WO2001093937A2 - Three dimensional, low friction coil, and method of manufacture - Google Patents

Three dimensional, low friction coil, and method of manufacture Download PDF

Info

Publication number
WO2001093937A2
WO2001093937A2 PCT/US2001/040892 US0140892W WO0193937A2 WO 2001093937 A2 WO2001093937 A2 WO 2001093937A2 US 0140892 W US0140892 W US 0140892W WO 0193937 A2 WO0193937 A2 WO 0193937A2
Authority
WO
WIPO (PCT)
Prior art keywords
vasoocclusive
vasculature
strand
treated
coil
Prior art date
Application number
PCT/US2001/040892
Other languages
French (fr)
Other versions
WO2001093937A3 (en
Inventor
David A. Ferrera
Daniel Kurz
Peter Wilson
Crystal Sein-Lwin
Lok A. Lei
Joseph A. Horton
Original Assignee
Micrus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micrus Corporation filed Critical Micrus Corporation
Priority to JP2002501508A priority Critical patent/JP2004500929A/en
Priority to AU2001267053A priority patent/AU2001267053A1/en
Priority to CA002412486A priority patent/CA2412486A1/en
Priority to EP01944666A priority patent/EP1292234A2/en
Publication of WO2001093937A2 publication Critical patent/WO2001093937A2/en
Publication of WO2001093937A3 publication Critical patent/WO2001093937A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/76Winding and joining, e.g. winding spirally helically about more than one axis, e.g. T-pieces, balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • B29L2031/7734Spherical

Definitions

  • This invention relates generally to vasoocclusive devices, and more particularly concerns a vasoocclusive device that has a first elongated, reduced friction configuration in which the vasoocclusive device may be deployed through a catheter or cannula to an anatomical cavity at a site in the vasculature to be treated, and that has a three dimensional second configuration assumed by the vasoocclusive device at the site to be treated for filling the anatomical cavity.
  • One specific field of interventional therapy that has been able to advantageously use recent developments in technology is the treatment of neurovascular defects. More specifically, as smaller and more capable structures and materials have been developed, treatment of vascular defects in the human brain which 5 were previously untreatable or represented unacceptable risks via conventional surgery have become amenable to treatment.
  • One type of non-surgical therapy that has become advantageous for the treatment of defects in the neurovasculature has been the placement by way of a catheter of vasoocclusive devices in a damaged portion of a vein or artery.
  • o Nasoocclusion devices are therapeutic devices that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel.
  • the vasoocclusive devices can take a variety of configurations, and are 5 generally formed of one or more elements that are larger in the deployed configuration than when they are within the delivery catheter prior to placement.
  • One widely used vasoocclusive device is a helical wire coil having a deployed configuration which may be dimensioned to engage the walls of the vessels.
  • vasoocclusive devices can be accomplished by a o variety of means, including via a catheter in which the device is pushed through the catheter by a pusher to deploy the device.
  • the vasoocclusive devices which can have a primary shape of a coil of wire that is then formed into a more complex secondary shape, can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being 5 deployed into the area of interest, such as an aneurysm.
  • a variety of detachment mechanisms to release the device from a pusher have been developed and are known in the art.
  • micro-coils formed of very small diameter wire are used in order to restrict, reinforce, or to occlude such small diameter areas of the vasculature.
  • materials have been suggested for use in such micro-coils, including nickel-titanium alloys, copper, stainless steel, platinum, tungsten, various plastics or the like, each of which offers certain benefits in various applications.
  • Nickel-titanium alloys are particularly advantageous for the fabrication of such micro coils, in that they can have super-elastic or shape memory properties, and thus can be manufactured to easily fit into a linear portion of a catheter, but attain their originally formed, more complex shape when deployed.
  • vasoocclusive coil for example, that has a three dimensional in-filling coil configuration, formed by winding a wire into a helix, and then winding the helix into a secondary form which forms a generally spherical shape, by winding the primary coil about poles placed on winding mandrel.
  • the secondary wound coil is then annealed on the winding mandrel, and the coil is then removed from the winding mandrel and loaded into a carrier for introduction into a delivery catheter.
  • Another similar type of vasoocclusive device is known that can be formed from one or more strands, and can be wound to form a generally spherical or ovoid shape when released and relaxed at the site to be treated.
  • Another implantable vasoocclusive device having multiple secondary layers of primary windings has a final shape that is a generally spherical coil formed of linear or helical primary coils that are wound into a secondary form having three layers. The inner winding is wound and then the second layer formed by winding in the opposite direction of the first layer. The final configuration is a chunky or stepped shape approximately a sphere, ovoid, or egg.
  • Yet another conventional implant for vessel occlusion is made from helical elements of metal or synthetic material by twisting or coiling the elements and forming them into a secondary shape such as a rosette or double rosette for implantation using a catheter, and another vasoocclusive device is known that has a final conical shape.
  • vasoocclusive device that has a three dimensional final form that can be used to fill an anatomical cavity at a site in the vasculature to be treated, reduces friction between the coil and the catheter through which it is delivered to the site to be treated, and ultimately helps to. prevent coil misalignment.
  • the present invention meets these and other needs.
  • the present invention provides for an improved vasoocclusive coil, that has a three dimensional box or cube-shaped portion, and a method of making the coil.
  • the three dimensional portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated.
  • the three dimensional portion of the vasoocclusive coil comprises at least one strand of a flexible material formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional box or cube-shaped configuration for occluding the desired portion of the vasculature to be treated.
  • This substantially linear configuration allows for reduction of friction of the coil within a catheter or cannula being used to deliver the vasoocclusive coil to the site in the vasculature to be treated, and ultimately helps prevent coil realignment or misalignment.
  • the ultimate coil volume that otherwise might be limited due to frictional constraints of three dimensional coils will not be compromised with the device of the present invention.
  • the vasoocclusive coil may optionally also include a portion having a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable configuration that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional box or cube-shaped basket portion, for occluding the desired portion of the vasculature to be treated, in order to combine the best qualities of a three dimensional coil and a J-shaped or helical coil.
  • the present invention accordingly provides for a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery.
  • the vasoocclusive device comprises at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated.
  • the vasoocclusive device advantageously has a portion having a second operable, three dimensional box or cube shape for filling the anatomical cavity at the site in the vasculature to be treated, and may optionally include a portion having a second operable, substantially J-shape or helical shape for filling and reinforcing the distal, three dimensional box or cube shaped portion when it is implanted at the site in the vasculature to be treated.
  • the present invention also provides for a method of making the vasoocclusive device.
  • the method generally comprises the steps of winding at least one strand of a flexible shape memory material about a mandrel formed of a refractory material in a three dimensional configuration of the vasoocclusive coil to form a distal portion of the vasoocclusive coil; heating the at least one strand of a flexible shape memory material wound about the mandrel for a sufficient period of time to impart the form to the shape memory material included in the device to form an operable, three dimensional configuration of the vasoocclusive coil; removing the vasoocclusive coil from the mandrel; and cold working the vasoocclusive coil into a desired elongated configuration for placement into a catheter or cannula for use.
  • the mandrel about which the at least one flexible strand forming the vasoocclusive coil is wound has a substantially orthogonal or cubical body with a plurality of posts disposed on the body.
  • six posts are disposed on the body aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the box or cube shaped portion of the vasoocclusive device as it is wound on the mandrel.
  • one of the posts is provided with a handle that can optionally also be used as a mandrel for winding a portion of the vasoocclusive coil with a helical shape.
  • the step of heating comprises heating the at least one strand of a flexible shape memory material wound about the mandrel at a temperature of about 1100° F for at least about 4 hours to impart the form to the shape memory material included in the device to form an operable, three dimensional configuration of the distal portion of the vasoocclusive coil.
  • Figure 1 is a cross section of a vascular member with an aneurysm illustrating the approach of a vasoocclusive coil towards the aneurysm.
  • Figure 2 is a side elevational view showing a first embodiment of a second operable, three dimensional configuration of the vasoocclusive coil of the invention.
  • Figure 3 A is a side elevational view showing a first option of the first embodiment of Figure 2, including a two-dimensional substantially J-shaped portion.
  • Figure 3B is a side elevational view showing a second option of the first embodiment of Figure 2, including a helically shaped portion.
  • Figure 4 is a perspective view of a radiopaque microstrand cable used in forming the vasoocclusive coil according to the invention.
  • Figure 5 is a cross-section at 5-5 of Figure 4.
  • Figure 6 is an alternate preferred embodiment of the invention including a plurality of radiopaque strands within the cable.
  • Figure 7 is an alternate preferred embodiment of the present invention wherein strands of the cable are arranged within an exterior binding consisting of multiple straps about the cable.
  • Figure 8 is a perspective view of the embodiment of Figure 7.
  • Figure 9 is an alternative embodiment to the embodiment of Figure 8 wherein the external binding of the cable represents a sheath wound about the cable.
  • Figures 10a and 1 Ob are perspectives of alternative embodiments of the embodiment of Figure 9.
  • Figure 11 is a cross-section of an alternative embodiment in which a plurality of multi-strand cables are included within an external sheath surrounding the cable.
  • Figure 12 is a perspective view of the embodiment of Figure 11.
  • Figure 13 is a perspective view of a first embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.
  • Figure 14 is a plan view of the mandrel of Figure 13.
  • Figure 15 is a sectional view of the mandrel of Figure 13 taken along line 15-15 of Figure 14.
  • Figure 16 is a perspective view of a second embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.
  • Figure 17 is a plan view of the mandrel of Figure 16.
  • Figure 18 is a sectional view of the mandrel of Figure 16 taken along line 18-18 of Figure 17.
  • Figure 19 is a perspective view of a third embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.
  • Figure 20 is a perspective view of a second operable, three dimensional configuration of the vasoocclusive coil of the invention formed over the mandrel of Figure 19 according to the method of the invention.
  • Figure 21 is a perspective view showing a second operable, three dimensional configuration of the vasoocclusive coil formed over the mandrel of Figure 19 according to the method of the invention.
  • the invention is accordingly embodied in a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery.
  • the vasoocclusive coil 1 is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration, as illustrated in Figure 1 , for insertion through a micro-catheter 2 into a desired portion of the vasculature to be treated, such as an aneurysm, or other anatomical malformation of the vasculature to be treated, and a second operable, three dimensional configuration illustrated in Figures 2, 3 A and 3B, for occluding the desired portion of the vasculature to be treated.
  • Figure 1 illustrates a helically wound vasoocclusive coil 1 which is formed to fit within the micro-catheter for insertion into an area upon which a therapeutic procedure is to be performed.
  • Figure 1 further shows a catheter pusher member 3 for delivering a vasoocclusive coil 1 for insertion into an aneurysm 4 projecting laterally from a blood vessel 5.
  • the end of the micro-catheter 2 is typically introduced into the opening of the aneurism by use of a guide wire (note shown), and the coil and pusher member are introduced into the micro-catheter to insert the vasoocclusive coil into the aneurysm.
  • catheter pusher member to which the vasoocclusive coil is mounted is an optical fiber pusher which is attached to the coil by a collar 6 of shape memory material such as a nickel titanium super-elastic alloy, or a shape memory polymer, for example.
  • shape memory material such as a nickel titanium super-elastic alloy, or a shape memory polymer, for example.
  • the vasoocclusive coil is typically introduced into the aneurysm and is then pushed from the micro-catheter until the vasoocclusive coil fills the cavity.
  • the shape memory collar 6 is heated to a temperature which allows it to be shrank onto the vasoocclusive coil.
  • the collar can be attached to optical fiber pusher by an adhesive which retains high strength at temperatures beyond the shape memory material transition point.
  • light energy from a source of coherent light is introduced into the proximal end of the optical fiber (not shown) and propagated in the distal end 7 of the fiber to cause the shape memory material collar to return to its previous shape and release the vasoocclusive coil.
  • the vasoocclusive device preferably has a portion 8 having a second operable, three dimensional shape for filling the anatomical cavity at the site in the vasculature to be treated.
  • the three dimensional portion of the vasoocclusive device is orthogonal, having a box or cube shape for filling the anatomical cavity at the site in the vasculature to be treated.
  • the vasooclusive device may also include a portion 9 having a second operable, substantially J-shaped coil shape, for filling and reinforcing the distal, three dimensional shaped portion 8 when the vasoocclusive device is implanted at the site in the vasculature to be treated.
  • the vasooclusive device may also include a portion 9' having a second operable, substantially helical coil shape, for filling and reinforcing the distal, three dimensional shaped portion 8 when the vasoocclusive device is implanted at the site in the vasculature to be treated.
  • the vasoocclusive coils are formed from a single strand of flexible platinum wire, formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated.
  • the vasoocclusive coils may also be made from a multi-stranded micro- cable, formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated.
  • the multi-stranded micro-cable may be formed from a wide variety of materials, including stainless steels if some sacrifice of radiopacity may be tolerated. Very desirable materials of construction, from a mechanical point of view, are materials which maintain their shape despite being subjected to high stress.
  • Certain "super-elastic alloys” include nickel/titanium alloys (48-58 atomic % nickel, and optionally containing modest amounts of iron); copper/zinc alloys (38-42 weight % zinc); copper/zinc alloys containing 1 - 10 weight % of beryllium, silicon, tin, aluminum, or gallium; or nickel/aluminum alloys (36-38 atomic % aluminum). Particularly preferred are the alloys described in U.S. Patent Nos. 3,174,851; 3,351,463; and 3,753,700. Especially preferred is the titanium/nickel alloy known as nitinol. These are very sturdy alloys which will tolerate significant flexing without deformation even when used as a very small diameter wire.
  • the strand may be constructed of a polymer, such as polyvinyl alcohol foam, for example.
  • the wire should be of sufficient diameter to provide a hoop strength to the resulting device sufficient to hold the device in place within the chosen body cavity without distending the wall of the cavity and without moving from the cavity as a result of the repetitive fluid pulsing found in the vascular system. Should a super-elastic alloy such as nitinol be used, the diameter of the coil wire can be significantly smaller than that used when the relatively ductile platinum or platinum/tungsten alloy is used as the material of construction.
  • the vasoocclusive coils may be formed from a multi-stranded micro-cable 10 that is typically approximately from .0021 to .0045 inches in diameter, and comprises a plurality of flexible strands 12 of nickel-titanium alloy, with at least one centrally, axially disposed radiopaque wire 14 which is approximately from .0007 to .0015 inches in diameter. While the above stated diameters represent those presently known to be compatible with the invention, larger or smaller diameters may be useful for particular applications.
  • the central radiopaque wire 14 can be formed of platinum or gold, for example, other similar suitable radiopaque metals, or other suitable types of radiopaque materials, in order to provide a radiopaque marker of the deployed configuration of a device made of the cable during vascular surgery.
  • the radiopaque material may be a metal or a polymer.
  • Suitable metals and alloys for the wiring include platinum group metals, especially platinum rhodium, palladium, as well as tungsten, gold, silver, tantalum, and alloys of these metals. Highly preferred is a platinum/tungsten alloy.
  • a vasoocclusive device made from the micro-cable becomes virtually kink resistant compared to the single strand wires now commonly used in micro-coils.
  • the multi-strand cable construction of the invention allows the micro-wires of the cable to slip across each other and reinforce each other rather than break or take a set. Also, by incorporating a stranded radiopaque material such as platinum, tungsten or gold into the cable construction, the device is radiopaque in sizes much smaller than with other constructions.
  • Figure 5 is a cross-section of the micro-cable of Figure 4 at 5-5 illustrating one presently preferred arrangement of the strands within the cable.
  • the exterior strands 12 are formed of a resilient material chosen to provide the characteristics desired for a specific application in interventional therapies.
  • this material is a nickel titanium super-elastic alloy which is heat treated such that the alloy is highly flexible at a temperature appropriate for introduction into the body via a catheter or cannula.
  • such a cable can have a central core 14 of a radiopaque material such as gold or platinum, thus dramatically enhancing the radiopacity of the cable.
  • a solid super-elastic wire of the same diameter as the cable would have substantially less radiopacity than the cable of the invention with the central gold or platinum wire and the construction of the invention provides numerous other highly desirable characteristics. Among these characteristics is the relative flexibility and resistance to kinking of the cable compared to an equivalent single wire and substantially greater accommodation of the cable to bending, etc., with resultant lessening of trauma to the surrounding tissue and ease of placement in a small body cavity.
  • Figure 6 is an example of one such construction 40 in which radiopacity is more desirable than in other forms and for that reason a number of radiopaque strands 42, in this illustration four in number, are formed into the cable along with three resilient material strands 44. It will also be appreciated that a larger or smaller number of strands may be incorporated into a given cable and the cables may be formed of multiple cables in order to provide desired bending and strength characteristics. It will also be appreciated by those skilled in the art that the invention is adaptable to the use of a variety of materials which by themselves would not have been easily adaptable to micro devices for interventional therapies.
  • composite cables incorporating one or more strands of a desired material can be configured with other strands providing strength, flexibility, shape memory, super- elasticity, radiopacity or the like for previously unavailable characteristics in micro devices.
  • Figure 7 illustrates a cross-section of an additional presently preferred embodiment of the invention in which the strands 12, 14 of the micro-cable 10 are bundled and banded at intervals by bands 50 to produce a composite banded cable 52 in order to provide increased flexibility without unraveling or dislocation of the strands in the cable.
  • Figure 8 is a perspective view of the banded cable 50 of this embodiment. While the illustrated configuration shows the strands being laid parallel within the cable, it is also possible in this construction to include both twisted cables as the primary cables 10 within the outer bands 50 to form the composite cable 52. This configuration can use one or more longitudinal strands 14 which are radiopaque, thus providing a continuous indication of radiopacity within the cable.
  • the longitudinal cable 52 may be formed of a single inner cable 10 with bands 50.
  • Figure 9 illustrates a further embodiment of the invention in which longitudinal strands of cables are contained within a wound cover 56 for the purposes of providing a composite guide wire or the like 58 having improved torqueability.
  • Such a construction has particular advantages for guidewire designs having improved radiopacity in very small diameters. It will be appreciated that in this configuration, as well as the other longitudinally arranged multi-stranded cables, the number of strands and the degree to which they extend along the cable within the sheath is a variable which can be used to provide increased stiffness, pushability and torqueability in some sections with greater flexibility in others.
  • composite cables according to the invention can incorporate additional elements normally not available in solid guide wires, such as optical, thermal or ultrasound imaging elements, therapeutic agent delivery catheters, and can take advantage of materials which are not readily adaptable to prior art catheter or guide wire designs incorporating a primary wire structured element.
  • Figures 10a and 10b illustrate a further variable available because of the invention; the exterior wrapped cover 56 can be wound at greater or lesser intervals 60 along the outside to provide variations in the torqueability and stiffness of the composite cable.
  • the thickness and width of the wrapping cover 56, as well as its material composition along the composite guide wire 58 can offer further capabilities for customizing the design for various applications.
  • Figures 11 and 12 illustrate a cross-section of a micro-cable according to the invention which has at least one overall exterior sheath to contain the micro- cable.
  • the micro-cable may be made of one or more multiple strand elements which may further include twisted or longitudinal strands within their construction.
  • the sheath may also be used to control the torqueability characteristics of the cable, and the sheath may be multi-layered with different materials in order to provide a graduated bending and stiffness characteristic over the length of the cable. It will be appreciated that a three dimensional occlusive device adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use.
  • the occlusive device is configured to have a first inoperable, substantially linear, elongated configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated.
  • a mandrel is used for annealing the coils in the desired second operable, substantially orthogonal three dimensional box or cube shape.
  • a mandrel suitable for making such second operable, three dimensional shaped occlusive devices can be formed of a refractory material, such as alumina or zirconia, for example.
  • the mandrel forms a support for the winding and heat treatment of the wound vasoocclusive device, whether formed from a single strand of platinum wire, a multi-stranded micro-cable, a plurality of micro-cables, or a composite micro-cable occlusive device as described above, and the mandrel ideally will not contaminate the occlusive device during heat treatment of the device.
  • the mandrel ideally will not contaminate the occlusive device during heat treatment of the device.
  • one or more of the flexible strands forming the vasoocclusive coil may be wound around the surface of a mandrel 70 having a substantially orthogonal main body 72 with six cylindrical posts 74 having a diameter slightly smaller than that of the main body, disposed on the body and aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the distal portion of the vasoocclusive device as it is wound on the mandrel.
  • the mandrel may optionally also include an aperture, such as a threaded aperture 78, provided in a face 80 of one of the posts 74 and coaxially aligned with the orthogonal axis the post, for receiving a corresponding end 82 of a generally cylindrical handle 84.
  • the end 82 of the handle may also be correspondingly threaded.
  • the handle can optionally be used as a mandrel for winding a portion of the vasoocclusive coil with a helical shape.
  • one or more of the flexible strands forming the vasoocclusive coil may be wound around the surface of a mandrel 70' having a substantially orthogonal main body 72' with five cylindrical posts 74' and a sixth cylindrical post 84' that is longer than the other five cylindrical posts, so as to allow the longer cylindrical post 84' to be used as a handle.
  • the longer cylindrical post 84' additionally may be used as a mandrel for winding a portion of the vasoocclusive coil with a J-shaped coil portion or with a substantially helical shape as illustrated in Figures 3 A and 3B.
  • the six cylindrical posts are typically formed with the body as one piece, and each of the six cylindrical posts typically has a diameter slightly smaller than that of the main body.
  • the six cylindrical posts are aligned with the three orthogonal axes through the body of the mandrel, for aligning and shaping the distal portion of the vasoocclusive device as it is wound on the mandrel, as is illustrated in Figure 20, to form the second operable, three dimensional box or cube-shaped configuration for occluding the desired portion of the vasculature to be treated.
  • the surface of the mandrel may also have one or more apertures for receiving one or more ends of the strands, to assist winding into the desired form.
  • the wound occlusive device is preferably heat treated at a suitable temperature and a sufficient period of time to impart the form to the shape memory material included in the device. While heat treatment at a temperature of about 1100 ° F for approximately 4 hours or more is typically sufficient to impart the form to the occlusive device when the shape memory material is a nickel titanium super-elastic alloy, although the temperature utilized can be substantially lowered, and the duration of heat treatment adjusted accordingly, as will be appreciated by those skilled in the art.
  • the occlusive device After the heat treatment, the occlusive device is removed from the mandrel, and cold worked into the desired collapsed elongated configuration for placement into a catheter or cannula for use. When the occlusive device reaches its destination in the vasculature during vascular therapy, it assumes the primary shape imparted from the heat treatment on the mandrel.

Abstract

The three dimensional, low friction vasoocclusive coil (1) has a portion that is three dimensionally box or cubed shaped. The three dimensional box or cubed shaped portion (8) will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The vasooclusive device (1) is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive coil may optionally include a portion that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional portion.

Description

THREE DIMENSIONAL, LOW FRICTION COIL, AND METHOD OF
MANUFACTURE
BACKGROUND OF THE INVENTION
Field of the Invention:
This invention relates generally to vasoocclusive devices, and more particularly concerns a vasoocclusive device that has a first elongated, reduced friction configuration in which the vasoocclusive device may be deployed through a catheter or cannula to an anatomical cavity at a site in the vasculature to be treated, and that has a three dimensional second configuration assumed by the vasoocclusive device at the site to be treated for filling the anatomical cavity.
Description of Related Art:
The art and science of interventional therapy and surgery has continually progressed towards treatment of internal defects and diseases by use of ever smaller incisions or access through the vasculature or body openings in order to reduce the trauma to tissue surrounding the treatment site. One important aspect of such treatments involves the use of catheters to place therapeutic devices at a treatment site by access through the vasculature. Examples of such procedures include transluminal angioplasty, placement of stents to reinforce the walls of a blood vessel or the like and the use of vasoocclusion devices to treat defects in the vasculature. There is a constant drive by those practicing in the art to develop new and more capable systems for such applications. When coupled with developments in biological treatment capabilities, there is an expanding need for technologies that enhance the performance of interventional therapeutic devices and systems. One specific field of interventional therapy that has been able to advantageously use recent developments in technology is the treatment of neurovascular defects. More specifically, as smaller and more capable structures and materials have been developed, treatment of vascular defects in the human brain which 5 were previously untreatable or represented unacceptable risks via conventional surgery have become amenable to treatment. One type of non-surgical therapy that has become advantageous for the treatment of defects in the neurovasculature has been the placement by way of a catheter of vasoocclusive devices in a damaged portion of a vein or artery. o Nasoocclusion devices are therapeutic devices that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. The vasoocclusive devices can take a variety of configurations, and are 5 generally formed of one or more elements that are larger in the deployed configuration than when they are within the delivery catheter prior to placement. One widely used vasoocclusive device is a helical wire coil having a deployed configuration which may be dimensioned to engage the walls of the vessels.
The delivery of such vasoocclusive devices can be accomplished by a o variety of means, including via a catheter in which the device is pushed through the catheter by a pusher to deploy the device. The vasoocclusive devices, which can have a primary shape of a coil of wire that is then formed into a more complex secondary shape, can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being 5 deployed into the area of interest, such as an aneurysm. A variety of detachment mechanisms to release the device from a pusher have been developed and are known in the art.
For treatment of areas of the small diameter vasculature such as a small artery or vein in the brain, for example, and for treatment of aneurysms and the like, micro-coils formed of very small diameter wire are used in order to restrict, reinforce, or to occlude such small diameter areas of the vasculature. A variety of materials have been suggested for use in such micro-coils, including nickel-titanium alloys, copper, stainless steel, platinum, tungsten, various plastics or the like, each of which offers certain benefits in various applications. Nickel-titanium alloys are particularly advantageous for the fabrication of such micro coils, in that they can have super-elastic or shape memory properties, and thus can be manufactured to easily fit into a linear portion of a catheter, but attain their originally formed, more complex shape when deployed.
One conventional vasoocclusive coil is known, for example, that has a three dimensional in-filling coil configuration, formed by winding a wire into a helix, and then winding the helix into a secondary form which forms a generally spherical shape, by winding the primary coil about poles placed on winding mandrel. The secondary wound coil is then annealed on the winding mandrel, and the coil is then removed from the winding mandrel and loaded into a carrier for introduction into a delivery catheter. Another similar type of vasoocclusive device is known that can be formed from one or more strands, and can be wound to form a generally spherical or ovoid shape when released and relaxed at the site to be treated. Another implantable vasoocclusive device having multiple secondary layers of primary windings has a final shape that is a generally spherical coil formed of linear or helical primary coils that are wound into a secondary form having three layers. The inner winding is wound and then the second layer formed by winding in the opposite direction of the first layer. The final configuration is a chunky or stepped shape approximately a sphere, ovoid, or egg. Yet another conventional implant for vessel occlusion is made from helical elements of metal or synthetic material by twisting or coiling the elements and forming them into a secondary shape such as a rosette or double rosette for implantation using a catheter, and another vasoocclusive device is known that has a final conical shape. However, due to the tendency of such three dimensional shaped coils to transform into their expanded, final forms when introduced into a catheter in the body, they are inherently more difficult than a helical coil or a straight wire or micro-cable to push through such a catheter for delivery to a site in the vasculature to be treated, due to friction between the coil and the catheter through which it is delivered to the site to be treated, which can even result in misalignment of the coil within the catheter during delivery.
There thus remains a need for a vasoocclusive device that has a three dimensional final form that can be used to fill an anatomical cavity at a site in the vasculature to be treated, reduces friction between the coil and the catheter through which it is delivered to the site to be treated, and ultimately helps to. prevent coil misalignment. The present invention meets these and other needs.
SUMMARY OF THE INVENTION
Briefly, and in general terms, the present invention provides for an improved vasoocclusive coil, that has a three dimensional box or cube-shaped portion, and a method of making the coil. The three dimensional portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The three dimensional portion of the vasoocclusive coil comprises at least one strand of a flexible material formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional box or cube-shaped configuration for occluding the desired portion of the vasculature to be treated. This substantially linear configuration allows for reduction of friction of the coil within a catheter or cannula being used to deliver the vasoocclusive coil to the site in the vasculature to be treated, and ultimately helps prevent coil realignment or misalignment. The ultimate coil volume that otherwise might be limited due to frictional constraints of three dimensional coils will not be compromised with the device of the present invention. The vasoocclusive coil may optionally also include a portion having a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable configuration that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional box or cube-shaped basket portion, for occluding the desired portion of the vasculature to be treated, in order to combine the best qualities of a three dimensional coil and a J-shaped or helical coil.
The present invention accordingly provides for a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The vasoocclusive device comprises at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive device advantageously has a portion having a second operable, three dimensional box or cube shape for filling the anatomical cavity at the site in the vasculature to be treated, and may optionally include a portion having a second operable, substantially J-shape or helical shape for filling and reinforcing the distal, three dimensional box or cube shaped portion when it is implanted at the site in the vasculature to be treated.
The present invention also provides for a method of making the vasoocclusive device. The method generally comprises the steps of winding at least one strand of a flexible shape memory material about a mandrel formed of a refractory material in a three dimensional configuration of the vasoocclusive coil to form a distal portion of the vasoocclusive coil; heating the at least one strand of a flexible shape memory material wound about the mandrel for a sufficient period of time to impart the form to the shape memory material included in the device to form an operable, three dimensional configuration of the vasoocclusive coil; removing the vasoocclusive coil from the mandrel; and cold working the vasoocclusive coil into a desired elongated configuration for placement into a catheter or cannula for use. In one presently preferred embodiment, the mandrel about which the at least one flexible strand forming the vasoocclusive coil is wound has a substantially orthogonal or cubical body with a plurality of posts disposed on the body. In a preferred aspect, six posts are disposed on the body aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the box or cube shaped portion of the vasoocclusive device as it is wound on the mandrel. In one presently preferred embodiment, one of the posts is provided with a handle that can optionally also be used as a mandrel for winding a portion of the vasoocclusive coil with a helical shape. In another preferred aspect of the method, the step of heating comprises heating the at least one strand of a flexible shape memory material wound about the mandrel at a temperature of about 1100° F for at least about 4 hours to impart the form to the shape memory material included in the device to form an operable, three dimensional configuration of the distal portion of the vasoocclusive coil.
These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a cross section of a vascular member with an aneurysm illustrating the approach of a vasoocclusive coil towards the aneurysm. Figure 2 is a side elevational view showing a first embodiment of a second operable, three dimensional configuration of the vasoocclusive coil of the invention.
Figure 3 A is a side elevational view showing a first option of the first embodiment of Figure 2, including a two-dimensional substantially J-shaped portion.
Figure 3B is a side elevational view showing a second option of the first embodiment of Figure 2, including a helically shaped portion.
Figure 4 is a perspective view of a radiopaque microstrand cable used in forming the vasoocclusive coil according to the invention.
Figure 5 is a cross-section at 5-5 of Figure 4.
Figure 6 is an alternate preferred embodiment of the invention including a plurality of radiopaque strands within the cable.
Figure 7 is an alternate preferred embodiment of the present invention wherein strands of the cable are arranged within an exterior binding consisting of multiple straps about the cable.
Figure 8 is a perspective view of the embodiment of Figure 7.
Figure 9 is an alternative embodiment to the embodiment of Figure 8 wherein the external binding of the cable represents a sheath wound about the cable. Figures 10a and 1 Ob are perspectives of alternative embodiments of the embodiment of Figure 9.
Figure 11 is a cross-section of an alternative embodiment in which a plurality of multi-strand cables are included within an external sheath surrounding the cable. Figure 12 is a perspective view of the embodiment of Figure 11.
Figure 13 is a perspective view of a first embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.
Figure 14 is a plan view of the mandrel of Figure 13.
Figure 15 is a sectional view of the mandrel of Figure 13 taken along line 15-15 of Figure 14.
Figure 16 is a perspective view of a second embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.
Figure 17 is a plan view of the mandrel of Figure 16. Figure 18 is a sectional view of the mandrel of Figure 16 taken along line 18-18 of Figure 17.
Figure 19 is a perspective view of a third embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention. Figure 20 is a perspective view of a second operable, three dimensional configuration of the vasoocclusive coil of the invention formed over the mandrel of Figure 19 according to the method of the invention.
Figure 21 is a perspective view showing a second operable, three dimensional configuration of the vasoocclusive coil formed over the mandrel of Figure 19 according to the method of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
While conventional three dimensional and spherical vasoocclusive coils have been developed, such three dimensional shaped coils tend to transform into their expanded, final forms when introduced into a catheter in the body, making them inherently more difficult than a simple helical coil or straight wire to push through a catheter or cannula for delivery to a site in the vasculature to be treated, due to friction between the coil and the catheter through which it is delivered to the site to be treated, and that can even result in misalignment of the coil within the catheter during delivery.
As is illustrated in the drawings, the invention is accordingly embodied in a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The vasoocclusive coil 1 is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration, as illustrated in Figure 1 , for insertion through a micro-catheter 2 into a desired portion of the vasculature to be treated, such as an aneurysm, or other anatomical malformation of the vasculature to be treated, and a second operable, three dimensional configuration illustrated in Figures 2, 3 A and 3B, for occluding the desired portion of the vasculature to be treated.
Figure 1 illustrates a helically wound vasoocclusive coil 1 which is formed to fit within the micro-catheter for insertion into an area upon which a therapeutic procedure is to be performed. Figure 1 further shows a catheter pusher member 3 for delivering a vasoocclusive coil 1 for insertion into an aneurysm 4 projecting laterally from a blood vessel 5. The end of the micro-catheter 2 is typically introduced into the opening of the aneurism by use of a guide wire (note shown), and the coil and pusher member are introduced into the micro-catheter to insert the vasoocclusive coil into the aneurysm. In a presently preferred embodiment, catheter pusher member to which the vasoocclusive coil is mounted is an optical fiber pusher which is attached to the coil by a collar 6 of shape memory material such as a nickel titanium super-elastic alloy, or a shape memory polymer, for example. The vasoocclusive coil is typically introduced into the aneurysm and is then pushed from the micro-catheter until the vasoocclusive coil fills the cavity.
In one presently preferred embodiment, the shape memory collar 6 is heated to a temperature which allows it to be shrank onto the vasoocclusive coil. The collar can be attached to optical fiber pusher by an adhesive which retains high strength at temperatures beyond the shape memory material transition point. After insertion, and when an operator is satisfied that the device is properly deployed, light energy from a source of coherent light is introduced into the proximal end of the optical fiber (not shown) and propagated in the distal end 7 of the fiber to cause the shape memory material collar to return to its previous shape and release the vasoocclusive coil. Those skilled in the art will recognize that the invention can also be used with a variety of other placement catheter systems, and it is not intended that the invention be limited to the placement concepts illustrated by way of example.
Referring to Figures 2, 3A and 3B, the vasoocclusive device preferably has a portion 8 having a second operable, three dimensional shape for filling the anatomical cavity at the site in the vasculature to be treated. As is illustrated in Figure 2, in a presently preferred embodiment, the three dimensional portion of the vasoocclusive device is orthogonal, having a box or cube shape for filling the anatomical cavity at the site in the vasculature to be treated. As is illustrated in Figure 3 A, in one presently preferred option of the embodiment of Figure 2, the vasooclusive device may also include a portion 9 having a second operable, substantially J-shaped coil shape, for filling and reinforcing the distal, three dimensional shaped portion 8 when the vasoocclusive device is implanted at the site in the vasculature to be treated. As is illustrated in Figure 3B, in one presently preferred option of the embodiment of Figure 2, the vasooclusive device may also include a portion 9' having a second operable, substantially helical coil shape, for filling and reinforcing the distal, three dimensional shaped portion 8 when the vasoocclusive device is implanted at the site in the vasculature to be treated. In a presently preferred aspect of the invention, the vasoocclusive coils are formed from a single strand of flexible platinum wire, formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive coils may also be made from a multi-stranded micro- cable, formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The multi-stranded micro-cable may be formed from a wide variety of materials, including stainless steels if some sacrifice of radiopacity may be tolerated. Very desirable materials of construction, from a mechanical point of view, are materials which maintain their shape despite being subjected to high stress. Certain "super-elastic alloys" include nickel/titanium alloys (48-58 atomic % nickel, and optionally containing modest amounts of iron); copper/zinc alloys (38-42 weight % zinc); copper/zinc alloys containing 1 - 10 weight % of beryllium, silicon, tin, aluminum, or gallium; or nickel/aluminum alloys (36-38 atomic % aluminum). Particularly preferred are the alloys described in U.S. Patent Nos. 3,174,851; 3,351,463; and 3,753,700. Especially preferred is the titanium/nickel alloy known as nitinol. These are very sturdy alloys which will tolerate significant flexing without deformation even when used as a very small diameter wire. Additionally, the strand may be constructed of a polymer, such as polyvinyl alcohol foam, for example. The wire should be of sufficient diameter to provide a hoop strength to the resulting device sufficient to hold the device in place within the chosen body cavity without distending the wall of the cavity and without moving from the cavity as a result of the repetitive fluid pulsing found in the vascular system. Should a super-elastic alloy such as nitinol be used, the diameter of the coil wire can be significantly smaller than that used when the relatively ductile platinum or platinum/tungsten alloy is used as the material of construction.
As is illustrated in Figure 4, the vasoocclusive coils may be formed from a multi-stranded micro-cable 10 that is typically approximately from .0021 to .0045 inches in diameter, and comprises a plurality of flexible strands 12 of nickel-titanium alloy, with at least one centrally, axially disposed radiopaque wire 14 which is approximately from .0007 to .0015 inches in diameter. While the above stated diameters represent those presently known to be compatible with the invention, larger or smaller diameters may be useful for particular applications.
The central radiopaque wire 14 can be formed of platinum or gold, for example, other similar suitable radiopaque metals, or other suitable types of radiopaque materials, in order to provide a radiopaque marker of the deployed configuration of a device made of the cable during vascular surgery. The radiopaque material may be a metal or a polymer. Suitable metals and alloys for the wiring include platinum group metals, especially platinum rhodium, palladium, as well as tungsten, gold, silver, tantalum, and alloys of these metals. Highly preferred is a platinum/tungsten alloy.
There are numerous benefits to the novel construction of the invention for use in interventional devices and the like. By using the stranded or micro-cable construction of the invention, a vasoocclusive device made from the micro-cable becomes virtually kink resistant compared to the single strand wires now commonly used in micro-coils. The multi-strand cable construction of the invention allows the micro-wires of the cable to slip across each other and reinforce each other rather than break or take a set. Also, by incorporating a stranded radiopaque material such as platinum, tungsten or gold into the cable construction, the device is radiopaque in sizes much smaller than with other constructions.
Figure 5 is a cross-section of the micro-cable of Figure 4 at 5-5 illustrating one presently preferred arrangement of the strands within the cable. In this embodiment, the exterior strands 12 are formed of a resilient material chosen to provide the characteristics desired for a specific application in interventional therapies. In a presently preferred embodiment, this material is a nickel titanium super-elastic alloy which is heat treated such that the alloy is highly flexible at a temperature appropriate for introduction into the body via a catheter or cannula. By choosing such a material for micro-coils and the like, the devices formed from the micro-cable can be relatively easily placed into the appropriate body cavity and after placement, the device will take on a shape designed to optimize the therapeutic purposes desired for the device. As illustrated in Figure 5, such a cable can have a central core 14 of a radiopaque material such as gold or platinum, thus dramatically enhancing the radiopacity of the cable. Even a solid super-elastic wire of the same diameter as the cable would have substantially less radiopacity than the cable of the invention with the central gold or platinum wire and the construction of the invention provides numerous other highly desirable characteristics. Among these characteristics is the relative flexibility and resistance to kinking of the cable compared to an equivalent single wire and substantially greater accommodation of the cable to bending, etc., with resultant lessening of trauma to the surrounding tissue and ease of placement in a small body cavity.
While one presently preferred implementation of the micro-cable of the invention has been illustrated, those skilled in the art will appreciate that other variations of the invention may have advantages for certain purposes. Figure 6 is an example of one such construction 40 in which radiopacity is more desirable than in other forms and for that reason a number of radiopaque strands 42, in this illustration four in number, are formed into the cable along with three resilient material strands 44. It will also be appreciated that a larger or smaller number of strands may be incorporated into a given cable and the cables may be formed of multiple cables in order to provide desired bending and strength characteristics. It will also be appreciated by those skilled in the art that the invention is adaptable to the use of a variety of materials which by themselves would not have been easily adaptable to micro devices for interventional therapies. For instance, materials such as copper are useful for intrauterine devices and the like, but copper wire, even when heavily alloyed, has certain limitations for use in such devices. By use of the present invention, composite cables incorporating one or more strands of a desired material can be configured with other strands providing strength, flexibility, shape memory, super- elasticity, radiopacity or the like for previously unavailable characteristics in micro devices.
Figure 7 illustrates a cross-section of an additional presently preferred embodiment of the invention in which the strands 12, 14 of the micro-cable 10 are bundled and banded at intervals by bands 50 to produce a composite banded cable 52 in order to provide increased flexibility without unraveling or dislocation of the strands in the cable. Figure 8 is a perspective view of the banded cable 50 of this embodiment. While the illustrated configuration shows the strands being laid parallel within the cable, it is also possible in this construction to include both twisted cables as the primary cables 10 within the outer bands 50 to form the composite cable 52. This configuration can use one or more longitudinal strands 14 which are radiopaque, thus providing a continuous indication of radiopacity within the cable. As a further alternative embodiment, it is possible for the longitudinal cable 52 to be formed of a single inner cable 10 with bands 50. Figure 9 illustrates a further embodiment of the invention in which longitudinal strands of cables are contained within a wound cover 56 for the purposes of providing a composite guide wire or the like 58 having improved torqueability. Such a construction has particular advantages for guidewire designs having improved radiopacity in very small diameters. It will be appreciated that in this configuration, as well as the other longitudinally arranged multi-stranded cables, the number of strands and the degree to which they extend along the cable within the sheath is a variable which can be used to provide increased stiffness, pushability and torqueability in some sections with greater flexibility in others. Additionally, composite cables according to the invention can incorporate additional elements normally not available in solid guide wires, such as optical, thermal or ultrasound imaging elements, therapeutic agent delivery catheters, and can take advantage of materials which are not readily adaptable to prior art catheter or guide wire designs incorporating a primary wire structured element. Figures 10a and 10b illustrate a further variable available because of the invention; the exterior wrapped cover 56 can be wound at greater or lesser intervals 60 along the outside to provide variations in the torqueability and stiffness of the composite cable. Also, the thickness and width of the wrapping cover 56, as well as its material composition along the composite guide wire 58, can offer further capabilities for customizing the design for various applications. These advantages can be combined with the benefits of shape memory or super-elastic alloys to create guidewires and other devices with heretofore unavailable capabilities.
Figures 11 and 12 illustrate a cross-section of a micro-cable according to the invention which has at least one overall exterior sheath to contain the micro- cable. The micro-cable may be made of one or more multiple strand elements which may further include twisted or longitudinal strands within their construction. The sheath may also be used to control the torqueability characteristics of the cable, and the sheath may be multi-layered with different materials in order to provide a graduated bending and stiffness characteristic over the length of the cable. It will be appreciated that a three dimensional occlusive device adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use. in interventional therapy and vascular surgery, can be formed as described above, from at least one multi-stranded micro-cable having a plurality of flexible strands of a resilient material, with at least one radiopaque strand to provide a radiopaque marker for the device during vascular surgery. The occlusive device is configured to have a first inoperable, substantially linear, elongated configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. In the method of making the vasoocclusive coils of the invention, a mandrel is used for annealing the coils in the desired second operable, substantially orthogonal three dimensional box or cube shape. A mandrel suitable for making such second operable, three dimensional shaped occlusive devices can be formed of a refractory material, such as alumina or zirconia, for example. The mandrel forms a support for the winding and heat treatment of the wound vasoocclusive device, whether formed from a single strand of platinum wire, a multi-stranded micro-cable, a plurality of micro-cables, or a composite micro-cable occlusive device as described above, and the mandrel ideally will not contaminate the occlusive device during heat treatment of the device. In one presently preferred embodiment illustrated in Figures 13, 14 and
15, one or more of the flexible strands forming the vasoocclusive coil may be wound around the surface of a mandrel 70 having a substantially orthogonal main body 72 with six cylindrical posts 74 having a diameter slightly smaller than that of the main body, disposed on the body and aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the distal portion of the vasoocclusive device as it is wound on the mandrel.
As is illustrated in Figures 16, 17 and 18, in one variant of the embodiment of Figures 13, 14 and 15, the mandrel may optionally also include an aperture, such as a threaded aperture 78, provided in a face 80 of one of the posts 74 and coaxially aligned with the orthogonal axis the post, for receiving a corresponding end 82 of a generally cylindrical handle 84. The end 82 of the handle may also be correspondingly threaded. The handle can optionally be used as a mandrel for winding a portion of the vasoocclusive coil with a helical shape.
Referring to Figures 19, 20 and 21 , in another variant of the embodiment of Figures 13, 14 and 15, one or more of the flexible strands forming the vasoocclusive coil may be wound around the surface of a mandrel 70' having a substantially orthogonal main body 72' with five cylindrical posts 74' and a sixth cylindrical post 84' that is longer than the other five cylindrical posts, so as to allow the longer cylindrical post 84' to be used as a handle. The longer cylindrical post 84' additionally may be used as a mandrel for winding a portion of the vasoocclusive coil with a J-shaped coil portion or with a substantially helical shape as illustrated in Figures 3 A and 3B. The six cylindrical posts are typically formed with the body as one piece, and each of the six cylindrical posts typically has a diameter slightly smaller than that of the main body. The six cylindrical posts are aligned with the three orthogonal axes through the body of the mandrel, for aligning and shaping the distal portion of the vasoocclusive device as it is wound on the mandrel, as is illustrated in Figure 20, to form the second operable, three dimensional box or cube-shaped configuration for occluding the desired portion of the vasculature to be treated.
The surface of the mandrel may also have one or more apertures for receiving one or more ends of the strands, to assist winding into the desired form. The wound occlusive device is preferably heat treated at a suitable temperature and a sufficient period of time to impart the form to the shape memory material included in the device. While heat treatment at a temperature of about 1100 ° F for approximately 4 hours or more is typically sufficient to impart the form to the occlusive device when the shape memory material is a nickel titanium super-elastic alloy, although the temperature utilized can be substantially lowered, and the duration of heat treatment adjusted accordingly, as will be appreciated by those skilled in the art. After the heat treatment, the occlusive device is removed from the mandrel, and cold worked into the desired collapsed elongated configuration for placement into a catheter or cannula for use. When the occlusive device reaches its destination in the vasculature during vascular therapy, it assumes the primary shape imparted from the heat treatment on the mandrel.
It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding a portion of the vasculature for use in interventional therapy and vascular surgery, comprising: at least one strand of a flexible material formed to have a portion with a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a second operable, three dimensional orthogonal configuration for occluding the desired part of the vasculature to be treated.
2. The vasoocclusive device of Claim 1, further comprising a second portion having a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a second operable, coiled shape for filling and reinforcing the distal, three dimensional shaped portion when the vasoocclusive device is implanted at the site in the vasculature to be treated.
3. The vasoocclusive device of Claim 1, further comprising a second portion having a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a second operable, substantially J-shape for filling and reinforcing the distal, three dimensional shaped portion when the vasoocclusive device is implanted at the site in the vasculature to be treated.
4. The vasoocclusive device of Claim 1, further comprising a second portion having a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a second operable, substantially helical coil shape for filling and reinforcing the distal, three dimensional shaped portion when the vasoocclusive device is implanted at the site in the vasculature to be treated.
5. The vasoocclusive device of Claim 1, wherein said vasoocclusive device is formed from at least one flexible strand of a resilient radiopaque material to provide a radiopaque marker of the deployed configuration of a device made of the strand during vascular surgery.
6. The vasoocclusive device of Claim 1 , wherein said at least one strand comprises a super-elastic material.
7. The vasoocclusive device of Claim 1 , wherein said at least one strand comprises a single strand of platinum wire.
8. The vasoocclusive device of Claim 1 , wherein said at least one strand comprises a shape memory material.
9. The vasoocclusive device of either Claim 6 or Claim 8, wherein said at least one strand comprises a nickel-titanium alloy.
10. The vasoocclusive device of Claim 9, wherein said shape memory material is heat treated such that the shape memory material is highly flexible at a temperature appropriate for introduction into the body via a catheter, and after placement, the device will take on the primary coil configuration.
11. The vasoocclusive device of Claim 5, wherein said radiopaque strand comprises at least one centrally, axially disposed radiopaque wire.
12. The vasoocclusive device of Claim 5, wherein said radiopaque strand is made of platinum.
13. The vasoocclusive device of Claim 5, wherein said radiopaque strand is made of tungsten.
14. The vasoocclusive device of Claim 5, wherein said radiopaque strand is made of gold.
15. The vasoocclusive device of Claim 1 , wherein said strand of flexible material is further formed into a helical shape which is the form of the first, inoperable, substantially linear configuration of the strand.
16. A method of making a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery, said vasoocclusive device being formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a portion having a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated, the method comprising the steps of: winding at least one strand of a flexible material about a an orthogonally shaped mandrel in a three dimensional orthogonal configuration of the vasoocclusive coil; heating said at least one strand of a flexible material wound about the mandrel for a sufficient period of time to impart the form to the material included in the device to form an operable, three dimensional configuration of the vasoocclusive coil; removing the vasoocclusive coil from the mandrel; and cold working the vasoocclusive coil into a desired elongated configuration for placement into a catheter or cannula for use.
17. The method of Claim 16, wherein the mandrel about which said at least one flexible strand forming the vasoocclusive coil is wound has a substantially orthogonally shaped body with a plurality of posts disposed on the body.
18. The method of Claim 17, wherein six posts are disposed on the body aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the distal portion of the vasoocclusive device as it is wound on the mandrel.
19. The method of Claim 17, wherein said body includes a handle, and further comprising the step of helically winding a portion of the vasoocclusive coil about the handle.
20. The method of Claim 17, wherein said main body is substantially orthogonal.
21. The method of Claim 17, wherein said main body is substantially cubical.
PCT/US2001/040892 2000-06-08 2001-06-07 Three dimensional, low friction coil, and method of manufacture WO2001093937A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002501508A JP2004500929A (en) 2000-06-08 2001-06-07 Three-dimensional low friction coil and method of manufacturing the same
AU2001267053A AU2001267053A1 (en) 2000-06-08 2001-06-07 Three dimensional, low friction coil, and method of manufacture
CA002412486A CA2412486A1 (en) 2000-06-08 2001-06-07 Three dimensional, low friction coil, and method of manufacture
EP01944666A EP1292234A2 (en) 2000-06-08 2001-06-07 Three dimensional, low friction coil, and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/590,794 US6638291B1 (en) 1995-04-20 2000-06-08 Three dimensional, low friction vasoocclusive coil, and method of manufacture
US09/590,794 2000-06-08

Publications (2)

Publication Number Publication Date
WO2001093937A2 true WO2001093937A2 (en) 2001-12-13
WO2001093937A3 WO2001093937A3 (en) 2002-08-15

Family

ID=24363740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/040892 WO2001093937A2 (en) 2000-06-08 2001-06-07 Three dimensional, low friction coil, and method of manufacture

Country Status (6)

Country Link
US (2) US6638291B1 (en)
EP (1) EP1292234A2 (en)
JP (1) JP2004500929A (en)
AU (1) AU2001267053A1 (en)
CA (1) CA2412486A1 (en)
WO (1) WO2001093937A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092214A1 (en) * 2004-03-01 2005-10-06 Boston Scientific Limited Vaso-occlusive coils with non-overlapping sections
WO2005092213A1 (en) 2004-03-01 2005-10-06 Boston Scientific Limited Complex vaso-occlusive coils
WO2006032289A1 (en) 2004-09-22 2006-03-30 Dendron Gmbh Medical implant
EP1902678A2 (en) * 2002-07-02 2008-03-26 Microvention, Inc. Coaxial stretch-resistant vaso-occlusive device
WO2008097973A1 (en) * 2007-02-07 2008-08-14 Micrus Endovascular Corporation Winding mandrel for vasoocclusive coils
WO2008112436A3 (en) * 2007-03-13 2008-11-20 Micro Therapeutics Inc An implant, a mandrel, and a method of forming an implant
JP2009213916A (en) * 2002-01-11 2009-09-24 Microvention Inc Microcoil vaso-occlusive device with multi-axis secondary configuration
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9198665B2 (en) 2004-09-22 2015-12-01 Covidien Lp Micro-spiral implantation device
US9289215B2 (en) 2007-03-13 2016-03-22 Covidien Lp Implant including a coil and a stretch-resistant member
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
CN108814669A (en) * 2018-10-09 2018-11-16 微创神通医疗科技(上海)有限公司 Embolization device and its spring ring
CN109009308A (en) * 2018-06-22 2018-12-18 威海维心医疗设备有限公司 Substance and preparation method thereof is shunk for aneurysmal degradable embolism
EP3094269B1 (en) * 2014-01-14 2022-04-27 Penumbra, Inc. Soft embolic implant
US11399840B2 (en) 2019-08-13 2022-08-02 Covidien Lp Implantable embolization device
WO2024015818A1 (en) * 2022-07-12 2024-01-18 Medtronic, Inc. Implantable embolization device

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638291B1 (en) * 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US6705323B1 (en) 1995-06-07 2004-03-16 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US6176240B1 (en) * 1995-06-07 2001-01-23 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and their delivery
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6168615B1 (en) 1998-05-04 2001-01-02 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6632241B1 (en) 2000-03-22 2003-10-14 Endovascular Technologies, Inc. Self-expanding, pseudo-braided intravascular device
US7029486B2 (en) * 2000-09-26 2006-04-18 Microvention, Inc. Microcoil vaso-occlusive device with multi-axis secondary configuration
US6635069B1 (en) * 2000-10-18 2003-10-21 Scimed Life Systems, Inc. Non-overlapping spherical three-dimensional coil
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US8227411B2 (en) 2002-08-20 2012-07-24 BioSurface Engineering Technologies, Incle FGF growth factor analogs
US7598224B2 (en) * 2002-08-20 2009-10-06 Biosurface Engineering Technologies, Inc. Dual chain synthetic heparin-binding growth factor analogs
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US20050107823A1 (en) * 2003-11-19 2005-05-19 Leone Jim E. Anchored stent and occlusive device for treatment of aneurysms
DE602005023714D1 (en) 2004-02-20 2010-11-04 Biosurface Eng Tech Inc BONE MORPHOGENETIC PROTEIN-2 POSITIVE MODULATOR (BMP-2)
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US20190314620A1 (en) 2004-04-21 2019-10-17 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8146400B2 (en) * 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US20050267510A1 (en) * 2004-05-26 2005-12-01 Nasser Razack Device for the endovascular treatment of intracranial aneurysms
US20060089672A1 (en) * 2004-10-25 2006-04-27 Jonathan Martinek Yarns containing filaments made from shape memory alloys
CA2585147A1 (en) * 2004-11-09 2006-05-18 Boston Scientific Limited Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion
US8425550B2 (en) 2004-12-01 2013-04-23 Boston Scientific Scimed, Inc. Embolic coils
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8007509B2 (en) * 2005-10-12 2011-08-30 Boston Scientific Scimed, Inc. Coil assemblies, components and methods
AU2006330786B2 (en) 2005-11-17 2012-02-02 Microvention, Inc. Three-dimensional complex coil
US8101197B2 (en) 2005-12-19 2012-01-24 Stryker Corporation Forming coils
US8152839B2 (en) 2005-12-19 2012-04-10 Boston Scientific Scimed, Inc. Embolic coils
US20070225738A1 (en) * 2006-03-24 2007-09-27 Cook Incorporated Aneurysm coil and method of assembly
CN101448464B (en) 2006-04-17 2011-05-04 微治疗公司 System and method for mechanically positioning intravascular implants
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
JP2009541358A (en) 2006-06-22 2009-11-26 バイオサーフェス エンジニアリング テクノロジーズ,インク. Compositions and methods for delivering a BMP-2 amplification factor / co-activator to enhance bone formation
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
KR20130095317A (en) 2006-10-22 2013-08-27 이데브 테크놀로지스, 아이엔씨. Devices and methods for stent advancement
BRPI0717392A2 (en) 2006-10-22 2013-10-15 Idev Technologies Inc METHODS FOR FIXING WIRE END AND RESULTING DEVICES
US8414927B2 (en) 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Cross-linked polymer particles
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
WO2008124787A2 (en) 2007-04-09 2008-10-16 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
AU2008335138A1 (en) * 2007-12-11 2009-06-18 Cornell University Method and apparatus for sealing an opening in the side wall of a body lumen
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US20100082056A1 (en) * 2008-04-04 2010-04-01 Akshay Mavani Implantable fistula closure device
US20090318948A1 (en) * 2008-04-22 2009-12-24 Coherex Medical, Inc. Device, system and method for aneurysm embolization
US8871900B2 (en) 2008-06-16 2014-10-28 University Of Rochester Fibroblast growth factor (FGF) analogs and uses thereof
EP2306886B1 (en) 2008-07-30 2018-10-31 Acclarent, Inc. Paranasal ostium finder devices
WO2010022180A1 (en) 2008-08-19 2010-02-25 Micro Therapeutics, Inc. Detachable tip microcatheter
JP5374967B2 (en) * 2008-08-27 2013-12-25 株式会社カネカ Vessel occlusion device and method for manufacturing the same
WO2010028300A1 (en) 2008-09-04 2010-03-11 Curaseal Inc. Inflatable device for enteric fistula treatment
WO2010033629A1 (en) 2008-09-18 2010-03-25 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
WO2010085344A1 (en) * 2009-01-22 2010-07-29 Cornell University Method and apparatus for restricting flow through the wall of a lumen
US20100241155A1 (en) 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
GB2473806B (en) * 2009-07-22 2011-08-10 Cook William Europ Aspiration catheter
US8814903B2 (en) 2009-07-24 2014-08-26 Depuy Mitek, Llc Methods and devices for repairing meniscal tissue
US8828053B2 (en) 2009-07-24 2014-09-09 Depuy Mitek, Llc Methods and devices for repairing and anchoring damaged tissue
US20110238094A1 (en) * 2010-03-25 2011-09-29 Thomas Jonathan D Hernia Patch
KR20130092425A (en) 2010-04-27 2013-08-20 신세스 게엠바하 Anchor assembly including expandable anchor
US9724080B2 (en) 2010-04-27 2017-08-08 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
US9451938B2 (en) 2010-04-27 2016-09-27 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
US9743919B2 (en) 2010-04-27 2017-08-29 DePuy Synthes Products, Inc. Stitch lock for attaching two or more structures
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
EP2693981A4 (en) 2011-04-01 2015-07-01 Univ Cornell Method and apparatus for restricting flow through an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while still maintaining substantially normal flow through the body lumen
EP2720625A4 (en) 2011-06-16 2015-02-18 Curaseal Inc Fistula treatment devices and related methods
EP2720623A4 (en) 2011-06-17 2015-04-22 Curaseal Inc Fistula treatment devices and methods
WO2013055703A1 (en) 2011-10-07 2013-04-18 Cornell University Method and apparatus for restricting flow through an opening in a body lumen while maintaining normal flow
EP2668915A1 (en) 2012-06-01 2013-12-04 Acandis GmbH & Co. KG System for delivering a stretch resistant vaso-occlusive device and a method of producing same
EP2668914A1 (en) 2012-06-01 2013-12-04 Acandis GmbH & Co. KG Implant system
EP2674114A1 (en) 2012-06-11 2013-12-18 Acandis GmbH & Co. KG Implant for occlusion of vascular anomalies and method for producing such an implant
US10124087B2 (en) 2012-06-19 2018-11-13 Covidien Lp Detachable coupling for catheter
US10172734B2 (en) * 2013-03-13 2019-01-08 DePuy Synthes Products, Inc. Capture tube mechanism for delivering and releasing a stent
BR112015023362B1 (en) * 2013-03-15 2022-05-10 Fabian Hermann Urban Füglister Implant to treat obstructive airway disorders
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US8734198B1 (en) 2013-03-15 2014-05-27 Edward B. Seldin Educational toy, geometric puzzle construction system
CN108186074A (en) * 2014-02-27 2018-06-22 因库麦迪斯有限公司 For treating the framework microcoils of vascular diseases
JP6418238B2 (en) 2014-05-19 2018-11-07 株式会社カネカ In-vivo indwelling member and manufacturing method thereof
JP6601880B2 (en) * 2014-07-25 2019-11-06 インキュメデックス インコーポレイテッド Coated embolic coil
US9999413B2 (en) 2015-01-20 2018-06-19 Neurogami Medical, Inc. Micrograft for the treatment of intracranial aneurysms and method for use
US10857012B2 (en) 2015-01-20 2020-12-08 Neurogami Medical, Inc. Vascular implant
US10736730B2 (en) 2015-01-20 2020-08-11 Neurogami Medical, Inc. Vascular implant
US10925611B2 (en) 2015-01-20 2021-02-23 Neurogami Medical, Inc. Packaging for surgical implant
US11484319B2 (en) 2015-01-20 2022-11-01 Neurogami Medical, Inc. Delivery system for micrograft for treating intracranial aneurysms
US10307168B2 (en) 2015-08-07 2019-06-04 Terumo Corporation Complex coil and manufacturing techniques
GB201516884D0 (en) * 2015-09-23 2015-11-04 Racine Marc André Reinforced corrugated plastic sheets and products
JP6757330B2 (en) 2015-11-19 2020-09-16 株式会社カネカ In-vivo indwelling member and in-vivo indwelling member arranging device including the in-vivo indwelling member
WO2017207777A1 (en) 2016-06-03 2017-12-07 Somatex Medical Technologies Gmbh Marking device and implantation system
US10420563B2 (en) 2016-07-08 2019-09-24 Neurogami Medical, Inc. Delivery system insertable through body lumen
US11267217B2 (en) * 2016-08-23 2022-03-08 Marc-Andre Racine System and method for bending a hollow core sheet using rods
EP3544540B1 (en) 2016-11-23 2021-12-08 Hologic, Inc. Biopsy site marker
CN116456910A (en) * 2020-08-18 2023-07-18 巴尔特美国有限责任公司 Vascular embolic implant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536274A (en) * 1991-02-15 1996-07-16 pfm Produkterfur Die Medizin Spiral implant for organ pathways
EP0765636A2 (en) * 1995-09-29 1997-04-02 Target Therapeutics, Inc. Anatomically shaped Vasoocclusive devices
WO1999009893A1 (en) * 1997-08-29 1999-03-04 Boston Scientific Limited Anatomically shaped vaso-occlusive device and method of making same
WO1999029260A2 (en) * 1997-12-05 1999-06-17 Micrus Corporation Vasoocclusive device for treatment of aneurysms
WO2000010469A1 (en) * 1998-08-25 2000-03-02 Micrus Corporation Vasoocclusive coil
WO2000012016A1 (en) * 1998-08-27 2000-03-09 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
WO2000035354A1 (en) * 1998-12-15 2000-06-22 Micrus Corporation Vasoocclusive coil with variable stiffness

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1667730A (en) 1928-05-01 of chicago
US1341052A (en) 1916-06-15 1920-05-25 Francis G Gale Chain
FR592182A (en) 1924-03-24 1925-07-28 Urethral probe
US2078182A (en) 1935-08-09 1937-04-20 Sirian Wire And Contact Compan Tungsten manufacture
US2549335A (en) 1947-04-18 1951-04-17 Rahthus Max Ornamental chain
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3649224A (en) 1968-04-18 1972-03-14 Sylvania Electric Prod Method of making nonsag filaments for electric lamps
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US4205680A (en) 1978-01-13 1980-06-03 Work Wear Corporation, Inc. Radiopaque laparatomy sponge
GB2066839B (en) 1979-12-29 1984-03-14 Vysoka Skola Chem Tech Method of manufacture of perfumed detergents
DD158084A1 (en) 1981-05-08 1982-12-29 Joachim Heinke CLOSURE BODY AND METHOD FOR ITS MANUFACTURE
BR8208063A (en) 1981-09-16 1984-01-10 Hans Ivar Wallsten DEVICE FOR APPLICATION IN BLOOD VESSELS OR OTHER DIFFICULT ACCESS PLACES AND THEIR USE
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4638803A (en) 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
US4494531A (en) 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4531933A (en) 1982-12-07 1985-07-30 C. R. Bard, Inc. Helical ureteral stent
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
JPS6198254A (en) 1984-10-19 1986-05-16 ザ・ベントリー―ハリス・マニュファクチュアリング・カンパニー Prosthetic stent
US4718907A (en) 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4748986A (en) 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
WO1987004935A1 (en) 1986-02-24 1987-08-27 Fischell Robert An intravascular stent and percutaneous insertion system
US4907336A (en) 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4813925A (en) 1987-04-21 1989-03-21 Medical Engineering Corporation Spiral ureteral stent
US5025799A (en) 1987-05-13 1991-06-25 Wilson Bruce C Steerable memory alloy guide wires
US4795458A (en) 1987-07-02 1989-01-03 Regan Barrie F Stent for use following balloon angioplasty
US4850960A (en) 1987-07-08 1989-07-25 Joseph Grayzel Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
FR2632864B2 (en) * 1987-12-31 1990-10-19 Biomat Sarl ANTI-EMBOLIC ELASTIC FILTERING SYSTEM FOR CELLAR VEIN AND ASSEMBLY OF MEANS FOR ITS PLACEMENT
US4830003A (en) 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4832055A (en) 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5176661A (en) 1988-09-06 1993-01-05 Advanced Cardiovascular Systems, Inc. Composite vascular catheter
US4957479A (en) 1988-10-17 1990-09-18 Vance Products Incorporated Indwelling ureteral stent placement apparatus
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5203772A (en) 1989-01-09 1993-04-20 Pilot Cardiovascular Systems, Inc. Steerable medical device
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US4922924A (en) 1989-04-27 1990-05-08 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
US4990155A (en) 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US5015253A (en) 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
EP0408245B1 (en) 1989-07-13 1994-03-02 American Medical Systems, Inc. Stent placement instrument
IE73670B1 (en) 1989-10-02 1997-07-02 Medtronic Inc Articulated stent
DE4102550A1 (en) 1990-02-02 1991-08-08 Stephan Prof Dr Bockenheimer Sealing blood vessel fistula - involves inserted sleeve with spiral support with turns bridged by impervious elastic material
DK0441516T3 (en) 1990-02-08 1995-06-12 Howmedica Inflatable catheter
US5186992A (en) 1990-03-12 1993-02-16 The Bentley-Harris Manufacturing Company Braided product and method of making same
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5354295A (en) 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5569245A (en) 1990-03-13 1996-10-29 The Regents Of The University Of California Detachable endovascular occlusion device activated by alternating electric current
US5238004A (en) 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5041084A (en) 1990-08-09 1991-08-20 Dlp, Inc. Single stage venous catheter
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
US5221269A (en) 1990-10-15 1993-06-22 Cook Incorporated Guide for localizing a nonpalpable breast lesion
US5176625A (en) 1990-10-25 1993-01-05 Brisson A Glen Stent for ureter
US5160341A (en) 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
US5133731A (en) 1990-11-09 1992-07-28 Catheter Research, Inc. Embolus supply system and method
US5228453A (en) 1991-05-07 1993-07-20 Target Therapeutics, Inc. Catheter guide wire
US5350398A (en) 1991-05-13 1994-09-27 Dusan Pavcnik Self-expanding filter for percutaneous insertion
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5527354A (en) 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5141502A (en) 1991-08-28 1992-08-25 Macaluso Jr Joseph N Ureteral stent
US5183085A (en) 1991-09-27 1993-02-02 Hans Timmermans Method and apparatus for compressing a stent prior to insertion
US5304194A (en) 1991-10-02 1994-04-19 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5226911A (en) 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5151105A (en) 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5256146A (en) 1991-10-11 1993-10-26 W. D. Ensminger Vascular catheterization system with catheter anchoring feature
JP2602625B2 (en) 1991-12-12 1997-04-23 ターゲット セラピューティクス,インコーポレイテッド Removable pusher with occlusal connection-vaso-occlusive coil assembly
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5222969A (en) 1992-03-16 1993-06-29 Rolando Gillis Intravascular stent for cardiovascular intervention
US5370683A (en) 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5251640A (en) 1992-03-31 1993-10-12 Cook, Incorporated Composite wire guide shaft
WO1995014500A1 (en) 1992-05-01 1995-06-01 Beth Israel Hospital A stent
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5527338A (en) 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5443478A (en) 1992-09-02 1995-08-22 Board Of Regents, The University Of Texas System Multi-element intravascular occlusion device
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5382259A (en) 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5690666A (en) 1992-11-18 1997-11-25 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
FR2699809B1 (en) 1992-12-28 1995-02-17 Celsa Lg Device which can selectively constitute a temporary blood filter.
US5423849A (en) 1993-01-15 1995-06-13 Target Therapeutics, Inc. Vasoocclusion device containing radiopaque fibers
US5645082A (en) 1993-01-29 1997-07-08 Cardima, Inc. Intravascular method and system for treating arrhythmia
US5336205A (en) 1993-02-25 1994-08-09 Target Therapeutics, Inc. Flow directed catheter
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
IL105828A (en) 1993-05-28 1999-06-20 Medinol Ltd Medical stent
US5423829A (en) 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
US5624449A (en) 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
US5441516A (en) 1994-03-03 1995-08-15 Scimed Lifesystems Inc. Temporary stent
IL108832A (en) 1994-03-03 1999-12-31 Medinol Ltd Urological stent and deployment device therefor
ATE295127T1 (en) 1994-03-03 2005-05-15 Boston Scient Ltd DEVICE FOR DETECTING THE DIVISION OF A VASS OCCLUSION DEVICE
US5417708A (en) 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5549624A (en) 1994-06-24 1996-08-27 Target Therapeutics, Inc. Fibered vasooclusion coils
US5725546A (en) 1994-06-24 1998-03-10 Target Therapeutics, Inc. Detachable microcoil delivery catheter
US5522836A (en) 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
US5454795A (en) 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5690671A (en) 1994-12-13 1997-11-25 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5514176A (en) 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
DE19508805C2 (en) 1995-03-06 2000-03-30 Lutz Freitag Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions
CA2173023C (en) 1995-03-30 2001-08-28 David Kupiecki Liquid coils with secondary shape
US6638291B1 (en) * 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US5645558A (en) 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5639277A (en) 1995-04-28 1997-06-17 Target Therapeutics, Inc. Embolic coils with offset helical and twisted helical shapes
NO962336L (en) 1995-06-06 1996-12-09 Target Therapeutics Inc Vaso-occlusive spiral
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5766160A (en) 1995-06-06 1998-06-16 Target Therapeutics, Inc. Variable stiffness coils
US5707389A (en) 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US5582619A (en) 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
AU690862B2 (en) 1995-12-04 1998-04-30 Target Therapeutics, Inc. Fibered micro vaso-occlusive devices
US5749894A (en) 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5690643A (en) 1996-02-20 1997-11-25 Leocor, Incorporated Stent delivery system
US5649949A (en) 1996-03-14 1997-07-22 Target Therapeutics, Inc. Variable cross-section conical vasoocclusive coils
AR001590A1 (en) * 1996-04-10 1997-11-26 Jorge Alberto Baccaro Abnormal vascular communications occluder device and applicator cartridge of said device
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5733329A (en) 1996-12-30 1998-03-31 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
US6093199A (en) * 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536274A (en) * 1991-02-15 1996-07-16 pfm Produkterfur Die Medizin Spiral implant for organ pathways
EP0765636A2 (en) * 1995-09-29 1997-04-02 Target Therapeutics, Inc. Anatomically shaped Vasoocclusive devices
WO1999009893A1 (en) * 1997-08-29 1999-03-04 Boston Scientific Limited Anatomically shaped vaso-occlusive device and method of making same
WO1999029260A2 (en) * 1997-12-05 1999-06-17 Micrus Corporation Vasoocclusive device for treatment of aneurysms
WO2000010469A1 (en) * 1998-08-25 2000-03-02 Micrus Corporation Vasoocclusive coil
WO2000012016A1 (en) * 1998-08-27 2000-03-09 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
WO2000035354A1 (en) * 1998-12-15 2000-06-22 Micrus Corporation Vasoocclusive coil with variable stiffness

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213916A (en) * 2002-01-11 2009-09-24 Microvention Inc Microcoil vaso-occlusive device with multi-axis secondary configuration
EP1902678A2 (en) * 2002-07-02 2008-03-26 Microvention, Inc. Coaxial stretch-resistant vaso-occlusive device
EP1902678A3 (en) * 2002-07-02 2008-04-16 Microvention, Inc. Coaxial stretch-resistant vaso-occlusive device
WO2005092214A1 (en) * 2004-03-01 2005-10-06 Boston Scientific Limited Vaso-occlusive coils with non-overlapping sections
WO2005092213A1 (en) 2004-03-01 2005-10-06 Boston Scientific Limited Complex vaso-occlusive coils
US7485123B2 (en) 2004-03-01 2009-02-03 Boston Scientific Scimed, Inc. Complex vaso-occlusive coils
US7488332B2 (en) 2004-03-01 2009-02-10 Boston Scientific Scimed, Inc. Vaso-occlusive coils with non-overlapping sections
US8226660B2 (en) 2004-03-01 2012-07-24 Stryker Corporation Vaso-occlusive coils with non-overlapping sections
WO2006032289A1 (en) 2004-09-22 2006-03-30 Dendron Gmbh Medical implant
US9198665B2 (en) 2004-09-22 2015-12-01 Covidien Lp Micro-spiral implantation device
US9050095B2 (en) 2004-09-22 2015-06-09 Covidien Lp Medical implant
US8910501B2 (en) 2007-02-07 2014-12-16 DePuy Synthes Products, LLC Winding mandrel for vasoocclusive coils
EP2777547A1 (en) * 2007-02-07 2014-09-17 Micrus Endovascular Corporation Winding mandrel for vasoocclusive coils
WO2008097973A1 (en) * 2007-02-07 2008-08-14 Micrus Endovascular Corporation Winding mandrel for vasoocclusive coils
US9289215B2 (en) 2007-03-13 2016-03-22 Covidien Lp Implant including a coil and a stretch-resistant member
AU2008226695B2 (en) * 2007-03-13 2013-05-02 Covidien Lp An implant, a mandrel, and a method of forming an implant
CN101677821B (en) * 2007-03-13 2014-05-14 泰科保健集团有限合伙公司 Implant and mandrel
WO2008112436A3 (en) * 2007-03-13 2008-11-20 Micro Therapeutics Inc An implant, a mandrel, and a method of forming an implant
US10335155B2 (en) 2011-11-30 2019-07-02 Covidien Lp Positioning and detaching implants
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US10893868B2 (en) 2012-01-20 2021-01-19 Covidien Lp Aneurysm treatment coils
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
EP3094269B1 (en) * 2014-01-14 2022-04-27 Penumbra, Inc. Soft embolic implant
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
CN109009308A (en) * 2018-06-22 2018-12-18 威海维心医疗设备有限公司 Substance and preparation method thereof is shunk for aneurysmal degradable embolism
CN108814669A (en) * 2018-10-09 2018-11-16 微创神通医疗科技(上海)有限公司 Embolization device and its spring ring
US11399840B2 (en) 2019-08-13 2022-08-02 Covidien Lp Implantable embolization device
US11944313B2 (en) 2019-08-13 2024-04-02 Covidien Lp Implantable embolization device
WO2024015818A1 (en) * 2022-07-12 2024-01-18 Medtronic, Inc. Implantable embolization device

Also Published As

Publication number Publication date
CA2412486A1 (en) 2001-12-13
AU2001267053A1 (en) 2001-12-17
WO2001093937A3 (en) 2002-08-15
US6638291B1 (en) 2003-10-28
JP2004500929A (en) 2004-01-15
US7316701B2 (en) 2008-01-08
EP1292234A2 (en) 2003-03-19
US20050090855A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
US7316701B2 (en) Three dimensional, low friction vasoocclusive coil, and method of manufacture
US8790363B2 (en) Three dimensional, low friction vasoocclusive coil, and method of manufacture
US6171326B1 (en) Three dimensional, low friction vasoocclusive coil, and method of manufacture
EP1105053B1 (en) Vasoocclusive coil
EP1035808B1 (en) Multi-stranded micro-cable in particular for vasoocclusive device for treatment of aneurysms
US6168570B1 (en) Micro-strand cable with enhanced radiopacity
US6241691B1 (en) Coated superelastic stent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2412486

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 501508

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001944666

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001944666

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001944666

Country of ref document: EP