WO2001070064A2 - Bladder with inverted edge seam and method of making the bladder - Google Patents

Bladder with inverted edge seam and method of making the bladder Download PDF

Info

Publication number
WO2001070064A2
WO2001070064A2 PCT/US2001/008205 US0108205W WO0170064A2 WO 2001070064 A2 WO2001070064 A2 WO 2001070064A2 US 0108205 W US0108205 W US 0108205W WO 0170064 A2 WO0170064 A2 WO 0170064A2
Authority
WO
WIPO (PCT)
Prior art keywords
bladder
sheets
sheet
ofthe
forming
Prior art date
Application number
PCT/US2001/008205
Other languages
French (fr)
Other versions
WO2001070064A3 (en
Inventor
John C. Tawney
David B. Herridge
Original Assignee
Nike, Inc.
Nike International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike, Inc., Nike International Ltd. filed Critical Nike, Inc.
Priority to EP01920372A priority Critical patent/EP1233686B1/en
Priority to DE60120899T priority patent/DE60120899T2/en
Priority to AU2001247431A priority patent/AU2001247431A1/en
Publication of WO2001070064A2 publication Critical patent/WO2001070064A2/en
Publication of WO2001070064A3 publication Critical patent/WO2001070064A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B21/00Heels; Top-pieces or top-lifts
    • A43B21/24Heels; Top-pieces or top-lifts characterised by the constructive form
    • A43B21/26Resilient heels
    • A43B21/28Pneumatic heels filled with a compressible fluid, e.g. air, gas
    • A43B21/285Pneumatic heels filled with a compressible fluid, e.g. air, gas provided with a pump or valve
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/20Pneumatic soles filled with a compressible fluid, e.g. air, gas
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D27/00Machines for trimming as an intermediate operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • B29D22/02Inflatable articles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/54Details or accessories of golf clubs, bats, rackets or the like with means for damping vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1016Transverse corrugating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum

Definitions

  • the present invention relates to an improved cushioning member for a shoe, and more particularly to a fluid filled bladder having multiple layers of chambers with an inverted edge seam and a method of forming an improved cushioning member with inverted seam lines along its sidewalls.
  • Fluid filled bladder members are commonly referred to as "air bladders,” and the fluid is generally a gas which is commonly referred to as “air” without intending any limitation as to the actual gas composition used.
  • Gas filled cushioning devices are typically referred to as bladders or "air bladders,” and the gas is commonly referred to as "air” without intending any limitation as to the actual gas composition used.
  • bladders or air bladders One well known type of bladder used in footwear is commonly referred to as a "two film bladder.” These bladders include an outer shell formed by welding the peripheral edges of two symmetric pieces of a barrier material together. This results in the top, bottom and sidewalls ofthe bladder being formed ofthe same barrier material. If any one part of a two film bladder needs to be formed of a specific material and/or to a specific thickness, the entire bladder must be formed of that specific material and or to that specific thickness. Forming a bladder from only two pieces of a barrier material prevents the side, top and bottom walls from being customized.
  • Closed-celled foam is often used as a cushioning material in shoe soles and ethylene- vinyl acetate copolymer (EVA) foam is a common material.
  • EVA foam In many athletic shoes, the entire midsole is comprised of EVA. While EVA foam can easily be cut into desired shapes and contours, its cushioning characteristics are limited.
  • One ofthe advantages of gas filled bladders is that gas as a cushioning compound is generally more energy efficient than closed-cell foam. This means that a shoe sole comprising a gas filled bladder provides superior cushioning response to loads than a shoe sole comprising only foam. Cushioning generally is improved when the cushioning component, for a given impact force, spreads the impact force over a longer period of time, resulting in a smaller impact force being transmitted to the wearer's body. Even shoe soles comprising gas filled bladders include some foam, and a reduction in the amount of foam will generally afford better cushioning characteristics.
  • the major engineering problems associated with the design of air bladders formed of barrier layers include: (I) obtaining complex-curved, contoured shapes without the formation of deep peaks and valleys in the cross section which require filling in or moderating with foams or plates; (ii) ensuring that the means employed to give the air bladder its complex-curved, contoured shape does not significantly compromise the cushioning benefits of air; (iii) providing regionalized cushioning to an air bladder to account for differences in load corresponding to the anatomical topology of a human foot especially during high loads; (iv) designing air bladders which maximize the cushioning properties of air and are made entirely of flat barrier films; and (v) designing bladders that provide the advantages of complex-contoured shapes and regionalized cushioning and which can be integrated easily into existing midsole manufacturing methods.
  • N tensile member is an element associated with a bladder which ensures a fixed, resting relation between the top and bottom barrier layers when the bladder is fully filled, and which often is in a state of tension while acting as a restraining means to maintain the general external form ofthe bladder.
  • Some prior art constructions are composite structures of bladders containing foam or fabric tensile members.
  • One type of such composite construction prior art concerns bladders employing an open-celled foam core as disclosed in U.S. Patent ⁇ os. 4,874,640 and 5,235,715 to Donzis. These cushioning elements do provide latitude in their design in that the open-celled foam cores allow for complex-curved and contoured shapes ofthe bladder without deep peaks and valleys.
  • bladders with foam core tensile member have the disadvantage of unreliable bonding ofthe core to the barrier layers.
  • Another disadvantage of foam core bladders is that the foam core gives the bladder its shape and thus must necessarily function as a cushioning member which detracts from the superior cushioning properties of a gas alone.
  • the foam core in order to withstand the high inflation pressures associated with bladders, the foam core must be of a high strength which requires the use of a higher density foam.
  • the higher the density ofthe foam the less the amount of available volume in the bladder for a gas. Consequently, the reduction in the amount of gas in the bladder decreases the effectiveness of gas cushioning.
  • Bottoming out refers to the premature failure of a cushioning device to adequately decelerate an impact load.
  • Most cushioning devices used in footwear are non-linear compression based systems, increasing in stiffness as they are loaded. Bottoming out is the point where the cushioning system is unable to compress any further and is a common failure in shoe soles comprised of foam.
  • the elastic foam material itself performs a significant portion ofthe cushioning function and is subject to compression set. Compression set refers to the permanent compression of foam after repeated loads which greatly diminishes its cushioning aspects.
  • compression set occurs due to the internal breakdown of cell walls under heavy cyclic compression loads such as walking or running.
  • the walls of individual cells constituting the foam structure abrade and tear as they move against one another and fail.
  • the breakdown ofthe foam exposes the wearer to greater shock forces.
  • Huang '995 it is taught to form strong vertical columns so that they form a substantially rectilinear cavity in cross section. This is intended to give substantial vertical support to the cushion so that the cushion can substantially support the weight ofthe wearer with no inflation.
  • Huang '995 also teaches the formation of circular columns using blow-molding. In this prior art method, two symmetrical rod-like protrusions ofthe same width, shape and length extend from the two opposite mold halves meet in the middle and thus form a thin web in the center of a circular column. These columns are formed of a wall thickness and dimension sufficient to substantially support the weight of a wearer in the uninflated condition. Further, no means are provided to cause the columns to flex in a predetermined fashion which would reduce fatigue failures. Huang's columns are also prone to fatigue failure due to compression loads which force the columns to buckle and fold unpredictably. Under cyclic compression loads, the buckling can lead to fatigue failure ofthe columns.
  • the alternative embodiment disclosed in the Reed patent uses just two sheets with the top sheet folded upon itself and attached to the bottom sheet at selected locations to provide rib portions and parallel pockets.
  • the main disadvantage of this construction is that the ribs are vertically oriented and similar to the columns described in the patents to Huang and Moumdjian, would resist compression and interfere with and decrease the cushioning benefits of air.
  • each parallel pocket thus formed must be separately inflated.
  • N prior bladder and method of construction using flat films is disclosed in U.S. Patent No. 5,755,001 to Potter et al, which is hereby incorporated by reference.
  • the interior film layers are bonded to the envelope film layers ofthe bladder which defines a single pressure chamber.
  • the interior film layers act as tensile members which are biased to compress upon loading.
  • the biased construction reduces fatigue failures and resistance to compression.
  • the bladder comprises a single chamber inflated to a single pressure with the tensile member interposed to give the bladder a complex-contoured profile. There is, however, no provision for multiple layers of fluid in the bladder which could be inflated to different pressures providing improved cushioning characteristics and point of purchase feel.
  • bladders are formed using blow molding techniques such as those discussed in U.S. Patent No. 5,353,459 to Potter et al, which is hereby incorporated by reference. These bladders are formed by placing a liquefied elastomeric material in a mold having the desired overall shape and configuration ofthe bladder. The mold has an opening at one location through which pressurized gas is introduced. The pressurized gas forces the liquefied elastomeric material against the inner surfaces ofthe mold and causes the material to harden in the mold to form a bladder having the preferred shape and configuration.
  • the produced bladders typically include a formed seam that is a result ofthe elastomeric material being forced between the mold halves when the halves are secured together. The seam appears in the center ofthe sidewalls and is directed outwardly away from the center ofthe bladder. The seam includes jagged edges and is visible when the bladder is exposed along the midsole of an article of footwear.
  • Many articles of footwear include at least one opening along their midsole for exposing the sidewalls of a contained bladder. When the exposed sidewalls are transparent, the interior of the bladder is visible. These openings along the midsole are commonly referred to as “windows" and are usually located in the heel and/or forefoot. Examples of such footwear include the NIKE AIRMAX shown in the 1995 and 1997 NIKE Footwear catalogs.
  • the exposed transparent material is vulnerable to being punctured, it must be of a strength and thickness that will resist penetration from external elements.
  • the requirements ofthe material used for the exposed sidewalls control the construction, aesthetic and functional characteristics ofthe entire two film or blow molded bladder.
  • Individual bladder components cannot be customized. Instead, the bladder is formed entirely ofthe transparent material having the thickness needed to prevent rupturing ofthe exposed sidewall. This results in the top and bottom ofthe bladder being formed ofthe same thick, transparent sidewall material, even if the transparent, puncture resistant material is not needed in these parts ofthe bladder. Unnecessarily thick top and bottom layers can detract from the overall flexibility ofthe bladder.
  • the transparency and/or flexibility ofthe sidewalls may be compromised.
  • Using one material for each half of the bladder also prevents the bladder from being customized so different portions ofthe bladder offer different performance and aesthetic advantages.
  • Preparing a bladder for being exposed along the length of a sole window can also include expensive and time consuming manufacturing steps.
  • a construction seam can result along the sidewalls of a bladder during manufacturing. The seam appears in the center of the sidewall after the bladder has been inflated. The seam includes a thick, rough edge that during the manufacturing ofthe bladder must be reduced to prevent injury and give the sidewalls a smooth, uninterrupted look. The manufacturing steps taken to reduce the seam line increase the manufacturing time and cost of producing a bladder.
  • Cushioning system design must meet criteria for both comfort at low loads such as standing, walking, point of purchase feel, and performance at high loads such as running, planting, jumping, pivoting.
  • it is instructive to view such devices in cross-section. That is, take a visual slice vertically down into the midsole to reveal the cushioning profile ofthe structure that is to provide the necessary shock absorption and response functions.
  • any single cross section ofthe cushioning profile is generally a simple foam core, or a single layer of fluid sometimes surrounded by or encased in foam.
  • This simple profile seeks to balance the low-load — high-load criteria by a compromise to both since a simple cushioning profile provides generally uniform shock absorption and response characteristics along the entire device, but does not provide a complex cushioning profile which can be customized or regionalized to the loads realized at certain points along a bladder.
  • a problem with manufacturing complex, highly regionalized bladders of two films has been inordinate twisting ofthe fluid filled part.
  • a non-planar geometry is difficult to integrate into subsequent shoe making processes.
  • One object of this invention is to provide a cushioning bladder for footwear with multiple stage cushioning regionalized characteristics constructed of film layers.
  • Another object of this invention is to provide a bladder for cushioning an article of footwear that can have different materials for its top outer barrier sheet, bottom outer barrier sheet and sidewalls.
  • N further object of this invention is to provide a method of forming a bladder with inverted seam lines that do not require special treatment during manufacturing.
  • the present invention pertains to a cushioning bladder and method of making the same.
  • the bladder ofthe present invention may be incorporated into a sole assembly of a shoe to provide cushioning when filled with fluid.
  • the bladder and method ofthe present invention allows for complex-curved, contoured shapes without interfering with the cushioning properties of gas, and provides regionalized cushioning profiles.
  • N complex-contoured shape refers to varying the surface contour ofthe bladder in more than one direction.
  • the present invention overcomes the enumerated problems with the prior art while avoiding the design trade-offs associated with the prior art attempts.
  • a bladder is formed of multiple layers of barrier film to provide multiple pressurized layers of cushioning fluid or gas when the bladder is filled to provide layers of distinct cushioning properties.
  • the distinct properties are caused by multiple pressurized layers of gas, wherein a multiple gas layer bladder enhances cushioning response by relying more on the response characteristics of the gas and reducing the amount of foam and the dependence on foam as a cushioning material.
  • N three layer bladder comprises two outer layers sealed around a perimeter to form the envelope ofthe bladder and a middle layer which is attached to the outer layers and serves as a tensile element.
  • the location ofthe connection sites ofthe middle layer to the outer layers determines the topography ofthe outer surface ofthe bladder.
  • N middle layer also divides the interior ofthe bladder into at least two layers of fluid or gas. Additional layers of film between the outer envelope layers provide more layers of fluid or pressurized gas with the interior layers of film being attached to one another in ways to allow for further customization of the cushioning profile.
  • N method of forming a cushioning bladder ofthe present invention comprises the steps of providing four vertically aligned sheets of barrier film, each ofthe sheets having a peripheral edge.
  • N positioning step ofthe method includes placing the two inner sheets between the two outer sheets so that each inner sheet is adjacent an outer sheet. The inner sheets are positioned such that at least a portion of each ofthe sheets extends within the peripheral edge ofthe outer sheets.
  • the method further includes the steps of securing the top outer and top inner sheets together proximate the peripheral edge ofthe top outer sheet, securing the bottom outer and bottom inner sheets together proximate the peripheral edge ofthe bottom outer sheet, and securing two inner sheets together at a location spaced inwardly from their peripheral edges and the peripheral edges of two outer sheets such that an inverted seam is formed in between the two outer sheets when fluid is introduced within the bladder.
  • the sheets are secured relative to each other by directly connecting the sheets to one another or by securing them to respective ends of an intermediate member.
  • the bottom inner and outer sheets can also be sized so that the resulting inverted seam is offset from the center ofthe resulting sidewall ofthe bladder.
  • the inverted seam bladders can include separate top, bottom and sidewall pieces of barrier materials that are individually selected to provide increased durability, greater puncture resistance and localized stiffness, where needed, for enhanced cushioning, stability and longevity.
  • the individual pieces of barrier material that form the sidewalls can be varied depending upon the needs of each portion ofthe sidewall.
  • the bladder according to the present invention comprises a top sheet of a barrier material having a peripheral edge and, a bottom sheet of a barrier material being at least partially coextensive with the top sheet.
  • the bladder also includes first and second sidewall elements comprised ofthe same or different barrier materials. The first sidewall element extends between the top and bottom sheets, and itself has top and bottom edges.
  • the top edge ofthe first sidewall element is secured to the top sheet of barrier material proximate its peripheral edge, and bottom edge ofthe first sidewall element is secured to the second sidewall element.
  • the opposite edge ofthe second sidewall element is secured to the bottom sheet of barrier material so that a fluid containing bladder is formed with two sidewall elements extending between the top and bottom sheets.
  • the inverted seams are formed by arranging the barrier sheets and sidewalls pieces so they are at least partially coextensive and welding the two sidewall pieces of barrier material together at a location spaced inwardly from the peripheral welds that secure the two sidewall pieces to the top and bottom barrier sheets, respectively.
  • a cushioning fluid is introduced into the bladder.
  • each inverted seam is formed by securing adjacent sidewall pieces of barrier material together at locations spaced inwardly from the welds that secure the sidewalls to the top and bottom barrier sheets.
  • the inverted construction seams accordmg to the present invention do not need to be treated with any finishing steps in order to improve their appearance or eliminate thick, rough edge. Ns a result, the costly production steps associated with finishing and reducing conventional construction seams are eliminated.
  • the present invention makes it possible for a manufacturer to aesthetically customize a bladder.
  • the manufacturer can use different barrier materials for the top barrier sheet, bottom barrier sheet and portions ofthe sidewalls ofthe bladder. This allows the different parts ofthe bladder to be customized so the top and bottom sheets are not formed ofthe transparent sidewall material.
  • the bladder can also be customized so the upper and lower pieces of a sidewall do not have to be formed ofthe same material. Materials can be used for the sidewalls that have a greater strength or thickness when compared to those used for the top and bottom pieces, or vice versa. Also, the materials used for the top and bottom sheets may not have to be as stiff or resistant to lateral stresses as are those used for the sidewalls.
  • the present invention also permits a manufacturer to customize a bladder so it has certain performance characteristics in selected areas without furnishing the entire bladder with these characteristics or the materials that provide them.
  • the sidewalls of a bladder according to the present invention can be customized by using a material with the same degree of vertical stiffness, resistance to vertical compression, as the pressurized chambers they define. These sidewalls complement the cushioning and stability ofthe chambers without requiring the top and bottom pieces to be as stiff as these sidewall pieces extending between them.
  • the sidewalls or portions thereof can also be preformed to have different shapes and effects before being secured to the top and bottom pieces ofthe bladder.
  • the location ofthe seam can be varied so the inverted seam is not located in the center of the sidewall or in a bladder window.
  • the size ofthe pieces of sidewall barrier material determine the location ofthe inverted seam(s). If the pieces are substantially equivalent in size, the seam will occur in the center ofthe sidewalls. If they differ in size, the seam will be offset from the center ofthe sidewall. The greater the size difference, the greater the offset.
  • the sidewall pieces can be sized so the offset, inverted seam occurs proximate the top or bottom barrier sheet. In this instance, the larger piece forms a larger part ofthe sidewall and is the portion exposed in the bladder window.
  • the smaller sidewall piece and offset seam can be covered by midsole or upper materials.
  • the seams formed between the sidewalls and the top and bottom barrier sheets can be used as a gasket or reference point when introducing a midsole within a mold.
  • FIG. 1 is a perspective view of a bladder constructed of three film layers in accordance with an embodiment ofthe present invention.
  • FIG. 2 is a top plan view ofthe bladder of FIG. 1.
  • FIG. 3 is a cross sectional view ofthe bladder taken along line 3-3 of FIG 2.
  • FIG. 4 is a perspective view of another bladder constructed of three film layers to illustrate contouring ofthe outer surfaces by placement ofthe connection sites.
  • FIG. 5 is a top plan view ofthe bladder of FIG. 4.
  • FIG. 6 is a cross sectional view ofthe bladder taken along line 6-6 of FIG 5.
  • FIG. 7 is a perspective view of a full-foot bladder constructed of three film layers in accordance with another embodiment ofthe present invention.
  • FIG. 8 is a top plan view ofthe bladder of FIG. 7.
  • FIG. 9 is a cross sectional view ofthe bladder taken along line 9-9 of FIG. 8.
  • FIG. 10 is a cross sectional view ofthe bladder taken along line 10-10 of FIG. 8.
  • FIG. 11 is a perspective view of a heel bladder constructed of four film layers in accordance with another embodiment ofthe present invention.
  • FIG. 12 is a top plan view ofthe bladder of FIG. 11.
  • FIG. 13 is a cross sectional view ofthe bladder taken along line 13-13 of FIG 12.
  • FIG. 14 is an exploded view ofthe alignment of an inner bladder to outer film layers of a bladder in accordance with yet another embodiment ofthe present invention.
  • FIG. 15 is a top plan view ofthe bladder of FIG. 14, shown sealed and inflated.
  • FIG. 16 is a cross section ofthe bladder taken along line 16-16 of FIG 15.
  • FIG. 17 is a cross section ofthe bladder taken along line 17-17 of FIG 15.
  • FIG. 18 is an exploded view ofthe alignment of an inner bladder to outer film layers of a bladder in accordance with still another embodiment ofthe present invention.
  • FIG. 19 is a top plan view ofthe bladder of FIG. 18, shown sealed and inflated.
  • FIG. 20 is a cross sectional view ofthe bladder taken along line 20-20 of FIG 19.
  • FIG. 21 is a cross sectional view ofthe bladder taken along line 21-21 of FIG 19.
  • FIG. 22 is a schematic illustration of a section of a heel bladder in its static condition.
  • FIG. 23 is a schematic illustration ofthe section of FIG. 22 shown during loading.
  • FIG. 24 is an exploded perspective view of a shoe incorporating the bladder of FIG. 7 in a sole assembly.
  • FIGS. 25 A and 25B are schematic representations of a five layer bladder in accordance with the present invention.
  • FIGS. 26 A and 26B are schematic representations of a six layer bladder in accordance with the present invention.
  • FIG. 27 is a top plan view of a complex-contoured three layer tensile bladder adaptable for use within a larger bladder in accordance with the present invention.
  • FIG. 28 is a side elevational view ofthe bladder of FIG. 27.
  • FIG. 29 is a perspective view ofthe bladder of FIG. 27.
  • FIG. 30 is a top plan view of a seven layer tensile bladder in accordance with the present invention.
  • FIG. 31 is a cross-sectional view ofthe bladder of FIG. 30 taken along line 31-31.
  • FIG. 32 is a side elevational view of a multiple film layer bladder having an inverted, sidewall seam formed from internal film layers in accordance with another embodiment ofthe present invention.
  • FIG. 33 is a perspective view ofthe bladder of FIG. 32.
  • FIG. 34 is a cross-sectional view ofthe bladder of FIG. 32, taken along the line 34-34 of FIG. 32.
  • FIG. 35 is a partial cross section ofthe bladder of FIG 32, before welding and inflation with schematic representations of weld sites.
  • FIG. 36 is a perspective view of a multiple film layer bladder having a centered inverted, sidewall seam formed from separate sidewall elements in accordance with yet another embodiment ofthe present invention.
  • FIG. 37 is a top plan view ofthe bladder of FIG. 36.
  • FIG. 38 is a side elevational view of one side ofthe bladder of FIG. 36.
  • FIG. 39 is a side elevational view of a side ofthe bladder of FIG. 36 that extends essentially perpendicular to the side shown in FIG. 38.
  • FIG. 40 is a partial cross section ofthe bladder of FIG. 36 before welding and inflation with schematic representations of weld sites.
  • FIG. 41 is a partial cross section ofthe bladder of FIG. 36 taken along the line 41-41 in FIG. 37.
  • FIG. 42 is a perspective view of a multiple film layer bladder having a centered inverted, sidewall seam formed from separate sidewall elements in accordance with another embodiment ofthe present invention.
  • FIG. 43 is a top plan view ofthe bladder of FIG. 42.
  • FIG. 44 is a side elevational view of one side ofthe bladder of FIG. 42.
  • FIG. 45 is a side elevational view of a side ofthe bladder of FIG. 42 that extends essentially perpendicular to the side shown in FIG. 44.
  • FIG. 46 is a partial cross section ofthe bladder of FIG. 42 taken along the line 46-46 in FIG. 43.
  • FIG. 47 is a partial cross section ofthe bladder of FIG. 42 before welding and inflation with schematic representations of weld sites.
  • FIG. 48 is a side elevational view of a multiple film layer bladder having a displaced inverted, sidewall seam formed from separate sidewall elements in accordance with another embodiment ofthe present invention.
  • FIG. 49 is a perspective view ofthe bladder of FIG. 48.
  • FIG. 50 is a cross-sectional view ofthe bladder of FIG. 48 taken along the line 50-50 in FIG. 48.
  • FIG. 51 is a partial cross section ofthe bladder of FIG. 48 before welding and inflation with schematic representations of weld sites.
  • FIG. 52 is a perspective view of a multiple film layer bladder having an inverted seam in the arch region in accordance with another embodiment ofthe present invention.
  • FIG. 53 is a side elevational view ofthe arch side ofthe bladder of FIG. 52.
  • FIG. 54 is a top plan view ofthe bladder of FIG. 52.
  • FIG. 55 is a partial cross section taken along line 55-55 in FIG. 54.
  • FIG. 56 is a cross section taken along line 56-56 of FIG. 54.
  • FIGS. 57A to 57F are diagramatic illustrations of a bladder inflation technique.
  • connection site is used throughout the application to refer broadly to attachment locations between any ofthe film layers. N convention employed in the drawings is to show connection sites by outline only or as an outline surrounded by arcs. The sites with arcs depict a connection between an inner film layer and the outer film layer closest to the viewer.
  • connection sites depict a connection between two inner film layers, or between an inner film layer and the outer film layer furthest from the viewer.
  • the connection sites may be in the form of circular dots, bars, extended lines or any other geometric shape employed to attach any ofthe film layers to one another. Ns will be seen in the various preferred embodiments, the outer layers forming the envelope are attached to one another at least along the periphery, and any number of inner layers are attached to one another or to an outer layer.
  • Nil ofthe figures depict configurations of bladders or parts of bladders which are sealed and filled with fluid. That is, the illustrations are of fluid filled shapes that take form due to the pattern of attachments ofthe flat film layers.
  • FIGS. 1-3 A preferred embodiment of a multiple film layer bladder 10 is shown in FIGS. 1-3 which comprises two outer film layers 12 and 14 forming the outer envelope ofthe bladder, and an inner film layer 16 placed between the outer film layers.
  • Inner film layer 16 forms an inner boundary between two fluid filled layers 17 and 19.
  • Inner film layer 16 is connected to film layers 12 and 14 at connection sites 18 and 20 respectively and along the perimeter to isolate fluid layers 17 and 19 out of fluid communication from one another.
  • the connection sites are formed as circular dot welds. Ns can be seen in the cross-section views of FIG. 3, connection sites 18 and 20 enable middle film layer 16 to act as a tensile member, extending between outer film layers 12 and 14 and interconnecting them together.
  • Middle film layer 16 also provides a generally evenly contoured outer surface to bladder 10 by virtue ofthe placement ofthe connection sites with the outer film layers.
  • Bladder 10 has a filling stem (not shown) which is welded closed after the bladder is filled with fluid. In a finished bladder, the filling stems may be removed leaving a weld location 22 intact to prevent loss of pressure.
  • the shape of bladder 10 makes it suitable for use in a forefoot area to provide cushioning under the metatarsal area of a wearer's foot.
  • FIGS. 4-6 Another three film layer bladder 24 is depicted in FIGS. 4-6 which illustrates the variances in surface contour and thickness ofthe bladder achieved by varying the placement of weld locations ofthe inner film layer to each ofthe outer film layers.
  • Bladder 24 is comprised of outer film layers 26 and 28, and one inner film layer 30 interposed between the outer film layers and interconnecting them.
  • Connection sites 32 and 34 respectively connect inner film layer 30 to outer film layers 26 and 28.
  • inner film layer 30 can be seen extending between the outer layers.
  • the connection sites are spaced closer together, and to form a thicker portion, the connection sites are spaced further apart. The contrast between the two is shown in FIG. 6.
  • Bladder 24 is intended to illustrate the principle of connection site placement and the resultant effect on the thickness and outer surface contour ofthe bladder.
  • a full-foot three film layer bladder is shown in FIGS. 7-10 and the same reference numbers as those used to describe the bladder of FIGS. 1-3 are used with a prime symbol.
  • Bladder 10' is comprised of outer film layers 12' and 14' with an inner film layer 16' interposed between.
  • Inner film layer 16' is attached to the outer film layers along the perimeter and at various connection sites 18' and 20'.
  • the film layers define two fluid filled layers 17' and 20' which may be pressurized to the same or different pressures. Ns can be seen in FIGS.
  • the topography or outer contour ofthe bladder is varied to make the edges in the heel area form a slight cup or cradle in the center to improve stability.
  • the connection sites near the edge ofthe bladder are further apart to provide a thicker profile.
  • Three film bladders provide two layers of fluid which impart cushioning and response characteristics to the bladder and reduces the dependence on any foam used in the shoe sole.
  • the two fluid layers may be of equal pressure or differing pressures depending on the particular cushioning profile desired. For example, if a lower pressure fluid layer is placed closest to a wearer's foot, the shoe sole would impart a softer or springier feel to the wearer.
  • the pressure ofthe fluid layers may be adjusted and fine tuned to obtain the most desired response and feel. Inflation ofthe bladder is achieved through a valve stem that is open to all fluid layers.
  • This principle can be applied to any number of film layers.
  • An alternate inflation technique is illustrated in FIGS. 57N to 57F. For ease of explanation, the inflation of a bladder formed of only two film layers 612 and 614 is illustrated in these figures. Ns seen in FIG. 57N, sheets 612, 614 are placed one above the other on plate 613, and a die 615 is aligned above plate 613.
  • Die 615 is formed of spaced die plates 615N and 615B, which are used to form an inflation channel. Die plates 615N and 615B are lowered (FIG. 57B) to apply heat and pressure to film layers 612 and 614. Compressed weld areas 617 are formed immediately beneath die plates 615N and 615B, and a weld bead 619 is formed between die plates 615N and 615B. Nn inflation opening 621 is formed within weld bead 619, and extends to the chambers ofthe bladder (not shown) which are to be inflated. Ns seen in FIGS.
  • weld bead 619 is placed against a cutting surface 623 and a cutting punch 625, cuts in inlet port 627 (FIG. 57E) to inflation opening 621.
  • An electrode 629, with a gas supply opening 630 is pressed against weld bead 619 (FIG. 57E) and an inflation gas is passed through supply opening 630 and inlet port 627 to inflation opening 621 and the chambers ofthe bladder being inflated.
  • Electrode 629 is preferably cylindrical in shape, and applies heat and pressure to weld bead 621 to fuse the inlet port and inlet opening closed with a weld 633 after inflation ofthe chambers has been completed.
  • Bladder 36 comprises outer film layers 38 and 40 which are attached to inner film layers 42 and 44 at connection sites 39 and 41, respectively.
  • Inner film layers 42 and 44 are attached to one another at connection sites 43 which are incoincident, that is, not in alignment, with their connection sites to the outer film layers. As illustrated in the sectional view of FIG. 13, this results in inner layers 42 and 44 extending between outer layers 38 and 40 and acting as a tensile member for the bladder.
  • middle fluid layer 48 comprises a series of tubular spaces filled with fluid.
  • these three fluid layers may be pressurized to different pressures to obtain a desired cushioning profile. For instance, if a soft-firm-soft profile were desired as one giving the best cushioning feel to a wearer while providing high pressure fluid in the middle fluid layer for responding to high impact loads, the outer fluid layers could be pressurized to P ! with the inner fluid layer being pressurized to P 2 , where P, ⁇ P 2 . Alternatively, all three fluid layers could be pressurized to different pressures to further customize the cushioning profile.
  • bladder 36 could be subdivided further into discrete chambers within each fluid layer to further develop the cushioning profile.
  • Inner film layers 42 and 44 could be attached to one another in a more complex relationship so as to afford multiple middle fluid layer chambers.
  • the attachment between an outer film layer 38 or 40 with an adjacent inner film layer could be developed further to afford multiple fluid chambers in the outer fluid layers.
  • bladder 36 is well suited for use in a heel area of a shoe sole with the curved semicircular end being aligned with the rear portion of a wearer's heel.
  • stem 52 would be located near the arch area of a wearer's foot.
  • Stem 52 could be located at any convenient peripheral location, and would likely be removed altogether once bladder 36 is filled with fluid and the stem area sealed.
  • connection sites between the inner film layers with one another, and the connection sites between any inner film layer with an adjacent outer film layer determines the thickness and profile ofthe resulting bladder.
  • particular configuration ofthe connection sites can be adjusted to form internal fluid filled chambers.
  • the embodiments described heretofore are partial foot bladders of relatively simple construction using circular dot welds as connection sites.
  • the principles ofthe multiple film layer and multiple fluid layer bladder can be applied to any suitable bladder shape and application as will be seen in the following embodiments.
  • a full-foot bladder 54 is shown in FIGS. 14-17 comprising four film layers bonded to one another with increased geometric complexity.
  • This bladder defines two discrete chambers or fluid layers which are isolated from fluid communication from one another.
  • two outer film layers are aligned with the inner film layers as they would be attached together.
  • the outer film layers are shown as they would appear in a sealed and inflated bladder. In an uninflated state, all ofthe film layers are flat.
  • Bladder 54 comprises outer film layers 56 and 58, and inner film layers 60 and 62.
  • Outer film layers 56 and 58 are sealed along their peripheries to form an envelope
  • inner film layers 60 and 62 are sealed along their peripheries to form an inner envelope.
  • Inner film layers 60 and 62 are attached to one another and to adjacent outer film layers 56 and 58 respectively.
  • the peripheral seal ofthe inner film layers is spaced away from the peripheral seal ofthe outer film layers at certain points along the edges ofthe bladder to define gaps 59. These gaps 59 help keep the upper fluid layer in fluid communication with the lower fluid layer along the bladder.
  • Outer film layer 56 is attached to an adjacent inner film layer 60 at circular connection sites 64 and elongated connection sites 66. Identical reference numerals are used to refer to corresponding connection sites between outer film layer 58 and inner film layer 62. Inner film layers 60 and 62 are attached to one another at circular connection sites 68 and elongated connection sites 70.
  • FIGS. 16 and 17 illustrate cushioning profiles of bladder 54 taken through various portions ofthe bladder.
  • the four film layers are interconnected to one another so as to provide an upper fluid layer and a lower fluid layer.
  • the middle fluid layer is formed between the inner film layers, and is formed with a plurality of sub-chambers. Ns seen in the cross-sectional views, there are three fluid filled layers, some of which are vertically stacked and others which are vertically offset from one another in a vertical profile.
  • fluid layer 72 is formed between outer film layer 56 and an adjacent inner film layer 60
  • a fluid layer 74 is formed between outer film layer 58 and an adjacent inner film layer 62.
  • a fluid filled layer 72 formed between an outer film layer 56 and an adjacent inner film layer 60 is vertically aligned with fluid filled layer 74 formed between outer film layer 58 and an adjacent inner film layer 62.
  • N central fluid filled layer 76 is formed between inner film layers 60 and 62, and is vertically offset from fluid filled layers 74 and 72.
  • connection sites will result in vertical stacking of some sub-chambers or portions of sub-chambers in any given layer.
  • upper and lower fluid layers 72 and 74 are vertically aligned while middle fluid layer 76 is vertically offset from the two outer layers.
  • bladder 54 is constructed so that the edges of inner film layers 60 and 62 are not connected to the peripheral connection between outer film layers 56 and 58 in some areas. Separating the edges ofthe inner film layers from the outer film layers provides another degree of freedom in constructing the bladder. In general, wherever the edges of all ofthe film layers are bonded, the profile at that location will be flatter than the areas where the edges ofthe inner layers are separate from the edges ofthe outer film layers.
  • any desired cushioning profile can be achieved. For instance, taking the cushioning profile of FIGS. 16 and 17, if the pressurization ofthe outer fluid filed layers 72 and 74 is lower than the pressurization of central fluid filled layer 76, the resulting cushioning profile will be soft-hard-soft. This is a desired profile for providing soft point of purchase feel and a desirable response for repeated, relatively light loads such as in walking. The higher pressure inner fluid filled layer responds appropriately to higher impact loads such as during jumping or running.
  • elongated connection sites 70 divide the middle fluid layer into a plurality of discrete sub-chambers N, B, C, D, E, F, and G. Each of these sub- chambers is inflated through a separate inlet port "a" through “g,” respectively, so that each sub- chamber can be inflated to a different pressure.
  • the inlet ports are illustrated in their post- inflation state, sealed by a circular weld.
  • Some ofthe elongated connection sites define narrow inflation channels 75 which provide communication from an inlet port to one ofthe sub- chambers. In this manner, the cushioning and support provided by the middle fluid layer can be fine tuned along the plane ofthe foot.
  • chamber “G” can be inflated to 30 psi to provide medial support.
  • Chamber “C” can be inflated to 5 psi to cushion the first metatarsal head.
  • Chamber “F” can be inflated to 5 psi to function as a heel crash pad at foot strike.
  • Chamber “E can be inflated to 20 psi for heel cushioning.
  • Lateral chamber “D” can be inflated to 10 psi for lateral arch support.
  • Forefoot chamber “N” can be inflated to 25 psi and lateral forefoot chamber “B” can be inflated to 15 psi, so that both of these chambers provide forefoot cushioning.
  • connection sites can be arranged as to vary the height ofthe cushiomng profile anywhere along the bladder.
  • the shape of location of the connection sites can also be varied to obtain multiple chambers along any fluid filled layer or between fluid filled layers.
  • FIGS. 18-21 Another full foot bladder 78, illustrated in FIGS. 18-21, comprises four film layers bonded to one another with mostly elongated connection sites includes outer film layers 80 and 82 and inner film layers 84 and 86. As with the previous embodiment, these film layers are illustrated as they would be shaped when the bladder is inflated. In the uninflated state, they would be flat films. Outer film layers 80 and 82 are sealed along their peripheries to form an envelope. Inner film layers 84 and 86 are attached to one another at connection sites 88 to define therebetween a middle fluid filled layer 90. Inner film layer 84 is attached to outer film layer 80 at connection sites 92 to define therebetween a fluid filled layer 94. Similarly, inner film layer 86 is attached to outer film layer 82 at connection sites 96 to define therebetween another fluid filled layer 98. FIG. 19 illustrates a plan view of inner film layer 84 and connection sites 88.
  • FIGS. 20-21 illustrate cushioning profiles of bladder 78 taken through various portions of the bladder.
  • the four film layers are interconnected to one another to form a plurality of sub- chambers within each fluid filled layer when viewed in cross section.
  • outer fluid layers 94 and 98 make up much ofthe cross-sectional area in the central portion, with inner fluid layer 90 being relatively small in cross-section.
  • fluid filled layer 94 formed between an outer film layer 80 and an adjacent inner film layer 84 is vertically aligned with fluid filled layer 98 formed between outer film layer 82 and an adjacent inner film layer 86.
  • Central fluid filled layer 90 is formed between inner film layers 84 and 86, and is vertically offset from fluid filled layers 94 and 98.
  • connection sites 88 divide middle fluid layer 90 into a plurality of discrete chambers A, B, C, D, E, and F, which are inflated through inlet ports "a" through “f,” respectively.
  • FIG. 20 The detailed cushioning profile ofthe forefoot and the discrete chambers therein, FIG. 20, can best be understood with reference to the FIG. 18 in which inner medial chamber C is formed between connection site 88a which extends longitudinally and medially to surround chamber C. Surrounding inner medial chamber C are fluid filled layers 94 and 98 which are formed between each ofthe outer film layers and an adjacent inner film layer. Connection site 88b separates chamber B from chamber N, and with connection site 88a defines a fluid inlet channel 114 from inlet port "a" to chamber N. Generally in the center ofthe forefoot, outer fluid layers 94 and 98 surround fluid inlet channel 114.
  • two inner chambers B and D are formed between inner film layers 84 and 86 with a connection site 88c isolating the chambers from one another.
  • Outer connection site 92 attaches outer film layer 80 to inner film layer 84, with a mirror image connection site 96 that attaches outer film layer 82 to inner film layer 86.
  • FIG. 21 The detailed cushioning profile ofthe heel area, and the discrete chambers therein, is illustrated in FIG. 21 and is also best understood with reference to FIG. 18.
  • the profile of FIG. 21 is a cross-sectional view so that the relationships ofthe four film layers can be seen beyond line 21-21 of FIG. 19.
  • inner chamber F is defined between the inner film layers by virtue of a peripheral connection site 88d and connection site 88e.
  • the inner chamber is attached to outer film layers 80 and 82 at connection sites 92 and 96 respectively.
  • Outer films layers 80 and 82 extend transversely to the lateral side ofthe bladder and are attached to inner film layers 84 and 86 at other connection sites 92 and 96.
  • Inner chamber D is formed between the inner film layers by virtue of peripheral connection site 88d and connection site 88c. Another inner chamber E is located between medial inner chamber F and lateral inner chamber D.
  • Connection site 92a between outer film layer 80 and inner film layer 84 is shown in FIG. 21 to illustrate the structure ofthe fluid filled bladder.
  • Connection site 92a is illustrative ofthe connection sites between the outer film layers and inner film layers.
  • Inner film layers 84 and 86 are in tension in the fluid filled bladder as seen in FIGS. 20 and 21, and it can be seen that the size and location of connection site 92a and an aligned connection site 96a determines the spacing between the outer films layers of a fluid filled bladder.
  • Bladder 78 of FIGS. 18-21 is constructed so that all ofthe edges of inner film layers 84 and 86 are joined to the peripheral edges of outer film layers 80 and 82. This generally results in a flatter cushioning profile near the edges ofthe bladder. Again, varying the levels of pressurization ofthe fluid filled layers will provide differing cushioning profiles.
  • connection sites can be arranged as to vary the height ofthe cushioning profile anywhere along the bladder.
  • the shape of location of the connection sites can also be varied to obtain multiple chambers along any fluid filled layer or between fluid filled layers.
  • FIGS. 22 and 23 An example of a soft-hard-soft cushioning profile in a four film layer bladder is shown schematically in FIGS. 22 and 23 in the unloaded and loaded condition.
  • This cushioning profile is ofthe metatarsal head region.
  • side chambers 146 and central chambers 148 are formed from the inner film layers and top and bottom chambers 150 are formed between an outer film layer and an adjacent inner film layer.
  • side chambers 146 are pressurized to 35 psi
  • inner chamber 148 are pressurized to 25 psi while the top and bottom chambers are pressurized to 15 psi.
  • the lower pressure chambers 150 will provide a soft point of purchase feel and general cushioning for light loads.
  • high pressure central chambers 148 When a high impact load L is applied, high pressure central chambers 148 will provide the needed dampening ofthe load, and higher pressure side chambers 146 will stabilize the wearer's foot by providing a stiffer response at the sides to cradle the curved metatarsal head of a wearer's foot.
  • This profile illustrates an example of bladder construction and pressurization to provide anatomically coupled, regionalized cushioning for a wearer's foot.
  • a bladder 10' is illustrated in FIG. 24 as part of a midsole assembly for a shoe S.
  • the shoe comprises an upper U, a insole I, a midsole assembly M and an outsole O. While the full- foot bladder 10' is shown in the drawing, any ofthe bladders described herein or alternative constructions thereof can be substituted in the midsole assembly.
  • Bladder 10' can be incorporated into midsole 60 by any conventional technique such as foam encapsulation or placement in a cut-out portion of a foam midsole. N suitable foam encapsulation technique is disclosed in U.S. Patent No. 4,219,945 to Rudy, hereby incorporated by reference.
  • bladders with three film layers and four film layers have been described in detail, the invention is drawn broadly to multiple film layers defining fluid filled layers between them. Illustrations ofthe three and four film layer bladders clearly demonstrate the principles of the invention, and any number of film layers and configuration of fluid filled layers are within the scope ofthe present invention.
  • FIGS. 25A, 25B, 26A, and 26B are schematic representations of multi-layered bladders shown with the film layers exploded and with dots depicting connection sites between film layers.
  • FIGS. 25 A and 26 A depict the bladders after the connections are made and the bladders are inflated.
  • the five film layers ofthe bladder are clearly seen in FIG. 25A, and the contoured cross-section ofthe bladder is seen in FIG. 25A.
  • bladder chambers are stacked to form thicker edges, while a single layer of bladder chambers is centrally located.
  • the six layer bladder of FIGS. 26 A and 26B illustrates several regions available for filling with fluid at different pressures.
  • the bladder of FIGS. 26A and 26B is shown with shaded chambers to denote a different pressure from the unshaded chambers. If the shaded chambers were of a higher pressure than the unshaded chambers, the portion ofthe bladder including the higher pressure chambers would be more rigid and provide more support than the remainder of the bladder. Conversely, the lower pressure region would provide more cushioning than the remainder ofthe bladder. Thus, the right-hand side ofthe bladder as seen in FIGS. 26N and 26B would be more rigid and provide more support compared to the cushioning ofthe left-hand side of the bladder.
  • One of ordinary skill in the art would be able to apply these principles to vary the pressurization in the chambers to customize the cushioning profile ofthe bladder.
  • FIGS. 27-31 illustrate another multi-layered bladder comprising three layer bladders placed within an open area of a four layer bladder.
  • Three layer bladder 152 comprises an upper barrier layer 154, and a lower barrier layer 156 and a tensile element 158 disposed therein.
  • Tensile element 158 comprises a single sheet of polyurethane film.
  • tensile element 158 which is selectively die cut to the appropriate shape is placed between upper and lower barrier layers 154 and 156.
  • Weld prevention material is selectively placed between the upper and lower barrier layers and the tensile element as desired, and the assembly is welded so that welds 160 are provided as shown.
  • Upper and lower barrier layers 154 and 156 are then welded together around their periphery to seal bladder 152, and an inflation conduit 162 leading to an inflation point 164 is provided. Bladder 152 is then inflated through inflation point 164, after which inflation point is sealed. Similar to the first preferred embodiment, tensile element 158 is welded to the barrier layers which make up the envelope of bladder 152 when the films are in a flattened state so that the compressed or loaded condition of bladder 152 corresponds to the least stressed state of tensile element 158. Thus, tensile element 158 does not hamper the cushioning properties ofthe air when the inflated bladder is compressed. By selectively die cutting the interior sheet and selectively placing weld prevention materials alternately adjacent the upper and lower barrier layers, a variety of bladder shapes may be obtained.
  • N three layer bladder such as bladder 152 can be placed within another bladder as shown in FIGS. 30-31 to construct a bladder with multiple cushioning regions and layers.
  • Bladder 166 has a generally rectangular outline shape and comprises two outer layers 168 and 170 and two inner layers 172 and 174 attached to one another to form a tensile element 176 and interconnecting the outer layers in the main body ofthe bladder. Connection sites 178 between an outer layer and an inner layer are depicted as bars in the main body portion of bladder 166. An exemplary connection site between the inner layers is labeled 180 for illustration purposes. At one end of bladder 166, two three layer bladders 152 have been placed to provide a region of five film layers.
  • bladder 152 is positioned within bladder 166, outer layers 154 and 156 are attached to outer layers 168 and 170 respectively so that the internal bladder 152 acts as the tensile member in that region ofthe bladder. Internal bladders 152 are also anchored into position by attachment of inflation conduits 164 at the peripheral seam of bladder 166. Bladder 152 is pressurized to a higher pressure than bladder 166 so that the portion of bladder 166 containing three layer bladders 152 exhibits a stiffer response to cushioning than the main body portion ofthe bladder which only has tensile member 172 which does not interfere with the cushioning effects of air.
  • the cushioning characteristics ofthe bladder can be varied while still providing a complex-contoured shape without deep peaks and valleys.
  • a complex-contoured tensile bladder into which three layer bladders 152 can be incorporated is disclosed in U.S. Patent No. 5,802,739 to Potter et al., which is hereby incorporated by reference.
  • an alternative conceptual principle is that of a bladder comprising a group of fluid filled inner chambers and two outer film layers overlaying the inner chambers and attached to them at selected connection sites to provide an outer chamber or two.
  • the multiple film layer bladders ofthe present invention may also be constructed with an inverted seam along the sidewall. As shown in FIGS. 32-35, an inverted seam may be formed of the inner barrier sheets.
  • Bladder 210 includes top, outer barrier layer 212 formed of a sheet of barrier material and a bottom, outer barrier layer 214 formed of a sheet of barrier material. Barrier layers or sheets 212 and 214 are referred to as “top barrier sheet” and “bottom barrier sheet,” respectively, for ease of explanation. The use ofthe reference terms “top,” “bottom,” etc. are not intended to be limiting on the present invention, but rather are for ease of description and refer to the orientation ofthe bladders as shown in the figures.
  • Layers 212 and 214 can be secured directly to each other along edge 211, as shown at the right side of FIG. 32 and in the prior embodiments, or operatively secured to each other by sidewall(s) 216, as shown in FIG. 33.
  • Edge 211 is positioned within an article of footwear so that it is surrounded by midsole or outsole materials when the footwear is constructed, see FIG. 24.
  • Bladder 210 is constructed so that sidewalls 216 are the same size or larger than the windows exposing them, i.e., openings in the side ofthe midsole.
  • the number and size ofthe sidewalls 216 can depend on how many windows are in the midsole ofthe footwear, how much of bladder 210 is intended to be exposed through each bladder window and the size of each window.
  • a sidewall can be individually formed for each window or one wall can be formed for extending within and between all ofthe windows.
  • a bladder in the heel may be exposed by one or more windows on each side ofthe footwear and include the same number of sidewalls as windows.
  • the midsole can be formed with a single window that wraps around the heel.
  • each sidewall 216 is formed by attaching the edges ofthe two inner barrier layers to the top and bottom outer layers adjacent a weld ofthe two inner barrier layers.
  • Each sidewall 216 has an upper sidewall portion 217 and a lower sidewall portion 218 connected at an inwardly directed or inverted seam 250 formed by securing the two inner layers together by using securing techniques such as radio frequency (RF) welding, discussed below.
  • Sidewall portions 217, 218 in this bladder are the terminal ends of a tensile member 232.
  • a tensile member is an internal element within a bladder that insures a fixed, resting relation between the top and bottom barrier layers when the bladder is fully inflated.
  • Tensile members often act as restraining members for maintaining the general form ofthe bladder.
  • An example of tensile members includes at least one inner sheet of a barrier material secured at certain locations along the bladder to form an internal framework that maintains the shape ofthe bladder as described in the '001 patent to Potter et al.
  • the bladder chamber could include three dimensional fabric extending between the top and bottom sheets of barrier material such as those disclosed in U. S. Patent Nos. 4,906,502 and 5*083,361 to Rudy, which are hereby incorporated by reference.
  • Bladder 210 includes tensile member 232 formed of two inner barrier layers 252, 253 formed of sheets of barrier material. Layers 252 and 253 are sealed together and extend between the inner surfaces 262 of top and bottom barrier layers 212 and 214 for maintaining the shape and contour of bladder 210. Inner layers 252, 253 are secured to outer layers 212 and 214 using conventional techniques such as RF welding. The resulting welds 233 formed between any of the layers at the points of attachment are indicated schematically in FIG. 35 by "X.” Barrier layers 252 and 253 are secured together to establish an inner bladder chamber 255 providing multi-stage or multi-layer cushioning within bladder 210. Chamber 255 can include a plurality of internal channels.
  • Outer barrier layers 212 and 214 are welded together along their peripheral edges 280, 281 to the peripheral edges 282, 283, respectively of inner barrier layers 252 and 253.
  • This peripheral welding, as well as the interior welds 233 between the inner and outer layers results in a plurality of upper bladder chambers 221 above layer 252 and chambers 255, and a plurality of lower bladder chambers 222, below layer 253 and chambers 255.
  • the peripheral edge 282 of layer 252 is secured to the entire peripheral edge 281 of outer layer 212 and the peripheral edge 283 of layer 253 is secured to the entire peripheral edge 281 of outer layer 214, chambers 221 will be isolated from chambers 222 so that they are not in fluid communication.
  • the three chambers 221, 255, and 222 allow for at least three different fluid pressures to be achieved within bladder 210.
  • the fluid pressure within chambers 255 is preferably greater than that in chambers 220 and 222 so that bladder 210 will not bottom out under an applied load.
  • the pressure in chamber 255 is substantially in the range of 20 to 50 psi.
  • FIGS. 36-47 illustrate inverted seam bladders having a centered inverted seam which is formed of separate sidewall elements.
  • a first such embodiment, bladder 310' is shown in FIGS. 36-41; and a second embodiment, bladder 310, is shown in FIGS. 42-47.
  • Bladders 310, 310' are designed for positioning in the forefoot of an article of footwear so their sidewalls 316, 316' are exposed through a forefoot window or pair of forefoot windows along the lateral or medial side of an article of footwear.
  • Bladder 310 includes top, outer barrier layer 312 formed of a sheet of barrier material and bottom, outer barrier layer 314 also formed of a sheet of barrier material.
  • Layers 312 and 314 can be secured directly to each other along their unexposed sides 311, as shown in FIG. 39.
  • the sides 311 of bladder 310 that are not intended to be exposed by a bladder window extend across the width ofthe footwear and are covered by material forming the midsole or outsole.
  • Layers 312 and 314 are operatively secured to each other along their exposed sides by sidewall(s) 316, as shown in FIGS 38-40.
  • Welds 333 are schematically indicated by "X" representing the points of attachment between the layers of bladder 310 in FIG. 40.
  • Bladder 310 is constructed so that sidewalls 316 are the same size or larger than the windows exposing them.
  • the number and size ofthe sidewalls 316 can depend on how many windows are in the midsole ofthe footwear, how much of bladder 310 is exposed through each bladder window and the size of each window.
  • Each sidewall 316 is formed of an upper sidewall piece 317 and a lower sidewall piece 318 connected at an inverted seam 350 using well known securing techniques such as welding. Seam 350 is inwardly directed toward the center ofthe bladder and is centered along the sidewall.
  • Sidewall pieces 317, 318 in this bladder are formed of individual pieces of barrier materials separate from tensile member 332, and peripheral edges 380 and 381 of layers 312 and 314 are secured to edges 382, 383 of sidewall pieces 317 and 318.
  • a tensile member 332 is formed of two inner barrier layers 352, 353. Each layer 352, 353 is formed of a sheet of barrier material. Layers 352, 353 are sealed together and extend between the inner surfaces 362 of top and bottom barrier sheets 312, 314 for maintaining the shape and contour of bladder 310. Sealed layers 352, 353 provide a plurality of chambers 355 for containing a fluid that provides a second level of cushioning within bladder 310. The fluid pressure within region 355 can be greater than that in chambers 321 and 322 so that bladder 310 will not bottom out during use. Ns shown in FIG.
  • sidewall pieces 317 and 318 are not integral with layers 352 and 353 and a gap exists between the inner edges 390, 391 of sidewalls pieces 317 and 318 and the peripheral edges 392, 393 of inner barrier layers 352 and 353 so that bladder chambers 321 and 322 are not divided into two separate bladder chambers as in FIGS. 32-35. Rather, bladder chambers 321 and 322 are in fluid communication with one another via a peripheral bladder chamber 320.
  • Bladder 310' shown in FIGS. 42-47, is similar to bladder 310 in that it includes top and bottom barrier layers 312', 314' formed of sheets of at least one barrier material and connected along edge 311'. It also includes sidewalls 316' formed of sidewall pieces 317', 318' positioned between layers 312' and 314'. Ns shown in FIGS. 46 and 47, sidewall pieces 317' and 318' are secured to layers 312', 314' and each other so they form an inverted seam 350'. Bladder 310' only differs from bladder 310 in its internal tensile member 332'. Unlike tensile member 332, tensile member 332' does not form an internal region with multiple chambers.
  • tensile member 332' includes at least one internal layer 352', formed of a sheet of a barrier material, secured to the inner surfaces 362' of top and bottom layers 312', 314' using well known techniques such as welding.
  • the welds 333' are shown by an "X" in FIG. 47 to indicate schematically the locations ofthe welds.
  • Tensile member 332' forms communicating channels 340' within chamber 320'.
  • FIGS. 48-51 illustrate another embodiment ofthe present invention in a bladder having an inverted seam which is offset or displaced from the center ofthe sidewall.
  • bladder 410 includes outer barrier layers 412, 414 formed of sheets of barrier material. Layers 412 and 414 are secured directly to each other along edge 411 and operatively secured to each other by sidewall(s) 416.
  • Each sidewall 416 is formed of an upper sidewall piece 417 and a lower sidewall piece 418 secured together at an inwardly directed seam 450 which is offset or displaced from a central position on the sidewall.
  • Bladder 410 also includes a tensile member 432 having two inner barrier layers 452, 453 sealed together and extending between the inner surfaces 462 of top and bottom barrier sheets 412, 414 for maintaining the shape and contour of bladder 410.
  • Layers 452 and 453 can be secured to inner surfaces 462 at a plurality of weld sites by RF welding.
  • Layers 452, 453 are sealed about their perimeter and at a plurality of weld sites by welds 433, marked by an "X" in FIG. 51 and schematically representing weld sites to form an internal cushioning chamber 456 for containing a fluid that provides another level of cushioning within bladder 410.
  • the outer walls of bladder 410 are formed by securing the peripheral edges 480 and 481 of upper and lower layers 412 and 414, respectively, to the edges 482 and 483 of sidewalls 417, 418, respectively and securing sidewalls 417 and 418 to each other along their other edge at inverted displaced seam 450.
  • Chamber 420 is formed between the outer walls defined by layers 412, 414, and sidewalls 417, 418, and an interior chamber 455 formed by layers 452, 453.
  • Chamber 420 contains a fluid for initially cushioning the shock generated during a foot strike. Ns shown in FIGS. 50-51, sidewall pieces 417 and 418 are not integral with layers 452 and 453 so bladder chamber 420 is not divided into two parts like chamber 20 in FIGS.
  • Chamber 455 includes a fluid to provide additional cushioning to dampen the shock generated during a foot strike.
  • the fluid pressure within chamber 455 is greater than that in chamber 420 as discussed above with respect to bladder 210.
  • Inverted seam 450 of bladder 410 is displaced from the center of sidewall 416.
  • the location of seam 450 is determined by the relative size of sidewall pieces 417 and 418. Ns shown in FIGS. 50-51, sidewall piece 418 is larger than piece 417. More specifically, piece 418 is approximately twice the width of piece 417.
  • the size difference in combination with the location ofthe welds indicated with an "X,” shown in FIG. 51, causes seam 450 to be displaced from the center ofthe sidewall when the bladder is inflated.
  • the seam is located along sidewall 416 a distance equal to the span of piece 418 between its points of attachment to layer 414 and piece 417.
  • Displaced seam 450 produces a sidewall 416 having its seam positioned at or above the upper limit of a bladder window through which it is exposed.
  • piece 417 can be larger than piece 418 so that seam 450 occurs at the bottom ofthe window instead ofthe top.
  • the inverted orientation of seam 450 and its displacement to an edge hide it completely from a bladder window to give a clean, seamless appearance.
  • This attachment method eliminates costly manufacturing steps taken to improve the appearance ofthe exposed bladder window and eliminate the thick rough edge.
  • FIGS. 52-56 illustrate a full length bladder 500 having a raised arch region 510 for providing support to the arch of a user in place of pads positioned below the insole of an article of footwear.
  • Top and bottom barrier layers 512, 514 of bladder 500 can be secured directly together as at seam 511. Alternatively, they can be secured using an inverted seam.
  • the inverted seam is placed in the arch region 510, top layer 512 is secured to one end of first sidewall piece 516 of barrier material.
  • N first end of second sidewall piece 517 is secured to bottom layer 514.
  • the other end of sidewall piece 517 is secured to a first end of an intermediate piece 515 so an inverted seam 550 is formed between the two sidewall pieces 515, 517.
  • the other end of intermediate piece 515 is secured to first sidewall piece 516 so that top and bottom layers 512, 514 are operatively connected.
  • Inverted seam 550 minimizes the distance the sidewall pieces 516, 517 extend away from the peripheral edge of bottom layer 514. The less the sidewalls extend away from the center of the bladder 500, the more the arch region can be built up and away from the center ofthe bladder without extending beyond the limits ofthe footwear into which it is incorporated.
  • the top and bottom barrier sheets, sidewalls elements and inner barrier layers can be formed from the same or different barrier materials, such as thermoplastic elastomer films, using known methods.
  • Thermoplastic elastomer films that can be used with the present invention include polyester polyurethane, polyether polyurethane, such as a cast or extruded ester based polyurethane film having a shore "A" hardness of 80-95, e.g., Tetra Plastics TPW-250.
  • Other suitable materials can be used such as those disclosed in U.S. Patent No. 4,183,156 to Rudy, hereby incorporated by reference.
  • thermoplastic urethanes which are particularly useful in forming the film layers are urethanes such as PellethaneTM, (a trademarked product ofthe Dow Chemical Company of Midland, Michigan), Elastollan® (a registered trademark ofthe BASF Corporation) and ESTANE® (a registered trademark ofthe B.F. Goodrich Co.), all of which are either ester or ether based and have proven to be particularly useful.
  • Thermoplastic urethanes based on polyesters, polyethers, polycaprolactone and polycarbonate macrogels can also be employed.
  • Further suitable materials could include thermoplastic films containing crystalline material, such as disclosed in U.S. Patent Nos.
  • polyurethane including a polyester polyol, such as disclosed in U.S. Patent No. 6,013,340 to Bonk et al., which is incorporated by reference; or multi-layer film formed of at least one elastomeric thermoplastic material layer and a ba ⁇ ier material layer formed of a copolymer of ethylene and vinyl alcohol, such as disclosed in U.S. Patent No. 5,952,065 to Mitchell et al., which is incorporated by reference.
  • the multiple film layer bladder can be formed with ba ⁇ ier materials that meet the specific needs or specifications of each of its parts.
  • the present invention allows for top layer to be formed of a first barrier material, bottom layer to be formed of a second barrier material and each part ofthe sidewall(s) to be formed of a third barrier material.
  • the sidewall parts can each be formed of different barrier materials.
  • the inner barrier sheets and the sidewall parts are formed ofthe same barrier material when the inverted seam is formed by attaching the terminal ends of inner barrier sheets to the outer barrier sheets adjacent a weld ofthe inner sheets.
  • the sidewalls are formed ofthe same material as the inner barrier sheet material.
  • the inner barrier sheets are formed of different materials, sidewall parts must be are formed of different materials as well for compatibility. If the inner layers are to be visible through a bladder window, the sidewall will most likely be formed of a transparent material for maximum visibility.
  • the top and bottom layers do not need to be formed of a transparent material. Instead, they can each be formed of an opaque barrier material having the same or different thicknesses.
  • the sidewall pieces can be formed of a thicker or thinner transparent material so the interior is visible. The thickness of sidewall 16 depends on at least the material used, the environment su ⁇ ounding the bladder and the structural requirements ofthe sidewalls.
  • Film thicknesses for the top and bottom layers are generally in the range of five (5) to one hundred (100) thousandths of an inch (0.005 to 0.100 inches). If a thicker sidewall is desired, its thickness is generally in the range of twenty-five (25) to two hundred (200) thousandths of an inch (0.025 to 0.200 inches).
  • the barrier materials used for each portion ofthe bladder can be customized to meet only the specific needs of that portion.
  • the exposed sidewalls can be made of a thicker, stiffer, transparent barrier material. Contrary to industry practice, only the portion ofthe bladder being shown in a bladder window would then be made from the stiffer transparent material.
  • the sidewalls can be made with a pre-shaped form or with greater rigidity to vertical compression in order to compliment the pressure in the bladder or individual pressure regions within the bladder.
  • the materials chosen for sidewalls could also be used to stiffen portions ofthe footwear that experience compressive and sheer loading, such as the medial side ofthe heel. An economic benefit is also realized. By not forming the top and bottom layers with the same material as the sidewalls, the cost of producing a bladder can be reduced. According to the present invention, the most expensive materials are only used where needed, not over the entire bladder.
  • the bladder is inflated preferably with a gaseous fluid, for example, hexafluorethane, sulfur hexafluoroide, nitrogen, air, or other gases such as those disclosed in the aforementioned '156, '945, '029, or '176 patents to Rudy, or the '065 patent to Mitchell et al.
  • a gaseous fluid for example, hexafluorethane, sulfur hexafluoroide, nitrogen, air, or other gases such as those disclosed in the aforementioned '156, '945, '029, or '176 patents to Rudy, or the '065 patent to Mitchell et al.
  • the method of forming a bladder with at least one inverted sidewall seam includes selecting the material for each portion based on at least the forces and stresses it will experience and the performance characteristics it is intended to provide.
  • the aesthetics of each portion ofthe bladder must also be considered. For example, if the interior of the bladder is intended to be visible, the exposed sidewall(s) need to be formed of a transparent material that allows the desired visibility. However, as discussed above, the transparent material must also be strong enough to prevent rupturing from externally applied forces and to withstand bending stresses applied to bladder sidewalls during the stride ofthe user.
  • the top and bottom layers ofthe bladder may be formed of an opaque material having a thickness of 0.005 to 0.050 inches to meet the specific needs of their final location in the shoe, as discussed above. If a bladder configuration is desired that provides visibility from only the bottom surface, the top and bottom films can be different. A clear film with a thickness in the range of .020" - .100" could be used on the bottom surface and a standard opaque film of .005" - .010" could be used for the top and side surfaces.
  • the barrier sheets forming the top layer, bottom layer and sidewalls are shaped using well known cutting or forming techniques.
  • the flat, shaped sheets are then positioned so their peripheral edges form the perimeter ofthe bladder.
  • the sidewall pieces are positioned between the top and bottom barrier sheets and secured thereto using well known techniques such as RF welding.
  • the barrier sheets used to form the bladders are selectively treated with a weld prevention material which prevents RF welds from being formed.
  • weld inhibitors are Teflon® coatings and Teflon® coated fabrics or strips, such as Du Pont Teflon® #49 or #57, which can positioned wherever welds are to be inhibited.
  • the weld pattern for each layer is first determined and marked on the sheets.
  • the weld pattern would co ⁇ espond to the pattern of connection sites on the specific side of a layer.
  • This pattern is marked on the sheets either in the positive or negative by screen printing, inkjet printing, or a transfer method.
  • the marking can be visible as with an ink, or invisible as with a transfer method which .applies weld inhibiting material onto the side ofthe film layer. It will be understood that the weld prevention materials would generally be the negative image ofthe desired connection sites.
  • the application of weld inhibiting material onto the layer can be a separate method step from the marking ofthe connection sites.
  • connection site shapes and configurations is limited only by the application of weld inhibiting material to the layers. Once the connection sites are properly marked and the weld inhibiting material applied to the film layers, RF energy is applied and RF welding takes place only where layers are in direct contact with one another and not separated by weld prevention material.
  • the peripheral seal of the outermost layers to form the envelope ofthe bladder can be formed in an integral step with the remainder ofthe welds, or could be formed before or after the welding ofthe connection sites. After the bladder is formed, it is filled with fluid, and the inlet port is sealed off by a RF weld.
  • RF welding has been the preferred method of making the multi-stage cushioning bladders ofthe present invention
  • the particular type of attachment may vary.
  • an adhesive bond between film layers may be used, as well as other known fusion, thermal, and ultrasonic bonding methods.
  • the bladder chambers can be inflated using well known techniques. While the preferred method is to use flat sheets of material, the sidewalls, and outer and inner barrier layers, can also be preformed to have different shapes and effects before they are secured together to form the bladder. For example, shapes can be formed by thermoforming the sheets ofthe barrier layer materials.

Abstract

A bladder (36) which is particularly useful for a sole assembly of a shoe is formed of multiple layers of barrier film to provide multiple pressurized layers of cushioning fluid or gas when the bladder is filled. A multiple gas layer bladder enhances cushioning response by relying more on the response characteristics of the gas and reducing the amount of foam and the dependence on foam as a cushioning material. The internal film layers (42,44) provide a truss-like geometry in cross section and act as tensile members to impart a generally smooth surface contour to the bladder. The bladder (36) is constructed to provide complex regionalized cushioning profiles which are coupled to the anatomy of the foot and expected loads at known points. The sidewalls of the bladder can be constructed with an inverted seam construction to eliminate finishing steps in the manufacture of cushioning bladders and alternatively to provide a clean, seamless appearance along the sidewalls. The inverted seam can be formed by attaching the peripheral edges of inner barrier layers (42,44) to the outer barrier layers (38,40) adjacent a weld between inner barrier layers to provide an inside-out inverted seam appearance. An inverted seam can also be formed by providing separate sidewall elements attached to the barrier layers of the bladder to provide a seam displaced from the center of the sidewall.

Description

BLADDERWITHINVERTEDEDGE SEAMAND METHOD OFMAKINGTHEBLADDER
FIELD OFTHE INVENTION
The present invention relates to an improved cushioning member for a shoe, and more particularly to a fluid filled bladder having multiple layers of chambers with an inverted edge seam and a method of forming an improved cushioning member with inverted seam lines along its sidewalls. BACKGROUND OF THE INVENTION
Considerable work has been done to improve the construction of cushioning members which utilize fluid filled bladders such as those used in shoe soles. Although with recent developments in materials and manufacturing methods, fluid filled bladders have greatly improved in versatility, there remain problems associated with obtaining optimum cushioning performance and durability. Fluid filled bladder members are commonly referred to as "air bladders," and the fluid is generally a gas which is commonly referred to as "air" without intending any limitation as to the actual gas composition used.
There are numerous conventional articles of footwear having gas filled cushioning devices in their midsole or outsole. Gas filled cushioning devices are typically referred to as bladders or "air bladders," and the gas is commonly referred to as "air" without intending any limitation as to the actual gas composition used. One well known type of bladder used in footwear is commonly referred to as a "two film bladder." These bladders include an outer shell formed by welding the peripheral edges of two symmetric pieces of a barrier material together. This results in the top, bottom and sidewalls ofthe bladder being formed ofthe same barrier material. If any one part of a two film bladder needs to be formed of a specific material and/or to a specific thickness, the entire bladder must be formed of that specific material and or to that specific thickness. Forming a bladder from only two pieces of a barrier material prevents the side, top and bottom walls from being customized.
Closed-celled foam is often used as a cushioning material in shoe soles and ethylene- vinyl acetate copolymer (EVA) foam is a common material. In many athletic shoes, the entire midsole is comprised of EVA. While EVA foam can easily be cut into desired shapes and contours, its cushioning characteristics are limited. One ofthe advantages of gas filled bladders is that gas as a cushioning compound is generally more energy efficient than closed-cell foam. This means that a shoe sole comprising a gas filled bladder provides superior cushioning response to loads than a shoe sole comprising only foam. Cushioning generally is improved when the cushioning component, for a given impact force, spreads the impact force over a longer period of time, resulting in a smaller impact force being transmitted to the wearer's body. Even shoe soles comprising gas filled bladders include some foam, and a reduction in the amount of foam will generally afford better cushioning characteristics.
The major engineering problems associated with the design of air bladders formed of barrier layers include: (I) obtaining complex-curved, contoured shapes without the formation of deep peaks and valleys in the cross section which require filling in or moderating with foams or plates; (ii) ensuring that the means employed to give the air bladder its complex-curved, contoured shape does not significantly compromise the cushioning benefits of air; (iii) providing regionalized cushioning to an air bladder to account for differences in load corresponding to the anatomical topology of a human foot especially during high loads; (iv) designing air bladders which maximize the cushioning properties of air and are made entirely of flat barrier films; and (v) designing bladders that provide the advantages of complex-contoured shapes and regionalized cushioning and which can be integrated easily into existing midsole manufacturing methods.
The prior art is replete with attempts to address these difficulties, but have only solved one, two or even three ofthe above-described problems often presenting new obstacles in the process. Most ofthe prior art discloses some type of tensile member. N tensile member is an element associated with a bladder which ensures a fixed, resting relation between the top and bottom barrier layers when the bladder is fully filled, and which often is in a state of tension while acting as a restraining means to maintain the general external form ofthe bladder.
Some prior art constructions are composite structures of bladders containing foam or fabric tensile members. One type of such composite construction prior art concerns bladders employing an open-celled foam core as disclosed in U.S. Patent Νos. 4,874,640 and 5,235,715 to Donzis. These cushioning elements do provide latitude in their design in that the open-celled foam cores allow for complex-curved and contoured shapes ofthe bladder without deep peaks and valleys. However, bladders with foam core tensile member have the disadvantage of unreliable bonding ofthe core to the barrier layers. Another disadvantage of foam core bladders is that the foam core gives the bladder its shape and thus must necessarily function as a cushioning member which detracts from the superior cushioning properties of a gas alone. One reason for this is that in order to withstand the high inflation pressures associated with bladders, the foam core must be of a high strength which requires the use of a higher density foam. The higher the density ofthe foam, the less the amount of available volume in the bladder for a gas. Consequently, the reduction in the amount of gas in the bladder decreases the effectiveness of gas cushioning.
Even if a lower density foam is used, a significant amount of available volume is sacrificed which means that the deflection height ofthe bladder is reduced due to the presence of the foam, thus accelerating the effect of "bottoming out." Bottoming out refers to the premature failure of a cushioning device to adequately decelerate an impact load. Most cushioning devices used in footwear are non-linear compression based systems, increasing in stiffness as they are loaded. Bottoming out is the point where the cushioning system is unable to compress any further and is a common failure in shoe soles comprised of foam. Also, the elastic foam material itself performs a significant portion ofthe cushioning function and is subject to compression set. Compression set refers to the permanent compression of foam after repeated loads which greatly diminishes its cushioning aspects. In foam core bladders, compression set occurs due to the internal breakdown of cell walls under heavy cyclic compression loads such as walking or running. The walls of individual cells constituting the foam structure abrade and tear as they move against one another and fail. The breakdown ofthe foam exposes the wearer to greater shock forces.
Another type of composite construction prior art concerns air bladders which employ three dimensional fabric as tensile members such as those disclosed in U.S. Patent Nos. 4,906,502 and 5,083,361 to Rudy, which are hereby incorporated by reference. The bladders described in the Rudy patents have enjoyed considerable commercial success in NIKE, Inc. brand footwear under the name Tensile-Air® and Zoom™. Bladders using fabric tensile members virtually eliminate deep peaks and valleys, and the methods described in the Rudy patents have proven to provide an excellent bond between the tensile fibers and barrier layers. In addition, the individual tensile fibers are small and deflect easily under load so that the fabric does not interfere with the cushioning properties of air.
One shortcoming of these bladders is that currently there is no known manufacturing method for making complex-curved, contoured shaped bladders using these fabric fiber tensile members. The bladders may be of different heights, but the top and bottom surfaces remain flat with no contours and curves.
Another disadvantage of fabric tensile members is the possibility of bottoming out. Although the fabric fibers easily deflect under load and are individually quite small, the sheer number of them necessary to maintain the shape ofthe bladder means that under high loads, a significant amount ofthe total deflection capability ofthe air bladder is reduced by the volume of fibers inside the bladder and the bladder can bottom out.
One ofthe primary problems experienced with the fabric fibers is that these bladders are initially stiffer during initial loading than conventional gas filled bladders. This results in a firmer feel at low impact loads and a stiffer "point of purchase" feel than belies their actual cushioning ability. This is because the fabric fibers have relatively low elongation to properly hold the shape ofthe bladder in tension, so that the cumulative effect of thousands of these relatively inelastic fibers is a stiff one. The tension ofthe outer surface caused by the low elongation or inelastic properties ofthe tensile member results in initial greater stiffness in the air bladder until the tension in the fibers is broken and the solitary effect ofthe gas in the bladder can come into play which can affect the point of purchase feel of footwear incorporating a fabric core bladder. Another category of prior art concerns air bladders which are injection molded, blow- molded or vacuum-molded such as those disclosed in U.S. Patent No. 4,670,995 to Huang and U.S. Patent No. 4,845,861 to Moumdjian, which are hereby incorporated by reference. These manufacturing techniques can produce bladders of any desired contour and shape while reducing deep peaks and valleys.
In Huang '995 it is taught to form strong vertical columns so that they form a substantially rectilinear cavity in cross section. This is intended to give substantial vertical support to the cushion so that the cushion can substantially support the weight ofthe wearer with no inflation. Huang '995 also teaches the formation of circular columns using blow-molding. In this prior art method, two symmetrical rod-like protrusions ofthe same width, shape and length extend from the two opposite mold halves meet in the middle and thus form a thin web in the center of a circular column. These columns are formed of a wall thickness and dimension sufficient to substantially support the weight of a wearer in the uninflated condition. Further, no means are provided to cause the columns to flex in a predetermined fashion which would reduce fatigue failures. Huang's columns are also prone to fatigue failure due to compression loads which force the columns to buckle and fold unpredictably. Under cyclic compression loads, the buckling can lead to fatigue failure ofthe columns.
Yet another prior art category concerns bladders using a corrugated middle film as an internal member as disclosed in U.S. Patent No. 2,677,906 to Reed which describes an insole of top and bottom sheets connected by lateral connections lines to a corrugated third sheet placed between them. The top and bottom sheets are heat sealed around the perimeter and the middle third sheet is connected to the top and bottom sheets by lateral connection lines which extend across the width ofthe insole. An insole with a sloping shape is thus produced, however, because only a single middle sheet is used, the contours obtained must be uniform across the width ofthe insole. By use ofthe attachment lines, only the height ofthe insole from front to back may be controlled and no complex-curved, contoured shapes are possible. Another disadvantage of Reed is that because the third, middle sheet is attached with connection lines that extend across the entire width ofthe insole, all the chambers formed are independent of one another and must be inflated individually which is impractical for mass production.
The alternative embodiment disclosed in the Reed patent uses just two sheets with the top sheet folded upon itself and attached to the bottom sheet at selected locations to provide rib portions and parallel pockets. The main disadvantage of this construction is that the ribs are vertically oriented and similar to the columns described in the patents to Huang and Moumdjian, would resist compression and interfere with and decrease the cushioning benefits of air. As with the first embodiment of Reed, each parallel pocket thus formed must be separately inflated.
N prior bladder and method of construction using flat films is disclosed in U.S. Patent No. 5,755,001 to Potter et al, which is hereby incorporated by reference. The interior film layers are bonded to the envelope film layers ofthe bladder which defines a single pressure chamber. The interior film layers act as tensile members which are biased to compress upon loading. The biased construction reduces fatigue failures and resistance to compression. The bladder comprises a single chamber inflated to a single pressure with the tensile member interposed to give the bladder a complex-contoured profile. There is, however, no provision for multiple layers of fluid in the bladder which could be inflated to different pressures providing improved cushioning characteristics and point of purchase feel.
Another well known type of bladder is formed using blow molding techniques such as those discussed in U.S. Patent No. 5,353,459 to Potter et al, which is hereby incorporated by reference. These bladders are formed by placing a liquefied elastomeric material in a mold having the desired overall shape and configuration ofthe bladder. The mold has an opening at one location through which pressurized gas is introduced. The pressurized gas forces the liquefied elastomeric material against the inner surfaces ofthe mold and causes the material to harden in the mold to form a bladder having the preferred shape and configuration. The produced bladders typically include a formed seam that is a result ofthe elastomeric material being forced between the mold halves when the halves are secured together. The seam appears in the center ofthe sidewalls and is directed outwardly away from the center ofthe bladder. The seam includes jagged edges and is visible when the bladder is exposed along the midsole of an article of footwear.
Many articles of footwear include at least one opening along their midsole for exposing the sidewalls of a contained bladder. When the exposed sidewalls are transparent, the interior of the bladder is visible. These openings along the midsole are commonly referred to as "windows" and are usually located in the heel and/or forefoot. Examples of such footwear include the NIKE AIRMAX shown in the 1995 and 1997 NIKE Footwear catalogs.
Because the exposed transparent material is vulnerable to being punctured, it must be of a strength and thickness that will resist penetration from external elements. As a result, the requirements ofthe material used for the exposed sidewalls control the construction, aesthetic and functional characteristics ofthe entire two film or blow molded bladder. Individual bladder components cannot be customized. Instead, the bladder is formed entirely ofthe transparent material having the thickness needed to prevent rupturing ofthe exposed sidewall. This results in the top and bottom ofthe bladder being formed ofthe same thick, transparent sidewall material, even if the transparent, puncture resistant material is not needed in these parts ofthe bladder. Unnecessarily thick top and bottom layers can detract from the overall flexibility ofthe bladder. Conversely, if certain portions ofthe bladder, such as the top and bottom surfaces, needed to be made of a thicker material relative to the transparent sidewalls, the transparency and/or flexibility ofthe sidewalls may be compromised. Using one material for each half of the bladder also prevents the bladder from being customized so different portions ofthe bladder offer different performance and aesthetic advantages.
Preparing a bladder for being exposed along the length of a sole window can also include expensive and time consuming manufacturing steps. As discussed, a construction seam can result along the sidewalls of a bladder during manufacturing. The seam appears in the center of the sidewall after the bladder has been inflated. The seam includes a thick, rough edge that during the manufacturing ofthe bladder must be reduced to prevent injury and give the sidewalls a smooth, uninterrupted look. The manufacturing steps taken to reduce the seam line increase the manufacturing time and cost of producing a bladder.
Cushioning system design must meet criteria for both comfort at low loads such as standing, walking, point of purchase feel, and performance at high loads such as running, planting, jumping, pivoting. In analyzing the cushioning characteristics of various devices, it is instructive to view such devices in cross-section. That is, take a visual slice vertically down into the midsole to reveal the cushioning profile ofthe structure that is to provide the necessary shock absorption and response functions. In prior art cushioning devices, typically any single cross section ofthe cushioning profile is generally a simple foam core, or a single layer of fluid sometimes surrounded by or encased in foam. This simple profile seeks to balance the low-load — high-load criteria by a compromise to both since a simple cushioning profile provides generally uniform shock absorption and response characteristics along the entire device, but does not provide a complex cushioning profile which can be customized or regionalized to the loads realized at certain points along a bladder.
A problem with manufacturing complex, highly regionalized bladders of two films has been inordinate twisting ofthe fluid filled part. A non-planar geometry is difficult to integrate into subsequent shoe making processes.
There exists a need for a bladder member which solves all ofthe problems listed above: complex-curved, contoured shapes; no interference with the cushioning benefits of gas alone; provision of regionalized cushioning that can be coupled to the anatomical features of a foot; and simplified manufacture through the use of flat barrier films and integration into existing midsole construction methods. As discussed above, while the prior art has addressed some of these problems, they each have their disadvantages and fall short of a complete solution.
One object of this invention is to provide a cushioning bladder for footwear with multiple stage cushioning regionalized characteristics constructed of film layers.
Another object of this invention is to provide a bladder for cushioning an article of footwear that can have different materials for its top outer barrier sheet, bottom outer barrier sheet and sidewalls.
N further object of this invention is to provide a method of forming a bladder with inverted seam lines that do not require special treatment during manufacturing. SUMMARY OF THE INVENTION
The present invention pertains to a cushioning bladder and method of making the same. The bladder ofthe present invention may be incorporated into a sole assembly of a shoe to provide cushioning when filled with fluid. The bladder and method ofthe present invention allows for complex-curved, contoured shapes without interfering with the cushioning properties of gas, and provides regionalized cushioning profiles. N complex-contoured shape refers to varying the surface contour ofthe bladder in more than one direction. The present invention overcomes the enumerated problems with the prior art while avoiding the design trade-offs associated with the prior art attempts.
In accordance with one aspect ofthe present invention, a bladder is formed of multiple layers of barrier film to provide multiple pressurized layers of cushioning fluid or gas when the bladder is filled to provide layers of distinct cushioning properties. In a preferred embodiment, the distinct properties are caused by multiple pressurized layers of gas, wherein a multiple gas layer bladder enhances cushioning response by relying more on the response characteristics of the gas and reducing the amount of foam and the dependence on foam as a cushioning material.
The most basic construction is a bladder formed of three barrier layers which forms two pressurized layers of gas. N three layer bladder comprises two outer layers sealed around a perimeter to form the envelope ofthe bladder and a middle layer which is attached to the outer layers and serves as a tensile element. The location ofthe connection sites ofthe middle layer to the outer layers determines the topography ofthe outer surface ofthe bladder. N middle layer also divides the interior ofthe bladder into at least two layers of fluid or gas. Additional layers of film between the outer envelope layers provide more layers of fluid or pressurized gas with the interior layers of film being attached to one another in ways to allow for further customization of the cushioning profile.
N method of forming a cushioning bladder ofthe present invention comprises the steps of providing four vertically aligned sheets of barrier film, each ofthe sheets having a peripheral edge. N positioning step ofthe method includes placing the two inner sheets between the two outer sheets so that each inner sheet is adjacent an outer sheet. The inner sheets are positioned such that at least a portion of each ofthe sheets extends within the peripheral edge ofthe outer sheets. The method further includes the steps of securing the top outer and top inner sheets together proximate the peripheral edge ofthe top outer sheet, securing the bottom outer and bottom inner sheets together proximate the peripheral edge ofthe bottom outer sheet, and securing two inner sheets together at a location spaced inwardly from their peripheral edges and the peripheral edges of two outer sheets such that an inverted seam is formed in between the two outer sheets when fluid is introduced within the bladder. The sheets are secured relative to each other by directly connecting the sheets to one another or by securing them to respective ends of an intermediate member. The bottom inner and outer sheets can also be sized so that the resulting inverted seam is offset from the center ofthe resulting sidewall ofthe bladder.
The inverted seam bladders can include separate top, bottom and sidewall pieces of barrier materials that are individually selected to provide increased durability, greater puncture resistance and localized stiffness, where needed, for enhanced cushioning, stability and longevity. The individual pieces of barrier material that form the sidewalls can be varied depending upon the needs of each portion ofthe sidewall. The bladder according to the present invention comprises a top sheet of a barrier material having a peripheral edge and, a bottom sheet of a barrier material being at least partially coextensive with the top sheet. The bladder also includes first and second sidewall elements comprised ofthe same or different barrier materials. The first sidewall element extends between the top and bottom sheets, and itself has top and bottom edges. The top edge ofthe first sidewall element is secured to the top sheet of barrier material proximate its peripheral edge, and bottom edge ofthe first sidewall element is secured to the second sidewall element. The opposite edge ofthe second sidewall element is secured to the bottom sheet of barrier material so that a fluid containing bladder is formed with two sidewall elements extending between the top and bottom sheets.
During the production ofthe bladder, the inverted seams are formed by arranging the barrier sheets and sidewalls pieces so they are at least partially coextensive and welding the two sidewall pieces of barrier material together at a location spaced inwardly from the peripheral welds that secure the two sidewall pieces to the top and bottom barrier sheets, respectively. After the sheets and sidewalls have been secured to each other so that a sealed inner chamber is formed, a cushioning fluid is introduced into the bladder. When more than four sheets of barrier material are used in forming a bladder, each inverted seam is formed by securing adjacent sidewall pieces of barrier material together at locations spaced inwardly from the welds that secure the sidewalls to the top and bottom barrier sheets. The inverted construction seams accordmg to the present invention do not need to be treated with any finishing steps in order to improve their appearance or eliminate thick, rough edge. Ns a result, the costly production steps associated with finishing and reducing conventional construction seams are eliminated.
The present invention makes it possible for a manufacturer to aesthetically customize a bladder. The manufacturer can use different barrier materials for the top barrier sheet, bottom barrier sheet and portions ofthe sidewalls ofthe bladder. This allows the different parts ofthe bladder to be customized so the top and bottom sheets are not formed ofthe transparent sidewall material. The bladder can also be customized so the upper and lower pieces of a sidewall do not have to be formed ofthe same material. Materials can be used for the sidewalls that have a greater strength or thickness when compared to those used for the top and bottom pieces, or vice versa. Also, the materials used for the top and bottom sheets may not have to be as stiff or resistant to lateral stresses as are those used for the sidewalls. The present invention also permits a manufacturer to customize a bladder so it has certain performance characteristics in selected areas without furnishing the entire bladder with these characteristics or the materials that provide them. For example, the sidewalls of a bladder according to the present invention can be customized by using a material with the same degree of vertical stiffness, resistance to vertical compression, as the pressurized chambers they define. These sidewalls complement the cushioning and stability ofthe chambers without requiring the top and bottom pieces to be as stiff as these sidewall pieces extending between them. The sidewalls or portions thereof can also be preformed to have different shapes and effects before being secured to the top and bottom pieces ofthe bladder.
The location ofthe seam can be varied so the inverted seam is not located in the center of the sidewall or in a bladder window. The size ofthe pieces of sidewall barrier material determine the location ofthe inverted seam(s). If the pieces are substantially equivalent in size, the seam will occur in the center ofthe sidewalls. If they differ in size, the seam will be offset from the center ofthe sidewall. The greater the size difference, the greater the offset. The sidewall pieces can be sized so the offset, inverted seam occurs proximate the top or bottom barrier sheet. In this instance, the larger piece forms a larger part ofthe sidewall and is the portion exposed in the bladder window. The smaller sidewall piece and offset seam can be covered by midsole or upper materials. The seams formed between the sidewalls and the top and bottom barrier sheets can be used as a gasket or reference point when introducing a midsole within a mold.
These and other features and advantages ofthe invention may be more completely understood from the following detailed description ofthe preferred embodiment ofthe invention with reference to the accompanying drawings. BRTEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a bladder constructed of three film layers in accordance with an embodiment ofthe present invention.
FIG. 2 is a top plan view ofthe bladder of FIG. 1.
FIG. 3 is a cross sectional view ofthe bladder taken along line 3-3 of FIG 2.
FIG. 4 is a perspective view of another bladder constructed of three film layers to illustrate contouring ofthe outer surfaces by placement ofthe connection sites.
FIG. 5 is a top plan view ofthe bladder of FIG. 4.
FIG. 6 is a cross sectional view ofthe bladder taken along line 6-6 of FIG 5.
FIG. 7 is a perspective view of a full-foot bladder constructed of three film layers in accordance with another embodiment ofthe present invention.
FIG. 8 is a top plan view ofthe bladder of FIG. 7.
FIG. 9 is a cross sectional view ofthe bladder taken along line 9-9 of FIG. 8.
FIG. 10 is a cross sectional view ofthe bladder taken along line 10-10 of FIG. 8.
FIG. 11 is a perspective view of a heel bladder constructed of four film layers in accordance with another embodiment ofthe present invention.
FIG. 12 is a top plan view ofthe bladder of FIG. 11.
FIG. 13 is a cross sectional view ofthe bladder taken along line 13-13 of FIG 12.
FIG. 14 is an exploded view ofthe alignment of an inner bladder to outer film layers of a bladder in accordance with yet another embodiment ofthe present invention.
FIG. 15 is a top plan view ofthe bladder of FIG. 14, shown sealed and inflated.
FIG. 16 is a cross section ofthe bladder taken along line 16-16 of FIG 15.
FIG. 17 is a cross section ofthe bladder taken along line 17-17 of FIG 15. FIG. 18 is an exploded view ofthe alignment of an inner bladder to outer film layers of a bladder in accordance with still another embodiment ofthe present invention.
FIG. 19 is a top plan view ofthe bladder of FIG. 18, shown sealed and inflated.
FIG. 20 is a cross sectional view ofthe bladder taken along line 20-20 of FIG 19.
FIG. 21 is a cross sectional view ofthe bladder taken along line 21-21 of FIG 19.
FIG. 22 is a schematic illustration of a section of a heel bladder in its static condition.
FIG. 23 is a schematic illustration ofthe section of FIG. 22 shown during loading.
FIG. 24 is an exploded perspective view of a shoe incorporating the bladder of FIG. 7 in a sole assembly.
FIGS. 25 A and 25B are schematic representations of a five layer bladder in accordance with the present invention.
FIGS. 26 A and 26B are schematic representations of a six layer bladder in accordance with the present invention.
FIG. 27 is a top plan view of a complex-contoured three layer tensile bladder adaptable for use within a larger bladder in accordance with the present invention.
FIG. 28 is a side elevational view ofthe bladder of FIG. 27.
FIG. 29 is a perspective view ofthe bladder of FIG. 27.
FIG. 30 is a top plan view of a seven layer tensile bladder in accordance with the present invention.
FIG. 31 is a cross-sectional view ofthe bladder of FIG. 30 taken along line 31-31.
FIG. 32 is a side elevational view of a multiple film layer bladder having an inverted, sidewall seam formed from internal film layers in accordance with another embodiment ofthe present invention. FIG. 33 is a perspective view ofthe bladder of FIG. 32.
FIG. 34 is a cross-sectional view ofthe bladder of FIG. 32, taken along the line 34-34 of FIG. 32.
FIG. 35 is a partial cross section ofthe bladder of FIG 32, before welding and inflation with schematic representations of weld sites.
FIG. 36 is a perspective view of a multiple film layer bladder having a centered inverted, sidewall seam formed from separate sidewall elements in accordance with yet another embodiment ofthe present invention.
FIG. 37 is a top plan view ofthe bladder of FIG. 36.
FIG. 38 is a side elevational view of one side ofthe bladder of FIG. 36.
FIG. 39 is a side elevational view of a side ofthe bladder of FIG. 36 that extends essentially perpendicular to the side shown in FIG. 38.
FIG. 40 is a partial cross section ofthe bladder of FIG. 36 before welding and inflation with schematic representations of weld sites.
FIG. 41 is a partial cross section ofthe bladder of FIG. 36 taken along the line 41-41 in FIG. 37.
FIG. 42 is a perspective view of a multiple film layer bladder having a centered inverted, sidewall seam formed from separate sidewall elements in accordance with another embodiment ofthe present invention.
FIG. 43 is a top plan view ofthe bladder of FIG. 42.
FIG. 44 is a side elevational view of one side ofthe bladder of FIG. 42.
FIG. 45 is a side elevational view of a side ofthe bladder of FIG. 42 that extends essentially perpendicular to the side shown in FIG. 44. FIG. 46 is a partial cross section ofthe bladder of FIG. 42 taken along the line 46-46 in FIG. 43.
FIG. 47 is a partial cross section ofthe bladder of FIG. 42 before welding and inflation with schematic representations of weld sites.
FIG. 48 is a side elevational view of a multiple film layer bladder having a displaced inverted, sidewall seam formed from separate sidewall elements in accordance with another embodiment ofthe present invention.
FIG. 49 is a perspective view ofthe bladder of FIG. 48.
FIG. 50 is a cross-sectional view ofthe bladder of FIG. 48 taken along the line 50-50 in FIG. 48.
FIG. 51 is a partial cross section ofthe bladder of FIG. 48 before welding and inflation with schematic representations of weld sites.
FIG. 52 is a perspective view of a multiple film layer bladder having an inverted seam in the arch region in accordance with another embodiment ofthe present invention.
FIG. 53 is a side elevational view ofthe arch side ofthe bladder of FIG. 52.
FIG. 54 is a top plan view ofthe bladder of FIG. 52.
FIG. 55 is a partial cross section taken along line 55-55 in FIG. 54.
FIG. 56 is a cross section taken along line 56-56 of FIG. 54.
FIGS. 57A to 57F are diagramatic illustrations of a bladder inflation technique.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference is made to the figures which illustrate some permutations of preferred embodiments of multiple film layer bladders. Due to the complex geometries of multiple film layer bladders, for the sake of clarity, in some instances the perspective views ofthe bladders are illustrated as if the outer film layers are opaque with the inner construction shown in cross section. It is understood that the film layers may be transparent, tinted or opaque, or some combination of films of different appearance. The term "connection site" is used throughout the application to refer broadly to attachment locations between any ofthe film layers. N convention employed in the drawings is to show connection sites by outline only or as an outline surrounded by arcs. The sites with arcs depict a connection between an inner film layer and the outer film layer closest to the viewer. The sites showing only the connection outline depict a connection between two inner film layers, or between an inner film layer and the outer film layer furthest from the viewer. The connection sites may be in the form of circular dots, bars, extended lines or any other geometric shape employed to attach any ofthe film layers to one another. Ns will be seen in the various preferred embodiments, the outer layers forming the envelope are attached to one another at least along the periphery, and any number of inner layers are attached to one another or to an outer layer.
Nil ofthe figures depict configurations of bladders or parts of bladders which are sealed and filled with fluid. That is, the illustrations are of fluid filled shapes that take form due to the pattern of attachments ofthe flat film layers.
For ease of explanation, reference is made to various features of a wearer's foot to clarify directions or locations along the bladders described. The toe, forefoot, metatarsal, arch and heel are used for their customary meanings. "Medial" refers to the sides of a wearer's feet which would face one another, and "lateral" refers to the outside of a wearer's foot.
A preferred embodiment of a multiple film layer bladder 10 is shown in FIGS. 1-3 which comprises two outer film layers 12 and 14 forming the outer envelope ofthe bladder, and an inner film layer 16 placed between the outer film layers. Inner film layer 16 forms an inner boundary between two fluid filled layers 17 and 19. Inner film layer 16 is connected to film layers 12 and 14 at connection sites 18 and 20 respectively and along the perimeter to isolate fluid layers 17 and 19 out of fluid communication from one another. In this embodiment the connection sites are formed as circular dot welds. Ns can be seen in the cross-section views of FIG. 3, connection sites 18 and 20 enable middle film layer 16 to act as a tensile member, extending between outer film layers 12 and 14 and interconnecting them together. Middle film layer 16 also provides a generally evenly contoured outer surface to bladder 10 by virtue ofthe placement ofthe connection sites with the outer film layers. Bladder 10 has a filling stem (not shown) which is welded closed after the bladder is filled with fluid. In a finished bladder, the filling stems may be removed leaving a weld location 22 intact to prevent loss of pressure. The shape of bladder 10 makes it suitable for use in a forefoot area to provide cushioning under the metatarsal area of a wearer's foot.
Another three film layer bladder 24 is depicted in FIGS. 4-6 which illustrates the variances in surface contour and thickness ofthe bladder achieved by varying the placement of weld locations ofthe inner film layer to each ofthe outer film layers. Bladder 24 is comprised of outer film layers 26 and 28, and one inner film layer 30 interposed between the outer film layers and interconnecting them. Connection sites 32 and 34 respectively connect inner film layer 30 to outer film layers 26 and 28. In the cross-sectional view, inner film layer 30 can be seen extending between the outer layers. As is apparent from the drawings, to form a thinner portion of bladder 24 the connection sites are spaced closer together, and to form a thicker portion, the connection sites are spaced further apart. The contrast between the two is shown in FIG. 6. Bladder 24 is intended to illustrate the principle of connection site placement and the resultant effect on the thickness and outer surface contour ofthe bladder. A full-foot three film layer bladder is shown in FIGS. 7-10 and the same reference numbers as those used to describe the bladder of FIGS. 1-3 are used with a prime symbol. Bladder 10' is comprised of outer film layers 12' and 14' with an inner film layer 16' interposed between. Inner film layer 16' is attached to the outer film layers along the perimeter and at various connection sites 18' and 20'. The film layers define two fluid filled layers 17' and 20' which may be pressurized to the same or different pressures. Ns can be seen in FIGS. 7 and 10 in particular, the topography or outer contour ofthe bladder is varied to make the edges in the heel area form a slight cup or cradle in the center to improve stability. This is seen in FIG. 10 in that the film layers are attached to one another to provide a thinner profile in the center. The connection sites near the edge ofthe bladder are further apart to provide a thicker profile.
Three film bladders provide two layers of fluid which impart cushioning and response characteristics to the bladder and reduces the dependence on any foam used in the shoe sole. The two fluid layers may be of equal pressure or differing pressures depending on the particular cushioning profile desired. For example, if a lower pressure fluid layer is placed closest to a wearer's foot, the shoe sole would impart a softer or springier feel to the wearer. Depending upon the activity for which the shoe is designed, the pressure ofthe fluid layers may be adjusted and fine tuned to obtain the most desired response and feel. Inflation ofthe bladder is achieved through a valve stem that is open to all fluid layers. Ns the fluid layers reach their desired pressure, the film layers defining that fluid layer can be sealed at the valve stem to cease inflation of that fluid layer while other layers continue to be pressurized. Sequential sealing ofthe appropriate film layers in the valve area will enable customized pressurization ofthe various fluid filled layers ofthe bladder. This principle can be applied to any number of film layers. An alternate inflation technique is illustrated in FIGS. 57N to 57F. For ease of explanation, the inflation of a bladder formed of only two film layers 612 and 614 is illustrated in these figures. Ns seen in FIG. 57N, sheets 612, 614 are placed one above the other on plate 613, and a die 615 is aligned above plate 613. Die 615 is formed of spaced die plates 615N and 615B, which are used to form an inflation channel. Die plates 615N and 615B are lowered (FIG. 57B) to apply heat and pressure to film layers 612 and 614. Compressed weld areas 617 are formed immediately beneath die plates 615N and 615B, and a weld bead 619 is formed between die plates 615N and 615B. Nn inflation opening 621 is formed within weld bead 619, and extends to the chambers ofthe bladder (not shown) which are to be inflated. Ns seen in FIGS. 57C and 57D, weld bead 619 is placed against a cutting surface 623 and a cutting punch 625, cuts in inlet port 627 (FIG. 57E) to inflation opening 621. An electrode 629, with a gas supply opening 630 is pressed against weld bead 619 (FIG. 57E) and an inflation gas is passed through supply opening 630 and inlet port 627 to inflation opening 621 and the chambers ofthe bladder being inflated. Electrode 629 is preferably cylindrical in shape, and applies heat and pressure to weld bead 621 to fuse the inlet port and inlet opening closed with a weld 633 after inflation ofthe chambers has been completed.
Referring now to FIGS. 11-13, a relatively simple four film layer embodiment ofthe present invention is disclosed in which the connection sites are generally arranged in an orthogonal array. Bladder 36 comprises outer film layers 38 and 40 which are attached to inner film layers 42 and 44 at connection sites 39 and 41, respectively. Inner film layers 42 and 44 are attached to one another at connection sites 43 which are incoincident, that is, not in alignment, with their connection sites to the outer film layers. As illustrated in the sectional view of FIG. 13, this results in inner layers 42 and 44 extending between outer layers 38 and 40 and acting as a tensile member for the bladder.
Four film layers results in a bladder with three vertically stacked fluid layers through any cushioning profile: a first outer fluid layer 46; a middle fluid layer 48 and a second outer fluid layer 50. In the embodiment of FIGS. 11-13, middle fluid layer 48 comprises a series of tubular spaces filled with fluid. In a simple form, these three fluid layers may be pressurized to different pressures to obtain a desired cushioning profile. For instance, if a soft-firm-soft profile were desired as one giving the best cushioning feel to a wearer while providing high pressure fluid in the middle fluid layer for responding to high impact loads, the outer fluid layers could be pressurized to P! with the inner fluid layer being pressurized to P2, where P, < P2. Alternatively, all three fluid layers could be pressurized to different pressures to further customize the cushioning profile.
Besides being divided into three vertically stacked fluid layers, bladder 36 could be subdivided further into discrete chambers within each fluid layer to further develop the cushioning profile. Inner film layers 42 and 44 could be attached to one another in a more complex relationship so as to afford multiple middle fluid layer chambers. Similarly, the attachment between an outer film layer 38 or 40 with an adjacent inner film layer could be developed further to afford multiple fluid chambers in the outer fluid layers. N more detailed discussion ofthe formation of discrete chambers within a fluid layer is found in the discussion of FIGS. 14-17.
In this particular embodiment, bladder 36 is well suited for use in a heel area of a shoe sole with the curved semicircular end being aligned with the rear portion of a wearer's heel. In this manner, stem 52 would be located near the arch area of a wearer's foot. Stem 52 could be located at any convenient peripheral location, and would likely be removed altogether once bladder 36 is filled with fluid and the stem area sealed.
Consistent with the discussion above, the locations ofthe connection sites between the inner film layers with one another, and the connection sites between any inner film layer with an adjacent outer film layer, determines the thickness and profile ofthe resulting bladder. In addition, the particular configuration ofthe connection sites can be adjusted to form internal fluid filled chambers.
The embodiments described heretofore are partial foot bladders of relatively simple construction using circular dot welds as connection sites. The principles ofthe multiple film layer and multiple fluid layer bladder can be applied to any suitable bladder shape and application as will be seen in the following embodiments.
A full-foot bladder 54 is shown in FIGS. 14-17 comprising four film layers bonded to one another with increased geometric complexity. This bladder defines two discrete chambers or fluid layers which are isolated from fluid communication from one another. In the exploded perspective view, FIG. 14, two outer film layers are aligned with the inner film layers as they would be attached together. The outer film layers are shown as they would appear in a sealed and inflated bladder. In an uninflated state, all ofthe film layers are flat.
Bladder 54 comprises outer film layers 56 and 58, and inner film layers 60 and 62. Outer film layers 56 and 58 are sealed along their peripheries to form an envelope, and inner film layers 60 and 62 are sealed along their peripheries to form an inner envelope. Inner film layers 60 and 62 are attached to one another and to adjacent outer film layers 56 and 58 respectively. The peripheral seal ofthe inner film layers is spaced away from the peripheral seal ofthe outer film layers at certain points along the edges ofthe bladder to define gaps 59. These gaps 59 help keep the upper fluid layer in fluid communication with the lower fluid layer along the bladder.
Outer film layer 56 is attached to an adjacent inner film layer 60 at circular connection sites 64 and elongated connection sites 66. Identical reference numerals are used to refer to corresponding connection sites between outer film layer 58 and inner film layer 62. Inner film layers 60 and 62 are attached to one another at circular connection sites 68 and elongated connection sites 70.
FIGS. 16 and 17 illustrate cushioning profiles of bladder 54 taken through various portions ofthe bladder. In this particular embodiment, the four film layers are interconnected to one another so as to provide an upper fluid layer and a lower fluid layer. The middle fluid layer is formed between the inner film layers, and is formed with a plurality of sub-chambers. Ns seen in the cross-sectional views, there are three fluid filled layers, some of which are vertically stacked and others which are vertically offset from one another in a vertical profile.
For example, in the heel area, FIG. 16, fluid layer 72 is formed between outer film layer 56 and an adjacent inner film layer 60, and a fluid layer 74 is formed between outer film layer 58 and an adjacent inner film layer 62.
For example, in the forefoot area, FIG. 17, a fluid filled layer 72 formed between an outer film layer 56 and an adjacent inner film layer 60 is vertically aligned with fluid filled layer 74 formed between outer film layer 58 and an adjacent inner film layer 62. N central fluid filled layer 76 is formed between inner film layers 60 and 62, and is vertically offset from fluid filled layers 74 and 72.
It will be apparent that any differences in the locations ofthe connection sites will result in vertical stacking of some sub-chambers or portions of sub-chambers in any given layer. In the forefoot area, upper and lower fluid layers 72 and 74 are vertically aligned while middle fluid layer 76 is vertically offset from the two outer layers.
Ns seen in detail in FIGS. 16 and 17, bladder 54 is constructed so that the edges of inner film layers 60 and 62 are not connected to the peripheral connection between outer film layers 56 and 58 in some areas. Separating the edges ofthe inner film layers from the outer film layers provides another degree of freedom in constructing the bladder. In general, wherever the edges of all ofthe film layers are bonded, the profile at that location will be flatter than the areas where the edges ofthe inner layers are separate from the edges ofthe outer film layers.
By varying the levels of pressurization ofthe fluid filled layers, any desired cushioning profile can be achieved. For instance, taking the cushioning profile of FIGS. 16 and 17, if the pressurization ofthe outer fluid filed layers 72 and 74 is lower than the pressurization of central fluid filled layer 76, the resulting cushioning profile will be soft-hard-soft. This is a desired profile for providing soft point of purchase feel and a desirable response for repeated, relatively light loads such as in walking. The higher pressure inner fluid filled layer responds appropriately to higher impact loads such as during jumping or running.
Ns best seen in FIGS. 14 and 15, elongated connection sites 70 divide the middle fluid layer into a plurality of discrete sub-chambers N, B, C, D, E, F, and G. Each of these sub- chambers is inflated through a separate inlet port "a" through "g," respectively, so that each sub- chamber can be inflated to a different pressure. The inlet ports are illustrated in their post- inflation state, sealed by a circular weld. Some ofthe elongated connection sites define narrow inflation channels 75 which provide communication from an inlet port to one ofthe sub- chambers. In this manner, the cushioning and support provided by the middle fluid layer can be fine tuned along the plane ofthe foot. For example, chamber "G" can be inflated to 30 psi to provide medial support. Chamber "C" can be inflated to 5 psi to cushion the first metatarsal head. Chamber "F" can be inflated to 5 psi to function as a heel crash pad at foot strike. Chamber "E can be inflated to 20 psi for heel cushioning. Lateral chamber "D" can be inflated to 10 psi for lateral arch support. Forefoot chamber "N" can be inflated to 25 psi and lateral forefoot chamber "B" can be inflated to 15 psi, so that both of these chambers provide forefoot cushioning.
In accordance with the principles ofthe invention, the connection sites can be arranged as to vary the height ofthe cushiomng profile anywhere along the bladder. The shape of location of the connection sites can also be varied to obtain multiple chambers along any fluid filled layer or between fluid filled layers.
Another full foot bladder 78, illustrated in FIGS. 18-21, comprises four film layers bonded to one another with mostly elongated connection sites includes outer film layers 80 and 82 and inner film layers 84 and 86. As with the previous embodiment, these film layers are illustrated as they would be shaped when the bladder is inflated. In the uninflated state, they would be flat films. Outer film layers 80 and 82 are sealed along their peripheries to form an envelope. Inner film layers 84 and 86 are attached to one another at connection sites 88 to define therebetween a middle fluid filled layer 90. Inner film layer 84 is attached to outer film layer 80 at connection sites 92 to define therebetween a fluid filled layer 94. Similarly, inner film layer 86 is attached to outer film layer 82 at connection sites 96 to define therebetween another fluid filled layer 98. FIG. 19 illustrates a plan view of inner film layer 84 and connection sites 88.
FIGS. 20-21 illustrate cushioning profiles of bladder 78 taken through various portions of the bladder. The four film layers are interconnected to one another to form a plurality of sub- chambers within each fluid filled layer when viewed in cross section. There are generally three fluid filled layers 90, 94 and 98, some of which are vertically stacked, and others which are vertically offset from one another in a vertical profile.
For example, in the heel area, FIG. 21, outer fluid layers 94 and 98 make up much ofthe cross-sectional area in the central portion, with inner fluid layer 90 being relatively small in cross-section. In the forefoot area, FIG. 20, fluid filled layer 94 formed between an outer film layer 80 and an adjacent inner film layer 84 is vertically aligned with fluid filled layer 98 formed between outer film layer 82 and an adjacent inner film layer 86. Central fluid filled layer 90 is formed between inner film layers 84 and 86, and is vertically offset from fluid filled layers 94 and 98.
Similar to the embodiment illustrated in FIGS. 14-17, certain connection sites 88 divide middle fluid layer 90 into a plurality of discrete chambers A, B, C, D, E, and F, which are inflated through inlet ports "a" through "f," respectively.
The detailed cushioning profile ofthe forefoot and the discrete chambers therein, FIG. 20, can best be understood with reference to the FIG. 18 in which inner medial chamber C is formed between connection site 88a which extends longitudinally and medially to surround chamber C. Surrounding inner medial chamber C are fluid filled layers 94 and 98 which are formed between each ofthe outer film layers and an adjacent inner film layer. Connection site 88b separates chamber B from chamber N, and with connection site 88a defines a fluid inlet channel 114 from inlet port "a" to chamber N. Generally in the center ofthe forefoot, outer fluid layers 94 and 98 surround fluid inlet channel 114. Toward the lateral side ofthe bladder, two inner chambers B and D are formed between inner film layers 84 and 86 with a connection site 88c isolating the chambers from one another. Outer connection site 92 attaches outer film layer 80 to inner film layer 84, with a mirror image connection site 96 that attaches outer film layer 82 to inner film layer 86. By arrangement ofthe connection sites between the four film layers, a cushioning profile of stacked fluid filled layers as seen in FIG. 20 results. The pressures within the various chambers can be equal or unequal depending upon the response characteristics desired.
The detailed cushioning profile ofthe heel area, and the discrete chambers therein, is illustrated in FIG. 21 and is also best understood with reference to FIG. 18. The profile of FIG. 21 is a cross-sectional view so that the relationships ofthe four film layers can be seen beyond line 21-21 of FIG. 19. Beginning at the medial side ofthe bladder, inner chamber F is defined between the inner film layers by virtue of a peripheral connection site 88d and connection site 88e. The inner chamber is attached to outer film layers 80 and 82 at connection sites 92 and 96 respectively. Outer films layers 80 and 82 extend transversely to the lateral side ofthe bladder and are attached to inner film layers 84 and 86 at other connection sites 92 and 96. Inner chamber D is formed between the inner film layers by virtue of peripheral connection site 88d and connection site 88c. Another inner chamber E is located between medial inner chamber F and lateral inner chamber D. Connection site 92a between outer film layer 80 and inner film layer 84 is shown in FIG. 21 to illustrate the structure ofthe fluid filled bladder. Connection site 92a is illustrative ofthe connection sites between the outer film layers and inner film layers. Inner film layers 84 and 86 are in tension in the fluid filled bladder as seen in FIGS. 20 and 21, and it can be seen that the size and location of connection site 92a and an aligned connection site 96a determines the spacing between the outer films layers of a fluid filled bladder.
Bladder 78 of FIGS. 18-21 is constructed so that all ofthe edges of inner film layers 84 and 86 are joined to the peripheral edges of outer film layers 80 and 82. This generally results in a flatter cushioning profile near the edges ofthe bladder. Again, varying the levels of pressurization ofthe fluid filled layers will provide differing cushioning profiles.
In accordance with the principles ofthe invention, the connection sites can be arranged as to vary the height ofthe cushioning profile anywhere along the bladder. The shape of location of the connection sites can also be varied to obtain multiple chambers along any fluid filled layer or between fluid filled layers.
An example of a soft-hard-soft cushioning profile in a four film layer bladder is shown schematically in FIGS. 22 and 23 in the unloaded and loaded condition. This cushioning profile is ofthe metatarsal head region. As will be apparent from the preceding discussion, side chambers 146 and central chambers 148 are formed from the inner film layers and top and bottom chambers 150 are formed between an outer film layer and an adjacent inner film layer. In this example, side chambers 146 are pressurized to 35 psi, inner chamber 148 are pressurized to 25 psi while the top and bottom chambers are pressurized to 15 psi. In this cushioning profile, the lower pressure chambers 150 will provide a soft point of purchase feel and general cushioning for light loads. When a high impact load L is applied, high pressure central chambers 148 will provide the needed dampening ofthe load, and higher pressure side chambers 146 will stabilize the wearer's foot by providing a stiffer response at the sides to cradle the curved metatarsal head of a wearer's foot. This profile illustrates an example of bladder construction and pressurization to provide anatomically coupled, regionalized cushioning for a wearer's foot.
A bladder 10' is illustrated in FIG. 24 as part of a midsole assembly for a shoe S. The shoe comprises an upper U, a insole I, a midsole assembly M and an outsole O. While the full- foot bladder 10' is shown in the drawing, any ofthe bladders described herein or alternative constructions thereof can be substituted in the midsole assembly. Bladder 10' can be incorporated into midsole 60 by any conventional technique such as foam encapsulation or placement in a cut-out portion of a foam midsole. N suitable foam encapsulation technique is disclosed in U.S. Patent No. 4,219,945 to Rudy, hereby incorporated by reference.
Although bladders with three film layers and four film layers have been described in detail, the invention is drawn broadly to multiple film layers defining fluid filled layers between them. Illustrations ofthe three and four film layer bladders clearly demonstrate the principles of the invention, and any number of film layers and configuration of fluid filled layers are within the scope ofthe present invention.
Five and six film layer bladders have been constructed but are difficult to clearly illustrate in patent drawings due to their complexity. Cross-sectional schematic representations of bladders with five and six film layers are provided in FIGS. 25A, 25B, 26A, and 26B, respectively. FIGS. 25B and 26B are schematic representations of multi-layered bladders shown with the film layers exploded and with dots depicting connection sites between film layers. FIGS. 25 A and 26 A depict the bladders after the connections are made and the bladders are inflated. The five film layers ofthe bladder are clearly seen in FIG. 25A, and the contoured cross-section ofthe bladder is seen in FIG. 25A. At the medial and lateral edges, bladder chambers are stacked to form thicker edges, while a single layer of bladder chambers is centrally located.
The six layer bladder of FIGS. 26 A and 26B illustrates several regions available for filling with fluid at different pressures. The bladder of FIGS. 26A and 26B is shown with shaded chambers to denote a different pressure from the unshaded chambers. If the shaded chambers were of a higher pressure than the unshaded chambers, the portion ofthe bladder including the higher pressure chambers would be more rigid and provide more support than the remainder of the bladder. Conversely, the lower pressure region would provide more cushioning than the remainder ofthe bladder. Thus, the right-hand side ofthe bladder as seen in FIGS. 26N and 26B would be more rigid and provide more support compared to the cushioning ofthe left-hand side of the bladder. One of ordinary skill in the art would be able to apply these principles to vary the pressurization in the chambers to customize the cushioning profile ofthe bladder.
FIGS. 27-31 illustrate another multi-layered bladder comprising three layer bladders placed within an open area of a four layer bladder. Three layer bladder 152 comprises an upper barrier layer 154, and a lower barrier layer 156 and a tensile element 158 disposed therein. Tensile element 158 comprises a single sheet of polyurethane film. To make bladder 152, tensile element 158 which is selectively die cut to the appropriate shape is placed between upper and lower barrier layers 154 and 156. Weld prevention material is selectively placed between the upper and lower barrier layers and the tensile element as desired, and the assembly is welded so that welds 160 are provided as shown. Upper and lower barrier layers 154 and 156 are then welded together around their periphery to seal bladder 152, and an inflation conduit 162 leading to an inflation point 164 is provided. Bladder 152 is then inflated through inflation point 164, after which inflation point is sealed. Similar to the first preferred embodiment, tensile element 158 is welded to the barrier layers which make up the envelope of bladder 152 when the films are in a flattened state so that the compressed or loaded condition of bladder 152 corresponds to the least stressed state of tensile element 158. Thus, tensile element 158 does not hamper the cushioning properties ofthe air when the inflated bladder is compressed. By selectively die cutting the interior sheet and selectively placing weld prevention materials alternately adjacent the upper and lower barrier layers, a variety of bladder shapes may be obtained.
N three layer bladder such as bladder 152 can be placed within another bladder as shown in FIGS. 30-31 to construct a bladder with multiple cushioning regions and layers. Bladder 166 has a generally rectangular outline shape and comprises two outer layers 168 and 170 and two inner layers 172 and 174 attached to one another to form a tensile element 176 and interconnecting the outer layers in the main body ofthe bladder. Connection sites 178 between an outer layer and an inner layer are depicted as bars in the main body portion of bladder 166. An exemplary connection site between the inner layers is labeled 180 for illustration purposes. At one end of bladder 166, two three layer bladders 152 have been placed to provide a region of five film layers. Where bladder 152 is positioned within bladder 166, outer layers 154 and 156 are attached to outer layers 168 and 170 respectively so that the internal bladder 152 acts as the tensile member in that region ofthe bladder. Internal bladders 152 are also anchored into position by attachment of inflation conduits 164 at the peripheral seam of bladder 166. Bladder 152 is pressurized to a higher pressure than bladder 166 so that the portion of bladder 166 containing three layer bladders 152 exhibits a stiffer response to cushioning than the main body portion ofthe bladder which only has tensile member 172 which does not interfere with the cushioning effects of air. By adding non-communicating multiple layer chambers such as internal bladder 152, the cushioning characteristics ofthe bladder can be varied while still providing a complex-contoured shape without deep peaks and valleys. A complex-contoured tensile bladder into which three layer bladders 152 can be incorporated is disclosed in U.S. Patent No. 5,802,739 to Potter et al., which is hereby incorporated by reference. When four or more film layers are used in the construction, an alternative conceptual principle is that of a bladder comprising a group of fluid filled inner chambers and two outer film layers overlaying the inner chambers and attached to them at selected connection sites to provide an outer chamber or two. This construction results in a stable, planar bladder in which the outer film layers moderate the inner chambers, especially if the inner chambers are of higher pressure than the outer chamber. The higher pressure chambers formed of flat films may also tend to twist, and the addition of outer films and a lower pressure outer chamber would prevent twisting by balancing the static loads ofthe bladder when filled with fluid.
The multiple film layer bladders ofthe present invention may also be constructed with an inverted seam along the sidewall. As shown in FIGS. 32-35, an inverted seam may be formed of the inner barrier sheets. Bladder 210 includes top, outer barrier layer 212 formed of a sheet of barrier material and a bottom, outer barrier layer 214 formed of a sheet of barrier material. Barrier layers or sheets 212 and 214 are referred to as "top barrier sheet" and "bottom barrier sheet," respectively, for ease of explanation. The use ofthe reference terms "top," "bottom," etc. are not intended to be limiting on the present invention, but rather are for ease of description and refer to the orientation ofthe bladders as shown in the figures. Layers 212 and 214 can be secured directly to each other along edge 211, as shown at the right side of FIG. 32 and in the prior embodiments, or operatively secured to each other by sidewall(s) 216, as shown in FIG. 33. Edge 211 is positioned within an article of footwear so that it is surrounded by midsole or outsole materials when the footwear is constructed, see FIG. 24.
Bladder 210 is constructed so that sidewalls 216 are the same size or larger than the windows exposing them, i.e., openings in the side ofthe midsole. The number and size ofthe sidewalls 216 can depend on how many windows are in the midsole ofthe footwear, how much of bladder 210 is intended to be exposed through each bladder window and the size of each window. A sidewall can be individually formed for each window or one wall can be formed for extending within and between all ofthe windows. For example, a bladder in the heel may be exposed by one or more windows on each side ofthe footwear and include the same number of sidewalls as windows. In the alternative, the midsole can be formed with a single window that wraps around the heel.
As best seen in FIG. 34, each sidewall 216 is formed by attaching the edges ofthe two inner barrier layers to the top and bottom outer layers adjacent a weld ofthe two inner barrier layers. Each sidewall 216 has an upper sidewall portion 217 and a lower sidewall portion 218 connected at an inwardly directed or inverted seam 250 formed by securing the two inner layers together by using securing techniques such as radio frequency (RF) welding, discussed below. Sidewall portions 217, 218 in this bladder are the terminal ends of a tensile member 232. A tensile member is an internal element within a bladder that insures a fixed, resting relation between the top and bottom barrier layers when the bladder is fully inflated. Tensile members often act as restraining members for maintaining the general form ofthe bladder. An example of tensile members includes at least one inner sheet of a barrier material secured at certain locations along the bladder to form an internal framework that maintains the shape ofthe bladder as described in the '001 patent to Potter et al. In another tensile member embodiment, the bladder chamber could include three dimensional fabric extending between the top and bottom sheets of barrier material such as those disclosed in U. S. Patent Nos. 4,906,502 and 5*083,361 to Rudy, which are hereby incorporated by reference.
Bladder 210 includes tensile member 232 formed of two inner barrier layers 252, 253 formed of sheets of barrier material. Layers 252 and 253 are sealed together and extend between the inner surfaces 262 of top and bottom barrier layers 212 and 214 for maintaining the shape and contour of bladder 210. Inner layers 252, 253 are secured to outer layers 212 and 214 using conventional techniques such as RF welding. The resulting welds 233 formed between any of the layers at the points of attachment are indicated schematically in FIG. 35 by "X." Barrier layers 252 and 253 are secured together to establish an inner bladder chamber 255 providing multi-stage or multi-layer cushioning within bladder 210. Chamber 255 can include a plurality of internal channels.
Outer barrier layers 212 and 214 are welded together along their peripheral edges 280, 281 to the peripheral edges 282, 283, respectively of inner barrier layers 252 and 253. This peripheral welding, as well as the interior welds 233 between the inner and outer layers results in a plurality of upper bladder chambers 221 above layer 252 and chambers 255, and a plurality of lower bladder chambers 222, below layer 253 and chambers 255. When the peripheral edge 282 of layer 252 is secured to the entire peripheral edge 281 of outer layer 212 and the peripheral edge 283 of layer 253 is secured to the entire peripheral edge 281 of outer layer 214, chambers 221 will be isolated from chambers 222 so that they are not in fluid communication. The three chambers 221, 255, and 222 allow for at least three different fluid pressures to be achieved within bladder 210. The fluid pressure within chambers 255 is preferably greater than that in chambers 220 and 222 so that bladder 210 will not bottom out under an applied load. Specifically, the pressure in chamber 255 is substantially in the range of 20 to 50 psi.
FIGS. 36-47 illustrate inverted seam bladders having a centered inverted seam which is formed of separate sidewall elements. A first such embodiment, bladder 310', is shown in FIGS. 36-41; and a second embodiment, bladder 310, is shown in FIGS. 42-47. Bladders 310, 310' are designed for positioning in the forefoot of an article of footwear so their sidewalls 316, 316' are exposed through a forefoot window or pair of forefoot windows along the lateral or medial side of an article of footwear. Bladder 310 includes top, outer barrier layer 312 formed of a sheet of barrier material and bottom, outer barrier layer 314 also formed of a sheet of barrier material. Layers 312 and 314 can be secured directly to each other along their unexposed sides 311, as shown in FIG. 39. The sides 311 of bladder 310 that are not intended to be exposed by a bladder window extend across the width ofthe footwear and are covered by material forming the midsole or outsole. Layers 312 and 314 are operatively secured to each other along their exposed sides by sidewall(s) 316, as shown in FIGS 38-40. Welds 333 are schematically indicated by "X" representing the points of attachment between the layers of bladder 310 in FIG. 40.
Bladder 310 is constructed so that sidewalls 316 are the same size or larger than the windows exposing them. The number and size ofthe sidewalls 316 can depend on how many windows are in the midsole ofthe footwear, how much of bladder 310 is exposed through each bladder window and the size of each window. Each sidewall 316 is formed of an upper sidewall piece 317 and a lower sidewall piece 318 connected at an inverted seam 350 using well known securing techniques such as welding. Seam 350 is inwardly directed toward the center ofthe bladder and is centered along the sidewall. Sidewall pieces 317, 318 in this bladder are formed of individual pieces of barrier materials separate from tensile member 332, and peripheral edges 380 and 381 of layers 312 and 314 are secured to edges 382, 383 of sidewall pieces 317 and 318.
A tensile member 332 is formed of two inner barrier layers 352, 353. Each layer 352, 353 is formed of a sheet of barrier material. Layers 352, 353 are sealed together and extend between the inner surfaces 362 of top and bottom barrier sheets 312, 314 for maintaining the shape and contour of bladder 310. Sealed layers 352, 353 provide a plurality of chambers 355 for containing a fluid that provides a second level of cushioning within bladder 310. The fluid pressure within region 355 can be greater than that in chambers 321 and 322 so that bladder 310 will not bottom out during use. Ns shown in FIG. 40 sidewall pieces 317 and 318 are not integral with layers 352 and 353 and a gap exists between the inner edges 390, 391 of sidewalls pieces 317 and 318 and the peripheral edges 392, 393 of inner barrier layers 352 and 353 so that bladder chambers 321 and 322 are not divided into two separate bladder chambers as in FIGS. 32-35. Rather, bladder chambers 321 and 322 are in fluid communication with one another via a peripheral bladder chamber 320.
Bladder 310', shown in FIGS. 42-47, is similar to bladder 310 in that it includes top and bottom barrier layers 312', 314' formed of sheets of at least one barrier material and connected along edge 311'. It also includes sidewalls 316' formed of sidewall pieces 317', 318' positioned between layers 312' and 314'. Ns shown in FIGS. 46 and 47, sidewall pieces 317' and 318' are secured to layers 312', 314' and each other so they form an inverted seam 350'. Bladder 310' only differs from bladder 310 in its internal tensile member 332'. Unlike tensile member 332, tensile member 332' does not form an internal region with multiple chambers. Instead, tensile member 332' includes at least one internal layer 352', formed of a sheet of a barrier material, secured to the inner surfaces 362' of top and bottom layers 312', 314' using well known techniques such as welding. The welds 333' are shown by an "X" in FIG. 47 to indicate schematically the locations ofthe welds. Tensile member 332' forms communicating channels 340' within chamber 320'.
FIGS. 48-51 illustrate another embodiment ofthe present invention in a bladder having an inverted seam which is offset or displaced from the center ofthe sidewall. In FIG. 48 bladder 410 includes outer barrier layers 412, 414 formed of sheets of barrier material. Layers 412 and 414 are secured directly to each other along edge 411 and operatively secured to each other by sidewall(s) 416. Each sidewall 416 is formed of an upper sidewall piece 417 and a lower sidewall piece 418 secured together at an inwardly directed seam 450 which is offset or displaced from a central position on the sidewall.
Bladder 410 also includes a tensile member 432 having two inner barrier layers 452, 453 sealed together and extending between the inner surfaces 462 of top and bottom barrier sheets 412, 414 for maintaining the shape and contour of bladder 410. Layers 452 and 453 can be secured to inner surfaces 462 at a plurality of weld sites by RF welding. Layers 452, 453 are sealed about their perimeter and at a plurality of weld sites by welds 433, marked by an "X" in FIG. 51 and schematically representing weld sites to form an internal cushioning chamber 456 for containing a fluid that provides another level of cushioning within bladder 410.
The outer walls of bladder 410 are formed by securing the peripheral edges 480 and 481 of upper and lower layers 412 and 414, respectively, to the edges 482 and 483 of sidewalls 417, 418, respectively and securing sidewalls 417 and 418 to each other along their other edge at inverted displaced seam 450. Chamber 420 is formed between the outer walls defined by layers 412, 414, and sidewalls 417, 418, and an interior chamber 455 formed by layers 452, 453. Chamber 420 contains a fluid for initially cushioning the shock generated during a foot strike. Ns shown in FIGS. 50-51, sidewall pieces 417 and 418 are not integral with layers 452 and 453 so bladder chamber 420 is not divided into two parts like chamber 20 in FIGS. 32-35. Chamber 455 includes a fluid to provide additional cushioning to dampen the shock generated during a foot strike. The fluid pressure within chamber 455 is greater than that in chamber 420 as discussed above with respect to bladder 210. Inverted seam 450 of bladder 410 is displaced from the center of sidewall 416. The location of seam 450 is determined by the relative size of sidewall pieces 417 and 418. Ns shown in FIGS. 50-51, sidewall piece 418 is larger than piece 417. More specifically, piece 418 is approximately twice the width of piece 417. The size difference in combination with the location ofthe welds indicated with an "X," shown in FIG. 51, causes seam 450 to be displaced from the center ofthe sidewall when the bladder is inflated. The seam is located along sidewall 416 a distance equal to the span of piece 418 between its points of attachment to layer 414 and piece 417. Displaced seam 450 produces a sidewall 416 having its seam positioned at or above the upper limit of a bladder window through which it is exposed. Conversely, piece 417 can be larger than piece 418 so that seam 450 occurs at the bottom ofthe window instead ofthe top. The inverted orientation of seam 450 and its displacement to an edge hide it completely from a bladder window to give a clean, seamless appearance. This attachment method eliminates costly manufacturing steps taken to improve the appearance ofthe exposed bladder window and eliminate the thick rough edge.
This is especially true if seam 450 is offset from the center ofthe bladder a distance greater than half the height ofthe bladder window so the seam is completely offset from the window and only sidewall piece 418 is exposed. Such an offset allows larger sidewall part 418 to be formed ofthe transparent material while sidewall part 417 is formed of an opaque material. Moreover, moving the seam 450 in this manner can also increase the life ofthe bladder by moving the seam away from the areas of predicted high stresses. Although the displaced seam 450 is only discussed with respect to bladder 410, it could also be used with the other bladders according to the present invention. FIGS. 52-56 illustrate a full length bladder 500 having a raised arch region 510 for providing support to the arch of a user in place of pads positioned below the insole of an article of footwear. Top and bottom barrier layers 512, 514 of bladder 500 can be secured directly together as at seam 511. Alternatively, they can be secured using an inverted seam. In this embodiment, the inverted seam is placed in the arch region 510, top layer 512 is secured to one end of first sidewall piece 516 of barrier material. N first end of second sidewall piece 517 is secured to bottom layer 514. The other end of sidewall piece 517 is secured to a first end of an intermediate piece 515 so an inverted seam 550 is formed between the two sidewall pieces 515, 517. The other end of intermediate piece 515 is secured to first sidewall piece 516 so that top and bottom layers 512, 514 are operatively connected.
Inverted seam 550 minimizes the distance the sidewall pieces 516, 517 extend away from the peripheral edge of bottom layer 514. The less the sidewalls extend away from the center of the bladder 500, the more the arch region can be built up and away from the center ofthe bladder without extending beyond the limits ofthe footwear into which it is incorporated.
Regarding the materials for the bladders disclosed herein, the top and bottom barrier sheets, sidewalls elements and inner barrier layers can be formed from the same or different barrier materials, such as thermoplastic elastomer films, using known methods. Thermoplastic elastomer films that can be used with the present invention include polyester polyurethane, polyether polyurethane, such as a cast or extruded ester based polyurethane film having a shore "A" hardness of 80-95, e.g., Tetra Plastics TPW-250. Other suitable materials can be used such as those disclosed in U.S. Patent No. 4,183,156 to Rudy, hereby incorporated by reference. Among the numerous thermoplastic urethanes which are particularly useful in forming the film layers are urethanes such as Pellethane™, (a trademarked product ofthe Dow Chemical Company of Midland, Michigan), Elastollan® (a registered trademark ofthe BASF Corporation) and ESTANE® (a registered trademark ofthe B.F. Goodrich Co.), all of which are either ester or ether based and have proven to be particularly useful. Thermoplastic urethanes based on polyesters, polyethers, polycaprolactone and polycarbonate macrogels can also be employed. Further suitable materials could include thermoplastic films containing crystalline material, such as disclosed in U.S. Patent Nos. 4,936,029 and 5,042,176 to Rudy, which are incorporated by reference; polyurethane including a polyester polyol, such as disclosed in U.S. Patent No. 6,013,340 to Bonk et al., which is incorporated by reference; or multi-layer film formed of at least one elastomeric thermoplastic material layer and a baπier material layer formed of a copolymer of ethylene and vinyl alcohol, such as disclosed in U.S. Patent No. 5,952,065 to Mitchell et al., which is incorporated by reference.
In accordance with the present invention, the multiple film layer bladder can be formed with baπier materials that meet the specific needs or specifications of each of its parts. The present invention allows for top layer to be formed of a first barrier material, bottom layer to be formed of a second barrier material and each part ofthe sidewall(s) to be formed of a third barrier material. Also, the sidewall parts can each be formed of different barrier materials. As discussed above, the inner barrier sheets and the sidewall parts are formed ofthe same barrier material when the inverted seam is formed by attaching the terminal ends of inner barrier sheets to the outer barrier sheets adjacent a weld ofthe inner sheets. As a result, when the inner barrier sheets are formed of a different material than outer barrier sheets, the sidewalls are formed ofthe same material as the inner barrier sheet material. Also, when the inner barrier sheets are formed of different materials, sidewall parts must be are formed of different materials as well for compatibility. If the inner layers are to be visible through a bladder window, the sidewall will most likely be formed of a transparent material for maximum visibility. In the inverted seam embodiments shown in the figures, the top and bottom layers do not need to be formed of a transparent material. Instead, they can each be formed of an opaque barrier material having the same or different thicknesses. Similarly, the sidewall pieces can be formed of a thicker or thinner transparent material so the interior is visible. The thickness of sidewall 16 depends on at least the material used, the environment suπounding the bladder and the structural requirements ofthe sidewalls. Film thicknesses for the top and bottom layers are generally in the range of five (5) to one hundred (100) thousandths of an inch (0.005 to 0.100 inches). If a thicker sidewall is desired, its thickness is generally in the range of twenty-five (25) to two hundred (200) thousandths of an inch (0.025 to 0.200 inches).
According to the present invention, the barrier materials used for each portion ofthe bladder can be customized to meet only the specific needs of that portion. For example, if the top and bottom layers use an opaque, relatively thin, flexible barrier material, the exposed sidewalls can be made of a thicker, stiffer, transparent barrier material. Contrary to industry practice, only the portion ofthe bladder being shown in a bladder window would then be made from the stiffer transparent material. Also, the sidewalls can be made with a pre-shaped form or with greater rigidity to vertical compression in order to compliment the pressure in the bladder or individual pressure regions within the bladder. The materials chosen for sidewalls could also be used to stiffen portions ofthe footwear that experience compressive and sheer loading, such as the medial side ofthe heel. An economic benefit is also realized. By not forming the top and bottom layers with the same material as the sidewalls, the cost of producing a bladder can be reduced. According to the present invention, the most expensive materials are only used where needed, not over the entire bladder.
The bladder is inflated preferably with a gaseous fluid, for example, hexafluorethane, sulfur hexafluoroide, nitrogen, air, or other gases such as those disclosed in the aforementioned '156, '945, '029, or '176 patents to Rudy, or the '065 patent to Mitchell et al.
The method of forming a bladder with at least one inverted sidewall seam according to the present invention includes selecting the material for each portion based on at least the forces and stresses it will experience and the performance characteristics it is intended to provide. The aesthetics of each portion ofthe bladder must also be considered. For example, if the interior of the bladder is intended to be visible, the exposed sidewall(s) need to be formed of a transparent material that allows the desired visibility. However, as discussed above, the transparent material must also be strong enough to prevent rupturing from externally applied forces and to withstand bending stresses applied to bladder sidewalls during the stride ofthe user. While the sidewalls are transparent and include a thickness of 0.020 to 0.100 inches, the top and bottom layers ofthe bladder may be formed of an opaque material having a thickness of 0.005 to 0.050 inches to meet the specific needs of their final location in the shoe, as discussed above. If a bladder configuration is desired that provides visibility from only the bottom surface, the top and bottom films can be different. A clear film with a thickness in the range of .020" - .100" could be used on the bottom surface and a standard opaque film of .005" - .010" could be used for the top and side surfaces.
After the size and types of materials have been determined, the barrier sheets forming the top layer, bottom layer and sidewalls are shaped using well known cutting or forming techniques. The flat, shaped sheets are then positioned so their peripheral edges form the perimeter ofthe bladder. The sidewall pieces are positioned between the top and bottom barrier sheets and secured thereto using well known techniques such as RF welding. The barrier sheets used to form the bladders are selectively treated with a weld prevention material which prevents RF welds from being formed. Examples of weld inhibitors are Teflon® coatings and Teflon® coated fabrics or strips, such as Du Pont Teflon® #49 or #57, which can positioned wherever welds are to be inhibited. Other conventional weld inhibitors or blockers, such as tapes manufactured by 3M, including Scotch "Magic Mending" tape and Highland 3710 Box Sealing tape, or tape manufactured by Faron, including Kapton PSA tape or Teflon® PSA tape, Fluoroglide "FB" spray lubricant by Norton, or water-based coatings by Graphic Sciences with either Teflon® or parafin, a styrenic acrylic polymer, can be used between the layers and sidewalls to insure that only the intended portions ofthe bladder are secured together. The inhibitors are either removed after welding or are consumed in the RF welding process.
To make any ofthe bladders described herein, the weld pattern for each layer is first determined and marked on the sheets. The weld pattern would coπespond to the pattern of connection sites on the specific side of a layer. This pattern is marked on the sheets either in the positive or negative by screen printing, inkjet printing, or a transfer method. The marking can be visible as with an ink, or invisible as with a transfer method which .applies weld inhibiting material onto the side ofthe film layer. It will be understood that the weld prevention materials would generally be the negative image ofthe desired connection sites. The application of weld inhibiting material onto the layer can be a separate method step from the marking ofthe connection sites. The variety of connection site shapes and configurations is limited only by the application of weld inhibiting material to the layers. Once the connection sites are properly marked and the weld inhibiting material applied to the film layers, RF energy is applied and RF welding takes place only where layers are in direct contact with one another and not separated by weld prevention material. The peripheral seal of the outermost layers to form the envelope ofthe bladder can be formed in an integral step with the remainder ofthe welds, or could be formed before or after the welding ofthe connection sites. After the bladder is formed, it is filled with fluid, and the inlet port is sealed off by a RF weld.
While RF welding has been the preferred method of making the multi-stage cushioning bladders ofthe present invention, the particular type of attachment may vary. For instance, an adhesive bond between film layers may be used, as well as other known fusion, thermal, and ultrasonic bonding methods.
After the bladder has been assembled and the chambers formed, the bladder chambers can be inflated using well known techniques. While the preferred method is to use flat sheets of material, the sidewalls, and outer and inner barrier layers, can also be preformed to have different shapes and effects before they are secured together to form the bladder. For example, shapes can be formed by thermoforming the sheets ofthe barrier layer materials.
From the foregoing detailed description, it will be evident that there are a number of changes, adaptations, and modifications ofthe present invention which come within the province of those skilled in the art. However, it is intended that all such variations not departing from the spirit ofthe invention be considered as within the scope thereof as limited solely by the claims appended hereto.

Claims

CLATMS
1. A method of forming a bladder for providing cushioning for an article of footwear, said method comprising the steps of: providing first, second, third, and fourth sheets of barrier material, each said sheet having a peripheral edge; positioning said second and third sheets between said first and fourth sheets such that said second sheet is adjacent said first sheet and said third sheet is adjacent said fourth sheet, said second and third sheets being positioned such that at least a portion of each of said second and third sheets extends within the peripheral edge of each of said first and fourth sheets; configuring a sealed chamber for containing a fluid, said configuring step including securing said first and second sheets together proximate the peripheral edge of said first sheet, securing said third and fourth sheets together proximate the peripheral edge of said fourth sheet, and forming an inverted seam between said second and third sheets, said forming step including securing said second and third sheets together at locations spaced inwardly from said peripheral edges of said first, second, third and fourth sheets.
2. The method of forming a bladder according to claim 1 wherein said securing steps include welding adjacent sheets together at predetermined locations.
3. The method of forming a bladder according to claim 2 further including the step of placing weld inhibitors between said first and second sheets at locations to prevent said first and second sheets from being welded together at said locations when said second and third sheets are welded to one another.
4. The method of forming a bladder according to claim 2 further including the step of placing weld inhibitors between said second and third sheets at locations to prevent said second and third sheets from being welded together at said locations when said first and second sheets are welded to one another.
5. The method of forming a bladder according to claim 1 wherein said first and second sheets are formed of different barrier materials.
6. The method of forming a bladder according to claim 2 further including the step of placing weld inhibitors between said third and fourth sheets at locations to prevent said second and third sheets form being welded together at said locations when said third and fourth sheets are welded to one another.
7. The method of forming a bladder according to claim 1 further including the step of introducing and sealing a fluid within said bladder to establish a predetermined pressure within said bladder.
8. The method of forming a bladder according to claim 1 further including the step of securing a tensile member between said first and fourth sheets.
9. The method of forming a bladder according to claim 8 wherein said second and third sheets are formed of a different barrier material from said first and fourth barrier sheets.
10. The method of forming a bladder according to claim 8 wherein said step of securing said tensile member further includes welding said tensile member to said first and fourth sheets of barrier material.
11. The method of forming a bladder according to claim 8 including the step of integrally forming at least a portion of said tensile member with at least one of said second and third sheets of barrier material.
12. The method of forming a bladder according to claim 8 further including the step of forming said tensile member with said second and third sheets.
13. The method of forming a bladder according to claim 8 wherein said tensile member includes at least two sheets of barrier material; and further including the step of securing said barrier sheets of said tensile member together to form an internal bladder.
14. The method of forming a bladder according to claim 13 further including the steps of introducing a fluid within said sealed chamber to establish a first predetermined pressure therein; and introducing a fluid within said internal bladder to a establish a predetermined internal fluid pressure that is different than said first pressure.
15. A method of forming a cushioning bladder for use in an article of footwear, said method comprising the steps of: providing first, second, third, and fourth sheets of a barrier material, each having first and second side edges; positioning said first side edges of said first and second sheets of barrier material such that they are coextensive with one another; positioning said second and third sheets of barrier material between said first and fourth sheets; positioning said first side edges of said third and fourth sheets such that they are coextensive with each other and extend beyond the first side edges of said first and second sheets in a direction away from the second side edge of said first sheet; configuring a sealed inner chamber within said bladder for receiving a fluid, said configuring step including securing said first and second sheets together along their first side edges, forming an inwardly directed seam between said second and third sheets including the step of securing said second and third sheets together at a location spaced inwardly from the first side edge of said third sheet in the direction of said second side edge of said third sheet and said second side edge of said second sheet, securing said third and fourth sheets together along their first side edges, and operatively securing said first and fourth sheets together along their remaining edges; and introducing a fluid within said chamber to form a cushioning bladder.
1 . The method of forming a cushioning bladder according to claim 15 wherein said securing steps include welding adjacent sheets together at predetermined locations.
17. The method of forming a cushioning bladder according to claim 16 wherein said first and fourth sheets are formed of a different barrier material from said second and third sheets.
18. The method of forming a bladder according to claim 15 further including the step of securing a tensile member between said first and fourth sheets of barrier material.
19. The method of forming a bladder according to claim 18 wherein said step of securing said tensile member further includes welding said tensile member to said first and fourth sheets of barrier material.
20. The method of forming a bladder according to claim 18 wherein said tensile member includes at least two sheets of barrier material; and further including the step of securing at least two sheets of barrier material of said tensile member together to form a sealed internal bladder.
21. The method of forming a bladder according to claim 15 wherein said step of introducing a fluid within said chamber includes introducing said fluid to establish a first predetermined fluid pressure.
22. The method of forming a bladder according to claim 21 further including the steps of introducing a fluid within said sealed internal bladder to establish a second predetermined fluid pressure that is different from said first predetermined fluid pressure.
23. The method of forming a bladder according to claim 18 wherein said third sheet is longer than said second sheet whereby said inverted seam is formed closer to said first sheet than to said fourth sheet.
24. A method of forming a bladder for use with an article of footwear, said method comprising the steps of: providing first, second, third, and fourth sheets of barrier material, each having a
peripheral edge; positioning said second and third sheets between said first and fourth sheets such that said second sheet is proximate said first sheet relative to said third sheet and said third sheet is proximate said fourth sheet relative to said second sheet, said second and third sheets being positioned such that at least a portion of each of said second and third sheets extends within the peripheral edge of each of said first and fourth sheets; configuring an inner chamber with said bladder, said forming step including securing said second sheet relative to said first sheet, securing said third sheet relative to said fourth sheet, forming an inverted seam between said first and fourth sheets, said forming step including securing said second and third sheets together at a location spaced inwardly from said peripheral edges of said second and third sheets, and introducing a fluid within said chamber to form a cushioning bladder.
25. The method of forming a bladder according to claim 24 further including the steps of providing a fifth sheet of a barrier material having first and second ends between said first and fourth sheets and securing said fifth sheet to said first and fourth sheets to form a tensile member.
26. The method of forming a cushioning bladder according to claim 24 further including the steps of providing fifth and sixth sheets, securing said fifth and sixth sheets to one another to form an internal bladder, and securing the fifth sheet to said first sheet and said sixth sheet to said fourth sheet to form a tensile member
27. A bladder for cushioning an article of footwear comprising: a first sheet of a barrier material having a peripheral edge; a second sheet of a barrier material being at least partially coextensive with said first sheet; a first sidewall element comprised of a barrier material, said first sidewall element having first and second ends and extending between said first and second sheets, said first end of said first sidewall element being secured to said first sheet of barrier material proximate said peripheral edge of said first sheet; a second sidewall element comprised of a barrier material, said second sidewall element having a first end secured to said first sidewall element such that an inwardly extending seam is formed between said first and second sidewall elements and second end extending in the direction of said second sheet and operatively secured thereto so that an inner sealed chamber for containing fluid is formed.
28. The bladder for cushioning an article of footwear according to claim 27 wherein the distance between said inwardly extending seam and said first sheet is greater than the distance between said inwardly extending seam and said second sheet.
29. The bladder for cushioning an article of footwear according to claim 27 further including a tensile member positioned between said first and second sheets for maintaining the shape of said bladder.
30. The bladder for cushioning an article of footwear according to claim 29 wherein said tensile member is secured to an inner surface of each of said first and second sheets.
31. The bladder for cushioning an article of footwear according to claim 30 wherein said tensile member includes at least one sheet of a barrier material.
32. The bladder for cushioning an article of footwear according to claim 30 wherein said tensile member includes at least two sheets of barrier material secured together forming an internal bladder for containing a fluid at a predetermined pressure.
33. The bladder for cushioning an article of footwear according to claim 27 wherein said first sheet and said first sidewall element are formed of different barrier materials.
34. The bladder for cushioning an article of footwear according to claim 33 wherein said second sheet is formed of a different barrier material than said first and second sidewall elements.
PCT/US2001/008205 2000-03-16 2001-03-15 Bladder with inverted edge seam and method of making the bladder WO2001070064A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01920372A EP1233686B1 (en) 2000-03-16 2001-03-15 Bladder with inverted edge seam and method of making the bladder
DE60120899T DE60120899T2 (en) 2000-03-16 2001-03-15 BALG WITH REVERSED TAIL AND METHOD FOR THE PRODUCTION THEREOF
AU2001247431A AU2001247431A1 (en) 2000-03-16 2001-03-15 Bladder with inverted edge seam and method of making the bladder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/526,863 US6402879B1 (en) 2000-03-16 2000-03-16 Method of making bladder with inverted edge seam
US09/526,863 2000-03-16

Publications (2)

Publication Number Publication Date
WO2001070064A2 true WO2001070064A2 (en) 2001-09-27
WO2001070064A3 WO2001070064A3 (en) 2002-06-27

Family

ID=24099117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/008205 WO2001070064A2 (en) 2000-03-16 2001-03-15 Bladder with inverted edge seam and method of making the bladder

Country Status (8)

Country Link
US (2) US6402879B1 (en)
EP (1) EP1233686B1 (en)
KR (1) KR100611822B1 (en)
CN (2) CN1174693C (en)
AT (1) ATE330499T1 (en)
AU (1) AU2001247431A1 (en)
DE (1) DE60120899T2 (en)
WO (1) WO2001070064A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601042B1 (en) 2000-03-10 2003-07-29 Robert M. Lyden Customized article of footwear and method of conducting retail and internet business
US6681403B2 (en) 2000-03-13 2004-01-27 Robert M. Lyden Shin-guard, helmet, and articles of protective equipment including light cure material
DE10244435A1 (en) * 2002-09-24 2004-04-01 Adidas International Marketing B.V. Sliding element and shoe sole
US6823612B2 (en) 2002-09-24 2004-11-30 Adidas International Marketing B.V. Ball and socket 3D cushioning system
WO2007136975A2 (en) * 2006-05-19 2007-11-29 Nike International Ltd. Article of footwear with multi-layered support assembly
WO2008086247A1 (en) * 2007-01-08 2008-07-17 Nike, Inc. Article of footwear incorporating a fluid system with vertically-arranged pump and pressure chambers
US7752775B2 (en) 2000-03-10 2010-07-13 Lyden Robert M Footwear with removable lasting board and cleats
EP2229833A1 (en) 2009-03-04 2010-09-22 -CAP-K Technologies Method and device for attenuating and filtering vibrations transmitted to a user by an item of footwear
CN102579175A (en) * 2011-01-11 2012-07-18 王江 Expansion band with unilateral strain and its manufacturing method
WO2014175971A3 (en) * 2013-03-15 2014-12-18 Nike Innovate C.V. Fluid-filled chamber with a tensile element
WO2015006048A1 (en) * 2013-07-12 2015-01-15 Nike Innovate C.V. Contoured fluid-filled chamber
WO2015017446A1 (en) * 2013-08-02 2015-02-05 Skydex Technologies, Inc Differing void cell matrices for sole support
WO2017023532A1 (en) * 2015-08-06 2017-02-09 Nike Innovate C.V. Cushioning assembly for an article of footwear
WO2017160943A1 (en) * 2016-03-15 2017-09-21 Nike Innovate C.V. Sole structure for article of footwear
US10005231B2 (en) 2014-05-23 2018-06-26 Nike, Inc. Method of manufacturing contoured objects by radio frequency welding and tooling assembly for same
WO2019118530A1 (en) * 2017-12-14 2019-06-20 Nike Innovate C.V. Sole structure for article of footwear
WO2019118540A1 (en) * 2017-12-14 2019-06-20 Nike Innovate C.V. Sole structure for article of footwear
CN111683555A (en) * 2017-12-14 2020-09-18 耐克创新有限合伙公司 Sole structure for an article of footwear
WO2021201881A1 (en) * 2020-04-03 2021-10-07 Hewlett-Packard Development Company, L.P. Articles with midsoles sealed in a cover

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7540099B2 (en) * 1994-08-17 2009-06-02 Akeva L.L.C. Heel support for athletic shoe
US6571490B2 (en) * 2000-03-16 2003-06-03 Nike, Inc. Bladder with multi-stage regionalized cushioning
US6589614B2 (en) * 2000-08-17 2003-07-08 Bmc Players Cushioning device for an athletic shoe
JP4641093B2 (en) * 2000-10-31 2011-03-02 株式会社モルテン Air mat
US7401419B2 (en) * 2002-07-31 2008-07-22 Adidas International Marketing B.V, Structural element for a shoe sole
US20040088885A1 (en) * 2002-11-13 2004-05-13 Anthony Dinkins Air Force Two's anniversary edition
EP1588652A1 (en) * 2003-01-22 2005-10-26 Shima Seiki Manufacturing, Ltd. Hanger
US7707744B2 (en) * 2003-07-16 2010-05-04 Nike, Inc. Footwear with a sole structure incorporating a lobed fluid-filled chamber
US7707745B2 (en) * 2003-07-16 2010-05-04 Nike, Inc. Footwear with a sole structure incorporating a lobed fluid-filled chamber
US7435187B2 (en) * 2003-12-19 2008-10-14 Nike, Inc. Golf club incorporating a damping element
US7156787B2 (en) * 2003-12-23 2007-01-02 Nike, Inc. Inflatable structure and method of manufacture
US7562469B2 (en) 2003-12-23 2009-07-21 Nike, Inc. Footwear with fluid-filled bladder and a reinforcing structure
US7871387B2 (en) 2004-02-23 2011-01-18 Tyco Healthcare Group Lp Compression sleeve convertible in length
US7171765B2 (en) * 2004-04-20 2007-02-06 Chie-Fang Lo Airflow adjusting device of air cushion shoe
US8256147B2 (en) * 2004-11-22 2012-09-04 Frampton E. Eliis Devices with internal flexibility sipes, including siped chambers for footwear
US7669251B2 (en) * 2005-03-21 2010-03-02 Honda Motor Co., Ltd. Impact and/or vibration absorbent material and protective articles making use thereof
US7254840B2 (en) * 2005-03-21 2007-08-14 Honda Motor Co., Ltd. Impact and/or vibration absorbent material and protective glove making use thereof
US7622014B2 (en) 2005-07-01 2009-11-24 Reebok International Ltd. Method for manufacturing inflatable footwear or bladders for use in inflatable articles
GB0515294D0 (en) 2005-07-26 2005-08-31 Novamedix Distrib Ltd Limited durability closure means for an inflatable medical garment
US8029451B2 (en) 2005-12-12 2011-10-04 Tyco Healthcare Group Lp Compression sleeve having air conduits
US20110162233A1 (en) * 2006-06-27 2011-07-07 Dah Lih Puh Co., Ltd Air cushion with multistage shock-absorbing assembly and fabricating method
TW200800058A (en) * 2006-06-27 2008-01-01 Dah Lih Puh Co Ltd Air cushion with multistage impact-absorbing assembly and fabricating method thereof
US20080115389A1 (en) * 2006-11-22 2008-05-22 Joey Hsieh Shoe Sole with Shock Absorbing Capability
US7810255B2 (en) * 2007-02-06 2010-10-12 Nike, Inc. Interlocking fluid-filled chambers for an article of footwear
US8016778B2 (en) 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
USD608006S1 (en) 2007-04-09 2010-01-12 Tyco Healthcare Group Lp Compression device
US8128584B2 (en) 2007-04-09 2012-03-06 Tyco Healthcare Group Lp Compression device with S-shaped bladder
US8016779B2 (en) 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device having cooling capability
US8162861B2 (en) 2007-04-09 2012-04-24 Tyco Healthcare Group Lp Compression device with strategic weld construction
US8506508B2 (en) 2007-04-09 2013-08-13 Covidien Lp Compression device having weld seam moisture transfer
US8034007B2 (en) 2007-04-09 2011-10-11 Tyco Healthcare Group Lp Compression device with structural support features
US8070699B2 (en) 2007-04-09 2011-12-06 Tyco Healthcare Group Lp Method of making compression sleeve with structural support features
US8109892B2 (en) 2007-04-09 2012-02-07 Tyco Healthcare Group Lp Methods of making compression device with improved evaporation
US8021388B2 (en) 2007-04-09 2011-09-20 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
US8029450B2 (en) 2007-04-09 2011-10-04 Tyco Healthcare Group Lp Breathable compression device
US8863408B2 (en) 2007-12-17 2014-10-21 Nike, Inc. Article of footwear having a sole structure with a fluid-filled chamber
US8241450B2 (en) 2007-12-17 2012-08-14 Nike, Inc. Method for inflating a fluid-filled chamber
US8178022B2 (en) 2007-12-17 2012-05-15 Nike, Inc. Method of manufacturing an article of footwear with a fluid-filled chamber
US8341857B2 (en) 2008-01-16 2013-01-01 Nike, Inc. Fluid-filled chamber with a reinforced surface
US8572867B2 (en) * 2008-01-16 2013-11-05 Nike, Inc. Fluid-filled chamber with a reinforcing element
US8114117B2 (en) 2008-09-30 2012-02-14 Tyco Healthcare Group Lp Compression device with wear area
US20100015265A1 (en) * 2008-07-21 2010-01-21 United Technologies Corporation Pressure bladder and method for fabrication
US8235923B2 (en) 2008-09-30 2012-08-07 Tyco Healthcare Group Lp Compression device with removable portion
US20100269370A1 (en) * 2009-04-27 2010-10-28 Valeriy Ivanovich Yefremov Hollow pneumatic sole sneaker
US8650775B2 (en) * 2009-06-25 2014-02-18 Nike, Inc. Article of footwear having a sole structure with perimeter and central elements
US20110094123A1 (en) * 2009-10-28 2011-04-28 Richard Vaughn Fabric-covered fluid-filled therapeutic foot orthotic with thong-cut device systems
EP2848161A1 (en) 2009-11-09 2015-03-18 Argon Technologies, Inc. Inflatable pad and methods for using same
US9119439B2 (en) 2009-12-03 2015-09-01 Nike, Inc. Fluid-filled structure
US8991072B2 (en) * 2010-02-22 2015-03-31 Nike, Inc. Fluid-filled chamber incorporating a flexible plate
US8652079B2 (en) 2010-04-02 2014-02-18 Covidien Lp Compression garment having an extension
US8470113B2 (en) * 2010-05-12 2013-06-25 Nike, Inc. Method of manufacturing a contoured fluid-filled chamber with a tensile member
US10751221B2 (en) 2010-09-14 2020-08-25 Kpr U.S., Llc Compression sleeve with improved position retention
US8096964B1 (en) 2010-09-29 2012-01-17 Tyco Healthcare Group Lp Compression garment having grip
US8572786B2 (en) * 2010-10-12 2013-11-05 Reebok International Limited Method for manufacturing inflatable bladders for use in footwear and other articles of manufacture
US9161592B2 (en) 2010-11-02 2015-10-20 Nike, Inc. Fluid-filled chamber with a stacked tensile member
US8813389B2 (en) 2011-04-06 2014-08-26 Nike, Inc. Adjustable bladder system for an article of footwear
US8844165B2 (en) 2011-04-06 2014-09-30 Nike, Inc. Adjustable bladder system with external valve for an article of footwear
US8857076B2 (en) 2011-04-06 2014-10-14 Nike, Inc. Article of footwear with an adaptive fluid system
US9060564B2 (en) 2011-04-06 2015-06-23 Nike, Inc. Adjustable multi-bladder system for an article of footwear
US8720473B2 (en) * 2011-05-25 2014-05-13 Robert Scott Almeida Cell flow technology that provides continuously variable, and renewable, continuance of pressure resistance
US9144265B2 (en) 2011-09-14 2015-09-29 Shoes For Crews, Llc Shoe with support system
US11608871B2 (en) * 2011-10-28 2023-03-21 Kevin McDonnell Multistructural shock absorbing system for anatomical cushioning
US9375049B2 (en) * 2012-04-10 2016-06-28 Nike, Inc. Spacer textile materials and methods for manufacturing the spacer textile materials
US9205021B2 (en) 2012-06-18 2015-12-08 Covidien Lp Compression system with vent cooling feature
US9380832B2 (en) 2012-12-20 2016-07-05 Nike, Inc. Article of footwear with fluid-filled chamber lacking an inflation channel and method for making the same
US9339080B2 (en) 2013-03-15 2016-05-17 Nike, Inc. Method of manufacturing a fluid-filled chamber with a tensile element
US9185992B2 (en) * 2013-12-09 2015-11-17 Sun Pleasure Co., Ltd. Connecting structure for inflatable products
US9498020B2 (en) 2014-01-28 2016-11-22 Cellflo, Inc. Cell flow device and method that provides a sequential linear flow of pressure resistance
WO2016164549A1 (en) 2015-04-08 2016-10-13 Nike Innovate C.V. Article including a bladder element with an image and method of manufacturing the article
CN107404975B (en) 2015-04-08 2020-11-10 耐克创新有限合伙公司 Article having a cushioning assembly including inner and outer bladder elements and a reinforcement element and method of making the article
US9974360B2 (en) 2015-04-08 2018-05-22 Nike, Inc. Method of manufacturing a bladder element with an etched feature and article having a bladder element with an etched feature
CN107404977B (en) 2015-04-08 2021-03-09 耐克创新有限合伙公司 Article having a cover secured over an image to a bladder element and method of making the article
US10238175B2 (en) * 2015-04-08 2019-03-26 Nike, Inc. Article with a cushioning assembly having inner and outer bladder elements with interfitting features and method of manufacturing an article
US9854870B2 (en) 2015-04-08 2018-01-02 Nike, Inc. Method of manufacturing a bladder element with an impression of etched area of mold assembly and article having bladder element with impression
WO2016172169A1 (en) * 2015-04-21 2016-10-27 Nike Innovate C.V. Bladder element formed from three sheets and method of manufacturing a bladder element
CN107690291B (en) * 2015-05-28 2021-06-29 耐克创新有限合伙公司 Footwear pad with internal conformal electronics
US9975494B2 (en) * 2015-07-28 2018-05-22 Thule Sweden Ab Support pad for a load carrier
CN105249617A (en) * 2015-11-02 2016-01-20 东莞市奇峰液压科技有限公司 Forepart/heel lasting machine for shoemaking
WO2017079254A1 (en) * 2015-11-03 2017-05-11 Nike Innovate C.V. Article of footwear including a bladder element having a cushioning component with a single central opening and a cushioning component with multiple connecting features and method of manufacturing
US10070691B2 (en) 2015-11-03 2018-09-11 Nike, Inc. Article of footwear including a bladder element having a cushioning component with a single central opening and a cushioning component with multiple connecting features and method of manufacturing
US10905194B2 (en) 2015-11-03 2021-02-02 Nike, Inc. Sole structure for an article of footwear having a bladder element with laterally extending tubes and method of manufacturing a sole structure
US9775407B2 (en) 2015-11-03 2017-10-03 Nike, Inc. Article of footwear including a bladder element having a cushioning component with a single central opening and method of manufacturing
NL2015887B1 (en) 2015-12-01 2017-06-14 Martijn Touwen Erwin An outsole and a shoe.
WO2017127441A1 (en) 2016-01-19 2017-07-27 Lyke Christopher J Footwear with embroidery transition between materials
CN110177478B (en) 2016-01-19 2022-06-17 耐克创新有限合伙公司 Footwear with felt transition between materials
US10321738B2 (en) 2016-01-19 2019-06-18 Nike, Inc. Footwear with embroidery transition between materials
US20180103723A1 (en) * 2016-03-28 2018-04-19 Dong Guan Jia Shaun Industrial Co.,Ltd. Convective Air Pad with Weight Balancing and Massage Buffering Effect
US10448706B2 (en) 2016-10-18 2019-10-22 Nike, Inc. Systems and methods for manufacturing footwear with felting
CN110430776B (en) 2017-02-27 2021-11-26 耐克创新有限合伙公司 Adjustable foot support system including fluid filled bladder cavity
EP3595475B1 (en) * 2017-04-17 2021-04-07 Hewlett-Packard Development Company, L.P. Vibrators in cells for footwear
CN107019288A (en) * 2017-05-22 2017-08-08 李其龙 A kind of three-dimensional balloon body and shoe sole cushion
WO2018217560A1 (en) * 2017-05-23 2018-11-29 Nike, Inc. Midsole with graded response
KR102328385B1 (en) * 2017-05-23 2021-11-18 나이키 이노베이트 씨.브이. Midsole system with graded response
KR102360537B1 (en) * 2017-05-23 2022-02-09 나이키 이노베이트 씨.브이. Domed midsole with staged compressive stiffness
KR102147920B1 (en) 2017-09-29 2020-08-26 나이키 이노베이트 씨.브이. Structural Color Articles and Methods of Making and Using Structure Color Articles
TWI737945B (en) * 2017-12-14 2021-09-01 荷蘭商耐克創新有限合夥公司 Sole structure for article of footwear
EP4205592A1 (en) 2018-05-30 2023-07-05 NIKE Innovate C.V. Method of manufacturing an article of footwear
CN112135543B (en) 2018-05-31 2022-09-27 耐克创新有限合伙公司 Footwear bottom fabric with bladder and lasting element and method of making
KR20230014884A (en) 2018-05-31 2023-01-30 나이키 이노베이트 씨.브이. Footwear strobel with bladder and tensile component and method of manufacturing
US11241063B2 (en) 2018-05-31 2022-02-08 Nike, Inc. Footwear strobel with bladder having grooved flange and method of manufacturing
US11318684B2 (en) * 2018-05-31 2022-05-03 Nike, Inc. Fluid-filled cushioning article with seamless side walls and method of manufacturing
KR102560272B1 (en) * 2018-05-31 2023-07-26 나이키 이노베이트 씨.브이. Fluid flow control devices available for adjustable foot support systems
USD912439S1 (en) * 2018-09-04 2021-03-09 Yanjie Ou Self-contained inflatable bag sleeping pad
CN115153151A (en) 2018-11-20 2022-10-11 耐克创新有限合伙公司 Footwear bladder system
WO2020106432A1 (en) 2018-11-20 2020-05-28 Nike Innovate C.V. Footwear bladder system
CN113163899B (en) * 2018-11-29 2022-11-29 耐克创新有限合伙公司 Foot support system including fluid-filled bladders with fluid moving between bladders
CN113329655B (en) * 2019-01-31 2022-09-23 耐克创新有限合伙公司 Sole structure and article of footwear with fluid-filled bladder element
US20200305549A1 (en) * 2019-03-28 2020-10-01 Nike, Inc. Sole structure of an article of footwear
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
EP3963376A1 (en) 2019-07-26 2022-03-09 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
CN112690535A (en) * 2019-10-23 2021-04-23 清锋(北京)科技有限公司 Airbag structure, application and manufacturing method thereof
US11559106B2 (en) 2019-10-24 2023-01-24 Nike, Inc. Article of footwear and method of manufacturing an article of footwear
US11918074B2 (en) * 2020-05-12 2024-03-05 Nike, Inc. Bladder for article of footwear
WO2021242372A1 (en) * 2020-05-27 2021-12-02 Nike Innovate C.V. Footwear with fluid-filled bladder
EP4157008A1 (en) 2020-05-28 2023-04-05 NIKE Innovate C.V. Foot support systems including fluid movement controllers and adjustable foot support pressure
WO2021243134A1 (en) 2020-05-29 2021-12-02 Nike Innovate C.V. Footwear airbag with flexible electronic interconnect
US11877620B2 (en) * 2020-05-31 2024-01-23 Nike, Inc. Sole structure for article of footwear
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11871812B2 (en) * 2020-10-30 2024-01-16 Nike, Inc. Cushioning element for article of footwear
USD938147S1 (en) * 2021-02-02 2021-12-14 Nike, Inc. Shoe
USD945756S1 (en) * 2021-04-14 2022-03-15 Nike, Inc. Shoe
US20220395056A1 (en) * 2021-06-11 2022-12-15 Nike, Inc. Sole structure for article of footwear
WO2024006192A1 (en) * 2022-06-27 2024-01-04 Nike Innovate C.V. Bladder systems and footwear incorporating bladder systems for ankle and/or heel support

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677906A (en) 1952-08-14 1954-05-11 Reed Arnold Cushioned inner sole for shoes and meth od of making the same
US4670995A (en) 1985-03-13 1987-06-09 Huang Ing Chung Air cushion shoe sole
US4845861A (en) 1987-05-29 1989-07-11 Armenak Moumdjian Insole and method of and apparatus for making same
US4874640A (en) 1987-09-21 1989-10-17 Donzis Byron A Impact absorbing composites and their production
US4906502A (en) 1988-02-05 1990-03-06 Robert C. Bogert Pressurizable envelope and method
US5083361A (en) 1988-02-05 1992-01-28 Robert C. Bogert Pressurizable envelope and method
US5235715A (en) 1987-09-21 1993-08-17 Donzis Byron A Impact asborbing composites and their production
US5755001A (en) 1995-06-07 1998-05-26 Nike, Inc. Complex-contoured tensile bladder and method of making same

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1323610A (en) 1919-12-02 price
CA727582A (en) 1966-02-08 E. Jackson Albert Inflatable bolster
US900867A (en) 1907-06-24 1908-10-13 Benjamin N B Miller Cushion for footwear.
US1069001A (en) 1913-01-14 1913-07-29 William H Guy Cushioned sole and heel for shoes.
US1240153A (en) 1916-01-07 1917-09-11 Keene Shock Absorber Company Pneumatic cushion for shoes.
US1304915A (en) 1918-07-31 1919-05-27 Burton A Spinney Pneumatic insole.
US1584034A (en) 1922-06-05 1926-05-11 Klotz Alfred Pneumatic insertion for shoes
US1514468A (en) 1922-08-02 1924-11-04 John P W Schopf Arch cushion
GB233387A (en) 1924-01-04 1925-05-04 Thomas Francis Farrimond Improvements in or relating to cushioning devices for use inside footwear
US1625582A (en) 1924-11-10 1927-04-19 Airubber Corp Flexible hollow articles and method of making the same
US1793703A (en) 1925-02-27 1931-02-24 Krichbaum Ora Rubber article
US1869257A (en) 1929-12-10 1932-07-26 Hitzler Theodor Insole
US1916483A (en) 1930-03-14 1933-07-04 Krichbaum Ora Inflatable article
US1970803A (en) 1932-10-03 1934-08-21 Johnson John Herbert Method of making an inflatable rubber structure
US2080469A (en) 1933-05-17 1937-05-18 Levi L Gilbert Pneumatic foot support
US2004906A (en) 1934-03-05 1935-06-11 Joseph Farese Pneumatic shoe
US2086389A (en) 1936-09-24 1937-07-06 Pearson Susan Clare Inflated arch support and ventilated heel cushion
US2269342A (en) 1938-05-31 1942-01-06 K & W Rubber Corp Inflatable rubber goods
US2365807A (en) 1943-04-17 1944-12-26 Emmanuel M Dialynas Pneumatic or cushion arch support for shoes
US2488382A (en) 1946-06-07 1949-11-15 Whitman W Davis Pneumatic foot support
US2546827A (en) 1948-10-02 1951-03-27 Lavinthal Albert Arch supporting device
US2600239A (en) 1949-11-01 1952-06-10 Levi L Gilbert Pneumatic insole
US2703770A (en) 1952-04-15 1955-03-08 Melzer Jean Manufacture of flat inflatable objects
US2748401A (en) 1952-06-30 1956-06-05 Hedwin Corp Extruded flexible and hollow articles and method of making same
US2645865A (en) 1952-07-25 1953-07-21 Edward W Town Cushioning insole for shoes
US2762134A (en) 1954-07-30 1956-09-11 Edward W Town Cushioning insoles for shoes
FR1195549A (en) 1958-05-02 1959-11-18 Air mattress
US3048514A (en) 1958-09-17 1962-08-07 Us Rubber Co Methods and apparatus for making inflatable cushions
BE601158A (en) 1959-11-27 1900-01-01
US3030640A (en) 1960-01-13 1962-04-24 Air Pillow & Cushions Inc Inflated articles
US3121430A (en) 1960-05-10 1964-02-18 Edwin L O'reilly Inflatable insole with self-fitting arch support
US3120712A (en) 1961-08-30 1964-02-11 Menken Lester Lambert Shoe construction
US3366525A (en) 1964-02-06 1968-01-30 Hexcel Corp Method of making thermoplastic honeycomb
US3204678A (en) 1964-02-14 1965-09-07 Gurdon S Worcester Beach bag
FR1406610A (en) 1964-06-10 1965-07-23 Perfected shoe
US3335045A (en) 1964-06-15 1967-08-08 Post Louis Method for making an inflatable article
FR1419847A (en) 1964-10-22 1965-12-03 Pennel & Flipo Ets Inflatable item, especially air mattress
US3284264A (en) 1965-03-01 1966-11-08 Gerald J O'rourke Method of making a bellows structure of thermosetting material
US3251076A (en) 1965-03-19 1966-05-17 Daniel M Burke Impact absorbing mat
US3469576A (en) 1966-10-05 1969-09-30 Henry M Smith Footwear
US3568227A (en) 1968-04-10 1971-03-09 Philips Maine Corp Inflatable cushion and apparatus for making same
US3589037A (en) 1969-05-27 1971-06-29 John P Gallagher Foot cushioning support member
US3608215A (en) 1969-06-14 1971-09-28 Tatsuo Fukuoka Footwear
US3685176A (en) 1970-07-02 1972-08-22 Marion F Rudy Inflatable article of footwear
US3758964A (en) 1971-10-25 1973-09-18 Onitsuka Co Ltd Sports shoe
US3765422A (en) 1971-12-27 1973-10-16 H Smith Fluid cushion podiatric insole
DE2428357C2 (en) * 1974-06-12 1975-10-02 Helmut 4401 Senden Fritzsche Shoe sole
US4129951A (en) 1976-04-20 1978-12-19 Charles Petrosky Air cushion shoe base
US4017931A (en) 1976-05-20 1977-04-19 The Jonathan-Alan Corporation Liquid filled insoles
US4054960A (en) 1976-06-25 1977-10-25 Pettit John E Inflatable body support cushion, particularly to support a woman during pregnancy
US4183156A (en) 1977-01-14 1980-01-15 Robert C. Bogert Insole construction for articles of footwear
US4115934A (en) 1977-02-11 1978-09-26 Hall John M Liquid shoe innersole
US4217705A (en) 1977-03-04 1980-08-19 Donzis Byron A Self-contained fluid pressure foot support device
US4112599A (en) * 1977-07-01 1978-09-12 Jacob Krippelz Method of cushioning and ventilating a foot, and footwear including disposable slippers and insoles for practicing such method
FR2404413A1 (en) 1977-09-28 1979-04-27 Seban Norbert Inflatable mattresses etc. with internal and external ties - for modular assembly of pneumatic panels of controlled depth
US4287250A (en) 1977-10-20 1981-09-01 Robert C. Bogert Elastomeric cushioning devices for products and objects
FR2407008A1 (en) 1977-10-28 1979-05-25 Bataille Jean Roger DYNAMIC FOOT AND LEG TIMING PACKAGE IN A RIGID PACKAGE
US4167795A (en) 1978-04-14 1979-09-18 Liberty Vinyl Corporation Motion suppressing fluid mattress
US4187620A (en) 1978-06-15 1980-02-12 Selner Allen J Biomechanical shoe
US4219945B1 (en) 1978-06-26 1993-10-19 Robert C. Bogert Footwear
US4305212A (en) 1978-09-08 1981-12-15 Coomer Sven O Orthotically dynamic footwear
US4297797A (en) 1978-12-18 1981-11-03 Meyers Stuart R Therapeutic shoe
US4328599A (en) 1979-06-27 1982-05-11 Mollura Carlos A Firmness regulated waterbed mattress
US4292702A (en) 1979-07-20 1981-10-06 Phillips Raymond M Surge dampened water bed mattress
US4271606A (en) 1979-10-15 1981-06-09 Robert C. Bogert Shoes with studded soles
US4358902A (en) 1980-04-02 1982-11-16 Cole George S Thrust producing shoe sole and heel
FR2483321A1 (en) 1980-06-03 1981-12-04 Taurus Gumiipari Vallalat Inflatable mattresses supported by low internal pressure - have intermittently bonded interlayer
SE8102124L (en) 1981-04-02 1982-10-03 Lars Gustaf Birger Peterson SOLE
DE3147589A1 (en) 1981-12-01 1983-06-09 Konsumex Külkereskedelmi Vállalat, 1146 Budapest "SELF-ADJUSTING ORTHOPEDIC SHOE INSERT AND / OR FLAT FOOT INSERT"
US4483030A (en) 1982-05-03 1984-11-20 Medisearch Pr, Inc. Air pad
FR2526643A1 (en) 1982-05-14 1983-11-18 Certran METHOD FOR MAKING PUSHED FOOTWEAR ARTICLES AT DIFFERENT PRESSURES IN THEIR DIFFERENT ZONES AND DRAFT FOR ITS IMPLEMENTATION
US4506460A (en) 1982-06-18 1985-03-26 Rudy Marion F Spring moderator for articles of footwear
US4486964A (en) 1982-06-18 1984-12-11 Rudy Marion F Spring moderator for articles of footwear
DE3234086A1 (en) 1982-09-14 1984-03-15 Berta Frey & Söhne Schuhfabrik, 8330 Eggenfelden Motorcycle boot
US4446634A (en) 1982-09-28 1984-05-08 Johnson Paul H Footwear having improved shock absorption
US4547919A (en) 1983-02-17 1985-10-22 Cheng Chung Wang Inflatable article with reforming and reinforcing structure
US4662087A (en) 1984-02-21 1987-05-05 Force Distribution, Inc. Hydraulic fit system for footwear
US5104477A (en) 1984-10-17 1992-04-14 Bridgestone/Firestone, Inc. Elastomeric structures having controlled surface release characteristics
JPS61226084A (en) 1985-03-30 1986-10-07 株式会社タチエス Skin member of seat for vehicle and its production
US4920591A (en) 1985-07-16 1990-05-01 Hiroshi Sekido Air support for chair and method for manufacturing chair utilizing the air support
AU564808B2 (en) 1985-08-23 1987-08-27 Huang, I-C. Manufacturing shoe soles with an air cushion
US4803029A (en) 1986-01-28 1989-02-07 Pmt Corporation Process for manufacturing an expandable member
US4774774A (en) * 1986-05-22 1988-10-04 Allen Jr Freddie T Disc spring sole structure
US5158767A (en) 1986-08-29 1992-10-27 Reebok International Ltd. Athletic shoe having inflatable bladder
US4744157A (en) 1986-10-03 1988-05-17 Dubner Benjamin B Custom molding of footgear
FR2614510A1 (en) 1987-04-30 1988-11-04 Technisynthese Sarl Sole incorporating a pump for ventilating the shoe
US5025575A (en) 1989-03-14 1991-06-25 Nikola Lakic Inflatable sole lining for shoes and boots
US4845338A (en) 1988-04-04 1989-07-04 Nikola Lakic Inflatable boot liner with electrical generator and heater
US4782602A (en) 1987-05-26 1988-11-08 Nikola Lakic Shoe with foot warmer including an electrical generator
US5846063A (en) 1987-05-26 1998-12-08 Nikola Lakic Miniature universal pump and valve for inflatable liners
US4991317A (en) 1987-05-26 1991-02-12 Nikola Lakic Inflatable sole lining for shoes and boots
US4823482A (en) 1987-09-04 1989-04-25 Nikola Lakic Inner shoe with heat engine for boot or shoe
US5199191A (en) 1987-05-29 1993-04-06 Armenak Moumdjian Athletic shoe with inflatable mobile inner sole
US4779359A (en) 1987-07-30 1988-10-25 Famolare, Inc. Shoe construction with air cushioning
US4817304A (en) 1987-08-31 1989-04-04 Nike, Inc. And Nike International Ltd. Footwear with adjustable viscoelastic unit
US5046267A (en) 1987-11-06 1991-09-10 Nike, Inc. Athletic shoe with pronation control device
MY106949A (en) 1988-02-05 1995-08-30 Rudy Marion F Pressurizable envelope and method
CA1338369C (en) 1988-02-24 1996-06-11 Jean-Pierre Vermeulen Shock absorbing system for footwear application
US4912861A (en) 1988-04-11 1990-04-03 Huang Ing Chung Removable pressure-adjustable shock-absorbing cushion device with an inflation pump for sports goods
US4891855A (en) 1988-11-14 1990-01-09 Team Worldwide Corporation Inflatable suntanner with speedy and homogeneous suntan effect
FR2639537B1 (en) 1988-11-15 1993-08-13 Epinoy Ind SEAT CUSHION, MEDICAL OR COMFORT
US4936029A (en) 1989-01-19 1990-06-26 R. C. Bogert Load carrying cushioning device with improved barrier material for control of diffusion pumping
US5042176A (en) 1989-01-19 1991-08-27 Robert C. Bogert Load carrying cushioning device with improved barrier material for control of diffusion pumping
US4999932A (en) 1989-02-14 1991-03-19 Royce Medical Company Variable support shoe
US5257470A (en) 1989-03-17 1993-11-02 Nike, Inc. Shoe bladder system
US5253435A (en) 1989-03-17 1993-10-19 Nike, Inc. Pressure-adjustable shoe bladder assembly
KR920702950A (en) * 1990-02-16 1992-12-17 얀-아더 델린 Stable oral system
US5238231A (en) 1990-02-26 1993-08-24 Huang Ing Chung Shock-absorbing units interconnectable to form shock-absorbing structures
US5669161A (en) 1990-02-26 1997-09-23 Huang; Ing-Jing Shock-absorbing cushion
US6428865B1 (en) 1990-02-26 2002-08-06 Ing-Chung Huang Shock-absorbing cushion with a multi-holed and/or grooved surface
US5245766A (en) 1990-03-30 1993-09-21 Nike, Inc. Improved cushioned shoe sole construction
EP0452576A1 (en) * 1990-04-18 1991-10-23 Chi-Ming Chen Shoe insole laminate
US5224277A (en) 1990-05-22 1993-07-06 Kim Sang Do Footwear sole providing ventilation, shock absorption and fashion
US5044030A (en) 1990-06-06 1991-09-03 Fabrico Manufacturing Corporation Multiple layer fluid-containing cushion
US5022109A (en) 1990-06-11 1991-06-11 Dielectrics Industries Inflatable bladder
DE4114551C2 (en) 1990-11-07 2000-07-27 Adidas Ag Shoe bottom, in particular for sports shoes
US5155927A (en) 1991-02-20 1992-10-20 Asics Corporation Shoe comprising liquid cushioning element
JPH04266718A (en) * 1991-02-22 1992-09-22 Matsushita Electric Works Ltd Air mat
US5179792A (en) 1991-04-05 1993-01-19 Brantingham Charles R Shoe sole with randomly varying support pattern
US5355552A (en) 1991-07-23 1994-10-18 Huang Ing Chung Air cushion grip with a cubic supporting structure and shock-absorbing function
US5193246A (en) 1991-07-23 1993-03-16 Huang Ing Chung Air cushion grip with a cubic supporting structure and shock-absorbing function
US5353523A (en) 1991-08-02 1994-10-11 Nike, Inc. Shoe with an improved midsole
US5572804A (en) 1991-09-26 1996-11-12 Retama Technology Corp. Shoe sole component and shoe sole component construction method
KR100224293B1 (en) 1991-09-26 1999-10-15 제이. 스카자 조셉 Shoe sole component and shoe sole component construction method
TW214511B (en) 1991-11-01 1993-10-11 Nike International Ltd
US5406719A (en) 1991-11-01 1995-04-18 Nike, Inc. Shoe having adjustable cushioning system
US5228156A (en) 1992-05-08 1993-07-20 John Wang Fluid operated device
US5224278A (en) 1992-09-18 1993-07-06 Jeon Pil D Midsole having a shock absorbing air bag
US5335382A (en) 1992-11-23 1994-08-09 Huang Yin Jun Inflatable cushion device
US5367791A (en) 1993-02-04 1994-11-29 Asahi, Inc. Shoe sole
US5425184A (en) 1993-03-29 1995-06-20 Nike, Inc. Athletic shoe with rearfoot strike zone
US5625964A (en) 1993-03-29 1997-05-06 Nike, Inc. Athletic shoe with rearfoot strike zone
US5771606A (en) 1994-10-14 1998-06-30 Reebok International Ltd. Support and cushioning system for an article of footwear
US5595004A (en) 1994-03-30 1997-01-21 Nike, Inc. Shoe sole including a peripherally-disposed cushioning bladder
US5952065A (en) 1994-08-31 1999-09-14 Nike, Inc. Cushioning device with improved flexible barrier membrane
WO1996016564A1 (en) * 1994-12-02 1996-06-06 Nike International Ltd. Cushioning device for a footwear sole and method for making the same
US5753061A (en) 1995-06-05 1998-05-19 Robert C. Bogert Multi-celled cushion and method of its manufacture
US5686167A (en) 1995-06-05 1997-11-11 Robert C. Bogert Fatigue resistant fluid containing cushioning device for articles of footwear
US6013340A (en) 1995-06-07 2000-01-11 Nike, Inc. Membranes of polyurethane based materials including polyester polyols
US5741568A (en) 1995-08-18 1998-04-21 Robert C. Bogert Shock absorbing cushion
US5704137A (en) 1995-12-22 1998-01-06 Brooks Sports, Inc. Shoe having hydrodynamic pad
TW323982B (en) 1996-06-15 1998-01-01 Ing-Jiunn Hwang The manufacturing method for air-pad and its assisting device
TW316226B (en) 1996-06-15 1997-09-21 Ing-Jiunn Hwang Sneaker of combination
US6065150A (en) 1996-06-15 2000-05-23 Huang; Ing Chung Protective air cushion gloves
TW320555B (en) 1996-06-15 1997-11-21 Ing-Jiunn Hwang The 3D shoes-tongue cushion
TW318139B (en) 1996-06-15 1997-10-21 Ing-Jiunn Hwang Parent-and-child air cushion for buffer
US6027683A (en) 1996-06-17 2000-02-22 Huang; Ing Chung Extrusion molding process and apparatus
TW394675B (en) 1996-06-17 2000-06-21 Huang Ying Jiun Automatic inflatable air cushion
US6029962A (en) 1997-10-24 2000-02-29 Retama Technology Corporation Shock absorbing component and construction method
US5993585A (en) 1998-01-09 1999-11-30 Nike, Inc. Resilient bladder for use in footwear and method of making the bladder
US5974608A (en) * 1998-06-01 1999-11-02 Stearns, Inc. Camping mattress with cradling cushions
US6318013B1 (en) * 1999-01-05 2001-11-20 Dennis Cope Inflatable display device
US6176025B1 (en) 1999-05-28 2001-01-23 Spalding Sports Worldwide, Inc. Cushioning system for golf shoes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677906A (en) 1952-08-14 1954-05-11 Reed Arnold Cushioned inner sole for shoes and meth od of making the same
US4670995A (en) 1985-03-13 1987-06-09 Huang Ing Chung Air cushion shoe sole
US4845861A (en) 1987-05-29 1989-07-11 Armenak Moumdjian Insole and method of and apparatus for making same
US4874640A (en) 1987-09-21 1989-10-17 Donzis Byron A Impact absorbing composites and their production
US5235715A (en) 1987-09-21 1993-08-17 Donzis Byron A Impact asborbing composites and their production
US4906502A (en) 1988-02-05 1990-03-06 Robert C. Bogert Pressurizable envelope and method
US5083361A (en) 1988-02-05 1992-01-28 Robert C. Bogert Pressurizable envelope and method
US5755001A (en) 1995-06-07 1998-05-26 Nike, Inc. Complex-contoured tensile bladder and method of making same

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752775B2 (en) 2000-03-10 2010-07-13 Lyden Robert M Footwear with removable lasting board and cleats
US6601042B1 (en) 2000-03-10 2003-07-29 Robert M. Lyden Customized article of footwear and method of conducting retail and internet business
US8209883B2 (en) 2000-03-10 2012-07-03 Robert Michael Lyden Custom article of footwear and method of making the same
US7770306B2 (en) 2000-03-10 2010-08-10 Lyden Robert M Custom article of footwear
US6681403B2 (en) 2000-03-13 2004-01-27 Robert M. Lyden Shin-guard, helmet, and articles of protective equipment including light cure material
US7665232B2 (en) 2002-09-24 2010-02-23 Adidas International Marketing B.V. Ball and socket 3D cushioning system
US6983557B2 (en) 2002-09-24 2006-01-10 Adidas International Marketing B.V. Ball and socket 3D cushioning system
US7140124B2 (en) 2002-09-24 2006-11-28 Adidas International Marketing B.V. Full bearing 3D cushioning system
US7243445B2 (en) 2002-09-24 2007-07-17 Adidas International Marketing B.V. Ball and socket 3D cushioning system
US6823612B2 (en) 2002-09-24 2004-11-30 Adidas International Marketing B.V. Ball and socket 3D cushioning system
DE10244435A1 (en) * 2002-09-24 2004-04-01 Adidas International Marketing B.V. Sliding element and shoe sole
US8006411B2 (en) 2002-09-24 2011-08-30 Adidas International Marketing B.V. Ball and socket 3D cushioning system
DE10244435B4 (en) * 2002-09-24 2006-02-16 Adidas International Marketing B.V. Sliding element and shoe sole
US6962008B2 (en) 2002-09-24 2005-11-08 Adidas International Marketing B.V. Full bearing 3D cushioning system
WO2007136975A3 (en) * 2006-05-19 2008-03-13 Nike International Ltd Article of footwear with multi-layered support assembly
US7707743B2 (en) 2006-05-19 2010-05-04 Nike, Inc. Article of footwear with multi-layered support assembly
US9486035B2 (en) 2006-05-19 2016-11-08 Nike, Inc. Article of footwear with multi-layered support assembly
US8056263B2 (en) 2006-05-19 2011-11-15 Nike, Inc. Article of footwear with multi-layered support assembly
WO2007136975A2 (en) * 2006-05-19 2007-11-29 Nike International Ltd. Article of footwear with multi-layered support assembly
US8522454B2 (en) 2006-05-19 2013-09-03 Nike, Inc. Article of footwear with multi-layered support assembly
US10172418B2 (en) 2006-05-19 2019-01-08 Nike, Inc. Article of footwear with multi-layered support assembly
WO2008086247A1 (en) * 2007-01-08 2008-07-17 Nike, Inc. Article of footwear incorporating a fluid system with vertically-arranged pump and pressure chambers
US8015730B2 (en) 2007-01-08 2011-09-13 Nike, Inc. Footwear with vertically-arranged pump and pressure chambers
EP3114960A1 (en) * 2007-01-08 2017-01-11 NIKE Innovate C.V. Article of footwear incorporating a fluid system with vertically-arranged pump and pressure chambers
EP2229833A1 (en) 2009-03-04 2010-09-22 -CAP-K Technologies Method and device for attenuating and filtering vibrations transmitted to a user by an item of footwear
CN102579175A (en) * 2011-01-11 2012-07-18 王江 Expansion band with unilateral strain and its manufacturing method
EP3348391A1 (en) * 2013-03-15 2018-07-18 NIKE Innovate C.V. Fluid-filled chamber with a tensile element
CN107361466A (en) * 2013-03-15 2017-11-21 耐克创新有限合伙公司 Fluid-filled chamber and the method for manufacturing the fluid-filled chamber
WO2014175971A3 (en) * 2013-03-15 2014-12-18 Nike Innovate C.V. Fluid-filled chamber with a tensile element
US9603415B2 (en) 2013-03-15 2017-03-28 Nike, Inc. Fluid-filled chamber with a tensile element
US9603414B2 (en) 2013-03-15 2017-03-28 Nike, Inc. Fluid-filled chamber with a tensile element
US11596202B2 (en) 2013-03-15 2023-03-07 Nike, Inc. Fluid-filled chamber with a tensile element
US11013294B2 (en) 2013-07-12 2021-05-25 Nike, Inc. Contoured fluid-filled chamber
US10376016B2 (en) 2013-07-12 2019-08-13 Nike, Inc. Contoured fluid-filled chamber
WO2015006048A1 (en) * 2013-07-12 2015-01-15 Nike Innovate C.V. Contoured fluid-filled chamber
US9730487B2 (en) 2013-07-12 2017-08-15 Nike, Inc. Contoured fluid-filled chamber
US11653715B2 (en) 2013-07-12 2023-05-23 Nike, Inc. Contoured fluid-filled chamber
WO2015017446A1 (en) * 2013-08-02 2015-02-05 Skydex Technologies, Inc Differing void cell matrices for sole support
US11330861B2 (en) 2013-08-02 2022-05-17 Skydex Technologies, Inc. Void cell arrangements with differing void cells
US10624419B2 (en) 2013-08-02 2020-04-21 Skydex Technologies, Inc. Differing void cell matrices
US10005231B2 (en) 2014-05-23 2018-06-26 Nike, Inc. Method of manufacturing contoured objects by radio frequency welding and tooling assembly for same
US10512301B2 (en) 2015-08-06 2019-12-24 Nike, Inc. Cushioning assembly for an article of footwear
WO2017023532A1 (en) * 2015-08-06 2017-02-09 Nike Innovate C.V. Cushioning assembly for an article of footwear
US11638464B2 (en) 2016-03-15 2023-05-02 Nike, Inc. Sole structure for article of footwear
KR102561436B1 (en) 2016-03-15 2023-07-28 나이키 이노베이트 씨.브이. Sole structure for article of footwear
KR102125918B1 (en) 2016-03-15 2020-06-23 나이키 이노베이트 씨.브이. Outsole structure for footwear articles
US10321735B2 (en) 2016-03-15 2019-06-18 Nike, Inc. Sole structure for article of footwear
AU2017235417B2 (en) * 2016-03-15 2019-06-27 Nike Innovate C.V. Sole structure for article of footwear
KR20180121629A (en) * 2016-03-15 2018-11-07 나이키 이노베이트 씨.브이. Footwear Structures for footwear
KR20210149243A (en) * 2016-03-15 2021-12-08 나이키 이노베이트 씨.브이. Sole structure for article of footwear
KR20220134054A (en) * 2016-03-15 2022-10-05 나이키 이노베이트 씨.브이. Sole structure for article of footwear
KR102448767B1 (en) 2016-03-15 2022-09-28 나이키 이노베이트 씨.브이. Sole structure for article of footwear
WO2017160943A1 (en) * 2016-03-15 2017-09-21 Nike Innovate C.V. Sole structure for article of footwear
US11019881B2 (en) 2016-03-15 2021-06-01 Nike, Inc. Sole structure for article of footwear
US11033074B2 (en) 2016-03-15 2021-06-15 Nike, Inc. Sole structure for article of footwear
US11684117B2 (en) 2016-03-15 2023-06-27 Nike, Inc. Sole structure for article of footwear
JP2021506390A (en) * 2017-12-14 2021-02-22 ナイキ イノベイト シーブイ Sole structure for footwear
US11528961B2 (en) 2017-12-14 2022-12-20 Nike, Inc. Sole structure for article of footwear
CN111683554B (en) * 2017-12-14 2021-12-10 耐克创新有限合伙公司 Sole structure for an article of footwear
WO2019118530A1 (en) * 2017-12-14 2019-06-20 Nike Innovate C.V. Sole structure for article of footwear
CN111683556B (en) * 2017-12-14 2022-05-31 耐克创新有限合伙公司 Sole structure for an article of footwear
JP2021506386A (en) * 2017-12-14 2021-02-22 ナイキ イノベイト シーブイ Sole structure for footwear
JP2021506385A (en) * 2017-12-14 2021-02-22 ナイキ イノベイト シーブイ Sole structure for footwear
CN111683555B (en) * 2017-12-14 2021-12-10 耐克创新有限合伙公司 Sole structure for an article of footwear
US11564445B2 (en) 2017-12-14 2023-01-31 Nike, Inc. Sole structure for article of footwear
CN111683555A (en) * 2017-12-14 2020-09-18 耐克创新有限合伙公司 Sole structure for an article of footwear
US11607010B2 (en) 2017-12-14 2023-03-21 Nike, Inc. Sole structure for article of footwear
CN111683556A (en) * 2017-12-14 2020-09-18 耐克创新有限合伙公司 Sole structure for an article of footwear
CN111683554A (en) * 2017-12-14 2020-09-18 耐克创新有限合伙公司 Sole structure for an article of footwear
WO2019118540A1 (en) * 2017-12-14 2019-06-20 Nike Innovate C.V. Sole structure for article of footwear
WO2021201881A1 (en) * 2020-04-03 2021-10-07 Hewlett-Packard Development Company, L.P. Articles with midsoles sealed in a cover

Also Published As

Publication number Publication date
US7244483B2 (en) 2007-07-17
US6402879B1 (en) 2002-06-11
WO2001070064A3 (en) 2002-06-27
DE60120899T2 (en) 2007-01-18
EP1233686B1 (en) 2006-06-21
CN1174693C (en) 2004-11-10
ATE330499T1 (en) 2006-07-15
US20020139471A1 (en) 2002-10-03
AU2001247431A1 (en) 2001-10-03
CN1386053A (en) 2002-12-18
KR100611822B1 (en) 2006-08-11
EP1233686A2 (en) 2002-08-28
CN100407955C (en) 2008-08-06
KR20020007413A (en) 2002-01-26
DE60120899D1 (en) 2006-08-03
CN1600191A (en) 2005-03-30

Similar Documents

Publication Publication Date Title
US6402879B1 (en) Method of making bladder with inverted edge seam
US6571490B2 (en) Bladder with multi-stage regionalized cushioning
CA2222332C (en) Complex-contoured tensile bladder
EP1659893B1 (en) Footwear sole structure incorporating a cushioning component
JP6592069B2 (en) Fluid-filled chamber for footwear with a central tension feature
CN100450389C (en) Footwear with a sole structure incorporating a lobed fluid-filled chamber
EP1045756B1 (en) Resilient bladder for use in footwear
CA2176859C (en) Multi-celled cushion and method of its manufacture
JP4272674B2 (en) Footwear having a bottom structure incorporating a branched fluid-filled chamber
EP2114187B1 (en) Interlocking fluid-filled chambers for an article of footwear

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800946.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020017014576

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001920372

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017014576

Country of ref document: KR

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 2001920372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 1020017014576

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001920372

Country of ref document: EP