。
1 0 . 前記制御対象のプレイバック運転時において、 前記動作指令と前記制御対象の 状態量を前記診断用コンピュータから前記解析用コンピュータに送信させ制御対象 の状態量から異常の有無を判断推定する故障診断予知部を前記解析用コンピュータ 内に有することを特徴とする請求項 1 〜 9のいずれか 1項記載の制御対象の遠隔調 整及び診断装置。
1 1 . 前記制御パラメ一夕の調整を行う際に、 前記コントローラ上で直交座標系又は 関節座標系における前記制御対象の位置制限の条件を設定する条件設定部と、 前記条 件設定部で設定された位置制限の条件を前記診断用コンピュータに転送し、前記診断 用コンピュータ内で M記解析用コンピュータから受信した前記制御パラメ一夕調整 用の動作指令が前記位置制限の条件に干渉するかを照合する条件照合部を有し、千渉 した場合に前記データ送信部から前記解析用コンピュー夕に前記条件照合部から出 力された動作指令干渉信号と前記位置制限の条件を送信し、 前記解析用コンピュータ の前記指令生成部で前記動作指令干渉信号と前記位置制限の条件により前記制御パ ラメ一夕調整用の動作信号を再作成し、前記データ送信部から前記診断用コンビユー 夕を介して、 前記コントローラに送信することを特徴とする請求項 1 〜 1 0のいずれ か 1項記載の制御対象の遠隔調整及び診断装置。
1 2 . 前記条件照合部を前記解析甩コンピュータ内に持つことで、 前記解析用コンビ ユー夕の前記指令生成部で前記制御パラメ一夕調整用の動作指令作成する際に、 前記 条件設定部で設定された前記位置制限の条件を前記解析用コンピュー夕に送信して、 前記解析用コンピュータの前記指令生成部で作成された前記制御パラメ一夕調整用 の動作指令が前記位置制限の条件に前記条件照合部で干渉するかを照合し、 干渉した 場合に前記制御パラメータ調整用の動作指令を再作成し、 前記データ送信部から前記 診断用コンピュータを介して前記コントローラに送信することを特徴とする請求項 1 - 1 1のいずれか 1項記載の制御対象の遠隔調整及び診断装置。
1 3 . 前記診断用コンピュータ内に、 複数の制御パラメ一夕を記憶することのできる 制御パラメ一夕記憶部を有することを特徴とする請求項 1 〜 1 2のいずれか 1項記 載の制御対象の遠隔調整及び診断装置。
1 4 . 前記診断用コンピュータ内に、 動作指令による制御対象の状態量から制御対象 のモデルを用いて動作及び状態を再現するシミュレータ部を有することを特徴とす る請求項 1 3記載の制御対象の遠隔調整及び診断装置。
PCT/JP2002/002886 2001-03-27 2002-03-26 Commande a distance d'objets pouvant etre commandes et appareil de diagnostic WO2002077735A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037012400A KR100721642B1 (ko) 2001-03-27 2002-03-26 제어 대상의 원격 조정 및 진단 장치
DE60220998T DE60220998T2 (de) 2001-03-27 2002-03-26 Fernsteuerung für ein steuerbares objekt und diagnosevorrichtung
US10/472,942 US7127325B2 (en) 2001-03-27 2002-03-26 Controllable object remote control and diagnosis apparatus
EP02705495A EP1376284B1 (en) 2001-03-27 2002-03-26 Controllable object remote control and diagnosis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-90531 2001-03-27
JP2001090531A JP4739556B2 (ja) 2001-03-27 2001-03-27 制御対象の遠隔調整及び異常判断装置

Publications (1)

Publication Number Publication Date
WO2002077735A1 true WO2002077735A1 (fr) 2002-10-03

Family

ID=18945301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002886 WO2002077735A1 (fr) 2001-03-27 2002-03-26 Commande a distance d'objets pouvant etre commandes et appareil de diagnostic

Country Status (6)

Country Link
US (1) US7127325B2 (ja)
EP (1) EP1376284B1 (ja)
JP (1) JP4739556B2 (ja)
KR (1) KR100721642B1 (ja)
DE (1) DE60220998T2 (ja)
WO (1) WO2002077735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127694A1 (zh) * 2014-02-28 2015-09-03 福建一丁芯智能技术有限公司 自动控制装置
CN114408461A (zh) * 2022-02-14 2022-04-29 广州发展环保建材有限公司 一种无线远程操控的顶推机构控制方法、装置及系统

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330776B1 (en) 2000-10-06 2008-02-12 Innovation First, Inc. System, apparatus, and method for managing and controlling robot competitions
JP2003150219A (ja) * 2001-11-12 2003-05-23 Fanuc Ltd 作業機械のシミュレーション装置
US20040162637A1 (en) 2002-07-25 2004-08-19 Yulun Wang Medical tele-robotic system with a master remote station with an arbitrator
US6925357B2 (en) 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
SE524627C2 (sv) * 2002-10-07 2004-09-07 Abb Research Ltd Trådlös regulator och förfarande för styrning av en anordning anordnad relativt en robot
JP2004188541A (ja) * 2002-12-11 2004-07-08 Yamazaki Mazak Corp 工作機械の送り軸パラメータ調整システム
US6912447B2 (en) * 2002-12-23 2005-06-28 Caterpillar Inc System and method for determining weld procedures
JP2004202624A (ja) * 2002-12-25 2004-07-22 Kawasaki Heavy Ind Ltd ロボット用情報利用統合方法及び装置
US20040158474A1 (en) * 2003-02-06 2004-08-12 Karschnia Robert J. Service facility for providing remote diagnostic and maintenance services to a process plant
WO2004102295A2 (en) * 2003-05-12 2004-11-25 Abb Inc. Asset life cycle management method and apparatus
JP2005148873A (ja) * 2003-11-12 2005-06-09 Nachi Fujikoshi Corp ロボット劣化診断装置
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
JP2005216213A (ja) * 2004-02-02 2005-08-11 Yaskawa Electric Corp 故障診断システム及び故障診断方法
JP2005234760A (ja) * 2004-02-18 2005-09-02 Kuniyoshi Tatsu 遠隔制御システム
US8946320B2 (en) 2004-03-22 2015-02-03 Hewlett-Packard Development Company, L.P. Ink system containing polymer binders
US8077963B2 (en) 2004-07-13 2011-12-13 Yulun Wang Mobile robot with a head-based movement mapping scheme
WO2006022276A1 (ja) * 2004-08-25 2006-03-02 Thk Co., Ltd. リモートメンテナンスシステム
JP4577607B2 (ja) * 2004-10-20 2010-11-10 株式会社安川電機 ロボットの制御装置およびロボットシステム
JP2006293445A (ja) * 2005-04-06 2006-10-26 Honda Motor Co Ltd 生産管理システム
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
DE102005047543A1 (de) * 2005-09-30 2007-04-05 Siemens Ag Verfahren zur Simulation eines Steuerungs- und/oder Maschinenverhaltens einer Werkzeugmaschine oder einer Produktionsmaschine
US20070142966A1 (en) * 2005-12-20 2007-06-21 Khalid Mirza Process for moving a robot
US8485822B2 (en) * 2006-05-31 2013-07-16 Caterpillar Inc. Simulation system implementing historical machine data
US8849679B2 (en) 2006-06-15 2014-09-30 Intouch Technologies, Inc. Remote controlled robot system that provides medical images
US20080004749A1 (en) * 2006-06-30 2008-01-03 Honeywell International, Inc. System and method for generating instructions for a robot
EP1958738B1 (en) * 2007-02-13 2013-08-14 Abb Research Ltd. Remote diagnostic system for robots
US8265793B2 (en) 2007-03-20 2012-09-11 Irobot Corporation Mobile robot for telecommunication
US8505086B2 (en) * 2007-04-20 2013-08-06 Innovation First, Inc. Managing communications between robots and controllers
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
JP2009098896A (ja) * 2007-10-16 2009-05-07 Sharp Corp 履歴情報の動作制御装置および方法
EP2219090B1 (en) * 2007-12-06 2012-02-01 ABB Research Ltd. A robot service system and a method for providing remote service for a robot
DE102007059481A1 (de) 2007-12-11 2009-06-18 Kuka Roboter Gmbh Verfahren und Vorrichtung zur Bereichsüberwachung eines Manipulators
JP4347386B2 (ja) * 2008-01-23 2009-10-21 ファナック株式会社 加工用ロボットプラグラムの作成装置
DE102008008470A1 (de) * 2008-02-08 2009-08-27 Mtu Aero Engines Gmbh Verfahren zur Bestimmung der Bearbeitungsgüte von Bauteilen insbesondere bei spanender Bearbeitung durch NC Maschinen
US10875182B2 (en) 2008-03-20 2020-12-29 Teladoc Health, Inc. Remote presence system mounted to operating room hardware
US8179418B2 (en) 2008-04-14 2012-05-15 Intouch Technologies, Inc. Robotic based health care system
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US8340819B2 (en) 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9138891B2 (en) 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US8463435B2 (en) 2008-11-25 2013-06-11 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
JP4598865B2 (ja) * 2009-02-17 2010-12-15 ファナック株式会社 工作機械と組み合わせて使用するロボットの制御装置
US8897920B2 (en) 2009-04-17 2014-11-25 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
US11399153B2 (en) 2009-08-26 2022-07-26 Teladoc Health, Inc. Portable telepresence apparatus
US8384755B2 (en) 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot
US11154981B2 (en) 2010-02-04 2021-10-26 Teladoc Health, Inc. Robot user interface for telepresence robot system
US8670017B2 (en) 2010-03-04 2014-03-11 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US8468231B1 (en) * 2010-04-16 2013-06-18 The Boeing Company Architecture for network-enabled tools
US8918213B2 (en) 2010-05-20 2014-12-23 Irobot Corporation Mobile human interface robot
US8935005B2 (en) 2010-05-20 2015-01-13 Irobot Corporation Operating a mobile robot
US9014848B2 (en) 2010-05-20 2015-04-21 Irobot Corporation Mobile robot system
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
US10808882B2 (en) 2010-05-26 2020-10-20 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US8930019B2 (en) 2010-12-30 2015-01-06 Irobot Corporation Mobile human interface robot
KR102018763B1 (ko) 2011-01-28 2019-09-05 인터치 테크놀로지스 인코퍼레이티드 이동형 원격현전 로봇과의 인터페이싱
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
JP4948679B1 (ja) * 2011-03-29 2012-06-06 三菱電機株式会社 サーボ制御装置の異常診断装置および異常診断システム
US10769739B2 (en) 2011-04-25 2020-09-08 Intouch Technologies, Inc. Systems and methods for management of information among medical providers and facilities
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
JP5512048B2 (ja) * 2011-09-06 2014-06-04 パナソニック株式会社 ロボットアームの制御装置及び制御方法、ロボット、制御プログラム、並びに、集積電子回路
US20130096719A1 (en) * 2011-10-13 2013-04-18 The U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Method for dynamic optimization of a robot control interface
US8836751B2 (en) 2011-11-08 2014-09-16 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
US9529348B2 (en) 2012-01-24 2016-12-27 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for deploying industrial plant simulators using cloud computing technologies
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US8902278B2 (en) 2012-04-11 2014-12-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
WO2013176758A1 (en) 2012-05-22 2013-11-28 Intouch Technologies, Inc. Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices
DE102013109823B4 (de) 2012-09-07 2019-10-02 Fanuc Robotics America Corp. System zur Überwachung/Analyse von in Zusammenhang mit Robotern stehenden Informationen und deren Darstellung auf einem Smart-Gerät
JP6211802B2 (ja) * 2013-05-29 2017-10-11 日本電産サンキョー株式会社 データ処理装置およびデータ処理方法
EP2894529B1 (en) * 2014-01-08 2019-10-23 Manitowoc Crane Companies, LLC Remote diagnostic system
EP2952300A1 (en) * 2014-06-05 2015-12-09 Aldebaran Robotics Collision detection
DE102014112639C5 (de) 2014-09-02 2020-07-02 Cavos Bagatelle Verwaltungs Gmbh & Co. Kg System zum Erstellen von Steuerungsdatensätzen für Roboter
JP6427372B2 (ja) * 2014-09-19 2018-11-21 株式会社ダイヘン ロボット制御システム
EP3240182A4 (en) * 2014-12-22 2018-07-18 Nidec Corporation Position estimation method and position control device
EP3155492A4 (en) * 2015-03-31 2017-07-19 SZ DJI Technology Co., Ltd. Systems and methods for analyzing flight behavior
EP3164773B1 (en) 2015-03-31 2022-03-23 SZ DJI Technology Co., Ltd. System and method for recording operation data
JP6862081B2 (ja) * 2015-06-23 2021-04-21 キヤノン株式会社 ロボットシステムの制御方法、制御プログラム、コンピュータ読み取り可能な記録媒体、およびロボットシステム
JP6411964B2 (ja) * 2015-07-27 2018-10-24 ファナック株式会社 工作機械とロボットのリアルタイム干渉確認システム
EP3130975A1 (en) * 2015-08-14 2017-02-15 Tomologic AB An industrial machine system and a method of controlling an industrial machine
EP3133451A1 (de) * 2015-08-20 2017-02-22 Siemens Aktiengesellschaft System zum steuern, überwachen und regeln von verfahren zum betrieb eines solchen systems
DE202015105595U1 (de) * 2015-10-21 2016-01-14 Fft Produktionssysteme Gmbh & Co. Kg Absolutes robotergestütztes Positionsverfahren
CN105479468B (zh) * 2015-12-29 2018-02-09 浙江瑞鹏机器人科技有限公司 一种远程机器人运动控制器
JP6031202B1 (ja) * 2016-01-29 2016-11-24 ファナック株式会社 製造機械の異常の原因を発見するセル制御装置
KR101740374B1 (ko) * 2016-03-09 2017-05-30 한양로보틱스 주식회사 네트워크를 통해 원격관리 가능한 스마트 취출 로봇 관제시스템
CN105666526A (zh) * 2016-03-22 2016-06-15 北京百度网讯科技有限公司 基于人工智能的机器人调试系统
US10521774B2 (en) * 2016-03-22 2019-12-31 Asm Ip Holding B.V. Preventive maintenance system and preventive maintenance method
JP6581050B2 (ja) * 2016-08-24 2019-09-25 川崎重工業株式会社 ロボットの遠隔監視システム
JP2018126796A (ja) * 2017-02-06 2018-08-16 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
JP6514252B2 (ja) 2017-03-02 2019-05-15 ファナック株式会社 ロボットのデータ設定システム、データ設定方法及びプログラム
DE102017118983B4 (de) 2017-04-23 2019-10-02 Franka Emika Gmbh Roboter und Verfahren zur Steuerung eines Roboters
DE102017118985B4 (de) * 2017-04-23 2019-10-02 Franka Emika Gmbh Schraubvorrichtung
US11862302B2 (en) 2017-04-24 2024-01-02 Teladoc Health, Inc. Automated transcription and documentation of tele-health encounters
JP6841171B2 (ja) * 2017-06-27 2021-03-10 日本精工株式会社 機器制御システム及び遠隔調整システム
US10483007B2 (en) 2017-07-25 2019-11-19 Intouch Technologies, Inc. Modular telehealth cart with thermal imaging and touch screen user interface
US11636944B2 (en) 2017-08-25 2023-04-25 Teladoc Health, Inc. Connectivity infrastructure for a telehealth platform
JP6693939B2 (ja) 2017-12-14 2020-05-13 ファナック株式会社 ロボットシステム
EP3783544A4 (en) * 2018-04-19 2021-03-31 Nissan Motor Co., Ltd. DEVICE AND METHOD FOR GENERATING A MAINTENANCE DATA SET
US10617299B2 (en) 2018-04-27 2020-04-14 Intouch Technologies, Inc. Telehealth cart that supports a removable tablet with seamless audio/video switching
WO2020084671A1 (ja) * 2018-10-22 2020-04-30 三菱電機株式会社 保守支援システム、数値制御装置および保守支援システムの制御方法
CN111203869B (zh) * 2018-11-21 2021-12-17 深圳市优必选科技有限公司 一种机器人系统维护方法、装置、机器人及可读存储介质
JP7219117B2 (ja) * 2019-02-28 2023-02-07 コマツ産機株式会社 産業機械の予知保全装置、方法、及びシステム
CN110370288B (zh) * 2019-08-22 2021-09-17 苏州博众机器人有限公司 机器人安全控制方法、装置、设备和存储介质
JP7403356B2 (ja) 2020-03-16 2023-12-22 三菱電機エンジニアリング株式会社 制御システム、サーバ、制御情報通知方法及び制御情報通知プログラム
WO2022091366A1 (ja) * 2020-10-30 2022-05-05 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、及び、記録媒体
EP4104978A1 (en) 2021-06-14 2022-12-21 Bayerische Motoren Werke Aktiengesellschaft Method for controlling a robot, data processing apparatus, computer program product, and computer-readable storage medium
WO2023013109A1 (ja) * 2021-08-03 2023-02-09 パナソニックIpマネジメント株式会社 リモート操作システム
WO2023053400A1 (ja) * 2021-09-30 2023-04-06 三菱電機株式会社 数値制御装置、加工システム、数値制御方法および加工方法
JP7120479B1 (ja) 2022-01-07 2022-08-17 凸版印刷株式会社 通信システム、通信制御方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110539A (ja) * 1992-09-29 1994-04-22 Fanuc Ltd コンピュータ制御機器のリモート診断装置
JPH06335884A (ja) * 1993-05-27 1994-12-06 Matsushita Electric Ind Co Ltd 多関節ロボットの直接教示装置
JPH08221132A (ja) * 1995-02-10 1996-08-30 Fanuc Ltd サーボパラメータの自動調整方法及び自動調整装置
JPH10211575A (ja) * 1997-01-24 1998-08-11 Nippon Kokan Light Steel Kk 金属製箱状構造体の自動溶接装置の自動教示方法及び自動教示方法による金属製箱状構造体の自動溶接方法
US5978578A (en) * 1997-01-30 1999-11-02 Azarya; Arnon Openbus system for control automation networks

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608593B2 (ja) * 1988-08-26 1997-05-07 ファナック株式会社 故障診断方法
JPH0277907A (ja) * 1988-09-14 1990-03-19 Fanuc Ltd Mdi遠隔操作/表示システム
JPH0363704A (ja) * 1989-07-31 1991-03-19 Matsushita Electric Ind Co Ltd モデル規範型適応制御器
JPH0411748A (ja) * 1990-04-30 1992-01-16 Nec Corp 半導体集積回路装置
JPH0511834A (ja) * 1991-07-01 1993-01-22 Amada Co Ltd 機械のリモート診断システム
JPH0546233A (ja) * 1991-08-15 1993-02-26 I N R Kenkyusho:Kk 自動機械における稼働診断システム
JPH0535751A (ja) 1991-10-24 1993-02-12 Osaka Kiko Co Ltd 工作機械の定期診断、故障診断ならびに故障修復方法
JP2841994B2 (ja) * 1992-01-09 1998-12-24 日産自動車株式会社 アクチュエータ制御装置
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
JPH06110538A (ja) * 1992-09-25 1994-04-22 Fanuc Ltd コンピュータ制御機器のリモート診断装置
JP3221194B2 (ja) 1993-12-02 2001-10-22 日産自動車株式会社 産業用ロボットの動作波形診断装置
JP3810454B2 (ja) * 1995-09-01 2006-08-16 ファナック株式会社 Cncの工具径補正方法
JPH11161311A (ja) * 1997-11-28 1999-06-18 Toshiba Corp 遠隔操作型ロボット制御装置
JP3559708B2 (ja) * 1998-03-31 2004-09-02 株式会社東芝 遠隔制御システム
JP4161284B2 (ja) * 1999-03-04 2008-10-08 株式会社Ihi カスケードループの制御パラメータ自動調整方法
FI990715A (fi) * 1999-03-31 2000-10-01 Valmet Corp Tuotantolaitoksen huoltojärjestely
US6594552B1 (en) * 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
KR200178021Y1 (ko) * 1999-10-13 2000-04-15 주식회사어텍 디지털 모터 제어장치 및 통신망을 이용한 디지털 모터원격제어시스템
US6728599B2 (en) * 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US6804580B1 (en) * 2003-04-03 2004-10-12 Kuka Roboter Gmbh Method and control system for controlling a plurality of robots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110539A (ja) * 1992-09-29 1994-04-22 Fanuc Ltd コンピュータ制御機器のリモート診断装置
JPH06335884A (ja) * 1993-05-27 1994-12-06 Matsushita Electric Ind Co Ltd 多関節ロボットの直接教示装置
JPH08221132A (ja) * 1995-02-10 1996-08-30 Fanuc Ltd サーボパラメータの自動調整方法及び自動調整装置
JPH10211575A (ja) * 1997-01-24 1998-08-11 Nippon Kokan Light Steel Kk 金属製箱状構造体の自動溶接装置の自動教示方法及び自動教示方法による金属製箱状構造体の自動溶接方法
US5978578A (en) * 1997-01-30 1999-11-02 Azarya; Arnon Openbus system for control automation networks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANI NAOYUKI: "Gazo sohoko tsushin o mochiita enkaku seigyo/hoshu no shinten hoko", KEISO, KOGYO GIJUTSUSHA, vol. 39, no. 2, 1 February 1996 (1996-02-01), pages 10 - 13, XP002953599 *
See also references of EP1376284A4 *
WATABE YUJI ET AL.: "Mitsubishi denki ni okeru CNC open-ka no torikumi", KIKAIGIJUTSU, THE NIKKAN KOGYO SHINBUN, LTD., vol. 48, no. 12, 1 November 2000 (2000-11-01), pages 48 - 54, XP002953598 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127694A1 (zh) * 2014-02-28 2015-09-03 福建一丁芯智能技术有限公司 自动控制装置
CN114408461A (zh) * 2022-02-14 2022-04-29 广州发展环保建材有限公司 一种无线远程操控的顶推机构控制方法、装置及系统
CN114408461B (zh) * 2022-02-14 2024-01-26 广州发展环保建材有限公司 一种无线远程操控的顶推机构控制方法、装置及系统

Also Published As

Publication number Publication date
EP1376284A1 (en) 2004-01-02
EP1376284A4 (en) 2005-09-07
JP2002287816A (ja) 2002-10-04
KR100721642B1 (ko) 2007-05-23
DE60220998T2 (de) 2007-10-18
EP1376284B1 (en) 2007-07-04
US7127325B2 (en) 2006-10-24
JP4739556B2 (ja) 2011-08-03
DE60220998D1 (de) 2007-08-16
KR20030085049A (ko) 2003-11-01
US20040083010A1 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
WO2002077735A1 (fr) Commande a distance d'objets pouvant etre commandes et appareil de diagnostic
KR102025100B1 (ko) 로봇 동작 모니터링 시스템 및 그 방법
US8099191B2 (en) Robot service system and a method for providing remote service for a robot
RU2530256C2 (ru) Способ и устройство для управления операционными полевыми устройствами через портативный коммуникатор
JP2559847B2 (ja) 生産ラインの管理方法
CN110267770A (zh) 机器人系统及其控制方法
CN111438687A (zh) 判定装置
CN103846915A (zh) 机器人系统
JP6029967B2 (ja) アーク溶接ロボットシステム
US10379531B2 (en) Test system for performing machine test
US11826913B2 (en) Control system, robot system and control method
EP1935578B1 (en) Control system
JP2005216213A (ja) 故障診断システム及び故障診断方法
JP3913666B2 (ja) シミュレーション装置
JPH03169284A (ja) モータ駆動制御装置
CN111136652A (zh) 减速机系统及其制造、校正数据生成及校正方法、机器人
JP3927482B2 (ja) シミュレーション装置
CN213634179U (zh) 自动化装置
US10974385B2 (en) Redundant, diverse collision monitoring
JP6848206B2 (ja) 故障診断装置及び故障診断方法
CN113741573B (zh) 一种电控力矩系统
JPH10260713A (ja) 生産設備の制御装置
JPH0887316A (ja) 制御装置
JPH0981218A (ja) ロボット制御装置
Plüss et al. Interactive proposal system for determining a set of operational parameters for a machine tool, control system for a machine tool, machine tool and method for determining a set of operational parameters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037012400

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002705495

Country of ref document: EP

Ref document number: 10472942

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002705495

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002705495

Country of ref document: EP