WO2001087410A2 - Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart - Google Patents

Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart Download PDF

Info

Publication number
WO2001087410A2
WO2001087410A2 PCT/US2001/015520 US0115520W WO0187410A2 WO 2001087410 A2 WO2001087410 A2 WO 2001087410A2 US 0115520 W US0115520 W US 0115520W WO 0187410 A2 WO0187410 A2 WO 0187410A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
measuring
voltage
pair
Prior art date
Application number
PCT/US2001/015520
Other languages
French (fr)
Other versions
WO2001087410A3 (en
Inventor
Kerry Bradley
Gene A. Bornzin
Euljoon Park
Mark W. Kroll
Original Assignee
Pacesetter, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacesetter, Inc. filed Critical Pacesetter, Inc.
Priority to AU2001263108A priority Critical patent/AU2001263108A1/en
Publication of WO2001087410A2 publication Critical patent/WO2001087410A2/en
Publication of WO2001087410A3 publication Critical patent/WO2001087410A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36521Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being derived from measurement of an electrical impedance

Definitions

  • the present invention generally relates to cardiac rhythm management devices, such as implantable cardioverter-defibrillators (ICDs) and pacemakers, or combinations thereof.
  • ICDs implantable cardioverter-defibrillators
  • the present invention more particularly relates to such devices which utilize one or more electrodes implanted on the left-side of the heart for providing desired stimulation therapy and for measuring physiological parameters based on measured electrical impedances.
  • Cardiac rhythm management devices including implantable devices, are well known in the art. Such devices may include, for example, implantable cardiac pacemakers, cardioverters or defibrillators.
  • the devices are generally implanted in an upper portion of the chest, in either the left or right side depending on the type of the device, beneath the skin of a patient within what is known as a subcutaneous pocket.
  • the implantable devices generally function in association with one or more electrode-carrying leads which are implanted within the heart.
  • the electrodes are typically positioned within the right side of the heart, either the right ventricle or right atrium, or both, for making electrical contact with their designated heart chamber. Conductors within the leads couple the electrodes to the device to enable the device to deliver the desired stimulation therapy.
  • therapy delivery has been limited to the right side of the heart.
  • lead structures and methods avoid electrode placement within the left atrium and left ventricle of the heart by lead implantation within the coronary sinus and/or the great vein of the heart which communicates with the coronary sinus and extends down towards the apex of the heart.
  • the coronary sinus passes closely adjacent the left atrium and extends into the great vein adjacent the left ventricular free wall. The great vein then continues adjacent the left ventricle towards the apex of the heart.
  • Electrodes placed in the coronary sinus and great vein may be used for left atrial pacing, left ventricular pacing, and even cardioversion and defibrillation. This work is being done to address the needs of a patient population with left ventricular dysfunction and congestive heart failure. This patient class has been targeted to receive pacing leads intended for left ventricular pacing, either alone or in conjunction with right ventricular pacing. When delivering such therapy to these patients, it would be desirable to provide device-based measurements of left ventricular function for both monitoring and therapy delivery.
  • device-based impedance measurements offer one method for assessing patient condition. It is also well known, however, that bio- impedance measurements can be confounded by signals not directly related to the desired physiology to be measured. For example, a measurement of impedance from a unipolar tip electrode in the right ventricular apex will contain signal components related to respiration, and right ventricular, left ventricular, and aortic hemodynamics. Filtering of the signal can help to isolate the various desired signals, but the filtering required to accurately isolate the desired signals are often not feasible in an implantable cardiac rhythm management device.
  • Various embodiments establish a current flow through a left side of the heart and measure a voltage between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow.
  • the inventive techniques and systems can be used for, among other things, measuring progression or regression of myocardial failure, dilation, or hypertrophy, pulmonary congestion, myocardial contractility, or ejection fraction.
  • the measured voltage, related to left heart impedance can be used to monitor patient condition for diagnostic purposes or to adapt pacing or def ⁇ brillation therapy. Therapy adaptation can include controlling pacing modes, pacing rates, or interchamber pacing delays, for example.
  • Various embodiments still further provide systems for measuring at least one physiological parameter of a patient's cardiac condition wherein the system includes a current source for establishing a current flow through a left side of the heart, measurement circuitry that measures a voltage between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow, and control circuitry that responds to the measured voltage for adjusting stimulation therapy.
  • Measurements of the physiological parameter(s) can take place utilizing many different electrode polarity configurations, e.g. bipolar, tripolar, and quadrapolar configurations.
  • FIG. 1 is a simplified diagram illustrating an implantable stimulation device in electrical communication with at least three leads implanted into a patient's heart for delivering multi-chamber stimulation and shock therapy;
  • FIG. 2 is a functional block diagram of a multi-chamber implantable stimulation device illustrating exemplary basic elements of a stimulation device which can provide cardioversion, defibrillation and/or pacing stimulation in up to four chambers of the heart:
  • FIG. 3 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 4 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 5 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 6 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 7 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 8 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 9 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 10 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 11 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 12 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 13 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 14 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 15 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 16 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 17 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 18 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 19 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 20 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 21 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 22 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
  • FIG. 1 illustrates a stimulation device 10 in electrical communication with a patient's heart 12 suitable for delivering multi-chamber stimulation and shock therapy.
  • the portions of the heart 10 illustrated include the right ventricle 14, the right atrium 15, the left ventricle 17, and the left atrium 18.
  • the leftside of the heart is meant to denote the portions of the heart encompassing the left ventricle 17 and the left atrium 18 and those portions of the coronary sinus, great cardiac vein, and its associated tributaries, which are adjacent the left atrium and left ventricle.
  • the device 10 includes a system for measuring a physiological parameter, and more particularly, the left ventricular impedance corresponding to contraction of the heart 12, in accordance with various embodiments described in further detail below.
  • the stimulation device 10 is coupled to an implantable right atrial lead 20 having at least an atrial tip electrode 22, and preferably a right atrial ring electrode 23, which typically is implanted in the patient's right atrial appendage.
  • the stimulation device 10 is coupled to a "coronary sinus" lead 24 designed for placement in the "coronary sinus region" via the coronary sinus os so as to place one or more distal electrodes adjacent to the left ventricle 17 and one or more proximal electrodes adjacent to the left atrium 18.
  • coronary sinus region refers to the vasculature of the left ventricle, including any portion of the coronary sinus, great cardiac vein, left marginal vein, left posterior ventricular vein, middle cardiac vein, and/or small cardiac vein or any other cardiac vein accessible by the coronary sinus.
  • the coronary sinus lead 24 is designed to receive atrial and ventricular cardiac signals and to deliver: left ventricular pacing therapy using, for example, a left ventricular tip electrode 25 and a left ventricular ring electrode 26; left atrial pacing therapy using, for example, a first and second left atrial ring electrode, 27 and 28; and shocking therapy using at least a left atrial coil electrode 29.
  • left ventricular pacing therapy using, for example, a left ventricular tip electrode 25 and a left ventricular ring electrode 26
  • left atrial pacing therapy using, for example, a first and second left atrial ring electrode, 27 and 28
  • shocking therapy using at least a left atrial coil electrode 29.
  • the stimulation device 10 is also shown in electrical communication with the patient's heart 12 by way of an implantable right ventricular lead 30 having a right ventricular tip electrode 32, a right ventricular ring electrode 34, a right ventricular (RV) coil electrode 36, and an SVC coil electrode 38.
  • the right ventricular lead 30 is transvenously inserted into the heart 12 so as to place the right ventricular tip electrode 32 in the right ventricular apex so that the RV coil electrode 36 will be positioned in the right ventricle and the SVC coil electrode 38 will be positioned in the superior vena cava.
  • the right ventricular lead 30 is capable of receiving cardiac signals, and delivering stimulation in the form of pacing and shock therapy to the right ventricle 14.
  • FIG. 2 illustrates a simplified block diagram of the multi-chamber implantable stimulation device 10, which is capable of treating both fast and slow arrhythmias with stimulation therapy, including cardioversion, defibrillation, and pacing stimulation. While a particular multi-chamber device is shown, this is for illustration purposes only, and one of skill in the art could readily duplicate, eliminate or disable the appropriate circuitry in any desired combination to provide a device capable of treating the appropriate chamber(s) with cardioversion, def ⁇ brillation and/or pacing stimulation.
  • various processing steps about to be described can be implemented in the form of software instructions that are resident on a computer-readable media that is located on the stimulation device. Accordingly, aspects of the invention described herein extend to all forms of computer-readable media, whether on the stimulation device or not, when such media contains instructions that, when executed by one or more processors, implement the methods described herein.
  • the stimulation device 10 includes a housing 40 which is often referred to as "can”, “case” or “case electrode”, and which may be programmably selected to act as the return electrode for all "unipolar" modes.
  • the housing 40 may further be used as a return electrode alone or in combination with one or more of the coil electrodes 29, 36, or 38, for shocking purposes.
  • the housing 40 further includes a connector (not shown) having a plurality of terminals, 42, 43, 44, 45, 46, 47, 48, 52, 54, 56, and 58 (shown schematically and, for convenience, the names of the electrodes to which they are connected are shown next to the terminals). While it is recognized that current devices are limited to the number of terminals due to International Standards, one of skill in the art could readily eliminate some of the terminals/electrodes to fit in the existing device configurations and permit programmability to select which terminals connect to which electrodes. However, in the near future, the standards may change to permit multi-polar in-line connectors, and multiple feedthroughs connectors could readily be manufactured to accommodate the configuration shown in FIG. 2.
  • the connector includes at least a right atrial tip terminal 42 and a right atrial ring terminal 43, adapted for connection to the atrial tip electrode and ring electrodes 22 and 23, respectively.
