WO2002020314A1 - Safety system for a motor vehicle - Google Patents

Safety system for a motor vehicle Download PDF

Info

Publication number
WO2002020314A1
WO2002020314A1 PCT/EP2001/010150 EP0110150W WO0220314A1 WO 2002020314 A1 WO2002020314 A1 WO 2002020314A1 EP 0110150 W EP0110150 W EP 0110150W WO 0220314 A1 WO0220314 A1 WO 0220314A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
motor vehicle
signals
signal
acceleration
Prior art date
Application number
PCT/EP2001/010150
Other languages
German (de)
French (fr)
Inventor
Bertram Obst
Frank Grosshauser
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Publication of WO2002020314A1 publication Critical patent/WO2002020314A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/01332Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis
    • B60R21/01334Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis using Fourier analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01122Prevention of malfunction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01311Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring the braking system, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01313Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring the vehicle steering system or the dynamic control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01325Vertical acceleration

Definitions

  • the invention relates to a safety system for a motor vehicle with a plurality of sensors, each of which provides a sensor signal, comprising at least one acceleration sensor, a processing device for processing the plurality of sensor signals, a control device for actuating at least one safety device when the processing device supplies a trigger signal that is correlated with a situation in which there is at least the risk of a rollover for the motor vehicle.
  • Such a safety system is known from EP 0 430 813.
  • This publication describes a safety system which comprises three acceleration sensors for recording an acceleration in the x, y and z directions.
  • the directions see FIG. 1, according to which the positive x direction for a vehicle to the front, the positive y direction to the right and the positive z direction to the top are defined.
  • the ratio of two accelerations in different directions is continuously formed and when a pre-determined agreed threshold started an integration to determine the angular velocities.
  • a safety device is activated when one of the angular velocities determined in this way exceeds a predetermined value or when the weighted geometric mean from the accelerations in each case exceeds a predetermined value in two directions.
  • DE 196 09 717 describes an arrangement for detecting rollover processes in vehicles, in which the angular velocities of the vehicle about the yaw axis, the roll axis and the pitch axis are measured in a vehicle by means of rotation rate sensors. A rollover process is then signaled as being recognized when an angular velocity exceeds a predefinable limit value.
  • DE 198 14 154 describes a device and a method for triggering an occupant protection system in the event of a vehicle rollover, which is equipped with a rotation rate sensor that detects the speed of vehicle tilting and a mechanical tilt switch, but triggering the occupant protection system is blocked when a tipping movement is detected.
  • the object of the present invention is therefore to develop a safety system for a motor vehicle of the type mentioned at the outset and a method for operating a safety system in a motor vehicle of the type mentioned at the outset in such a way that a reduction in the costs for material and installation can be achieved.
  • This object is achieved by a security system with the features of claim 1 and a method for operating a security system with the features of claim 9.
  • the invention is based on the idea of using sensors that are present in a motor vehicle anyway as components of another device of the motor vehicle, for example a chassis control or a driving stability system.
  • displacement sensors are used, for example, in order to determine, in interaction with air suspension systems, the extent to which a wheel is compressed or rebounded in order to achieve an optimal damper setting for the respective situation by suitable control of the air suspension system.
  • signals of such displacement sensors, with or without additional processing steps, are outstandingly suitable for being used in a generic security system.
  • the corresponding signals When using the signals from existing sensors, the corresponding signals only need to be supplied to a corresponding unit, for example a microprocessor of the security system, in order to be processed there in a suitable manner.
  • a corresponding unit for example a microprocessor of the security system
  • the installation and wiring of additional sensors that would only serve the safety system can be omitted.
  • the signals from displacement sensors in particular are suitable for contributing to a particularly safe and reliable safety system.
  • At least one displacement sensor in particular a stable driving situation, such as occurs, for example, when entering a cable car, can be clearly recognized, although in this case the vehicle rotates considerably (the wheels are deflected). Unilateral loading or unloading can be clearly recorded.
  • AMS test in which the motor vehicle runs onto a ramp on one side, the resolution can be decisively improved.
  • the loss of contact with the ground must be detected via the vertical acceleration.
  • the filters required see below
  • the signal is delayed.
  • the corresponding weightlessness thresholds for weightlessness detection must be set well above zero. This makes it difficult to discriminate between harmless short jumps and real rollover events.
  • the displacement sensors as they are used in the safety system according to the invention, directly indicate the loss of contact with the ground and can thus significantly improve the discrimination of such events, particularly in combination with the signals from acceleration sensors in the z direction.
  • a safety system that works particularly reliably results if the safety system according to the invention has at least three acceleration sensors, the at least three acceleration sensors being connected in a stationary manner to the body and being designed to detect acceleration in the z direction of the vehicle, with either an acceleration sensor on the front right Acceleration sensor at the front left, an acceleration sensor at the rear in the motor vehicle or an acceleration sensor at the rear on the right, an acceleration sensor at the rear on the left and an acceleration sensor at the front in the motor vehicle.
  • Suitable processing of the sensor signals of these acceleration sensors enables variables to be determined from which the risk of rollover can be derived: For example, by forming the difference between a left and a right acceleration sensor in the z direction and one-time integration, the rotation rate in the x-direction can be determined by further integration of the rotation angle around the x-axis.
  • the acceleration sensors in the z direction also provide information as to whether the vehicle is currently in free fall.
  • the safety system comprises at least three displacement sensors for determining the distance between the wheel and the body for at least three wheels of the motor vehicle.
  • the reason for this lies in the knowledge that a level can be determined by the sensor signals from at least three displacement sensors and therefore it can be recognized whether and, if necessary, how far the motor vehicle has moved from a position with a completely flat surface.
  • the sensor signals can be processed with or without a prior link to one another to provide at least one potential trigger signal, the at least one potential trigger signal being comparable to an associated threshold signal and, if an exceeding of the associated threshold signal can be determined, a trigger signal to the control device can be generated, wherein at least one of the threshold signals can be modified with respect to at least one sensor signal.
  • This measure enables the thresholds for triggering and actuating a safety device to be set relatively high in the normal driving state. This prevents false triggering on rough roads and extreme driving.
  • quick and reliable triggering by means of low thresholds is made possible if the rollover process is preceded by an unusual event, for example a rapid vertical rotation or extremely one-sided deflection.
  • the threshold signals are particularly preferably modified with regard to at least one signal which is correlated with a sensor signal of at least one of the displacement sensors.
  • the threshold signals for a lateral acceleration and / or a static tilt angle and / or an acceleration in the negative z direction and / or a rotational speed in the negative z direction and / or a rotational speed about the z axis and / or come as modifiable threshold signals Change in angle around the z-axis is taken into account.
  • the sensor signal which can be provided by the at least one displacement sensor can correspond to an absolute distance value between the wheel of the motor vehicle and the body of the motor vehicle and / or a relative distance value between a wheel of the motor vehicle and the body of the motor vehicle based on a predeterminable distance value and / or the first and / or the second derivative of the change in distance over time.
  • a particularly preferred variant is distinguished in that a sensor signal of at least one displacement sensor for carrying out a self-check is compared with another signal of the same type present in the motor vehicle, either the sensor signal by processing, in particular one or two times Differentiation according to the time is prepared for the comparison and / or the signal of the same type is processed for processing by processing, in particular single or double integration over time.
  • This variant is based on the idea that suitable processing of sensor signals results in redundancy which can be used to enable such signals to be compared with one another, although they are recorded using different measuring principles. For example, the loss of contact with the ground of a motor vehicle can be determined both via displacement sensors and via z-acceleration sensors.
  • this redundancy can also be used at predetermined time intervals for a repeated self-test while driving, as a result of which a sensor malfunction can be determined in a simple manner.
  • FIG. 2 shows a schematic illustration of a partially sectioned illustration of a motor vehicle in plan view with displacement sensors arranged therein, wheel-mounted acceleration sensors in the z direction and body-mounted acceleration sensors in the z direction;
  • FIG. 4 shows a schematic representation of the processing of the sensor signals from three acceleration sensors in the z direction and one acceleration sensor in the y direction;
  • FIG. 5 shows a schematic representation of the adaptation of the threshold signals as a function of the sensor signals from four displacement sensors and one rotation rate sensor
  • FIG. 6 shows the generation of a trigger signal to the control device as a function of five potential trigger signals which are compared with the respectively associated threshold signal.
  • FIG. 1 shows, as mentioned, a motor vehicle for the definition of the x, y and z directions in a schematic representation.
  • accelerometers in direction “A” are briefly referred to as “A” accelerometers.
  • Fig. 2 shows a partially sectioned cross section through a motor vehicle.
  • a respective displacement sensor 12a to 12d is arranged, with which a sensor signal can be generated, which depends on the distance between the respective wheel of the motor vehicle and the body of the motor vehicle is correlated.
  • correlation means that it can be the absolute distance value between a wheel of the motor vehicle and the body of the motor vehicle and / or a relative distance value between the wheel and the body, but also the possibility that it is the first and / or second derivative of a change in distance can act over time.
  • the first derivative after time would therefore correspond to the speed Chen, with which the distance between the wheel and the body changes, while the second derivative would mean the change in speed, ie the acceleration of the wheel towards or away from the body.
  • wheel-fixed z-acceleration sensors 14a to 14d are also arranged in the vehicle at the front right, front left, rear right and rear left, with wheel-fixed being understood here to mean that the sensors are firmly connected to the wheel, i.e. join the movements of the respective wheel without suspension.
  • the vehicle further comprises three body-mounted z-acceleration sensors 16a to 16c which, as it were, detect the corresponding movements in a sprung manner by means of a corresponding damping system and are arranged in the front right, front left and rear in the body.
  • the z-acceleration sensors fixed to the body could also be arranged in the rear right, rear left and front in the vehicle to define a plane.
  • the safety system also uses the sensor signal of a y-acceleration sensor 18, a z-rotation rate sensor 20, i.e. a sensor for the detection of a rotation about the z-axis of the motor vehicle and an x-speed sensor 22.
  • the sensors described in connection with FIG. 2 are predominantly, but in particular the displacement sensors, part of the chassis control and / or the driving stability system of the motor vehicle. They could also be part of the airbag control or other devices of the motor vehicle. They are not explicitly installed for a safety system for the detection of rollover processes in the motor vehicle, but the signals from the sensors which are present in the vehicle anyway are used for such a system.
  • Fig. 3 shows a block diagram representation of a signal flow diagram from which the sequence from the recording of the sensor signals to the activation of a safety device.
  • Table 1 lists the sensors mentioned with the associated detection direction and the position at which they are arranged in the motor vehicle.
  • step 3 shows the sequence between the provision of the sensor signals and the activation of a safety device in the form of a signal flow graph.
  • the sensors deliver sensor signals in step 30. These are processed and processed in step 32. Details of this will be described in connection with FIG. 4.
  • digital signals are generated from the analog signals supplied by the sensors, the sensor signals first being subjected to anti-alias low-pass filtering with respect to the sampling theorem, then A / D converted and, depending on the sensor used, i.e.
  • an optional high-pass filtering can be carried out.
  • step 34 the threshold signals are adjusted with regard to current sensor signals, details of which will be given in connection with FIG. 5.
  • Step 32 supplies potential trigger signals which are compared in step 36 with associated threshold signals, possibly after adjustment in step 34.
  • step 38 it is determined whether the potential trigger signal is above or below the associated one Threshold signal is. Details of this will be discussed in connection with FIG. 6.
  • step 30 In the event that all potential trigger signals are below the threshold signal, the sequence goes back to step 30. In the event that the requirements are met to trigger a safety device, i.e. If at least one threshold signal from an associated potential trigger signal has been exceeded, a trigger signal is created in step 40 to a control device which in turn provides a corresponding control signal for triggering at least one safety device in step 42.
  • FIG. 4 shows the processing of the signals supplied by the acceleration sensors.
  • the difference is formed between the z acceleration at the front left and the z acceleration at the front right. This difference is integrated in block 44 to determine the yaw rate about the x-axis.
  • a second integration in block 46 provides the angle x by which the vehicle has rotated about the x axis.
  • the z-acceleration at the front left, the z-acceleration at the front right and the z-acceleration at the rear are further processed after low-pass filtering to eliminate high-frequency interference, in particular to form an average in block 48. From this it can be determined whether the vehicle is moving downwards in free fall.
  • the y-acceleration is also fed to a low-pass filtering in block 50 and is used to determine a lateral acceleration. It is also used in block 52 together with an average value from the z accelerations to calculate a ratio of the z acceleration to the y acceleration, from which the static tilt angle of the motor vehicle can be determined.
  • Fig. 5 shows that the signals of the displacement sensors front left, front right, rear left, rear right 12a to 12d in block 54 for adapting the threshold signals for the rotation rate x, the angle x, the free fall, the static tilt angle and the lateral acceleration Find use.
  • the yaw rate z is also used to adapt the thresholds.
  • the wheel-fixed z-accelerometers and the x-speed signal can also be used as input signals for the adaptation of the thresholds.
  • the thresholds are adjusted dynamically while the motor vehicle is in motion.
  • FIG. 6 shows the comparison of the modified threshold signals with the associated potential trigger signal in respective blocks 56a to 56e, the respective output signals in the present case being supplied to an OR gate 58 which, if at least one positive comparison is present, ie that one of the threshold signals is exceeded, provides a trigger signal at the output 60 to the control device.
  • the signal of a displacement sensor is processed in order to be compared with the output signal of another sensor, or vice versa, that the output signal of another sensor is processed in order to be compared with an output signal of a displacement sensor.
  • Single or multiple differentiation and single or multiple integration are particularly suitable for processing. In this way, redundant signals can be generated which should correspond in their statements.
  • the function of the associated sensors can therefore be checked by comparing such signals in predetermined time steps. If there is a negative comparison, appropriate measures can be initiated, for example a warning signal to the vehicle user can be triggered.
  • it can also be provided to only generate a trigger signal to the control device if the two corresponding trigger signals supplied by different sensors lie above the corresponding threshold signals.

Abstract

The invention relates to a safety system for a motor vehicle with a number of sensors, each of which generates a sensor signal, comprising at least one acceleration sensor (14a to 14d; 16a to 16d), a processing device (42 to 58) for processing the number of sensor signals, a control device for controlling at least one safety device, when the processing device (42 to 58) delivers a trigger signal which is correlated with a situation in which at least the danger of rolling exists for the vehicle, whereby the number of sensors includes at least one displacement sensor (12a to 12d). Said at least one displacement sensor may generate a signal which is correlated with the separation between a wheel of the vehicle and the chassis of the vehicle. The invention further relates to a corresponding method for operating a safety system in a motor vehicle.

Description

Sicherheitssystem für ein Kraftfahrzeug Security system for a motor vehicle
Die Erfindung betrifft ein Sicherheitssystem für ein Kraftfahrzeug mit einer Vielzahl von Sensoren, die jeweils ein Sensorsignal bereitstellen, umfassend mindestens einen Beschleunigungssensor, einer Verarbeitungsvorrichtung zum Verarbeiten der Vielzahl von Sensorsignalen, einer Steuervorrichtung zum Ansteuern mindestens einer Sicherheitsvorrichtung, wenn die Verarbeitungsvorrichtung ein Auslösesignal liefert, das mit einer Situation korreliert ist, in der für das Kraftfahrzeug zumindest die Gefahr eines Überrollvorgangs besteht. Sie betrifft weiterhin ein Verfahren zum Betreiben eines Sicherheitssystems in einem Kraftfahrzeug, bei dem in einem ersten Schritt eine Vielzahl von Sensorsignalen erzeugt wird, wobei mindestens eines der Sensorsignale von einem Beschleunigungssensor stammt, die Vielzahl von Sensorsignalen in einer Verarbeitungsvorrichtung verarbeitet werden, wobei ein Auslösesignal an eine Steuervorrichtung erzeugt wird, wenn sich aufgrund der Sensorsignale ergibt, daß sich das Kraftfahrzeug in einer Situation befindet, in der zumindest die Gefahr eines Überrollvorgangs besteht, und mindestens eine Sicherheitsvorrichtung durch die Steuervorrichtung angesteuert wird, nachdem sie ein Auslösesignal von der Verarbeitungsvorrichtung empfangen hat.The invention relates to a safety system for a motor vehicle with a plurality of sensors, each of which provides a sensor signal, comprising at least one acceleration sensor, a processing device for processing the plurality of sensor signals, a control device for actuating at least one safety device when the processing device supplies a trigger signal that is correlated with a situation in which there is at least the risk of a rollover for the motor vehicle. It further relates to a method for operating a safety system in a motor vehicle, in which a plurality of sensor signals are generated in a first step, at least one of the sensor signals originating from an acceleration sensor, the plurality of sensor signals being processed in a processing device, a trigger signal being applied a control device is generated if the sensor signals indicate that the motor vehicle is in a situation in which there is at least a risk of a rollover and at least one safety device is actuated by the control device after it has received a trigger signal from the processing device.
Ein derartiges Sicherheitssystem ist bekannt aus der EP 0 430 813. Diese Druckschrift beschreibt ein Sicherheitssystem, das drei Beschleunigungssensoren für die Aufnahme einer Beschleunigung in x-, in y- und in z-Rich- tung umfaßt. Zur Definition der Richtungen siehe Fig. 1 , gemäß der die positive x-Richtung für ein Fahrzeug nach vorne, die positive y-Richtung nach rechts und die positive z-Richtung nach oben definiert sind. Gemäß dieser Druckschrift wird kontinuierlich das Verhältnis zweier Beschleunigungen in unterschiedlicher Richtung gebildet und bei Überschreiten einer vorbe- stimmten Schwelle eine Integration zur Bestimmung der Winkelgeschwindigkeiten gestartet. Eine Ansteuerung einer Sicherheitsvorrichtung erfolgt, wenn eine der auf diese Weise ermittelten Winkelgeschwindigkeiten einen vorbestimmten Wert überschreitet oder wenn das gewichtete geometrische Mittel aus den Beschleunigungen in jeweils zwei Richtungen einen vorbestimmten Wert überschreitet.Such a safety system is known from EP 0 430 813. This publication describes a safety system which comprises three acceleration sensors for recording an acceleration in the x, y and z directions. For the definition of the directions, see FIG. 1, according to which the positive x direction for a vehicle to the front, the positive y direction to the right and the positive z direction to the top are defined. According to this document, the ratio of two accelerations in different directions is continuously formed and when a pre-determined agreed threshold started an integration to determine the angular velocities. A safety device is activated when one of the angular velocities determined in this way exceeds a predetermined value or when the weighted geometric mean from the accelerations in each case exceeds a predetermined value in two directions.
Weiterhin ist aus der DE 198 28 338 ein Verfahren zum Ermitteln einer zu einem Überrollvorgang führenden kritischen Winkellage eines Fahrzeugs bekannt, bei dem es darum geht, den Offset eines Drehratensensors dadurch zu unterdrücken, daß eine bestimmte Drehrate nur dann integriert wird, wenn die Drehrate innerhalb eines gewissen Bereichs liegt.Furthermore, from DE 198 28 338 a method for determining a critical angular position of a vehicle leading to a rollover process is known, which involves suppressing the offset of a rotation rate sensor in that a specific rotation rate is only integrated if the rotation rate is within of a certain range.
Die DE 196 09 717 beschreibt eine Anordnung zum Erkennen von Überrollvorgängen bei Fahrzeugen, bei der in einem Fahrzeug mittels Drehratensensoren die Winkelgeschwindigkeiten des Fahrzeugs um die Gierachse, die Wankachse und die Nickachse gemessen werden. Ein Überrollvorgang wird dann als erkannt signalisiert, wenn eine Winkelgeschwindigkeit einen vorgebbaren Grenzwert überschreitet.DE 196 09 717 describes an arrangement for detecting rollover processes in vehicles, in which the angular velocities of the vehicle about the yaw axis, the roll axis and the pitch axis are measured in a vehicle by means of rotation rate sensors. A rollover process is then signaled as being recognized when an angular velocity exceeds a predefinable limit value.
Die DE 198 14 154 beschreibt eine Vorrichtung und ein Verfahren zur Auslösung eines Insassenschutzsystems bei Kraftfahrzeugüberschlag, das mit einem die Geschwindigkeit einer Fahrzeugverkippung erfassenden Drehratensensor und einem mechanischen Neigungsschalter ausgestattet ist, wobei jedoch eine Auslösung des Insassenschutzsystems gesperrt wird, wenn eine Rückkippbewegung erfaßt wird.DE 198 14 154 describes a device and a method for triggering an occupant protection system in the event of a vehicle rollover, which is equipped with a rotation rate sensor that detects the speed of vehicle tilting and a mechanical tilt switch, but triggering the occupant protection system is blocked when a tipping movement is detected.
Den im Stand der Technik beschriebenen Sicherheitssystemen ist gemein, daß die gesamte Installation derartiger Sicherheitssysteme mit einem erheblichen Aufwand für Material und Einbau verbunden ist.The security systems described in the prior art have in common that the entire installation of such security systems is associated with a considerable outlay for materials and installation.
Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, ein Sicherheitssystem für ein Kraftfahrzeug der eingangs genannten Art sowie ein Verfahren zum Betreiben eines Sicherheitssystems in einem Kraftfahrzeug der eingangs genannten Art derart weiterzubilden, daß sich eine Reduktion in den Kosten für Material und Einbau erzielen läßt. Diese Aufgabe wird gelöst durch ein Sicherheitssystem mit den Merkmalen von Patentanspruch 1 und ein Verfahren zum Betreiben eines Sicherheitssystems mit den Merkmalen von Patentanspruch 9.The object of the present invention is therefore to develop a safety system for a motor vehicle of the type mentioned at the outset and a method for operating a safety system in a motor vehicle of the type mentioned at the outset in such a way that a reduction in the costs for material and installation can be achieved. This object is achieved by a security system with the features of claim 1 and a method for operating a security system with the features of claim 9.
Der Erfindung liegt die Idee zugrunde, Sensoren zu verwenden, die in einem Kraftfahrzeug ohnehin vorhanden sind, als Bestandteile einer anderen Vorrichtung des Kraftfahrzeugs, beispielsweise einer Fahrwerksregelung oder eines Fahrstabilitätssystems. Im Rahmen derartiger Systeme werden beispielsweise Wegsensoren eingesetzt, um insbesondere im Zusammenspiel mit Luftfederungssystemen zu ermitteln, wieweit ein Rad ein- bzw. ausgefedert ist, um durch geeignete Ansteuerung des Luftfedersystems eine für die jeweilige Situation optimale Dämpfereinstellung zu erzielen. Wie weiter unten detailliert ausgeführt werden wird, sind Signale derartiger Wegsensoren, mit oder ohne zusätzliche Verarbeitungsschritte, hervorragend geeignet, in einem gattungsgemäßen Sicherheitssystem eingesetzt zu werden. Wenngleich derartige Wegsensoren, wie sie beispielsweise in Luftfederungssystemen eingesetzt werden, häufig zur Regelung des Abstands zwischen einem Rad und der Fahrzeugkarosserie nach vorgegebenen Algorithmen verwendet werden, so lassen sich damit dennoch Signale bereitstellen - gegebenenfalls durch rechnerische Eliminierung der Regelung -, die mit der Entfernung zwischen einem zugehörigen Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs korreliert sind.The invention is based on the idea of using sensors that are present in a motor vehicle anyway as components of another device of the motor vehicle, for example a chassis control or a driving stability system. In the context of such systems, displacement sensors are used, for example, in order to determine, in interaction with air suspension systems, the extent to which a wheel is compressed or rebounded in order to achieve an optimal damper setting for the respective situation by suitable control of the air suspension system. As will be explained in detail below, signals of such displacement sensors, with or without additional processing steps, are outstandingly suitable for being used in a generic security system. Although such displacement sensors, such as those used for example in air suspension systems, are often used to regulate the distance between a wheel and the vehicle body according to predetermined algorithms, signals can still be provided - possibly by mathematical elimination of the regulation - which correspond to the distance between an associated wheel of the motor vehicle and the body of the motor vehicle are correlated.
Bei Verwendung der Signale von bereits vorhandenen Sensoren brauchen die entsprechenden Signale lediglich einer entsprechenden Einheit, beispielsweise einem Mikroprozessor des Sicherheitssystems zugeführt werden, um dort in geeigneter Weise weiterverarbeitet zu werden. Die Installation und Verkabelung zusätzlicher Sensoren, die ausschließlich dem Sicherheitssystem dienen würden, kann entfallen. Wie sich gezeigt hat, sind insbesondere die Signale von Wegsensoren geeignet, zu einem besonders sicheren und zuverlässigen Sicherheitssystem beizutragen.When using the signals from existing sensors, the corresponding signals only need to be supplied to a corresponding unit, for example a microprocessor of the security system, in order to be processed there in a suitable manner. The installation and wiring of additional sensors that would only serve the safety system can be omitted. As has been shown, the signals from displacement sensors in particular are suitable for contributing to a particularly safe and reliable safety system.
Durch geeignete Aufbereitung der Signale der Wegsensoren läßt sich daher eine äußerst zuverlässige Auslösung von Sicherheitsvorrichtungen, wie Gurtstraffer, Airbags, Überrollbügel (bei Cabrios) sowie eine Abschaltung der Kraftstoffzufuhr, erzielen. Insbesondere im Hinblick darauf, daß derartige Schutzsysteme in der Regel nur zum einmaligen Einsatz vorgesehen sind, ist es äußerst wichtig, daß eine sichere Auslösung bei Gefahr eines Überroll- Vorgangs erfolgt, jedoch auch eine sichere Nichtauslösung im Normalbetrieb selbst unter extremen Verhältnissen.Appropriate processing of the signals from the displacement sensors therefore enables extremely reliable triggering of safety devices, such as belt tensioners, airbags, roll bars (in convertibles) and switching off the fuel supply. Particularly in view of the fact that such protection systems are generally only intended for single use, it is extremely important that a safe triggering in the event of a risk of rollover The process takes place, but also a safe non-triggering in normal operation even under extreme conditions.
Durch die Verwendung von mindestens einem Wegsensor läßt sich insbesondere eine stabile Fahrsituation, wie sie beispielsweise bei einer Steilbahneinfahrt auftritt, eindeutig erkennen, obwohl in diesem Fall gleichzeitig eine erhebliche Drehung des Fahrzeugs stattfindet (die Räder sind eingefedert). Einseitige Be- oder Entlastungen können eindeutig erfaßt werden. Beispielsweise lässt sich beim sogenannten AMS-Test, bei dem das Kraftfahrzeug einseitig auf eine Rampe auffährt, die Auflösung entscheidend verbessern. Bei dem aus der EP 0 430 813 bekannten Verfahren muß der Verlust des Bodenkontakts über die Vertikalbeschleunigung detektiert werden. Aufgrund der benötigten Filter, siehe unten, ist das Signal jedoch zeitverzögert. Außerdem müssen die entsprechenden Schwellen für die Schwerelosigkeit für die Schwerelosigkeitserkennung deutlich über Null gelegt werden. Dies erschwert die Diskriminierung von harmlosen kurzen Sprüngen und echten Überrrollereignissen. Im Gegensatz hierzu zeigen die Wegsensoren.wie sie im erfindungsgemäßen Sicherheitssystem verwendet werden, den Verlust des Bodenkontakts unmittelbar an und können damit insbesondere in Kombination mit den Signalen von Beschleunigungsaufnehmern in z-Richtung die Diskriminierung derartiger Ereignisse deutlich verbessern.By using at least one displacement sensor, in particular a stable driving situation, such as occurs, for example, when entering a cable car, can be clearly recognized, although in this case the vehicle rotates considerably (the wheels are deflected). Unilateral loading or unloading can be clearly recorded. For example, in the so-called AMS test, in which the motor vehicle runs onto a ramp on one side, the resolution can be decisively improved. In the method known from EP 0 430 813, the loss of contact with the ground must be detected via the vertical acceleration. However, due to the filters required, see below, the signal is delayed. In addition, the corresponding weightlessness thresholds for weightlessness detection must be set well above zero. This makes it difficult to discriminate between harmless short jumps and real rollover events. In contrast to this, the displacement sensors, as they are used in the safety system according to the invention, directly indicate the loss of contact with the ground and can thus significantly improve the discrimination of such events, particularly in combination with the signals from acceleration sensors in the z direction.
Mit dem erfindungsgemäßen Sicherheitssystem besteht insbesondere auch die Möglichkeit, Überschläge mit Drehung um die Fahrzeug-x-Achse als auch Überschläge um die Fahrzeug-y-Achse zu detektieren.With the security system according to the invention, there is in particular the possibility of detecting rollovers with rotation about the vehicle x-axis as well as rollovers about the vehicle y-axis.
Ein besonders zuverlässig arbeitendes Sicherheitssystem ergibt sich, wenn das erfindungsgemäße Sicherheitssystem mindesten drei Beschleunigungssensoren aufweist, wobei die mindestens drei Beschleunigungssensoren ortsfest mit der Karosserie verbunden sind und zur Detektion einer Beschleunigung in z-Richtung des Fahrzeugs ausgelegt sind, wobei entweder ein Beschleunigungssensor vorne rechts, ein Beschleunigungssensor vorne links, ein Beschleunigungssensor hinten im Kraftfahrzeug oder ein Beschleunigungssensor hinten rechts, ein Beschleunigungssensor hinten links und ein Beschleunigungssensor vorne im Kraftfahrzeug angeordnet ist. Durch geeignete Verarbeitung der Sensorsignale dieser Beschleunigungssensoren lassen sich Größen ermitteln, aus denen sich die Gefahr eines Überrollens ableiten läßt: So kann beispielsweise durch Bildung der Differenz eines linken und eines rechten Beschleunigungssensors in z-Richtung und einmalige Integration die Drehrate in x-Richtung ermittelt werden, durch weitere Integration der Drehwinkel um die x-Achse. Die Beschleunigungssensoren in z-Richtung geben überdies Aufschluß darüber, ob sich das Fahrzeug gerade in freiem Fall befindet. Besonders vorteilhaft können diese Größen weiterhin verknüpft werden mit dem Sensorsignal eines Beschleunigungssensors in y-Richtung, siehe unten.A safety system that works particularly reliably results if the safety system according to the invention has at least three acceleration sensors, the at least three acceleration sensors being connected in a stationary manner to the body and being designed to detect acceleration in the z direction of the vehicle, with either an acceleration sensor on the front right Acceleration sensor at the front left, an acceleration sensor at the rear in the motor vehicle or an acceleration sensor at the rear on the right, an acceleration sensor at the rear on the left and an acceleration sensor at the front in the motor vehicle. Suitable processing of the sensor signals of these acceleration sensors enables variables to be determined from which the risk of rollover can be derived: For example, by forming the difference between a left and a right acceleration sensor in the z direction and one-time integration, the rotation rate in the x-direction can be determined by further integration of the rotation angle around the x-axis. The acceleration sensors in the z direction also provide information as to whether the vehicle is currently in free fall. These variables can also be particularly advantageously linked to the sensor signal of an acceleration sensor in the y direction, see below.
Das erfindungsgemäße Sicherheitssystem umfaßt gemäß einer besonders bevorzugten Ausführungsform mindestens drei Wegsensoren zur Ermittlung der Entfernung zwischen Rad und Karosserie für mindestens drei Räder des Kraftfahrzeugs. Die Ursache hierfür liegt in der Erkenntnis, daß sich durch die Sensorsignale von mindestens drei Wegsensoren eine Ebene bestimmen läßt und deshalb erkannt werden kann, ob sich und gegebenenfalls wie weit sich das Kraftfahrzeug aus einer Position mit völlig ebenem Untergrund bewegt hat.According to a particularly preferred embodiment, the safety system according to the invention comprises at least three displacement sensors for determining the distance between the wheel and the body for at least three wheels of the motor vehicle. The reason for this lies in the knowledge that a level can be determined by the sensor signals from at least three displacement sensors and therefore it can be recognized whether and, if necessary, how far the motor vehicle has moved from a position with a completely flat surface.
In der Verarbeitungseinheit können die Sensorsignale mit oder ohne vorherige Verknüpfung miteinander zur Bereitstellung mindestens eines potentiellen Auslösesignals verarbeitbar sein, wobei das mindestens eine potentielle Auslösesignal gegen ein zugehöriges Schwellensignal vergleichbar ist, und, wenn ein Überschreiten des zugehörigen Schwellensignals feststellbar ist, ein Auslösesignal an die Steuervorrichtung erzeugbar ist, wobei mindestens eines der Schwellensignale im Hinblick auf mindestens ein Sensorsignal modifizierbar ist. Diese Maßnahme ermöglicht, die Schwellen für das Auslösen und Ansteuern einer Sicherheitseinrichtung in normalem Fahrzustand zunächst relativ hoch zu legen. Damit wird eine Fehlauslösung bei Schlechtwegstrecken sowie extremer Fahrweise verhindert. Andererseits wird eine schnelle und zuverlässige Auslösung durch niedrige Schwellen ermöglicht, wenn dem Überrollvorgang ein ungewöhnliches Ereignis vorausgeht, beispielsweise eine schnelle vertikale Drehung oder eine extrem einseitige Ein- federung. Besonders bevorzugt werden die Schwellensignale im Hinblick auf mindestens ein Signal modifiziert, das mit einem Sensorsignal mindestens eines der Wegsensoren korreliert ist.In the processing unit, the sensor signals can be processed with or without a prior link to one another to provide at least one potential trigger signal, the at least one potential trigger signal being comparable to an associated threshold signal and, if an exceeding of the associated threshold signal can be determined, a trigger signal to the control device can be generated, wherein at least one of the threshold signals can be modified with respect to at least one sensor signal. This measure enables the thresholds for triggering and actuating a safety device to be set relatively high in the normal driving state. This prevents false triggering on rough roads and extreme driving. On the other hand, quick and reliable triggering by means of low thresholds is made possible if the rollover process is preceded by an unusual event, for example a rapid vertical rotation or extremely one-sided deflection. The threshold signals are particularly preferably modified with regard to at least one signal which is correlated with a sensor signal of at least one of the displacement sensors.
Insbesondere kommen als modifizierbare Schwellensignale das Schwellensignal für eine Lateralbeschleunigung und/oder einen statischen Kippwinkel und/oder eine Beschleunigung in negative z-Richtung und/oder eine Drehgeschwindigkeit in negative z-Richtung und/oder eine Drehgeschwindigkeit um die z-Achse und/oder eine Winkeländerung um die z-Achse in Betracht. Das von mit dem mindestens einem Wegsensor bereitstellbare Sensorsignal kann einem absoluten Entfernungswert zwischen Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs entsprechen und/oder einem relativen Entfernungswert zwischen einem Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs bezogen auf einen vorgebbaren Entfernungswert und/oder der ersten und/oder der zweiten Ableitung der Änderung der Entfernung nach der Zeit.In particular, the threshold signals for a lateral acceleration and / or a static tilt angle and / or an acceleration in the negative z direction and / or a rotational speed in the negative z direction and / or a rotational speed about the z axis and / or come as modifiable threshold signals Change in angle around the z-axis is taken into account. The sensor signal which can be provided by the at least one displacement sensor can correspond to an absolute distance value between the wheel of the motor vehicle and the body of the motor vehicle and / or a relative distance value between a wheel of the motor vehicle and the body of the motor vehicle based on a predeterminable distance value and / or the first and / or the second derivative of the change in distance over time.
Bei dem erfindungsgemäßen Verfahren zum Betreiben eines Sicherheitssystems zeichnet sich eine besonders bevorzugte Variante dadurch aus, daß ein Sensorsignal mindestens eines Wegsensors zur Durchführung einer Selbstüberprüfung mit einem anderen im Kraftfahrzeug vorliegenden gleichgearteten Signal verglichen wird, wobei entweder das Sensorsignal durch Verarbeitung, insbesondere ein- oder zweifache Differentiation nach der Zeit für den Vergleich aufbereitet wird und/oder das gleichgeartete Signal durch Verarbeitung, insbesondere ein- oder zweifache Integration über der Zeit, für den Vergleich aufbereitet wird. Dieser Variante liegt die Idee zugrunde, daß sich durch geeignete Verarbeitung von Sensorsignalen eine Redundanz ergibt, die dazu genutzt werden kann, daß derartige Signale, obwohl mit unterschiedlichen Meßprinzipien erfasst, miteinander verglichen werden können. Beispielsweise kann der Verlust des Bodenkontakts eines Kraftfahrzeugs sowohl über Wegsensoren als auch über z-Beschleunigungssensoren festgestellt werden. Hiermit läßt sich einerseits eine größere Auslösesicherheit erreichen, beispielsweise kann eine Auslösung einer Sicherheitseinrichtung nur dann freigegeben werden, wenn beide Signale eine vorgegebene Schwelle überschritten haben. Andererseits kann diese Redundanz auch in vorbestimmten zeitlichen Abständen zu einem wiederholten Selbsttest während der Fahrt herangezogen werden, wodurch sich in einfacher Weise eine Fehlfunktion eines Sensors feststellen läßt.In the method according to the invention for operating a security system, a particularly preferred variant is distinguished in that a sensor signal of at least one displacement sensor for carrying out a self-check is compared with another signal of the same type present in the motor vehicle, either the sensor signal by processing, in particular one or two times Differentiation according to the time is prepared for the comparison and / or the signal of the same type is processed for processing by processing, in particular single or double integration over time. This variant is based on the idea that suitable processing of sensor signals results in redundancy which can be used to enable such signals to be compared with one another, although they are recorded using different measuring principles. For example, the loss of contact with the ground of a motor vehicle can be determined both via displacement sensors and via z-acceleration sensors. This can on the one hand achieve greater security against tripping; for example, tripping of a safety device can only be enabled if both signals have exceeded a predetermined threshold. On the other hand, this redundancy can also be used at predetermined time intervals for a repeated self-test while driving, as a result of which a sensor malfunction can be determined in a simple manner.
Weitere vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.Further advantageous embodiments of the invention result from the subclaims.
Im Nachfolgenden wird ein Ausführungsbeispiel anhand der beigefügten Zeichnungen dargestellt.An exemplary embodiment is illustrated below with reference to the accompanying drawings.
Es zeigen: Fig.1 eine schematische Darstellung eines Kraftfahrzeugs zur Definition von x-, y- und z-Richtung;Show it: 1 shows a schematic representation of a motor vehicle for defining the x, y and z directions;
Fig. 2 in schematischer Darstellung eine teilweise geschnittene Darstellung eines Kraftfahrzeugs in Draufsicht mit darin angeordneten Wegsensoren, radfesten Beschleunigungssensoren in z-Richtung und karosseriefesten Beschleunigungssensoren in z-Richtung;2 shows a schematic illustration of a partially sectioned illustration of a motor vehicle in plan view with displacement sensors arranged therein, wheel-mounted acceleration sensors in the z direction and body-mounted acceleration sensors in the z direction;
Fig. 3 in Signalflußdiagrammdarstellung den Ablauf von der Aufnahme der Sensorsignale bis zur Ansteuerung einer Sicherheitseinrichtung;3 shows the sequence from the recording of the sensor signals to the activation of a safety device in a signal flow diagram representation;
Fig. 4 in schematischer Darstellung die Verarbeitung der Sensorsignale von drei Beschleunigungssensoren in z-Richtung und einem Beschleunigungssensor in y-Richtung;4 shows a schematic representation of the processing of the sensor signals from three acceleration sensors in the z direction and one acceleration sensor in the y direction;
Fig. 5 in schematischer Darstellung die Anpassung der Schwellensignale in Abhängigkeit der Sensorsignale von vier Wegsensoren und einem Drehratensensor; und5 shows a schematic representation of the adaptation of the threshold signals as a function of the sensor signals from four displacement sensors and one rotation rate sensor; and
Fig. 6 die Erzeugung eines Auslösesignals an die Steuereinrichtung in Abhängigkeit von fünf potentiellen Auslösesignalen, die mit dem jeweils zugehörigen Schwellensignal verglichen werden.6 shows the generation of a trigger signal to the control device as a function of five potential trigger signals which are compared with the respectively associated threshold signal.
Fig. 1 zeigt zunächst, wie erwähnt, in schematischer Darstellung ein Kraftfahrzeug zur Definition der x-, y- und z-Richtung. Im folgenden werden Beschleunigungsaufnehmer in Richtung "A" kurz als "A"-Beschleunigungsauf- nehmer bezeichnet. Fig. 2 zeigt in teilweise geschnittener Darstellung einen Querschnitt durch ein Kraftfahrzeug. Wie mit Bezug auf die in Fig. 2 ebenfalls dargestellte Legende hervorgeht, sind in dem Fahrzeug vorne links, vorne rechts, hinten links, hinten rechts jeweils ein Wegsensor 12a bis 12d angeordnet mit dem jeweils ein Sensorsignal erzeugt werden kann, das mit der Entfernung zwischen dem jeweiligen Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs korreliert ist. Korrelation bedeutet in diesem Zusammenhang, daß es sich um den absoluten Entfernungswert zwischen einem Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs handeln kann und/oder einen relativen Entfemungswert zwischen Rad und Karosserie, jedoch auch die Möglichkeit, daß es sich um die erste und/oder zweite Ableitung einer Änderung der Entfernung nach der Zeit handeln kann. Die erste Ableitung nach der Zeit würde demnach der Geschwindigkeit entspre- chen, mit der sich der Abstand zwischen Rad und Karosserie ändert, während die zweite Ableitung der Änderung der Geschwindigkeit, d.h. der Beschleunigung des Rads in Richtung auf die Karosserie zu oder von ihr weg bedeuten würde.1 shows, as mentioned, a motor vehicle for the definition of the x, y and z directions in a schematic representation. In the following, accelerometers in direction "A" are briefly referred to as "A" accelerometers. Fig. 2 shows a partially sectioned cross section through a motor vehicle. As can be seen with reference to the legend likewise shown in FIG. 2, in the vehicle front left, front right, rear left, rear right, a respective displacement sensor 12a to 12d is arranged, with which a sensor signal can be generated, which depends on the distance between the respective wheel of the motor vehicle and the body of the motor vehicle is correlated. In this context, correlation means that it can be the absolute distance value between a wheel of the motor vehicle and the body of the motor vehicle and / or a relative distance value between the wheel and the body, but also the possibility that it is the first and / or second derivative of a change in distance can act over time. The first derivative after time would therefore correspond to the speed Chen, with which the distance between the wheel and the body changes, while the second derivative would mean the change in speed, ie the acceleration of the wheel towards or away from the body.
In dem Fahrzeug sind weiterhin ebenfalls vorne rechts, vorne links, hinten rechts, hinten links vier radfeste z-Beschleunigungssensoren 14a bis 14d angeordnet, wobei unter radfest hierbei zu verstehen ist, daß die Sensoren fest mit dem Rad verbunden sind, d.h. die Bewegungen des jeweiligen Rads ungefedert mitmachen.Furthermore, four wheel-fixed z-acceleration sensors 14a to 14d are also arranged in the vehicle at the front right, front left, rear right and rear left, with wheel-fixed being understood here to mean that the sensors are firmly connected to the wheel, i.e. join the movements of the respective wheel without suspension.
Das Fahrzeug umfaßt weiterhin drei karosseriefeste z-Beschleunigungssensoren 16a bis 16c, die quasi die entsprechenden Bewegungen gefedert durch ein entsprechendes Dämpfungssystem detektieren und vorne rechts, vorne links und hinten in der Karosserie angeordnet sind. Alternativ könnten die karosseriefesten z-Beschleunigungssensoren zur Definition einer Ebene auch hinten rechts, hinten links und vorne im Fahrzeug angeordnet sein. Das Sicherheitssystem verwendet weiterhin das Sensorsignal eines y-Be- schleunigungssensors 18, eines z-Drehratensensors 20, d.h. eines Sensors zur Detektion einer Drehung um die z-Achse des Kraftfahrzeugs sowie eines x-Geschwindigkeitssensors 22.The vehicle further comprises three body-mounted z-acceleration sensors 16a to 16c which, as it were, detect the corresponding movements in a sprung manner by means of a corresponding damping system and are arranged in the front right, front left and rear in the body. Alternatively, the z-acceleration sensors fixed to the body could also be arranged in the rear right, rear left and front in the vehicle to define a plane. The safety system also uses the sensor signal of a y-acceleration sensor 18, a z-rotation rate sensor 20, i.e. a sensor for the detection of a rotation about the z-axis of the motor vehicle and an x-speed sensor 22.
Die in Zusammenhang mit Fig. 2 beschriebenen Sensoren sind überwiegend, insbesondere jedoch die Wegsensoren, Teil der Fahrwerksregelung und/oder des Fahrstabilitätssystems des Kraftfahrzeugs. Sie könnten auch Teil der Airbagsteuerung oder weiterer Einrichtungen des Kraftfahrzeugs sein. Sie sind nicht explizit für ein Sicherheitssystem zur Detektion von Überrollvorgängen in dem Kraftfahrzeug installiert, jedoch werden die ohnehin in dem Fahrzeug vorhandenen Signale der Sensoren für ein derartiges System verwendet.The sensors described in connection with FIG. 2 are predominantly, but in particular the displacement sensors, part of the chassis control and / or the driving stability system of the motor vehicle. They could also be part of the airbag control or other devices of the motor vehicle. They are not explicitly installed for a safety system for the detection of rollover processes in the motor vehicle, but the signals from the sensors which are present in the vehicle anyway are used for such a system.
Fig. 3 zeigt in Blockschaltbilddarstellung ein Signalflußdiagramm, aus dem der Ablauf von der Aufnahme der Sensorsignale bis zur Ansteuerung einer Sicherheitseinrichtung hervorgeht.Fig. 3 shows a block diagram representation of a signal flow diagram from which the sequence from the recording of the sensor signals to the activation of a safety device.
In der nachfolgenden Tabelle 1 sind die erwähnten Sensoren der Übersichtlichkeit halber mit der zugehörigen Detektionsrichtung und der Position, an der sie im Kraftfahrzeug angeordnet sind, aufgeführt. For the sake of clarity, Table 1 below lists the sensors mentioned with the associated detection direction and the position at which they are arranged in the motor vehicle.
Figure imgf000011_0001
Figure imgf000011_0001
Tabelle 1Table 1
In Fig. 3 ist der Ablauf zwischen der Bereitstellung der Sensorsignale und der Ansteuerung einer Sicherheitseinrichtung in Form eines Signalflußgraphen dargestellt. Zunächst liefern in Schritt 30 die Sensoren Sensorsignale. Diese werden in Schritt 32 verarbeitet und aufbereitet. Details hierzu werden im Zusammenhang mit Fig. 4 beschrieben werden. Insbesondere werden aus von den Sensoren gelieferten Analogsignalen Digitalsignale erzeugt, wobei die Sensorsignale zunächst im Hinblick auf das Abtasttheorem einer Anti- Alias-Tiefpaßfilterung unterzogen werden, anschließend A/D-gewandelt werden und je nach verwendetem Sensor, d.h. je nach Nullpunktgenauigkeit des Sensors und den Anforderungen der nachfolgenden Algorithmen an die Nullpunktgenauigkeit, einer optionalen Hochpaßfilterung unterzogen werden.3 shows the sequence between the provision of the sensor signals and the activation of a safety device in the form of a signal flow graph. First, the sensors deliver sensor signals in step 30. These are processed and processed in step 32. Details of this will be described in connection with FIG. 4. In particular, digital signals are generated from the analog signals supplied by the sensors, the sensor signals first being subjected to anti-alias low-pass filtering with respect to the sampling theorem, then A / D converted and, depending on the sensor used, i.e. Depending on the zero point accuracy of the sensor and the requirements of the following algorithms for zero point accuracy, an optional high-pass filtering can be carried out.
In Schritt 34 findet eine Anpassung der Schwellensignale im Hinblick auf aktuelle Sensorsignale statt, Details hierzu werden im Zusammenhang mit Fig. 5 ausgeführt werden. Schritt 32 liefert potentielle Auslösesignale, die in Schritt 36 mit zugehörigen Schwellensignalen, gegebenenfalls nach Anpassung in Schritt 34, einem Vergleich zugeführt werden. In Schritt 38 wird ermittelt, ob das potentielle Auslösesignal über oder unter dem zugehörigen Schwellensignal liegt. Details hierzu werden im Zusammenhang mit Fig. 6 erörtert werden.In step 34, the threshold signals are adjusted with regard to current sensor signals, details of which will be given in connection with FIG. 5. Step 32 supplies potential trigger signals which are compared in step 36 with associated threshold signals, possibly after adjustment in step 34. In step 38 it is determined whether the potential trigger signal is above or below the associated one Threshold signal is. Details of this will be discussed in connection with FIG. 6.
Für den Fall, daß alle potentiellen Auslösesignale unterhalb des Schwellensignals liegen, geht die Abfolge zurück zu Schritt 30. Für den Fall, daß die Voraussetzungen gegeben sind, um eine Sicherheitseinrichtung auszulösen, d.h. mindestens ein Schwellensignal von einem zugehörigen potentiellen Auslösesignal überschritten wurde, wird in Schritt 40 ein Auslösesignal an eine Steuervorrichtung kreiert, die ihrerseits ein entsprechendes Ansteuer- signal zum Auslösen mindestens einer Sicherheitseinrichtung im Schritt 42 bereitstellt.In the event that all potential trigger signals are below the threshold signal, the sequence goes back to step 30. In the event that the requirements are met to trigger a safety device, i.e. If at least one threshold signal from an associated potential trigger signal has been exceeded, a trigger signal is created in step 40 to a control device which in turn provides a corresponding control signal for triggering at least one safety device in step 42.
Fig. 4 zeigt die Verarbeitung der von den Beschleunigungssensoren gelieferten Signale. Im Block 42 wird die Differenz gebildet zwischen der z-Be- schleunigung vorne links und der z-Beschleunigung vorne rechts. Diese Differenz wird im Block 44 integriert zur Ermittlung der Drehrate um die x- Achse. Eine zweite Integration im Block 46 liefert den Winkel x, um den sich das Fahrzeug um die x-Achse gedreht hat. Die z-Beschleunigung vorne links, die z-Beschleunigung vorne rechts sowie die z-Beschleunigung hinten werden weiterhin nach Tiefpaßfilterung zur Eliminierung hochfrequenter Störungen, insbesondere zur Bildung eines Mittelwerts im Block 48 verarbeitet. Hieraus läßt sich feststellen, ob sich das Fahrzeug im freien Fall nach unten bewegt. Die y-Beschleunigung wird im Block 50 ebenfalls einer Tiefpaßfilterung zugeführt und dient zur Ermittlung einer Lateralbeschleunigung. Sie wird weiterhin im Block 52 zusammen mit einem Mittelwert aus den z-Be- schleunigungen zur Berechnung eines Verhältnisses der z-Beschleunigung zur y-Beschleunigung verwendet, woraus sich der statische Kippwinkel des Kraftfahrzeugs ermitteln läßt.4 shows the processing of the signals supplied by the acceleration sensors. In block 42, the difference is formed between the z acceleration at the front left and the z acceleration at the front right. This difference is integrated in block 44 to determine the yaw rate about the x-axis. A second integration in block 46 provides the angle x by which the vehicle has rotated about the x axis. The z-acceleration at the front left, the z-acceleration at the front right and the z-acceleration at the rear are further processed after low-pass filtering to eliminate high-frequency interference, in particular to form an average in block 48. From this it can be determined whether the vehicle is moving downwards in free fall. The y-acceleration is also fed to a low-pass filtering in block 50 and is used to determine a lateral acceleration. It is also used in block 52 together with an average value from the z accelerations to calculate a ratio of the z acceleration to the y acceleration, from which the static tilt angle of the motor vehicle can be determined.
Fig. 5 zeigt, daß die Signale der Wegsensoren vorne links, vorne rechts, hinten links, hinten rechts 12a bis 12d im Block 54 zur Anpassung der Schwellensignale für die Drehrate x, den Winkel x, den freien Fall, den statischen Kippwinkel sowie die Lateralbeschleunigung Verwendung finden. Neben den Signalen der Wegsensoren findet vorliegend außerdem auch die Drehrate z zur Anpassung der Schwellen Verwendung. Als Eingangssignale für die Anpassung der Schwellen können weiterhin die radfesten z-Be- schleunigungsaufnehmer und das x-Geschwindigkeitssignal verwendet werden. Die Anpassung der Schwellen erfolgt dynamisch im Fahrbetrieb des Kraftfahrzeugs. Fig. 6 zeigt den Vergleich der modifizierten Schwellensignale mit dem zugehörigen potentiellen Auslösesignal in jeweiligen Blöcken 56a bis 56e, wobei die jeweiligen Ausgangssignale vorliegend einem ODER-Gatter 58 zugeführt werden, das bei Vorliegen zumindest eines positiven Vergleichs, d.h. daß eines der Schwellensignale überschritten wird, ein Auslösesignal am Ausgang 60 an die Steuervorrichtung bereitstellt.Fig. 5 shows that the signals of the displacement sensors front left, front right, rear left, rear right 12a to 12d in block 54 for adapting the threshold signals for the rotation rate x, the angle x, the free fall, the static tilt angle and the lateral acceleration Find use. In addition to the signals from the displacement sensors, the yaw rate z is also used to adapt the thresholds. The wheel-fixed z-accelerometers and the x-speed signal can also be used as input signals for the adaptation of the thresholds. The thresholds are adjusted dynamically while the motor vehicle is in motion. 6 shows the comparison of the modified threshold signals with the associated potential trigger signal in respective blocks 56a to 56e, the respective output signals in the present case being supplied to an OR gate 58 which, if at least one positive comparison is present, ie that one of the threshold signals is exceeded, provides a trigger signal at the output 60 to the control device.
Bei dem erfindungsgemäßen Sicherheitssystem kann vorgesehen werden, daß das Signal eines Wegsensors aufbereitet wird, um mit dem Ausgangssignal eines anderen Sensors verglichen zu werden, bzw. umgekehrt, daß das Ausgangssignal eines anderen Sensors aufbereitet wird, um mit einem Ausgangssignal eines Wegsensors verglichen zu werden. Zur Aufbereitung kommen insbesondere ein- oder mehrfache Differentiation sowie ein- oder mehrfache Integration in Betracht. Hierdurch können redundante Signale erzeugt werden, die in ihrer Aussage übereinstimmen sollten. Durch Vergleich derartiger Signale in vorgegebenen Zeitschritten kann daher die Funktion der zugehörigen Sensoren überprüft werden. Bei Vorliegen eines negativen Vergleichs können entsprechende Maßnahmen eingeleitet werden, beispielsweise ein Warnsignal an den Fahrzeugbenutzer ausgelöst werden. Es kann jedoch auch vorgesehen werden, zur Erhöhung der Zuverlässigkeit des Systems ein Auslösesignal an die Steuervorrichtung nur dann zu erzeugen, wenn beide sich entsprechenden, von unterschiedlichen Sensoren gelieferten potentiellen Auslösesignale über den entsprechenden Schwellensignalen liegen. In the safety system according to the invention it can be provided that the signal of a displacement sensor is processed in order to be compared with the output signal of another sensor, or vice versa, that the output signal of another sensor is processed in order to be compared with an output signal of a displacement sensor. Single or multiple differentiation and single or multiple integration are particularly suitable for processing. In this way, redundant signals can be generated which should correspond in their statements. The function of the associated sensors can therefore be checked by comparing such signals in predetermined time steps. If there is a negative comparison, appropriate measures can be initiated, for example a warning signal to the vehicle user can be triggered. However, in order to increase the reliability of the system, it can also be provided to only generate a trigger signal to the control device if the two corresponding trigger signals supplied by different sensors lie above the corresponding threshold signals.

Claims

P A T E N T A N S P R Ü C H E PATENT CLAIMS
1. Sicherheitssystem für ein Kraftfahrzeug mit einer Vielzahl von Sensoren, die jeweils ein Sensorsignal bereitstellen, umfassend mindestens einen Beschleunigungssensor (14a bis 14d; 16a bis 16d); einer Verarbeitungsvorrichtung (42 bis 58) zum Verarbeiten der Vielzahl von Sensorsignalen; einer Steuervorrichtung zum Ansteuern mindestens einer Sicherheitsvorrichtung, wenn die Verarbeitungsvorrichtung (42 bis 58) ein Auslösesignal liefert, das mit einer Situation korreliert ist, in der für das Kraftfahrzeug zumindest die Gefahr eines Überrollvorgangs besteht; dadurch gekennzeichnet, daß die Vielzahl von Sensoren mindestens einen Wegsensor (12a bis 12d) umfaßt, wobei mit dem mindestens einen Wegsensor ein Sensorsignal bereitstellbar ist, das mit der Entfernung zwischen einem Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs korreliert ist.1. Safety system for a motor vehicle with a plurality of sensors, each of which provides a sensor signal, comprising at least one acceleration sensor (14a to 14d; 16a to 16d); a processing device (42 to 58) for processing the plurality of sensor signals; a control device for actuating at least one safety device if the processing device (42 to 58) supplies a trigger signal which is correlated with a situation in which the motor vehicle is at least at risk of a rollover process; characterized in that the plurality of sensors comprises at least one displacement sensor (12a to 12d), the at least one displacement sensor being able to provide a sensor signal which is correlated with the distance between a wheel of the motor vehicle and the body of the motor vehicle.
2. Sicherheitssystem nach Anspruch 1 , dadurch gekennzeichnet, daß das Sicherheitssystem mindestens drei Beschleunigungssensoren (16a bis 16c) aufweist, wobei die mindestens drei Beschleunigungssensoren ortsfest mit der Karosserie verbunden sind und zur Detektion einer Beschleunigung in Z-Richtung des Kraftfahrzeugs ausgelegt sind, wobei ein Beschleunigungssensor (16a) vorne rechts, ein Beschleunigungssensor (16b) vorne links und ein Beschleunigungssensor (16c) hinten im Kraftfahrzeug oder ein Beschleunigungssensor hinten rechts, ein Beschleunigungssensor hinten links und ein Beschleunigungssensor vorne im Kraftfahrzeug angeordnet ist.2. Safety system according to claim 1, characterized in that the safety system has at least three acceleration sensors (16a to 16c), the at least three acceleration sensors being connected in a stationary manner to the body and being designed to detect acceleration in the Z direction of the motor vehicle, one of which Acceleration sensor (16a) front right, an acceleration sensor (16b) front left and an acceleration sensor (16c) is arranged in the rear of the motor vehicle or an acceleration sensor in the rear right, an acceleration sensor in the rear on the left and an acceleration sensor in the front in the motor vehicle.
3. Sicherheitssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Sicherheitssystem mindestens drei Wegsensoren (12a bis 12d) umfaßt zur Ermittlung der Entfernung zwischen Rad und Karosserie für mindestens drei Räder des Kraftfahrzeugs.3. Safety system according to claim 1 or 2, characterized in that the safety system comprises at least three displacement sensors (12a to 12d) for determining the distance between the wheel and body for at least three wheels of the motor vehicle.
4. Sicherheitssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der Verarbeitungseinheit (42 bis 58) die Sensorsignale, mit oder ohne vorherige Verknüpfung miteinander, zur Bereitstellung mindestens eines potentiellen Auslösesignals verarbeitbar sind, wobei das mindestens eine potentielle Auslösesignal gegen ein zugehöriges Schwellensignal vergleichbar ist und, wenn ein Überschreiten des zugehörigen Schwellensignals festgestellbar ist, ein Auslösesignal an die Steuervorrichtung erzeugbar ist, wobei mindestens eines der Schwellensignale im Hinblick auf mindestens ein Sensorsignal modifizierbar ist.4. Security system according to one of the preceding claims, characterized in that in the processing unit (42 to 58) the sensor signals, with or without prior linkage with one another, can be processed to provide at least one potential trigger signal, the at least one potential trigger signal against an associated threshold signal is comparable and, if an exceeding of the associated threshold signal can be determined, a trigger signal can be generated to the control device, wherein at least one of the threshold signals can be modified with regard to at least one sensor signal.
5. Sicherheitssystem nach Anspruch 4, dadurch gekennzeichnet, daß mindestens eines der Schwellensignale im Hinblick auf mindestens ein Signal modifizierbar ist, das mit einem Sensorsignal eines der Wegsensoren (12a bis 12d) korreliert ist.5. Security system according to claim 4, characterized in that at least one of the threshold signals can be modified with regard to at least one signal which is correlated with a sensor signal of one of the displacement sensors (12a to 12d).
6. Sicherheitssystem nach Anspruch 5, dadurch gekennzeichnet, daß das modifizierbare Schwellensignal das Schwellensignal für eine Lateralbeschleunigung und/oder einen statischen Kippwinkel und/oder eine Beschleunigung in negative Z-Richtung und/oder eine Drehgeschwindigkeit um die Z-Achse und/oder eine Winkeländerung um die Z- Achse ist. 6. Security system according to claim 5, characterized in that the modifiable threshold signal, the threshold signal for a lateral acceleration and / or a static tilt angle and / or an acceleration in the negative Z direction and / or a rotational speed about the Z axis and / or an angle change around the Z axis.
7. Sicherheitssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das mit dem mindestens einen Wegsensor (12a bis 12d) bereitstellbare Sensorsignal einem absoluten Entfernungwert zwischen einem Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs entspricht und/oder einem relativen Entfernungswert zwischen einem Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs bezogen auf einen vorgegebenen Entfernungswert und/oder der ersten und/oder der zweiten Ableitung der Änderung der Entfernung nach der Zeit.7. Safety system according to one of the preceding claims, characterized in that the sensor signal which can be provided with the at least one displacement sensor (12a to 12d) corresponds to an absolute distance value between a wheel of the motor vehicle and the body of the motor vehicle and / or a relative distance value between a wheel of the Motor vehicle and the body of the motor vehicle based on a predetermined distance value and / or the first and / or the second derivative of the change in distance over time.
8. Sicherheitssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der mindestens eine Wegsensor (12a bis 12d) und/oder der mindestens eine Beschleunigungssensor (14a bis 14d; 16a bis 16c) Bestandteile einer anderen Vorrichtung des Kraftfahrzeugs, insbesondere einer Fahrwerksregelung und/oder eines Fahrstabilitätssystems, ist/sind.8. Safety system according to one of the preceding claims, characterized in that the at least one displacement sensor (12a to 12d) and / or the at least one acceleration sensor (14a to 14d; 16a to 16c) form part of another device of the motor vehicle, in particular a chassis control and / or a driving stability system.
9. Verfahren zum Betreiben eines Sicherheitssystems in einem Kraftfahrzeug, folgende Schritte umfassend: a) Erzeugen (30) einer Vielzahl von Sensorsignalen, wobei mindestens eines der Sensorsignale von einem Beschleunigungssensor (14a bis 14d; 16a bis 16d) erzeugt wird; b) Verarbeiten (32, 34, 36) der Vielzahl von Sensorsignalen in einer Verarbeitungsvorrichtung (42 bis 58) und Erzeugen (40) eines Auslösesignals an eine Steuervorrichtung, wenn sich aufgrund der Sensorsignale ergibt, daß sich das Kraftfahrzeug in einer Situation befindet, in der zumindest die Gefahr eines Überrollvorgangs besteht; c) Ansteuern mindestens einer Sicherheitsvorrichtung durch die Steuervorrichtung nach Empfang des Auslösesignals von der Verarbeitungsvorrichtung (42 bis 58); dadurch gekennzeichnet, daß mindestens eines der Vielzahl von Sensorsignalen von einem Wegsensor (12a bis 12d) erzeugt wird, wobei das mit dem Wegsensor bereitgestellte Sensorsignal mit der Entfernung zwischen einem Rad des Kraftfahrzeugs und der Karosserie des Kraftfahrzeugs korreliert ist.9. A method for operating a safety system in a motor vehicle, comprising the following steps: a) generating (30) a plurality of sensor signals, at least one of the sensor signals being generated by an acceleration sensor (14a to 14d; 16a to 16d); b) processing (32, 34, 36) the plurality of sensor signals in a processing device (42 to 58) and generating (40) a trigger signal to a control device if the sensor signals indicate that the motor vehicle is in a situation in at least there is a risk of a rollover; c) actuating at least one safety device by the control device after receiving the trigger signal from the processing device (42 to 58); characterized, that at least one of the plurality of sensor signals is generated by a displacement sensor (12a to 12d), the sensor signal provided with the displacement sensor being correlated with the distance between a wheel of the motor vehicle and the body of the motor vehicle.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass zumindest eines der Signale eines Wegsensors und eines weiteren Sensors derart verarbeitet wird, insbesondere durch ein- oder zweifache Differentiation und/oder durch ein- oder zweifache Integration, dass sie sich in ihrem Informationsgehalt entsprechen.10. The method according to claim 9, characterized in that at least one of the signals of a displacement sensor and a further sensor is processed in such a way, in particular by single or double differentiation and / or by single or double integration, that they correspond in their information content.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß jeweils zwei sich in ihrem Informationsgehalt entsprechende Signale in vorbestimmten zeitlichen Abständen miteinander verglichen werden.11. The method according to claim 10, characterized in that in each case two signals corresponding in their information content are compared with one another at predetermined time intervals.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, daß die Verarbeitungsvorrichtung aus den sich entsprechenden Sensorsignalen, mit oder ohne vorherige Verknüpfung mit weiteren Sensorsignalen, zur Bereitstellung mindestens zweier potentieller Auslösesignale verarbeitet, wobei die mindestens zwei potentiellen Auslösesignale gegen zugehörige Schwellensignale verglichen werden und ein Auslösesignal an die Steuervorrichtung nur dann erzeugt wird, wenn die mindestens zwei potentiellen Auslösesignale über den zugehörigen Schwellensignalen liegen. 12. The method according to claim 11, characterized in that the processing device from the corresponding sensor signals, with or without prior association with other sensor signals, processed to provide at least two potential trigger signals, the at least two potential trigger signals being compared against associated threshold signals and a trigger signal is generated to the control device only when the at least two potential trigger signals lie above the associated threshold signals.
PCT/EP2001/010150 2000-09-08 2001-09-04 Safety system for a motor vehicle WO2002020314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10044567.5 2000-09-08
DE10044567A DE10044567B4 (en) 2000-09-08 2000-09-08 Safety system for a motor vehicle

Publications (1)

Publication Number Publication Date
WO2002020314A1 true WO2002020314A1 (en) 2002-03-14

Family

ID=7655588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/010150 WO2002020314A1 (en) 2000-09-08 2001-09-04 Safety system for a motor vehicle

Country Status (2)

Country Link
DE (1) DE10044567B4 (en)
WO (1) WO2002020314A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253050A1 (en) * 2001-04-06 2002-10-30 Conti Temic microelectronic GmbH Method for deploying an occupant protection system in vehicles
DE10218020C1 (en) * 2002-04-23 2003-12-04 Bosch Gmbh Robert Arrangement for generating a trigger signal for retaining means and method for triggering retaining means in a vehicle
DE10250732B3 (en) * 2002-10-31 2004-04-08 Daimlerchrysler Ag Control device for driver and passenger protection in a motor vehicle, has a plausibility step to prevent unnecessary deployment decisions being carried out
DE10361281A1 (en) * 2003-12-24 2005-07-28 Daimlerchrysler Ag Method for detecting critical driving situations of a vehicle
DE102004007849A1 (en) * 2004-02-16 2005-09-22 Conti Temic Microelectronic Gmbh Occupant protection system for motor vehicle safety device, especially airbag control system and/or rollover protection system, has recording element(s) at tunnel position, control and evaluation units at different position(s)
DE102004032985A1 (en) * 2004-07-08 2006-02-09 Daimlerchrysler Ag Motor vehicle with a preventive safety system
DE102004038000A1 (en) * 2004-08-04 2006-03-16 Conti Temic Microelectronic Gmbh Method for determining the angle of inclination of a vehicle comprises using an algorithm for determining the inertial forces acting on the vehicle and testing the usability of the algorithm before determining the angle of inclination
WO2006106025A1 (en) * 2005-04-07 2006-10-12 Robert Bosch Gmbh Calculation of the plausibility of sensor signals in the event of a collision
DE102005026869A1 (en) * 2005-06-10 2006-12-14 GM Global Technology Operations, Inc., Detroit Motor vehicle`s e.g. cabriolet, roll over checking apparatus, has evaluating processor unit for determining roll over of vehicle using criteria, which include information about condition of shock absorber arranged at side of vehicle
WO2008037598A1 (en) * 2006-09-27 2008-04-03 Continental Automotive Gmbh Method and apparatus for initiation of at least one occupant protection system in a motor vehicle, in particular for travelling on an incline
DE102005012458B4 (en) * 2004-03-23 2015-05-21 Continental Teves, Inc. Method for protecting a motor vehicle against overturning
EP3798062A1 (en) * 2019-09-24 2021-03-31 Volvo Car Corporation Low-impact collision detection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020927A1 (en) * 2004-04-28 2005-11-17 Continental Aktiengesellschaft Car safety sensor functionality verification procedure compares car status values derived from two different sensors with threshold difference
DE102004044335A1 (en) * 2004-09-09 2006-04-06 Robert Bosch Gmbh Redundant sensor signals monitoring method for modern vehicle, involves temporally integrating difference between sensor and reference signal difference and threshold value to determine error value, which indicates sensor error
US7162343B2 (en) * 2004-09-17 2007-01-09 Ford Global Technologies, Llc Intelligent vehicle rollover detection methods and systems
DE102006045303B3 (en) * 2006-09-26 2008-02-07 Siemens Ag Vehicle`s absolute inclination angle recognition method, involves determining absolute inclination angle of vehicle based on acceleration, temporal conduction of speed and yaw rate, which is determined by using yaw rate sensor
DE102012101273A1 (en) * 2012-02-17 2013-08-22 Continental Automotive Gmbh Method for recognizing flight phase of vehicle i.e. car, involves detecting body wheel distance of vehicle or proportional size of wheel, and recognizing default values when flight phase of vehicle exceeds default values

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292126A (en) * 1994-08-11 1996-02-14 Rover Group Central acceleration measuring system for vehicles
EP0878333A1 (en) * 1997-05-16 1998-11-18 Conception et Développement Michelin Suspension device with spring correction unit
US6000702A (en) * 1996-04-20 1999-12-14 Daimlerchrysler Ag Active vehicle suspension system
US6038495A (en) * 1998-02-06 2000-03-14 Delco Electronics Corporation Vehicle rollover sensing using short-term integration

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3818188A1 (en) * 1988-05-28 1989-12-07 Daimler Benz Ag ACTIVE SUSPENSION SYSTEM
DE3939292A1 (en) * 1989-11-28 1991-05-29 Teves Gmbh Alfred COMPOSITE CONTROL SYSTEM FOR MOTOR VEHICLES
FR2655299B1 (en) * 1989-12-01 1992-02-21 Renault SAFETY SYSTEM FOR A MOTOR VEHICLE.
JP2823281B2 (en) * 1989-12-05 1998-11-11 マツダ株式会社 Vehicle suspension device
US5408411A (en) * 1991-01-18 1995-04-18 Hitachi, Ltd. System for predicting behavior of automotive vehicle and for controlling vehicular behavior based thereon
DE4221722A1 (en) * 1992-07-02 1994-01-05 Fichtel & Sachs Ag Measuring acceleration of vehicle - evaluating instantaneous fluid pressure in hydraulic or hydropneumatic components for force transfer between chassis and body
DE4342732A1 (en) * 1993-12-15 1995-06-22 Anton Ellinghaus Maschinenfabr Tilt sensor for tanker vehicle
DE19527323A1 (en) * 1995-07-26 1997-01-30 Siemens Ag Circuit arrangement for controlling a device in a motor vehicle
DE19531742C2 (en) * 1995-08-29 1997-07-03 Boom Trikes Sonderfahrzeugbau Method and device for preventing the rearing of two-wheeled or three-wheeled vehicles
DE19609717A1 (en) * 1996-03-13 1997-09-18 Bosch Gmbh Robert Arrangement for detecting rollover processes in vehicles
DE19754010C2 (en) * 1997-12-05 2001-09-27 Daimler Chrysler Ag Device for measuring the camber of the wheels of a motor vehicle
DE19814159C2 (en) * 1998-03-30 2000-04-13 Siemens Ag Actuator for a pneumatic valve of a placement head for electrical components
DE19828338A1 (en) * 1998-06-25 1999-12-30 Bosch Gmbh Robert Determining critical angle of motor vehicle leading to rollover

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292126A (en) * 1994-08-11 1996-02-14 Rover Group Central acceleration measuring system for vehicles
US6000702A (en) * 1996-04-20 1999-12-14 Daimlerchrysler Ag Active vehicle suspension system
EP0878333A1 (en) * 1997-05-16 1998-11-18 Conception et Développement Michelin Suspension device with spring correction unit
US6038495A (en) * 1998-02-06 2000-03-14 Delco Electronics Corporation Vehicle rollover sensing using short-term integration

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253050A1 (en) * 2001-04-06 2002-10-30 Conti Temic microelectronic GmbH Method for deploying an occupant protection system in vehicles
DE10218020C1 (en) * 2002-04-23 2003-12-04 Bosch Gmbh Robert Arrangement for generating a trigger signal for retaining means and method for triggering retaining means in a vehicle
DE10250732B3 (en) * 2002-10-31 2004-04-08 Daimlerchrysler Ag Control device for driver and passenger protection in a motor vehicle, has a plausibility step to prevent unnecessary deployment decisions being carried out
DE10361281A1 (en) * 2003-12-24 2005-07-28 Daimlerchrysler Ag Method for detecting critical driving situations of a vehicle
DE102004007849A1 (en) * 2004-02-16 2005-09-22 Conti Temic Microelectronic Gmbh Occupant protection system for motor vehicle safety device, especially airbag control system and/or rollover protection system, has recording element(s) at tunnel position, control and evaluation units at different position(s)
DE102005012458B4 (en) * 2004-03-23 2015-05-21 Continental Teves, Inc. Method for protecting a motor vehicle against overturning
US8275519B2 (en) 2004-07-08 2012-09-25 Daimler Ag Motor vehicle having a preventatively acting safety system
DE102004032985A1 (en) * 2004-07-08 2006-02-09 Daimlerchrysler Ag Motor vehicle with a preventive safety system
DE102004038000A1 (en) * 2004-08-04 2006-03-16 Conti Temic Microelectronic Gmbh Method for determining the angle of inclination of a vehicle comprises using an algorithm for determining the inertial forces acting on the vehicle and testing the usability of the algorithm before determining the angle of inclination
WO2006106025A1 (en) * 2005-04-07 2006-10-12 Robert Bosch Gmbh Calculation of the plausibility of sensor signals in the event of a collision
DE102005026869A1 (en) * 2005-06-10 2006-12-14 GM Global Technology Operations, Inc., Detroit Motor vehicle`s e.g. cabriolet, roll over checking apparatus, has evaluating processor unit for determining roll over of vehicle using criteria, which include information about condition of shock absorber arranged at side of vehicle
WO2008037598A1 (en) * 2006-09-27 2008-04-03 Continental Automotive Gmbh Method and apparatus for initiation of at least one occupant protection system in a motor vehicle, in particular for travelling on an incline
EP3798062A1 (en) * 2019-09-24 2021-03-31 Volvo Car Corporation Low-impact collision detection
US11541882B2 (en) 2019-09-24 2023-01-03 Volvo Car Corporation Low-impact collision detection

Also Published As

Publication number Publication date
DE10044567A1 (en) 2002-04-04
DE10044567B4 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
DE19581772B4 (en) security arrangement
DE19945923B4 (en) A method and apparatus for sensing side impact crash conditions using an enhanced save function
DE102006024977B4 (en) A method and apparatus for controlling a front actuatable restraint device using lateral satellite containment sensors
DE102005042252B4 (en) Rollover detection apparatus and method for vehicles
DE10044567B4 (en) Safety system for a motor vehicle
EP1044121B1 (en) Device and method for triggering a passenger protection system during vehicle rollover
EP0980323B1 (en) Circuit for controlling a passenger protection device in an automobile
DE102005059255B4 (en) Method and apparatus for determining symmetric and asymmetric crash events with improved malfunction tolerances
EP1261509B1 (en) Method for detecting a rollover situation
DE69737104T2 (en) SAFETY DEVICE FOR VEHICLES
DE102006021824B4 (en) Method and apparatus for controlling an actuatable restraint using XY side satellite accelerometers
EP1258399B2 (en) Method for activating a passenger protection application in a motor vehicle
DE602005004711T2 (en) Device for collision determination for a vehicle
DE10215386A1 (en) Method and device for controlling an actuatable restraint device which uses switched threshold values based on lateral acceleration
EP1528992B1 (en) Method for recognizing a rollover event
DE10223522B4 (en) Collision form decision means
DE102006021822B4 (en) Method and apparatus for controlling an actuatable restraint using XY crush zone satellite accelerometers
DE10215384A1 (en) Method and apparatus for controlling an actuatable restraint that uses switched threshold values based on crumple zone sensors
EP1503922B1 (en) Method for releasing a safety device in a motor vehicle in the event of an overturn
DE102008005526B4 (en) Method and control device for controlling personal protection devices for a vehicle
DE102008002429B4 (en) Method and control device for controlling personal protective equipment for a vehicle
DE19933923B4 (en) Method and device for locking an actuatable restraint device based on a determined collision speed and displacement
DE102021202269A1 (en) Method and device for controlling an actuatable protective device with extended rollover discrimination
EP1700750B1 (en) Method of controlling a vehicle safety device
EP1846271A1 (en) Safety system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP