WO2001057901A1 - Mikrorelais - Google Patents

Mikrorelais Download PDF

Info

Publication number
WO2001057901A1
WO2001057901A1 PCT/DE2001/000389 DE0100389W WO0157901A1 WO 2001057901 A1 WO2001057901 A1 WO 2001057901A1 DE 0100389 W DE0100389 W DE 0100389W WO 0157901 A1 WO0157901 A1 WO 0157901A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
switching part
attached
electrodes
actuator
Prior art date
Application number
PCT/DE2001/000389
Other languages
English (en)
French (fr)
Inventor
Robert Aigner
Sven Michaelis
Florian PLÖTZ
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP01913558A priority Critical patent/EP1252640A1/de
Priority to KR1020027009941A priority patent/KR20020075904A/ko
Priority to JP2001557065A priority patent/JP2003522379A/ja
Publication of WO2001057901A1 publication Critical patent/WO2001057901A1/de
Priority to US10/211,058 priority patent/US6734770B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • H01H2059/0054Rocking contacts or actuating members

Definitions

  • the present invention relates to an electrostatically operating microrelay which can be used as a switch and which can be produced using the methods of micromechanics.
  • electrostatic microswitches are ideally suited and clearly superior to other semiconductor switches in terms of damping and noise behavior.
  • a major advantage of such switches is that, apart from capacitive charging currents, the switching contacts can be controlled without power.
  • Electrostatic switches with a short switching time in the range below 100 ⁇ s can only be realized with conventional methods if very large switching voltages can be accepted.
  • a compromise must be made between the switching speed and the required switching voltage, since the stiffness of the resilient suspension of the switching element means that high switching voltages are required for high switching speeds.
  • Battery voltages of up to 3 V are typically available especially for use in cell phones; Switching voltages of up to 12 V can be achieved using voltage multipliers.
  • Micromechanical switches are usually formed with micromechanically producible bars, at the end of which the switch contacts are seated and which are bent by means of electrostatic attraction by means of electrical potentials on suitably attached electrodes in order to close the contacts. With switching times of 20 ⁇ s, electrical voltages of 30 V and more are typically required. These components are therefore unsuitable for use in mobile telephones or other low-power applications.
  • CD 3 > QF, F- rt CQ
  • the object of the present invention is to provide a component which can be used as a switch and which achieves high switching speeds with a low switching voltage.
  • the microrelay according to the invention has a switching part which is rotatably suspended on a substrate and can be moved into two alternative switching states in the manner of a rocker by electrostatic attraction by means of suitably attached electrodes.
  • the switching function is brought about in that electrodes which are fastened to the substrate above the rocker are short-circuited by metallizations on the upper side of the switching part.
  • Figure 1 shows an example of a micro relay in cross section.
  • Figure 2 shows the embodiment of Figure 1 in supervision.
  • FIG. 3 shows a further example of a microrelay in cross section.
  • Figure 4 shows the embodiment of Figure 3 in supervision.
  • FIG. 1 the remaining portions of an auxiliary layer or sacrificial layer 11, a structural layer 2 and an electrically insulating layer 20 as well as contact electrodes 31, 32, which are firmly attached with respect to the substrate, are shown in cross section on a substrate 1 or a layer or layer structure present thereon.
  • the switching part 9 in this exemplary embodiment has a cutout in the middle in which the anchoring 4 is arranged. Between the switching part 9 and the anchoring 4 there are aligned along the intended axis of rotation and acting as torsion springs
  • 3 3 PJ PJ pj s; P 3 PJ 3 'F ⁇ ⁇ ⁇ ! ⁇ ⁇ T PJ
  • the doping is omitted, so that the polysilicon here is electrically insulated or at least has only a low electrical conductivity. However, the doping can also be present in the entire switching part 9. Adequate electrical insulation of the contact electrodes 71, 72 can, if necessary, be brought about by electrically insulating layers 21, 22 (for example a nitride such as Si 3 N 4 ) between the contact electrodes 71, 72 and the switching part 9. , The course of the cross section shown in FIG. 1 and the hidden contours of the actuator electrodes 51, 52 attached to the substrate are shown in dashed lines.
  • FIG. 2 clearly shows the structuring of the contact electrodes 31, 32 attached to the substrate, each of which has two portions 31a, 31b and 32a, 32b which are arranged at a short distance from one another. These portions are each arranged and aligned in such a way that they are short-circuited by a contact electrode 71, 72 on the upper side thereof when the rocking switching part is in a suitable position.
  • two switching functions can be carried out simultaneously, with which one switch is closed and a second switch is opened at the same time.
  • the double arrow shown in FIG. 1 refers to the correspondence between the axes of rotation given by the respective struts 8 in FIG. 1 or (shown in dotted lines) in FIG. 2.
  • the contact electrodes 31, 32 can be applied to an electrically insulating layer 20 and connected by means of conductor tracks or provided with electrical connections via conductors in the structural layer 2.
  • F P. F- ⁇ - 3 tr PJ 3 ⁇ ⁇ F Hi 0 «tr 3 rt - - F- LQ PJ cQ ⁇ CQ 3 ⁇ tr cn F rt 3 PJ 0 F F- PJ tr 0 F Hi ⁇ > Pi rt ⁇ F ⁇ ⁇ ⁇
  • the movable part is therefore preferably made of a low-density material, preferably of polysilicon.
  • Metallic coatings e.g.
  • the microrelay according to the invention with contacts closing at the top (ie away from the substrate) enables a significant reduction in the moving mass (moment of inertia) and thus an increase in the switching speed with an unchanged low switching voltage, since the heavier part of the contact electrodes forming the switch is stationary with respect to the Substrate remains.
  • the properties of the switch and the exercise of the switching force are in the invention

Abstract

Das Mikrorelais besitzt ein auf einem Substrat (1) drehbar aufgehängtes Schaltteil (9), das nach Art einer Wippe durch elektrostatische Anziehung mittels geeignet angebrachter Elektroden (51, 52, 6) in zwei alternative Schaltzustände bewegt werden kann. Die Schaltfunktion wird dadurch bewirkt, dass Elektroden (31, 32), die oberhalb der Wippe am Substrat befestigt sind, durch Metallisierungen (71, 72) auf der Oberseite des Schaltteiles kurzgeschlossen werden.

Description

Beschreibung
Mikrorelais
Die vorliegende Erfindung betrifft ein elektrostatisch arbeitendes Mikrorelais, das als Schalter verwendet werden kann und das mit den Verfahren der Mikromechanik hergestellt werden kann.
Insbesondere für Anwendungen im Hochfrequenzbereich sind elektrostatische Mikroschalter ideal geeignet und anderen Halbleiterschaltern was das Dämpfungs- und Rauschverhalten anbetrifft deutlich überlegen. Ein wesentlicher Vorteil derartiger Schalter besteht darin, daß abgesehen von kapazitiven Ladeströmen eine leistungslose Steuerung der Schaltkontakte möglich ist. Elektrostatische Schalter mit kleiner Schaltzeit im Bereich unterhalb von 100 μs sind mit herkömmlichen Verfahren nur realisierbar, wenn sehr große Schaltspannungen akzeptiert werden können. Generell ist bei den bekannten tech- nischen Realisierungen ein Kompromiß zwischen der Schaltgeschwindigkeit und der erforderlichen Schaltspannung einzugehen, da die Steifigkeit der federnden Aufhängung des Schaltelementes bewirkt, daß für hohe Schaltgeschwindigkeiten hohe SchaltSpannungen erforderlich sind. Speziell für den Einsatz in Mobiltelefonen stehen typisch Batteriespannungen bis höchstens 3 V zur Verfügung; unter Verwendung von Spannungsver- vielfachern sind Schaltspannungen von maximal 12 V erreichbar. Mikromechanische Schalter sind üblicherweise mit mikromechanisch herstellbaren Balken gebildet, an deren Ende die Schaltkontakte sitzen und die durch elektrostatische Anziehung mittels elektrischer Potentiale auf geeignet angebrachten Elektroden gebogen werden, um die Kontakte zu schließen. Bei Schaltzeiten von 20 μs werden typisch elektrische Spannungen von 30 V und mehr benötigt. Daher sind diese Bauele- mente für den Einsatz in mobilen Telefonen oder andere Anwendungen im Bereich niedriger Leistung ungeeignet. UJ ω t CO H F1 o o o
M X &
F- ' CD CD
Φ F,
CD LQ rt h- ' CD
F CD 3'
0 x PJ rt F1
0) F, rt
3 o CD p. 3 Q D
PJ F-
3 3 Cfl
N 3 rt h &
3 j: td 3
Ω PJ P.
3J CQ
F- F- tr
Cfl CD
CD F-
PJ
3 CD >
?f 3 p. rt 1— '
F- F, φ fD 0 tQ
P. φ d CD 3
PJ
03 Φ
F- F- F-
CD O 3
CD tr Φ
H
CD CQ
? CD CΛ rt 3 Ό n f PJ
0 n 3
P. CD 3
CD n 3
3J 3 J rt CQ
1=1
F1 N rsi
CD 3 => Q F, F- rt CQ
• M Ω tr t
CD Φ
3 3
CD
2
CD
F,
Figure imgf000003_0001
In der Veröffentlichung von P. M. Zavracky et al . : "Microme- chanical Switches Fabricated Using Nickel Surface Micromachi- ning" in Journal of Microelectromechanical Systems 6, 3 - 9 (1997) sind mikromechanische Schalter beschrieben, bei denen die miteinander elektrisch leitend zu verbindenden Anschlußkontakte mittels eines an einem Balken angebrachten Schaltkontaktes kurzgeschlossen werden, wenn durch Anlegen einer Spannung zwischen den elektrisch leitenden Balken und eine Gegenelektrode am Substrat der Balken durch elektrostatische Kraft zum Substrat hin gebogen wird.
In der Veröffentlichung von I. Schiele et al . : "Micromechani- cal Relay with Electrostatic Actuation" in Transducers '97, 1997 International Conference on Solid-State Sensors and Ac- tuators, Chicago, S. 1165 - 1168 ist ein Mikrorelais beschrieben, bei dem zum Schließen des Schalters ebenfalls ein biegefähiger Balken elektrostatisch zum Substrat hin gezogen wird und bei dem ein T-förmiger metallischer Ansatz an dem Balken zum Kurzschließen der elektrisch leitend miteinander zu verbindenden Anschlußkontakte vorhanden ist. Der Ansatz ist von dem Rest des Balkens elektrisch isoliert.
In der Veröffentlichung von Seok- han Chung et al . : "Design and Fabrication of Micro Mirror Supported by Electroplated Nickel Posts" in Transducers '95 Eurosensors IX, Proc . of the 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, S. 312 - 315, ist ein an Torsionsfedern aufgehängter Mikrospiegel beschrieben, der elektrostatisch verkippt werden kann.
Aufgabe der vorliegenden Erfindung ist es, ein als Schalter verwendbares Bauelement anzugeben, das hohe Schaltgeschwindigkeiten bei kleiner Schaltspannung erreicht.
Diese Aufgabe wird mit dem Mikrorelais mit den Merkmalen des Anspruches 1 gelöst. Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen. Das erfindungsgemäße Mikrorelais besitzt ein auf einem Substrat drehbar aufgehängtes Schaltteil, das nach Art einer Wippe durch elektrostatische Anziehung mittels geeignet angebrachter Elektroden in zwei alternative Schaltzustände bewegt werden kann. Die Schaltfunktion wird dadurch bewirkt, daß Elektroden, die oberhalb der Wippe am Substrat befestigt sind, durch Metallisierungen auf der Oberseite des Schaltteiles kurzgeschlossen werden.
Es folgt eine genauere Beschreibung des erfindungsgemäßen Mikrorelais anhand der in den Figuren 1 bis 4 dargestellten Ausführungsbeispiele .
Figur 1 zeigt ein Beispiel eines Mikrorelais im Querschnitt. Figur 2 zeigt die Ausführungsform gemäß Figur 1 in Aufsicht. Figur 3 zeigt ein weiteres Beispiel eines Mikrorelais im Querschnitt . Figur 4 zeigt die Ausführungsform gemäß Figur 3 in Aufsicht.
In Figur 1 sind auf einem Substrat 1 oder einer darauf vorhandenen Schicht oder Schichtstruktur im Querschnitt dargestellt restliche Anteile einer Hilfsschicht oder Opferschicht 11, einer Strukturschicht 2 und einer elektrisch isolierenden Schicht 20 sowie Kontaktelektroden 31, 32, die bezüglich des Substrates fest angebracht sind. In einer Aussparung der Schichten 11, 2, deren in der Figur mittlerer Anteil der Übersichtlichkeit halber weggelassen und nur durch Bruchlinien angedeutet ist, befindet sich auf dem Substrat 1 oder einer darauf vorhandenen Schicht ein als Verankerung 4 vorgese- henes Strukturteil, an dem das eigentliche Schaltteil 9 aufgehängt ist. Um das zu ermöglichen, besitzt das Schaltteil 9 in diesem Ausführungsbeispiel in der Mitte eine Aussparung, in der die Verankerung 4 angeordnet ist. Zwischen dem Schaltteil 9 und der Verankerung 4 befinden sich längs der vorgese- henen Drehachse ausgerichtete und als Torsionsfedern wirkende
Verstrebungen 8. Diese verdrehbaren Verstrebungen 8 ermöglichen es, das daran aufgehängte Schaltteil 9 um die durch die CO ω to to F1 F1
LΠ o LΠ o LΠ O LΠ
3 tr
CQ rt
F
PJ rt tr
F-
3
Φ
F-
3
Φ
Φ
X rt
F
F-
CQ
Ω t
Φ
F
3
CQ
Ω tr
F1
3 tΛ J
3
Pi
F
Φ
X rt
3 J rt
0
F
Φ h- '
Φ
X
Figure imgf000006_0001
Figure imgf000007_0001
ö H rt ω CQ CQ CQ N <J cn 3 > F H Pi CQ tr < P. rt S rt rt φ Φ N CΛ > P PJ rt CΛ PJ rt
F- 3 0 Ω Φ Φ 3 . φ F- F- 3 Φ 3 φ rt Φ 0 φ Φ F- PJ F F1 F1 φ 3 Ω 3 PJ 3 Φ Ω tr F
Φ <ϋ F tr F- tr 3 öd F O rt CQ 3 3 F- F F F F- X X 0 Φ Φ X LQ tr Hi 3 3 tr Φ 0
CQ Φ PJ rt F CQ tr 3 rt Hi P. ^ rt CQ tr FJ F rt P. X ? rt CQ PJ 3 C rt J F P.
Φ PJ F1 J Φ 3 cn h- ' 3= Φ F- rt P. PJ P. Φ O Φ Φ rt rt F s: P 3 F- Φ
3 Φ rt F- Ω 3 PJ 3 Hi Φ tr 3 CQ F- Φ F- 3 Φ O F 3 F F 0 Φ rt Φ P tr PJ rt PJ
H rt X rt Ω tr F1 P. φ F F 3 Ω φ P. ^ • Φ Φ F- F- P F- Hi 3 3 CQ rt 3 cn
3 PJ rt Φ tr rt <! cn Φ P- Φ 3 CΛ F tr φ F1 ? ι CQ CQ Φ cn 3 F rt Φ Ω
TJ rt F F- 0 3 Φ 3 3 Ω 0 ^ 3 H J rt F1 Ω Ω Φ 3 CΛ Ω F ^ F- tr Pi
F- 0 1— ' cn F F- F CQ tr to PJ 3 0 φ F- 3 F- F - tr tr cn X Ω tr PJ ^ Φ
P> 0 α rt F- CQ 3 F- 3 > CQ F- 3 rt 3 3 3 CQ 0 CQ rt tr rt Φ Φ CQ
3 3 Φ VD F 3 Φ rt Cfl 3 tr Ω F- tr PJ rt X P. Pi ^1 F- F- Φ Φ F- PJ Φ 0 CQ F- rt 3 P. Q Φ rt cn Φ tr CQ PJ X PJ > Φ Φ PJ Φ to CQ CQ LQ 0 F1 ' tr PJ 3 CΛ
PJ < cn J X Φ CQ . F- cn F- rt rt 3 rt X X F 3 3 0 0 φ Φ 3 rt Φ Φ rt <J φ Ω rt O 3 rt tr F F J Cfl P Φ rt rt H Hi 3 X 3 rt X Hi F- 0 tr
F- 3 CQ 3 > φ PJ CΛ X P TJ to Pi Φ 3 Φ F- 1 3 F- F- rt < Φ rt Φ 3 F φ PJ
0 Φ Φ F 3 3 rt Φ F F- PJ P. Φ F1 PJ F- 3 P. P. Φ Φ F P. 0 F- F CO CQ tr F1
3 α CQ tr F- Hi φ Φ J 3 3 Φ 3 CQ φ X Φ rt φ ^ F F F- F- F ' F- rt •—^ PJ Φ rt
0 F φ 3 rt P. 3 3 F rt X 0 ^ F -J P Φ Φ CO Φ LQ CQ F- 3 X rt
3 rt CΛ PJ F α j rt Φ Q Pi CΛ F rt F P. F- to Φ 3 3 Ω Φ CD Ω CQ P. rt Φ
3 F- Ω Ω rt φ < ' 3 tr 3 F- 0 F Φ φ CQ O 3 P P tr PJ Cfl tr rt F- Φ F F-
Hi Φ tr tr Φ F Φ PJ P. P. Φ P. tr 3 P. 0 F1 cn 3 tr tr Φ Φ 3 Φ tr Φ Φ Φ 3 F-
PJ F PJ rt 3 F rt Φ < Φ Hi Φ CQ Φ P. Φ F Φ Φ CΛ 3 F- tr φ 3 CQ CQ φ
CΛ CQ Φ O CQ rt cn Φ CQ F- 3 rt *x| Φ X CΛ F Hi Ω CΛ CQ P Φ Hi tr1 rt CO Ω CQ rt rt rt 3 > tr rt Φ cn F 3 F F- UJ rt Ω F1 CQ F- tr CΛ Ω 0 Φ 3 F- PJ > φ tr
0 rt 3 Φ F φ Cfl CΛ P. CΛ PJ CQ t ι F tr Φ 3 PJ Ω tr F-1 3 Φ 3 P X F- CD
P. Hi Φ « O F Φ J 3 rt Ω Φ Ω rt 3 to 0 J p. F- P. tr F- F- 3 Pi 3 rt td 3 F-
Φ Hi F- 0 PJ= cn tr 3 F tr rt tr F CQ P. PJ rt φ rt F- Ω Φ CΛ Φ 3 3 F- ~ CQ Φ
3 F1 3 rt Φ 3 cn F- Φ PJ J M Φ P Φ rt F Φ 3 rt Ω tr F Ω 3 CQ PJ 3 O F
F- φ rt N F- 3 N cn tr CO to tr Φ rt LQ Φ tr rt rt tr O CQ rt Φ Pi F1 3
F- 3 CQ PJ Φ rt tQ 3 rt 3 rt F- rt N F- 3 LΠ Φ Φ Pi CQ F- rt Φ PJ 3 cn F- 0 F- F- 0=
3 X 3 Φ Φ tr 3 rt Ω rt s; Pi F1 F- CQ Φ F- 3 CQ 1— ' rt F- 3 F Φ Φ Φ CQ
T CD rt - 3 F- Φ LQ Φ tr Φ F- PJ P. P. l-1 rt CQ Ω to F- rt J Ω Hi Φ F
Pi o Φ P. F- ' cn Φ F- F- CQ F Φ 3 PJ Φ Φ tr VD o t 3 rt X tr F1 Φ J rt F- cn
Φ F- - tr Φ CQ P. 3 P r-> Ω tQ rt F 3 CQ P. - F> P Φ rt 3 Φ X 3 Φ Ω
F ^ CQ Φ Φ to Φ Φ 3 Φ F- tr Φ Φ Ω LQ F- tr <! - F- Φ P Φ X rt H tr
CQ rt X Hi F- 3 o= CO cn Φ LD Φ Cfl 3 tr Φ CD rt Φ Φ 0 N F1 F- 3 rt F > rt
^ F- rt F- CΛ rt - LQ - 3 rt IM Φ F- F CO N Φ Φ N F F- Hl X
F- F- F 3 Ω 1— ' 3 < Φ Φ CΛ P 0 <: 3 tr F- t 3 <! X 0 CQ F rt F-
CQ F- 3 0 P tr F- PJ F- F- P Φ F P. F1 Ω F- LQ 0 F- J cn ~ 0 rt Hi tr P Ω Φ 3 CQ
3 N P. Φ PJ Ω 3 Ω rt PJ F X φ F" tr φ Φ 3 CΛ 3 Φ 3 Ω Pi F F 3= Φ Φ tr F- PJ rt
F F- Pi Φ 3 tr tr cn PJ Φ F rt PJ 3 Ω Ό 3 i tr N F- tr 0 F F 3 φ Φ rt
3 F- 3 rt P. - P. 3 3 φ PJ i tr Φ Φ Φ φ PJ Pi < 3 O t 3 φ CQ rt 3 Φ Φ 3= X 3 Φ 3 rt 3 F- φ PJ φ 3 3 CO 3 Φ P. 0 LΠ > F CΛ
CQ -J F- Φ J F P. F tr Φ tr Φ CQ F tr F td φ P 3 F- F H 3 Φ Φ rt
Cfl PJ Φ F1 Ω F- Ω J φ F PJ Φ > F CΛ rt rt F- Hi Cfl P • 3 φ Φ CQ -~ N F1 PJ
Ω 3 3 >• tr F1 3J Pi cn < F 3 F X 3 3 ~ PJ O F- Φ Φ 3 ι Φ LΠ F- Φ Φ rt tr CQ -J φ F- Φ 3 • rt Hi X tr 3 0 α 3 F- 3 > N Φ F1 Φ F CO Φ X X rt
F LQ Cd CO p. co PJ φ CΛ F P. CQ F CQ 3 CQ Cfl CQ Φ 3 3 s: ~ F- 3 tr rt rt
PJ Φ φ • F- 3 Ω PJ F- öd F- F- F rt Ω CΛ F- 3 3 • K rt φ > -J CQ Hi tr 3 F F P
Hl tr F- Φ LD PJ tr 3 Φ >4^ Φ o Ω N F tr 3 rt a 3 0 Φ Ω X to φ Φ F- 3 F- 0 Φ
Hi F- CQ α Φ PJ X F- Ω t • J tr F- Φ CQ σ 3 F- X rt ^ 3 3 3 CQ CQ Pi CQ
F- Td F- PJ 3 fl F1 Φ PJ F- tr rt rt F- O 0 3 Cfl F- rt F1 3 rt Ω Φ CQ
Φ P. F- Φ 3 tr rt F 3 • ü Φ rt 3 CQ Φ PJ φ X PJ P. N tr Φ
F Hi F- s:
Φ Φ tr > rt 3 CQ F- F- PJ tr F - CΛ Φ X 0= rt F- F- F- 3 Φ Pi rt 3 rt > Φ F- 3 Φ 3 Φ Φ to O Φ rt PJ Ω
• 3 rt Pi 3 F
X P. F 3 Hi F- LQ F3 F- CQ 0 Hi rt F- PJ: « 0 Φ Ω 3 Φ tr 0 Φ Φ 3 F tr P P CQ X
Φ PJ rt φ tr 0 3 Φ
3 3 PJ PJ pj= s; Φ 3 PJ 3 ' F Φ Φ <! φ Φ T PJ
F- F φ 3 F- F- PJ Φ Φ 3 0 3 0 3
3 CQ PJ 3 3 3 F Φ F rt 3 F
Hi 3 P.
gezeichneten Bereich einschließlich der Verstrebungen 8 und der Verankerung 4. In den seitlichen Ansätzen, die die Kontaktelektroden 71,72 tragen, ist die Dotierung weggelassen, so daß das Polysilizium hier elektrisch isoliert oder zumin- dest nur eine geringe elektrische Leitf higkeit aufweist . Die Dotierung kann aber auch in dem gesamten Schaltteil 9 vorhanden sein. Eine ausreichende elektrische Isolation der Kontaktelektroden 71, 72 kann, falls erforderlich, durch elektrisch isolierende Schichten 21, 22 (z. B. ein Nitrid wie Si3N4) zwischen den Kontaktelektroden 71, 72 und dem Schaltteil 9 bewirkt sein. . In Figur 2 sind gestrichelt eingezeichnet der Verlauf des in Figur 1 dargestellten Querschnittes sowie die verdeckten Konturen der am Substrat befestigten Aktuatorelektroden 51,52.
In Figur 2 ist deutlich erkennbar die Strukturierung der am Substrat angebrachten Kontaktelektroden 31,32, die jeweils über zwei in einem geringen Abstand zueinander angeordnete Anteile 31a, 31b bzw. 32a, 32b verfügen. Diese Anteile sind je- weils so angeordnet und ausgerichtet, daß sie bei geeigneter Lage des wippenden Schaltteiles durch eine betreffende Kontaktelektrode 71,72 auf dessen Oberseite kurzgeschlossen werden. Somit können in diesem Ausführungsbeispiel mit dem Umschalten des Mikrorelais gleichzeitig zwei Schaltfunktionen ausgeführt werden, mit denen ein Schalter geschlossen und ein zweiter Schalter gleichzeitig geöffnet wird. Alternativ ist es möglich, das Mikrorelais auf eine Schaltfunktion zu beschränken, indem z.B. die zweiten Kontaktelektroden 32,72 auf der rechten Seite weggelassen oder nicht angeschlossen wer- den. Der in Figur 1 eingezeichnete Doppelpfeil verweist auf die Korrespondenz zwischen den durch die jeweils eingezeichneten Verstrebungen 8 gegebenen Drehachsen in Figur 1 bzw. (punktiert eingezeichnet) in Figur 2. Die Kontaktelektroden 31, 32 können auf einer elektrisch isolierenden Schicht 20 aufgebracht und mittels Leiterbahnen angeschlossen oder über Leiter in der Strukturschicht 2 mit elektrischen Anschlüssen versehen sein. U> u> to CO F» F1 cn o LΠ o LΠ O LΠ
CQ 3 X LQ PJ F- F CO P. 53 X P. > > 3= CQ J P. P Pi CΛ Hi Fl tr PJ φ CΛ P. tr H rt 0 F Φ tr CQ F- Ω φ F- φ F Φ X tr PJ= H Φ F- 3= Φ Ω F-1 3 F Φ 3 F1 rt Φ Φ 3
Φ Ω 0 tr tr rt Ω tr Cfl O O PJ 3 rt CO φ 3 ~ 3 Φ tr 3 tr PJ= 3= CQ Hi Φ F CQ F-
3 tr F F- PJ: tr PJ Cfl TJ φ Hi 3 F rt - F J Ω P Ω X 3 CQ ^
Φ Φ F1 3 Φ rt 1— ' φ Φ 3 rt CΛ PJ s: -1 td 3 F- F1 tr φ X ^— - P rt X CΛ Ό F-
F tr F" P. Q CQ 3 rt 3 3 rt Ω rt Φ P. F- to Pi Φ 3 CQ rt F- F φ LD φ F rt 3 F- CQ rt Φ PJ φ F- 3 Φ Hl r-1 F- tr 0 F- Φ Ω F- F LQ rt rt CQ 3 — ' F F- 3 tr Φ 3
Φ F- F- rt LQ 3 CQ F O 0= F- 3 PJ F rt 3 tr Φ CQ Φ Φ PJ o F CQ F
3 3 cn Φ o= Φ tr F Ω Hl i— Φ Φ Φ CQ rt ≤ F- F- 3 3 F J <! Ω CQ rt
3 < CQ 3 CQ φ 3 tr 0 rt -> F CΛ F Φ > Φ Φ 3 F1 Hi rt 3 0 tr Ω F P )
N > LQ 0 Φ F F- rt Φ Φ 3 3 X F- > CQ F- Q 3 tr J J
3 3 Φ 3 3 F- Φ CQ Cfl Q Hi LQ Φ X tr td Φ rt F1 CQ T <Ω 3 F- CQ Φ F- F- rt F F-
CO CQ tr 0 Ω F- Ω Φ Φ 3= Φ F- rt > CQ F1 F- 3 3 rt F rt Ω 0 P. CQ Ω Φ CQ CQ rt CQ F- F P. tr 3 tr F- CQ F F 3 rt Φ 3 3 F- φ Φ tr 3= F Φ 0 tr Cfl Φ rt J Ω F1 ω Φ Φ F1 rt P. O CQ F ; cn rt CQ CQ 3 F- F- rt tr P 3 rt Cfl
3 tr Pi F- F 0 Φ CΛ P. φ PJ Pi Hi PJ rt J 0 - 3 N 3 *• φ 3 F- J rt F- J Φ 0 p. Φ CQ Ω PJ CQ 3 Φ 3= rt F 3 F rt F- IQ Φ F Φ CΛ Φ to 3 Φ 3 ' rt 3 fd F- F- CQ ^ tr CO CQ 3 tr • 0 Φ $. Φ TJ φ P CQ rt 3 F o Hl
3 rt Φ CQ 3= Φ LQ Φ O PJ CQ Φ F cn F1 Φ N P F- Ό tr Φ O
3 Φ Hi Ω φ 3 3 φ F O Cfl 3 φ rt Φ 3 3 tr φ Φ Φ PJ CQ O 3 3 P rt 3
P 3 CΛ Φ ?r o 3 rt rt F 0= F 0 3 3 F X 3 Φ φ F- F 3 F- rt Pi 3 φ - Φ
Ω P cn φ Φ £ PJ rt Hi A P LQ 3 rt Ω Ω F- 3 3 F Φ F F
X F- tr Φ rt CQ φ X Φ F- Φ 3 0 CQ tr ? F PJ tr F- t > 3 Φ P PJ 3 tr CQ
3 PJ F Φ Ω > F rt F- 3 F Φ tr Hi Φ rt O F1 PJ Φ 3 X 3 - rt F- tr Φ Ω
3 ' F-1 tr X P Φ F1 Pi Φ rt ' o Hi 3 P. F1 3 tr Φ rt ^ P CΛ 3 F- F- tr
3 φ rt Φ ' s: rt Φ 3 3 F F- F Φ Φ F- F- rt 3 F- • P. -—- Ω Φ 3
F- Φ F- ? F- 3 3 Φ PJ 3 CD 3 3 3 F- 3 O CQ J CQ PJ F1 tr P F P F-
Pi 3 F 3 F 3 PJ • X CQ Φ Φ 3 P Φ J Ω • rt 3 tr — F- F- φ rt
Φ φ N PJ P. rt rt CO CD. F F- rt X φ F LΠ 3 tr ö 0 F Φ Ω Φ P 3 rt
CQ 3 F- 3 Hi F- 0 ö F CQ N 3 Φ 0= 3 rt u> Φ ü F- F F- PJ tr CQ 3 tr CQ CQ rt CQ F J O > φ F- F 3 - CO F- Φ Φ - tr rt Φ F P Φ
PJ X rt rt X Φ P. P. X 3 Φ 3 CQ $. 3 CΛ Φ F1 <! Q Φ 3 Ω F- F-
H Φ Φ 3 Φ rt PJ: ö P. Φ F- Φ LΠ tr rt ^ Φ CQ 0 Φ 3 tr Φ 3 tr PJ Pi Φ F- φ F 3 3 ts tr PJ Φ 3 Ω F CQ PJ P 0 X Φ F s: Cd Q oo
Hi PJ F rt X Ω PJ Φ PJ CQ 3 tr P. rt σ PJ F rt N N PJ to Φ Φ > PJ
<! rt tr Φ rt tr P) rt F PJ Φ 3 F F- F 3 F φ 3 3 J F- tr X F1
F- Hi Φ 3 P P F - 3 O 2 Φ < CΛ 3 P 3 3 PJ CQ O F- CQ P. - CQ Φ rt rt
Φ F F • 3 Φ 0 CQ F F- 3 Φ Ω PJ ^. P rt F- Φ CQ O rt TJ 3 3 Φ
Φ F CO P. P. Φ X F tr CO 3 rt CQ F- Φ rt s: Φ to F- P PJ F
F- s: α Ω Φ PJ tr < F ö tr PJ 3 3 P. P. PJ PJ: rt Φ 3 Φ 3 t£> Φ rt 3 O φ φ Φ tr α CTO F 0 0 F Φ tr F- F- 3 rt Φ CO F- F- φ 0 J
Ω 3 P. F 3 LΠ PJ F F Φ CQ rt CQ PJ Φ Φ CQ Φ LΠ Cfl cn CΛ J F- F rt tr -. φ P CQ F1 Hi Ω tr Φ tr CQ rt rt 3 Φ PJ F1 F rt φ Φ 3 Pi 3 Φ F-
3 F P. F- Ω - 3= tr PJ 3 Φ Φ F Hi 0 « tr 3 rt - - F- LQ PJ cQ < φ CQ 3 Φ tr cn F rt 3 PJ 0 F F- PJ tr 0 F Hi Φ > Pi rt Φ F Φ Φ Φ
F" 0 tr F PJ t P. F- 3 rt rt CQ Φ 3 PJ • X LΠ CQ P Φ tr J N X CQ J N Φ Ω < tr Cfl φ O φ F rt Ω tr rt tts. F- CQ F 3 Φ rt
Φ 3 F- tr Φ rt <! φ F- 3 3 P- PJ PJ Φ Φ PJ tr td φ 3 3 P J Hi F- F >
F Cfl 3 F <i 0 F- 3 F- rt F- -> 3 F- 3 X rt CQ < J 3= P CΛ Φ Ω Ω 0 3
PJ Pi CQ 0 F P. Pi F- CQ Φ Φ CQ CQ Ω rt Φ 0 rt tr Ω CQ tr <^ tr Pi cn
F- LQ td F- rt F tr φ CQ rt Q Φ tr > Φ 3 <i F 0 Φ P. tr rt 0 3 Φ Hi
3 Φ F- Φ F Q PJ rt - • CΛ PJ tr Φ 3 1— ' φ N F F F- PJ CΛ F φ 3 3=
3 3 CQ Φ PJ 3 CΛ 3 - Ω 3 F F rt Φ td F 3 Φ Φ Ω CQ tr rt tr
P CQ Φ tr 3 Pi Ω F- P. tr Ω PJ Φ X φ CQ rt tr F- J Φ LΠ F φ 3 Ω CQ 3 tQ φ tr rt PJ PJ PJ t Ω td. F- rt φ F- rt Φ Φ N rt PJ 3 3 3 U) 3
3 3 tr 3 CQ 3 J 3 i/o ' tr 0= F X 3 Φ X 3 Φ P P » 3
LQ PJ 3 LQ F" P. Hl rt 3= rt tr Φ 0 rt Hi rt Φ F- rt φ CQ
CQ Φ F1 F- Φ 3 F- rt Φ Φ 1 tr Φ Φ F PJ > F. F- rt
1 3 3 LΠ cn rt 1 rt 3 3 CQ 1 3 F- φ Φ 0 Ω 3 0 Φ
1 3 Φ Φ> 1
PJ Φ rt Φ 3 F 3 1 tr 1 CD F-
1 3 CO 3
3 rt 1
tionären Endzustand (Anschlag einer Schaltposition) gezwungen werden. Beschränkend für die Schaltgeschwindigkeit ist nur die durch das Trägheitsmoment der Wippe gegebene Trägheit und die im wesentlichen durch die angelegte elektrische Spannung begrenzte verfügbare Aktuatorkraft ; die durch die Feder bewirkte Rückstellkraft verliert demgegenüber an Bedeutung. Die Aktuatorkraft , die elektrostatisch durch die Aktuatorelektro- den aufgebracht wird, hängt quadratisch von der angelegten elektrischen Spannung ab und ist ansonsten ausschließlich durch die Geometrie der Anordnung bestimmt. Das Trägheitsmoment hängt außer von der Geometrie auch wesentlich von der spezifischen Dichte des Materials ab, aus dem das Schaltteil 9 besteht. Vorzugsweise wird daher der bewegliche Teil aus einem Material geringer Dichte, vorzugsweise aus Polysi- lizium, hergestellt. Lediglich für die Elektroden können metallische Beschichtungen (z.B. galvanisch abgeschiedene Metalle oder gesputterte Metallisierungen) aufgebracht sein. Das erfindungsgemäße Mikrorelais mit nach oben (das heißt vom Substrat weg) schließenden Kontakten ermöglicht eine deutli- ehe Verringerung der bewegten Masse (Trägheitsmoment) und damit eine Erhöhung der Schaltgeschwindigkeit bei unverändert niedriger SchaltSpannung, da der schwerere Teil der den Schalter bildenden Kontaktelektroden stationär bezüglich des Substrates bleibt . Die Eigenschaften des Schalters und die Ausübung der Schaltkraft werden bei der erfindungsgemäßen
Ausgestaltung entscheidend gegenüber herkömmlichen Schaltern verbessert .

Claims

Patentansprüche
1. Elektrostatisch arbeitendes Mikrorelais mit
- einem auf einem Substrat (1) beweglich angebrachten Schalt- teil (9), das als Wippe ausgebildet ist,
- einer auf dem Substrat (1) angebrachten Kontaktelektrode (31) , die zwei mit getrennten elektrischen Anschlüssen versehene Anteile (31a, 31b) aufweist,
- einer an dem Schaltteil (9) angebrachten Kontaktelektrode (71) ,
- zwei auf dem Substrat (1) angebrachten Aktuatorelektroden (51) und
- einer an dem Schaltteil (9) angeordneten Aktuatorelektrode (6) , - bei dem die auf dem Substrat (1) angebrachten Aktuatorelek- troden (51,52) so bezüglich der an dem Schaltteil (9) angebrachten Aktuatorelektrode (6) angeordnet sind, dass durch alternatives Anlegen eines elektrischen Potentials an die Ak- tuatorelektroden (51,52) eine wippende Bewegung des Schalt- teiles (9) in eine jeweils andere von zwei alternativen Schaltpositionen herbeigeführt werden kann, - d a d u r c h g e k e n n z e i c h n e t, dass die auf dem Substrat (1) angebrachte Kontaktelektrode so auf der von dem Substrat abgewandten Seite des Schaltteiles (9) angeordnet ist, dass in einer der Schaltpositionen eine an dem Schaltteil (9) angebrachte Kontaktelektrode (71) die beiden Anteile (31a, 31b) kurzschließt.
2. Mikrorelais nach Anspruch 1, bei dem - an dem Schaltteil (9) zwei Kontaktelektroden (71,72) angebracht sind und
- auf dem Substrat (1) zwei Kontaktelektroden (31,32) angebracht sind, die jeweils zwei mit getrennten elektrischen Anschlüssen versehene Anteile (31a, 31b; 32a, 32b) aufweisen und so auf der von dem Substrat abgewandten Seite des Schaltteiles (9) angeordnet sind, daß in jeder der Schaltpositionen des Schaltteiles (9) jeweils eine der daran angebrachten Kon- taktelektroden (71,72) die beiden Anteile (31a, 31b; 32a, 32b) jeweils einer der auf dem Substrat angebrachten Kontaktelektroden (31;32) kurzschließt.
3. Mikrorelais nach Anspruch 1 oder 2, bei dem
- das Schaltteil (9) Polysilizium, Monosilizium oder SiGe ist und
- eine daran angebrachte Kontaktelektrode (71,72) aufgebrachtes Metall ist.
4. Mikrorelais nach Anspruch 3, bei dem die an dem Schaltteil (9) angebrachte Aktuatorelektrode (6) durch eine Implantation von Dotierstoff ausgebildet ist.
5. Mikrorelais nach einem der Ansprüche 1 bis 4, bei dem zwischen dem Schaltteil (9) und einer daran angebrachten Kontaktelektrode (71, 72) eine elektrisch isolierende Schicht (21, 22) vorhanden ist.
6. Mikrorelais nach einem der Ansprüche 1 bis 5, bei dem das Schaltteil (9) an einer auf dem Substrat (1) befestigten Verankerung (4) mittels Verstrebungen (8) aufgehängt ist, die längs einer Drehachse ausgerichtet sind und Torsionsfedern bilden.
7. Mikrorelais nach einem der Ansprüche 1 bis 6, bei dem die an dem Substrat angebrachten Aktuatorelektroden (51, 52) zwischen dem Substrat (1) und dem Schaltteil (9) angeordnet sind.
8. Mikrorelais nach einem der Ansprüche 1 bis 6, bei dem die an dem Substrat angebrachten Aktuatorelektroden (53, 54) auf der von dem Substrat (1) abgewandten Seite des Schalttei- les (9) angeordnet sind.
9. Mikrorelais nach einem der Ansprüche 1 bis 6, bei dem mindestens eine der an dem Substrat angebrachten Aktuator- elektroden (51, 52) zwischen dem Substrat (1) und dem Schaltteil (9) angeordnet ist und mindestens eine der an dem Substrat angebrachten Aktuatorelektroden (53, 54) auf der von dem Substrat (1) abgewandten Seite des Schaltteiles (9) ange- ordnet ist .
10. Mikrorelais nach Anspruch 8 oder 9, bei dem eine Aktuatorelektrode (53, 54), die auf der von dem Substrat (1) abgewandten Seite des Schaltteiles (9) angeordnet ist, das Schaltteil brückenartig überspannt.
PCT/DE2001/000389 2000-02-02 2001-02-01 Mikrorelais WO2001057901A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01913558A EP1252640A1 (de) 2000-02-02 2001-02-01 Mikrorelais
KR1020027009941A KR20020075904A (ko) 2000-02-02 2001-02-01 마이크로릴레이
JP2001557065A JP2003522379A (ja) 2000-02-02 2001-02-01 マイクロリレー
US10/211,058 US6734770B2 (en) 2000-02-02 2002-08-02 Microrelay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10004393A DE10004393C1 (de) 2000-02-02 2000-02-02 Mikrorelais
DE10004393.3 2000-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/211,058 Continuation US6734770B2 (en) 2000-02-02 2002-08-02 Microrelay

Publications (1)

Publication Number Publication Date
WO2001057901A1 true WO2001057901A1 (de) 2001-08-09

Family

ID=7629479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000389 WO2001057901A1 (de) 2000-02-02 2001-02-01 Mikrorelais

Country Status (6)

Country Link
US (1) US6734770B2 (de)
EP (1) EP1252640A1 (de)
JP (1) JP2003522379A (de)
KR (1) KR20020075904A (de)
DE (1) DE10004393C1 (de)
WO (1) WO2001057901A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010449A1 (ja) * 2002-07-22 2004-01-29 Advantest Corporation バイモルフスイッチ、バイモルフスイッチ製造方法、電子回路、及び電子回路製造方法
EP1391906A3 (de) * 2002-08-20 2005-10-26 Samsung Electronics Co., Ltd. Mikroelektromechanische elektrostatische RF Schalter

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280014B2 (en) * 2001-03-13 2007-10-09 Rochester Institute Of Technology Micro-electro-mechanical switch and a method of using and making thereof
US7195393B2 (en) * 2001-05-31 2007-03-27 Rochester Institute Of Technology Micro fluidic valves, agitators, and pumps and methods thereof
US7211923B2 (en) * 2001-10-26 2007-05-01 Nth Tech Corporation Rotational motion based, electrostatic power source and methods thereof
US7378775B2 (en) * 2001-10-26 2008-05-27 Nth Tech Corporation Motion based, electrostatic power source and methods thereof
KR100997929B1 (ko) 2002-08-03 2010-12-02 시베르타 인코퍼레이티드 밀봉된 일체식 멤스 스위치
US6621135B1 (en) * 2002-09-24 2003-09-16 Maxim Integrated Products, Inc. Microrelays and microrelay fabrication and operating methods
US7463125B2 (en) * 2002-09-24 2008-12-09 Maxim Integrated Products, Inc. Microrelays and microrelay fabrication and operating methods
US20060232365A1 (en) * 2002-10-25 2006-10-19 Sumit Majumder Micro-machined relay
US7190245B2 (en) * 2003-04-29 2007-03-13 Medtronic, Inc. Multi-stable micro electromechanical switches and methods of fabricating same
KR100513696B1 (ko) * 2003-06-10 2005-09-09 삼성전자주식회사 시이소오형 rf용 mems 스위치 및 그 제조방법
US7217582B2 (en) * 2003-08-29 2007-05-15 Rochester Institute Of Technology Method for non-damaging charge injection and a system thereof
US7287328B2 (en) * 2003-08-29 2007-10-30 Rochester Institute Of Technology Methods for distributed electrode injection
US8732644B1 (en) 2003-09-15 2014-05-20 Nvidia Corporation Micro electro mechanical switch system and method for testing and configuring semiconductor functional circuits
US8775112B2 (en) * 2003-09-15 2014-07-08 Nvidia Corporation System and method for increasing die yield
US8775997B2 (en) * 2003-09-15 2014-07-08 Nvidia Corporation System and method for testing and configuring semiconductor functional circuits
US7388459B2 (en) * 2003-10-28 2008-06-17 Medtronic, Inc. MEMs switching circuit and method for an implantable medical device
US6880940B1 (en) * 2003-11-10 2005-04-19 Honda Motor Co., Ltd. Magnesium mirror base with countermeasures for galvanic corrosion
US8711161B1 (en) 2003-12-18 2014-04-29 Nvidia Corporation Functional component compensation reconfiguration system and method
US7486163B2 (en) * 2003-12-30 2009-02-03 Massachusetts Institute Of Technology Low-voltage micro-switch actuation technique
US8581308B2 (en) 2004-02-19 2013-11-12 Rochester Institute Of Technology High temperature embedded charge devices and methods thereof
JP4137872B2 (ja) * 2004-03-31 2008-08-20 シャープ株式会社 静電アクチュエーター,マイクロスイッチ,マイクロ光スイッチ,マイクロ光スイッチシステム,通信装置および静電アクチュエーターの製造方法
JP4414263B2 (ja) * 2004-03-31 2010-02-10 富士通株式会社 マイクロスイッチング素子およびマイクロスイッチング素子製造方法
WO2005099410A2 (en) * 2004-04-12 2005-10-27 Siverta, Inc. Single-pole, double-throw mems switch
US8723231B1 (en) * 2004-09-15 2014-05-13 Nvidia Corporation Semiconductor die micro electro-mechanical switch management system and method
US8711156B1 (en) 2004-09-30 2014-04-29 Nvidia Corporation Method and system for remapping processing elements in a pipeline of a graphics processing unit
US7280015B1 (en) * 2004-12-06 2007-10-09 Hrl Laboratories, Llc Metal contact RF MEMS single pole double throw latching switch
JP4417861B2 (ja) * 2005-01-31 2010-02-17 富士通株式会社 マイクロスイッチング素子
US8021193B1 (en) * 2005-04-25 2011-09-20 Nvidia Corporation Controlled impedance display adapter
US7793029B1 (en) 2005-05-17 2010-09-07 Nvidia Corporation Translation device apparatus for configuring printed circuit board connectors
JP4424260B2 (ja) * 2005-06-07 2010-03-03 オムロン株式会社 電磁リレー
US20070074731A1 (en) * 2005-10-05 2007-04-05 Nth Tech Corporation Bio-implantable energy harvester systems and methods thereof
JP2007149370A (ja) * 2005-11-24 2007-06-14 Fujitsu Media Device Kk スイッチ
US8412872B1 (en) 2005-12-12 2013-04-02 Nvidia Corporation Configurable GPU and method for graphics processing using a configurable GPU
US8417838B2 (en) * 2005-12-12 2013-04-09 Nvidia Corporation System and method for configurable digital communication
JP4628275B2 (ja) * 2006-01-31 2011-02-09 富士通株式会社 マイクロスイッチング素子およびマイクロスイッチング素子製造方法
FR2897349B1 (fr) * 2006-02-13 2008-06-13 Schneider Electric Ind Sas Microsysteme incluant un dispositif d'arret
JP4739173B2 (ja) * 2006-12-07 2011-08-03 富士通株式会社 マイクロスイッチング素子
JP4855233B2 (ja) * 2006-12-07 2012-01-18 富士通株式会社 マイクロスイッチング素子およびマイクロスイッチング素子製造方法
FR2912128B1 (fr) * 2007-02-05 2009-05-22 Commissariat Energie Atomique Microsysteme d'actionnement et procede de fabrication associe
US8724483B2 (en) 2007-10-22 2014-05-13 Nvidia Corporation Loopback configuration for bi-directional interfaces
US8687639B2 (en) * 2009-06-04 2014-04-01 Nvidia Corporation Method and system for ordering posted packets and non-posted packets transfer
US9176909B2 (en) 2009-12-11 2015-11-03 Nvidia Corporation Aggregating unoccupied PCI-e links to provide greater bandwidth
US9331869B2 (en) * 2010-03-04 2016-05-03 Nvidia Corporation Input/output request packet handling techniques by a device specific kernel mode driver
US9330031B2 (en) 2011-12-09 2016-05-03 Nvidia Corporation System and method for calibration of serial links using a serial-to-parallel loopback
CN108604517B (zh) * 2016-02-04 2020-10-16 亚德诺半导体无限责任公司 有源开口mems开关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113190C1 (en) * 1991-04-23 1992-07-16 Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De Electrostatically actuated microswitch - has armature attached to base via torsional struts to allow pivoting for contacting electrodes
EP0520407A1 (de) * 1991-06-24 1992-12-30 Matsushita Electric Works, Ltd. Elektrostatisches Relais
EP0608816A2 (de) * 1993-01-26 1994-08-03 Matsushita Electric Works, Ltd. Elektrostatisches Relais
EP0709911A2 (de) * 1994-10-31 1996-05-01 Texas Instruments Incorporated Verbesserte Schalter
WO1999062089A1 (de) * 1998-05-27 1999-12-02 Siemens Electromechanical Components Gmbh & Co. Kg Mikromechanisches elektrostatisches relais
DE10031569A1 (de) * 1999-07-01 2001-02-01 Advantest Corp Integrierter Mikroschalter und Verfahren zu seiner Herstellung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205340C1 (en) * 1992-02-21 1993-08-05 Siemens Ag, 8000 Muenchen, De Micro-mechanical electrostatic relay with parallel electrodes - has frame shaped armature substrate with armature contacts above base electrode contacts on base substrate
JP3465940B2 (ja) * 1993-12-20 2003-11-10 日本信号株式会社 プレーナー型電磁リレー及びその製造方法
CH691559A5 (fr) * 1997-04-21 2001-08-15 Asulab Sa Micro-contacteur magnétique et son procédé de fabrication.
DE19820821C1 (de) * 1998-05-09 1999-12-16 Inst Mikrotechnik Mainz Gmbh Elektromagnetisches Relais
US6046659A (en) * 1998-05-15 2000-04-04 Hughes Electronics Corporation Design and fabrication of broadband surface-micromachined micro-electro-mechanical switches for microwave and millimeter-wave applications
JP3087741B2 (ja) * 1998-11-04 2000-09-11 日本電気株式会社 マイクロマシンスイッチ
US6160230A (en) * 1999-03-01 2000-12-12 Raytheon Company Method and apparatus for an improved single pole double throw micro-electrical mechanical switch
JP2001076605A (ja) * 1999-07-01 2001-03-23 Advantest Corp 集積型マイクロスイッチおよびその製造方法
US6384353B1 (en) * 2000-02-01 2002-05-07 Motorola, Inc. Micro-electromechanical system device
US6504118B2 (en) * 2000-10-27 2003-01-07 Daniel J Hyman Microfabricated double-throw relay with multimorph actuator and electrostatic latch mechanism
US6473361B1 (en) * 2000-11-10 2002-10-29 Xerox Corporation Electromechanical memory cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113190C1 (en) * 1991-04-23 1992-07-16 Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De Electrostatically actuated microswitch - has armature attached to base via torsional struts to allow pivoting for contacting electrodes
EP0520407A1 (de) * 1991-06-24 1992-12-30 Matsushita Electric Works, Ltd. Elektrostatisches Relais
EP0608816A2 (de) * 1993-01-26 1994-08-03 Matsushita Electric Works, Ltd. Elektrostatisches Relais
EP0709911A2 (de) * 1994-10-31 1996-05-01 Texas Instruments Incorporated Verbesserte Schalter
WO1999062089A1 (de) * 1998-05-27 1999-12-02 Siemens Electromechanical Components Gmbh & Co. Kg Mikromechanisches elektrostatisches relais
DE10031569A1 (de) * 1999-07-01 2001-02-01 Advantest Corp Integrierter Mikroschalter und Verfahren zu seiner Herstellung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010449A1 (ja) * 2002-07-22 2004-01-29 Advantest Corporation バイモルフスイッチ、バイモルフスイッチ製造方法、電子回路、及び電子回路製造方法
US7170216B2 (en) 2002-07-22 2007-01-30 Advantest Corporation Bimorph switch, bimorph switch manufacturing method, electronic circuitry and electronic circuitry manufacturing method
EP1391906A3 (de) * 2002-08-20 2005-10-26 Samsung Electronics Co., Ltd. Mikroelektromechanische elektrostatische RF Schalter
US7122942B2 (en) 2002-08-20 2006-10-17 Samsung Electronics Co., Ltd. Electrostatic RF MEMS switches

Also Published As

Publication number Publication date
KR20020075904A (ko) 2002-10-07
US6734770B2 (en) 2004-05-11
EP1252640A1 (de) 2002-10-30
JP2003522379A (ja) 2003-07-22
US20030006868A1 (en) 2003-01-09
DE10004393C1 (de) 2002-02-14

Similar Documents

Publication Publication Date Title
WO2001057901A1 (de) Mikrorelais
DE60113233T2 (de) Elektronisch schaltendes bistabiles mikro-relais und verfahren zu seinem betrieb
DE60225484T2 (de) Membranakivierter mikroelektromechanischer schalter
DE60222075T2 (de) Elektrostatischer Betätiger, und elektrostatisches Relais und andere Vorrichtungen unter Benutzung derselben
DE60113232T2 (de) Verfahren zum Lesen eines Identifizierungsmittels und Identifizierungsmittel
DE60222468T2 (de) Mems-einrichtung mit dreischichtigem biegebalken und diesbezügliche verfahren
DE19820821C1 (de) Elektromagnetisches Relais
WO1994019819A1 (de) Mikromechanisches relais mit hybridantrieb
DE4205340C1 (en) Micro-mechanical electrostatic relay with parallel electrodes - has frame shaped armature substrate with armature contacts above base electrode contacts on base substrate
DE602005001745T2 (de) Monolithische MEMS-Vorrichtung mit im Gleichgewicht befindlicher Kragplatte
DE19912669A1 (de) Substratparallel arbeitendes Mikrorelais
DE3544656A1 (de) Synchron betaetigbare elektrische stromschalteinrichtung
WO2008110389A1 (de) Mikromechanische schaltervorrichtung mit mechanischer kraftverstärkung
EP1468436B1 (de) Mikro-elektromechanisches system und verfahren zu dessen herstellung
DE60311504T2 (de) Mikromechanisches relais mit anorganischer isolierung
EP0610464B1 (de) Beschleunigungsschalter und verfahren zur herstellung
EP1269506B1 (de) Mikroaktoranordnung
DE60307136T2 (de) Mikromechanischer elektrostatischer schalter mit niedriger betätigungsspannung
WO2001009911A1 (de) Mikro elektromechanisches relais und verfahren zu dessen herstellung
DE19950964B4 (de) Mikromechanisches Relais und Verfahren zur Herstellung
DE102006036499B4 (de) Mikromechanisches Bauelement
EP1191559A2 (de) Mikroschalter und Verfahren zu dessen Herstellung
DE19937811A1 (de) Relais, insbesondere Mikro Relais zum Schalen eines Stromkreises
WO2022243017A1 (de) Mikromechanischer schalter
DE10310072A1 (de) Mikromechanischer Aktor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001913558

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027009941

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 557065

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10211058

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027009941

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001913558

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001913558

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027009941

Country of ref document: KR