  • the connector includes at least a left ventricular tip terminal 44, a left ventricular ring electrode
  • a first left atrial ring terminal 46 a second left atrial ring terminal 47, and a left atrial shocking terminal 48, which are adapted for connection to the left ventricular tip electrode 25, left ventricular ring 26, the first left atrial tip electrode 27, the second left atrial ring electrode 28, and the left atrial coil electrode 29, respectively.
  • the connector further includes a right ventricular tip terminal 52, a right ventricular ring terminal
  • RV right ventricular
  • SVC shocking terminal
  • the microcontroller 60 typically includes a microprocessor, or equivalent control circuitry, designed specifically for controlling the delivery of stimulation therapy, and may further include RAM or ROM memory, logic and timing circuitry, state machine circuitry, and I/O circuitry.
  • the microcontroller 60 includes the ability to process or monitor input signals (data) as controlled by a program code stored in a designated block of memory. The details of the design and operation of the microcontroller 60 are not critical to the present invention. Rather, any suitable microcontroller 60 may be used that carries out the functions described herein.
  • an atrial pulse generator 70 and a ventricular pulse generator 72 generate pacing stimulation pulses for delivery by the right atrial lead 20, the right ventricular lead 30, and/or the coronary sinus lead 24 via a switch bank 74. It is understood that in order to provide stimulation therapy in each of the four chambers of the heart, the atrial pulse generator 70 and the ventricular pulse generator 72 may include dedicated, independent pulse generators, multiplexed pulse generators, or shared pulse generators. The atrial pulse generator 70 and the ventricular pulse generator 72 are controlled by the microcontroller 60 via appropriate control signals 76 and 78, respectively, to trigger or inhibit the stimulation pulses.
  • the microcontroller 60 further includes timing control circuitry 79 which is used to control the timing of such stimulation pulses (e.g., pacing rate, atrio- ventricular (AV) delay, atrial interconduction (A-A) delay, or ventricular interconduction (V-V) delay, etc.), as well as to keep track of the timing of refractory periods, PVARP intervals, noise detection windows, evoked response windows, alert intervals, marker channel timing (via marker channel logic 81), etc., which is well known in the art.
  • timing control circuitry 79 which is used to control the timing of such stimulation pulses (e.g., pacing rate, atrio- ventricular (AV) delay, atrial interconduction (A-A) delay, or ventricular interconduction (V-V) delay, etc.), as well as to keep track of the timing of refractory periods, PVARP intervals, noise detection windows, evoked response windows, alert intervals, marker channel timing (via marker channel logic 81), etc.
  • the switch bank 74 includes a plurality of switches for connecting the desired electrodes to the appropriate I/O circuits, thereby providing complete electrode programmability. Accordingly, the switch bank 74, in response to a control signal 80 from the microcontroller 60, determines the polarity of the stimulation pulses (e.g. unipolar, bipolar, combipolar, etc.) and various shocking vectors by selectively closing the appropriate combination of switches (not shown) as is known in the art.
  • polarity of the stimulation pulses e.g. unipolar, bipolar, combipolar, etc.
  • Atrial sensing circuits 82 and ventricular sensing circuits 84 may also be selectively coupled to the right atrial lead 20, coronary sinus lead 24, and the right ventricular lead 30, through the switch bank 74, for detecting the presence of cardiac activity in each of the four chambers of the heart. Accordingly, the atrial and ventricular sensing circuits 82 and 84 may include dedicated sense amplifiers, multiplexed amplifiers, or shared amplifiers.
  • the switch bank 74 determines the "sensing polarity" of the cardiac signal by selectively closing the appropriate switches. In this way, the clinician may program the sensing polarity independent of the stimulation polarity.
  • the atrial sensing circuit 82 or the ventricular sensing circuit 84 preferably employ one or more low power, precision amplifiers with programmable gain and/or automatic gain control, bandpass filtering, and a threshold detection circuit, to selectively sense the cardiac signal of interest.
  • the automatic gain control enables the stimulation device 10 to deal effectively with the difficult problem of sensing the low amplitude signal characteristics of atrial or ventricular fibrillation.
  • the outputs of the atrial and ventricular sensing circuits, 82 and 84 are connected to the microcontroller 60 for triggering or inhibiting the atrial and ventricular pulse generators, 70 and 72, respectively, in a demand fashion, in response to the absence or presence of cardiac activity, respectively, in the appropriate chambers of the heart.
  • the stimulation device 10 utilizes the atrial and ventricular sensing circuits, 82 and 84, to sense cardiac signals for determining whether a rhythm is physiologic or pathologic.
  • sensing is reserved for the noting of an electrical signal
  • detection is the processing of these sensed signals and noting the presence of an arrhythmia.
  • the timing intervals between sensed events e.g. P-waves, R-waves, and depolarization signals associated with fibrillation which are sometimes referred to as "F-waves" or "Fib- waves
  • F-waves depolarization signals associated with fibrillation which are sometimes referred to as "F-waves" or "Fib- waves
  • a predefined rate zone limit e.g.
  • bradycardia normal, low rate VT, high rate VT, and fibrillation rate zones
  • various other characteristics e.g. sudden onset, stability, physiologic sensors, and morphology, etc.
  • bradycardia pacing anti-tachycardia pacing
  • cardioversion shocks or defibrillation shocks collectively referred to as "tiered therapy”
  • Cardiac signals are also applied to the inputs of an analog-to-digital (A/D) data acquisition system 90.
  • A/D analog-to-digital
  • the data acquisition system 90 is configured to acquire intracardiac electrogram signals, convert the raw analog data into digital signals, and store the digital signals for later processing and/or telemetric transmission to an external device 102.
  • the data acquisition system 90 is coupled to the right atrial lead 20, the coronary sinus lead 24, and the right ventricular lead 30 through the switch bank 74 to sample cardiac signals across any pair of desired electrodes.
  • the microcontroller 60 is further coupled to a memory 94 by a suitable data/address bus 96, wherein the programmable operating parameters used by the microcontroller 60 are stored and modified, as required, in order to customize the operation of the stimulation device 10 to suit the needs of a particular patient.
  • Such operating parameters define, for example, pacing pulse amplitude, pulse duration, electrode polarity, rate, sensitivity, automatic features, arrhythmia detection criteria, and the amplitude, waveshape and vector of each shocking pulse to be delivered to the patient's heart 12 within each respective tier of therapy.
  • the operating parameters of the stimulation device 10 may be non-invasively programmed into the memory 94 through a telemetry circuit 100 in telemetric communication with the external device 102, such as a programmer, transtelephonic transceiver, or a diagnostic system analyzer.
  • the telemetry circuit 100 is activated by the microcontroller 60 by a control signal 106.
  • the telemetry circuit 100 advantageously allows intracardiac electrograms and status information relating to the operation of the stimulation device 10 (as contained in the microcontroller 60 or memory 94) to be sent to the external device 102 through the established communication link 104.
  • the stimulation device 10 further includes a physiologic sensor 108, commonly referred to as a "rate-responsive" sensor because it is typically used to adjust pacing stimulation rate according to the exercise state of the patient.
  • the physiological sensor 108 may further be used to detect changes in cardiac output, changes in the physiological condition of the heart, or diurnal changes in activity (e.g. detecting sleep and wake states).
  • a physiological parameter of the heart which may be measured to optimize such pacing and to indicate when such pacing may be inhibited or terminated is the stroke volume of the heart.
  • the microcontroller 60 responds by adjusting the various pacing parameters (such as rate, AV Delay, A-A Delay, V-V Delay, etc.) at which the atrial and ventricular pulse generators, 70 and 72, generate stimulation pulses.
  • various pacing parameters such as rate, AV Delay, A-A Delay, V-V Delay, etc.
  • the stimulation device 10 additionally includes a power source such as a battery 110 that provides operating power to all the circuits shown in FIG. 2.
  • a power source such as a battery 110 that provides operating power to all the circuits shown in FIG. 2.
  • the battery 110 must be capable of operating at low current drains for long periods of time, and also be capable of providing high-current pulses (for capacitor charging) when the patient requires a shock pulse.
  • the battery 110 must preferably have a predictable ⁇ discharge characteristic so that elective replacement time can be detected. Accordingly, the stimulation device 10 can employ lithium/silver vanadium oxide batteries.
  • the stimulation device 10 can be a primary function of the stimulation device 10 to operate as an implantable cardioverter/defibrillator (ICD) device. That is, it can detect the occurrence of an arrhythmia, and automatically apply an appropriate electrical shock therapy to the heart aimed at terminating the detected arrhythmia.
  • the microcontroller 60 further controls a shocking circuit 116 by way of a control signal 118.
  • the shocking circuit 116 generates shocking pulses of low (up to 0.5 joules), moderate (0.5 - 10 joules), or high (11 to 40 joules) energy, as controlled by the microcontroller 60.
  • Such shocking pulses are applied to the patient's heart through at least two shocking electrodes, and as shown in this embodiment, selected from the left atrial coil electrode 29, the RV coil electrode 36, and/or the SVC coil electrode 38 (FIG. 1).
  • the housing 40 may act as an active electrode in combination with the RV electrode 36, or as part of a split electrical vector using the SVC coil electrode 38 or the left atrial coil electrode 29 (i.e., using the RV electrode as the common electrode).
  • Cardioversion shocks are generally considered to be of low to moderate energy level (so as to minimize pain felt by the patient), and/or synchronized with an R-wave and/or pertaining to the treatment of tachycardia.
  • Defibrillation shocks are generally of moderate to high energy level (i.e., corresponding to thresholds in the range of 5-40 joules), delivered asynchronously (since R- waves may be too disorganized), and pertaining exclusively to the treatment of fibrillation.
  • the microcontroller 60 is capable of controlling the synchronous or asynchronous delivery of the shocking pulses.
  • the stimulation device 10 is shown as having an impedance measuring circuit 120 including an impedance measuring current source 112 and a voltage measuring circuit 90 (shown in FIG. 2 as an A/D converter), which is enabled by the microcontroller 60 by a control signal 114 for providing stroke volume measurements of the heart.
  • the current source 112 preferably provides an alternating or pulsed excitation current.
  • the voltage measuring circuitry 90 may also take the form of, for example, a differential amplifier.
  • an impedance measuring circuit 120 includes, but are not limited to, lead impedance surveillance during the acute and chronic phases for proper lead positioning or dislodgment; detecting operable electrodes and automatically switching to an operable pair if dislodgment occurs; measuring a respiration parameter (for example, tidal volume, respiration rate, minute ventilation or volume, abnormal or periodic breathing); measuring thoracic impedance for determining shock thresholds and shock timing (corresponding to the diastolic time); detecting when the device has been implanted; measuring a cardiac parameter (such as, stroke volume, wall thickness, left ventricular volume, etc.); and detecting the opening of the valves, etc.
  • a respiration parameter for example, tidal volume, respiration rate, minute ventilation or volume, abnormal or periodic breathing
  • thoracic impedance for determining shock thresholds and shock timing (corresponding to the diastolic time)
  • detecting when the device has been implanted measuring a cardiac parameter (such as, stroke volume, wall thickness, left
  • the impedance measuring circuit is used to monitor left heart disease and provides appropriate stimulation therapy, such as altering rate, AV , A- A , or V-V delays.
  • the impedance measuring circuit 120 is advantageously coupled to the switch bank 74 so that any desired electrode may be used. Impedance may also be useful in verifying hemodynamic collapse to confirm that ATP has failed and/or VF has begun.
  • the microcontroller 60 is coupled to the voltage measuring circuit 90 and the current source 112 for receiving a magnitude of the established current and a magnitude of the monitored voltage.
  • the microcontroller 60 operating under program instructions, divides the magnitude of the monitored or measured voltage by the magnitude of the established current to determine an impedance value. Once the impedance signals are determined, they may be delivered to the memory 94 for storage and later retrieved by the microcontroller 60 for therapy adjustment or telemetry transmission.
  • the telemetry circuitry receives the impedance values from the microcontroller 60 and transmits them to the external programmer. The impedance value may then be monitored by the patient's physician to enable the physician to track the patient's condition.
  • the impedance measuring circuit 120 is advantageously coupled to the switch bank 74 so that any desired electrode may be used.
  • the current source 112 may be programmably configured between a desired pair of electrodes, and the voltage measuring circuit 90 may be programmably configured between the same or preferably a different pair of electrodes.
  • various configurations of electrodes are provided that permit measurements of left ventricular function to be made for both monitoring and therapy delivery.
  • the different configurations can have a variety of polarities.
  • bipolar, tripolar and quadrapolar configurations can be used.
  • Bipolar configurations are configurations that utilize any two suitable electrodes; tripolar configurations are configurations that use any three suitable electrodes; and quadrapolar configurations are configurations that use any four suitable configurations.
  • the different configurations can be used to measure one or more physiological parameters for assessing or determining a patient's cardiac condition based on left heart impedance measurements.
  • certain specific electrode configurations are described to provide non- limiting examples of various bipolar, tripolar, and quadrapolar configurations that can be used to facilitate measurement of left ventricular function and the measurement of other parameters associated with heart function. Respiration
  • respiration or a respiration parameter, for example, tidal volume, respiration rate, minute ventilation or volume, abnormal or periodic breathing.
  • respiration or a respiration parameter, for example, tidal volume, respiration rate, minute ventilation or volume, abnormal or periodic breathing.
  • This requires ascertaining the condition of the lung tissue and may also be measured by the device 10 illustrated in FIG. 3. This may be preferably accomplished by sourcing the current between the housing 40 and right ventricular coil electrode 36 while measuring the voltage between the left ventricular tip electrode 25 and housing 40.
  • a pacing electrode or a pacing electrode pair
  • the local impedance is influenced by many factors. With the system illustrated in FIG. 4, a three-point impedance measurement is obtained which is less affected by the local impedance of the electrode or electrodes in the great vein. As a result, an accurate measure of the left ventricular impedance is obtained to provide corresponding accurate monitoring of stroke volume and the respiration parameter.
  • FIG. 5 shows another electrode configuration that can be used to measure impedance. In this configuration, a current path is established between left atrial ring electrode 28 and the housing 40. The voltage measuring circuit then measures the voltage between the left atrial ring electrode 27 and the housing 40.
  • FIG. 6 shows another electrode configuration that can be used to measure impedance. In this configuration, a current path is established between left atrial coil electrode 29 and the housing 40. The voltage measuring circuit then measures the voltage between the left atrial ring electrode 27 and the housing 40.
  • FIG. 7 shows a tripolar electrode configuration that can be used to measure impedance.
  • a current .path is established between right ventricular ring electrode 34 and the housing 40.
  • the voltage measuring circuit measures the voltage between the left atrial ring electrode 27 and the housing 40.
  • left atrial ring electrodes 27 and 28 can be utilized for the respiration parameter measurements.
  • the electrical current path is established between the first atrial ring electrode 27 and the housing 40 and the resulting voltage is measured between the second atrial ring electrode 28 and the housing 40.
  • an alternative embodiment could employ a single electrode in a cardiac vein with appropriate filtering to extract the respiration parameter component of the impedance signal.
  • the device 10 can be coupled to a different electrode configuration for measuring left ventricular wall dynamics.
  • the current source 112 is coupled between the left ventricular ring electrode 26 and the left ventricular tip electrode 25.
  • the voltage measuring circuit 90 is also coupled between left ventricular ring electrode 26 and left ventricular tip electrode 25. Since the left ventricular electrodes 25 and 26 are preferably positioned so as to be located on the left ventricular free wall, the voltage signal measured by the voltage measuring circuit 90 will predominantly represent myocardium impedance for measuring left ventricular wall dynamics, such as the wall thickness.
  • FIG. 10 shows an alternate bipolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics.
  • the current source 112 is coupled between the left atrial ring electrode 27 and the left ventricular tip electrode 25.
  • the voltage measuring circuit 90 is coupled between the left atrial ring electrode 27 and the left ventricular tip electrode 25.
  • FIG. 11 shows an alternate tripolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics.
  • the current source 112 is coupled between the left atrial ring electrode
  • FIG. 12 shows an alternate quadrapolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics.
  • the current source 112 is coupled between the left atrial ring electrode
  • the voltage measuring circuit 90 is coupled between the left atrial ring electrode 27 and the left ventricular ring electrode 26.
  • the current source 112 can be coupled between a right ventricular electrode 32 or 34 and the housing 40 with voltage measurement still performed between electrodes 26 and 25 as shown in FIG. 13.
  • an alternative embodiment could employ a single electrode within a cardiac vein on the left ventricular free wall and appropriate filtering to extract the cardiac component in the impedance signal.
  • FIG. 14 shows an alternate tripolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics.
  • the current source 112 is coupled between the right ventricular ring electrode 34 and the housing 40.
  • the voltage measuring circuit 90 is coupled between the left atrial ring electrodes 27, 28.
  • FIG. 15 shows an alternate electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics.
  • the current source 112 is coupled between the right ventricular ring electrode 34 and the housing 40.
  • the voltage measuring circuit 90 is coupled between the left atrial ring electrode 28 and the left ventricular ring electrode 26.
  • the current source 112 and voltage measuring circuit 90 may be employed in still further different configurations that facilitate left ventricular volume measurements.
  • the left ventricular volume measurements are made with electrode pairs which are selected to measure a cross-section of the left ventricle. This can be done by determining the trans-chamber impedance.
  • FIG. 16 shows a configuration that can be utilized to monitor stroke volume.
  • the current source 112 can be configured to provide an alternating current between the housing 40 and the right ventricular coil electrode 36. As this current is established, the voltage across the left ventricle is measured between the left ventricular tip electrode 25 and the right ventricular coil electrode 36. This gives an accurate measure of the left ventricular impedance and will provide an accurate contraction signature.
  • FIG. 17 shows another configuration that can be utilized to determine trans- chamber impedance.
  • the current source 112 is coupled between the right ventricular tip electrode 32 and the left ventricular ring electrode 26, while the voltage measuring circuit 90 is coupled between the right ventricular ring electrode 34 and the left ventricular tip electrode 25.
  • the current source 112 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26, and the voltage measuring circuit 90 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26.
  • the current source 112 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26.
  • the voltage measuring circuit 90 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26.
  • the voltage measuring circuitry 90 measures the voltage between the right ventricular electrode 32 or 34 which was not used in the establishing of the electrical current path and the left ventricular tip electrode 25. The voltage signal thus measured will be representative of the cross-section of the left ventricle and yield an accurate representation of the left ventricular volume.
  • the voltage measuring circuitry 90 measures the voltage between the right ventricular electrode 32 or 34 which was not used in the establishing of the electrical current path and the left ventricular tip electrode 25. The voltage signal thus measured will be representative of the cross-section of the left ventricle and yield an accurate representation of the left ventricular volume.
  • the current source 112 is coupled between the right ventricular ring electrode 34 and the first left atrial ring electrode 27, while the voltage measuring circuit 90 is coupled between the right ventricular tip electrode 32 and the second left atrial ring electrode 28.
  • the current source 112 can be coupled between the right ventricular ring electrode 34 and the housing 40, while the voltage measuring circuit 90 is coupled between the right ventricular tip electrode 32 and the second left atrial ring electrode 28.
  • a quadrapolar configuration shown in FIG. 22 is provided for measuring the left ventricular volume.
  • the current source 112 establishes an electrical current between the right ventricular ring electrode 34 and the first left atrial ring electrode 27. While this current is established, the voltage measuring circuit 90 measures the voltage between the right ventricular tip electrode 32 and the second left atrial ring electrode 28 . The resulting voltage signal measured by the voltage measuring circuit 90 will represent the impedance across the cross-section of the left ventricle to provide an accurate representation of the left ventricular volume.
  • the impedance measurements may be obtained by establishing an electrical current between the electrode of an electrode pair and measuring the voltage between the electrode pair during the current establishment. Mechanical activation of an associated chamber will cause a significant deflection in the resulting voltage signal or impedance. This provides a valuable tool for monitoring systolic and diastolic time intervals of the heart.
  • an impedance measurement from a chamber may be taken to indicate the mechanical activation of that chamber as for example the electrode pair, 32 and 34, in the right ventricle to indicate the timing of the right ventricular contraction and the bipolar pair, 25 and 26, to indicate the timing of the left ventricular contraction. From the different times of mechanical activation, systolic and diastolic time intervals may be ascertained by comparing these times to those based on electrogram measurements.
  • the present invention provides a system and method for measuring a physiological parameter of, or associated with, a patient's a heart.
  • a current flow is established through a left side of the heart and a voltage is measured between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow.
  • This preferably includes implanting a first electrode within the coronary sinus and/or a vein of the heart, implanting a second electrode within the body, establishing a current within the body, and measuring a voltage between the first and second electrodes while establishing the current flow.
  • impedance measurements may be obtained which provide valuable information for the patient's physician to diagnostically monitor and use which are indicative of physiological parameters of, or associated with, the heart for those patients which require cardiac rhythm management associated with the left side of the heart.

Abstract

Methods of and systems for measuring at least one physiological parameter for assessing a patient's cardiac condition based on left heart impedance measurements are described. Various embodiments establish a current flow through a left side of the heart and measure a voltage between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow. The inventive techniques and systems can be used for, among other things, measuring progression or regression of myocardial failure, dilation, or hypertrophy, pulmonary congestion, myocardial contractility, or ejection fraction. The measured voltage, related to left heart impedance, can be used to monitor patient condition for diagnostic purposes or to adapt pacing or defibrillation therapy. Therapy adaptation can include controlling pacing modes, pacing rates, or interchamber pacing delays, for example.

Description

CARDIAC STIMULATION DEVICES AND METHODS FOR MEASURING IMPEDANCES ASSOCIATED WITH THE LEFT SIDE OF THE HEART
TECHNICAL FIELD
The present invention generally relates to cardiac rhythm management devices, such as implantable cardioverter-defibrillators (ICDs) and pacemakers, or combinations thereof. The present invention more particularly relates to such devices which utilize one or more electrodes implanted on the left-side of the heart for providing desired stimulation therapy and for measuring physiological parameters based on measured electrical impedances.
BACKGROUND OF THE INVENTION
Cardiac rhythm management devices, including implantable devices, are well known in the art. Such devices may include, for example, implantable cardiac pacemakers, cardioverters or defibrillators. The devices are generally implanted in an upper portion of the chest, in either the left or right side depending on the type of the device, beneath the skin of a patient within what is known as a subcutaneous pocket. The implantable devices generally function in association with one or more electrode-carrying leads which are implanted within the heart. The electrodes are typically positioned within the right side of the heart, either the right ventricle or right atrium, or both, for making electrical contact with their designated heart chamber. Conductors within the leads couple the electrodes to the device to enable the device to deliver the desired stimulation therapy. Traditionally, therapy delivery has been limited to the right side of the heart.
The reason for this is that implanted electrodes can cause blood clot formation in some patients. If a blood clot were released from the left-side of the heart, as from the left ventricle, it could pass directly to the brain resulting in a paralyzing or fatal stroke. However, a blood clot released from the right side of the heart, as from the right ventricle, would pass into the lungs where the filtering action of the lungs would prevent a fatal or debilitating embolism in the brain. Recently, new lead structures and methods have been proposed and even practiced for delivering cardiac rhythm management therapy from or to the left-side of the heart. These lead structures and methods avoid electrode placement within the left atrium and left ventricle of the heart by lead implantation within the coronary sinus and/or the great vein of the heart which communicates with the coronary sinus and extends down towards the apex of the heart. As is well known, the coronary sinus passes closely adjacent the left atrium and extends into the great vein adjacent the left ventricular free wall. The great vein then continues adjacent the left ventricle towards the apex of the heart.
It has been observed that electrodes placed in the coronary sinus and great vein may be used for left atrial pacing, left ventricular pacing, and even cardioversion and defibrillation. This work is being done to address the needs of a patient population with left ventricular dysfunction and congestive heart failure. This patient class has been targeted to receive pacing leads intended for left ventricular pacing, either alone or in conjunction with right ventricular pacing. When delivering such therapy to these patients, it would be desirable to provide device-based measurements of left ventricular function for both monitoring and therapy delivery.
It is known in the art that device-based impedance measurements offer one method for assessing patient condition. It is also well known, however, that bio- impedance measurements can be confounded by signals not directly related to the desired physiology to be measured. For example, a measurement of impedance from a unipolar tip electrode in the right ventricular apex will contain signal components related to respiration, and right ventricular, left ventricular, and aortic hemodynamics. Filtering of the signal can help to isolate the various desired signals, but the filtering required to accurately isolate the desired signals are often not feasible in an implantable cardiac rhythm management device.
It is also known that localization of the desired signals is improved by making proper choice of electrode configurations between which impedance measurements are made. For example, a transchamber impedance technique is known wherein impedance measurements are made between electrodes in the right atrium and right ventricle to assist in isolating the right ventricular hemodynamics.
The advent of cardiac leads for delivering therapy to the left-side of the heart which are often placed in the coronary sinus and great cardiac vein require new techniques for measurement of functional parameters of, or associated with, a heart. As will be seen hereinafter, the present invention addresses those needs.
SUMMARY OF THE INVENTION
Methods of and systems for measuring impedance, and for measuring at least one physiological parameter for assessing a patient's cardiac condition based on left heart impedance measurements are described. Various embodiments establish a current flow through a left side of the heart and measure a voltage between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow. The inventive techniques and systems can be used for, among other things, measuring progression or regression of myocardial failure, dilation, or hypertrophy, pulmonary congestion, myocardial contractility, or ejection fraction. The measured voltage, related to left heart impedance, can be used to monitor patient condition for diagnostic purposes or to adapt pacing or defϊbrillation therapy. Therapy adaptation can include controlling pacing modes, pacing rates, or interchamber pacing delays, for example.
Various embodiments still further provide systems for measuring at least one physiological parameter of a patient's cardiac condition wherein the system includes a current source for establishing a current flow through a left side of the heart, measurement circuitry that measures a voltage between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow, and control circuitry that responds to the measured voltage for adjusting stimulation therapy. Measurements of the physiological parameter(s) can take place utilizing many different electrode polarity configurations, e.g. bipolar, tripolar, and quadrapolar configurations.
BRIEF DESCRIPTION OF THE DRAWINGS
The following description is of the best mode presently contemplated for practicing the invention. This description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention.
The scope of the invention should be ascertained with reference to the issued claims.
FIG. 1 is a simplified diagram illustrating an implantable stimulation device in electrical communication with at least three leads implanted into a patient's heart for delivering multi-chamber stimulation and shock therapy;
FIG. 2 is a functional block diagram of a multi-chamber implantable stimulation device illustrating exemplary basic elements of a stimulation device which can provide cardioversion, defibrillation and/or pacing stimulation in up to four chambers of the heart: FIG. 3 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 4 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 5 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment. FIG. 6 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 7 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 8 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 9 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 10 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment. FIG. 11 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 12 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 13 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment. FIG. 14 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 15 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 16 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 17 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 18 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment. FIG. 19 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 20 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
FIG. 21 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment. FIG. 22 is a reproduction of the patient's heart shown in FIG. 1 illustrating a an electrode configuration that is suitable for use in ascertaining an impedance measure in accordance with one embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The following description is of the best mode presently contemplated for practicing the invention. This description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the issued claims. In the description of the invention that follows, like numerals or reference designators will be used to refer to like parts or elements throughout.
Exemplary Stimulation Device
The following description sets forth but one exemplary stimulation device that is capable of being used in connection with the various embodiments that are described below. It is to be appreciated and understood that other stimulation devices, including those that are not necessarily implantable, can be used and that the description below is given, in its specific context, to assist the reader in understanding, with more clarity, the inventive embodiments described herein.
FIG. 1 illustrates a stimulation device 10 in electrical communication with a patient's heart 12 suitable for delivering multi-chamber stimulation and shock therapy. The portions of the heart 10 illustrated include the right ventricle 14, the right atrium 15, the left ventricle 17, and the left atrium 18. As used herein, the leftside of the heart is meant to denote the portions of the heart encompassing the left ventricle 17 and the left atrium 18 and those portions of the coronary sinus, great cardiac vein, and its associated tributaries, which are adjacent the left atrium and left ventricle. As will be seen hereinafter, the device 10 includes a system for measuring a physiological parameter, and more particularly, the left ventricular impedance corresponding to contraction of the heart 12, in accordance with various embodiments described in further detail below.
To sense atrial cardiac signals and to provide right atrial chamber stimulation therapy, the stimulation device 10 is coupled to an implantable right atrial lead 20 having at least an atrial tip electrode 22, and preferably a right atrial ring electrode 23, which typically is implanted in the patient's right atrial appendage.
To sense left atrial and ventricular cardiac signals and to provide left- chamber pacing therapy, the stimulation device 10 is coupled to a "coronary sinus" lead 24 designed for placement in the "coronary sinus region" via the coronary sinus os so as to place one or more distal electrodes adjacent to the left ventricle 17 and one or more proximal electrodes adjacent to the left atrium 18. As used herein, the phrase "coronary sinus region" refers to the vasculature of the left ventricle, including any portion of the coronary sinus, great cardiac vein, left marginal vein, left posterior ventricular vein, middle cardiac vein, and/or small cardiac vein or any other cardiac vein accessible by the coronary sinus. Accordingly, the coronary sinus lead 24 is designed to receive atrial and ventricular cardiac signals and to deliver: left ventricular pacing therapy using, for example, a left ventricular tip electrode 25 and a left ventricular ring electrode 26; left atrial pacing therapy using, for example, a first and second left atrial ring electrode, 27 and 28; and shocking therapy using at least a left atrial coil electrode 29. For a complete description of a coronary sinus lead, refer to U.S. Patent Application No. 09/457,277, titled "A Self- Anchoring, Steerable Coronary Sinus Lead" (Pianca et al.); and U.S. Patent No. 5,466,254, titled "Coronary Sinus Lead with Atrial Sensing Capability" (Helland), which patents are hereby incorporated herein by reference.
The stimulation device 10 is also shown in electrical communication with the patient's heart 12 by way of an implantable right ventricular lead 30 having a right ventricular tip electrode 32, a right ventricular ring electrode 34, a right ventricular (RV) coil electrode 36, and an SVC coil electrode 38. Typically, the right ventricular lead 30 is transvenously inserted into the heart 12 so as to place the right ventricular tip electrode 32 in the right ventricular apex so that the RV coil electrode 36 will be positioned in the right ventricle and the SVC coil electrode 38 will be positioned in the superior vena cava. Accordingly, the right ventricular lead 30 is capable of receiving cardiac signals, and delivering stimulation in the form of pacing and shock therapy to the right ventricle 14.
FIG. 2 illustrates a simplified block diagram of the multi-chamber implantable stimulation device 10, which is capable of treating both fast and slow arrhythmias with stimulation therapy, including cardioversion, defibrillation, and pacing stimulation. While a particular multi-chamber device is shown, this is for illustration purposes only, and one of skill in the art could readily duplicate, eliminate or disable the appropriate circuitry in any desired combination to provide a device capable of treating the appropriate chamber(s) with cardioversion, defϊbrillation and/or pacing stimulation. In addition, it will be appreciated and understood that various processing steps about to be described can be implemented in the form of software instructions that are resident on a computer-readable media that is located on the stimulation device. Accordingly, aspects of the invention described herein extend to all forms of computer-readable media, whether on the stimulation device or not, when such media contains instructions that, when executed by one or more processors, implement the methods described herein.
The stimulation device 10 includes a housing 40 which is often referred to as "can", "case" or "case electrode", and which may be programmably selected to act as the return electrode for all "unipolar" modes. The housing 40 may further be used as a return electrode alone or in combination with one or more of the coil electrodes 29, 36, or 38, for shocking purposes.
The housing 40 further includes a connector (not shown) having a plurality of terminals, 42, 43, 44, 45, 46, 47, 48, 52, 54, 56, and 58 (shown schematically and, for convenience, the names of the electrodes to which they are connected are shown next to the terminals). While it is recognized that current devices are limited to the number of terminals due to International Standards, one of skill in the art could readily eliminate some of the terminals/electrodes to fit in the existing device configurations and permit programmability to select which terminals connect to which electrodes. However, in the near future, the standards may change to permit multi-polar in-line connectors, and multiple feedthroughs connectors could readily be manufactured to accommodate the configuration shown in FIG. 2.
As such, to achieve right atrial sensing and pacing, the connector includes at least a right atrial tip terminal 42 and a right atrial ring terminal 43, adapted for connection to the atrial tip electrode and ring electrodes 22 and 23, respectively. To achieve left chamber sensing, pacing and/or shocking, the connector includes at least a left ventricular tip terminal 44, a left ventricular ring electrode
45, a first left atrial ring terminal 46, a second left atrial ring terminal 47, and a left atrial shocking terminal 48, which are adapted for connection to the left ventricular tip electrode 25, left ventricular ring 26, the first left atrial tip electrode 27, the second left atrial ring electrode 28, and the left atrial coil electrode 29, respectively.
To support right chamber sensing, pacing and/or shocking, the connector further includes a right ventricular tip terminal 52, a right ventricular ring terminal
54, a right ventricular (RV) shocking terminal 56, and an SVC shocking terminal 58, which are adapted for connection to the right ventricular tip electrode 32, right ventricular ring electrode 34, the RV coil electrode 36, and the SVC coil electrode 38, respectively.
At the core of the stimulation device 10 is a programmable microcontroller or microprocessor 60 that controls the various modes of stimulation therapy. As is well known in the art, the microcontroller 60 typically includes a microprocessor, or equivalent control circuitry, designed specifically for controlling the delivery of stimulation therapy, and may further include RAM or ROM memory, logic and timing circuitry, state machine circuitry, and I/O circuitry. Typically, the microcontroller 60 includes the ability to process or monitor input signals (data) as controlled by a program code stored in a designated block of memory. The details of the design and operation of the microcontroller 60 are not critical to the present invention. Rather, any suitable microcontroller 60 may be used that carries out the functions described herein. The use of microprocessor-based control circuits for performing timing and data analysis functions are well known in the art. As shown in FIG. 2, an atrial pulse generator 70 and a ventricular pulse generator 72 generate pacing stimulation pulses for delivery by the right atrial lead 20, the right ventricular lead 30, and/or the coronary sinus lead 24 via a switch bank 74. It is understood that in order to provide stimulation therapy in each of the four chambers of the heart, the atrial pulse generator 70 and the ventricular pulse generator 72 may include dedicated, independent pulse generators, multiplexed pulse generators, or shared pulse generators. The atrial pulse generator 70 and the ventricular pulse generator 72 are controlled by the microcontroller 60 via appropriate control signals 76 and 78, respectively, to trigger or inhibit the stimulation pulses.
The microcontroller 60 further includes timing control circuitry 79 which is used to control the timing of such stimulation pulses (e.g., pacing rate, atrio- ventricular (AV) delay, atrial interconduction (A-A) delay, or ventricular interconduction (V-V) delay, etc.), as well as to keep track of the timing of refractory periods, PVARP intervals, noise detection windows, evoked response windows, alert intervals, marker channel timing (via marker channel logic 81), etc., which is well known in the art.
The switch bank 74 includes a plurality of switches for connecting the desired electrodes to the appropriate I/O circuits, thereby providing complete electrode programmability. Accordingly, the switch bank 74, in response to a control signal 80 from the microcontroller 60, determines the polarity of the stimulation pulses (e.g. unipolar, bipolar, combipolar, etc.) and various shocking vectors by selectively closing the appropriate combination of switches (not shown) as is known in the art.
Atrial sensing circuits 82 and ventricular sensing circuits 84 may also be selectively coupled to the right atrial lead 20, coronary sinus lead 24, and the right ventricular lead 30, through the switch bank 74, for detecting the presence of cardiac activity in each of the four chambers of the heart. Accordingly, the atrial and ventricular sensing circuits 82 and 84 may include dedicated sense amplifiers, multiplexed amplifiers, or shared amplifiers. The switch bank 74 determines the "sensing polarity" of the cardiac signal by selectively closing the appropriate switches. In this way, the clinician may program the sensing polarity independent of the stimulation polarity.
The atrial sensing circuit 82 or the ventricular sensing circuit 84 preferably employ one or more low power, precision amplifiers with programmable gain and/or automatic gain control, bandpass filtering, and a threshold detection circuit, to selectively sense the cardiac signal of interest. The automatic gain control enables the stimulation device 10 to deal effectively with the difficult problem of sensing the low amplitude signal characteristics of atrial or ventricular fibrillation. The outputs of the atrial and ventricular sensing circuits, 82 and 84, are connected to the microcontroller 60 for triggering or inhibiting the atrial and ventricular pulse generators, 70 and 72, respectively, in a demand fashion, in response to the absence or presence of cardiac activity, respectively, in the appropriate chambers of the heart.
For arrhythmia detection, the stimulation device 10 utilizes the atrial and ventricular sensing circuits, 82 and 84, to sense cardiac signals for determining whether a rhythm is physiologic or pathologic. As used herein "sensing" is reserved for the noting of an electrical signal, and "detection" is the processing of these sensed signals and noting the presence of an arrhythmia. The timing intervals between sensed events (e.g. P-waves, R-waves, and depolarization signals associated with fibrillation which are sometimes referred to as "F-waves" or "Fib- waves") are then classified by the microcontroller 60 by comparing them to a predefined rate zone limit (e.g. bradycardia, normal, low rate VT, high rate VT, and fibrillation rate zones) and various other characteristics (e.g. sudden onset, stability, physiologic sensors, and morphology, etc.) in order to determine the type of remedial therapy that is needed (e.g. bradycardia pacing, anti-tachycardia pacing, cardioversion shocks or defibrillation shocks, collectively referred to as "tiered therapy"). Cardiac signals are also applied to the inputs of an analog-to-digital (A/D) data acquisition system 90. The data acquisition system 90 is configured to acquire intracardiac electrogram signals, convert the raw analog data into digital signals, and store the digital signals for later processing and/or telemetric transmission to an external device 102. The data acquisition system 90 is coupled to the right atrial lead 20, the coronary sinus lead 24, and the right ventricular lead 30 through the switch bank 74 to sample cardiac signals across any pair of desired electrodes.
The microcontroller 60 is further coupled to a memory 94 by a suitable data/address bus 96, wherein the programmable operating parameters used by the microcontroller 60 are stored and modified, as required, in order to customize the operation of the stimulation device 10 to suit the needs of a particular patient. Such operating parameters define, for example, pacing pulse amplitude, pulse duration, electrode polarity, rate, sensitivity, automatic features, arrhythmia detection criteria, and the amplitude, waveshape and vector of each shocking pulse to be delivered to the patient's heart 12 within each respective tier of therapy. Advantageously, the operating parameters of the stimulation device 10 may be non-invasively programmed into the memory 94 through a telemetry circuit 100 in telemetric communication with the external device 102, such as a programmer, transtelephonic transceiver, or a diagnostic system analyzer. The telemetry circuit 100 is activated by the microcontroller 60 by a control signal 106. The telemetry circuit 100 advantageously allows intracardiac electrograms and status information relating to the operation of the stimulation device 10 (as contained in the microcontroller 60 or memory 94) to be sent to the external device 102 through the established communication link 104.
In a preferred embodiment, the stimulation device 10 further includes a physiologic sensor 108, commonly referred to as a "rate-responsive" sensor because it is typically used to adjust pacing stimulation rate according to the exercise state of the patient. However, the physiological sensor 108 may further be used to detect changes in cardiac output, changes in the physiological condition of the heart, or diurnal changes in activity (e.g. detecting sleep and wake states). A physiological parameter of the heart, which may be measured to optimize such pacing and to indicate when such pacing may be inhibited or terminated is the stroke volume of the heart. Accordingly, the microcontroller 60 responds by adjusting the various pacing parameters (such as rate, AV Delay, A-A Delay, V-V Delay, etc.) at which the atrial and ventricular pulse generators, 70 and 72, generate stimulation pulses.
The stimulation device 10 additionally includes a power source such as a battery 110 that provides operating power to all the circuits shown in FIG. 2. For the stimulation device 10, which employs shocking therapy, the battery 110 must be capable of operating at low current drains for long periods of time, and also be capable of providing high-current pulses (for capacitor charging) when the patient requires a shock pulse. The battery 110 must preferably have a predictable ^ discharge characteristic so that elective replacement time can be detected. Accordingly, the stimulation device 10 can employ lithium/silver vanadium oxide batteries.
It can be a primary function of the stimulation device 10 to operate as an implantable cardioverter/defibrillator (ICD) device. That is, it can detect the occurrence of an arrhythmia, and automatically apply an appropriate electrical shock therapy to the heart aimed at terminating the detected arrhythmia. To this end, the microcontroller 60 further controls a shocking circuit 116 by way of a control signal 118. The shocking circuit 116 generates shocking pulses of low (up to 0.5 joules), moderate (0.5 - 10 joules), or high (11 to 40 joules) energy, as controlled by the microcontroller 60. Such shocking pulses are applied to the patient's heart through at least two shocking electrodes, and as shown in this embodiment, selected from the left atrial coil electrode 29, the RV coil electrode 36, and/or the SVC coil electrode 38 (FIG. 1). As noted above, the housing 40 may act as an active electrode in combination with the RV electrode 36, or as part of a split electrical vector using the SVC coil electrode 38 or the left atrial coil electrode 29 (i.e., using the RV electrode as the common electrode).
Cardioversion shocks are generally considered to be of low to moderate energy level (so as to minimize pain felt by the patient), and/or synchronized with an R-wave and/or pertaining to the treatment of tachycardia. Defibrillation shocks are generally of moderate to high energy level (i.e., corresponding to thresholds in the range of 5-40 joules), delivered asynchronously (since R- waves may be too disorganized), and pertaining exclusively to the treatment of fibrillation. Accordingly, the microcontroller 60 is capable of controlling the synchronous or asynchronous delivery of the shocking pulses.
As further shown in Fig. 2, the stimulation device 10 is shown as having an impedance measuring circuit 120 including an impedance measuring current source 112 and a voltage measuring circuit 90 (shown in FIG. 2 as an A/D converter), which is enabled by the microcontroller 60 by a control signal 114 for providing stroke volume measurements of the heart. The current source 112 preferably provides an alternating or pulsed excitation current. The voltage measuring circuitry 90 may also take the form of, for example, a differential amplifier. The uses for an impedance measuring circuit 120 include, but are not limited to, lead impedance surveillance during the acute and chronic phases for proper lead positioning or dislodgment; detecting operable electrodes and automatically switching to an operable pair if dislodgment occurs; measuring a respiration parameter (for example, tidal volume, respiration rate, minute ventilation or volume, abnormal or periodic breathing); measuring thoracic impedance for determining shock thresholds and shock timing (corresponding to the diastolic time); detecting when the device has been implanted; measuring a cardiac parameter (such as, stroke volume, wall thickness, left ventricular volume, etc.); and detecting the opening of the valves, etc. In the present embodiment, the impedance measuring circuit is used to monitor left heart disease and provides appropriate stimulation therapy, such as altering rate, AV , A- A , or V-V delays. The impedance measuring circuit 120 is advantageously coupled to the switch bank 74 so that any desired electrode may be used. Impedance may also be useful in verifying hemodynamic collapse to confirm that ATP has failed and/or VF has begun.
The microcontroller 60 is coupled to the voltage measuring circuit 90 and the current source 112 for receiving a magnitude of the established current and a magnitude of the monitored voltage. The microcontroller 60, operating under program instructions, divides the magnitude of the monitored or measured voltage by the magnitude of the established current to determine an impedance value. Once the impedance signals are determined, they may be delivered to the memory 94 for storage and later retrieved by the microcontroller 60 for therapy adjustment or telemetry transmission. The telemetry circuitry receives the impedance values from the microcontroller 60 and transmits them to the external programmer. The impedance value may then be monitored by the patient's physician to enable the physician to track the patient's condition.
The impedance measuring circuit 120 is advantageously coupled to the switch bank 74 so that any desired electrode may be used. The current source 112 may be programmably configured between a desired pair of electrodes, and the voltage measuring circuit 90 may be programmably configured between the same or preferably a different pair of electrodes.
Exemplary Inventive Embodiments Overview In the embodiments below, various configurations of electrodes are provided that permit measurements of left ventricular function to be made for both monitoring and therapy delivery. The different configurations can have a variety of polarities. For example, bipolar, tripolar and quadrapolar configurations can be used. Bipolar configurations are configurations that utilize any two suitable electrodes; tripolar configurations are configurations that use any three suitable electrodes; and quadrapolar configurations are configurations that use any four suitable configurations. The different configurations can be used to measure one or more physiological parameters for assessing or determining a patient's cardiac condition based on left heart impedance measurements. In the discussion that follows, certain specific electrode configurations are described to provide non- limiting examples of various bipolar, tripolar, and quadrapolar configurations that can be used to facilitate measurement of left ventricular function and the measurement of other parameters associated with heart function. Respiration
In conjunction with ventricular pacing of the heart, one parameter associated with the heart which is prominent in ascertaining the effectiveness of the cardiac pacing is respiration (or a respiration parameter, for example, tidal volume, respiration rate, minute ventilation or volume, abnormal or periodic breathing). This requires ascertaining the condition of the lung tissue and may also be measured by the device 10 illustrated in FIG. 3. This may be preferably accomplished by sourcing the current between the housing 40 and right ventricular coil electrode 36 while measuring the voltage between the left ventricular tip electrode 25 and housing 40.
One limitation in the use of a pacing electrode, or a pacing electrode pair, in the cardiac vein is that the local impedance is influenced by many factors. With the system illustrated in FIG. 4, a three-point impedance measurement is obtained which is less affected by the local impedance of the electrode or electrodes in the great vein. As a result, an accurate measure of the left ventricular impedance is obtained to provide corresponding accurate monitoring of stroke volume and the respiration parameter.
In measuring the respiration parameter, a current path is established between the left ventricular tip electrode 25 and the housing 40. Once established, the voltage measuring circuit measures the voltage between the left ventricular ring electrode 26 and the housing 40. This effectively provides an impedance measurement corresponding to the respiration parameter. The resulting measured voltage signal will have both cardiac and respiratory components. However, the cardiac component will be smaller than that from intracardiac electrodes and can be readily filtered in a manner known in the art. FIG. 5 shows another electrode configuration that can be used to measure impedance. In this configuration, a current path is established between left atrial ring electrode 28 and the housing 40. The voltage measuring circuit then measures the voltage between the left atrial ring electrode 27 and the housing 40. FIG. 6 shows another electrode configuration that can be used to measure impedance. In this configuration, a current path is established between left atrial coil electrode 29 and the housing 40. The voltage measuring circuit then measures the voltage between the left atrial ring electrode 27 and the housing 40.
FIG. 7 shows a tripolar electrode configuration that can be used to measure impedance. In this configuration, a current .path is established between right ventricular ring electrode 34 and the housing 40. The voltage measuring circuit then measures the voltage between the left atrial ring electrode 27 and the housing 40.
Alternatively, as will be appreciated by those skilled in the art, left atrial ring electrodes 27 and 28 can be utilized for the respiration parameter measurements. In this case, shown in FIG. 8, the electrical current path is established between the first atrial ring electrode 27 and the housing 40 and the resulting voltage is measured between the second atrial ring electrode 28 and the housing 40. As will also be appreciated by those skilled in the art, an alternative embodiment could employ a single electrode in a cardiac vein with appropriate filtering to extract the respiration parameter component of the impedance signal.
Left Ventricular Wall Dynamics
In an alternate embodiment, shown in FIG. 9, the device 10 can be coupled to a different electrode configuration for measuring left ventricular wall dynamics.
Here it will be seen that the current source 112 is coupled between the left ventricular ring electrode 26 and the left ventricular tip electrode 25. The voltage measuring circuit 90 is also coupled between left ventricular ring electrode 26 and left ventricular tip electrode 25. Since the left ventricular electrodes 25 and 26 are preferably positioned so as to be located on the left ventricular free wall, the voltage signal measured by the voltage measuring circuit 90 will predominantly represent myocardium impedance for measuring left ventricular wall dynamics, such as the wall thickness.
FIG. 10 shows an alternate bipolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics. In this embodiment, the current source 112 is coupled between the left atrial ring electrode 27 and the left ventricular tip electrode 25. The voltage measuring circuit 90 is coupled between the left atrial ring electrode 27 and the left ventricular tip electrode 25.
FIG. 11 shows an alternate tripolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics. In this embodiment, the current source 112 is coupled between the left atrial ring electrode
27 and the left ventricular tip electrode 25. The voltage measuring circuit 90 is coupled between the left atrial ring electrode 28 and the left ventricular tip electrode 25. FIG. 12 shows an alternate quadrapolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics. In this embodiment, the current source 112 is coupled between the left atrial ring electrode
28 and the left ventricular tip electrode 25. The voltage measuring circuit 90 is coupled between the left atrial ring electrode 27 and the left ventricular ring electrode 26. Alternatively, the current source 112 can be coupled between a right ventricular electrode 32 or 34 and the housing 40 with voltage measurement still performed between electrodes 26 and 25 as shown in FIG. 13. As will be appreciated by those skilled in the art, an alternative embodiment could employ a single electrode within a cardiac vein on the left ventricular free wall and appropriate filtering to extract the cardiac component in the impedance signal.
FIG. 14 shows an alternate tripolar electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics. In this embodiment, the current source 112 is coupled between the right ventricular ring electrode 34 and the housing 40. The voltage measuring circuit 90 is coupled between the left atrial ring electrodes 27, 28.
FIG. 15 shows an alternate electrode configuration that can be utilized to measure impedance for measuring left ventricular wall dynamics. In this embodiment, the current source 112 is coupled between the right ventricular ring electrode 34 and the housing 40. The voltage measuring circuit 90 is coupled between the left atrial ring electrode 28 and the left ventricular ring electrode 26.
Left Ventricular Volume Measurements
The current source 112 and voltage measuring circuit 90 may be employed in still further different configurations that facilitate left ventricular volume measurements. Here it will be seen that the left ventricular volume measurements are made with electrode pairs which are selected to measure a cross-section of the left ventricle. This can be done by determining the trans-chamber impedance.
For example, FIG. 16 shows a configuration that can be utilized to monitor stroke volume. In this configuration, the current source 112 can be configured to provide an alternating current between the housing 40 and the right ventricular coil electrode 36. As this current is established, the voltage across the left ventricle is measured between the left ventricular tip electrode 25 and the right ventricular coil electrode 36. This gives an accurate measure of the left ventricular impedance and will provide an accurate contraction signature. FIG. 17 shows another configuration that can be utilized to determine trans- chamber impedance. Here, the current source 112 is coupled between the right ventricular tip electrode 32 and the left ventricular ring electrode 26, while the voltage measuring circuit 90 is coupled between the right ventricular ring electrode 34 and the left ventricular tip electrode 25. FIG. 18 shows a bipolar configuration that can be utilized to determine trans- chamber impedance. Here, the current source 112 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26, and the voltage measuring circuit 90 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26. In accordance with the embodiment shown in FIG. 18, the current source
112 is coupled between the right ventricular ring electrode 34 and the left ventricular ring electrode 26, while the voltage measuring circuit 90 is coupled between the right ventricular ring electrode 34 and the left ventricular tip electrode 25. Preferably, the voltage measuring circuitry 90 measures the voltage between the right ventricular electrode 32 or 34 which was not used in the establishing of the electrical current path and the left ventricular tip electrode 25. The voltage signal thus measured will be representative of the cross-section of the left ventricle and yield an accurate representation of the left ventricular volume. In yet another alternative embodiment for measuring left ventricular volume
(a quadrapolar configuration), shown in FIG. 20, it will be noted that the current source 112 is coupled between the right ventricular ring electrode 34 and the first left atrial ring electrode 27, while the voltage measuring circuit 90 is coupled between the right ventricular tip electrode 32 and the second left atrial ring electrode 28. Alternatively, shown in FIG. 21, the current source 112 can be coupled between the right ventricular ring electrode 34 and the housing 40, while the voltage measuring circuit 90 is coupled between the right ventricular tip electrode 32 and the second left atrial ring electrode 28.
In yet another embodiment, a quadrapolar configuration shown in FIG. 22, is provided for measuring the left ventricular volume. Here, the current source 112 establishes an electrical current between the right ventricular ring electrode 34 and the first left atrial ring electrode 27. While this current is established, the voltage measuring circuit 90 measures the voltage between the right ventricular tip electrode 32 and the second left atrial ring electrode 28 . The resulting voltage signal measured by the voltage measuring circuit 90 will represent the impedance across the cross-section of the left ventricle to provide an accurate representation of the left ventricular volume.
The impedance measurements may be obtained by establishing an electrical current between the electrode of an electrode pair and measuring the voltage between the electrode pair during the current establishment. Mechanical activation of an associated chamber will cause a significant deflection in the resulting voltage signal or impedance. This provides a valuable tool for monitoring systolic and diastolic time intervals of the heart. For example, an impedance measurement from a chamber may be taken to indicate the mechanical activation of that chamber as for example the electrode pair, 32 and 34, in the right ventricle to indicate the timing of the right ventricular contraction and the bipolar pair, 25 and 26, to indicate the timing of the left ventricular contraction. From the different times of mechanical activation, systolic and diastolic time intervals may be ascertained by comparing these times to those based on electrogram measurements.
As can be seen from the foregoing, the present invention provides a system and method for measuring a physiological parameter of, or associated with, a patient's a heart. In each of the foregoing embodiments, a current flow is established through a left side of the heart and a voltage is measured between a first location on or in the left side of the heart and a second location within the human body while establishing the current flow. This preferably includes implanting a first electrode within the coronary sinus and/or a vein of the heart, implanting a second electrode within the body, establishing a current within the body, and measuring a voltage between the first and second electrodes while establishing the current flow. As a result, impedance measurements may be obtained which provide valuable information for the patient's physician to diagnostically monitor and use which are indicative of physiological parameters of, or associated with, the heart for those patients which require cardiac rhythm management associated with the left side of the heart.
Although the invention has been described in language specific to structural features and/or methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are disclosed as preferred forms of implementing the claimed invention.

Claims

1. A cardiac stimulation device comprising: a first pair of electrodes configured for placement internally in a patient and in operable association with the patient's heart; a current source operably associated with the first pair of electrodes and configured to produce a current therebetween; a second pair of electrodes configured for placement internally in a patient and in operable association with the patient's heart, at least one of the electrodes of the second pair of electrodes being configured for placement in association with the left side of the patient's heart; a voltage measuring circuit operably associated with the second pair of electrodes and configured to measure a voltage therebetween responsive to the current produced by the current source; an impedance measuring circuit configured for measuring impedance as a function of the current produced by the current source and the voltage measured by the voltage measuring circuit; and a stimulation circuit associated with the impedance measuring circuit and configured to stimulate the patient's heart as a function of the measured impedance.
2. The cardiac stimulation device of claim 1, wherein the at least one electrode of the second pair of electrodes comprises an electrode associated with the left ventricle.
3. The cardiac stimulation device of claim 1, wherein the at least one electrode of the second pair of electrodes comprises an electrode associated with the left atrium.
4. The cardiac stimulation device of claim 1, wherein electrodes of the second pair of electrodes each comprise a left side heart electrode.
5. The cardiac stimulation device of claim 4, wherein one of the left side heart electrodes comprises an electrode associated with the left atrium, and the other of the left side heart electrodes comprises an electrode associated with the left ventricle.
6. The cardiac stimulation device of claim 4, wherein each of the electrodes of the second pair are associated with the left atrium.
7. The cardiac stimulation device of claim 4, wherein each of the electrodes of the second pair are associated with the left ventricle.
8. The cardiac stimulation device of claim 1, wherein the first and second pair of electrodes have no electrodes in common.
9. The cardiac stimulation device of claim 1, wherein the first and second pair of electrodes share at least one common electrode.
10. The cardiac stimulation device of claim 1, wherein the device comprises an implantable device.
11. An implantable cardiac impedance measuring device comprising: means for providing an electrical current between a first pair of electrodes that are configured for placement internally in a patient and in operable association with the patient's heart; means for measuring a voltage, responsive to the electrical current, between a second pair of electrodes that are configured for placement internally of a patient and in operable association with the patient' s heart; means for calculating, from the electrical current and a corresponding measured voltage, an impedance; and switch means for programmably selecting at least one electrode of the first and second pair of electrodes so that the at least one electrode comprises a left side heart electrode, the switch means enabling an impedance to be calculated that is associated with the patient's left side heart.
12. The implantable cardiac impedance measuring device of claim 11 further comprising stimulation means for electrically stimulating a patient's heart as a function of the impedance.
13. The implantable cardiac impedance measuring device of claim 11, wherein the switch means can be programmed to select multiple electrodes of the first and second pair of electrodes to comprise left side heart electrodes.
14. The implantable cardiac impedance measuring device of claim 11, wherein the switch means can be programmed to select all electrodes of the first and second pair of electrodes to comprise left side heart electrodes.
15. The implantable cardiac impedance measuring device of claim 11, wherein the at least one electrode comprises a left ventricular electrode.
16. The implantable cardiac impedance measuring device of claim 11, wherein the at least one electrode comprises a left atrial electrode.
17. A cardiac stimulation device comprising: one or more computer-readable media; one or more processors; and instructions embodied on the one or more computer-readable media which, when executed by the one or more processors, cause the one or more processors to calculate an impedance using at least one left side heart electrode.
18. The cardiac stimulation device of claim 17, wherein the instructions cause the one or more processors to calculate the impedance using three or less left side heart electrodes.
19. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises an electrode associated with the left atrium.
20. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises an electrode associated with the left ventricle.
21. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises multiple electrodes, at least one of which being associated with the left atrium.
22. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises multiple electrodes, at least one of which being associated with the left ventricle.
23. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises multiple electrodes, at least one of which being associated with the left atrium, at least another of which being associated with the left ventricle.
24. The cardiac stimulation device of claim 17, wherein the at least one electrode is only associated with the left atrium.
25. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises multiple electrodes only associated with the left atrium.
26. The cardiac stimulation device of claim 17, wherein the at least one electrode is only associated with the left ventricle.
27. The cardiac stimulation device of claim 17, wherein the at least one electrode comprises multiple electrodes only associated with the left ventricle.
28. The cardiac stimulation device of claim 17 further comprising multiple leads operably associated with the one or more processors, each of the leads supporting one or more electrodes that can be used to provide an electrical current and/or sense a voltage from which the impedance can be measured.
29. A cardiac stimulation device comprising: one or more computer-readable media; one or more processors; and instructions embodied on the one or more computer-readable media which, when executed by the one or more processors, cause the one or more processors to calculate an impedance using a multi-polar electrode configuration with at least one left side heart electrode.
30. The cardiac stimulation device of claim 29, wherein the multi-polar electrode configuration comprises a bipolar configuration.
31. The cardiac stimulation device of claim 29, wherein the multi-polar electrode configuration comprises a tripolar configuration.
32. The cardiac stimulation device of claim 29, wherein the multi-polar electrode configuration comprises a quadrapolar configuration.
33. A method of measuring an impedance using a cardiac stimulation device comprising: establishing a current path between a first pair of electrodes configured for use internally of a patient; measuring a voltage between a second pair of electrodes configured for use intemally in a patient, at least one electrode of the second pair comprising a left side heart electrode; and calculating an impedance based upon the established current and the measured voltage.
34. The method of claim 33, wherein the measuring a voltage comprises measuring a voltage where the at least one electrode of the second pair comprises an electrode associated with the left ventricle.
35. The method of claim 33, wherein the measuring a voltage comprises measuring a voltage where the at least one electrode of the second pair comprises an electrode associated with the left atrium.
36. The method of claim 33, wherein the measuring a voltage comprises measuring a voltage where the electrodes of the second pair of electrodes each comprise a left side heart electrode.
37. The method of claim 36, wherein the measuring a voltage comprises measuring a voltage where one of the left side heart electrodes comprises an electrode associated with the left atrium, and the other of the left side heart electrodes comprises an electrode associated with the left ventricle.
38. The method of claim 36, wherein the measuring a voltage comprises measuring a voltage where each of the electrodes of the second pair are associated with the left atrium.
39. The method of claim 36, wherein the measuring a voltage comprises measuring a voltage where each of the electrodes of the second pair are associated with the left ventricle.
40. The method of claim 33, wherein the establishing a current path and the measuring a voltage are performed where the first and second pair of electrodes have no electrodes in common.
41. The method of claim 40, wherein the establishing a current path and the measuring a voltage are performed where each electrode of the first and second pair are left side heart electrodes.
42. The method of claim 41, wherein the establishing a current path and the measuring a voltage are performed where each pair of electrodes comprises a left atrial electrode and a left ventricular electrode.
43. The method of claim 40, wherein the establishing a current path and the measuring a voltage are performed where the second pair of electrodes comprises electrodes associated with the left ventricle.
44. The method of claim 40, wherein the establishing a current path and the measuring a voltage are perfomied where the second pair of electrodes comprise electrodes associated with the left atrium.
45. The method of claim 40, wherein the establishing a current path and the measuring a voltage are performed where one electrode of the second pair comprises an electrode associated with the left atrium, and the other electrode of the second pair comprises an electrode associated with the left ventricle.
46. The method of claim 40, wherein the establishing a current path and the measuring a voltage are performed where one electrode of the first pair comprises an electrode associated with the left ventricle, and one electrode of the second pair comprises an electrode associated with the left ventricle.
47. The method of claim 40, wherein the establishing a current path and the measuring a voltage are performed where one electrode of the first pair comprises an electrode associated with the left atrium, and one electrode of the second pair comprises an electrode associated with the left atrium.
48. The method of claim 40, wherein the establishing a current path and the measuring a voltage are performed where only one electrode of the second pair comprises an electrode associated with the left atrium.
49. The method of claim 48, wherein the establishing a current path and the measuring a voltage are performed where only one electrode of the first pair comprises an electrode associated with the left atrium.
50. The method of claim 33, wherein the establishing a current path and the measuring a voltage are performed where the first and second pair of electrodes share at least one common electrode.
51. The method of claim 50, wherein the establishing a current path and the measuring a voltage are performed where the at least one shared electrode is associated with the left ventricle.
52. The method of claim 50, wherein the establishing a current path and the measuring a voltage are performed where the at least one shared electrode is associated with the left atrium.
53. The method of claim 50, wherein the establishing a current path and the measuring a voltage are performed where the first and second pair share two common electrodes.
54. The method of claim 53, wherein the establishing a current path and the measuring a voltage are performed where the two common electrodes are associated with the left ventricle.
55. The method of claim 53, wherein the establishing a current path and the measuring a voltage are performed where one of the two common electrodes is associated with the left atrium, and the other of the common electrodes is associated with the left ventricle.
56. The method of claim 53, wherein the establishing a current path and the measuring a voltage are performed where only one of the shared electrodes is associated with the left side of the heart.
57. The method of claim 33 further comprising controlling stimulation therapy as a function of the impedance.
58. One or more computer-readable media having computer-readable instructions thereon which, when executed by one or more processors, cause the processors to implement the method of claim 33.
59. A method of assessing a patient's cardiac condition comprising: establishing a current path between a first pair of electrodes configured for use intemally in a patient; measuring a voltage between a second pair of electrodes configured for use intemally of a patient, at least one electrode of the second pair comprismg a left side heart electrode; calculating an impedance based upon the established current and the measured voltage; and based on the calculated impedance, determining one or more physiological parameters for assessing a patient's cardiac condition.
60. The method of claim 59, wherein the determining comprises determining a respiration parameter.
61. The method of claim 59, wherein the determining comprises determining a parameter associated with left ventricular wall dynamics.
62. The method of claim 59, wherein the determining comprises determining a parameter associated with left ventricular volume.
63. One or more computer-readable media having computer-readable instructions thereon which, when executed by one or more processors, cause the processors to implement the method of claim 59.
64. One or more computer-readable media having computer-readable instructions thereon which, when executed by one or more processors, cause the processors to implement the method of claim 60.
65. One or more computer-readable media having computer-readable instructions thereon which, when executed by one or more processors, cause the processors to implement the method of claim 61.
66. One or more computer-readable media having computer-readable instructions thereon which, when executed by one or more processors, cause the processors to implement the method of claim 62.
PCT/US2001/015520 2000-05-15 2001-05-14 Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart WO2001087410A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001263108A AU2001263108A1 (en) 2000-05-15 2001-05-14 Cardiac stimulation devices and methods for measuring impedances associated withthe left side of the heart

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20431000P 2000-05-15 2000-05-15
US60/204,310 2000-05-15

Publications (2)

Publication Number Publication Date
WO2001087410A2 true WO2001087410A2 (en) 2001-11-22
WO2001087410A3 WO2001087410A3 (en) 2002-03-21

Family

ID=22757394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/015520 WO2001087410A2 (en) 2000-05-15 2001-05-14 Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart

Country Status (3)

Country Link
US (1) US20020002389A1 (en)
AU (1) AU2001263108A1 (en)
WO (1) WO2001087410A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348463A1 (en) * 2002-03-25 2003-10-01 St. Jude Medical AB A heart monitoring device, a system including such a device and a manner of using the system
EP1348375A1 (en) * 2002-03-25 2003-10-01 St. Jude Medical AB A heart monitoring device, a system including such a device and a manner of using the system
US7003348B1 (en) 2003-07-01 2006-02-21 Pacesetter, Inc. Monitoring cardiac geometry for diagnostics and therapy
US7613513B1 (en) 2003-07-01 2009-11-03 Pacesetter, Inc. System and method for determining cardiac geometry
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US7925349B1 (en) 2006-03-31 2011-04-12 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US9066662B2 (en) 2007-04-04 2015-06-30 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US9113789B2 (en) 2007-04-04 2015-08-25 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158830B2 (en) * 1998-05-08 2007-01-02 Cardiac Pacemakers, Inc. Method and apparatus for optimizing stroke volume during DDD resynchronization therapy using adjustable atrio-ventricular delays
US7110817B2 (en) * 1998-05-08 2006-09-19 Cardiac Pacemakers, Inc. Method and apparatus for optimizing ventricular synchrony during DDD resynchronization therapy using adjustable atrio-ventricular delays
US6493579B1 (en) 1999-08-20 2002-12-10 Cardiac Pacemakers, Inc. System and method for detection enhancement programming
US7127290B2 (en) * 1999-10-01 2006-10-24 Cardiac Pacemakers, Inc. Cardiac rhythm management systems and methods predicting congestive heart failure status
US6640135B1 (en) * 2000-04-06 2003-10-28 Cardiac Pacemakers, Inc. Apparatus and method for spatially and temporally distributing cardiac electrical stimulation
US7386344B2 (en) * 2004-08-11 2008-06-10 Cardiac Pacemakers, Inc. Pacer with combined defibrillator tailored for bradycardia patients
US6751502B2 (en) 2001-03-14 2004-06-15 Cardiac Pacemakers, Inc. Cardiac rhythm management system with defibrillation threshold prediction
US6684101B2 (en) * 2001-04-25 2004-01-27 Cardiac Pacemakers, Inc. Implantable medical device employing single drive, dual sense impedance measuring
US6628988B2 (en) * 2001-04-27 2003-09-30 Cardiac Pacemakers, Inc. Apparatus and method for reversal of myocardial remodeling with electrical stimulation
US6973349B2 (en) 2001-12-05 2005-12-06 Cardiac Pacemakers, Inc. Method and apparatus for minimizing post-infarct ventricular remodeling
US7127289B2 (en) * 2001-12-05 2006-10-24 Cardiac Pacemakers, Inc. Cardiac resynchronization system employing mechanical measurement of cardiac walls
US6915160B2 (en) * 2002-02-08 2005-07-05 Cardiac Pacemakers, Inc. Dynamically optimized multisite cardiac resynchronization device
US6978171B2 (en) * 2002-03-15 2005-12-20 Medtronic, Inc. Automated impedance measurement of an implantable medical device
EP1350539B1 (en) * 2002-04-03 2006-10-18 Osypka Medical GmbH Apparatus for automatic determination of hemodynamically optimal cardiac pacing parameter values
US6839592B2 (en) * 2002-04-22 2005-01-04 Medtronic, Inc. Cardiac resynchronization with adaptive A1-A2 and/or V1-V2 intervals
SE0202290D0 (en) * 2002-07-22 2002-07-22 St Jude Medical Monitor
US6965797B2 (en) 2002-09-13 2005-11-15 Cardiac Pacemakers, Inc. Method and apparatus for assessing and treating myocardial wall stress
US7313434B2 (en) * 2002-11-25 2007-12-25 Regents Of The University Of Minnesota Impedance monitoring for detecting pulmonary edema and thoracic congestion
CA2450971A1 (en) * 2002-11-27 2004-05-27 Z-Tech (Canada) Inc. Apparatus and method for determining adequacy of electrode-to-skin contact and electrode quality for bioelectrical measurements
US7101339B2 (en) * 2002-12-13 2006-09-05 Cardiac Pacemakers, Inc. Respiration signal measurement apparatus, systems, and methods
US7272442B2 (en) 2002-12-30 2007-09-18 Cardiac Pacemakers, Inc. Automatically configurable minute ventilation sensor
US8050764B2 (en) 2003-10-29 2011-11-01 Cardiac Pacemakers, Inc. Cross-checking of transthoracic impedance and acceleration signals
US7149573B2 (en) * 2003-04-25 2006-12-12 Medtronic, Inc. Method and apparatus for impedance signal localizations from implanted devices
US7200440B2 (en) 2003-07-02 2007-04-03 Cardiac Pacemakers, Inc. Cardiac cycle synchronized sampling of impedance signal
US7010347B2 (en) * 2004-02-14 2006-03-07 Pacesetter, Inc. Optimization of impedance signals for closed loop programming of cardiac resynchronization therapy devices
US7065400B2 (en) * 2003-08-20 2006-06-20 Pacesetter, Inc. Method and apparatus for automatically programming CRT devices
US7592909B2 (en) * 2006-01-19 2009-09-22 Board Of Regents, The University Of Texas System Location and tracking system using wireless technology
EP1510173B1 (en) * 2003-09-01 2017-04-05 BIOTRONIK SE & Co. KG Intracardial impedance measuring device
US7587239B1 (en) 2003-09-24 2009-09-08 Pacesetter, Inc. Cardiac pacemaker system, lead and method for rejecting far-field signals
US9002452B2 (en) 2003-11-07 2015-04-07 Cardiac Pacemakers, Inc. Electrical therapy for diastolic dysfunction
US7184821B2 (en) * 2003-12-03 2007-02-27 Regents Of The University Of Minnesota Monitoring thoracic fluid changes
US7184835B2 (en) * 2003-12-12 2007-02-27 Cardiac Pacemakers, Inc. Method and apparatus for adjustable AVD programming using a table
US7215997B2 (en) * 2003-12-22 2007-05-08 Cardiac Pacemakers, Inc. Dynamic device therapy control for treating post myocardial infarction patients
US7474918B2 (en) * 2004-03-24 2009-01-06 Noninvasive Medical Technologies, Inc. Thoracic impedance monitor and electrode array and method of use
US7505814B2 (en) * 2004-03-26 2009-03-17 Pacesetter, Inc. System and method for evaluating heart failure based on ventricular end-diastolic volume using an implantable medical device
US7272443B2 (en) * 2004-03-26 2007-09-18 Pacesetter, Inc. System and method for predicting a heart condition based on impedance values using an implantable medical device
US7627366B1 (en) 2004-05-17 2009-12-01 Pacesetter, Inc. Analysis of polarization information
US20070191901A1 (en) * 2004-06-04 2007-08-16 Pacesetter, Inc. Quantifying systolic and diastolic cardiac performance from dynamic impedance waveforms
US7356366B2 (en) * 2004-08-02 2008-04-08 Cardiac Pacemakers, Inc. Device for monitoring fluid status
US7212849B2 (en) 2004-10-28 2007-05-01 Cardiac Pacemakers, Inc. Methods and apparatuses for arrhythmia detection and classification using wireless ECG
US7386345B2 (en) * 2005-01-27 2008-06-10 Cardiac Pacemakers, Inc. Apparatus and method for temporary treatment of acute heart failure decompensation
US7447543B2 (en) * 2005-02-15 2008-11-04 Regents Of The University Of Minnesota Pathology assessment with impedance measurements using convergent bioelectric lead fields
US7366567B2 (en) 2005-03-23 2008-04-29 Cardiac Pacemakers, Inc. Method for treating myocardial infarction
US7630763B2 (en) 2005-04-20 2009-12-08 Cardiac Pacemakers, Inc. Thoracic or intracardiac impedance detection with automatic vector selection
EP1883450B1 (en) * 2005-04-29 2009-12-09 Medtronic, Inc. Distributed lead functionality testing
WO2006119103A2 (en) 2005-04-29 2006-11-09 Medtronic, Inc. Event-based lead impedance monitoring
US20060271121A1 (en) 2005-05-25 2006-11-30 Cardiac Pacemakers, Inc. Closed loop impedance-based cardiac resynchronization therapy systems, devices, and methods
US7922669B2 (en) 2005-06-08 2011-04-12 Cardiac Pacemakers, Inc. Ischemia detection using a heart sound sensor
US7711425B2 (en) * 2005-08-22 2010-05-04 Cardiac Pacemakers, Inc. Defibrillation threshold prediction methods and systems
US9839781B2 (en) 2005-08-22 2017-12-12 Cardiac Pacemakers, Inc. Intracardiac impedance and its applications
US8494618B2 (en) * 2005-08-22 2013-07-23 Cardiac Pacemakers, Inc. Intracardiac impedance and its applications
US7974691B2 (en) * 2005-09-21 2011-07-05 Cardiac Pacemakers, Inc. Method and apparatus for controlling cardiac resynchronization therapy using cardiac impedance
US8108034B2 (en) 2005-11-28 2012-01-31 Cardiac Pacemakers, Inc. Systems and methods for valvular regurgitation detection
US8204585B2 (en) * 2005-12-20 2012-06-19 Cardiac Pacemakers, Inc. Bio-impedance sensor and sensing method
US7677503B2 (en) * 2005-12-30 2010-03-16 Thomas & Betts International, Inc. Rework bracket for electrical outlet boxes
US7869871B2 (en) 2006-03-31 2011-01-11 Cardiac Pacemakers, Inc. Pacing therapy for diastolic heart failure
US7890163B2 (en) * 2006-10-19 2011-02-15 Cardiac Pacemakers, Inc. Method and apparatus for detecting fibrillation using cardiac local impedance
US8014863B2 (en) * 2007-01-19 2011-09-06 Cardiac Pacemakers, Inc. Heart attack or ischemia detector
US7840267B2 (en) 2007-03-23 2010-11-23 Cardiac Pacemakers, Inc. Closed-loop resynchronization therapy for mechanical dyssynchrony
US7890167B2 (en) * 2007-04-03 2011-02-15 Cardiac Pacemakers, Inc. Pain free defibrillation threshold estimation
JP2011519665A (en) * 2008-05-08 2011-07-14 カーディアック ペースメイカーズ, インコーポレイテッド Atrioventricular delay time calculation system
US9050016B2 (en) * 2009-02-10 2015-06-09 Siemens Medical Solutions Usa, Inc. System for heart performance characterization and abnormality detection
US8983590B2 (en) 2009-05-13 2015-03-17 St. Jude Medical Ab Medical device and method for determining a dyssynchronicity measure technical field
US8784323B2 (en) * 2009-11-20 2014-07-22 Pacesetter, Inc. Methods and systems that use implanted posture sensor to monitor pulmonary edema
US8626278B2 (en) * 2010-10-08 2014-01-07 Euljoon Park Method and system for discriminating and monitoring atrial arrhythmia based on cardiogenic impedance
US10449361B2 (en) 2014-01-10 2019-10-22 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
EP3092034B1 (en) 2014-01-10 2019-10-30 Cardiac Pacemakers, Inc. Systems for detecting cardiac arrhythmias
US10463866B2 (en) 2014-07-11 2019-11-05 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
EP3827877A1 (en) 2015-02-06 2021-06-02 Cardiac Pacemakers, Inc. Systems for treating cardiac arrhythmias
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
CN114732392A (en) * 2022-04-08 2022-07-12 苏州景昱医疗器械有限公司 Impedance measuring apparatus, system, and computer-readable storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466254A (en) 1993-09-22 1995-11-14 Pacesetter, Inc. Coronary sinus lead with atrial sensing capability

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674518A (en) * 1985-09-06 1987-06-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring ventricular volume
US5154171A (en) * 1991-06-15 1992-10-13 Raul Chirife Rate adaptive pacemaker controlled by ejection fraction
IT1272265B (en) * 1994-06-06 1997-06-16 Medtronic Inc Societa Del Minn IMPROVEMENT IN CARDIAC STIMULATOR SYSTEMS
US6070100A (en) * 1997-12-15 2000-05-30 Medtronic Inc. Pacing system for optimizing cardiac output and determining heart condition
US6148234A (en) * 1998-09-28 2000-11-14 Medtronic Inc. Dual site pacing system with automatic pulse output adjustment
US6278894B1 (en) * 1999-06-21 2001-08-21 Cardiac Pacemakers, Inc. Multi-site impedance sensor using coronary sinus/vein electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466254A (en) 1993-09-22 1995-11-14 Pacesetter, Inc. Coronary sinus lead with atrial sensing capability

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348463A1 (en) * 2002-03-25 2003-10-01 St. Jude Medical AB A heart monitoring device, a system including such a device and a manner of using the system
EP1348375A1 (en) * 2002-03-25 2003-10-01 St. Jude Medical AB A heart monitoring device, a system including such a device and a manner of using the system
US7146208B2 (en) 2002-03-25 2006-12-05 St. Jude Medical Ab Systolic function monitoring utilizing slope of measured impedance
US7330758B2 (en) 2002-03-25 2008-02-12 St. Jude Medical Ab Heart monitoring device, system and method
US7003348B1 (en) 2003-07-01 2006-02-21 Pacesetter, Inc. Monitoring cardiac geometry for diagnostics and therapy
US7613513B1 (en) 2003-07-01 2009-11-03 Pacesetter, Inc. System and method for determining cardiac geometry
US7945326B1 (en) 2006-03-31 2011-05-17 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US7925349B1 (en) 2006-03-31 2011-04-12 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US8010196B1 (en) 2006-03-31 2011-08-30 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8065005B1 (en) 2006-03-31 2011-11-22 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8306623B2 (en) 2006-03-31 2012-11-06 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US8600497B1 (en) 2006-03-31 2013-12-03 Pacesetter, Inc. Systems and methods to monitor and treat heart failure conditions
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US9107585B1 (en) 2006-03-31 2015-08-18 Pacesetter, Inc. Tissue characterization using intracardiac impedances with an implantable lead system
US9066662B2 (en) 2007-04-04 2015-06-30 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US9113789B2 (en) 2007-04-04 2015-08-25 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device

Also Published As

Publication number Publication date
WO2001087410A3 (en) 2002-03-21
AU2001263108A1 (en) 2001-11-26
US20020002389A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
US7305266B1 (en) Cardiac stimulation devices and methods for measuring impedances associated with the heart
US20020002389A1 (en) Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart
US6456880B1 (en) Implantable cardiac stimulation device for and method of monitoring progression or regression of a patient's heart condition by monitoring ventricular repolarization interval dispersion
US6490486B1 (en) Implantable cardiac stimulation device and method that monitors displacement of an implanted lead
US6751503B1 (en) Methods and systems for treating patients with congestive heart failure (CHF)
EP1155711B1 (en) Method and apparatus for biventricular stimulation and capture monitoring
US9446246B2 (en) Identification of electro-mechanical dysynchrony with a non-cardiac resynchronization therapeutic device
US6609027B2 (en) His Bundle sensing device and associated method
US6738669B1 (en) System and method for multichamber cardiac stimulation with ventricular capture verification using far-field evoked response
US6567700B1 (en) Implantable cardiac stimulation device and method which optimizes pacing effectiveness
US6618619B1 (en) Method and apparatus for reducing the effect of evoked responses on polarization measurements in an automatic capture pacing system
US6721598B1 (en) Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system
US6760622B2 (en) Implantable multi-chamber cardiac stimulation device with sensing vectors
US6493584B1 (en) Implantable cardiac stimulation device and method which discriminates between noise and cardiac activity
US20010049542A1 (en) System and method for automatically verifying capture during multi-chamber stimulation
US6832112B1 (en) Method of adjusting an AV and/or PV delay to improve hemodynamics and corresponding implantable stimulation device
US8099174B1 (en) Left heart implantable cardiac stimulation system with clot prevention electrode body coating and method
US7043301B1 (en) Implantable cardiac stimulation system providing high output far-field pacing and method
US7027867B2 (en) Implantable cardiac device having a system for detecting T wave alternan patterns and method
US6760619B1 (en) Two lead universal defibrillation, pacing and sensing system
US7676265B1 (en) Implantable cardiac stimulation device and method providing dynamic sensing configurations for bichamber stimulation and tachyarrhythmia detection
US6745081B1 (en) Coronary Sinus Cardiac Lead For Stimulating and Sensing The Atria of the Right and Left Heart and System
US8521279B2 (en) Implantable cardiac stimulation device and method for measuring intrinsic activity metrics in multi-site pacing
US7139611B1 (en) System and method for rejecting far-field signals using an implantable cardiac stimulation device
US7136700B1 (en) System and method for delivering post-atrial arrhythmia therapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP