WO2001025813A1 - Locating a remote unit - Google Patents

Locating a remote unit Download PDF

Info

Publication number
WO2001025813A1
WO2001025813A1 PCT/US2000/017170 US0017170W WO0125813A1 WO 2001025813 A1 WO2001025813 A1 WO 2001025813A1 US 0017170 W US0017170 W US 0017170W WO 0125813 A1 WO0125813 A1 WO 0125813A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote unit
location
base station
correlation
distance
Prior art date
Application number
PCT/US2000/017170
Other languages
French (fr)
Inventor
Jeff L. Pfeil
Javier J. Tapia
Original Assignee
Motorola Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc. filed Critical Motorola Inc.
Publication of WO2001025813A1 publication Critical patent/WO2001025813A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70751Synchronisation aspects with code phase acquisition using partial detection
    • H04B1/70752Partial correlation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70754Setting of search window, i.e. range of code offsets to be searched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers

Definitions

  • the present invention relates generally to communication systems and, in particular, to a method and apparatus for locating a remote unit within a communication system.
  • Radio location techniques have been widely used in many mobile transmitter location systems (e.g., Loran-C).
  • TO A Time of Arrival
  • TDOA Time Difference of Arrival
  • AOA Angle of Arrival
  • the position of the remote unit may be computed by determining the point of intersection of two circles with radii xj and x 2 , each centered at one of the fixed base stations. If an error exists in either or both distance determinations, the true position of the remote unit, P, will be displaced and observed to lie at the intersection P', of the perturbed radial arcs x and x 12 .
  • a third base station is typically needed to unambiguously locate each remote unit at the unique point of intersection of the three circles.
  • TDOA Method for Location For this method of location, the observed time difference between pairs of signals arriving at the remote unit from three or more base stations are used to compute the location of the remote unit.
  • the remote unit by observing the time difference in arriving signals between base station pairs, can establish the hyperbolae or "lines of position" (LOPs'). In this method therefore, the location estimate can be obtained without knowledge of the absolute arrival time of the signal from each base station at the remote unit, only time differences in arrival are significant.
  • AOA location is described in US Pat. No. 4,636,796, RADIO DIRECTION FINDING SYSTEM, by Imazeki and US Pat. No. 4,833,478, AUTOMATIC DIRECTION FINDER ANTENNA ARRAY, by Nossen.
  • the angle of arrival of a signal transmitted from a remote unit is determined by analyzing the amplitude (or phase) differences between multiple antennas at a base site. Antennas in one sector will receive the remote unit's signal at a different angle of arrival than antennas in other sectors. It is the difference in received amplitudes (or phases) of the remote unit's signal at various antennas that is utilized in determining the angle of arrival of the signal.
  • a look-up table may be used to equate the measured amplitude_(or phase) difference to an angle of arrival.
  • TOA and TDOA location methods require intensive processing of multiple base stations to calculate arrival times for a particular remote unit.
  • AOA does not require intensive processing of multiple base stations, AOA location techniques are not as accurate as TOA or TDOA methods of location. Therefore, a need exists for a method and apparatus for locating a remote unit within a communication system that is highly accurate, yet does not require the intensive processing as prior-art TOA or TDOA methods of location.
  • FIG. 1 is a block diagram of a communication system in accordance with the preferred embodiment of the present invention.
  • FIG. 2 illustrates the generation of both a search window and a correlation window in accordance with the preferred embodiment of the present invention.
  • FIG. 3 is a block diagram of a base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
  • FIG. 4 is a flow chart showing the generation of a search window by the base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
  • FIG. 5 illustrates the generation of a search window for the Rake receivers of FIG. 2 in accordance with the preferred embodiment of the present invention.
  • FIG. 6 illustrates the generation of a search window for the Rake receivers of FIG. 2 in accordance with the preferred embodiment of the present invention.
  • FIG. 7 is a flow chart showing the generation of a correlation window by the base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
  • determining a timing offset for remote-unit location is accomplished by comparing a known sequence to the information transmitted by the remote unit and received by the remote site.
  • a correlation window length (or size of the known sequence) is allowed to vary based on a fundamental geometry of the serving and non- serving base stations, and a distance that the remote unit is from the serving and non-serving base stations.
  • the present invention encompasses a method for locating a remote unit within a communication system.
  • the method comprises the steps of determining a distance from a base station to search for the remote unit, determining a size of a correlation window based on the distance from the base station, and locating the remote unit utilizing the correlation window.
  • the present invention additionally encompasses an apparatus for locating a remote unit.
  • the apparatus comprises a processor outputting a value for a correlation window size based on a location of the remote unit and a searcher having the correlation window size as an input and outputting a correlation power.
  • FIG. 1 is a block diagram of communication system 100 in accordance with the preferred embodiment of the present invention.
  • communication system 100 utilizes a Code Division Multiple Access (CDMA) system protocol as described in Cellular System Remote unit-Base Station Compatibility Standard of the Electronic Industry Association/Telecommunications Industry Association Interim Standard 95 A (TIA/EIA/IS-95C). (EIA/TIA can be contacted at 2001 Pennsylvania Ave. NW Washington DC 20006).
  • CDMA Code Division Multiple Access
  • communication system 100 may utilize other digital cellular communication system protocols such as, but not limited to, the next generation CDMA architecture as described in the UMTS Wideband cdma SMG2 UMTS Physical Layer Expert Group Tdoc SMG2 UMTS-L1 221/98 (UMTS 221/98), the next generation CDMA architecture as described in the cdma2000 International Telecommunication Union-Radiocommunication (ITU-R) Radio Transmission Technology (RTT) Candidate submission document, or the next generation Global System for Mobile Communications (GSM) protocol, the CDMA system protocol as described in "Personal Station-Base Station Compatibility Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communication Systems" (American National Standards Institute (ANSI) J-STD-008), or the European Telecommunications Standards Institute (ETSI) Wideband CDMA (W-CDMA) protocol.
  • GSM Global System for Mobile Communications
  • Communication system 100 includes a number of network elements such as base station 101, remote unit 1 13, Centralized Base Station Controller (CBSC) 103, and Mobile Switching Center (MSC) 104.
  • CBSC Centralized Base Station Controller
  • MSC Mobile Switching Center
  • all network elements are available from Motorola, Inc. (Motorola Inc. is located at 1301 East Algonquin Road, Schaumburg, IL 60196). It is contemplated that network elements within communication system
  • processors are configured in well known manners with processors, memories, instruction sets, and the like, which function in any suitable manner to perform the function set forth herein.
  • remote unit 113 is communicating with base station 101 and 102 via uplink communication signals 1 19 and base station
  • base station 101 is communicating with remote unit 113 via downlink communication signals 116.
  • base station 101 is suitably coupled to CBSC 103, and CBSC is suitably coupled to MSC 104, which is in turn coupled to Public Switched Telephone Network (PSTN) 105.
  • PSTN Public Switched Telephone Network
  • a command is originated at a regional entity such as MSC 104, an operations center (not shown), or perhaps within a connected network such as PSTN 105.
  • the location request which includes identification information on the remote unit that is to be located enters Home Location Register (HLR) 106 where it is processed to determine the currently serving base station.
  • HLR Home Location Register
  • the location request is passed from HLR 106 to the base station providing remote unit 113 with a reference pilot (e.g., base station 101) where base station 101 calculates a location of remote unit 1 13 using a first location technique.
  • the first location technique is a channel modem's fmger offsets fused with the known BTS.
  • the first location technique is a single-site estimation of a PN offset for the remote unit (PN P ⁇ mary_s ⁇ te), however in an alternate embodiments of the present invention, the initial PN offset is taken from a prompt ray/TOA search result.
  • Location information is then forwarded by base station 101, along with its base station identification, to locating equipment such as location searcher 107 of CBSC 103.
  • Location searcher 107 passes a second location request to the serving base station and those base stations neighboring the serving base station (neighbor base stations).
  • a second location request is not made. Instead all neighboring base stations simply perform the second location request automatically when the first location request is made (and upon receipt of preliminary serving site TOA estimate from the serving site to assist with windowing).
  • Sent with the second location request is the calculated first location (PN p ⁇ rnary _ slte ) made by base station 101, along with an identity of the base station that made the first location estimate.
  • the neighboring base stations then calculate a limited "search window" unique to each base station to search when locating remote unit 113. More particularly, a search range is calculated by all base stations performing location. The search range is bounded by an initial Pseudo-Noise (PN) offset (PN ⁇ mt ⁇ a ⁇ ) and a final PN offset (PN final ), and is based on the first location, and the identity of the base station that made the first location estimate.
  • PN Pseudo-Noise
  • All base stations adjust their search window to look within the range between an initial (PN initia ⁇ ) and final (P finai) offsets when locating remote unit 113. All base stations then perform a second location of remote unit 1 13 utilizing a second location technique.
  • the second location technique is a TDOA or multi-TOA data fusion technique, however other location techniques may be utilized as well.
  • a highly accurate location method can be performed without requiring the intensive processing of prior-art TOA or TDOA methods of location. More particularly, this technique significantly reduces the 'cold search' range over which remote base site's location finding algorithms must perform asic/mips-intensive algorithms.
  • the 'cold search' range if unconstrained, extends beyond the typical range of communication channels.
  • sensitivity requirements are greater for the location searcher than communications modems since they must seek and acquire signals below sensitivities of communications modems.
  • the known recovered signal is provided by the serving site, further despreading gain is required. This further despreading gain implies a greater level of ASIC or DSP processing power, and hence the need to deploy resources over as narrow a window as possible.
  • determining a timing offset is accomplished by comparing a known sequence (i.e., the demodulated data transmitted by the remote unit, received by the serving station, and re-distributed to the remote BTSs) to the information transmitted by the mobile and received by the remote site.
  • a known sequence i.e., the demodulated data transmitted by the remote unit, received by the serving station, and re-distributed to the remote BTSs
  • known sequence re-modulation produces a signal which is then correlated with the remote site received baseband data to produce timing offsets.
  • the known sequence of data is compared to the information received by remote unit 1 13 within the search window to determine the timing difference relative to the remote unit's internal reference, and subsequently the propagation delay and hence the distance between the mobile and the remote unit.
  • FIG. 2 illustrates the generation of both a search window and a correlation window in accordance with the preferred embodiment of the present invention.
  • a sequence of transmitted data 201 has a search window of length PN fina ⁇ -PN init i a ⁇ .
  • Known sequence 203 is compared to transmitted data, to determine where (in transmitted data 201) known sequence 203 exists.
  • Known sequence 203 has a specific length, referred to as a correlation window.
  • the cross correlation between the re-modulated data and the received data is required to find the timing offset.
  • the energy of the peak of the cross correlation is proportional to the size of the correlation window. DSP and ASIC processing power decrease with decreased window size; however, the energy of the peak also decreases with decreased window size.
  • the correlation window length varies as a function of time offset (or distance that remote unit 113 is from the base station performing the search).
  • the correlation window length is calculated as follows:
  • N is the correlation window length
  • No is the reference correlation window length, which in the preferred embodiment of the present invention is a known shortest correlation window length that provides appropriate signal to noise ratio result for cross correlation energy peak at offset t 0 .
  • This value is a calibrated value that is known a priori, and is determined from the results of drive testing and analysis of environmental factors;
  • ar ⁇ va i is the arrival time offset under evaluation, and is bounded by PN m ⁇ t ⁇ a! and PN final ; and • to is the offset at which N 0 is referenced.
  • the correlation window length is short when searching at PN ⁇ mt ⁇ a ⁇ (i.e., t ar ⁇ va i-P ma i), and is lengthened as the distance searched increases to PN f ⁇ na! (i.e., In other words, the correlation window length is shorter when searching at closer distances to the base station, and is lengthened as the distance searched is increased.
  • the correlation window length (or size of known sequence 203) is allowed to vary based on a fundamental geometry of the serving and non-serving base stations. More particularly, the correlation window is allowed to vary based on a distance between the non-serving base station and the distance offset under evaluation.
  • FIG. 3 is a block diagram of a base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
  • Base station 101 has a common RF front end 305 that feeds three independent rake inputs, shown as 310-330. These rakes (with the assistance of searcher 340) can lock onto three different received rays that are at least a PN chip time apart, which is typical of most rake receivers in CDMA systems.
  • the rake receivers 310-330 are assigned a "window" to search via searcher 340, and with the aid of searcher 340, lock onto a remote unit's transmitted signal.
  • the location-specific modem must run long correlation sequences over many offsets. To achieve greater despreading gain, high-gain location searchers also add the frequency offset dimension to stabilize long-duration coherent searches.
  • processor 350 receives a location request from location searcher 107.
  • this location request may be either a request for base station 101 to perform a single site location of remote unit 1 13 via single-site location techniques, or the location request may be a request for base station 101 to participate in a multi-site location of remote unit 113.
  • processor 350 determines if the location request is a request for a single-site location of remote unit 113. If at step 403 processor determines that single-site location is desired, then the logic flow continues to step 405, otherwise the logic flow continues to step 4307.
  • processor 350 utilizes internal Location Finding Equipment (LFE) 355 to perform standard single- site location of remote unit 1 13, and returns a location (PN priniar> ,_ slte ) to location searcher 107, and the logic flow ends at step 413.
  • LFE Location Finding Equipment
  • processor 350 analyzes the location request, and determines a gross location of remote unit 1 13 (PN pnrnary _ slte ) from the location request.
  • the gross location comprises the identity of the base station that performed single-site location, along with the distance that remote unit 1 13 is from the base station that performed the single-site location.
  • processor 350 calculates an initial search window for receivers 310-330 based on the first (single-site) location of remote unit 1 13, and a base station that made the single-site measurement.
  • a correlation window size is determined and base station 101 takes part in the multi-site location of remote unit 113.
  • the observed PN offset for remote unit 1 13 is reported to location searcher 107, which performs a location based on the multi- site locations of remote unit 1 13. The logic flow then ends at step 413.
  • remote unit 1 13 can be located via an accurate TDOA technique without the intensive processing required by prior-art TOA or TDOA methods of location.
  • FIG. 5 illustrates the generation of search window 501 for Rake receivers 310-330 in accordance with the preferred embodiment of the present invention. Shown in FIG. 5 are base stations 101 and 102, with base station 101 setting a search window based on a distance (PN between _ s ⁇ tes ) between base station 101 and 102, and a distance (PN p réelle mar y_ s ⁇ t e) at remote unit 1 13 is from base station 102. As discussed above, PNp r ⁇ mar y_ s ⁇ te is determined by base station 102 performing a single-site location technique.
  • base station 101 should instruct receivers 310-330 to search the area (window) between PN ⁇ n ⁇ t ⁇ a ⁇ and PN fina ⁇ , where,
  • base station 101 should instruct receivers 310-330 to search the area (window) between PN, n ⁇ t ⁇ a ⁇ and PN fina ⁇ , where,
  • PN flna l Sqrt((PN b etween_s ⁇ tes) 2 - 2(PN pnrnary _ slt e)(PN b e tW een_s ⁇ t es)C0S( ⁇ +( ⁇ /2))+(PN p ⁇ rnai7 _ slte ) 2 ).
  • Sector boresite (defined as the angle offset clockwise from the line connecting the two base stations under consideration, and represents the boresight of the serving base station's sector).
  • the path loss (PL) at any particular distance (d) is random and distributed log-normally (normal in dB) about a mean distance-dependent value. More particularly,
  • d 0 provides a known (measured) power reference.
  • the variable d is the distance under evaluation, and n is the coefficient that depends on the specific propagation environment (see table 1). In the preferred embodiment of the present invention, n is the best fit to the free space propagation, environment factors shown in the table, and power control model modifier.
  • PL(d 0 ) is a reference path loss measured at distance d 0
  • X ⁇ is a zero-mean Gaussian distributed random variable (measured in dB) with a standard deviation of ⁇ .
  • Table 1 Values of n for various base-station environments
  • the path loss at the serving base station (PL(d)) can then be re-written as a function of the prompt ray arrival time t arr i va i:
  • a cross-correlation between the received signal and a version of a known signal sent by the remote unit is performed.
  • correlation peaks at different times represent different paths followed by the signal.
  • the correlation peaks exist over a noise floor created by thermal noise and other interferences.
  • the magnitude of the correlation peaks is an estimation of each signal power, and are directly related to the size of the correlation window (N).
  • the power of the prompt ray (Ppr om p t ) arriving at offset t arriva ⁇ is given by, " promptl ⁇ ar ⁇ val,/ - ⁇ •
  • the correlation window size (N) is increased as the remote unit's distance from the base station performing the search increases, and vice versa.
  • the change in N at non-serving base stations mirrors the power loss PL(t ar ⁇ Va i) at the remote base station due to environmental factors (free space path loss, urban/suburban, power control, etc.). For example, if N 0 is the correlation window length at the reference distance from the remote base station for t 0 :
  • ⁇ P(t arr ⁇ val ) 101og(N/No) ⁇ PL(t 0 )+10r2log(t amval /to)+ X ⁇ ,
  • N No* [tamval/t ⁇ ]' ? .
  • N 0 represents the reference correlation window size used at that reference distance t 0 .
  • FIG. 7 is a flow chart showing the generation of a correlation window by a base station of FIG. 1 in accordance with the preferred embodiment of the present invention. The logic flow begins at step
  • t ar ⁇ va ⁇ is bounded on the low side by PN m ⁇ t ⁇ a] and on the high side by PN fina ⁇ . Both PN ⁇ n ⁇ tla ⁇ and PN fina ⁇ are determined as described above. Therefore, at step 701 , t amva i is set equal to PN ⁇ n ⁇ t ⁇ a i (which is based on the first location of the remote unit). Additionally corresponds to a time offset, or distance, that the remote unit is from the base station.
  • processor 350 determines a correlation window size for t am v a i- In particular the correlation window size is set equal to
  • a correlation power is determined for t ar ⁇ Va i by searcher 340 and reported to LFE 355. As discussed above, the correlation power is a cross- correlation between the known sequence and data received by the remote unit.
  • the generation of the search and correlation windows is based on a distance "between" base stations, it is contemplated that an equivalent method for determining distances "between" base stations may be to determine each base station's distance to a fixed point, and use the distances to the fixed point in determining the search and correlation windows. It is the intent of the inventors that various modifications can be made to the present invention without varying from the spirit and scope of the invention, and it is intended that all such modifications come within the scope of the following claims and their equivalents.

Abstract

Determining a timing offset for remote-unit (113) location is accomplished by comparing a known sequence (203) to the information (201) transmitted by the remote unit (113) and received by the remote site (101, 102). In the preferred embodiment of the present invention a correlation window length (or size of the known sequence (203)) is allowed to vary based on a fundamental geometry of the serving and non-serving base stations, and a distance that the remote unit (113) is from the serving and non-serving base stations (101, 102).

Description

LOCATING A REMOTE UNIT
Cross Reference to Related Co-pending Applications
This application is a related application to a co-pending application entitled "Method and Apparatus for Locating a Remote
Unit Within a Communication System" having inventors Pfeil et al., attorney docket number CE08027R, filed on even date, owned by instant assignee and hereby incorporated in its entirety by reference.
Field of the Invention
The present invention relates generally to communication systems and, in particular, to a method and apparatus for locating a remote unit within a communication system.
Background of the Invention
Radio location techniques have been widely used in many mobile transmitter location systems (e.g., Loran-C). There are three primary methods used to determine the location of a remote unit within a communication system, namely the a) Time of Arrival (TO A), b) Time Difference of Arrival (TDOA) methods, and c) Angle of Arrival (AOA) methods.
TOA Method for Location: When the distances X] and x2 between a remote unit and a pair of fixed base stations are known, the position of the remote unit may be computed by determining the point of intersection of two circles with radii xj and x2, each centered at one of the fixed base stations. If an error exists in either or both distance determinations, the true position of the remote unit, P, will be displaced and observed to lie at the intersection P', of the perturbed radial arcs x and x12. A third base station is typically needed to unambiguously locate each remote unit at the unique point of intersection of the three circles. To accurately compute the remote unit location using this method, it is necessary to know precisely the instant the signal is emitted from the base stations and the instant it arrives at the remote unit. For this method to work properly, an accurate measurement of the total time delay along each of three remote unit to base station signal paths is necessary. TDOA Method for Location: For this method of location, the observed time difference between pairs of signals arriving at the remote unit from three or more base stations are used to compute the location of the remote unit. The remote unit, by observing the time difference in arriving signals between base station pairs, can establish the hyperbolae or "lines of position" (LOPs'). In this method therefore, the location estimate can be obtained without knowledge of the absolute arrival time of the signal from each base station at the remote unit, only time differences in arrival are significant.
AOA Method for Location: AOA location is described in US Pat. No. 4,636,796, RADIO DIRECTION FINDING SYSTEM, by Imazeki and US Pat. No. 4,833,478, AUTOMATIC DIRECTION FINDER ANTENNA ARRAY, by Nossen. According to such a method, the angle of arrival of a signal transmitted from a remote unit is determined by analyzing the amplitude (or phase) differences between multiple antennas at a base site. Antennas in one sector will receive the remote unit's signal at a different angle of arrival than antennas in other sectors. It is the difference in received amplitudes (or phases) of the remote unit's signal at various antennas that is utilized in determining the angle of arrival of the signal. A look-up table may be used to equate the measured amplitude_(or phase) difference to an angle of arrival.
TOA and TDOA location methods require intensive processing of multiple base stations to calculate arrival times for a particular remote unit. Although AOA does not require intensive processing of multiple base stations, AOA location techniques are not as accurate as TOA or TDOA methods of location. Therefore, a need exists for a method and apparatus for locating a remote unit within a communication system that is highly accurate, yet does not require the intensive processing as prior-art TOA or TDOA methods of location.
Brief Description of the Drawings
FIG. 1 is a block diagram of a communication system in accordance with the preferred embodiment of the present invention.
FIG. 2 illustrates the generation of both a search window and a correlation window in accordance with the preferred embodiment of the present invention.
FIG. 3 is a block diagram of a base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
FIG. 4 is a flow chart showing the generation of a search window by the base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
FIG. 5 illustrates the generation of a search window for the Rake receivers of FIG. 2 in accordance with the preferred embodiment of the present invention.
FIG. 6 illustrates the generation of a search window for the Rake receivers of FIG. 2 in accordance with the preferred embodiment of the present invention. FIG. 7 is a flow chart showing the generation of a correlation window by the base station of FIG. 1 in accordance with the preferred embodiment of the present invention.
Description of the Preferred Embodiments
To address the above-mentioned need, a method and apparatus for locating a remote unit is provided herein. In the preferred embodiment of the present invention, determining a timing offset for remote-unit location is accomplished by comparing a known sequence to the information transmitted by the remote unit and received by the remote site. In the preferred embodiment of the present invention a correlation window length (or size of the known sequence) is allowed to vary based on a fundamental geometry of the serving and non- serving base stations, and a distance that the remote unit is from the serving and non-serving base stations. By allowing the correlation window to vary based on the distance between the non-serving base stations and the distance/offset under evaluation, significant increases in computational throughput as well as reductions in ASIC/DSP processing requirements are obtained.
The present invention encompasses a method for locating a remote unit within a communication system. The method comprises the steps of determining a distance from a base station to search for the remote unit, determining a size of a correlation window based on the distance from the base station, and locating the remote unit utilizing the correlation window.
The present invention additionally encompasses an apparatus for locating a remote unit. The apparatus comprises a processor outputting a value for a correlation window size based on a location of the remote unit and a searcher having the correlation window size as an input and outputting a correlation power.
Turning now to the drawings, where like numerals designate like components, FIG. 1 is a block diagram of communication system 100 in accordance with the preferred embodiment of the present invention. In the preferred embodiment of the present invention, communication system 100 utilizes a Code Division Multiple Access (CDMA) system protocol as described in Cellular System Remote unit-Base Station Compatibility Standard of the Electronic Industry Association/Telecommunications Industry Association Interim Standard 95 A (TIA/EIA/IS-95C). (EIA/TIA can be contacted at 2001 Pennsylvania Ave. NW Washington DC 20006). However, in alternate embodiments communication system 100 may utilize other digital cellular communication system protocols such as, but not limited to, the next generation CDMA architecture as described in the UMTS Wideband cdma SMG2 UMTS Physical Layer Expert Group Tdoc SMG2 UMTS-L1 221/98 (UMTS 221/98), the next generation CDMA architecture as described in the cdma2000 International Telecommunication Union-Radiocommunication (ITU-R) Radio Transmission Technology (RTT) Candidate Submission document, or the next generation Global System for Mobile Communications (GSM) protocol, the CDMA system protocol as described in "Personal Station-Base Station Compatibility Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communication Systems" (American National Standards Institute (ANSI) J-STD-008), or the European Telecommunications Standards Institute (ETSI) Wideband CDMA (W-CDMA) protocol.
Communication system 100 includes a number of network elements such as base station 101, remote unit 1 13, Centralized Base Station Controller (CBSC) 103, and Mobile Switching Center (MSC) 104. In the preferred embodiment of the present invention, all network elements are available from Motorola, Inc. (Motorola Inc. is located at 1301 East Algonquin Road, Schaumburg, IL 60196). It is contemplated that network elements within communication system
100 are configured in well known manners with processors, memories, instruction sets, and the like, which function in any suitable manner to perform the function set forth herein.
As shown, remote unit 113 is communicating with base station 101 and 102 via uplink communication signals 1 19 and base station
101 is communicating with remote unit 113 via downlink communication signals 116. In the preferred embodiment of the present invention, base station 101 is suitably coupled to CBSC 103, and CBSC is suitably coupled to MSC 104, which is in turn coupled to Public Switched Telephone Network (PSTN) 105.
Operation of communication system 100 in accordance with the preferred embodiment of the present invention occurs as follows: To initiate a location request, a command is originated at a regional entity such as MSC 104, an operations center (not shown), or perhaps within a connected network such as PSTN 105. The location request, which includes identification information on the remote unit that is to be located enters Home Location Register (HLR) 106 where it is processed to determine the currently serving base station. The location request is passed from HLR 106 to the base station providing remote unit 113 with a reference pilot (e.g., base station 101) where base station 101 calculates a location of remote unit 1 13 using a first location technique. In the preferred embodiment of the present invention the first location technique is a channel modem's fmger offsets fused with the known BTS. In other words, the first location technique is a single-site estimation of a PN offset for the remote unit (PNPπmary_sιte), however in an alternate embodiments of the present invention, the initial PN offset is taken from a prompt ray/TOA search result. Location information is then forwarded by base station 101, along with its base station identification, to locating equipment such as location searcher 107 of CBSC 103. Location searcher 107 then passes a second location request to the serving base station and those base stations neighboring the serving base station (neighbor base stations). In an alternate embodiment of the present invention, a second location request is not made. Instead all neighboring base stations simply perform the second location request automatically when the first location request is made (and upon receipt of preliminary serving site TOA estimate from the serving site to assist with windowing).
Sent with the second location request is the calculated first location (PNpπrnary_slte) made by base station 101, along with an identity of the base station that made the first location estimate. The neighboring base stations then calculate a limited "search window" unique to each base station to search when locating remote unit 113. More particularly, a search range is calculated by all base stations performing location. The search range is bounded by an initial Pseudo-Noise (PN) offset (PNιmtιaι) and a final PN offset (PNfinal), and is based on the first location, and the identity of the base station that made the first location estimate. All base stations adjust their search window to look within the range between an initial (PNinitiaι) and final (P finai) offsets when locating remote unit 113. All base stations then perform a second location of remote unit 1 13 utilizing a second location technique. In the preferred embodiment of the present invention the second location technique is a TDOA or multi-TOA data fusion technique, however other location techniques may be utilized as well.
As mentioned above, because all base stations limit their search window when performing TOA estimation (the results of which are necessary for multi-TDOA or multi-TOA data fusion location techniques), a highly accurate location method can be performed without requiring the intensive processing of prior-art TOA or TDOA methods of location. More particularly, this technique significantly reduces the 'cold search' range over which remote base site's location finding algorithms must perform asic/mips-intensive algorithms. The 'cold search' range, if unconstrained, extends beyond the typical range of communication channels. Furthermore, sensitivity requirements are greater for the location searcher than communications modems since they must seek and acquire signals below sensitivities of communications modems. Although the known recovered signal is provided by the serving site, further despreading gain is required. This further despreading gain implies a greater level of ASIC or DSP processing power, and hence the need to deploy resources over as narrow a window as possible.
Once a search window is identified, determining a timing offset is accomplished by comparing a known sequence (i.e., the demodulated data transmitted by the remote unit, received by the serving station, and re-distributed to the remote BTSs) to the information transmitted by the mobile and received by the remote site. In other words, as described in "CDMA Principles of Spread Spectrum Communication" by Andrew J. Viterbi, Addison- Wesley Publishing Company, 1995 ISBN 0-201-63374-4, which is incorporated by reference herein, known sequence re-modulation produces a signal which is then correlated with the remote site received baseband data to produce timing offsets. The known sequence of data is compared to the information received by remote unit 1 13 within the search window to determine the timing difference relative to the remote unit's internal reference, and subsequently the propagation delay and hence the distance between the mobile and the remote unit.
FIG. 2 illustrates the generation of both a search window and a correlation window in accordance with the preferred embodiment of the present invention. As shown, a sequence of transmitted data 201 has a search window of length PNfinaι -PNinitiaι. Known sequence 203 is compared to transmitted data, to determine where (in transmitted data 201) known sequence 203 exists. Known sequence 203 has a specific length, referred to as a correlation window. The cross correlation between the re-modulated data and the received data is required to find the timing offset. The energy of the peak of the cross correlation is proportional to the size of the correlation window. DSP and ASIC processing power decrease with decreased window size; however, the energy of the peak also decreases with decreased window size. Because of this, an incorrect location estimate may result from excessively short window size. Therefore, it is beneficial to have a correlation window size that is large enough to detect the energy of the peak cross correlation, yet is small enough to limit DSP and ASIC processing. With reference to FIG. 2, the correlation window length varies as a function of time offset (or distance that remote unit 113 is from the base station performing the search). In the preferred embodiment of the present invention the correlation window length is calculated as follows:
Figure imgf000009_0001
where:
• N is the correlation window length; • No is the reference correlation window length, which in the preferred embodiment of the present invention is a known shortest correlation window length that provides appropriate signal to noise ratio result for cross correlation energy peak at offset t0. This value is a calibrated value that is known a priori, and is determined from the results of drive testing and analysis of environmental factors;
arπvai is the arrival time offset under evaluation, and is bounded by PNmιtιa! and PNfinal; and • to is the offset at which N0 is referenced.
Hence, the correlation window length is short when searching at PNιmtιaι (i.e., tarπvai-P mai), and is lengthened as the distance searched increases to PNfιna! (i.e.,
Figure imgf000010_0001
In other words, the correlation window length is shorter when searching at closer distances to the base station, and is lengthened as the distance searched is increased.
As is evident, the correlation window length (or size of known sequence 203) is allowed to vary based on a fundamental geometry of the serving and non-serving base stations. More particularly, the correlation window is allowed to vary based on a distance between the non-serving base station and the distance offset under evaluation.
By allowing the correlation window to vary based on the distance between the non-serving base stations and the distance/offset under evaluation, significant increases in computational throughput as well as reductions in ASIC/DSP processing requirements are obtained.
FIG. 3 is a block diagram of a base station of FIG. 1 in accordance with the preferred embodiment of the present invention. Base station 101 has a common RF front end 305 that feeds three independent rake inputs, shown as 310-330. These rakes (with the assistance of searcher 340) can lock onto three different received rays that are at least a PN chip time apart, which is typical of most rake receivers in CDMA systems. The rake receivers 310-330 are assigned a "window" to search via searcher 340, and with the aid of searcher 340, lock onto a remote unit's transmitted signal. As with the communication modem, the location-specific modem must run long correlation sequences over many offsets. To achieve greater despreading gain, high-gain location searchers also add the frequency offset dimension to stabilize long-duration coherent searches.
Generation of Search Window
The generation of a search window by base station 101 in accordance with the preferred embodiment of the present invention occurs as illustrated in FIG. 4. At step 401 processor 350 receives a location request from location searcher 107. As discussed above, this location request may be either a request for base station 101 to perform a single site location of remote unit 1 13 via single-site location techniques, or the location request may be a request for base station 101 to participate in a multi-site location of remote unit 113. Because of this, at step 403 processor 350 determines if the location request is a request for a single-site location of remote unit 113. If at step 403 processor determines that single-site location is desired, then the logic flow continues to step 405, otherwise the logic flow continues to step 4307. At step 405 processor 350 utilizes internal Location Finding Equipment (LFE) 355 to perform standard single- site location of remote unit 1 13, and returns a location (PNpriniar>,_slte) to location searcher 107, and the logic flow ends at step 413. At step 407 processor 350 analyzes the location request, and determines a gross location of remote unit 1 13 (PNpnrnary_slte) from the location request. In the preferred embodiment of the present invention the gross location comprises the identity of the base station that performed single-site location, along with the distance that remote unit 1 13 is from the base station that performed the single-site location. At step 409, processor 350 calculates an initial search window for receivers 310-330 based on the first (single-site) location of remote unit 1 13, and a base station that made the single-site measurement. At step 41 1 a correlation window size is determined and base station 101 takes part in the multi-site location of remote unit 113. The observed PN offset for remote unit 1 13 is reported to location searcher 107, which performs a location based on the multi- site locations of remote unit 1 13. The logic flow then ends at step 413.
As discussed above, because the initial guess of the search window is approximated, a broad search that uses a complex and resource-consuming search process is avoided. Thus, in accordance with the preferred embodiment of the present invention remote unit 1 13 can be located via an accurate TDOA technique without the intensive processing required by prior-art TOA or TDOA methods of location.
FIG. 5 illustrates the generation of search window 501 for Rake receivers 310-330 in accordance with the preferred embodiment of the present invention. Shown in FIG. 5 are base stations 101 and 102, with base station 101 setting a search window based on a distance (PNbetween_sιtes) between base station 101 and 102, and a distance (PNpmary_sιte) at remote unit 1 13 is from base station 102. As discussed above, PNprιmary_sιte is determined by base station 102 performing a single-site location technique. In the case where P pmary_sιte does not exceed PNbetween_sltes, base station 101 should instruct receivers 310-330 to search the area (window) between PNιnιtιaι and PNfinaι, where,
r J initial- " - betw een_sιtes " "■^pπmary_sιte
"■ final " between_sιtes * ^pπmary_sιte-
In the case where PNpπrnar _slte exceeds PNbetween_sιtes, base station 101 should instruct receivers 310-330 to search the area (window) between PN,nιtιaι and PNfinaι, where,
PNm,t,a,= 0
" final ^ ■^■ pπmarv_sιte- In situations where the service area of the base stations are divided by sectors, the geometry allows for the outer limit of the search window to be further reduced. This situation is illustrated in FIG. 6. If base station 101 knows a base station's bore site azimuth, sector size, and sector 601 within the base station's coverage area that a remote unit was located during single-site timing estimation, the search window can be narrowed so that the search is only performed within a range of offsets that fall within the serving sector coverage area intersected within the vicinity of the serving sector's reported timing offset. This is evident in FIG. 6 where PNfιna] does not extend outside 120° sector 501. By using geometric relationships, it can be shown that for an arbitrary site:
" ιnltιaι— Sqrt rNbetween_sιtes) "2(PNprιmary_slte)(PNbetvveen_sιtes)C0S(ψ" (β/2))+(PNpπmary_s e)2)
PNflnal=Sqrt((PNbetween_sιtes)2- 2(PNpnrnary_slte)(PNbetWeen_sιtes)C0S(φ+(β/2))+(PNpπrnai7_slte)2).
where
φ = Sector boresite (defined as the angle offset clockwise from the line connecting the two base stations under consideration, and represents the boresight of the serving base station's sector).
β == Sector Beam Width (defined as the beam width used for the serving sector. This value will typically be similar to the planned sector Beam Width, but more typically will follow the realized sector Beam Width which is dependent on antenna and environmental factors).
Generation of Correlation Window Length
As described by T. Rappaport in "Wireless Communications," pp. 104, Prentice Hall, NJ, 1996, the path loss (PL) at any particular distance (d) is random and distributed log-normally (normal in dB) about a mean distance-dependent value. More particularly,
PL(d)=PL(d0)+ 10«log(d/d0)+Xσ,
where the use of d0 provides a known (measured) power reference. In other words, the path loss at d=d0 is simply PL(do)+ Xσ. The variable d is the distance under evaluation, and n is the coefficient that depends on the specific propagation environment (see table 1). In the preferred embodiment of the present invention, n is the best fit to the free space propagation, environment factors shown in the table, and power control model modifier. PL(d0) is a reference path loss measured at distance d0, and Xσ is a zero-mean Gaussian distributed random variable (measured in dB) with a standard deviation of σ.
Figure imgf000015_0001
Table 1: Values of n for various base-station environments
Given the direct relationship between a ray's time of arrival at the serving base station (t-jvai), expressed in a number of chips, and a distance, expressed in centimeters:
d= 12207*tarrival.
The path loss at the serving base station (PL(d)) can then be re-written as a function of the prompt ray arrival time tarrivai:
PL(tarrivaI)=PL(t0)+ 10«log(tarrival /t0)+Xσ,
where to is the arrival time of a prompt ray at distance do-
As discussed above, to evaluate a prompt ray's time of arrival (TOA) at non-serving base stations, a cross-correlation between the received signal and a version of a known signal sent by the remote unit is performed. As a result, correlation peaks at different times represent different paths followed by the signal. The correlation peaks exist over a noise floor created by thermal noise and other interferences. The magnitude of the correlation peaks is an estimation of each signal power, and are directly related to the size of the correlation window (N). In other words the power of the prompt ray (Pprompt) arriving at offset tarrivaι is given by, "promptlΛarπval,/ -^ •
In order to keep the correlation peak detectable while maintaining a reduced processing load, the correlation window size (N) is increased as the remote unit's distance from the base station performing the search increases, and vice versa. The change in N at non-serving base stations mirrors the power loss PL(tarπVai) at the remote base station due to environmental factors (free space path loss, urban/suburban, power control, etc.). For example, if N0 is the correlation window length at the reference distance from the remote base station for t0:
ΔP(tarrιval)=101og(N/No)~PL(t0)+10r2log(tamval/to)+ Xσ,
from where,
Figure imgf000016_0001
which leaves, as a valid approximation:
N=No* [tamval/tθ]'?.
Thus, if t0 represents the time offset at the reference distance (expressed in PN chips), and N0 represents the reference correlation window size used at that reference distance t0, then in order to obtain a detectable correlation peak given a minimal windowing size, N should be varied as a function of the distance/offset under evaluation.
FIG. 7 is a flow chart showing the generation of a correlation window by a base station of FIG. 1 in accordance with the preferred embodiment of the present invention. The logic flow begins at step
701 where a lower value for value for tarnval is chosen by processor
350. As discussed above tarπvaι is bounded on the low side by PNmιtιa] and on the high side by PNfinaι. Both PNιnιtlaι and PNfinaι are determined as described above. Therefore, at step 701 , tamvai is set equal to PNιnιtιai (which is based on the first location of the remote unit). Additionally
Figure imgf000017_0001
corresponds to a time offset, or distance, that the remote unit is from the base station. At step 705 processor 350 determines a correlation window size for tamvai- In particular the correlation window size is set equal to
Figure imgf000017_0002
At step 710 a correlation power is determined for tarπVai by searcher 340 and reported to LFE 355. As discussed above, the correlation power is a cross- correlation between the known sequence and data received by the remote unit. The logic flow then continues to step 715 where it is determined if If at step 715, tarπvaι=PNfinaι then the logic flow ends at step 730, otherwise the logic flow continues to step 720 where it is determined if the correlation power is above a threshold. In particular, at step 720 a determination is made as to if the tarπva| has a high confidence of being the offset for the prompt ray. This is done by determining if the correlation power is above a threshold. If, at step 720 it is determined that the correlation power is above the threshold, then the logic flow ends at step 730, otherwise the logic flow continues to step 725. At step 725, tamvai is advanced to the next offset under evaluation and the logic flow returns to step 705.
Although the preferred embodiment described in FIG. 7 "walked" though possible offsets for t^vai in an alternate embodiment of the present invention, all possible offsets for tarπvaι may be analyzed simultaneously. The alternate embodiment is better performed by implementation on an ASIC, wherein the preferred embodiment is better performed when implementation is in software.
The descriptions of the invention, the specific details, and the drawings mentioned above, are not meant to limit the scope of the present invention. For example, although TOA and TDOA have been utilized in the preferred embodiment of the present invention, one of ordinary skill in the art will recognize that other forms of location (e.g., various forms of propagation delay measurements on prompt rays, power measurements, amplitude differencing for AOA, generic searcher techniques for TOA determination, TDOA fusion techniques, etc.) may be utilized without varying from the scope of the present invention. Additionally, although the generation of the search and correlation windows is based on a distance "between" base stations, it is contemplated that an equivalent method for determining distances "between" base stations may be to determine each base station's distance to a fixed point, and use the distances to the fixed point in determining the search and correlation windows. It is the intent of the inventors that various modifications can be made to the present invention without varying from the spirit and scope of the invention, and it is intended that all such modifications come within the scope of the following claims and their equivalents.

Claims

Claims
1. A method for locating a remote unit within a communication system, the method comprising the steps of: determining a distance from a base station to search for the remote unit; determining a size of a correlation window based on the distance from the base station; and locating the remote unit utilizing the correlation window.
2. The method of claim 1 wherein the step of determining the distance from the base station comprises the step of determining a time offset that corresponds to the distance from the base station.
3. The method of claim 1 wherein the step of determining the size of the correlation window comprises the step of determining a size of a known sequence transmitted by the remote unit.
4. The method of claim 1 wherein the step of locating the remote unit comprises the step of locating the remote unit utilizing a multi-site location technique.
5. The method of claim 1 wherein the step of determining the distance from the base station comprises the step of determining a distance bounded by a first Pseudo-Noise (PN) offset and a second PN offset.
6. An apparatus for locating a remote unit, the apparatus comprising: a processor outputting a value for a correlation window size based on a location of the remote unit; and a searcher having the correlation window size as an input and outputting a correlation power.
7. The apparatus of claim 6 wherein the correlation window size is a size of a known sequence transmitted by the remote unit.
8. The apparatus of claim 6 wherein the location of the remote unit is a distance of the remote unit from a base station.
9. The apparatus of claim 6 wherein the correlation power is a cross- correlation of the known sequence with data received by a base station at a particular time.
10. The apparatus of claim 6 further comprising location finding equipment having the correlation power as an input and outputting a location of the remote unit based on the correlation power.
PCT/US2000/017170 1999-09-30 2000-06-22 Locating a remote unit WO2001025813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/409,545 1999-09-30
US09/409,545 US6191738B1 (en) 1999-09-30 1999-09-30 Method and apparatus for locating a remote unit within a communication system

Publications (1)

Publication Number Publication Date
WO2001025813A1 true WO2001025813A1 (en) 2001-04-12

Family

ID=23620963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017170 WO2001025813A1 (en) 1999-09-30 2000-06-22 Locating a remote unit

Country Status (2)

Country Link
US (1) US6191738B1 (en)
WO (1) WO2001025813A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052039A1 (en) 2002-12-02 2004-06-17 Nokia Corporation Estimation of a signal delay
EP2006705A1 (en) * 2007-06-22 2008-12-24 Alcatel Lucent Method and system for precise pre-location of a satellite navigation signal receiver operating in assisted mode by a mobile telecommunication network

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085246B1 (en) * 1999-05-19 2006-08-01 Motorola, Inc. Method and apparatus for acquisition of a spread-spectrum signal
US6529708B1 (en) * 1999-07-16 2003-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient determination of time of arrival of radio communication bursts
US6542743B1 (en) * 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
US6775252B1 (en) * 2000-03-31 2004-08-10 Qualcomm, Inc. Dynamic adjustment of search window size in response to signal strength
JP3740953B2 (en) * 2000-06-13 2006-02-01 株式会社日立製作所 Wireless position measuring terminal and wireless position measuring system
US6799048B2 (en) * 2000-11-30 2004-09-28 Telefonaktiebolaget Lm Ericsson Mobile positioning within an AMPS/TDMA system
US20040002346A1 (en) * 2000-12-14 2004-01-01 John Santhoff Ultra-wideband geographic location system and method
US6519464B1 (en) * 2000-12-14 2003-02-11 Pulse-Link, Inc. Use of third party ultra wideband devices to establish geo-positional data
US7251229B2 (en) * 2001-08-06 2007-07-31 Qualcomm Incorporated Systems and techniques for measuring relative power
CN1292261C (en) * 2002-01-24 2006-12-27 华为技术有限公司 Localization measurement method of mobile station
US7519373B2 (en) * 2002-08-29 2009-04-14 Andrew Llc System and method for geo-location of mobile appliances using diverse standard tasking and reporting
US8032149B2 (en) * 2002-08-29 2011-10-04 Andrew Llc Tasking and reporting method and implementation for wireless appliance location systems
WO2004098213A1 (en) * 2002-10-25 2004-11-11 Andrew Corporation System and method for geo-location of mobile appliances using diverse standard tasking and reporting
US7420947B2 (en) * 2002-08-30 2008-09-02 Qualcomm Incorporated Communication system performance using position location information
US6889052B2 (en) * 2002-08-30 2005-05-03 Motorola, Inc. Method and apparatus for generating time of arrival estimates for use in determining a location
WO2004105356A2 (en) * 2003-05-19 2004-12-02 Board Of Control Of Michigan Technological University Wireless local positioning system
EP1882320A4 (en) * 2005-05-17 2008-05-21 Andrew Corp Method and apparatus for determining path loss by active signal detection
US8000702B2 (en) * 2006-05-16 2011-08-16 Andrew, Llc Optimizing location services performance by combining user plane and control plane architectures
US8019339B2 (en) 2006-05-16 2011-09-13 Andrew Llc Using serving area identification in a mixed access network environment
US8000701B2 (en) 2006-05-16 2011-08-16 Andrew, Llc Correlation mechanism to communicate in a dual-plane architecture
EP2118810B1 (en) 2007-02-05 2012-08-15 Andrew Corporation System and method for optimizing location estimate of mobile unit
US20090125630A1 (en) * 2007-11-09 2009-05-14 Qualcomm Incorporated Method and apparatus for defining a search window based on distance between access points
US8170585B2 (en) 2007-11-14 2012-05-01 Andrew, Llc Ranging in UMTS networks
US8447319B2 (en) * 2007-11-15 2013-05-21 Andrew Llc System and method for locating UMTS user equipment using measurement reports
US7800530B2 (en) * 2007-12-07 2010-09-21 Andrew, Llc Method and system for providing assistance data for A-GPS location of handsets in wireless networks
GB0805787D0 (en) * 2008-03-31 2008-04-30 Roke Manor Research A multilateration method and apparatus
US8213955B2 (en) 2008-05-01 2012-07-03 Andrew, Llc Network measurement report caching for location of mobile devices
US8073463B2 (en) 2008-10-06 2011-12-06 Andrew, Llc System and method of UMTS UE location using uplink dedicated physical control channel and downlink synchronization channel
US8762519B2 (en) * 2008-10-28 2014-06-24 Andrew Llc System and method for providing location services for multiple access networks from a single location server
US8035557B2 (en) * 2008-11-24 2011-10-11 Andrew, Llc System and method for server side detection of falsified satellite measurements
US8380222B2 (en) 2008-11-26 2013-02-19 Andrew Llc System and method for multiple range estimation location
US8249622B2 (en) 2008-11-26 2012-08-21 Andrew, Llc System and method for multiple range estimation location
US8160609B2 (en) * 2008-11-26 2012-04-17 Andrew Llc System and method for multiple range estimation location
US7916071B2 (en) * 2008-12-23 2011-03-29 Andrew, Llc System and method for determining a reference location of a mobile device
US8391884B2 (en) * 2009-03-26 2013-03-05 Andrew Llc System and method for managing created location contexts in a location server
US8290510B2 (en) * 2009-06-11 2012-10-16 Andrew Llc System and method for SUPL held interworking
EP2462461A1 (en) 2009-08-05 2012-06-13 Andrew LLC System and method for hybrid location in an lte network
US8217832B2 (en) * 2009-09-23 2012-07-10 Andrew, Llc Enhancing location accuracy using multiple satellite measurements based on environment
US8289210B2 (en) 2009-10-15 2012-10-16 Andrew Llc Location measurement acquisition adaptive optimization
US8188920B2 (en) * 2009-10-15 2012-05-29 Andrew, Llc Location measurement acquisition optimization with Monte Carlo simulation
US20110171973A1 (en) * 2010-01-08 2011-07-14 Andrew, Llc System and Method for Mobile Location By Proximity Detection
US8718673B2 (en) 2010-05-21 2014-05-06 Maple Acquisition Llc System and method for location assurance of a mobile device
US8958754B2 (en) 2010-09-29 2015-02-17 Andrew, Llc System and method for sub-coherent integration for geo-location using weak or intermittent signals
US8489122B2 (en) 2010-12-09 2013-07-16 Andrew Llc System and method for total flight time ratio pattern matching
EP2676500A1 (en) 2011-02-14 2013-12-25 Andrew LLC Method for mobile location by dynamic clustering
US9715001B2 (en) 2011-06-13 2017-07-25 Commscope Technologies Llc Mobile location in a remote radio head environment
US9423508B2 (en) 2012-01-12 2016-08-23 Commscope Technologies Llc Autonomous Transmit Chain Delay Measurements
US8897813B2 (en) 2012-02-03 2014-11-25 Andrew Llc LTE user equipment positioning system and method
CN108169710A (en) * 2017-11-16 2018-06-15 捷开通讯(深圳)有限公司 Localization method and alignment system based on reconfigurable antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317323A (en) * 1993-03-05 1994-05-31 E-Systems, Inc. Passive high accuracy geolocation system and method
US5890068A (en) * 1996-10-03 1999-03-30 Cell-Loc Inc. Wireless location system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600706A (en) * 1992-04-08 1997-02-04 U S West, Inc. Method and system for determining the position of a mobile receiver
US5945944A (en) * 1996-03-08 1999-08-31 Snaptrack, Inc. Method and apparatus for determining time for GPS receivers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317323A (en) * 1993-03-05 1994-05-31 E-Systems, Inc. Passive high accuracy geolocation system and method
US5890068A (en) * 1996-10-03 1999-03-30 Cell-Loc Inc. Wireless location system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052039A1 (en) 2002-12-02 2004-06-17 Nokia Corporation Estimation of a signal delay
US7218939B2 (en) 2002-12-02 2007-05-15 Nokia Corporation Estimation of a signal delay
EP2006705A1 (en) * 2007-06-22 2008-12-24 Alcatel Lucent Method and system for precise pre-location of a satellite navigation signal receiver operating in assisted mode by a mobile telecommunication network

Also Published As

Publication number Publication date
US6191738B1 (en) 2001-02-20

Similar Documents

Publication Publication Date Title
US6191738B1 (en) Method and apparatus for locating a remote unit within a communication system
US6160511A (en) Method and apparatus for locating a remote unit within a communication system
US6950661B2 (en) Location detection method, location detection apparatus and location detection program
KR100899465B1 (en) Method and apparatus for estimating the position of a terminal based on identification codes for transmission sources
US7574221B2 (en) Method for estimating jointly time-of-arrival of signals and terminal location
KR100767550B1 (en) Radio handset and position location system
US5736964A (en) Method and apparatus for location finding in a CDMA system
KR100960544B1 (en) Parameter estimator with dynamically variable search window size and/or placement
US6694142B1 (en) Wireless terminal positioning method and apparatus
US6785321B1 (en) Apparatus and method for estimating the time of arrival of a spread spectrum signal in a wireless communication system
US7400890B2 (en) Method for decision of time delay by repeater in mobile communication network
EP1167993B1 (en) A method for measuring distance and position using spread spectrum signals, and an equipment using the method
US7095813B2 (en) System and method for the detection and compensation of radio signal time of arrival errors
US6697417B2 (en) System and method of estimating earliest arrival of CDMA forward and reverse link signals
US6731242B1 (en) Method of calculating the position of a mobile radio station based on shortest propagation time
JP3740953B2 (en) Wireless position measuring terminal and wireless position measuring system
US5974057A (en) Method and apparatus for correcting a measured round-trip delay time in a wireless communication system
KR20000062548A (en) Method for combining multiple measurements to determine the position of a mobile transceiver
CA2264077A1 (en) Method and apparatus for location finding in a communication system
CN1238896A (en) Determination of terminal location in radio system
US20080009295A1 (en) Method for the high accuracy geolocation of outdoor mobile emitters of CDMA cellular systems
KR20040060957A (en) Parameter estimator with dynamically variable integration time
FI113832B (en) A method of performing synchronization to a signal in a wireless terminal and a wireless terminal
JP2002186012A (en) Position detection method for wireless mobile station and position detector, and wireless base station provided with the position detector
CA2497363C (en) Method for the high accuracy geolocation of outdoor mobile emitters of cdma cellular systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP