WO2001089630A1 - Urination, defecation and erection control system in neuropathy patients - Google Patents

Urination, defecation and erection control system in neuropathy patients Download PDF

Info

Publication number
WO2001089630A1
WO2001089630A1 PCT/ES2001/000064 ES0100064W WO0189630A1 WO 2001089630 A1 WO2001089630 A1 WO 2001089630A1 ES 0100064 W ES0100064 W ES 0100064W WO 0189630 A1 WO0189630 A1 WO 0189630A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
control
urination
battery
impedance
Prior art date
Application number
PCT/ES2001/000064
Other languages
Spanish (es)
French (fr)
Inventor
Rosa Villa Sanz
Jorge Aguilo Llobet
Enrique CALDERÓN OLIVERAS
Original Assignee
Consejo Superior De Investigaciones Científicas
Fundación Instituto Guttmann
Centro De Constucciones De Cardioestimuladores De Uruguay, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Fundación Instituto Guttmann, Centro De Constucciones De Cardioestimuladores De Uruguay, S.A. filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU33809/01A priority Critical patent/AU3380901A/en
Publication of WO2001089630A1 publication Critical patent/WO2001089630A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control

Definitions

  • Control system of urination, defecation and erection in patients with neuropathies Control system of urination, defecation and erection in patients with neuropathies.
  • implantable medical product for the control of urination, defecation and erection in patients with neuropathies
  • the present invention relates to implantable stimulation systems, and particularly to an implantable stimulation system for the control of defecation and erection urination in patients with neuropathies.
  • Sacral roots contain nerves that govern the activity of the detrusor and nerves that govern the activity of the sphincter, so when stimuli are applied to it It produces the contraction of both muscles.
  • the detrusor musculature responds more slowly than the sphincter, the latter being more sensitive to stimulation and relaxing more quickly.
  • Brindley proposes two modes of stimulation: - Burst stimulation to cause urination. Pulse trains of a certain duration are applied, separated by a certain time. Urination occurs in the spaces between trains or bursts of pulses because the sphincter relaxes faster than the detrusor.
  • the NeuroControl Bladder Control System There is a system based on the first mode of stimulation on the market, called the NeuroControl Bladder Control System.
  • This system is a direct inheritance of the system described and implemented by Brindley. It does not carry a battery and receives the pulses directly from an external unit through inductive coupling.
  • the implanted device consists of a set of receiving coils (one for each stimulation channel), followed by a small rectification circuit that deliver the signal to each of the electrodes.
  • This system implies a strong dependence on the amplitude of the stimulation that reaches the electrode with the relative position of the internal and implanted device. It has already been implanted in some 1600 patients worldwide, its result being clinically satisfactory, demonstrating that sacral root stimulation is effective for the control of urination.
  • the system described here aims to solve the main problems of the previous one.
  • the stimulation is not generated by inductive coupling from the outside but is generated internally, disappearing the dependence of the amplitude of the stimulus with the relative position of the transmitter and receiver coils.
  • the stimulation is carried out in current and not in tension, the dependence of the effectiveness of the stimulation also disappearing with the variation of the impedance of the electrode-tissue surface.
  • it includes a battery, which allows, on the one hand, the realization of the two stimulation modes described by Brindley in the same device: burst stimulation to cause urination, defecation or erection and continuous stimulation to control incontinence mode nonexistent in the aforementioned commercial device.
  • Incontinence control system urination, defecation and erection in patients with neuropathies from the current stimulation of the sacral roots, based on the method proposed by Brindley (US3870051). It is based on an implantable stimulator powered by battery and controlled by microprocessor. Its programming is done through a PC, in order to define different modes of operation, this device is called "programmer”. The activation of the programs can be done from the programmer or also using a small portable device, called "command". The command allows the patient to start or stop the execution of any of the programs previously loaded by the doctor. The communication of the stimulator with the programmer and the command will be carried out by telemetry. Also, the deactivation of the current program can be done by the presence of a magnet.
  • the complete system consists of:
  • Implantable stimulator device powered by battery, capable of applying current pulses in various channels to the electrode-woven interface programmable in amplitude, frequency and pulse width, single phase with exponential charge recovery, generated internally by microprocessor-based digital control. These pulses respond to programmable stimulation sequences that are recorded in the internal memory of the device. Software for programming the different stimulation sequences, patient database management, reading of device status, battery status, usage statistics and integrity test.
  • External unit that acts as an interface for programming stimulation sequences, communicating with the implantable device through two-way communication by inductive coupling and with the personal computer through serial or parallel communication.
  • External control unit used by the patient to activate or deactivate the different stimulation sequences. It communicates bi-directionally with the implantable device by radiofrequency through inductive coupling, sending different orders and informs the patient about the action taken (stimulation activated or deactivated), status of the implant battery and correct or incorrect communication.
  • FIG. 1 schematically shows the complete system consisting of: - Specific application software (1) which together with the programming interface (2) we will call “Programmer” External control unit (3) for the patient we will call “Command”
  • Implantable device (4) with electrodes located in the sacral roots - Fig. 2 schematically shows the main blocks that form the implantable device and the connection between them, in order to perform the functions detailed below.
  • FIG. 3 shows the stimulation pulse generation system.
  • - Fig. 4 corresponds to the implementation of the command.
  • - Fig. 5 shows the implementation of the circuitry of the implantable device.
  • Fig. 6 and 7 are the flow charts corresponding to the different actions to be performed, in relation to FIG 5, to generate the stimulation sequences and to make the impedance measurement respectively
  • an incontinence control system and defection and erection urination functions are described from the current stimulation of the sacral roots, based on the method proposed by Brindley (US3870051).
  • This system consists of three main parts (FIG 1): - Implantable microstimulator (4), powered by battery capable of delivering different sequences of single-phase current pulses with exponential recovery of load generated internally with digital control, programmable from the outside through the programmer (1 and 2), through electrodes (5) connected to the sacral roots (6).
  • Said sequences are stored in the internal memory of the implantable device (4), and can be read or modified at any time by the physician through the programmer (1 and 2) and activated or deactivated by the patient through the command (3), or by The doctor through the programmer. It has a safety system so that in case of emergency or malfunction the stimulation sequence can always be deactivated by the patient with a simple magnet (7).
  • Programming interface (2) specific hardware that transfers the data from the PC to the implantable device and vice versa, using a serial or parallel cable communication with the PC and by radiofrequency through inductive coupling with the implantable device.
  • External control unit (3) which we will call "command", delivered to the patient for activation or deactivation of stimulation. It communicates with the implantable device by bidirectional radiofrequency communication through inductive coupling, sending the different orders for the activation of the various stimulation sequences and receiving the status (sequence activated or deactivated) from the implantable device, result of the communication (correct or erroneous ) and battery status of the implantable device.
  • the implantable device (FIG 2), powered by battery (9), is based on a microcontroller (1) that governs the different peripherals in order to perform all the specified functions of the implantable device: communication with the outside, sequence control of stimulation and waveforms, battery power management, test, impedance measurement, and storage of programs and statistics.
  • the microcontroller (1) receives the programs from the programmer (3) and the different commands: sequence activation / deactivation, activation of the impedance measurement; or it sends the programs stored in its memory as well as statistical data and the value of the impedance measured in the electrode-woven surface. Said communication is carried out bidirectionally, by inductive coupling by means of a radio frequency carrier modulated in ASK.
  • the microprocessor is responsible for defining the direction of communication at any time by activating or deactivating the transmitter or receiver circuit.
  • the different stimulation sequences applied to the electrodes are executed from the data and control signals sent by the microcontroller to the digital current source (5), the voltage booster (4) and the analog multiplexer (6), thus governing the frequency of the pulses in each of the channels, their amplitude, width, electrode or channel selection (13, 14, 15 FIG 2) to be stimulated and the total duration of the stimulation dose.
  • the different parameters of which each stimulation sequence is composed are: For each channel:
  • the selection of the channel to stimulate control of the pulse width, time between pulses (or frequency), duration of the dose, and burst times is made from an internal timer of the microcontroller and the application of the appropriate signals to the analog multiplexer. By applying these signals, the desired pulse form is achieved, in this case single-phase square with exponential load recovery.
  • FIG 3 it is schematically indicated how to perform the pulse shape.
  • the analog switches (1) and (2) are connected so that the current will flow through the load (4). Since said current will be generated by a current source, the pulse shape in this period will depend on that source provided there is sufficient voltage so that the programmed current can be maintained, depending on the impedance of the load.
  • the amplitude of stimulation current on the load is achieved from the digital control of a current source FIG 3.
  • Said control is carried out by applying a code to an analog digital converter (5), previously calculated by the microcontroller depending on the amplitude to be applied and the voltage reference of the converter, which supplies a proportional voltage that is converted to current by means of the current voltage converter (6) whose output is connected to the load.
  • the voltage booster circuit (4) is observed, which, starting from the battery voltage (9), generates the necessary voltage so that the pulse of stimulation current can be applied to the load.
  • the voltage value delivered to the current source (5) is controlled by the microcontroller (1) depending on the pulse amplitude and the impedance of the load, so that said voltage is the minimum so that the programmed amplitude can be reached, in order to optimize the maximum consumption of the device.
  • the microcontroller applies the necessary signals to the voltage booster to adjust its output voltage, in turn measures said voltage to, depending on the amplitude of the programmed current and the impedance value of the load, activate the voltage booster, optimizing thus to the maximum the consumption.
  • the microcontroller (1) informs the programmer (3) of the value of the impedance of the electrode-woven surface in a particular channel, from the impedance measuring circuit (7), which measures the value of voltage in the load while stimulates with an amplitude value known to the microcontroller.
  • the microcontroller also has other peripherals such as: the runaway circuit to stop the system if the stimulation frequency is different from the programmed one, the magnet or magnetic switch in order to stop the stimulation sequence in the presence of an external magnet, the Battery voltage meter to inform the user of the need for replacement of the implant and the test circuit in order to discover causes of possible failures in the correct operation of the device.
  • FIG 4 corresponds to the external control unit called the command, used by the patient for the activation or deactivation of the different stimulation sequences. It is based on a microcontroller and consists of a small keyboard for the activation of the different functions and a series of light indicators to inform the patient of the action taken.
  • the microcontroller If the microcontroller receives the command to activate or deactivate a stimulation sequence from the keyboard, it will activate the communication circuit to send the order relevant to the implantable device. To send this order, you will first send an acknowledgment sequence in order to identify the correct coupling with the implantable device. When attached, the specified order will be sent, establishing a communication protocol to ensure the correct sending and receiving of data. Once the communication has been carried out, the command will inform by means of a specific code of the action carried out (activation or deactivation of sequences, correct or not communication, reading of the implant battery status) through the indicator lights.
  • the communication with the implantable device is carried out .. in a bidirectional way by means of inductive coupling of the radio frequency signal modulated in ASK.
  • the incontinence, urination, defecation and erection control system in patients with neuropathies consists, as already described, of three main parts: - An implantable stimulator device programmable from the outside.
  • An external device called a programmer for the design of the stimulation sequences, programming of the implantable device, patient database control, statistics reading and test.
  • An external control device for the activation and deactivation of the different stimulation sequences by the patient
  • Stimulus waveform single phase with exponential recovery of the delivered load
  • Stimulation modes Continuous or bursts - Auto power off or manual shutdown (maximum preset safety time)
  • Stimulation ramp programmable rise time to reach the specified current amplitude, in a consecutive sequence of pulses, from 15s to 30s in steps of ls.
  • Impedance measurement on each channel from 8 ⁇ to 1.6K ⁇ with a resolution of 8 ⁇
  • the internal processor has duplicate program data which is constantly verified during stimulation.
  • FIG 5 corresponds to the implantable device. This is powered by a 3.2V battery (5) and works correctly up to 2.2V, indicating the need for replacement when its value is at 2.6V.
  • the implantable stimulator device is based on a microcontroller (1) that governs the different peripherals in order to perform all the specified functions of the implantable device: communication with the outside, control of the stimulation sequences and waveforms, energy management of the battery, test, impedance measurement, program storage and statistics.
  • the microcontroller receives the programs from the programmer and the different commands for activating or deactivating sequences, impedance measurement, parameter reading.
  • Communication with the implantable device and external devices is half-duplex or semi-bidirectional.
  • the data is transmitted by radiofrequency through inductive coupling, with 27 KHz carrier and ASK modulation.
  • the information is encoded by distance between PDM pulses.
  • the communication protocol is established as follows, every second the microcontroller (1) sends a pulse (Tx signal) to the antenna (13) and then activates the receiver formed by the antenna (13) and the comparator (4) the which is activated by the "Enable" signal.
  • the Rx line If there is an external device that wants to communicate with the implantable device, at that time data will be received by the Rx line, and the entire communication process will be established.
  • the data is received by activating the comparator with the "enable" line, if there is a correctly aligned transmission from the outside, the signal coming from will be coupled to the coil or antenna (13), causing a voltage greater than Vref (4) causing a logical one at the output of the comparator and, therefore, at the Rx input of the microcontroller.
  • the microcontroller will be sending or receiving data but not both functions at the same time, since there is only one antenna.
  • the selection of transmission or reception of data is made by activating or deactivating the signal
  • the data is transmitted in serial mode, through the modulation and coding previously described. These data are different commands that the external unit will send to the implantable device, followed by a series of data such as: - Programming command, followed by all the parameters that form a complete program
  • Stimulation activation command followed by the sequence or program number to be activated.
  • the implantable device will send:
  • the different stimulation sequences corresponding to each of the three possible programs are transmitted from the programmer and recorded in the internal memory of the microcontroller, where they are maintained throughout the life of the implant battery unless they are modified again by the Doctor using the programmer.
  • the generation of these different sequences is carried out by the microcontroller (FIG 5) by means of the government of the digital current source, formed by the DAC (6) and the converter VI (7), the voltage booster (2), and the assembly of analog switches (9, 10, 11).
  • the microcontroller will perform the operations indicated in the diagram of FIG 6:
  • the microcontroller Upon receiving the activation order from the external unit, the microcontroller will measure the battery voltage to indicate its status to the external unit and record it for use in internal calculations. The parameters in memory corresponding to the activated program will be read and the various variables will be initialized.
  • the program loop always starts at (3) with the verification of the stimulation time, although it has been programmed without self-shutdown there is always a maximum stimulation time as protection. If the elapsed time is less than the programmed time, it is checked that the stop order has not been received from the external unit (4). Next, it is checked whether the stimulation mode is continuous or burst mode (5). If it is in burst or discontinuous mode, it will be checked in which state the sequence is (in burst or standby between bursts), updating the computation of the times as appropriate.
  • the stimulation process begins in (11).
  • the voltage booster has an output capacity that is only discharged on the electrodes in the stimulation, except for the component's own leaks.
  • the voltage of said capacity is measured and in function from the amplitude to be delivered, it is decided whether or not the elevator is activated, that is, whether or not such capacity is recharged.
  • the voltage value will depend on the current to be supplied.
  • a voltage booster is implemented with four possible programmable voltage values (5, 9 12 and 16 V), selected by means of two microcontroller lines (1).
  • the DAC If it is active, it calculates the digital code to be delivered to the DAC based on the current amplitude and battery voltage (6 FIG 5). This code will be delivered by serial transmission using two microcontroller lines. The DAC will convert the code into voltage and this when applied to the current voltage converter (7) will cause the desired output current. The stimulation will occur when, once the current has been programmed, the switches (9) that connect the anode and cathode of channel one to the current source are closed. The signal to control these switches is "Control 1". As can be seen in (9) (10) and (11), "Control 1", “Control 2" and “Control 3" signals govern three switches. Two of them in positive logic and one in denied logic, in this way with a single control signal per channel the desired waveform is performed.
  • the voltage booster is switched off and the time corresponding to the stimulation frequency is expected to repeat the process.
  • the stimulation sequence ends when the dose time has elapsed or a stop order is received from the external unit.
  • the impedance measurement (FIG 7) is based on the measurement of the voltage drop at the terminals of the electrode to be measured.
  • the measurement is activated, the battery voltage is measured and the voltage booster is activated, programming it for maximum voltage, in order to be able to measure any impedance value within the specified ranges at the beginning of the description of this example.
  • the channel to be measured is stimulated with a zero current.
  • code 0 is sent to the DAC, the relevant control signal is activated and after a few microseconds (over 50) the "Enable" signal of the impedance meter is activated (8 FIG 5), in order to measure the actual elevator output voltage.
  • the control signal of the analog switch is deactivated, the current source is programmed with a preset value (by the external programming device) and the desired channel is stimulated again, activating the impedance meter at 50us.
  • the microcontroller sends the data to the external programming device that will be in charge of calculating and displaying the value of the impedance read.
  • the test circuit is based on the measurement of a known impedance (12 FIG 5) using the impedance measurement system described above.
  • the magnetic switch (3 FIG 5) is used to deactivate the stimulation. When the switch is closed due to the presence of a magnet, it will cause a falling edge that will be read by the microcontroller, which will immediately stop the stimulation.
  • the runaway circuit is based on the measurement of the voltage of a charged capacity for a certain time calculated by the microcontroller.
  • the value of this voltage must correspond to a preset constant depending on the charging time. If it does not match, it will mean that the digital circuitry does not work correctly, since more or less time will have elapsed than that calculated by the microcontroller. This is a protection system against possible failures of the digital circuitry.
  • This device is encapsulated in a titanium container with an epoxy neck where the fixations of the electrodes type IS1 / VS1 are found, as can be seen in FIG 8 FIG 3 corresponds to the external control unit called "command" .
  • microcontroller (1) that responds to data from a small three-button keypad (6), managing the transmission circuit (3, 4) and reception (2, 5). It is powered by three 1.5V batteries. The results of the communication, implant status and battery status are reported by three light indicators (8).
  • the microcontroller When a button on the keyboard is pressed, the microcontroller will activate the reception circuit to detect the correct alignment with the implantable device. Once it has been detected, it will send the activation order of the corresponding channel according to the button pressed. If the implantable device was already ON, the reception of said order will be interpreted as a stop order, but the corresponding stimulation sequence will be activated.
  • the indicator lights will inform the process status at all times. Thus the process of 1 alignment detection with the implant will be indicated with a yellow light that will change to green when it has been communicated correctly and the stimulation has been activated or red if it has been deactivated. The other two lights will be used to indicate the status of the battery of the command and that of the implant (returned by it in each communication process).
  • the external programming unit called programmer will consist of a PC, with specific software in a Windows environment that allows the input of the parameters of each stimulation sequence, patient database management, and a communication interface used to transfer PC data to the implantable device and vice versa.

Abstract

The invention relates to a system for controlling incontinence, urination, defecation and erection in neuropathy patients by electric stimulation of the sacral roots. The system is based on an implantable stimulator powered by a battery and controlled by a microprocessor. It is programmed by means of a PC with the purpose of defining different operating modes, Said device is called programmer . Programs may be activated from the programmer or by using a compact portable apparatus called command . Said command makes it possible for the patient to start or stop execution of any of the programs that were previously loaded by the doctor. Communication of the stimulator with the programmer and the command is carried out by telemetry. Furthermore, deactivation of a running program can be brought about by the presence of a magnet.

Description

I-Título:I-Title:
Sistema de control de micción, defecación y erección en pacientes con neuropatías.Control system of urination, defecation and erection in patients with neuropathies.
2- Sector de la técnica Sector médico-sanitario, dispositivos implantables.2- Technical sector Medical-health sector, implantable devices.
Aplicación, producto médico implantable para el control de la micción defecación y erección en pacientes con neuropatíasApplication, implantable medical product for the control of urination, defecation and erection in patients with neuropathies
3- Estado de la técnica La presente invención hace relación a sistemas de estimulación implantables, y particularmente a un sistema de estimulación implantable para el control de la micción defecación y erección en pacientes con neuropatías.3- State of the art The present invention relates to implantable stimulation systems, and particularly to an implantable stimulation system for the control of defecation and erection urination in patients with neuropathies.
Los pacientes con neuropatías sufren, además de las conocidas deficiencias motoras, incontinencia de los esfínteres anal y vesical. La perdida del control sobre dichos esfínteres tiene una indudable repercusión en la autoimagen y la autoestima de la persona. En aquellos casos en que la neuropatía afecte a los órganos superiores, esta incontinencia supone además un incremento de la dependencia de terceros al requerir ayuda en la eliminación urinaria y fecal. Asimismo dicha falta de control significa un problema de salud importante y el riesgo de complicaciones graves de por vida. En los años 70 Brindley ideó un sistema de control de la micción (US38700051) basado en la estimulación de los músculos relevantes (detrusor y esfínter) a través de electrodos implantados en las zonas asociadas de las raíces sacras ventrales. Se han intentado otros métodos de estimulación, basados principalmente en la estimulación muscular directa, pero implica dificultades de implantación, estrés mecánico de los electrodos y dado que en los músculos existen fibras sensoriales, muchas veces dicha estimulación puede producir dolor.Patients with neuropathies suffer, in addition to the known motor deficiencies, incontinence of the anal and bladder sphincters. The loss of control over these sphincters has an undoubted impact on the self-image and self-esteem of the person. In those cases where neuropathy affects the upper organs, this incontinence also implies an increase in the dependence of third parties by requiring help in urinary and fecal elimination. Likewise, such lack of control means an important health problem and the risk of serious complications for life. In the 70s Brindley devised a urination control system (US38700051) based on the stimulation of the relevant muscles (detrusor and sphincter) through electrodes implanted in the associated areas of the ventral sacral roots. Other methods of stimulation have been tried, based mainly on direct muscle stimulation, but it involves implantation difficulties, mechanical stress of the electrodes and since there are sensory fibers in the muscles, often such stimulation can cause pain.
La ventaja del método propuesto por Brindley es por un lado que las raíces sacras no contienen fibras sensoriales y por lo tanto su estimulación no produce dolor, y por otro lado el nivel de amplitud de la estimulación será en principio menor que el requerido para estimular los músculos directamente.The advantage of the method proposed by Brindley is on the one hand that the sacral roots do not contain sensory fibers and therefore their stimulation does not produce pain, and on the other hand the level of amplitude of the stimulation will be in principle less than that required to stimulate the muscles directly.
Las raíces sacras contienen nervios que gobiernan la actividad del detrusor y nervios que gobiernan la actividad del esfínter, de forma al aplicar estímulos en ella se produce la contracción de ambos músculos. Por otro lado la musculatura del detrusor responde más lentamente que la del esfínter, siendo más sensible este último a la estimulación y relajándose más rápidamente. Brindley propone dos modos de estimulación: - Estimulación a ráfagas para provocar la micción. Se aplican trenes de pulsos de cierta duración, separados un tiempo determinado. La micción se produce en los espacios entre los trenes o ráfagas de pulsos debido a que el esfínter se relaja más rápidamente que el detrusor.Sacral roots contain nerves that govern the activity of the detrusor and nerves that govern the activity of the sphincter, so when stimuli are applied to it It produces the contraction of both muscles. On the other hand, the detrusor musculature responds more slowly than the sphincter, the latter being more sensitive to stimulation and relaxing more quickly. Brindley proposes two modes of stimulation: - Burst stimulation to cause urination. Pulse trains of a certain duration are applied, separated by a certain time. Urination occurs in the spaces between trains or bursts of pulses because the sphincter relaxes faster than the detrusor.
Estimulación continua de intensidad leve para el control de la incontinencia, aplicada todo el tiempo, a modo de marcapasos.Continuous stimulation of mild intensity for the control of incontinence, applied all the time, as a pacemaker.
Existe en el mercado un sistema basado en el primer modo de estimulación, denominado NeuroControl Bladder Control System. Dicho sistema es herencia directa del sistema descrito e implementado por Brindley. No lleva batería y recibe los pulsos directamente desde una unidad externa mediante acoplo inductivo. El dispositivo implantado consta de un conjunto de bobinas receptoras (una para cada canal de estimulación), seguidas de un pequeño circuito de rectificación que entregan la señal a cada uno de los electrodos. Este sistema implica una fuerte dependencia de la amplitud de la estimulación que llega al electrodo con la posición relativa del dispositivo interno y el implantado. Ha sido implantado ya en unos 1600 pacientes en todo el mundo, siendo su resultado clínicamente satisfactorio, demostrando que la estimulación en raíces sacras es efectiva para el control de la micción.There is a system based on the first mode of stimulation on the market, called the NeuroControl Bladder Control System. This system is a direct inheritance of the system described and implemented by Brindley. It does not carry a battery and receives the pulses directly from an external unit through inductive coupling. The implanted device consists of a set of receiving coils (one for each stimulation channel), followed by a small rectification circuit that deliver the signal to each of the electrodes. This system implies a strong dependence on the amplitude of the stimulation that reaches the electrode with the relative position of the internal and implanted device. It has already been implanted in some 1600 patients worldwide, its result being clinically satisfactory, demonstrating that sacral root stimulation is effective for the control of urination.
El sistema aquí descrito pretende solventar los principales problemas del anterior. En primer lugar la estimulación no es generada por acoplo inductivo desde el exterior sino que se genera internamente, desapareciendo la dependencia de la amplitud del estímulo con la posición relativa de las bobinas transmisora y receptora. A su vez la estimulación se realiza en corriente y no en tensión, desapareciendo también la dependencia de la efectividad de la estimulación con la variación de la impedancia de la interficie electrodo-tejido. En segundo lugar incluye una batería, lo cual posibilita por un lado la realización de los dos modos de estimulación descritos por Brindley en un mismo dispositivo: la estimulación a ráfagas para provocar la micción, defecación o erección y la estimulación continua para el control de la incontinencia, modo inexistente en el dispositivo comercial anteriormente mencionado. Dichos modos de estimulación y sus diferentes parámetros son configurados por el médico mediante un programador basado en un PC con un software específico. Por otro lado, la alimentación interna implica una mayor facilidad de uso del sistema por parte del paciente, pues no es necesario que este sostenga la unidad externa cerca del implante durante todo el tiempo de dosis sino sólo debe acercar dicha unidad al implante para activar y/o desactivar la estimulación. Ello supone una gran ventaja, sobre todo en pacientes con dificultades motoras que, al simplificar el modo de uso, podrán prescindir (dependiendo de sus limitaciones) de la ayuda de terceros.The system described here aims to solve the main problems of the previous one. In the first place the stimulation is not generated by inductive coupling from the outside but is generated internally, disappearing the dependence of the amplitude of the stimulus with the relative position of the transmitter and receiver coils. In turn, the stimulation is carried out in current and not in tension, the dependence of the effectiveness of the stimulation also disappearing with the variation of the impedance of the electrode-tissue surface. Secondly, it includes a battery, which allows, on the one hand, the realization of the two stimulation modes described by Brindley in the same device: burst stimulation to cause urination, defecation or erection and continuous stimulation to control incontinence mode nonexistent in the aforementioned commercial device. These stimulation modes and their different parameters are configured by the doctor through a PC-based programmer with specific software. On the other hand, the internal feeding implies a greater ease of use of the system by the patient, since it is not necessary for it to hold the external unit near the implant during the entire dose time but it should only bring that unit closer to the implant to activate and / or disable stimulation. This is a great advantage, especially in patients with motor difficulties who, by simplifying the mode of use, can do without (depending on their limitations) the help of third parties.
4- Descripción de la invención4- Description of the invention
Sistema de control de la incontinencia, micción, defecación y erección en pacientes con neuropatías a partir de la estimulación en corriente de las raíces sacras, basado en el método propuesto por Brindley (US3870051). Está basado un estimulador implantable alimentado por batería y controlado por microprocesador. Su programación se realiza a través de un PC, a fin de poder definir diferentes modos de funcionamiento, este dispositivo se denomina "programador" . La activación de los programas puede ser realizada desde el programador o también utilizando un aparato portátil de pequeño tamaño, denominado "comando". El comando permite al paciente iniciar o parar la ejecución de cualquiera de los programas previamente cargados por el médico.La comunicación del estimulador con el programador y el comando se realizarán por telemetría. Asimismo, la desactivación del programa en curso puede ser realizada mediante la presencia de un imán.Incontinence control system, urination, defecation and erection in patients with neuropathies from the current stimulation of the sacral roots, based on the method proposed by Brindley (US3870051). It is based on an implantable stimulator powered by battery and controlled by microprocessor. Its programming is done through a PC, in order to define different modes of operation, this device is called "programmer". The activation of the programs can be done from the programmer or also using a small portable device, called "command". The command allows the patient to start or stop the execution of any of the programs previously loaded by the doctor.The communication of the stimulator with the programmer and the command will be carried out by telemetry. Also, the deactivation of the current program can be done by the presence of a magnet.
El sistema completo consta de:The complete system consists of:
Dispositivo estimulador implantable, alimentado por batería, capaz de aplicar pulsos de corriente en diversos canales a la interficie electrodo-tejido programables en amplitud, frecuencia y ancho de pulso, monofásicos con recuperación exponencial de carga, generados internamente por control digital basado en microprocesador. Dichos pulsos responden a secuencias de estimulación programables que se mantienen grabadas en la memoria interna del dispositivo. Software para la programación de las diferentes secuencias de estimulación, gestión de base de datos de pacientes, lectura del estatus del dispositivo, estado de la batería de éste, estadísticas de uso y test de integridad.Implantable stimulator device, powered by battery, capable of applying current pulses in various channels to the electrode-woven interface programmable in amplitude, frequency and pulse width, single phase with exponential charge recovery, generated internally by microprocessor-based digital control. These pulses respond to programmable stimulation sequences that are recorded in the internal memory of the device. Software for programming the different stimulation sequences, patient database management, reading of device status, battery status, usage statistics and integrity test.
- Unidad externa que actúa como interfase para la programación de las secuencias de estimulación, comunicándose con el dispositivo implantable mediante comunicación bidireccional por acoplo inductivo y con el ordenador personal por comunicación serie o paralelo.- External unit that acts as an interface for programming stimulation sequences, communicating with the implantable device through two-way communication by inductive coupling and with the personal computer through serial or parallel communication.
- Unidad externa de control usada por el paciente para activar o desactivar las diferentes secuencias de estimulación. Se comunica bidireccionalmente con el dispositivo implantable por radiofrecuencia mediante acoplo inductivo, enviando diferentes ordenes e informa al paciente sobre la acción realizada (estimulación activada o desactivada), estado de la batería del implante y comunicación correcta o incorrecta.- External control unit used by the patient to activate or deactivate the different stimulation sequences. It communicates bi-directionally with the implantable device by radiofrequency through inductive coupling, sending different orders and informs the patient about the action taken (stimulation activated or deactivated), status of the implant battery and correct or incorrect communication.
Breve descripción de los dibujos:Brief description of the drawings:
El funcionamiento, características, prestaciones y ventajas de la presente invención serán reflejadas en la siguiente descripción detallada, conjuntamente con las siguientes figuras donde:The operation, characteristics, benefits and advantages of the present invention will be reflected in the following detailed description, together with the following figures where:
- La Fig. 1 muestra esquemáticamente el sistema completo compuesto por: - Software de aplicación específico (1) al que juntamente con la interfase de programación (2) denominaremos "Programador" Unidad externa de control (3) para el paciente a la que denominaremos "Comando"- Fig. 1 schematically shows the complete system consisting of: - Specific application software (1) which together with the programming interface (2) we will call "Programmer" External control unit (3) for the patient we will call "Command"
Dispositivo implantable (4) con electrodos situados en las raíces sacras - La Fig. 2 muestra esquemáticamente los bloques principales que forman el dispositivo implantable y la conexión entre ellos, con el fin de realizar las funciones que se detallaran a continuación.Implantable device (4) with electrodes located in the sacral roots - Fig. 2 schematically shows the main blocks that form the implantable device and the connection between them, in order to perform the functions detailed below.
- La Fig. 3 muestra el sistema de generación de los pulsos de estimulación.- Fig. 3 shows the stimulation pulse generation system.
- La Fig. 4 corresponde a la implementación del comando. - La Fig. 5 muestra la implementación de la circuí terí a del dispositivo implantable. Las Fig. 6 y 7 son los diagramas de flujo correspondientes a las diferentes acciones a realizar, en relación con la FIG 5, para generar las secuencias de estimulación y para hacer la medida de impedancia respectivamente- Fig. 4 corresponds to the implementation of the command. - Fig. 5 shows the implementation of the circuitry of the implantable device. Fig. 6 and 7 are the flow charts corresponding to the different actions to be performed, in relation to FIG 5, to generate the stimulation sequences and to make the impedance measurement respectively
Descripción detallada de la invención:Detailed description of the invention:
En la presente invención se describe un sistema de control de la incontinencia y las funciones de micción defecación y erección a partir de la estimulación en corriente de las raíces sacras, basado en el método propuesto por Brindley (US3870051) . Dicho sistema consta de tres partes principales (FIG 1): - Microestimulador implantable (4), alimentado por batería capaz de entregar diferentes secuencias de pulsos de corriente monofásicos con recuperación exponencial de carga generados internamente con control digital, programables desde el exterior mediante el programador (1 y 2), a través de unos electrodos (5) conectados a las raíces sacras (6). Dichas secuencias quedan almacenadas en la memoria interna del dispositivo implantable (4), pudiendo ser leídas o modificadas en cualquier momento por el médico mediante el programador (1 y 2) y activadas o desactivadas por el paciente mediante el comando (3), o por el médico mediante el programador. Dispone de un sistema de seguridad de modo que en caso de emergencia o mal funcionamiento la secuencia de estimulación siempre podrá ser desactivada por el paciente con un simple imán (7).In the present invention, an incontinence control system and defection and erection urination functions are described from the current stimulation of the sacral roots, based on the method proposed by Brindley (US3870051). This system consists of three main parts (FIG 1): - Implantable microstimulator (4), powered by battery capable of delivering different sequences of single-phase current pulses with exponential recovery of load generated internally with digital control, programmable from the outside through the programmer (1 and 2), through electrodes (5) connected to the sacral roots (6). Said sequences are stored in the internal memory of the implantable device (4), and can be read or modified at any time by the physician through the programmer (1 and 2) and activated or deactivated by the patient through the command (3), or by The doctor through the programmer. It has a safety system so that in case of emergency or malfunction the stimulation sequence can always be deactivated by the patient with a simple magnet (7).
- Programador formado por:- Programmer formed by:
Software específico de la aplicación (1) para la definición de los parámetros y secuencias de estimulación, lectura de impedancia, estado de la batería del implante, estadísticas y gestión de base de datos de pacientes.Application-specific software (1) for the definition of stimulation parameters and sequences, impedance reading, implant battery status, statistics and patient database management.
Interfase de programación (2): hardware específico que transfiere los datos del PC al dispositivo implantable y viceversa, usando una comunicación por cable serie o paralelo con el PC y por radiofrecuencia mediante acoplo inductivo con el dispositivo implantable. Unidad externa de control (3) a la que denominaremos "comando", entregada al paciente para la activación o desactivación de la estimulación. Se comunica con el dispositivo implantable mediante comunicación bidireccional por radiofrecuencia mediante acoplo inductivo, enviando las diferentes ordenes para la activación de las diversas secuencias de estimulación y recibiendo del dispositivo implantable el status ( secuencia activada o desactivada), resultado de la comunicación (correcta o errónea) y estado de la batería del dispositivo implantable.Programming interface (2): specific hardware that transfers the data from the PC to the implantable device and vice versa, using a serial or parallel cable communication with the PC and by radiofrequency through inductive coupling with the implantable device. External control unit (3) which we will call "command", delivered to the patient for activation or deactivation of stimulation. It communicates with the implantable device by bidirectional radiofrequency communication through inductive coupling, sending the different orders for the activation of the various stimulation sequences and receiving the status (sequence activated or deactivated) from the implantable device, result of the communication (correct or erroneous ) and battery status of the implantable device.
El dispositivo implantable (FIG 2), alimentado por batería (9), está basado en un microcontrolador (1) que gobierna los diferentes periféricos con el fin de realizar todas las funciones especificadas del dispositivo implantable: comunicación con el exterior, control de las secuencias de estimulación y formas de onda, gestión de la energía de la batería, test, medida de impedancia, y almacenamiento de programas y estadísticas.The implantable device (FIG 2), powered by battery (9), is based on a microcontroller (1) that governs the different peripherals in order to perform all the specified functions of the implantable device: communication with the outside, sequence control of stimulation and waveforms, battery power management, test, impedance measurement, and storage of programs and statistics.
A través del control del circuito de comunicación (2) el microcontrolador (1) recibe los programas provenientes del programador (3) y los diferentes comandos: activación/desactivación de secuencias, activación de la medida de impedancia; o bien envía los programas almacenados en su memoria así como datos estadísticos y el valor de la impedancia medida en la interficie electrodo-tejido. Dicha comunicación se realiza de forma bidireccional, por acoplo inductivo mediante portadora de radiofrecuencia modulada en ASK. El microprocesador se encarga de definir en todo momento la dirección de la comunicación activando o desactivando el circuito transmisor o receptor. La diferentes secuencias de estimulación aplicadas a los electrodos, son ejecutadas a partir de los datos y señales de control enviados por el microcontrolador a la fuente de corriente digital (5), el elevador de tensión (4) y el multiplexor analógico (6), gobernando de esta forma la frecuencia de los pulsos en cada uno de los canales, su amplitud , anchura, selección de electrodo o canal (13, 14, 15 FIG 2) a estimular y la duración total de la dosis de estimulación . Los diferentes parámetros de que se compone cada secuencia de estimulación son: Para cada canal:Through the control of the communication circuit (2) the microcontroller (1) receives the programs from the programmer (3) and the different commands: sequence activation / deactivation, activation of the impedance measurement; or it sends the programs stored in its memory as well as statistical data and the value of the impedance measured in the electrode-woven surface. Said communication is carried out bidirectionally, by inductive coupling by means of a radio frequency carrier modulated in ASK. The microprocessor is responsible for defining the direction of communication at any time by activating or deactivating the transmitter or receiver circuit. The different stimulation sequences applied to the electrodes are executed from the data and control signals sent by the microcontroller to the digital current source (5), the voltage booster (4) and the analog multiplexer (6), thus governing the frequency of the pulses in each of the channels, their amplitude, width, electrode or channel selection (13, 14, 15 FIG 2) to be stimulated and the total duration of the stimulation dose. The different parameters of which each stimulation sequence is composed are: For each channel:
Canal activo o inactivoActive or inactive channel
- Amplitud del pulso de 0,3 a 40 mA, con resolución de 0,3mA Anchura de pulso de 35 a 750 μs- Pulse width from 0.3 to 40 mA, with resolution of 0.3mA Pulse width from 35 to 750 μs
Común a todos los canales:Common to all channels:
- Frecuencia de estimulación de 1 a 50 Hz en pasos de 1 Hz- Stimulation frequency from 1 to 50 Hz in steps of 1 Hz
- Modo de estimulación continua o ráfaga- Continuous stimulation or burst mode
- Tiempo de ráfaga - Tiempo entre ráfagas- Burst time - Time between bursts
Estimulación en modo rampa Duración de la dosisRamp mode stimulation Dose duration
La selección del canal a estimular control del ancho de pulso, tiempo entre pulsos (o frecuencia), duración de la dosis, y tiempos de ráfaga es realizado a partir de un timer interno del microcontrolador y a la aplicación de las señales adecuadas al multiplexor analógico. Mediante la aplicación de dichas señales se consigue la forma de pulso deseada, en este caso monofásico cuadrado con recuperación exponencial de carga. En la FIG 3 se indica esquemáticamente como realizar la forma del pulso. Al iniciar éste se conectan los interruptores analógicos (1) y (2) de forma que la corriente fluirá a través de la carga (4). Dado que dicha corriente será generada por una fuente de corriente, la forma del pulso en este periodo dependerá de dicha fuente siempre que exista tensión suficiente para que la corriente programada pueda ser mantenida, dependiendo de la impedancia de la carga. La amplitud de corriente de estimulación sobre la carga se consigue a partir del control digital de una fuente de corriente FIG 3. Dicho control se realiza a partir de la aplicación de un código a un conversor digital analógico (5), previamente calculado por el microcontrolador en función de la amplitud a aplicar y la referencia de tensión del conversor, el cual suministra una tensión proporcional que es convertida a corriente mediante el conversor tensión corriente (6) cuya salida se conecta a la carga. Una vez se ha cumplido el tiempo correspondiente al ancho de pulso se abren los interruptores (1) y (2) y se cierra el interruptor (3), produciéndose así la recuperación de la carga entregada a la interficie electrodo-tejido.The selection of the channel to stimulate control of the pulse width, time between pulses (or frequency), duration of the dose, and burst times is made from an internal timer of the microcontroller and the application of the appropriate signals to the analog multiplexer. By applying these signals, the desired pulse form is achieved, in this case single-phase square with exponential load recovery. In FIG 3 it is schematically indicated how to perform the pulse shape. When starting this, the analog switches (1) and (2) are connected so that the current will flow through the load (4). Since said current will be generated by a current source, the pulse shape in this period will depend on that source provided there is sufficient voltage so that the programmed current can be maintained, depending on the impedance of the load. The amplitude of stimulation current on the load is achieved from the digital control of a current source FIG 3. Said control is carried out by applying a code to an analog digital converter (5), previously calculated by the microcontroller depending on the amplitude to be applied and the voltage reference of the converter, which supplies a proportional voltage that is converted to current by means of the current voltage converter (6) whose output is connected to the load. Once the time corresponding to the pulse width has been reached, the switches (1) and (2) and the switch (3) is closed, thus recovering the charge delivered to the electrode-woven surface.
Dado que se trata de un dispositivo alimentado por batería, debido al valor de impedancia de la carga y los márgenes de amplitud de estimulación especificados, es necesaria la existencia de un elevador de tensión . En la FIG 2 se observa el circuito elevador de tensión (4) que partiendo del voltaje de la batería (9) genera la tensión necesaria para que pueda ser aplicado el pulso de corriente de estimulación a la carga. El valor de voltaje entregado a la fuente de corriente (5) es controlado por el microcontrolador (1) en función de la amplitud del pulso y la impedancia de la carga, de forma que dicho voltaje sea el mínimo para que la amplitud programada pueda ser alcanzada, con el fin de optimizar al máximo el consumo del dispositivo. El microcontrolador aplica las señales necesarias al elevador de tensión para ajustar su voltaje de salida, a su vez mide dicha tensión para, en función de la amplitud de la corriente programada y el valor de impedancia de la carga, activar el elevador de tensión, optimizando así al máximo el consumo.Since it is a battery powered device, due to the impedance value of the load and the specified stimulation amplitude ranges, the existence of a voltage booster is necessary. In FIG 2 the voltage booster circuit (4) is observed, which, starting from the battery voltage (9), generates the necessary voltage so that the pulse of stimulation current can be applied to the load. The voltage value delivered to the current source (5) is controlled by the microcontroller (1) depending on the pulse amplitude and the impedance of the load, so that said voltage is the minimum so that the programmed amplitude can be reached, in order to optimize the maximum consumption of the device. The microcontroller applies the necessary signals to the voltage booster to adjust its output voltage, in turn measures said voltage to, depending on the amplitude of the programmed current and the impedance value of the load, activate the voltage booster, optimizing thus to the maximum the consumption.
El microcontrolador (1) informa al programador (3) del valor de la impedancia de la interficie electrodo-tejido en un canal concreto, a partir del circuito medidor de impedancia (7), el cual mide el valor de tensión en la carga mientras se estimula con un valor de amplitud conocido por el microcontrolador. El microcontrolador además tiene otros periféricos como son: el circuito de runaway para detener el sistema si la frecuencia de estimulación es diferente de la programada, el magnet o interruptor magnético con el fin de detener la secuencia de estimulación en presencia de un imán externo, el medidor del voltaje de la batería para informar al usuario de la necesidad de reemplazo del implante y el circuito de test a fin de descubrir causas de posibles averías en el funcionamiento correcto del dispositivo.The microcontroller (1) informs the programmer (3) of the value of the impedance of the electrode-woven surface in a particular channel, from the impedance measuring circuit (7), which measures the value of voltage in the load while stimulates with an amplitude value known to the microcontroller. The microcontroller also has other peripherals such as: the runaway circuit to stop the system if the stimulation frequency is different from the programmed one, the magnet or magnetic switch in order to stop the stimulation sequence in the presence of an external magnet, the Battery voltage meter to inform the user of the need for replacement of the implant and the test circuit in order to discover causes of possible failures in the correct operation of the device.
La FIG 4 corresponde a la unidad externa de control denominada comando, usada por el paciente para la activación o desactivación de las diferentes secuencias de estimulación. Está basada en un microcontrolador y consta de un pequeño teclado para la activación de las diferentes funciones y de una serie de indicadores luminosos para informar a la paciente de la acción realizada.FIG 4 corresponds to the external control unit called the command, used by the patient for the activation or deactivation of the different stimulation sequences. It is based on a microcontroller and consists of a small keyboard for the activation of the different functions and a series of light indicators to inform the patient of the action taken.
Si el microcontrolador recibe del teclado la orden de activar o desactivar una secuencia de estimulación, activará el circuito de comunicación para enviar la orden pertinente al dispositivo implantable. Para enviar dicha orden primero enviará una secuencia de "acknowledge" a fin de identificar el acoplo correcto con el dispositivo implantable. Cuando esté acoplado se enviará la orden especificada, estableciéndose un protocolo de comunicación para asegurar el correcto envío y recepción de datos. Una vez la comunicación haya sido realizada el comando informará mediante un código específico de la acción realizada (activación o desactivación de secuencias, comunicación correcta o no, lectura del estado de la batería del implante) a través de los indicadores luminosos.If the microcontroller receives the command to activate or deactivate a stimulation sequence from the keyboard, it will activate the communication circuit to send the order relevant to the implantable device. To send this order, you will first send an acknowledgment sequence in order to identify the correct coupling with the implantable device. When attached, the specified order will be sent, establishing a communication protocol to ensure the correct sending and receiving of data. Once the communication has been carried out, the command will inform by means of a specific code of the action carried out (activation or deactivation of sequences, correct or not communication, reading of the implant battery status) through the indicator lights.
La comunicación con el dispositivo implantable se realiza ..de forma bidireccional mediante acoplo inductivo de señal de radiofrecuencia modulada en ASK.The communication with the implantable device is carried out .. in a bidirectional way by means of inductive coupling of the radio frequency signal modulated in ASK.
6. Ejemplo de realización de la invención6. Example of embodiment of the invention
El sistema de control de la incontinencia, micción, defecación y erección en pacientes con neuropatías consta, tal y como ya se ha descrito, de tres partes principales: - Un dispositivo estimulador implantable programable desde el exterior.The incontinence, urination, defecation and erection control system in patients with neuropathies consists, as already described, of three main parts: - An implantable stimulator device programmable from the outside.
- Un dispositivo externo denominado programador para el diseño de las secuencias de estimulación, programación del dispositivo implantable, control de base de datos de pacientes, lectura de estadísticas y test. Un dispositivo externo de control para la activación y desactivación de las diferentes secuencias de estimulación por parte del paciente- An external device called a programmer for the design of the stimulation sequences, programming of the implantable device, patient database control, statistics reading and test. An external control device for the activation and deactivation of the different stimulation sequences by the patient
El ejemplo que se describe a continuación cumple con las siguientes especificaciones:The example described below meets the following specifications:
Características generales: - 3 patrones de estimulación o programas independientesGeneral characteristics: - 3 stimulation patterns or independent programs
- Hasta tres canales posibles de estimulación en cada programa- Up to three possible stimulation channels in each program
Forma de onda del estímulo: monofásico con recuperación exponencial de la carga entregada Parámetros generales:Stimulus waveform: single phase with exponential recovery of the delivered load General parameters:
Modos de estimulación: Continuo o ráfagas - Autoapagado o apagado manual (tiempo máximo de seguridad prefijado)Stimulation modes: Continuous or bursts - Auto power off or manual shutdown (maximum preset safety time)
- Tiempo de dosis en modo autoapagado de 10 s a 600 s en pasos de 10 s- Dose time in auto-off mode from 10 s to 600 s in 10 s steps
- Tiempos en modo ráfaga:- Burst mode times:
Estimulación ON de ls a 17s en pasos de 0,5s Estimulación OFF de 2s a 35s en pasos de ls - Frecuencia de estimulación de 3Hz a 46Hz en pasos de 1HzON stimulation from ls to 17s in 0.5s steps OFF stimulation from 2s to 35s in ls steps - Stimulation frequency from 3Hz to 46Hz in 1Hz steps
- Parámetros independientes en cada canal:- Independent parameters in each channel:
Habilitación, canal activo o inactivoEnabling, active or inactive channel
Valor de amplitud del pulsos positivo de estimulación de 0,3mA aPositive pulse amplitude stimulation value of 0.3mA at
40mA en 128 pasos - Ancho del pulso positivo de estimulación de 30μs a 720μs en pasos de 30μs40mA in 128 steps - Positive stimulation pulse width from 30μs to 720μs in 30μs steps
Rampa de estimulación, tiempo de subida programable hasta alcanzar la amplitud de corriente especificada, en una sucesión consecutiva de pulsos, de 15s a 30s en pasos de ls.Stimulation ramp, programmable rise time to reach the specified current amplitude, in a consecutive sequence of pulses, from 15s to 30s in steps of ls.
Medida de impedancia en cada canal: de 8Ω a 1,6KΩ con una resolución de 8ΩImpedance measurement on each channel: from 8Ω to 1.6KΩ with a resolution of 8Ω
Respuesta magnética: Desactiva el ultimo programa en ejecuciónMagnetic response: Disables the last running program
Datos de telemetría:Telemetry data:
- Parámetros: todos los parámetros de programables para configurar una secuencia o programa de estimulación- Parameters: all programmable parameters to configure a stimulation sequence or program
- Identificación. Modelo y numero de serie- Identification Model and serial number
- Estado de la batería: Voltaje e indicación de fin de vida. - Estadísticas: Numero de veces de activación de cada programa.- Battery status: Voltage and end of life indication. - Statistics: Number of activation times of each program.
- Impedancia de la interficie electrodo- tejido en cada canal. Protecciones:- Impedance of the electro-woven interface in each channel. Protections:
- Limitación de la frecuencia de estimulación a 60Hz. Permite detectar posibles anomalías en el funcionamiento digital del circuito. Protección contra estimulación continua: Cada canal se encuentra protegido con un condensador que en el caso de la existencia de fugas de corriente cortaría el flujo de corriente constante hacia la interficie electrodo-tejido.- Limitation of the stimulation frequency to 60Hz. It allows to detect possible anomalies in the digital operation of the circuit. Protection against continuous stimulation: Each channel is protected with a capacitor that in the case of the existence of current leakage would cut off the constant current flow to the electrode-tissue surface.
- Protección contra errores de funcionamiento: el procesador interno tiene los datos de programa duplicados los cuales son verificados constantemente durante la estimulación.- Protection against malfunction: the internal processor has duplicate program data which is constantly verified during stimulation.
Dimensiones 45x22,76x8,64 mmDimensions 45x22.76x8.64 mm
Peso 23gWeight 23g
Conectores a los electrodos IS1/VS1, usados comúnmente en marcapasos.Connectors to the IS1 / VS1 electrodes, commonly used in pacemakers.
La FIG 5 corresponde al dispositivo implantable. Éste está alimentado por una batería (5) de 3,2V y funciona correctamente hasta 2,2 V, indicándose la necesidad de reemplazo cuando su valor se encuentra en los 2,6V.FIG 5 corresponds to the implantable device. This is powered by a 3.2V battery (5) and works correctly up to 2.2V, indicating the need for replacement when its value is at 2.6V.
El dispositivo estimulador implantable está basado en un microcontrolador (1) que gobierna los diferentes periféricos con el fin de realizar todas las funciones especificadas del dispositivo implantable: comunicación con el exterior, control de las secuencias de estimulación y formas de onda, gestión de la energía de la batería, test, medida de impedancia, almacenamiento de programas y estadísticas.The implantable stimulator device is based on a microcontroller (1) that governs the different peripherals in order to perform all the specified functions of the implantable device: communication with the outside, control of the stimulation sequences and waveforms, energy management of the battery, test, impedance measurement, program storage and statistics.
A través del control del circuito de comunicación el microcontrolador recibe los programas provenientes del programador y los diferentes comandos de activación o desactivación de secuencias, medida de impedancia, lectura de parámetros. La comunicación con entre el dispositivo implantable y los dispositivos externos es half- dúplex o semi-bidireccional. Los datos son transmitidos por radiofrecuencia mediante acoplo inductivo, con portadora de 27 KHz y modulación ASK. La información es codificada por distancia entre pulsos PDM. El protocolo de comunicación se establece de la siguiente manera, cada segundo el microcontrolador (1) envía un pulso (señal Tx) a la antena (13) y seguidamente activa el receptor formado por la antena (13) y el comparador (4) el cual es activado mediante la señal de "Enable". Si existe un dispositivo externo que quiera comunicar con el dispositivo implantable, en ese momento se recibirán datos por la línea Rx , y se establecerá todo el proceso de comunicación. La recepción de datos se realiza activando el comparador con la línea de "enable", si existe una transmisión desde el exterior correctamente alineada, la señal proveniente se acoplará en la bobina o antena (13), provocando una tensión superior a Vref (4) ocasionando un uno lógico a la salida del comparador y, por lo tanto a la entrada Rx del microcontrolador. En un mismo instante de tiempo el microcontrolador estará enviando o recibiendo datos pero no las dos funciones a la vez, pues existe una única antena. La selección de transmisión o recepción de datos se realiza mediante la activación o desactivación de la señal deThrough the control of the communication circuit, the microcontroller receives the programs from the programmer and the different commands for activating or deactivating sequences, impedance measurement, parameter reading. Communication with the implantable device and external devices is half-duplex or semi-bidirectional. The data is transmitted by radiofrequency through inductive coupling, with 27 KHz carrier and ASK modulation. The information is encoded by distance between PDM pulses. The communication protocol is established as follows, every second the microcontroller (1) sends a pulse (Tx signal) to the antenna (13) and then activates the receiver formed by the antenna (13) and the comparator (4) the which is activated by the "Enable" signal. If there is an external device that wants to communicate with the implantable device, at that time data will be received by the Rx line, and the entire communication process will be established. The data is received by activating the comparator with the "enable" line, if there is a correctly aligned transmission from the outside, the signal coming from will be coupled to the coil or antenna (13), causing a voltage greater than Vref (4) causing a logical one at the output of the comparator and, therefore, at the Rx input of the microcontroller. At the same time, the microcontroller will be sending or receiving data but not both functions at the same time, since there is only one antenna. The selection of transmission or reception of data is made by activating or deactivating the signal
"enable" que va al comparador(4) y la generación de pulsos en la señal Tx que ataca la antena (13)."enable" that goes to the comparator (4) and the pulse generation in the Tx signal that attacks the antenna (13).
Los datos son transmitidos en modo serie, medíante la modulación y codificación previamente descrita. Estos datos son diferentes comandos que enviará la unidad externa al dispositivo implantable, seguidos de una serie de datos como por ejemplo: - Comando de programación, seguido de todos los parámetros que forman un programa completoThe data is transmitted in serial mode, through the modulation and coding previously described. These data are different commands that the external unit will send to the implantable device, followed by a series of data such as: - Programming command, followed by all the parameters that form a complete program
Comando de activación de estimulación, seguido del numero de secuencia o programa a activar.Stimulation activation command, followed by the sequence or program number to be activated.
Comando de desactivación de la secuencia de estimulación. - Comando de medida de impedancia, seguido del numero de canal a medirCommand to deactivate the stimulation sequence. - Impedance measurement command, followed by the number of channel to be measured
Comando de interrogaciónInterrogation command
Como respuesta a los diferentes comandos el dispositivo implantable enviará:In response to the different commands, the implantable device will send:
- Numero de serie, estatus, estado de la batería y todos los parámetros que forman los diferentes programas de estimulación que tiene en la memoria, cada vez que reciba un comando de interrogación. Checksum de los datos recibidos cuando se le envíe una nueva programación desde el exterior.- Serial number, status, battery status and all the parameters that form the different stimulation programs in memory, each time you receive an interrogation command. Checksum of the data received when a new programming is sent from abroad.
Checksum cuando reciba orden de activación o desactivación de la secuencia de estimulaciónChecksum when you receive order of activation or deactivation of the stimulation sequence
Las diferentes secuencias de estimulación correspondientes a cada uno de los tres posibles programas son transmitidas desde el programador y registradas en la memoria interna del microcontrolador, donde se mantienen durante toda la vida de la batería del implante a no ser que sean modificadas de nuevo por el médico mediante el programador. La generación de estas diferentes secuencias las realiza el microcontrolador (FIG 5) mediante el gobierno de la fuente de corriente digital, formada por el DAC (6) y el conversor V-I (7), el elevador de tensión (2), y el conjunto de interruptores analógicos (9, 10 ,11).The different stimulation sequences corresponding to each of the three possible programs are transmitted from the programmer and recorded in the internal memory of the microcontroller, where they are maintained throughout the life of the implant battery unless they are modified again by the Doctor using the programmer. The generation of these different sequences is carried out by the microcontroller (FIG 5) by means of the government of the digital current source, formed by the DAC (6) and the converter VI (7), the voltage booster (2), and the assembly of analog switches (9, 10, 11).
Para realizar una secuencia específica de estimulación o programa el microcontrolador realizará las operaciones indicadas en el diagrama de la FIG 6:To perform a specific sequence of stimulation or program, the microcontroller will perform the operations indicated in the diagram of FIG 6:
Al recibir la orden de activación desde la unidad externa el microcontrolador medirá el voltaje de la batería para indicar su estado a la unidad externa y lo registrará para usarlos en cálculos internos. Se leerán los parámetros en memoria que correspondan al programa activado y se inicializarán las diversas variables. El bucle de programa empieza siempre en (3) con la comprobación del tiempo de estimulación, aunque se haya programado sin autoapagado siempre hay tiempo máximo de estimulación como protección. Si el tiempo transcurrido es menor que el programado se comprueba que no se haya recibido la orden de paro desde la unidad externa (4). Seguidamente se comprueba si el modo de estimulación es continuo o modo ráfaga (5). Si es en modo ráfaga o discontinuo se comprobará en qué estado se encuentra la secuencia (en ráfaga o en espera entre ráfagas), actualizándose el cómputo de los tiempos según corresponda.Upon receiving the activation order from the external unit, the microcontroller will measure the battery voltage to indicate its status to the external unit and record it for use in internal calculations. The parameters in memory corresponding to the activated program will be read and the various variables will be initialized. The program loop always starts at (3) with the verification of the stimulation time, although it has been programmed without self-shutdown there is always a maximum stimulation time as protection. If the elapsed time is less than the programmed time, it is checked that the stop order has not been received from the external unit (4). Next, it is checked whether the stimulation mode is continuous or burst mode (5). If it is in burst or discontinuous mode, it will be checked in which state the sequence is (in burst or standby between bursts), updating the computation of the times as appropriate.
Si la estimulación es continua o se encuentra en estado de ráfaga se procede al proceso de estimulación que se inicia en (11). A fin de optimizar al máximo el consumo, el elevador de tensión posee una capacidad de salida que sólo se descarga sobre los electrodos en la estimulación, excepto las fugas propias de los componentes.If the stimulation is continuous or is in a burst state, the stimulation process begins in (11). In order to optimize the consumption to the maximum, the voltage booster has an output capacity that is only discharged on the electrodes in the stimulation, except for the component's own leaks.
Por lo tanto, en cada tren de pulsos se mide la tensión de dicha capacidad y en función de la amplitud que se deba entregar se decide si se activa o no el elevador, es decir si se recarga o no dicha capacidad. El valor de tensión estará en función de la corriente a suministrar. En este ejemplo específico se implementa un elevador de tensión con cuatro posibles valores de tensión programables ( 5, 9 12 y 16 V), seleccionados mediante dos líneas del microcontrolador (1). Una vez se ha alcanzado la tensión necesaria para la estimulación ( espera de lms después de la activación del elevador si corresponde), se procede a la estimulación en sí. Dado que sólo hay una única fuente de corriente y tres canales a estimular, los pulsos se entregan de forma secuencial del canal 1 al canal 3. La generación de los pulsos empieza en (13), comprobándose si el canal 1 en este caso está activo o no en la secuencia programada. Si está activo de calcula en función de la amplitud de corriente y la tensión de la batería el código digital a entregar al DAC (6 FIG 5). Dicho código se entregará mediante transmisión serie usando dos líneas de microcontrolador . El DAC convertirá el código en tensión y ésta al aplicarse al conversor tensión corriente (7) provocará la corriente de salida deseada. La estimulación se producirá cuando, una vez la corriente haya sido programa se cierren los interruptores (9) que conectan el ánodo y el cátodo del canal uno a la fuente de corriente. La señal para controlar dichos interruptores es "Control 1". Como puede observarse en (9) (10) y (11), Las señales "Control 1", "Control 2" y "Control 3" gobiernan tres interruptores. Dos de ellos en lógica positiva y uno en lógica negada, de esta forma con una sola señal de control por canal se realiza la forma de onda deseada. Cuando dichas señales tienen un uno lógico el electrodo correspondiente se conecta a la fuente de corriente, produciéndose el pulso cuadrado deseado. Cuando las señales tienen un cero lógico el ánodo y cátodo de cada electrodo queda cortocircuitado entre sí, provocándose la descarga exponencial. Dichas señales de control se mantendrán a 1 lógico respectivamente en cada canal durante el tiempo de ancho de pulso para cada canal previamente programado.Therefore, in each pulse train the voltage of said capacity is measured and in function from the amplitude to be delivered, it is decided whether or not the elevator is activated, that is, whether or not such capacity is recharged. The voltage value will depend on the current to be supplied. In this specific example a voltage booster is implemented with four possible programmable voltage values (5, 9 12 and 16 V), selected by means of two microcontroller lines (1). Once the necessary tension for the stimulation has been reached (waiting for lms after the activation of the elevator if applicable), the stimulation itself is carried out. Since there is only a single current source and three channels to stimulate, the pulses are delivered sequentially from channel 1 to channel 3. The pulse generation starts at (13), checking if channel 1 in this case is active or not in the programmed sequence. If it is active, it calculates the digital code to be delivered to the DAC based on the current amplitude and battery voltage (6 FIG 5). This code will be delivered by serial transmission using two microcontroller lines. The DAC will convert the code into voltage and this when applied to the current voltage converter (7) will cause the desired output current. The stimulation will occur when, once the current has been programmed, the switches (9) that connect the anode and cathode of channel one to the current source are closed. The signal to control these switches is "Control 1". As can be seen in (9) (10) and (11), "Control 1", "Control 2" and "Control 3" signals govern three switches. Two of them in positive logic and one in denied logic, in this way with a single control signal per channel the desired waveform is performed. When said signals have a logical one, the corresponding electrode is connected to the current source, producing the desired square pulse. When the signals have a logical zero, the anode and cathode of each electrode is short-circuited, causing the exponential discharge. Said control signals will be maintained at 1 logic respectively in each channel during the pulse width time for each previously programmed channel.
Una vez se hayan aplicado los pulsos a los diferentes canales se desconecta el elevador de tensión y se espera el tiempo correspondiente a la frecuencia de estimulación para repetir el proceso.Once the pulses have been applied to the different channels, the voltage booster is switched off and the time corresponding to the stimulation frequency is expected to repeat the process.
La secuencia de estimulación termina cuando se haya cumplido el tiempo de dosis o bien se reciba una orden de paro desde la unidad externa. La medida de impedancia (FIG 7) se basa en la medida de la caída de tensión en bornes del electrodo a medir. Cuando se activa la medida se mide la tensión de batería y se activa el elevador de tensión, programándolo para la tensión máxima, con el fin de poder medir cualquier valor de impedancia dentro de los márgenes especificados al inicio de la descripción de este ejemplo. Posteriormente se estimula el canal a medir con una corriente nula. Para ello se envía el código 0 al DAC, se activa la señal de control pertinente y al cabo de unos pocos microsegundos (sobre 50) se activa la señal de "Enable" del medidor de impedancia (8 FIG 5), con el fin de medir la tensión real de salida del elevador. Se desactiva la señal de control del interruptor analógico, se programa la fuente de corriente con un valor prefijado (por el dispositivo externo programador) y se vuelve a estimular el canal deseado, activando a los 50us el medidor de impedancia. Una vez tomadas estas dos medidas el microcontrolador envía los datos al dispositivo externo programador que se encargará de calcular y visualizar el valor de la impedancia leída. El circuito de test se basa en la medida de una impedancia conocida (12 FIG 5) usando el sistema de medida de impedancia descrito anteriormente.The stimulation sequence ends when the dose time has elapsed or a stop order is received from the external unit. The impedance measurement (FIG 7) is based on the measurement of the voltage drop at the terminals of the electrode to be measured. When the measurement is activated, the battery voltage is measured and the voltage booster is activated, programming it for maximum voltage, in order to be able to measure any impedance value within the specified ranges at the beginning of the description of this example. Subsequently, the channel to be measured is stimulated with a zero current. To do this, code 0 is sent to the DAC, the relevant control signal is activated and after a few microseconds (over 50) the "Enable" signal of the impedance meter is activated (8 FIG 5), in order to measure the actual elevator output voltage. The control signal of the analog switch is deactivated, the current source is programmed with a preset value (by the external programming device) and the desired channel is stimulated again, activating the impedance meter at 50us. Once these two measures have been taken, the microcontroller sends the data to the external programming device that will be in charge of calculating and displaying the value of the impedance read. The test circuit is based on the measurement of a known impedance (12 FIG 5) using the impedance measurement system described above.
El interruptor magnético (3 FIG 5) se usa para desactivar la estimulación. Cuando el interruptor se cierre por la presencia de un imán provocará un flanco de bajada que será leído por el microcontrolador, el cual parará inmediatamente la estimulación.The magnetic switch (3 FIG 5) is used to deactivate the stimulation. When the switch is closed due to the presence of a magnet, it will cause a falling edge that will be read by the microcontroller, which will immediately stop the stimulation.
Finalmente el circuito de runaway se basa en la medida de la tensión de una capacidad cargada durante un cierto tiempo calculado por el microcontrolador. El valor de dicha tensión debe corresponder a una constante prefijada en función del tiempo de carga. Si no coincide significará que la circuitería digital no funciona correctamente pues habrá transcurrido más o menos tiempo del calculado por el microcontrolador. Este es un sistema de protección contra posibles fallos de la circuitería digital.Finally, the runaway circuit is based on the measurement of the voltage of a charged capacity for a certain time calculated by the microcontroller. The value of this voltage must correspond to a preset constant depending on the charging time. If it does not match, it will mean that the digital circuitry does not work correctly, since more or less time will have elapsed than that calculated by the microcontroller. This is a protection system against possible failures of the digital circuitry.
Este dispositivo se encapsula en un recipiente de titanio con cuello de epoxy donde se encuentran las fijaciones de los electrodos tipo IS1/VS1, tal y como se puede observar en la FIG 8 La FIG 3 corresponde a la unidad externa de control denominada "comando".This device is encapsulated in a titanium container with an epoxy neck where the fixations of the electrodes type IS1 / VS1 are found, as can be seen in FIG 8 FIG 3 corresponds to the external control unit called "command" .
Esta formada por un microcontrolador (1) que responde a los datos provenientes de un pequeño teclado de tres pulsadores (6), gestionando el circuito de transmisión (3, 4) y recepción (2, 5). Está alimentado por tres baterías de 1.5V. Los resultados de la comunicación, estatus del implante y estado de la batería son informados mediante tres indicadores luminosos (8).It is formed by a microcontroller (1) that responds to data from a small three-button keypad (6), managing the transmission circuit (3, 4) and reception (2, 5). It is powered by three 1.5V batteries. The results of the communication, implant status and battery status are reported by three light indicators (8).
Cuando se presione un pulsador del teclado el microcontrolador activará el circuito de recepción para detectar la correcta alineación con el dispositivo implantable. Una vez ésta haya sido detectada enviará la orden de activación del canal que corresponda según el botón pulsado. Si el dispositivo implantable ya se encontraba en ON la recepción de dicha orden será interpretada como orden de paro, sino se activará la secuencia de estimulación correspondiente. Los indicadores luminosos informarán en todo momento del estatus del proceso. Así el proceso de1 detección de alineación con el implante se indicará con una luz amarilla que cambiará a verde cuando se haya comunicado correctamente y la estimulación haya sido activada o a rojo si ha sido desactivada. La otras dos luces se usarán para indicar del estado de la batería del comando y la del implante (retornado por éste en cada proceso de comunicación). La unidad externa de programación denominada programador estará formada por un PC, con un software específico en entorno Windows que permita la entrada de los parámetros de cada secuencia de estimulación, gestión de base de datos de pacientes, y por una interfase de comunicación utilizada para transferir los datos del PC al dispositivo implantable y viceversa. When a button on the keyboard is pressed, the microcontroller will activate the reception circuit to detect the correct alignment with the implantable device. Once it has been detected, it will send the activation order of the corresponding channel according to the button pressed. If the implantable device was already ON, the reception of said order will be interpreted as a stop order, but the corresponding stimulation sequence will be activated. The indicator lights will inform the process status at all times. Thus the process of 1 alignment detection with the implant will be indicated with a yellow light that will change to green when it has been communicated correctly and the stimulation has been activated or red if it has been deactivated. The other two lights will be used to indicate the status of the battery of the command and that of the implant (returned by it in each communication process). The external programming unit called programmer will consist of a PC, with specific software in a Windows environment that allows the input of the parameters of each stimulation sequence, patient database management, and a communication interface used to transfer PC data to the implantable device and vice versa.

Claims

REIVINDICACIONES
1) Sistema de control de la micción defecación y erección en pacientes con neuropatías caracterizado porque consta de:1) Defection and erection urination control system in patients with neuropathies characterized in that it consists of:
Dispositivo estimulador implantable, basado en microcontrolador, con varios canales de estimulación en corriente y medida de impedancia de la interficie electrodo- tejido en cada canal, alimentado por batería y cuyas posibles secuencias de estimulación, que se mantienen almacenadas en la memoria interna de dicho dispositivo, son programables mediante comunicación con una unidad externa. El dispositivo se encuentra encapsulado en titanio con cuello de epoxy donde se encuentran las fijaciones de los electrodos.Implantable stimulator device, based on microcontroller, with several current stimulation channels and impedance measurement of the electro-woven surface in each channel, powered by battery and whose possible stimulation sequences, which are stored in the internal memory of said device , are programmable by communication with an external unit. The device is encapsulated in titanium with epoxy neck where the electrode fixings are located.
- Electrodos con conexión al estimulador a través de conectores IS 1 VS 1. Software para la programación de las diferentes secuencias de estimulación, control de base de datos de pacientes, interrogación del implante para saber el estado de la batería, programas en memoria, análisis estadístico y lectura de la impedancia electrodo-tejido de los diferentes canales.- Electrodes with connection to the stimulator via IS 1 VS 1 connectors. Software for programming the different stimulation sequences, patient database control, interrogation of the implant to know the battery status, memory programs, analysis statistical and reading of the electrode-tissue impedance of the different channels.
Unidad externa de programación que transfiere los datos del ordenador personal al implante y viceversa mediante una comunicación bidireccional por acoplo inductivo con el implante y comunicación paralelo o serie con el ordenador personal. - Unidad externa de control proporcionada al paciente para activar o desactivar las diferentes secuencias de estimulación previamente registradas en el dispositivo implantable, usando una comunicación bidireccional por acoplo inductivo.External programming unit that transfers the data from the personal computer to the implant and vice versa through two-way communication by inductive coupling with the implant and parallel or serial communication with the personal computer. - External control unit provided to the patient to activate or deactivate the different stimulation sequences previously registered in the implantable device, using bidirectional communication by inductive coupling.
2) Sistema según reivindicación 1 caracterizado porque: el sistema para el control de la micción incluye un sistema de control para provocar la micción y sistema de control para la regulación de la incontinencia. En la programación del dispositivo implantable se especifican los parámetros de las diferentes secuencias para provocar la micción, defecación y erección, y también la habilitación del control de la incontinencia y los parámetros de estimulación relacionados. 3) Sistema según reivindicación 1 porque la estimulación de la corriente se realiza mediante control digital basado en microprocesador de la forma de onda aplicada a la interficie electrodo-tejido monofásica con recuperación exponencial de carga, programable en amplitud, anchura de pulso y frecuencia, e independiente del acoplo inductivo y la impedancia de la interficie electrodo-tejido.2) System according to claim 1 characterized in that: the system for the control of urination includes a control system for causing urination and control system for the regulation of incontinence. In the programming of the implantable device, the parameters of the different sequences are specified to cause urination, defecation and erection, and also the enablement of incontinence control and related stimulation parameters. 3) System according to claim 1 because the current stimulation is carried out by microprocessor-based digital control of the waveform applied to the single-phase electrode-woven surface with exponential charge recovery, programmable in amplitude, pulse width and frequency, and independent of the inductive coupling and the impedance of the electrode-tissue interface.
4) Sistema según reivindicación 1 caracterizado porque: la alimentación por batería, además incluye sistema de elevación de tensión y control de éste basado en microprocesador para conseguir los márgenes de estimulación especificados optimizado para entregar la energía a una carga pulsada con la máxima eficiencia en función de cada pulso de corriente aislado a aplicar. Dicho sistema se basa en aplicar la tensión justa para que la estimulación pueda ser realizada en función de la amplitud de dicha estimulación y la impedancia de la interficie electrodo-tejido, asegurando por un lado la efectividad y repetibilidad de la estimulación pues es realizada en corriente, y disminuyendo al máximo el consumo de la energía proporcionada por la batería. 4) System according to claim 1, characterized in that: the battery supply also includes a microprocessor-based voltage and control system to achieve the specified stimulation margins optimized to deliver the energy to a pulsed load with maximum efficiency depending on of each isolated current pulse to apply. Said system is based on applying the right tension so that the stimulation can be carried out based on the amplitude of said stimulation and the impedance of the electrode-woven surface, ensuring on the one hand the effectiveness and repeatability of the stimulation as it is performed in current , and minimizing the energy consumption provided by the battery.
PCT/ES2001/000064 2000-05-26 2001-02-21 Urination, defecation and erection control system in neuropathy patients WO2001089630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33809/01A AU3380901A (en) 2000-05-26 2001-02-21 Urination, defecation and erection control system in neuropathy patients

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200001344A ES2161648B1 (en) 2000-05-26 2000-05-26 MICTION, DEFECTION AND ERECTION CONTROL SYSTEM IN PATIENTS WITH NEUROPATHY.
ESP200001344 2000-05-26

Publications (1)

Publication Number Publication Date
WO2001089630A1 true WO2001089630A1 (en) 2001-11-29

Family

ID=8493683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000064 WO2001089630A1 (en) 2000-05-26 2001-02-21 Urination, defecation and erection control system in neuropathy patients

Country Status (3)

Country Link
AU (1) AU3380901A (en)
ES (1) ES2161648B1 (en)
WO (1) WO2001089630A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662758A (en) * 1969-06-30 1972-05-16 Mentor Corp Stimulator apparatus for muscular organs with external transmitter and implantable receiver
US3870051A (en) * 1972-04-27 1975-03-11 Nat Res Dev Urinary control
US4612934A (en) * 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
WO1997018857A1 (en) * 1995-11-24 1997-05-29 Advanced Bionics Corporation System and method for conditioning pelvic musculature using an implanted microstimulator
WO2000019939A1 (en) * 1998-10-06 2000-04-13 Bio Control Medical, Ltd. Control of urge incontinence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662758A (en) * 1969-06-30 1972-05-16 Mentor Corp Stimulator apparatus for muscular organs with external transmitter and implantable receiver
US3870051A (en) * 1972-04-27 1975-03-11 Nat Res Dev Urinary control
US4612934A (en) * 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
WO1997018857A1 (en) * 1995-11-24 1997-05-29 Advanced Bionics Corporation System and method for conditioning pelvic musculature using an implanted microstimulator
WO2000019939A1 (en) * 1998-10-06 2000-04-13 Bio Control Medical, Ltd. Control of urge incontinence

Also Published As

Publication number Publication date
ES2161648A1 (en) 2001-12-01
ES2161648B1 (en) 2002-07-01
AU3380901A (en) 2001-12-03

Similar Documents

Publication Publication Date Title
US11033737B2 (en) Miniature implantable neurostimulator system for sciatic nerves and their branches
US11123569B2 (en) Patient remote and associated methods of use with a nerve stimulation system
AU2014293164B2 (en) Systems of providing modulation therapy without perception
EP2764891B1 (en) Implantable stimulation device, stimulation system and method for data communication
US5423873A (en) Device for stimulating living tissue
ES2685753T3 (en) Systems to adjust electrical therapy based on impedance changes
JP4168380B2 (en) Electroacupuncture device with stimulation electrode unit
US5735887A (en) Closed-loop, RF-coupled implanted medical device
US20090138061A1 (en) Stimulator For The Control of a Bodily Function
AU2013282356B2 (en) System for compounding low-frequency sources for high-frequency neuromodulation
KR100382860B1 (en) Electronic transfer system
US8005551B2 (en) Implantable medical lead
US20090326611A1 (en) Method of Powering Implanted Devices by Direct Transfer of Electrical Energy
US20090132009A1 (en) Determination of stimulation output capabilities throughout power source voltage range
WO2016172530A1 (en) Managing recharge power for implantable medical devices
CN108697886B (en) Method and system for frequency adjustment to optimize charging of an implantable neurostimulator
JP2015504760A (en) Recharge power management for implantable medical devices
CN107106834B (en) Systems and methods for neurostimulation therapy
US20130338732A1 (en) Dynamic compliance voltage for energy efficient stimulation
WO2001089630A1 (en) Urination, defecation and erection control system in neuropathy patients
EP2231268B1 (en) Mechanical control of electrical nerve stimulation system for the treatment of pelvic disorders
Mounaim et al. Implantable neuro-monito-stimulation system dedicated to enhance the bladder functions
WO2001089629A1 (en) Sacral root stimulating system by means of a radio-frequency powered implant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP