WO2002070031A1 - Bone replacement material and method for the production of a bone replacement implant - Google Patents

Bone replacement material and method for the production of a bone replacement implant Download PDF

Info

Publication number
WO2002070031A1
WO2002070031A1 PCT/EP2001/012867 EP0112867W WO02070031A1 WO 2002070031 A1 WO2002070031 A1 WO 2002070031A1 EP 0112867 W EP0112867 W EP 0112867W WO 02070031 A1 WO02070031 A1 WO 02070031A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
bone
bone replacement
filler particles
biocompatible
Prior art date
Application number
PCT/EP2001/012867
Other languages
German (de)
French (fr)
Inventor
Katja Tangermann
Jochen Bauer
Original Assignee
BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH filed Critical BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH
Publication of WO2002070031A1 publication Critical patent/WO2002070031A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/443Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with carbon fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30065Properties of materials and coating materials thermoplastic, i.e. softening or fusing when heated, and hardening and becoming rigid again when cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30948Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using computerized tomography, i.e. CT scans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0071Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof thermoplastic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Definitions

  • the invention relates to a bone replacement material, in particular for the care of bone defects after surgical interventions, a method for producing a bone replacement implant from such a bone replacement material and a bone implant itself.
  • the present invention is in the field of implant medicine related to bone defects such as e.g. after tumor resection, trauma treatment or in the reconstruction of congenital malformations.
  • the main areas of application are defects in the skull and orbital roof and all other bone defects that require reconstructive or functional interventions on the patient. This results in the following development goals for the development of so-called "Taylored Implants":
  • the body's own (autogenous) and foreign (alloplastic) materials are used in the reconstruction and care of bony defects.
  • the use of the body's own bone or cartilage has the disadvantage that a second operation at a further point of the patient is necessary to remove the autogenous material. This can usually affect the donor region of the fibula, rib or iliac crest. There is an additional burden on the patient. Another limitation is the amount of graft material available.
  • a disadvantage also lies in the unpredictable process of remodeling and dismantling transplanted bones, which after a few years leads to renewed surgical interventions on the patient if the transplant is completely dismantled.
  • the decisive factor in the care of bone defects is primarily the accuracy of fit to the defect edges.
  • the surgical field which is restricted by the sterile cover, does not allow a comprehensive assessment of the contour during the operation. The exact individual adjustment is therefore limited.
  • Computed tomography can be used to precisely measure bony structures and the resulting 3D data can be used for implant production. Based on these data sets, individual hip endoprostheses and cranioplasties are already made from titanium using computer aided design and manufacturing (CAD / CAM).
  • CAD / CAM computer aided design and manufacturing
  • metal implant and bone tissue due to the strongly varying modulus of elasticity of metal implant and bone tissue (Ti: 110 GPa, bone: cancellous 0.5-3 GPa, cortical 10-25 GPa), bone degradation can occur as a result of the so-called "stress shielding" effect .
  • Another disadvantage of using metals is that they belong to the group of inert materials, so that, as a rule, no non-positive connection between the implant and the recipient tissue can form. The metal implant is therefore fixed to the bone using screws and plates.
  • the object of the present invention is to provide a bone replacement material which enables a non-positive connection to the bone, the modulus of elasticity of which is adapted to that of the bone, and which is achieved by a quick and simple method individually shaped, patient-specific endoprostheses must be processed.
  • the core of the invention is the selection of the materials involved in the bone substitute material according to the invention, which represent an optimal compromise in view of the very different tasks.
  • the starting point is a mixture of a biocompatible, laser-sinterable polymer material as the matrix material and filler particles made of inorganic, non-metallic materials such.
  • B. ceramic powder A polymer / ceramic compound in powder form is also possible.
  • the inorganic fillers are at least bioinert or preferably bioactive, such as. B. osteoinductive or osteoconductive.
  • plastics such as. B. polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyamide, polyurethane, polysulfone, polysiloxane or polytetrafluoroethylene.
  • PEEK polyether ether ketone
  • Suitable for the filler particles include Calcium phosphates, biocompatible glass particles, as are commercially available under the "Bioglas” brand, or carbon particles. These particles can be in the form of fibers, spheres, whiskers or platelets. Their particle size is preferably in the range from 0.1 to 200 ⁇ m, which also applies to the particle size of the powdery raw material in the production of a bone replacement implant according to the invention.
  • the filler particles preferably have a weight fraction of 5 to 80% based on the total amount of material.
  • the method according to claim 6 for producing a bone replacement implant from the bone replacement material according to the invention is based on the method of laser beam sintering known in connection with the so-called "rapid prototyping".
  • the laser beam sintering is a generative process that can be used to produce components directly from a 3D data set.
  • complex component structures including undercuts can be produced at short notice.
  • the workpiece is created by applying a material.
  • the decisive advantage of laser beam sintering of plastics is the high flexibility with which complex and individually shaped component structures can be manufactured within a very short time. In this respect, this method is also excellently suited for the production of a bone replacement implant, since such workpieces must always be individually manufactured.
  • the filler particles in the matrix material made of the biocompatible polymer material in such a way that these filler particles are only partially embedded in the matrix material on the implant surface.
  • bioactive fillers such as calcium phosphates or the aforementioned biocompatible glass particles
  • no permanent anchoring is necessary by means of fixing agents, since the filler particles lying there achieve a positive connection between the bone and the implant attached to it.
  • Further functions of the filler particles are that the mechanical properties of the bone substitute material, such as elastic modulus, strength and creep behavior, can be adapted to the surrounding bone tissue due to their proportion in the matrix material.
  • inorganic fillers are advantageous for making the polymeric implant visible on X-ray images, but the imaging diagnostics are not disturbed by these fillers.
  • the inorganic filler particles have a positive effect on the shrinkage behavior of the matrix material, in which a ch shrinkage is largely prevented.
  • the implants made from the bone substitute material therefore have a high degree of dimensional accuracy.
  • FIG. 1 is a perspective, partially enlarged schematic representation of a bone replacement implant
  • Fig. 2 is a schematic, extremely enlarged partial section through the interface between the bone replacement implant and the surrounding bone tissue, and
  • FIG. 3 shows a basic illustration of a laser sintering system for producing a bone replacement implant.
  • a laser-sintered bone replacement implant 1 consists of a matrix material 2 and filler particles 3 embedded therein.
  • the matrix material is polyethene ether ketone (PEEK), the property profile of which is outstandingly designed for use as a matrix material.
  • PEEK is characterized by excellent mechanical properties, high chemical resistance and thus long-term resistance as well as high radiation and wear resistance. In this respect, this material is well suited for use in an aggressive body environment.
  • Another advantage of this material, which is not very sensitive to external influences, lies in its easy sterilizability. The suitability of this material for the medical field is also documented by the existing FDA (American Food and Drug Association) approval.
  • PEEK like all plastics, is assigned to the group of bio-inert materials, i.e. that the implant cannot make any connection with the bone tissue.
  • the modulus of elasticity from PEEK with 3.7 GPa is in the lower modulus of elasticity of the human bone (cancellous bone: 0.5-3 GPa; Compacta: 10-25 GPa), with an elastic modulus adapted to the bone in load-bearing endoprostheses must be set.
  • the problems associated with this are solved by the filler particles 3.
  • Bioactive fillers based on calcium phosphates have emerged as particularly suitable.
  • the calcium phosphate group includes, for example, the osteoinductive hydroxyapatite (Ca 10 (PO) 6 (OH)) and the osteoconductive, fully absorbable tricalcium phosphate (Ca 3 (P0 4 ) 2 ). Both materials are already used in medicine as synthetic bone material in mostly granular form for the filling of bone defects. Hydroxyapatite is the inorganic mineral phase in the tooth (98% by weight) and bone (60-70% by weight). Due to their low strength, hydroxyapatite implants are only suitable for non-load-bearing applications with small bone defects.
  • the modulus of elasticity and thus the strength of the material are adapted and adjusted to the particular application.
  • the modulus of elasticity stated above increases from pure PEEK to 30 GPa of the mixture when 30% technical glass is added. With the addition of 30% carbon, a modulus of elasticity of 20 GPa is achieved.
  • the only partial embedding of the filler particles 3 in the area S of the implant 1 creates a point of contact for the ingrowth of bone tissue 4.
  • This growth of the bone tissue 4 to the filler particles 3 creates a non-positive connection between the implant 1 and the bone tissue 4, as is shown in FIG. 2 by the scliraffur lines extending from the bone tissue 4 into the filler particles 3.
  • the three-dimensional geometry data for the implant 1 are determined by suitable measurement methods, such as, for example, computer tomography, and in a corresponding CAD / CAM system 13 entered.
  • the corresponding data are read in and processed in a suitable manner so that the entire sintering process can be controlled fully automatically.
  • the laser beam is now guided over a scanner mirror 14 controlled by the CAD / CAM system 13 and a corresponding focusing lens 15 over the top layer of the powder 8.
  • the matrix material 2 and the filler particles 3 are sintered together by melting and glued.
  • the building platform 10 is then moved downward by the layer thickness 9, which can be 10-250 ⁇ m depending on the powder grain size, and a new layer of powder material 8 is applied from the application container 7. Again, a certain area of this layer is scanned by the laser 5 in accordance with the CAD data of the implant 1 and the polymer material and the filler particles are sintered together. There is also a firm connection with the previously sintered layer. This process is repeated successively until the entire implant 1 is completed.
  • thermoplastic material used for the matrix material has good absorption in the wavelength range of the laser 5 so that the amount of energy required to melt the materials can be absorbed.
  • the heating of the material in the application container 7 and in the installation space 11 is necessary to just below the glass transition temperature Tg or, in the case of partially crystalline powders, to just above the crystallite melting temperature Tm.
  • hydroxyapatite over laser beam sintering has several advantages:
  • the structured surface of the laser-sintered implant 1 has a stimulating effect on a positive connection with the surrounding area Bone tissue 4, in contrast to metallic implants, there are no complications or artifacts in the imaging diagnosis via X-ray, CT or MW, quick and direct implant creation from a 3D data record (CT data), patient-specific, individual endoprosthesis geometry, shortening the operating time and the burden on the patient.
  • CT data 3D data record

Abstract

The invention relates to a bone replacement material, especially for the treatment of bone defects after surgical intervention, consisting of the following main components: a matrix material (2) made of a biocompatible, laser-sinterable polymer material, especially a thermoplastic polymer material, and filling material particles (3) made of inorganic, non-metal materials, especially bioinert or bioactive materials, which are at least partly embedded in the matrix material (2).

Description

Knochenersatzwerkstoff und Verfahren zur Herstellung eines Knochenersatz-ImplantatsBone replacement material and method for producing a bone replacement implant
Die Erfindung betrifft einen Knochenersatzwerkstoff, insbesondere für die Versorgung von Knochendefekten nach operativen Eingriffen, ein Verfahren zur Herstellung eines Knochenersatz-Implantats aus einem solchen Knochenersatzwerkstoff und ein Knochenimplantat selbst.The invention relates to a bone replacement material, in particular for the care of bone defects after surgical interventions, a method for producing a bone replacement implant from such a bone replacement material and a bone implant itself.
Die vorliegende Erfindung liegt auf dem Gebiet der Implantatmedizin im Zusammenhang mit Knochendefekten, wie z.B. nach einer Tumorresektion, Traumabehandlung oder bei der Rekonstruktion angeborener Fehlbildungen. Hauptanwendungsgebiet sind Defekte von Schädelkalotte und Orbitadach und alle weiteren Knochendefekte, die rekonstruktive oder funktionsbedingte Eingriffe am Patienten nötig machen. Daraus ergeben sich für die Entwicklung sogenannter "Taylored Implants" folgende Entwicklungsziele:The present invention is in the field of implant medicine related to bone defects such as e.g. after tumor resection, trauma treatment or in the reconstruction of congenital malformations. The main areas of application are defects in the skull and orbital roof and all other bone defects that require reconstructive or functional interventions on the patient. This results in the following development goals for the development of so-called "Taylored Implants":
Entwicklung von Prothesen und Implantaten, welche die bildgebende Diagnostik nicht stören,Development of prostheses and implants that do not interfere with imaging diagnostics
Entwicklung von Prothesen mit einem dem Knochen angepaßten E- Modul und einer im Belastungsfall ausreichenden Festigkeit, - Optimale Fixierung und Positionierung der Prothesen und Implantate im/am Knochen,Development of prostheses with a modulus of elasticity adapted to the bone and sufficient strength in the event of stress, - Optimal fixation and positioning of the prostheses and implants in / on the bone,
Verfolgungsmöglichkeit des postoperativen Verlaufes durch bildgebende Diagnostik,Possibility of tracking the postoperative course through imaging diagnostics,
Individuelle, aus ästhetischen Gründen dem Patienten angepaßte Im- plantatgeometrie,Individual implant geometry adapted to the patient for aesthetic reasons,
BESTATIGUNGSKOPIE Übe rüfung der Passgenauigkeit der Implantate an anatomischen Faksimiles undBESTATIGUNGSKOPIE Checking the accuracy of fit of the implants on anatomical facsimiles and
Geringe Patientenbelastung.Low patient burden.
Zum Hintergrund der Erfindung und zum Stand der Technik ist auf folgen- des zu verweisen:With regard to the background of the invention and the prior art, reference is made to the following:
Bei der Rekonstruktion und Versorgung von knöchernen Defekten werden körpereigene (autogene) und körperfremde (alloplastische) Materialien eingesetzt.The body's own (autogenous) and foreign (alloplastic) materials are used in the reconstruction and care of bony defects.
Die Verwendung körpereigenen Knochens oder Knorpels besitzt den Nachteil, daß eine zweite Operation an einer weiteren Stelle des Patienten zur Entnahme des autogenen Materials nötig ist. Dies kann zu einer Beeinträchtigung der Spenderregion meist Wadenbein, Rippe oder Beckenkamm führen. Es entsteht eine zusätzliche Belastung für den Patienten. Eine weitere Beschränkung liegt in der Menge des zur Verfügung stehenden Transplantatmaterials. Ein Nachteil besteht auch in nicht vorhersagbaren Um- und Abbauprozessen von transplantierten Knochen, die bei vollständigem Abbau des Transplantats nach einigen Jahren zu erneuten operativen Eingriffen am Patienten führen.The use of the body's own bone or cartilage has the disadvantage that a second operation at a further point of the patient is necessary to remove the autogenous material. This can usually affect the donor region of the fibula, rib or iliac crest. There is an additional burden on the patient. Another limitation is the amount of graft material available. A disadvantage also lies in the unpredictable process of remodeling and dismantling transplanted bones, which after a few years leads to renewed surgical interventions on the patient if the transplant is completely dismantled.
Die Versorgung von Knochendefekten mittels alloplastischer Materialien konzentriert sich auf die Verwendung von Methylmetacrylaten und Titan. Der große Vorteil von körperfremden Materialien liegt in der unbegrenzten Verfügbarkeit. Biologisch verträgliche alloplastische Materialien (Kunststoff, Keramik, Metall) werden in den verschiedensten Bereichen der modernen Medizin bereits erfolgreich und komplikationsfrei als Im- plantate eingesetzt. Diese Materialien benötigen dementsprechend keine zusätzliche Entnahmestelle am Knochen und unterliegen im menschlichen Körper in der Regel keinen Um- oder Abbauprozessen. Die Verwendung von Polymethylmetacrylaten führt durch die Aushärtung der Kunststoffmasse während der Operation zu verschiedenen Komplikationen. Insbesondere die Hitzeentwicklung während der Polymerisation und die Monomerfreisetzung nach unvollständiger Reaktion können zu Entzün- dungsreaktionen führen. Weiterhin muß das Implantat im plastischen Zustand vorgeformt und danach ausgehärtet werden. Eine Folge ist ,daß durch die vollständige Aushärtung eine Formänderung eintritt, die eine Nachbearbeitung erforderlich macht.The treatment of bone defects using alloplastic materials focuses on the use of methyl methacrylates and titanium. The great advantage of extraneous materials lies in the unlimited availability. Biologically compatible alloplastic materials (plastic, ceramic, metal) are already being used successfully and without complications in a wide variety of areas of modern medicine as implants. Accordingly, these materials do not require an additional bone removal site and are generally not subject to any reconstruction or degradation processes in the human body. The use of polymethyl methacrylates leads to various complications due to the hardening of the plastic mass during the operation. In particular, the development of heat during the polymerization and the monomer release after an incomplete reaction can lead to inflammation reactions. Furthermore, the implant must be preformed in the plastic state and then hardened. One consequence is that the complete hardening causes a change in shape, which makes reworking necessary.
Entscheidend bei der Versorgung von Knochendefekten ist neben der äs- thetischen Anpassung in erster Linie die Passgenauigkeit zu den Defekträndern. Das durch die sterile Abdeckung eingeschränkte Operationsfeld erlaubt während der Operation keine umfassende Beurteilung der Kontur. Der exakten individuellen Anpassung sind daher Grenzen gesetzt.In addition to aesthetic adaptation, the decisive factor in the care of bone defects is primarily the accuracy of fit to the defect edges. The surgical field, which is restricted by the sterile cover, does not allow a comprehensive assessment of the contour during the operation. The exact individual adjustment is therefore limited.
Wünschenswert sind daher Implantatformen, die gezielt dem Patienten angepaßt werden. Mittels Computertomographie (CT) können knöcherne Strukturen exakt abgegriffen und die daraus gewonnenen 3D-Daten für die Implantatfertigung genutzt werden. Basierend auf diesen Datensätzen werden bereits individuelle Hüftendoprothesen und Kranioplastiken über das Computer Aided Design- und Manufacturing (CAD/CAM) aus dem Werkstoff Titan gefertigt.Implant forms that are specifically adapted to the patient are therefore desirable. Computed tomography (CT) can be used to precisely measure bony structures and the resulting 3D data can be used for implant production. Based on these data sets, individual hip endoprostheses and cranioplasties are already made from titanium using computer aided design and manufacturing (CAD / CAM).
Der Nachteil dieser metallischen Implantate sind Komplikationen oder Artefakte, die bei der bildgebenden Diagnostik über Röntgen, Computertomographie (CT) oder Kernspintomographie (MRI) entstehen. Besonders nachteilig wirken sich diese Artefakte für die exakte Beurteilung des postoperativen Heilungsverlaufes und insbesondere bei jüngeren Patienten aus, die aufgrund einer anderen medizinischen Indikation genau auf eine derartige bildgebende Diagnostik im Gebiet des Implantats angewiesen sind.The disadvantage of these metallic implants are complications or artefacts that arise in imaging diagnostics using X-rays, computed tomography (CT) or magnetic resonance imaging (MRI). These artifacts have a particularly disadvantageous effect on the precise assessment of the postoperative healing process and in particular in younger patients, which, due to another medical indication, depend exactly on such imaging diagnostics in the area of the implant.
Ebenfalls kritisch wird in der Fachliteratur bei Langzeitanwendungen von Metallen die Freisetzung von Metallionen und deren Wirkung auf den Or- ganismus diskutiert. Weiterhin kann es aufgrund der stark variierenden E- Modul- Werte von Metallimplantat und Knochengewebe (Ti: 110 GPa, Knochen: spongiös 0,5-3 GPa, cortical 10-25 GPa) zum Knochenabbau infolge des sogenannten "stress shielding"-Effektes kommen. Ein weiterer Nachteil beim Einsatz von Metallen ist, daß diese zur Gruppe der inerten Materialien gehören, so daß sich in der Regel keine kraftschlüssige Verbindung zwischen Implantat und Empfängergewebe ausbilden kann. Die Fixierung des Metallimplantates am Knochen erfolgt daher durch Schrauben und Platten.The release of metal ions and their effect on the organism is also critically discussed in the specialist literature for long-term use of metals. Furthermore, due to the strongly varying modulus of elasticity of metal implant and bone tissue (Ti: 110 GPa, bone: cancellous 0.5-3 GPa, cortical 10-25 GPa), bone degradation can occur as a result of the so-called "stress shielding" effect , Another disadvantage of using metals is that they belong to the group of inert materials, so that, as a rule, no non-positive connection between the implant and the recipient tissue can form. The metal implant is therefore fixed to the bone using screws and plates.
Angesichts dieser bekannten Lösungen und ihrer Nachteile bzw. Beschränkungen besteht die Aufgabe der vorliegenden Erfindung darin, einen Knochenersatzwerkstoff bereitzustellen, der eine kraftschlüssige Anbindung an den Knochen ermöglicht, dessen E-Modul an den des Knochens angepaßt ist und der über ein schnelles und einfaches Verfahren zu individuell ge- formten, patientenspezifischen Endoprothesen zu verarbeiten ist.In view of these known solutions and their disadvantages and limitations, the object of the present invention is to provide a bone replacement material which enables a non-positive connection to the bone, the modulus of elasticity of which is adapted to that of the bone, and which is achieved by a quick and simple method individually shaped, patient-specific endoprostheses must be processed.
Diese Aufgabe wird durch die im Kennzeichnungsteil der Ansprüche 1, 6 bzw. 10 angegebenen Merkmale gelöst. Kern der Erfindung ist dabei die Auswahl der an dem erfindungsgemäßen Knochenersatzwerkstoff beteilig- ten Materialien, die im Hinblick auf die ganz unterschiedlichen Aufgabestellungen einen optimalen Kompromiß darstellen. Ausgegangen wird dabei von einer Mischung aus einem biokompatiblen, lasersinterbaren Polymermaterial als Matrixwerkstoff und Füllstoffpartikeln aus anorganischen, nichtmetallischen Materialien wie z. B. Keramikpulver. Auch ein Poly- mer/Keramik-Compound in Pulverform ist möglich. Die anorganischen Füllstoffe sind zumindest bioinert oder vorzugsweise bioaktiv, wie z. B. osteoinduktiv oder osteokonduktiv.This object is achieved by the features specified in the characterizing part of claims 1, 6 and 10, respectively. The core of the invention is the selection of the materials involved in the bone substitute material according to the invention, which represent an optimal compromise in view of the very different tasks. The starting point is a mixture of a biocompatible, laser-sinterable polymer material as the matrix material and filler particles made of inorganic, non-metallic materials such. B. ceramic powder. A polymer / ceramic compound in powder form is also possible. The inorganic fillers are at least bioinert or preferably bioactive, such as. B. osteoinductive or osteoconductive.
Bezüglich der Materialauswahl für die biokompatiblen Polymermaterialien stehen eine Vielzahl von Kunststoffen zur Verfügung, wie z. B. Polyethy- len, Polypropylen, Polyethylenterephthalat, Polyvinylchlorid, Polyamid, Polyurethan, Polysulfon, Polysiloxan oder Polytetraflourethylen. Besonders bevorzugt ist das Material Polyetheretherketon (PEEK), das zur Gruppe der Hochtemperaturthermoplasten gehört. Nähere Ausführungen hierzu sind der Erörterung des Ausführungsbeispiels entnehmbar.With regard to the choice of materials for the biocompatible polymer materials, a variety of plastics are available, such as. B. polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polyamide, polyurethane, polysulfone, polysiloxane or polytetrafluoroethylene. The material polyether ether ketone (PEEK), which belongs to the group of high-temperature thermoplastics, is particularly preferred. Further explanations on this can be found in the discussion of the exemplary embodiment.
Für die Fullstoffpartikel eignen sich u.a. Calciumphosphate, biokompatible Glaspartikel, wie sie unter der Marke "Bioglas" kommerziell verfügbar sind, oder Kohlenstoffpartikel. Diese Partikel können in Form von Fasern, Kugeln, Whiskern oder Platelets vorliegen. Ihre Teilchengröße liegt vorzugsweise im Bereich von 0, 1 bis 200 μm, was im übrigen auch für die Partikelgröße des pulverförmigen Rohmaterials bei der erfmdungsgemäßen Herstellung eines Knochenersatz-Implantats zutrifft.Suitable for the filler particles include Calcium phosphates, biocompatible glass particles, as are commercially available under the "Bioglas" brand, or carbon particles. These particles can be in the form of fibers, spheres, whiskers or platelets. Their particle size is preferably in the range from 0.1 to 200 μm, which also applies to the particle size of the powdery raw material in the production of a bone replacement implant according to the invention.
Die Fullstoffpartikel weisen bevorzugtermaßen einen Gewichtsanteil von 5 bis 80% bezogen auf die Werkstoffgesamtmenge auf.The filler particles preferably have a weight fraction of 5 to 80% based on the total amount of material.
Das gemäß Anspruch 6 vorgesehene Verfahren zur Herstellung eines Knochenersatz-Implantats aus dem erfmdungsgemäßen Knochenersatzwerkstoff setzt auf das im Zusammenhang mit dem sogenannten "Rapid Prototyping " bekannte Verfahren des Laserstrahlsinterns auf. Das Laserstrahlsintern ist ein generatives Verfahren, mit dessen Hilfe direkt aus einem 3D-Datensatz Bauteile hergestellt werden können. Über das Laserstrahlsintern können kurzfristig formkomplizierte Bauteilstrukturen einschließlich Hinterschnei- dungen gefertigt werden. Im Gegensatz zu spanenden Verfahren entsteht das Werkstück durch einen Werkstoffauftrag. Der entscheidende Vorteil des Laserstrahlsinterns von Kunststoffen ist die hohe Flexibilität mit der innerhalb kürzester Zeit komplizierte und individuell geformte Bauteilstrukturen gefertigt werden können. Insoweit ist dieses Verfahren auch für die Herstellung eines Knochenersatz-Implantats hervorragend geeignet, da derartige Werkstücke grundsätzlich jeweils individuell anzufertigen sind.The method according to claim 6 for producing a bone replacement implant from the bone replacement material according to the invention is based on the method of laser beam sintering known in connection with the so-called "rapid prototyping". The laser beam sintering is a generative process that can be used to produce components directly from a 3D data set. Using laser beam sintering, complex component structures including undercuts can be produced at short notice. In contrast to cutting processes, the workpiece is created by applying a material. The decisive advantage of laser beam sintering of plastics is the high flexibility with which complex and individually shaped component structures can be manufactured within a very short time. In this respect, this method is also excellently suited for the production of a bone replacement implant, since such workpieces must always be individually manufactured.
Schließlich ist es erfindungsgemäß vorgesehen, die Fullstoffpartikel derart in den Matrixwerkstoff aus dem biokompatiblen Polymermaterial einzubetten, daß diese Fullstoffpartikel an der Implantatoberfläche nur teilweise in den Matrixwerkstoff eingebettet sind. Insbesondere bei Verwendung von bioaktiven Füllstoffen, wie Calciumphosphaten oder den erwähnten biokompatiblen Glaspartikeln ist dann keine dauerhafte Verankerung durch Fixierungsmittel notwendig, da durch die f eiliegenden Fullstoffpartikel ein kraftschlüssiges Verwachsen zwischen dem Knochen und dem daran anlie- genden Implantat erzielt wird. Weitere Funktionen der Fullstoffpartikel liegen darin, daß durch ihren Anteil im Matrixwerkstoff die mechanischen Eigenschaften des Knochenersatzwerkstoffes, wie E-Modul, Festigkeit und Kriechverhalten an das umliegende Knochengewebe adaptierbar sind. Ferner sind solche anorganischen Füllstoffe vorteilhaft zur Sichtbarmachung des polymeren Implantates auf röntgenographischen Aufnahmen, wobei jedoch die bildgebende Diagnostik durch diese Füllstoffe nicht gestört wird. Schließlich beeinflussen die anorganischen Fullstoffpartikel in positiver Weise das Schrumpfverhalten des Matrixwerkstoffes, in dem ein sol- ches Schrumpfen weitgehend unterbunden wird. Die aus dem Knochenersatzwerkstoff hergestellten Implantate weisen daher also eine hohe Maßhaltigkeit auf.Finally, it is provided according to the invention to embed the filler particles in the matrix material made of the biocompatible polymer material in such a way that these filler particles are only partially embedded in the matrix material on the implant surface. In particular when using bioactive fillers, such as calcium phosphates or the aforementioned biocompatible glass particles, no permanent anchoring is necessary by means of fixing agents, since the filler particles lying there achieve a positive connection between the bone and the implant attached to it. Further functions of the filler particles are that the mechanical properties of the bone substitute material, such as elastic modulus, strength and creep behavior, can be adapted to the surrounding bone tissue due to their proportion in the matrix material. Furthermore, such inorganic fillers are advantageous for making the polymeric implant visible on X-ray images, but the imaging diagnostics are not disturbed by these fillers. Finally, the inorganic filler particles have a positive effect on the shrinkage behavior of the matrix material, in which a ch shrinkage is largely prevented. The implants made from the bone substitute material therefore have a high degree of dimensional accuracy.
Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der ein Ausführungsbeispiel des Erfindungsgegenstandes näher erläutert wird. Es zeigen:Further features, details and advantages of the invention result from the following description, in which an embodiment of the subject matter of the invention is explained in more detail. Show it:
Fig. 1 eine perspektivische, ausschnittsweise vergrößerte Schema- darstellung eines Knochenersatz-Implantats,1 is a perspective, partially enlarged schematic representation of a bone replacement implant,
Fig. 2 einen schematischen, extrem vergrößerten Teilschnitt durch die Grenzfläche zwischen Knochenersatz-Implantat und umliegenden Knochengewebe, undFig. 2 is a schematic, extremely enlarged partial section through the interface between the bone replacement implant and the surrounding bone tissue, and
Fig. 3 eine Prinzipdarstellung einer Lasersinteranlage zur Herstellung eines Knochenersatz-Implantats.3 shows a basic illustration of a laser sintering system for producing a bone replacement implant.
Wie aus Fig. 1 deutlich wird, besteht ein lasergesintertes Knochenersatz- Implantat 1 aus einem Matrixwerkstoff 2 und darin eingebetteten Füllstoffpartikeln 3. Bei dem Matrixwerkstoff handelt es sich um Polyethenether- keton (PEEK), dessen Eigenschaftsprofil hervorragend für die Verwendung als Matrixwerkstoff ausgelegt ist. PEEK ist gekennzeichnet durch hervorragende mechanische Eigenschaften, eine hohe chemische Beständigkeit und damit Langzeitbeständigkeit sowie eine hohe Strahlen- und Verschleißbeständigkeit. Insoweit ist dieser Werkstoff für einen Einsatz im aggressiven Körpermilieu gut geeignet. Ein weiterer Vorteil dieses gegenüber äußeren Einflüssen wenig anfälligen Materials liegt in seiner pro- blemlosen Sterilisierbarkeit. Die Eignung dieses Materials für den medizinischen Bereich wird auch durch die bestehende FDA-(American Food and Drug Association-) Zulassung dokumentiert.As is clear from FIG. 1, a laser-sintered bone replacement implant 1 consists of a matrix material 2 and filler particles 3 embedded therein. The matrix material is polyethene ether ketone (PEEK), the property profile of which is outstandingly designed for use as a matrix material. PEEK is characterized by excellent mechanical properties, high chemical resistance and thus long-term resistance as well as high radiation and wear resistance. In this respect, this material is well suited for use in an aggressive body environment. Another advantage of this material, which is not very sensitive to external influences, lies in its easy sterilizability. The suitability of this material for the medical field is also documented by the existing FDA (American Food and Drug Association) approval.
Für den Einsatz von PEEK als Knochenersatzwerkstoff sind zwei Punkte zu beachten:There are two points to consider when using PEEK as a bone substitute:
- PEEK wird, wie alle Kunststoffe, der Gruppe der bioinerten Materialien zugeordnet, d.h. daß das Implantat keine Verbindung mit dem Knochengewebe eingehen kann. - Der E-Modul von PEEK liegt mit 3,7 GPa im unteren E-Modulbereich des menschlichen Knochens (Spongiosa: 0,5-3 GPa; Compacta: 10-25 GPa), wobei in lasttragenden Endoprothesen ein dem Knochen angepaßter E-Modul eingestellt werden muß.- PEEK, like all plastics, is assigned to the group of bio-inert materials, i.e. that the implant cannot make any connection with the bone tissue. - The modulus of elasticity from PEEK with 3.7 GPa is in the lower modulus of elasticity of the human bone (cancellous bone: 0.5-3 GPa; Compacta: 10-25 GPa), with an elastic modulus adapted to the bone in load-bearing endoprostheses must be set.
Die damit einhergehenden Probleme werden durch die Fullstoffpartikel 3 gelöst. Als besonders geeignet haben sich bioaktive Füllstoffe auf der Basis von Calciumphosphaten herauskristallisiert. Zur Gruppe der Calciumphos- phate gehören z.B. der osteoinduktive Hydroxylapatit (Ca10(PO )6(OH) ) und das osteokonduktive, vollständig resorbierbare Tricalciumphosphat (Ca3(P04)2). Beide Materialien werden bereits in der Medizin als synthetisches Knochenmaterial in meist granulärer Form für die Auffüllung von Knochendefekten verwendet. Hydroxylapatit ist die anorganische mineralische Phase im Zahn (98 Gew.%) und Knochen (60-70 Gew.%). Aufgrund der geringen Festigkeit sind Hydroxylapatit-Implantate nur für nicht- lasttragende Anwendungen bei kleinen Knochendefekten geeignet. Durch die Zugabe solcher Füllstoffpartikeln wird zum einen der E-Modul und damit die Festigkeit des Materials an den jeweiligen Einsatzzweck angepaßt und eingestellt. So erhöht sich der oben angegebene E-Modul von reinem PEEK bei Zugabe von 30 % technischem Glas auf 10 GPa der Mi- schung. Bei Zugabe von 30 % Carbon wird ein E-Modul von 20 GPa erreicht.The problems associated with this are solved by the filler particles 3. Bioactive fillers based on calcium phosphates have emerged as particularly suitable. The calcium phosphate group includes, for example, the osteoinductive hydroxyapatite (Ca 10 (PO) 6 (OH)) and the osteoconductive, fully absorbable tricalcium phosphate (Ca 3 (P0 4 ) 2 ). Both materials are already used in medicine as synthetic bone material in mostly granular form for the filling of bone defects. Hydroxyapatite is the inorganic mineral phase in the tooth (98% by weight) and bone (60-70% by weight). Due to their low strength, hydroxyapatite implants are only suitable for non-load-bearing applications with small bone defects. By adding such filler particles, on the one hand the modulus of elasticity and thus the strength of the material are adapted and adjusted to the particular application. The modulus of elasticity stated above increases from pure PEEK to 30 GPa of the mixture when 30% technical glass is added. With the addition of 30% carbon, a modulus of elasticity of 20 GPa is achieved.
Ferner wird durch die nur teilweise Einbettung der Fullstoffpartikel 3 im Bereich der Oberfläche S des Implantats 1 ein Anknüpfungspunkt für das Einwachsen von Knochengewebe 4 geschaffen. Durch dieses Anwachsen des Knochengewebes 4 an die Fullstoffpartikel 3 entsteht eine kraftschlüs- sige Verbindung zwischen Implantat 1 und Knochengewebe 4, wie dies in Fig. 2 durch die aus dem Knochengewebe 4 in die Fullstoffpartikel 3 hineinreichenden Scliraffurlinien bildlich angedeutet ist.Furthermore, the only partial embedding of the filler particles 3 in the area S of the implant 1 creates a point of contact for the ingrowth of bone tissue 4. This growth of the bone tissue 4 to the filler particles 3 creates a non-positive connection between the implant 1 and the bone tissue 4, as is shown in FIG. 2 by the scliraffur lines extending from the bone tissue 4 into the filler particles 3.
Die Herstellung des Knochenersatz-Implantats 1 erfolgt über eine in Fig. 3 schematisch dargestellte Lasersinteranlage. Dessen Kernstück ist ein C02-Laser 5 mit einer Wellenlänge λ = 10,64 μm, dessen Strahl mit 6 bezeichnet ist. Über einen Auftragsbehälter 7 wird pulverförmiges Aus- gangsmaterial 8, bestehend aus dem pulverformigen Matrixwerkstoff 2 und den Füllstoffpartikeln 3 in einer Schichtdicke 9 auf eine Bauplattform 10 aufgebracht. Oberhalb dieser Bauplattform 10 liegt der Bauraum 11 für das Implantat. Die Bauplattform 10 ist über einen schematisch angedeuteten Höhenantrieb 12 in vertikaler Richtung verfahrbar.The bone replacement implant 1 is produced by means of a laser sintering system shown schematically in FIG. 3. Its core is a C0 2 laser 5 with a wavelength λ = 10.64 μm, the beam of which is designated 6. Powdery starting material 8, consisting of the powdery matrix material 2 and the filler particles 3, is applied in a layer thickness 9 to a building platform 10 via an application container 7. Above this construction platform 10 is the installation space 11 for the implant. The construction platform 10 can be moved in the vertical direction via a schematically indicated height drive 12.
Zur Vorbereitung der Herstellung eines Implantats 1 werden durch geeignete Vermessungsverfahren, wie beispielsweise die Computertomographie, die dreidimensionalen Geometriedaten für das Implantat 1 ermittelt und in ein entsprechendes CAD/CAM-System 13 eingegeben. Die entsprechenden Daten werden in geeigneter Weise eingelesen und bearbeitet, damit der gesamte Sinterprozeß vollautomatisch gesteuert werden kann. Entsprechend der gewünschten Bauteilgeometrie wird nun der Laserstrahl über einen vom CAD/CAM-System 13 gesteuerten Scannerspiegel 14 und eine entsprechende Fokussieroptik 15 über die jeweils oberste Schicht des Pulvers 8 geführt. In dem abgescannten Bereich werden der Matrixwerkstoff 2 und die Fullstoffpartikel 3 durch Aufschmelzen zusammengesintert und verklebt. Anschließend wird die Bauplattform 10 um die Schichtdicke 9, die in Abhängigkeit von Pulverkorngröße 10 - 250 μm betragen kann, nach unten gefahren und eine neue Schicht Pulvermaterial 8 aus dem Auftragsbehälter 7 aufgebracht. Es wird wiederum entsprechend den CAD-Daten des Implantats 1 ein bestimmter Bereich dieser Schicht vom Laser 5 abgescannt und das Polymermaterial und die Füllstoffpartikel miteinander versintert. Dabei findet auch eine fester Verbindung mit der vorher gesinterten Schicht statt. Dieser Vorgang wird sukzessiv wiederholt, bis das gesamte Implantat 1 fertiggestellt ist.To prepare for the manufacture of an implant 1, the three-dimensional geometry data for the implant 1 are determined by suitable measurement methods, such as, for example, computer tomography, and in a corresponding CAD / CAM system 13 entered. The corresponding data are read in and processed in a suitable manner so that the entire sintering process can be controlled fully automatically. In accordance with the desired component geometry, the laser beam is now guided over a scanner mirror 14 controlled by the CAD / CAM system 13 and a corresponding focusing lens 15 over the top layer of the powder 8. In the scanned area, the matrix material 2 and the filler particles 3 are sintered together by melting and glued. The building platform 10 is then moved downward by the layer thickness 9, which can be 10-250 μm depending on the powder grain size, and a new layer of powder material 8 is applied from the application container 7. Again, a certain area of this layer is scanned by the laser 5 in accordance with the CAD data of the implant 1 and the polymer material and the filler particles are sintered together. There is also a firm connection with the previously sintered layer. This process is repeated successively until the entire implant 1 is completed.
Bei der Wahl des Lasers 5 ist im übrigen darauf zu achten, daß das dazu verwendete Thermoplastmaterial für den Matrixwerkstoff eine gute Absorption im Wellenlängenbereich des Lasers 5 aufweist, damit die zum Schmelzen der Materialien benötigte Energiemenge aufgenommen werden kann. Ferner ist für eine optimale Verarbeitung der Kunststoffpulver die Erwärmung des Materiales im Auftragsbehälter 7 und im Bauraum 11 bis kurz unter die Glasübergangstemperatur Tg bzw. bei teilkristallinen Pulvern bis kurz oberhalb der Kristallitschmelztemperarur Tm notwendig. Beispiele für diese Temperaturen für das Material PEEK sind Tg = 143°C und Tm = 334°C. Für Polyamid lauten die entsprechenden Werte Tg = 78°C und Tm = 260°C.When choosing the laser 5, it should also be ensured that the thermoplastic material used for the matrix material has good absorption in the wavelength range of the laser 5 so that the amount of energy required to melt the materials can be absorbed. Furthermore, for optimal processing of the plastic powder, the heating of the material in the application container 7 and in the installation space 11 is necessary to just below the glass transition temperature Tg or, in the case of partially crystalline powders, to just above the crystallite melting temperature Tm. Examples of these temperatures for the material PEEK are Tg = 143 ° C and Tm = 334 ° C. For polyamide, the corresponding values are Tg = 78 ° C and Tm = 260 ° C.
Durch die Verarbeitung eines Knochenersatzwerkstoffes aus biokompati- blen Thermoplastwerkstoffen 2, wie z.B. Polyetheretherketon, und funktioneilen Füll- bzw. Verstärkungskomponenten 3, wie z.B. Hydroxylapatit über das Laserstrahlsintern ergeben sich zusammenfassend mehrere Vorteile:By processing a bone substitute material made of biocompatible thermoplastic materials 2, such as Polyetheretherketon, and functional filling or reinforcing components 3, such as In summary, hydroxyapatite over laser beam sintering has several advantages:
Anpassung des E-Moduls des Implantates 1 an den des Knochens 4 über die Variation des Füllstoffgehaltes, direktes kraftschlüssiges Verwachsen des Implantates 1 mit dem Knochengewebe 4 durch eingelagertes Calciumphosphat 3, die strukturierte Oberfläche des lasergesinterten Implantates 1 wirkt stimulierend auf ein kraftschlüssige Verwachsen mit dem umgebenden Knochengewebe 4, im Gegensatz zu metallischen Implantaten ergeben sich keine Komplikationen oder Artefakte bei der bildgebenden Diagnose über Röntgen, CT oder MW, schnelle und direkte Implantatherstellung aus einem 3 D-Datensatz (CT-Daten), an den Patienten angepaßte, individuelle Endoprothesegeometrie, Verkürzung der Operationszeit und der Belastung für den Patienten. Adaptation of the modulus of elasticity of the implant 1 to that of the bone 4 by varying the filler content, direct non-positive growth of the implant 1 with the bone tissue 4 by means of calcium phosphate 3 embedded therein, the structured surface of the laser-sintered implant 1 has a stimulating effect on a positive connection with the surrounding area Bone tissue 4, in contrast to metallic implants, there are no complications or artifacts in the imaging diagnosis via X-ray, CT or MW, quick and direct implant creation from a 3D data record (CT data), patient-specific, individual endoprosthesis geometry, shortening the operating time and the burden on the patient.

Claims

Patentansprüche claims
1. Knochenersatzwerkstoff, insbesondere für die Versorgung von Knochendefekten nach operativen Eingriffen, gekennzeichnet durch fol- gende Hauptbestandteile:1. Bone replacement material, especially for the treatment of bone defects after surgery, characterized by the following main components:
- ein Matrixwerkstoff (2) aus einem biokompatiblen, lasersinterbaren, insbesondere thermoplastischen Polymermaterial, und- A matrix material (2) made of a biocompatible, laser sinterable, in particular thermoplastic polymer material, and
- in den Matrixwerkstoff (2) zumindest teilweise eingebettete Fullstoffpartikel (3) aus anorganischen, nichtmetallischen, insbesondere bioinerten oder bioaktiven Materialien.- In the matrix material (2) at least partially embedded filler particles (3) made of inorganic, non-metallic, especially bio-inert or bioactive materials.
2. Knochenersatzwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß als biokompatible Polymermaterialien vorzugsweise Polyetheretherketon (PEEK) oder Polyethylen (PE), Polypropylen (PP), Polye- thylenterephthalat (PET), Polyvinylchlorid (PVC), Polyamid (PA), Polyurethan (PUR), Polysulfon (PSU), Polysiloxan oder Polytetrafluo- rethylen (PTFE) verwendbar sind.2. Bone replacement material according to claim 1, characterized in that as biocompatible polymer materials preferably polyether ether ketone (PEEK) or polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyamide (PA), polyurethane (PUR) ), Polysulfone (PSU), polysiloxane or polytetrafluoroethylene (PTFE) can be used.
3. Knochenersatzwerkstoff nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, daß die Fullstoffpartikel (3) aus Calciumphosphaten, biokompatiblen Glaspartikeln oder Kohlenstoffpartikeln bestehen.3. Bone replacement material according to claim 1 or 2, characterized in that the filler particles (3) consist of calcium phosphates, biocompatible glass particles or carbon particles.
4. Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Fullstoffpartikel (3) in Form von Fasern, Ku- geln, Whiskern oder Platelets vorliegen.4. Bone replacement material according to one of claims 1 to 3, characterized in that the filler particles (3) are present in the form of fibers, balls, whiskers or platelets.
5. Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Fullstoffpartikel (3) eine Teilchengröße im Bereich von 0, 1 bis 200 μm aufweisen.5. Bone replacement material according to one of claims 1 to 4, characterized in that the filler particles (3) have a particle size in Have range from 0.1 to 200 microns.
6. Verfahren zur Herstellung eines Knochenersatz-Implantats aus dem Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 5, gekenn- zeichnet durch folgende Verfahrensschritte:6. A method for producing a bone replacement implant from the bone replacement material according to one of claims 1 to 5, characterized by the following method steps:
- Bereitstellen eines als pulverformiges Gemisch oder Compound- Material aus biokompatiblem, lasersinterbaren, insbesondere thermoplastischen Matrix-Polymermaterial (2) und Füllstoffpartikeln (3) aus anorganischen, nichtmetallischen, insbesondere bioinerten oder bioaktiven Materialien vorliegenden Ausgangsmaterials (8),- Providing a starting material (8) as a powdery mixture or compound material made of biocompatible, laser-sinterable, in particular thermoplastic matrix polymer material (2) and filler particles (3) made of inorganic, non-metallic, in particular bio-inert or bioactive materials,
- schichtweises Anordnen des Ausgangsmaterials (8) in einer Pulverschicht (9),- arranging the starting material (8) in layers in a powder layer (9),
- Lasersintern einer Lage des Implantats (1) entsprechend vorgegebener Daten der Implantatgeometrie unter Verfestigung des Matrix- Polymermaterials (2) und -αimindest teilweiser Einbettung der Fullstoffpartikel (3), sowie- Laser sintering of a position of the implant (1) according to predetermined data of the implant geometry while solidifying the matrix polymer material (2) and at least partially embedding the filler particles (3), and
- sukzessives Wiederholen der beiden vorstehenden Schritte unter Verbindung einer gesinterten Schicht mit der vorher gesinterten Schicht bis zur Fertigstellung des Implantats (1).- successively repeating the two above steps by connecting a sintered layer with the previously sintered layer until the implant (1) is finished.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Lasersintern derart erfolgt, daß Fullstoffpartikel (3) an der Oberfläche (S) des Implantats (1) freiliegen.7. The method according to claim 6, characterized in that the laser sintering is carried out such that filler particles (3) on the surface (S) of the implant (1) are exposed.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Partikelgröße des pulverformigen Matrix-Polymermaterials (2) zwischen 0, 1 und 200 μm liegt. 8. The method according to claim 6 or 7, characterized in that the particle size of the powdery matrix polymer material (2) is between 0, 1 and 200 microns.
. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das Ausgangsmaterial (8) vor dem Lasersintern materialabhängig auf eine Temperatur kurz unter der Glasübergangstemperatur oder bei teilkristallinen Materialien kurz über der Kristallitschmelztemperatur erwärmt wird., Method according to one of claims 6 to 8, characterized in that the starting material (8) is heated depending on the material to a temperature just below the glass transition temperature or, in the case of partially crystalline materials, just above the crystallite melting temperature, depending on the material.
10. Knochenimplantat bestehend aus einem Knochenersatzwerkstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Fullstoffpartikel (3) an der Implantatoberfläche (S) nur teilweise in den Matrixwerkstoff (2) eingebettet sind. 10. Bone implant consisting of a bone replacement material according to one of claims 1 to 5, characterized in that the filler particles (3) on the implant surface (S) are only partially embedded in the matrix material (2).
PCT/EP2001/012867 2000-11-09 2001-11-07 Bone replacement material and method for the production of a bone replacement implant WO2002070031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10055465A DE10055465A1 (en) 2000-11-09 2000-11-09 Material useful for making bone replacement implants comprises nonmetallic inorganic filler particles embedded in a laser-sinterable biocompatible polymer matrix
DE10055465.2 2000-11-09

Publications (1)

Publication Number Publication Date
WO2002070031A1 true WO2002070031A1 (en) 2002-09-12

Family

ID=7662645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012867 WO2002070031A1 (en) 2000-11-09 2001-11-07 Bone replacement material and method for the production of a bone replacement implant

Country Status (2)

Country Link
DE (1) DE10055465A1 (en)
WO (1) WO2002070031A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1402016A2 (en) * 2001-05-30 2004-03-31 Porex Technologies Corporation Functionalized porous materials and applications in medical devices
CN100360193C (en) * 2002-12-24 2008-01-09 凯瑟琳·卡多雷尔 Medical or veterinary material, method for the production and use thereof
US8313087B2 (en) 2004-03-21 2012-11-20 Eos Gmbh Electro Optical Systems Powder for rapid prototyping and associated production method
US8592531B2 (en) 2007-09-11 2013-11-26 Solvay Advanced Polymers, L.L.C. Prosthetic devices
US8710144B2 (en) 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
CN103959359A (en) * 2011-10-03 2014-07-30 克利夫兰临床医学基金会 Synthetic bone model and method for providing same
EP2115043B1 (en) 2007-04-05 2017-05-31 EOS GmbH Electro Optical Systems Paek powder, particularly for use in a method for the production of a three-dimensional object in layers, and method for the production thereof
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
CN111526896A (en) * 2017-10-06 2020-08-11 帝斯曼知识产权资产管理有限公司 Method of making an osteoconductive polymer article and osteoconductive polymer article made thereby

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US7239908B1 (en) 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
ATE439806T1 (en) 1998-09-14 2009-09-15 Univ Leland Stanford Junior DETERMINING THE CONDITION OF A JOINT AND PREVENTING DAMAGE
ATE426357T1 (en) 2000-09-14 2009-04-15 Univ Leland Stanford Junior ASSESSING THE CONDITION OF A JOINT AND PLANNING TREATMENT
AU2001290887B2 (en) 2000-09-14 2006-06-08 The Board Of Trustees Of The Leland Stanford Junior University Assessing condition of a joint and cartilage loss
JP3927487B2 (en) * 2002-12-02 2007-06-06 株式会社大野興業 Manufacturing method of artificial bone model
DE10338201C5 (en) * 2003-08-20 2008-11-13 Audi Ag Friction pairing for clutch systems
DE10350570A1 (en) * 2003-10-30 2005-06-16 Bego Semados Gmbh Making bone replacement material employs laser beam to sinter or melt loose particles, bonding them together into granular unit with controlled porosity
DE102004012411A1 (en) * 2004-03-13 2005-09-29 Dot Gmbh Composite materials based on polysilicic acids and process for their preparation
WO2006091097A2 (en) * 2005-01-14 2006-08-31 Cam Implants B.V. Two-dimensional and three-dimensional structures with a pattern identical to that of e.g. cancellous bone
WO2007016795A1 (en) * 2005-08-09 2007-02-15 Dr.H.C. Robert Mathys Stiftung Device for the artificial replacement of a joint articulation in humans and animals
EP1806113B1 (en) * 2006-01-06 2013-08-07 Karl-Dieter Lerch Method of forming customized cranial implants and cranial implant
US9233505B2 (en) 2006-11-09 2016-01-12 3D Systems, Inc. Powder compositions and methods of manufacturing articles therefrom
US8247492B2 (en) 2006-11-09 2012-08-21 Valspar Sourcing, Inc. Polyester powder compositions, methods and articles
WO2008101090A2 (en) * 2007-02-14 2008-08-21 Conformis, Inc. Implant device and method for manufacture
CN104941004B (en) 2009-11-25 2018-09-14 扩散技术公司 The rear loading method of the plastics of zeolite is adulterated with antimicrobial metal ion pair
BR112012016027B1 (en) 2009-12-11 2019-01-15 Difusion Technologies, Inc. production method of polyetheretherketone antimicrobial implants
GB201003761D0 (en) * 2010-03-05 2010-04-21 Invibio Ltd Polymeric materials
US9107765B2 (en) 2010-05-07 2015-08-18 Difusion Technologies, Inc. Medical implants with increased hydrophilicity
FR2967073A1 (en) 2010-11-04 2012-05-11 Catherine Cadorel BONE FILLING MATERIAL FOR MEDICAL OR VETERINARY USE, PROCESS FOR OBTAINING SAME, MATERIAL OBTAINED AND APPLICATIONS THEREOF
US9408686B1 (en) 2012-01-20 2016-08-09 Conformis, Inc. Devices, systems and methods for manufacturing orthopedic implants
EP2634207B1 (en) * 2012-03-02 2014-04-30 Pobi Concept Oy A multifunctional filler granule
US9636229B2 (en) 2012-09-20 2017-05-02 Conformis, Inc. Solid freeform fabrication of implant components
US9849019B2 (en) 2012-09-21 2017-12-26 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
DE102016110500B4 (en) * 2016-06-07 2019-03-14 Karl Leibinger Medizintechnik Gmbh & Co. Kg Implant fabrication by additive selective laser sintering and implant
EP3320877B1 (en) * 2016-11-14 2021-05-26 Andreas Schwitalla Implant made from fibre-reinforced plastic
CN112276109B (en) * 2020-09-10 2021-12-17 华中科技大学 Forming method and product of polyether-ether-ketone bio-philic metal porous bone implant
CN114191617B (en) * 2021-11-12 2023-01-24 华中科技大学 Polyether-ether-ketone implant with controllable drug slow release and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192021A (en) * 1976-05-12 1980-03-11 Batelle-Institut e.V. Bone replacement or prosthesis anchoring material
EP0049720A1 (en) * 1980-10-09 1982-04-21 National Research Development Corporation Prosthesis comprising composite material
EP0795336A1 (en) * 1995-09-14 1997-09-17 Takiron Co. Ltd. Osteosynthetic material, composited implant material, and process for preparing the same
US5728157A (en) * 1989-02-15 1998-03-17 Xomed Surgical Products, Inc. Biocompatible composite prostheses
US5977204A (en) * 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
US6083264A (en) * 1998-06-30 2000-07-04 Mcdonnell Douglas Corporation Implant material for replacing or augmenting living bone tissue involving thermoplastic syntactic foam

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
GB8415265D0 (en) * 1984-06-15 1984-07-18 Ici Plc Device
US5522894A (en) * 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
US4849285A (en) * 1987-06-01 1989-07-18 Bio Med Sciences, Inc. Composite macrostructure of ceramic and organic biomaterials
EP0371491A1 (en) * 1988-11-29 1990-06-06 Thomas Dr. Heinl Implant
DE4029714A1 (en) * 1990-09-19 1992-03-26 Klaus Draenert Implant for e.g. stiffening bones and anchoring prostheses - consists of polymer and/or copolymer in which filler particles are at least partially embedded
US6080801A (en) * 1990-09-13 2000-06-27 Klaus Draenert Multi-component material and process for its preparation
US5292584A (en) * 1991-04-11 1994-03-08 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight polyethylene and lightly-filled composites thereof
ATE163846T1 (en) * 1992-03-23 1998-03-15 Howmedica ORTHOPEDIC IMPLANT COMPOSITION
DE4219321A1 (en) * 1992-06-12 1993-12-16 Draenert Klaus Polymer granules and process for their production
DE4230339A1 (en) * 1992-09-10 1994-03-17 Man Ceramics Gmbh Implant
JP3472970B2 (en) * 1993-12-10 2003-12-02 株式会社アドバンス Method for producing bioimplant material
DE4400073C3 (en) * 1994-01-04 2002-02-28 Burghardt Krebber Dentures made of fiber-reinforced composite materials and their use
DE19728131A1 (en) * 1997-07-02 1999-01-07 Gerd Hoermansdoerfer Versatile sliding surface for joint prostheses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192021A (en) * 1976-05-12 1980-03-11 Batelle-Institut e.V. Bone replacement or prosthesis anchoring material
EP0049720A1 (en) * 1980-10-09 1982-04-21 National Research Development Corporation Prosthesis comprising composite material
US5728157A (en) * 1989-02-15 1998-03-17 Xomed Surgical Products, Inc. Biocompatible composite prostheses
EP0795336A1 (en) * 1995-09-14 1997-09-17 Takiron Co. Ltd. Osteosynthetic material, composited implant material, and process for preparing the same
US5977204A (en) * 1997-04-11 1999-11-02 Osteobiologics, Inc. Biodegradable implant material comprising bioactive ceramic
US6083264A (en) * 1998-06-30 2000-07-04 Mcdonnell Douglas Corporation Implant material for replacing or augmenting living bone tissue involving thermoplastic syntactic foam

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
VELAYUDHAN S ET AL: "Extrusion of hydroxyapatite to clinically significant shapes", MATERIALS LETTERS, NORTH HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 46, no. 2-3, November 2000 (2000-11-01), pages 142 - 146, XP004256608, ISSN: 0167-577X *
WANG M ET AL: "Chemically coupled hydroxyapatite-polyethylene composites: processing and characterisation", MATERIALS LETTERS, NORTH HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 44, no. 2, June 2000 (2000-06-01), pages 119 - 124, XP004256466, ISSN: 0167-577X *
WANG M ET AL: "Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology", BIOMATERIALS, ELSEVIER SCIENCE PUBLISHERS BV., BARKING, GB, vol. 19, no. 24, December 1998 (1998-12-01), pages 2357 - 2366, XP004168871, ISSN: 0142-9612 *
WANPENG C ET AL: "Bioactive Materials", CERAMICS INTERNATIONAL, ELSEVIER APPLIED SCIENCE PUBL, BARKING, ESSEX, GB, vol. 22, no. 6, 1996, pages 493 - 507, XP004040625, ISSN: 0272-8842 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1402016A2 (en) * 2001-05-30 2004-03-31 Porex Technologies Corporation Functionalized porous materials and applications in medical devices
EP1402016A4 (en) * 2001-05-30 2006-02-08 Porex Int Corp Functionalized porous materials and applications in medical devices
CN100360193C (en) * 2002-12-24 2008-01-09 凯瑟琳·卡多雷尔 Medical or veterinary material, method for the production and use thereof
US8313087B2 (en) 2004-03-21 2012-11-20 Eos Gmbh Electro Optical Systems Powder for rapid prototyping and associated production method
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
US8710144B2 (en) 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
EP2115043B1 (en) 2007-04-05 2017-05-31 EOS GmbH Electro Optical Systems Paek powder, particularly for use in a method for the production of a three-dimensional object in layers, and method for the production thereof
US9144628B2 (en) 2007-09-11 2015-09-29 Solvay Specialty Polymers Usa, Llc Prosthetic devices
US9539361B2 (en) 2007-09-11 2017-01-10 Solvay Specialty Polymers Usa, L.L.C. Prosthetic devices
US8592531B2 (en) 2007-09-11 2013-11-26 Solvay Advanced Polymers, L.L.C. Prosthetic devices
CN103959359A (en) * 2011-10-03 2014-07-30 克利夫兰临床医学基金会 Synthetic bone model and method for providing same
CN111526896A (en) * 2017-10-06 2020-08-11 帝斯曼知识产权资产管理有限公司 Method of making an osteoconductive polymer article and osteoconductive polymer article made thereby
US11400184B2 (en) 2017-10-06 2022-08-02 Dsm Ip Assets B.V. Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made

Also Published As

Publication number Publication date
DE10055465A1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
WO2002070031A1 (en) Bone replacement material and method for the production of a bone replacement implant
Saringer et al. Cranioplasty with individual carbon fibre reinforced polymere (CFRP) medical grade implants based on CAD/CAM technique
Jardini et al. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing
US6786930B2 (en) Molded surgical implant and method
DE60315366T2 (en) Production method of a composite prosthesis bearing element with a networked joint surface
EP3320877B1 (en) Implant made from fibre-reinforced plastic
CN105013006A (en) Bioabsorbable bone repair material and its use and manufacturing method
DE2700621A1 (en) IMPLANT MADE OF GRAPHITE FIBER REINFORCED POLYAETHYLENE WITH ULTRA HIGH MOLECULAR WEIGHT
Jindal et al. 3D printed composite materials for craniofacial implants: current concepts, challenges and future directions
EP3007739B1 (en) Production of semifinished goods for implants based on plastic
DE102010008781B4 (en) Device for the layered production of components, and method for the layered production of components
EP1972309A1 (en) Implant with radiopaque marker
Moiduddin RETRACTED: Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants
US20230089343A1 (en) Implantable medical device with varied composition and porosity, and method for forming same
Hao et al. Customised implants for bone replacement and growth
Parthasarathy of Medical Devices
DE102017005036A1 (en) INDIVIDUAL BIOMATERIAL VESSEL FOR THE RECONSTRUCTION OF BONE DEFECTS
EP2564881B1 (en) Implantable medical or veterinary device and use thereof
DE19945529A1 (en) Implant for reconstructing bone defects, useful in e.g. cranial, especially facial, area, consists of highly pure alumina and/or zirconium oxide bioceramic with coating having bone affinity, e.g. tricalcium phosphate or hydroxyapatite
DE202007004509U1 (en) Implant for insertion into vertebral body of human or animal spinal column, has X-ray marker designed as marker coating of side surfaces of implant, where marker is inclined around inclination angle relative to supporting surfaces
Eng Daniel Martinez-Marquez
DE102018113580A1 (en) METHOD AND DEVICE FOR PRODUCING AN IMPLANT
EP3138584A1 (en) Implant and method for producing an implant
TRAJANOVIĆ et al. Trends in producing personalized bone implants using additive manufacturing
Suresh et al. Three-Dimentional Printing Materials for Maxillofacial Structure Development: A Review

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP