WO2001075539A1 - Verfahren und system zur adaptiven steuerung komplexer fertigungsketten - Google Patents

Verfahren und system zur adaptiven steuerung komplexer fertigungsketten Download PDF

Info

Publication number
WO2001075539A1
WO2001075539A1 PCT/EP2000/002928 EP0002928W WO0175539A1 WO 2001075539 A1 WO2001075539 A1 WO 2001075539A1 EP 0002928 W EP0002928 W EP 0002928W WO 0175539 A1 WO0175539 A1 WO 0175539A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer
production
machine
mttr
data
Prior art date
Application number
PCT/EP2000/002928
Other languages
English (en)
French (fr)
Inventor
Gerhard Vollmar
Raiko Milanovic
Original Assignee
Abb Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd. filed Critical Abb Research Ltd.
Priority to DE50004679T priority Critical patent/DE50004679D1/de
Priority to PCT/EP2000/002928 priority patent/WO2001075539A1/de
Priority to AT00915194T priority patent/ATE255736T1/de
Priority to EP00915194A priority patent/EP1269278B1/de
Priority to AU2000236590A priority patent/AU2000236590A1/en
Priority to CNB008193975A priority patent/CN1252552C/zh
Publication of WO2001075539A1 publication Critical patent/WO2001075539A1/de
Priority to US10/262,147 priority patent/US6662064B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32237Repair and rework of defect, out of tolerance parts, reschedule
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32265Waiting, queue time, buffer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50364Buffer for workpieces, pallets, trays with articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a method for the adaptive control of complex production chains, and to a system for performing such a method.
  • a production chain is the series connection of several production machines. So-called buffers are located between the machines, with which different processing speeds of the production machines and short downtimes can be compensated.
  • the essential parameter of a buffer is the buffer time, i.e. a time during which a supply of intermediate products is generated, with which a machine downtime can be bridged without the production line coming to a standstill.
  • a target buffer time set according to such specifications does not necessarily have to be the optimal buffer time, particularly with regard to the production costs, which are very significantly influenced by production downtimes.
  • the optimal buffer time compensates for malfunctions in the preceding machine, so that there is no loss of production.
  • Optimal buffer times cannot be achieved with fixed times because influences such as machine age or the quality of the processed material are not taken into account.
  • the invention is therefore based on the object of specifying a system and a method for adaptively controlling a production chain by automated optimization of the target buffer times of production chains.
  • This object is achieved by a method for controlling a discrete manufacturing process, which has the features specified in claim 1.
  • a corresponding system is specified in claim 2.
  • Fig. 1 shows schematically the structure of a manufacturing chain.
  • the manufacturing process in Fig. 1 is unidirectional and begins with machine M1.
  • Buffers P1 to P3 for storing intermediate products are set up between machines M1 to M4.
  • the decisive parameter of a buffer is the buffer time Tp, which can be bridged by processing an intermediate product supply when the machine is at a standstill.
  • a parameter MTTR (Mean Time to Repair) is assigned to each machine. This measure indicates a statistically averaged repair time.
  • FIG. 2 shows a system for the automated determination of optimal buffer times T P j, which are stored as target values in a target value memory 33 of a programmable logic controller (PLC).
  • PLC programmable logic controller
  • a data processing device contains a production data acquisition device 21 which has access to a data server 30, in which Production data are recorded, and 11 additional error event data can be entered by means of a data input.
  • the production data acquisition device 21 is set up to record machine downtimes and to store them in a production database 31 as time series.
  • An MTTR calculator 22 has access to the production database 31 and stores calculated MTTR key figures in an MTTR database 32.
  • a Tp calculator 23 also contained in the data processing device has access to the MTTR database 32 and sets buffer times T calculated by it Pi in the setpoint memory 33.
  • Fig. 3 shows the operation of the system shown in Fig. 2.
  • the downtimes of the machines required for the optimization including error event information, are recorded by means of the production data acquisition device 21 and stored in the production database 31 as time series.
  • the MTTR calculator 22 calculates the MTTR key figures. The MTTR results from the duration of the downtimes in the life cycle of a machine. The information is in the production database 31. If an error event occurs, the MTTR is recalculated.
  • step 300 the MTTR is stored in the MTTR database 32.
  • the current MTTR key figure is saved for each machine. It is also possible to additionally store the changes in the MTTR during the entire operating period in the MTTR database 32 for later analysis.
  • step 400 it is observed whether the MTTR changes significantly over time. Significance is recognized (MTTR alarm) when a specified delta threshold value is exceeded.
  • the respective new buffer time T P j is calculated by the Tp calculator 23 and specified as the target value in the target value memory 31.
  • Different assessment models can be used to determine the optimal buffer time. If, for example, the production costs are only influenced by the standstill of the production chain, the buffer times are chosen so that the machine downtimes are compensated. This means that the optimal buffer time results directly from the MTTR of the machine before the respective buffer.
  • FIG. 5 shows an example of an evaluation model that additionally takes into account the costs due to the buffer.
  • the fault event data can either be derived automatically by the production data acquisition 21 or the machine operator enters the data via the data input 11.
  • the evaluation is based on the unit cost of the product.
  • the production unit costs are influenced by machine costs, buffer costs and the product quantity n.
  • the buffer costs increase with a constant buffer cost factor Kp with the buffer time Tp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Multi-Process Working Machines And Systems (AREA)

Abstract

Die Erfindung bezieht sich auf Verfahren und ein entsprechendes System zur Steuerung eines diskreten Fertigungsprozesses, bei dem ein Produkt in mehreren Fertigungsschritten, jeweils unter Einsatz einer Maschine (M1, M2, M3, M4) bearbeitet oder hergestellt wird, so dass je nach Fertigungsschritt unterschiedliche Zwischenprodukte entstehen, und bei dem Pufferzeiten (TPi) definiert und berücksichtigt werden, während der eine Maschine (z.B. M4) für die Dauer des Ausfalls einer der Maschinen (z.B. M3) eines vorgeschalteten Fertigungsschritts unter Abarbeitung eines der zugehörigen Pufferzeit (z.B. TP3) entsprechenden und in einem Puffer (P1, P2, P3, z.B. P3) während der Fertigung angelegten Zwischenproduktvorrates weiterarbeiten kann. Dabei werden je Maschine (M1, M2, M3, M4) fortlaufend Produktionsdaten erfasst, und unter Zugriff auf diese Produktionsdaten zyklisch statistisch gemittelte Reparaturzeiten MTTRi (Mean Time To Repair) mittels eines MTTR-Berechners (22) berechnet. Auf der Grundlage dieser Zeiten MTTRi werden mittels eines TP- Berechners (23) Pufferzeiten (TPi) berechnet, die einer Einrichtung (PLC) zur Steuerung des Fertigungsprozesses als Sollwerte für Pufferzeiten (TPi) zugeführt werden.

Description

Verfahren und System zur adaptiven Steuerung komplexer Fertigunqsketten
Beschreibung
Die Erfindung bezieht sich auf ein Verfahren zur adaptiven Steuerung komplexer Fertigungsketten, sowie auf ein System zur Durchführung eines solchen Verfahrens.
In vielen Industriezweigen ist der Fertigungsprozeß in unterschiedliche Fertigungslinien, auch Fertigungsketten genannt, unterteilt. Eine Fertigungskette ist die Hintereinanderschaltung von mehreren Fertigungsmaschinen. Zwischen den Maschinen befinden sich sogenannte Puffer, mit denen unterschiedliche Bearbeitungsgeschwin- digkeiten der Fertigungsmaschinen und kurze Stillstände ausgeglichen werden können.
Die wesentliche Kenngröße eines Puffers ist die Pufferzeit, also eine Zeit, während der ein Vorrat an Zwischenprodukten erzeugt wird, mit dem ein Stillstand einer Maschine überbrückt werden kann, ohne daß die Fertigungslinie zum Stillstand kommt. Für die Festlegung der jeweiligen Pufferzeit gibt es Richtwerte des Herstellers der Fertigungsanlage.
Eine nach solchen Vorgaben eingestellte Soll-Pufferzeit muß jedoch keineswegs die optimale Pufferzeit sein, besonders im Hinblick auf die Produktionskosten, die ganz wesentlich durch Produktionsausfälle beeinflußt werden. Die optimale Pufferzeit gleicht Störungen der jeweils vorangehenden Maschine aus, so daß es nicht zum Produktionsausfall kommt. Mit festen Zeitvorgaben können optimale Pufferzeiten nicht erreicht werden, weil Einflüsse wie Maschinenalter oder Qualität des verarbeiteten Materials nicht berücksichtigt sind.
Der Erfindung liegt daher die Aufgabe zugrunde, ein System und ein Verfahren zur adaptiven Steuerung einer Fertigungskette durch automatisierte Optimierung der Soll-Pufferzeiten von Fertigungsketten anzugeben. Diese Aufgabe wird durch ein Verfahren zur Steuerung eines diskreten Fertigungsprozesses gelöst, das die im Anspruch 1 angegebenen Merkmale aufweist. Ein entsprechendes System ist im Anspruch 2 angegeben.
Mit der Erfindung wird bei einer Fertigungskette eine automatisierte Optimierung der Pufferzeiten während ihres gesamten Lebenszyklusses erreicht.
Eine weitere Beschreibung der Erfindung erfolgt nachstehend anhand eines in Zeichnungsfiguren angegebenen Ausführungsbeispiels.
Es zeigt:
Fig. 1 den Aufbau einer Fertigungskette,
Fig. 2 ein System zur automatisierten Bestimmung optimaler Pufferzeiten,
Fig. 3 die Arbeitsweise des Systems,
Fig. 4 Fehlerereignisdaten, und
Fig. 5 ein Bewertungsmodell.
Fig. 1 zeigt schematisch den Aufbau einer Fertigungskette. Der Fertigungsprozeß in Fig. 1 ist einseitig gerichtet und beginnt mit Maschine M1. Zwischen den Maschinen M1 bis M4 sind jeweils Puffer P1 bis P3 zur Speicherung von Zwischenprodukten eingerichtet. Die entscheidende Kenngröße eines Puffers ist die Pufferzeit Tp, die durch Abarbeitung eines Zwischenproduktvorrates bei einem Maschinenstillstand überbrückt werden kann. Jeder Maschine ist eine Kenngröße MTTR (Mean Time to Repair) zugeordnet. Dieses Maß gibt eine statistisch gemittelte Reparaturzeit an.
Fig. 2 zeigt ein System zur automatisierten Bestimmung optimaler Pufferzeiten TPj, die als Sollwerte in einem Sollwertspeicher 33 einer speicherprogrammierten Steuerung (PLC) gespeichert werden.
Bei diesem System enthält eine Datenverarbeitungseinrichtung eine Produktionsdaten-Erfassungseinrichtung 21, die Zugriff auf einen Datenserver 30 hat, in dem Pro- duktionsdaten erfaßt sind, und der mittels einer Dateneingabe 11 zusätzliche Fehlerereignisdaten eingebbar sind. Die Produktionsdaten-Erfassungseinrichtung 21 ist dafür eingerichtet, Maschinen-Stillstandszeiten zu erfassen und in einer Produktionsdatenbank 31 als Zeitreihen abzulegen. Ein MTTR-Berechner 22 hat Zugriff auf die Produktionsdatenbank 31 , und speichert berechnete MTTR-Kennzahlen in einer MTTR-Datenbank 32. Ein außerdem in der Datenverarbeitungseinrichtung enthaltener Tp-Berechner 23 hat Zugriff auf die MTTR-Datenbank 32 und legt von ihm berechnete Pufferzeiten TPi im Sollwertspeicher 33 ab.
Fig. 3 zeigt die Arbeitsweise des in Fig. 2 dargestellten Systems. Dabei werden in einem Schritt 100 mittels der Produktionsdaten-Erfassungseinrichtung 21 die für die Optimierung benötigten Stillstandszeiten der Maschinen einschließlich Fehlerereignisangaben erfaßt und in der Produktionsdatenbank 31 als Zeitreihen abgelegt. In Schritt 200 berechnet der MTTR-Berechner 22 die MTTR-Kennzahlen. Die MTTR ergibt sich aus der Dauer des Stillstände im Lebenszyklus einer Maschine. Die Information dazu liegt in der Produktionsdatenbank 31. Tritt ein Fehlerereignis auf, wird die MTTR erneut berechnet.
In Schritt 300 wird die MTTR in der MTTR-Datenbank 32 gespeichert. Zu jeder Maschine wird die aktuelle MTTR-Kennzahl gespeichert. Es ist auch möglich, die Veränderungen der MTTR während der gesamten Betriebsdauer zwecks späterer Analyse zusätzlich in der MTTR-Datenbank 32 abzulegen.
In Schritt 400 wird beobachtet, ob sich die MTTR im Lauf der Zeit signifikant ändert. Eine Signifikanz wird erkannt (MTTR Alarm), wenn ein vorgegebener Delta- Schwellwert überschritten wird.
In Schritt 500 wird durch den Tp-Berechner 23 die jeweilige neue Pufferzeit TPj berechnet und als Sollwert im Sollwertspeicher 31 vorgegeben. Zur Festlegung der optimalen Pufferzeit können unterschiedliche Bewertungsmodelle herangezogen werden. Werden beispielsweise die Produktionskosten einzig durch den Stillstand der Fertigungskette beeinflußt, dann werden die Pufferzeiten so gewählt, daß die Maschinenstillstandszeiten ausgeglichen werden. Dies bedeutet, daß die optimale Pufferzeit sich direkt aus der MTTR der Maschine vor dem jeweiligen Puffer ergibt. Fig. 5 zeigt beispielhaft ein Bewertungsmodell, das zusätzlich die Kosten durch den Puffer berücksichtigt.
Fig. 4 zeigt beispielhaft Fehlerereignisdaten, wobei jeweils Startzeit, Maschine, Fehlerereignis und Dauer aufgelistet sind. Die Fehlereignisdaten können entweder durch die Produktionsdatenerfassung 21 automatisch hergeleitet werden oder der Maschi- nenbediener gibt die Daten über die Dateneingabe 11 ein.
Fig. 5 zeigt beispielhaft ein Bewertungsmodell. Die Bewertung wird anhand der Produktstückkosten vorgenommen. Im Beispiel werden die Produktionsstückkosten beeinflußt durch Maschinenkosten, Pufferkosten und der Produktmenge n. Im Beispiel steigen die Pufferkosten bei einem konstanten Pufferkostenfaktor Kp mit der Pufferzeit Tp.

Claims

Patentansprüche
1. Verfahren zur Steuerung eines diskreten Fertigungsprozesses, bei dem ein Produkt in mehreren Fertigungsschritten, jeweils unter Einsatz einer Maschine (M1,M2,M3,M4) bearbeitet oder hergestellt wird, so daß je nach Fertigungsschritt unterschiedliche Zwischenprodukte entstehen, und bei dem Pufferzeiten (TPI) definiert und berücksichtigt werden, während der eine Maschine (z.B. M4) für die Dauer des Ausfalls einer der Maschinen (z.B. M3) eines vorgeschalteten Fertigungsschritts unter Abarbeitung eines der zugehörigen Pufferzeit (z.B. Tp3) entsprechenden und in einem Puffer (P1,P2,P3, z.B. P3) während der Fertigung angelegten Zwischenproduktvorrates weiterarbeiten kann, und wobei
a) je Maschine (M1,M2,M3,M4) fortlaufend Produktionsdaten erfaßt werden, b) unter Zugriff auf diese Produktionsdaten zyklisch statistisch gemittelte Reparaturzeiten MTTR; (Mean Time To Repair) mittels eines MTTR-Berechners (22) berechnet werden, und c) auf der Grundlage dieser Zeiten MTTRj mittels eines Tp-Berechners (23) Pufferzeiten (TR) berechnet werden, die einer Einrichtung (PLC) zur Steuerung des Fertigungsprozesses als Sollwerte für Pufferzeiten (TR) zugeführt werden.
2. System zur Steuerung eines diskreten Fertigungsprozesses, bei dem ein Produkt in mehreren Fertigungsschritten, jeweils unter Einsatz einer Maschine (M1,M2,M3,M4) bearbeitet oder hergestellt wird, so daß je nach Fertigungsschritt unterschiedliche Zwischenprodukte entstehen, und bei dem einer Einrichtung (PLC) zur Steuerung des Fertigungsprozesses Sollwerte für Pufferzeiten (TR) vorgegeben werden, während der eine Maschine (z.B. M4) für die Dauer des Ausfalls einer der Maschinen (z.B. M3) eines vorgeschalteten Fertiguhgsschritts unter Abarbeitung eines der zugehörigen Pufferzeit (z.B. TP3) entsprechenden und in einem Puffer (P1,P2,P3, z.B. P3) während der Fertigung angelegten Zwischenproduktvorrates weiterarbeiten kann, wobei zur automatisierten Ermittlung jeweils optimaler Pufferzeiten (TP|) eine Datenverarbeitungseinrichtung verwendet ist, die a) eine Produktionsdaten-Erfassungseinrichtung (21) aufweist, die Zugriff auf einen Datenseπ/er (30) hat, in dem Produktions- oder Fehlerereignisdaten erfaßt sind, und der mittels einer Dateneingabe (11) zusätzliche Fehlerereignisdaten eingebbar sind, und wobei die Produktionsdaten-Erfassungseinrichtung 21 ist dafür eingerichtet, Maschinen-Stillstandszeiten zu erfassen und in einer Produktionsdatenbank (31) als Zeitreihen abzulegen, b) einen MTTR-Berechner (22) aufweist, der Zugriff auf die Produktionsdatenbank (31) hat, und dafür eingerichtet ist, MTTR-Kennzahlen zu berechnen und in einer MTTR-Datenbank (32) abzulegen, c) einen Tp-Berechner (23) aufweist, der Zugriff auf die MTTR-Datenbank (32) hat, und dafür eingerichtet ist, von ihm unter Verwendung eines Bewertungsmodells berechnete Pufferzeiten Tp-, in einem Sollwertspeicher (33) des Steuerungssystems abzulegen.
PCT/EP2000/002928 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten WO2001075539A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE50004679T DE50004679D1 (de) 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten
PCT/EP2000/002928 WO2001075539A1 (de) 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten
AT00915194T ATE255736T1 (de) 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten
EP00915194A EP1269278B1 (de) 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten
AU2000236590A AU2000236590A1 (en) 2000-04-01 2000-04-01 Method and system for implementing the adaptive control of complex manufacturingchains
CNB008193975A CN1252552C (zh) 2000-04-01 2000-04-01 用于综合生产线自适应控制的方法和系统
US10/262,147 US6662064B2 (en) 2000-04-01 2002-10-01 Method, data processing device, and system for adaptive control of complex production chains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2000/002928 WO2001075539A1 (de) 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/262,147 Continuation US6662064B2 (en) 2000-04-01 2002-10-01 Method, data processing device, and system for adaptive control of complex production chains

Publications (1)

Publication Number Publication Date
WO2001075539A1 true WO2001075539A1 (de) 2001-10-11

Family

ID=8163895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/002928 WO2001075539A1 (de) 2000-04-01 2000-04-01 Verfahren und system zur adaptiven steuerung komplexer fertigungsketten

Country Status (7)

Country Link
US (1) US6662064B2 (de)
EP (1) EP1269278B1 (de)
CN (1) CN1252552C (de)
AT (1) ATE255736T1 (de)
AU (1) AU2000236590A1 (de)
DE (1) DE50004679D1 (de)
WO (1) WO2001075539A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951469A (zh) * 2017-03-17 2017-07-14 机械工业仪器仪表综合技术经济研究所 一种离散制造的能效数据处理方法及装置
CN110060820A (zh) * 2019-04-24 2019-07-26 南京宏晟智能科技有限公司 数字化电气成套产品的线束生产装配系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212876B2 (en) * 2004-09-09 2007-05-01 General Motors Corporation Maintenance opportunity planning system and method
US7587804B2 (en) * 2004-12-20 2009-09-15 General Motors Corporation System and method for optimization of product throughput
JP2009172722A (ja) * 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd 製造設備
DE102008053274A1 (de) * 2008-10-27 2010-04-29 Cae Factory Gmbh Verfahren zur Steuerung einer Mehrzahl von Produktionsprozessen
CN103472245B (zh) * 2012-06-06 2016-12-14 珠海格力电器股份有限公司 传送带测速方法及装置
US10073445B2 (en) 2013-12-03 2018-09-11 Honda Motor Co., Ltd. Quality control system and method
KR20160098929A (ko) * 2015-02-11 2016-08-19 한국전자통신연구원 시스템 개발을 위한 시스템 가용도 측정장치 및 그 방법
DE102016103756A1 (de) * 2016-03-02 2017-09-07 Krones Ag Anlage und Verfahren zum Behandeln von Kunststoffvorformlingen mit Luftförderer oder Transportshuttle
FR3081740B1 (fr) * 2018-06-05 2021-03-12 Psa Automobiles Sa Procede d’assemblage de pieces sur une ligne d’assemblage
EP3835899A1 (de) * 2019-12-09 2021-06-16 Siemens Aktiengesellschaft Verfahren zur vorhersage eines stillstands, frühwarneinrichtung, produktionsanlage und computerprogrammprodukt
CN112269361B (zh) * 2020-11-13 2022-04-15 湖南彩协电子科技有限公司 一种用于屏幕面板精度加工的生产管理装置
CN113391608A (zh) * 2021-07-06 2021-09-14 重庆海科保温材料有限公司 一种玻璃棉毡的智能生产控制系统
CN117314143A (zh) * 2023-09-15 2023-12-29 中国人民解放军海军工程大学 一种产品修理线改造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229948A (en) * 1990-11-03 1993-07-20 Ford Motor Company Method of optimizing a serial manufacturing system
US5260868A (en) * 1986-08-11 1993-11-09 Texas Instruments Incorporate Method for calendaring future events in real-time
US5993041A (en) * 1996-11-29 1999-11-30 Nec Corporation Production controller for facility group work start

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696689A (en) * 1994-11-25 1997-12-09 Nippondenso Co., Ltd. Dispatch and conveyer control system for a production control system of a semiconductor substrate
JPH0973313A (ja) * 1995-02-09 1997-03-18 Matsushita Electric Ind Co Ltd 製造計画立案方法および製造計画立案装置
US5751580A (en) * 1996-07-26 1998-05-12 Chartered Semiconductor Manufacturing, Ltd. Fuzzy logic method and system for adjustment of priority rating of work in process in a production line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260868A (en) * 1986-08-11 1993-11-09 Texas Instruments Incorporate Method for calendaring future events in real-time
US5229948A (en) * 1990-11-03 1993-07-20 Ford Motor Company Method of optimizing a serial manufacturing system
US5993041A (en) * 1996-11-29 1999-11-30 Nec Corporation Production controller for facility group work start

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. F. CHEN, S. THINPHANGNGA: "ANALYTICAL MODELING AND ANALYSIS OF FLEXIBLE MANUFACTURING SYSTEMS CONSIDERING SYSTEM COMPONENT FAILURE/REPAIR RATES", JOURNAL OF MANUFACTURING SYSTEMS, vol. 15, no. 3, 1996, pages 143 - 154, XP004008181 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951469A (zh) * 2017-03-17 2017-07-14 机械工业仪器仪表综合技术经济研究所 一种离散制造的能效数据处理方法及装置
CN110060820A (zh) * 2019-04-24 2019-07-26 南京宏晟智能科技有限公司 数字化电气成套产品的线束生产装配系统
CN110060820B (zh) * 2019-04-24 2022-04-22 南京宏晟智能科技有限公司 数字化电气成套产品的线束生产装配系统

Also Published As

Publication number Publication date
ATE255736T1 (de) 2003-12-15
US6662064B2 (en) 2003-12-09
DE50004679D1 (de) 2004-01-15
EP1269278A1 (de) 2003-01-02
US20030065416A1 (en) 2003-04-03
CN1252552C (zh) 2006-04-19
CN1452732A (zh) 2003-10-29
AU2000236590A1 (en) 2001-10-15
EP1269278B1 (de) 2003-12-03

Similar Documents

Publication Publication Date Title
DE112016003171B4 (de) Verfahren zum Überwachen einer Antriebseinheit einer Fahrzeugkarosseriemontagelinie und eine Vorrichtung dafür
EP1269278B1 (de) Verfahren und system zur adaptiven steuerung komplexer fertigungsketten
DE102016009114B4 (de) Fehlerursache-Diagnosevorrichtung für eine Spritzgießmaschine und Maschinenlernvorrichtung
DE102017000536B4 (de) Zellsteuereinheit zum Feststellen einer Ursache einer Anomalie bei einer Fertigungsmaschine
DE102018125389B4 (de) Zustandsbestimmungsvorrichtung
DE102019219332A1 (de) Lerndatenprüfung-Unterstütztungsvorrichtung, Maschinelles-Lernen-Vorrichtung und Ausfallvorhersagevorrichtung
DE102008029672B3 (de) Vorrichtung und Verfahren zur Zustandsüberwachung und Zustandsdiagnose einer Maschine, Maschinenkomponente oder Anlage
EP1425635B1 (de) Überwachungssystem, sowie verfahren zur prozessbegleitenden überwachung von kollisions- bzw. überlastsituationen an werkzeugmaschinen
DE102016015332A1 (de) Präventivwartungsverwaltungssystem und -verfahren zum Erstellen eines Wartungsplans einer Maschine sowie Zellensteuereinrichtung
DE102020102370A1 (de) Zustandsbestimmungsvorrichtung und zustandsbestimmungsverfahren
DE102017003426A1 (de) Anlagenverwaltungseinheit, die mehrere Fertigungsanlagen mit Nachschub versorgt, und Produktionssystem
DE102020122814A1 (de) Spritzgussinformationenverwaltung-unterstützungsvorrichtung und spritzgussmaschine
DE102020102368A1 (de) Zustandsbestimmungsvorrichtung und zustandsbestimmungsverfahren
WO2018197362A1 (de) Verfahren zur kontrolle einer folienproduktion
DE102004026642B4 (de) Automatisierung der Kunststoff-Extrusion durch Einsatz der Neuro-Fuzzy-Technologie
EP3589786A1 (de) Verfahren zum betrieb einer papiermaschine, antriebssystem und papiermaschine
EP0936514B1 (de) Verfahren und Vorrichtung zum Regeln eines Antriebsystems einer Maschine und/oder einer Anlage
DE112021005248T5 (de) Zustandsbestimmungsvorrichtung und zustandsbestimmungsverfahren
WO2011000368A1 (de) System und verfahren zur überwachung des zustands einer maschine
DE102015015811A1 (de) Verfahren und eine Simulationsvorrichtung zur Simulation einer fiktiven Konfiguration einer Formgebungsanlage
JP2020119194A (ja) ドライブ応答監視装置
DE102005013290B4 (de) Verfahren zum elektronischen Betreiben einer Werkzeugmaschine
DE102004026641A1 (de) Automatisierung des Kunststoff-Spritzgießens durch Einsatz der Neuro-Fuzzy-Technologie
DE112021003169T5 (de) Vorrichtungszustandsüberwachungssystem
DE102021133852A1 (de) Systemarchitektur und Verfahren zur Prozessüberwachung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1222/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000915194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008193975

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10262147

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000915194

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000915194

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP