WO2001005444A1 - Balloon for balloon catheter and production method thereof - Google Patents

Balloon for balloon catheter and production method thereof Download PDF

Info

Publication number
WO2001005444A1
WO2001005444A1 PCT/JP2000/004729 JP0004729W WO0105444A1 WO 2001005444 A1 WO2001005444 A1 WO 2001005444A1 JP 0004729 W JP0004729 W JP 0004729W WO 0105444 A1 WO0105444 A1 WO 0105444A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
tube
outer tube
catheter
balloon catheter
Prior art date
Application number
PCT/JP2000/004729
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Uchiyama
Shinichi Miyata
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2001005444A1 publication Critical patent/WO2001005444A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters

Definitions

  • the present invention relates to a balloon for a balloon catheter and a method for producing the balloon.
  • the present invention relates to a balloon catheter having a thin and high-strength balloon, and in particular, percutaneous intravascular coronary angioplasty (Percutaneous Translumina 1 Coronary Angioplasty, hereinafter referred to as “b”, “PTCA”).
  • b percutaneous Translumina 1 Coronary Angioplasty
  • the present invention relates to a balloon catheter suitable for use.
  • PTCA catheter For diseases caused by stenosis of blood vessels, the so-called PTCA catheter, which is easily treated and recovered with a balloon catheter, is frequently used.
  • a guiding catheter in the treatment of the coronary artery of the heart, a guiding catheter is first inserted to the entrance of the coronary artery, a guide wire is inserted beyond the stenosis, and a balloon catheter is pushed into the stenosis.
  • the stenosis is expanded by expanding the balloon.
  • PTCA catheters are being used to take advantage of them to expand their application range, but their required characteristics are also becoming more sophisticated. For example, it is required to be able to treat peripheral coronary stenosis, to be easily inserted into a bent blood vessel, to have a strong dilatation pressure, and to be able to safely dilate a blood vessel. More specifically, there is a need for the ability to treat peripheral coronary artery stenosis using the PTCA force table. For this purpose, a balloon that is thinner and stronger than ever is required.
  • the balloon is inflated to about 300% and its thickness is reduced.
  • An object of the present invention is to provide a thin and high-strength balloon for a balloon catheter suitable for PTCA use.
  • Another object of the present invention is to provide a method for producing the thin and high-strength polyolefin resin balloon.
  • a further object of the present invention is to provide a balloon catheter having the thin and high-strength polyolefin resin balloon.
  • the present inventors have conducted intensive studies and found that the polyethylene resin tube was cross-linked by irradiation with an electron beam so that a gel having a gel fraction of about 0.7% was formed. was blown with conditions at 80 ° C for a considerably lower temperature than the melting point of the polyethylene resin, it found that balloon stretching ratio is 600% and breaking strength is 1 1 00 kgfcm 2 is obtained, on this finding Based on this, the present invention has been completed.
  • the method for producing a balloon for a balloon catheter according to the above (1) comprising a step of blow molding to prepare a balloon portion so that the balloon portion becomes 0%.
  • At least one balloon expansion lumen is formed along the longitudinal direction
  • the distal end of the balloon portion is joined to the distal end of the inner tube so as to form a space, and extends axially inside the balloon portion and inside the balloon expansion lumen of the outer tube.
  • the balloon portion is a balloon formed by blow molding using a cross-linked tube made of a polyolefin resin, and the balloon has a film thickness of 10 to 40 ⁇ m.
  • a balloon catheter, wherein the balloon has a breaking strength of 800 to 2000 kg kg / cm 2 .
  • a tube made of a polyolefin resin is irradiated with an electron beam of 5 to 4 OM rad, preferably 10 to 2 OM rad, and the tube is cross-linked with an electron beam.
  • an electron beam of 5 to 4 OM rad, preferably 10 to 2 OM rad
  • a crosslinked tube having a gel content of 0.2 to 0.7% is preferable.
  • the crosslinked tube is preferably heat-treated at least at 90 ° C.
  • the balloon when blow-molding the cross-linked tube, apply a primary opening pressure of 15 to 25 kg iZcm 2 to the mold, and at least 1 second before opening the mold. preferably to create a balloon loaded with secondary blow pressure of 5 to 8 kgf Zc m 2.
  • the thickness of the balloon for a balloon catheter made of a polyolefin resin is preferably 25 to 35 / m.
  • the balloon for a balloon catheter made of a polyolefin resin preferably has an effective stretching ratio from the crosslinked tube to the balloon of 500 to 700%. Further, the breaking strength of the balloon is preferably 1 000 ⁇ 2000 kgf Z cm 2.
  • the balloon for a balloon catheter of the present invention can withstand high pressure for balloon inflation because the balloon has an extremely high breaking strength as compared with a balloon obtained by blow molding a polyethylene resin.
  • the safety when dilating a vascular stenosis is extremely excellent.
  • the balloon for a balloon catheter of the present invention has an extremely thin film thickness.
  • the diameter of the PTCA catheter can be reduced, so that peripheral coronary artery stenosis can be treated more than before.
  • FIG. 1A is an overall configuration diagram of a balloon catheter according to an embodiment of the present invention.
  • FIG. IB is a cross-sectional view taken along the line IB-IB shown in FIG. 1A.
  • FIG. 1C is a cross-sectional view taken along line IC_IC shown in FIG. 1A.
  • FIG. ID is a cross-sectional view taken along the line ID_ID shown in FIG. 1A.
  • FIG. IE is a cross-sectional view taken along line IE—IE shown in FIG. 1A.
  • FIG.1F is a side view of the reinforcing pad inserted into the catheter tube of the balloon catheter.
  • FIG. 2A is a longitudinal sectional view of a main part of the balloon catheter shown in FIG. 1A.
  • FIG. 3A is a cross-sectional view of a main part when a parison is fixed to a blow molding machine.
  • FIG. 3B is a perspective view of the balloon obtained by blow molding.
  • the balloon for a balloon catheter of the present invention is prepared using a polyolefin resin.
  • the polyolefin resin is produced by a polymerization reaction using an olefin having 2 to 40 carbon atoms as a monomer, and its density (JISK-7112) is usually 0.950 g / cm 3 or less. And preferably from 0.850 to 0.940 g / cm 3 , more preferably from 0.880 to 0.930 gZcm 3 . If the density is too low, problems such as blocking due to stickiness of the balloon surface are likely to occur, and if the density is too high, transparency is undesirably reduced.
  • Monoolefin monomers for obtaining polyolefin resin by polymerization reaction include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methylino-1-pentene, 4-methylene 1-Hexene, 4,4-dimethyl-11-pentene and the like. These monomers can be used alone or in combination of two or more.
  • polyolefin resin from the viewpoint of various properties as a balloon, polyethylene and an ethylene / ⁇ -olefin copolymer are preferable, and an ethylene / ⁇ -olefin copolymer is particularly preferable.
  • the ethylene .alpha.-olefin copolymer can be obtained by copolymerizing ethylene and .alpha.- olefin by using a meta-mouth catalyst.
  • a meta-mouth catalyst As the comonomer, it is preferable to use ⁇ -olefin having 4 to 40 carbon atoms.
  • Examples of the ⁇ -olefin include 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl_1-pentene, 4_methyl-1-hexene, 4, 4-dimethyl-11-pentene and the like. Among these, monoolefins having 4 to 12 carbon atoms are preferable, and monoolefins having 4 to 10 carbon atoms are more preferable.
  • the copolymerization ratio of ⁇ -olefin is usually 2 to 50 weight. / 0 , preferably 5-40 weight. / 0 , more preferably 10 to 30% by weight.
  • polyolefin resin examples include a polyethylene resin, a propylene resin, an ethylene-propylene copolymer resin, and a copolymer resin of ethylene and another ⁇ -olefin.
  • polyethylene resin is preferable, and low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and the like are preferably used.
  • the melt flow rate (MFR; JISK-7210) of the polyolefin resin is usually 0 :! 0 to 30.0 gZl 0 min, preferably 1.0 to 20. O gZl O min, more preferably 1.0 to: 15 ⁇ O gZl O min, most preferably 1.5 to: 15.0 g / 10 minutes. If the MFR is too small, it is difficult to obtain sufficient strength, and if it is too large, the moldability will be reduced.
  • additives can be blended with the polyolefin resin within a range that does not impair the object of the present invention.
  • the additives for example, several kinds of antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, metal deactivators, pigments, dyes, and crystal nucleating agents can be added as necessary.
  • the amount of addition is usually 20 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the polyolefin resin.
  • the method for producing the balloon for a balloon catheter of the present invention will be described.
  • the knot Using a crystalline polyolefin resin, mold the original tube for professional molding with pre-designed dimensions.
  • the molding can be performed by, for example, an extrusion molding method.
  • the die temperature during extrusion is, for example, 200 to 300 ° C.
  • the extruded tube immediately after discharge from the die is cooled, for example, by passing it through a water tank (20 to 30 ° C).
  • the extruded tube is irradiated with an electron beam to form a cross-linked tube made of polyolefin resin (hereinafter, referred to as “parison”).
  • the irradiation amount of the electron beam is, for example, 5 to 40 Mrad, preferably 10 to 20 Mrad.
  • the crosslinked tube is subjected to a heat treatment at, for example, about 90 to 110 ° C. for 30 minutes to several hours. This heat treatment step eliminates molding distortion due to extrusion.
  • the gel fraction of the tube crosslinked by the electron beam irradiation is 0.8% or less, and preferably 0.2 to 0.7. It is preferably about / 0 .
  • the gel fraction can be measured as the insoluble content of the crosslinked sample in heated xylene. Specifically, after heating 0.1 g of the crosslinked sample in 100 ml of xylene heated to 120 ° C for 6 hours, the soluble matter was filtered off, and the dry weight of the remaining crosslinked sample was measured. Then, calculate the ratio to the crosslinked sample before treatment.
  • the parison prepared through the above steps is shaped into a balloon by professional molding, for example, through the following steps.
  • the upper chuck seals completely so that pressure does not leak, and the lower chuck does not crush the lumen so that blow pressure is applied.
  • the parison is blow-molded at a temperature lower than the melting point of the polyolefin resin that is the material of the parison.
  • the temperature is, for example, at least 10 ° C. or more, preferably 30 ° C. or more lower than the melting point of the polyolefin resin, and more preferably 30 to 60 ° C. lower temperature. If the temperature is too high, blow molding becomes easier, but the breaking strength of the balloon decreases. On the other hand, if the temperature is excessively low, a very high blow pressure is required to shape the balloon, which is not preferable. Also, a balloon blow-molded on the low temperature side is not preferable because it extremely shrinks. Specifically, the professional molding is based on the following steps.
  • the parison fixed at the top and bottom is heated, for example, in advance at about 50 to 90 ° C., preferably in the range of 75 to 85 ° C., for 30 to 180 minutes, preferably 100 to 150 minutes. After being done, 1 Stretched about 50-200%. Next, at the same time as the parison was stretched, the two halves of the mold (heated to the same extent as the parison) were closed so as to sandwich the parison, and then the first blow pressure was applied. And held for 10 to 60 seconds, preferably for about 20 to 40 seconds. Next, the pressure is maintained at a pressure of at least one-half or less, preferably one-third or less, of the first blow pressure (hereinafter, referred to as a “second pressure”) for 0.5 to 3 seconds.
  • the mold can be opened.
  • the gas introduced into the parison is not particularly limited.
  • nitrogen gas or the like can be used.
  • the first blow pressure for expanding the parison is, for example, 10 to 30 kgi / cm 2 , preferably 15 to 25 kgf / cm 2 .
  • 2nd blow — the pressure is, for example, 3 ⁇ :! O kgfcm 2 , preferably 5 to 8 kgf / cm 2 .
  • the balloon is formed into a shape having a nozzle body portion 7e and a portion 7f for joining with the balloon catheter as shown in, for example, FIG. 3B. .
  • the outer diameter of the balloon formed by blow molding is measured by a laser
  • the effective stretch ratio (cross-section tube cross-section area, Z-balloon cross-section area) of the balloon formed by the bubbling process from the crosslinked tube to the balloon is 400-1500%, preferably 500-10000. ° / 0 is required. An excessively large effective stretching ratio is not preferable because the breaking strength of the balloon is extremely reduced.
  • the extruded tube is irradiated with an electron beam under conditions of 5 to 4 OMrad to form a cross-linked tube made of polyethylene, whereby the effective stretching ratio is 400 to 1500%, and , the breaking strength of the balloon is 800 to 2000 kgf Zc m 2, good Mashiku is 1 000: it is achieved 1 is 800 kgf Zc m 2.
  • the thickness of the balloon formed by the blow molding is 5 to 40 ⁇ , preferably 25 to 35 ⁇ .
  • the rupture strength of the balloon was maintained at 37 ° C in water at a pressure of 15 psi on the balloon and held for 15 seconds, followed by an additional 15 psi and hold for 15 seconds. Repeat until the balloon ruptures, and measure the pressure at the time of rupture as the breaking strength.
  • Table 1 shows the breaking strength of the balloon blow-molded by the method described above.
  • the irradiation strength of electron beam was adjusted to 4 OM rad and 6 OM rad, and the breaking strength of a balloon formed by blow molding using a gel having the same gel content as that of a conventional cross-linked tube was compared.
  • Table 1 shows a comparative example. From the results in Table 1, it can be seen that the balloon for balloons of the present invention has a thin balloon thickness and significantly increased breaking strength at an effective stretching ratio of 500% or more.
  • the valve catheter 2 according to the present embodiment shown in FIG. 1 includes, for example, percutaneous coronary angioplasty (PTCA), dilation of a blood vessel such as a limb, dilation of an upper ureter, and renal vasodilation. It is used to dilate a stenosis formed in a blood vessel or other body cavity.
  • PTCA percutaneous coronary angioplasty
  • dilation of a blood vessel such as a limb
  • dilation of an upper ureter dilation of an upper ureter
  • renal vasodilation renal vasodilation
  • the balloon catheter for expansion 2 of the present embodiment is a so-called monorail balloon catheter, and has a balloon portion 4, an outer tube 6 as a catheter tube, and a connector 8.
  • the outer tube 6 has a relatively flexible first outer tube member 6 a and a relatively rigid first joint member 9 joined to the first outer tube member 6 a at a joint 9. And a high second outer tube member 6b.
  • the proximal end opening of the inner tube penetrates a tube wall positioned halfway in the longitudinal direction of the first outer tube member 6a and opens to the outside, and the proximal end opening of the inner tube is formed.
  • the tube wall of the first outer tube member 6a is heat-sealed in a gas-tight manner, so that only the distal end of the balloon catheter has a so-called coaxial catheter tube structure. Things.
  • the cross-sectional outer shape of the second outer tube member 6b has an elongated elliptical shape in the Y-axis direction.
  • the semicircular cross-sectional area of the third lumen 24 is not particularly limited as long as it is a cross-sectional area sufficient for the flow of the balloon expansion pressure fluid, and is preferably 0.08 to 0.20 mm 2 .
  • the circular cross-sectional area of the fourth lumen 26 is not particularly limited as long as it is a sufficient area for inserting the reinforcing rod 28 therein, but is preferably in the range of 0.05 to 0.5 mm 2 . , more preferably 0.5:! a ⁇ 0. 2mm 2.
  • the maximum cross section width ym in the Y axis direction is preferably about 0.6 to 1.2 mm.
  • the cross-sectional shape near the joint 9 is the first outer tube member 6b.
  • the cross-sectional shape gradually changes from the irregular cross-section to the circular cross-section toward the joint portion 9.
  • the third lumen 24 formed along the longitudinal direction of the second outer tube member 6b communicates with the first lumen 10 of the first outer tube member 6a, and passes through the balloon portion 4 The fluid is taken in and out of the expansion space.
  • the fourth lumen 26 of the second outer tube 6b is a lumen for inserting the reinforcing rod 28, and communicates with the first lumen 10 of the first outer tube member 6a.
  • the proximal end is closed at the connector 8 and no fluid enters or exits.
  • Connector 8 has a second outer tube
  • the proximal end of the valve member 6c is connected to form a port communicating with the third lumen 24 of the second outer tube 6b.
  • the port is a part that allows the pressure fluid to enter and exit, and does not communicate with the fourth lumen 26.
  • the reinforcing rod 28 shown in FIGS. FI G. IB, FI G. 1C, and FI G. 1F is inserted into the fourth lumen 26 of the second outer tube member 6b over its entire length, and its distal end is The end portion of the first outer tube member 6a jumps out of the joint portion 9 with the first outer tube member 6a and protrudes into the first lumen 10 of the first outer tube member 6a.
  • the proximal end of the reinforcing rod 28 has a circular cross-section, tapers from the middle toward the distal end, and has a gradually increasing cross-sectional shape at the distal end so as to have a flat cross-section. Has changed.
  • the distal end of the stiffening rod 28 having a flat cross-section has a slight (preferably 1) opening at the proximal end opening 22 of the inner tube 12 as shown in FIG. ID and FIG. (About 10 cm) At the position where the vehicle has climbed over, it is joined to the inner wall of the first outer tube member 6 a by means of heat fusion or adhesion.
  • the maximum outer diameter of the reinforcing rod 28 is determined so as to be able to be inserted into the fourth lumen 26 of the second outer tube member 6b, and is not particularly limited, but is preferably 0.3 to 0.6. mm.
  • the balloon portion 4 shown in FI G.1A and FI G.2 is formed of a cylindrical film having both ends reduced in diameter, and has a film thickness of 10 to 40 // m, preferably 15 ⁇ 35 m.
  • the balloon portion 4 is not particularly limited as long as it is cylindrical, and may be cylindrical or polygonal.
  • the outer diameter of the balloon portion 4 when expanded is generally about 1.5 to 10 Omm, preferably 3 to 7 mm.
  • the axial length of the balloon portion 4 is not particularly limited, it is 15 to 50 mm, preferably 20 to 40 mm.
  • the balloon portion 4 before being expanded is folded and wound around the inner tube 12 so that the outer diameter is as small as possible.
  • the proximal end 5 of the balloon 4 is joined to the outer periphery of the distal end of the first outer tube member 6 a by means such as heat fusion or adhesion.
  • the first lumen 10 of the first outer tube member 6 a communicates with the space for internal expansion of the valve unit 4.
  • the distal end portion 7 of the balloon portion 4 is joined to the outer periphery of the distal end portion of the inner tube 14 by means such as heat fusion or adhesion, and the internal expansion space of the balloon portion 4 is Except for the first lumen 10, it is sealed to the outside.
  • the first lumen 10 of the first outer tube member 6 a sends fluid into the internal expansion space of the balloon section 4 to expand the balloon section 4, or draws fluid out of the expansion space of the balloon section 4, and removes the fluid from the balloon section 4. It is a passage for contracting.
  • the inner tube 12 extends coaxially in the axial direction through the expansion space of the valve portion 4 and the inside of the first lumen 10 on the distal end side of the first outer tube member 6a. It has a so-called coaxial catheter tube structure.
  • a contrast ring 15 is attached to the outer periphery of the inner tube 12 located inside the balloon part 4, and when the balloon force catheter 2 is inserted into the living body, it is exposed to X-rays from the outside of the living body. The position of the imaging ring 15 can be imaged. Examples of the material of the contrast ring 15 include metals such as gold, platinum, and tungsten.
  • a second lumen 14 is formed inside the inner tube 12, and a distal end opening 20 thereof is open at a distal end 7 of the ball portion 4.
  • the proximal end opening portion 22 of the inner tube 12 is opened to the outside through a through hole 21 of a tube wall located in the longitudinal direction of the first outer tube member 6a. ⁇
  • the periphery of the proximal end opening 22 of the tube 12 and the periphery of the through hole 21 of the tube wall of the first outer tube member 6a are hermetically joined by a heat fusion method described later.
  • the shape of the proximal end opening 22 of the inner tube 12 is not particularly limited, and may take various shapes such as a circle and an ellipse.
  • the opening end of the inner tube 12 is formed obliquely. It is a cut elliptical shape.
  • the second lumen 14 of the inner tube 12 is a guide wire insertion lumen through which a guide wire 42 shown in FIG. 2 for guiding the balloon catheter 2 into a body cavity is inserted.
  • the inner tube 12 can be made of a soft synthetic resin of the same material as the first outer tube member 6a, but may be made of a synthetic resin harder than the first outer tube member 6a.
  • the position where the proximal end opening 22 of the inner tube 12 opens outside the first outer tube member 6a may be a position of length L1 from the distal end of the first outer tube member 6a.
  • the length L1 is preferably between 150 and 35 Omm, more preferably between 200 and 30 Omm.
  • the outer diameter of the first outer tube member 6a is not particularly limited, but is preferably 0.5 to 5 mm, more preferably 0.5 to 1 mm.
  • the thickness of the first outer tube member 6a is although not particularly limited, it is preferably from 0.05 to 0.5 mm, more preferably from 0.1 to 0.2 mm.
  • the outer diameter of the inner tube 12 is determined so that a gap is formed between the inner tube 12 and the first outer tube member 6a, and is not particularly limited, but is preferably 0.3 to 3 mm, and more preferably 0.3 to 3 mm. 0.8 mm.
  • the inner diameter of the inner tube 12 is not particularly limited as long as it can pass through the guide wire 42, and is, for example, 0.15 to 1.0 mm, preferably 0.25 to 0.6 mm.
  • the proximal end of the reinforcing mouthpiece 28 is circular in cross section, tapered from the middle toward the distal end side, and has a flat cross section at the distal end.
  • the cross-sectional shape is gradually changing.
  • the distal end of the reinforcing tab 28 having a flat cross section rides the proximal end opening 22 of the inner tube 12 slightly (preferably about 1 to 10 cm). At the position beyond, it is joined to the inner wall of the first outer tube member 6a by means such as heat sealing or bonding.
  • the reinforcing rod 28 is made of a metal material such as stainless steel, copper, copper alloy, titanium, or titanium alloy, or a synthetic resin such as polyimide, polyamide, or polyethylene terephthalate.
  • the maximum outer diameter of the reinforcing rod 28 is determined so as not to block the lumen 10 of the first outer tube member 6a, and is not particularly limited.
  • the first outer tube member 6a may be made of, for example, a material similar to that of the balloon portion 4, and is preferably made of a material having flexibility.
  • a material having flexibility for example, polyethylene, polyethylene terephthalate, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polychlorinated vinyl (PVC), cross-linked ethylene-vinyl acetate copolymer, polyurethane, polyamide, polyamide Elastomer, Polyimide, Polyimide elastomer, Polytetrafluoroethylene resin, Polytetrafluoroethylene 16-propylene copolymer resin, Polytetrafluoroethylene-fluoroalkylvinylether copolymer resin, Trifluoride Ethylene chloride resin, tetrafluoride ethylene-ethylene Synthetic resin, polyvinylidene fluoride resin, polyvinyl fluoride resin, silicone rubber, natural rubber, and the like
  • the second outer tube member 6b is made of the same material as the first outer tube member.
  • As the hardness of the second outer tube member 6b a member having a JIS hardness of about 50D to 75D can be used.
  • the outer periphery of the outer tube 6 composed of the first outer tube member 6a and the second outer tube member made of fluororesin is coated with a hydrophilic polymer substance having lubricity in a wet state.
  • the material is coated.
  • the balloon for a balloon catheter of the present invention can be used, for example, as a balloon for a PTC A balloon force terminal.
  • the balloon for balloon catheters of the present invention generally has a thinner balloon film thickness than a balloon obtained by blow molding a polyethylene resin near its melting point (110 ° C.). Because of its high breaking strength, the diameter of the PTCA balloon catheter can be reduced. Furthermore, it can withstand high pressure for balloon dilatation, and when used as a PTCA balloon catheter, it is extremely safe when dilating a vascular stenosis.

Abstract

A balloon for a balloon catheter, which is formed by blow-molding a polyethylene resin tube, obtained through the irradiation of electron beams of 5 to 40 Mrad followed by electron cross-linking, at a primary blow pressure of 15 to 25 kgf/cm2 and at a secondary blow pressure of 5 to 8 kgf/cm2, the balloon having a film thickness of 10 to 40 νm and a break strength of 800 to 2000 kgf/cm2. A mono-rail type balloon catheter for percutaneous intravascular coronary artery plastic operation, which has this balloon for the balloon catheter, an outer tube consisting of a comparatively flexible first outer tube member and a comparatively rigid second outer tube member, and an inner tube passing through a tube wall positioned in the lengthwise middle of the first outer tube member and formed with a proximal-end opening on the outer side thereof.

Description

明細書  Specification
バル一ンカテーテル用バル一ンおよびその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a balloon for a balloon catheter and a method for producing the balloon.
本発明は、 肉薄かつ高強度なバルーンを有するバルーンカテーテルに関し、 詳し くは、 経皮的血管内冠状動脈形成術 (P e r c u t a n e o u s T r a n s l u m i n a 1 Co r o n a r y An g i o p l a s t y、 以" b、 「PTCA」 と 記す。 ) 用途に好適なバルーンカテーテルに関する。 背景技術  TECHNICAL FIELD The present invention relates to a balloon catheter having a thin and high-strength balloon, and in particular, percutaneous intravascular coronary angioplasty (Percutaneous Translumina 1 Coronary Angioplasty, hereinafter referred to as “b”, “PTCA”). The present invention relates to a balloon catheter suitable for use. Background art
血管の狭窄に由来する疾病には、 バルーンカテーテルによって、 簡便に処置、 回 復させるいわゆる PTC Aカテーテルが頻繁に用いられている。  For diseases caused by stenosis of blood vessels, the so-called PTCA catheter, which is easily treated and recovered with a balloon catheter, is frequently used.
PTCAカテーテルは、 例えば、 心臓の冠状動脈の処置では、 まず冠状動脈入り 口までガイディングカテーテルが挿入され、 次に、 ガイ ドワイヤーが狭窄部を超え て挿入され、 そして、 バルーンカテーテルが狭窄部まで押し込まれ、 バルーンを拡 張することにより狭窄部を拡張するものである。  In a PTCA catheter, for example, in the treatment of the coronary artery of the heart, a guiding catheter is first inserted to the entrance of the coronary artery, a guide wire is inserted beyond the stenosis, and a balloon catheter is pushed into the stenosis. Thus, the stenosis is expanded by expanding the balloon.
PTCAカテーテルは、 その利点を生かして、 適用範囲の拡大が図られているが、 それにつれて要求特性も高度化している。 例えば、 末梢の冠動脈狭窄の処置ができ ること、 屈曲血管への挿入が容易であること、 強い拡張圧力を有すること、 安全に 血管拡張ができることなどが要求されている。 より具体的には、 PTCA力テーテ ルを用いて、 従来よりも末梢の冠動脈狭窄の処置ができることが求められている。 そのためには、 従来以上に肉薄でかつ高強度のバルーンが求められている。  PTCA catheters are being used to take advantage of them to expand their application range, but their required characteristics are also becoming more sophisticated. For example, it is required to be able to treat peripheral coronary stenosis, to be easily inserted into a bent blood vessel, to have a strong dilatation pressure, and to be able to safely dilate a blood vessel. More specifically, there is a need for the ability to treat peripheral coronary artery stenosis using the PTCA force table. For this purpose, a balloon that is thinner and stronger than ever is required.
しかし、 従来より、 PTCAカテーテルのバルーン用材料として、 主として用い られているポリエチレン樹脂 (例えば、 特開平 8— 1 96620号公報等) の場合 は、 一般に電子線を照射して、 そのゲル分率が 0. 9%程度になるまで架橋させる ことによって、 バルーン材料としての延伸特性の向上 '破裂圧の向上などを図る手 法が採用されている。  However, in the case of a polyethylene resin (for example, Japanese Patent Application Laid-Open No. 8-196620) which has been mainly used as a balloon material of a PTCA catheter, an electron beam is generally irradiated to reduce the gel fraction. A method of improving the stretching properties as a balloon material by improving the bursting pressure by cross-linking to about 0.9% is adopted.
この場合は、 架橋されたポリエチレン樹脂には 0. 9%程度のゲルが生成してい ることから、 バルーンの膨張は 300%程度に留まり、 また、 その厚さが薄くなる ほどバルーンの強度は低下し、 破裂に至る圧力も低下するために、 肉薄で高強度の バルーンを得るには限界があった。 発明の開示 In this case, since about 0.9% of the gel is formed in the cross-linked polyethylene resin, the balloon is inflated to about 300% and its thickness is reduced. The lower the strength of the balloon and the lower the pressure at which the balloon bursts, the lower the limit for obtaining a thin, high-strength balloon. Disclosure of the invention
本発明の目的は、 肉薄かつ高強度な、 PTC A用途に好適なバルーンカテーテル 用バルーンを提供することを目的とする。  An object of the present invention is to provide a thin and high-strength balloon for a balloon catheter suitable for PTCA use.
また、 本発明の目的は、 前記肉薄かつ高強度なポリオレフイン樹脂製バルーンの 製造方法を提供することを目的とする。  Another object of the present invention is to provide a method for producing the thin and high-strength polyolefin resin balloon.
さらに、 本発明の目的は、 前記肉薄かつ高強度なポリオレフイン樹脂製バルーン を有するバルーンカテーテルを提供することを目的とする。  A further object of the present invention is to provide a balloon catheter having the thin and high-strength polyolefin resin balloon.
そこで、 本発明者らは鋭意研究した結果、 ポリエチレン樹脂製チューブに、 ゲル 分率が 0. 7 %程度のゲルが生成するように電子線照射を施して架橋し、 続いて該 架橋チューブを、 前記ポリエチレン樹脂の融点よりもかなり低温である 80°Cの条 件でブロー成形したところ、 延伸倍率が 600 %かつ破壊強度が 1 1 00 k g f c m2 であるバルーンが得られることを見出し、 この知見に基づき本発明を完成す るに至った。 Thus, the present inventors have conducted intensive studies and found that the polyethylene resin tube was cross-linked by irradiation with an electron beam so that a gel having a gel fraction of about 0.7% was formed. was blown with conditions at 80 ° C for a considerably lower temperature than the melting point of the polyethylene resin, it found that balloon stretching ratio is 600% and breaking strength is 1 1 00 kgfcm 2 is obtained, on this finding Based on this, the present invention has been completed.
力べ して本発明によれば、 下記 (1 ) 、 (2) 及び (3) が提供される。  According to the present invention, the following (1), (2) and (3) are provided.
( 1 ) ポリオレフィン樹脂からなる架橋チューブを用いてブロー成形により成形さ れたバルーンであって、 前記バルーンの膜厚が 1 0〜40 mであり、 前記バル一 ンの破断強度が 800〜 2000 k g ί /c m2 であることを特徴とするバル一ン カテーテル用バルーン。 (1) A balloon formed by blow molding using a crosslinked tube made of a polyolefin resin, wherein the balloon has a film thickness of 10 to 40 m and a rupture strength of the balloon of 800 to 2000 kg.バ ル / cm 2 , balloon for balloon catheter.
(2) ポリオレフイン樹脂からなるチューブを電子線架橋して、 ゲル含量が 0. 2 〜0. 8%である架橋チューブを調製する工程と、 前記ポリオレフイン樹脂の融点 よりも 1 0°C以上低い温度で、 前記架橋チューブに 1次ブロー圧を負荷し、 次いで、 前記架橋チューブに前記 1次ブロー圧よりも低い圧力である 2次ブロー圧を負荷す ることにより該架橋チューブからバルーンに至る有効延伸倍率が 500〜1 00 (2) a step of preparing a crosslinked tube having a gel content of 0.2 to 0.8% by electron beam cross-linking a tube made of polyolefin resin, and a temperature lower than the melting point of the polyolefin resin by 10 ° C or more. Then, a primary blow pressure is applied to the cross-linking tube, and then a secondary blow pressure, which is lower than the primary blow pressure, is applied to the cross-linking tube, whereby effective stretching from the cross-linking tube to the balloon is performed. Magnification 500 ~ 100
0 %となるように、ブロー成形してバルーン部を調製する工程とを有する、前記( 1 ) に記載したバルーンカテーテル用バルーンの製造方法。 The method for producing a balloon for a balloon catheter according to the above (1), comprising a step of blow molding to prepare a balloon portion so that the balloon portion becomes 0%.
(3) 少なくとも一つのバルーン拡張用ルーメンが長手方向に沿って形成してある 外チューブと、 前記外チューブの遠位端部にバルーン部の近位端部が接合され、 前 記バルーン拡張用ルーメンと内部が連通するバルーン部と、 前記バルーン部の内部 に密閉された拡張用空間を形成するように、 バルーン部の遠位端部が内チューブの 遠位端部に接合され、 前記バルーン部の内部と前記外チューブのバルーン拡張用ル —メンの内部とに軸方向に延在する内チューブとを有し、 前記バルーン部が、 ポリ ォレフィン樹脂からなる架橋チューブを用いてブロー成形により成形されたバル一 ンであって、 前記バルーンの膜厚が 1 0〜40 μ mであり、 前記バルーンの破断強 度が 800〜 2000 k g ί /c m2 であることを特徴とするバルーンカテーテル。 本発明のバル一ンカテーテル用バルーンの製造方法において、 ポリオレフィン樹 脂からなるチューブに 5〜4 OM r a d、 好ましくは 1 0〜2 OM r a dの電子線 を照射して、 前記チューブを電子線架橋して、 ゲル含量が 0. 2〜0. 7%である 架橋チューブとすることが好ましい。 さらに、 当該架橋チューブを、 少なくとも 9 0 °cで熱処理することが好ましい。 (3) At least one balloon expansion lumen is formed along the longitudinal direction An outer tube, a proximal end portion of a balloon portion joined to a distal end portion of the outer tube, a balloon portion communicating with the balloon expansion lumen, and an expansion portion sealed inside the balloon portion; The distal end of the balloon portion is joined to the distal end of the inner tube so as to form a space, and extends axially inside the balloon portion and inside the balloon expansion lumen of the outer tube. The balloon portion is a balloon formed by blow molding using a cross-linked tube made of a polyolefin resin, and the balloon has a film thickness of 10 to 40 μm. A balloon catheter, wherein the balloon has a breaking strength of 800 to 2000 kg kg / cm 2 . In the method for producing a balloon for a balloon catheter of the present invention, a tube made of a polyolefin resin is irradiated with an electron beam of 5 to 4 OM rad, preferably 10 to 2 OM rad, and the tube is cross-linked with an electron beam. Thus, a crosslinked tube having a gel content of 0.2 to 0.7% is preferable. Further, the crosslinked tube is preferably heat-treated at least at 90 ° C.
前記バルーンの製造方法において、 前記架橋チューブをブロー成形する場合は、 金型に 1次ブ口一圧を 1 5〜2 5 k g iZcm2 負荷し、 かつ、 金型を開く少なく とも 1秒前に、 5〜8 k g f Zc m2 の 2次ブロー圧を負荷してバルーンを作成す ることが好ましい。 In the method of manufacturing the balloon, when blow-molding the cross-linked tube, apply a primary opening pressure of 15 to 25 kg iZcm 2 to the mold, and at least 1 second before opening the mold. preferably to create a balloon loaded with secondary blow pressure of 5 to 8 kgf Zc m 2.
本発明において、 ポリオレフィン樹脂からなるバルーンカテーテル用バルーンの 膜厚は、 2 5〜3 5 / mであることが好ましレ、。  In the present invention, the thickness of the balloon for a balloon catheter made of a polyolefin resin is preferably 25 to 35 / m.
本発明において、 ポリオレフィン樹脂からなるバルーンカテーテル用バルーンは、 前記架橋チューブからバルーンに至る有効延伸倍率が、 500〜700%であるこ とが好ましい。 さらに、 前記バルーンの破断強度が、 1 000〜2000 k g f Z c m2 であることが好ましい。 In the present invention, the balloon for a balloon catheter made of a polyolefin resin preferably has an effective stretching ratio from the crosslinked tube to the balloon of 500 to 700%. Further, the breaking strength of the balloon is preferably 1 000~2000 kgf Z cm 2.
本発明のバルーンカテーテル用バルーンは、 通常、 ポリエチレン樹脂をブロー成 形して得られるバルーンと比較して、 バルーンの破壊強度が極めて高いことから、 バルーン拡張のための高圧力に耐えることができ、 例えば PTCAバル一ンカテ一 テルとして使用した場合は、 血管狭窄部分を拡張する際の安全性が極めて優れてい る。  The balloon for a balloon catheter of the present invention can withstand high pressure for balloon inflation because the balloon has an extremely high breaking strength as compared with a balloon obtained by blow molding a polyethylene resin. For example, when used as a PTCA balloon catheter, the safety when dilating a vascular stenosis is extremely excellent.
また、 本発明のバルーンカテーテル用バルーンは、 その膜厚を非常に薄くするこ とができるので、 例えば、 PTCAカテーテルのバルーンとして使用する場合は、 PTC Aカテーテルを細径化することができ、 従来よりも末梢の冠動脈狭窄の処置 が可能となる。 図面の簡単な説明 In addition, the balloon for a balloon catheter of the present invention has an extremely thin film thickness. For example, when used as a balloon of a PTCA catheter, the diameter of the PTCA catheter can be reduced, so that peripheral coronary artery stenosis can be treated more than before. BRIEF DESCRIPTION OF THE FIGURES
F I G. 1 Aは、 本発明の実施形態に係るバルーンカテーテルの全体構成図である。 FIG. 1A is an overall configuration diagram of a balloon catheter according to an embodiment of the present invention.
F I G. I Bは、 F I G. 1 Aに示す I B— I B線に沿う断面図である。 FIG. IB is a cross-sectional view taken along the line IB-IB shown in FIG. 1A.
F I G. 1 Cは、 F I G. 1 Aに示す I C_ I C線に沿う断面図である。  FIG. 1C is a cross-sectional view taken along line IC_IC shown in FIG. 1A.
F I G. I Dは、 F I G. 1 Aに示す I D_ I D線に沿う断面図である。  FIG. ID is a cross-sectional view taken along the line ID_ID shown in FIG. 1A.
F I G. I Eは、 F I G. 1 Aに示す I E— I E線に沿う断面図である。  FIG. IE is a cross-sectional view taken along line IE—IE shown in FIG. 1A.
F I G. 1 Fは、 バルーンカテーテルのカテーテルチューブ内に挿入される補強口 ッドの側面図である。  FIG.1F is a side view of the reinforcing pad inserted into the catheter tube of the balloon catheter.
F I G. 2 Aは、 F I G. 1 Aに示すバルーンカテ一テルの要部縦断面図である。 F I G. 3Aは、 ブロ一成形機にパリソンを固定したときの要部断面図である。 F I G. 3 Bは、 ブロー成形により得られたバルーンの斜視図である。 発明を実施するための最良の形態  FIG. 2A is a longitudinal sectional view of a main part of the balloon catheter shown in FIG. 1A. FIG. 3A is a cross-sectional view of a main part when a parison is fixed to a blow molding machine. FIG. 3B is a perspective view of the balloon obtained by blow molding. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のバルーンカテーテル用バルーンは、 ポリオレフイン樹脂を用いて調製さ れたものである。 前記ポリオレフイン樹脂は、 炭素数 2〜40のォレフィンをモノ マーとして使用して、 重合反応により製造したものであって、 その密度 (J I S K— 71 1 2) は、 通常 0. 950 g/ c m3 以下であり、 好ましくは 0. 850 〜0. 940 g/c m3 、 より好ましくは 0. 880〜0. 9 3 0 gZc m3 であ る。 密度が小さすぎるとバル一ン表面のベタつきによるブロッキングなどの不都合 を生じやすくなり、 大きすぎると透明性が低下するので好ましくない。 The balloon for a balloon catheter of the present invention is prepared using a polyolefin resin. The polyolefin resin is produced by a polymerization reaction using an olefin having 2 to 40 carbon atoms as a monomer, and its density (JISK-7112) is usually 0.950 g / cm 3 or less. And preferably from 0.850 to 0.940 g / cm 3 , more preferably from 0.880 to 0.930 gZcm 3 . If the density is too low, problems such as blocking due to stickiness of the balloon surface are likely to occur, and if the density is too high, transparency is undesirably reduced.
重合反応によりポリオレフィン樹脂を得るためのォレフィンのモノマーとしては、 エチレン、 プロピレン、 1—ブテン、 1一ペンテン、 1一へキセン、 1ーォクテン、 1—ヘプテン、 4ーメチノレ一 1—ペンテン、 4ーメチ /レー 1一へキセン、 4, 4 - ジメチルー 1一ペンテン等が挙げられる。 これらのモノマーは、 それぞれ単独で、 あるレ、は 2種以上を組み合わせて使用することができる。 ポリオレフイン樹脂としては、 バルーンとしての諸特性の観点から、 ポリエチレ ン及びエチレン · α—ォレフイン共重合体が好ましく、 エチレン · α—ォレフイン 共重合体が特に好ましい。 エチレン . α—ォレフイン共重合体は、 メタ口セン触媒 を用いてエチレンと α—ォレフィンとを共重合することにより得ることができる。 コモノマーとしては、 炭素原子数 4〜40の α—ォレフィンを使用することが好ま しい。 Monoolefin monomers for obtaining polyolefin resin by polymerization reaction include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methylino-1-pentene, 4-methylene 1-Hexene, 4,4-dimethyl-11-pentene and the like. These monomers can be used alone or in combination of two or more. As the polyolefin resin, from the viewpoint of various properties as a balloon, polyethylene and an ethylene / α -olefin copolymer are preferable, and an ethylene / α-olefin copolymer is particularly preferable. The ethylene .alpha.-olefin copolymer can be obtained by copolymerizing ethylene and .alpha.- olefin by using a meta-mouth catalyst. As the comonomer, it is preferable to use α-olefin having 4 to 40 carbon atoms.
前記 α—ォレフィンとしては、 例えば、 1—ブテン、 1一ペンテン、 1—へキセ ン、 1—ォクテン、 1—ヘプテン、 4一メチル _ 1—ペンテン、 4_メチル一1— へキセン、 4, 4ージメチル一 1—ペンテンなどが挙げられる。 これらの中でも、 炭素原子数が 4〜1 2のひ 一ォレフィンが好ましく、 炭素原子数が 4〜1 0のひ — ォレフィンがより好ましい。 α—ォレフィンの共重合割合は、 通常 2〜50重量。 /0、 好ましくは 5〜40重量。 /0、 より好ましくは 10〜30重量%である。 Examples of the α-olefin include 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl_1-pentene, 4_methyl-1-hexene, 4, 4-dimethyl-11-pentene and the like. Among these, monoolefins having 4 to 12 carbon atoms are preferable, and monoolefins having 4 to 10 carbon atoms are more preferable. The copolymerization ratio of α-olefin is usually 2 to 50 weight. / 0 , preferably 5-40 weight. / 0 , more preferably 10 to 30% by weight.
前記ポリオレフイン樹脂の具体例としては、 例えば、 ポリエチレン樹脂、 ポリプ ロピレン樹脂、 エチレン一プロピレン共重合樹脂、 エチレンと他の α—ォレフィン との共重合樹脂等が挙げられる。 なかでもポリエチレン樹脂が好ましく、 低密度ポ リエチレン、 直鎖状低密度ポリエチレン、 高密度ポリエチレン等を用いることが好 ましい。  Specific examples of the polyolefin resin include a polyethylene resin, a propylene resin, an ethylene-propylene copolymer resin, and a copolymer resin of ethylene and another α-olefin. Among them, polyethylene resin is preferable, and low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and the like are preferably used.
前記ポリオレフィン樹脂のメルトフローレ一ト (MFR ; J I S K- 721 0) は、 通常 0. :!〜 30. 0 gZl 0分、 好ましくは 1. 0〜20. O gZl O分、 より好ましくは 1. 0〜: 1 5· O gZl O分、 最も好ましくは 1. 5〜: 1 5. 0 g /10分である。 MFRが小さすぎると充分な強度を得ることが困難であり、 大き すぎると成型性が低下する。  The melt flow rate (MFR; JISK-7210) of the polyolefin resin is usually 0 :! 0 to 30.0 gZl 0 min, preferably 1.0 to 20. O gZl O min, more preferably 1.0 to: 15 · O gZl O min, most preferably 1.5 to: 15.0 g / 10 minutes. If the MFR is too small, it is difficult to obtain sufficient strength, and if it is too large, the moldability will be reduced.
本発明では、 ポリオレフイン樹脂に、 本発明の目的を損なわない範囲内において、 各種添加剤を配合することができる。 添加剤としては、 例えば、 酸化防止剤、 紫外 線吸収剤、 帯電防止剤、 難燃剤、 金属不活性化剤、 顔料、 染料、 結晶核剤等を必要 に応じて数種類添加することができる。 この場合、 要求する性質によるが、 添加量 は、 ポリオレフイン樹脂 1 00重量部に対して、 通常 20重量部以下、 好ましくは 5重量部以下である。  In the present invention, various additives can be blended with the polyolefin resin within a range that does not impair the object of the present invention. As the additives, for example, several kinds of antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, metal deactivators, pigments, dyes, and crystal nucleating agents can be added as necessary. In this case, depending on the required properties, the amount of addition is usually 20 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the polyolefin resin.
本発明のバルーンカテーテル用バルーンの製造方法について説明する。 まず、 結 晶性ポリオレフイン樹脂を用いて、 予め設計された寸法のプロ一成形用元チューブ を成形する。 成形は、 例えば押し出し成形法で行うことができ、 押し出し時のダイ 温度は、 例えば 200〜300°Cである。 ダイから吐出直後の押し出しチューブは、 例えば水槽 (20〜30°C) 中を通過させて冷却される。 The method for producing the balloon for a balloon catheter of the present invention will be described. First, the knot Using a crystalline polyolefin resin, mold the original tube for professional molding with pre-designed dimensions. The molding can be performed by, for example, an extrusion molding method. The die temperature during extrusion is, for example, 200 to 300 ° C. The extruded tube immediately after discharge from the die is cooled, for example, by passing it through a water tank (20 to 30 ° C).
次に、 前記押し出しチューブに電子線を照射し、 ポリオレフイン樹脂製架橋チュ ーブ (以下、 「パリソン」 と記す。 ) を形成する。 電子線の照射量は、 例えば 5〜 40Mr a d、 好ましくは 1 0〜20Mr a dである。 その後、 前記架橋チューブ は、 例えば 90〜1 1 0°C程度で、 30分〜数時間、 熱処理が行われる。 この熱処 理工程により、 押し出し成形による成形ひずみが解消される。  Next, the extruded tube is irradiated with an electron beam to form a cross-linked tube made of polyolefin resin (hereinafter, referred to as “parison”). The irradiation amount of the electron beam is, for example, 5 to 40 Mrad, preferably 10 to 20 Mrad. Thereafter, the crosslinked tube is subjected to a heat treatment at, for example, about 90 to 110 ° C. for 30 minutes to several hours. This heat treatment step eliminates molding distortion due to extrusion.
前記電子線照射により、 架橋されたチューブのゲル分率は、 0. 8%以下、 好ま しくは、 0. 2〜0. 7。/0程度とすることが好ましい。 ゲル分率は、 架橋サンプル の加熱したキシレン中での不溶解分として測定することができる。 具体的には、 0. 1 gの架橋サンプルを 1 20°Cに加熱したキシレン 1 00m l中で 6時間加熱した 後、 可溶分を濾別し、 残された架橋サンプルの乾燥重量を測定し、 処理前の架橋サ ンプルに対する割合を算出する。 The gel fraction of the tube crosslinked by the electron beam irradiation is 0.8% or less, and preferably 0.2 to 0.7. It is preferably about / 0 . The gel fraction can be measured as the insoluble content of the crosslinked sample in heated xylene. Specifically, after heating 0.1 g of the crosslinked sample in 100 ml of xylene heated to 120 ° C for 6 hours, the soluble matter was filtered off, and the dry weight of the remaining crosslinked sample was measured. Then, calculate the ratio to the crosslinked sample before treatment.
上記の工程を経て調製されたパリソンは、 例えば、 下記の工程を経て、 プロ一成 形によりバルーン状に賦形される。 まず、 F I G. 3 Aのように、 パリソンの上下 を固定する。 上部チャックでは完全に圧力が漏れないように封止し、 下部チャック はブロー圧が加えられるようにル一メンはつぶさないようにする。  The parison prepared through the above steps is shaped into a balloon by professional molding, for example, through the following steps. First, the upper and lower sides of the parison are fixed, as in FIG. 3A. The upper chuck seals completely so that pressure does not leak, and the lower chuck does not crush the lumen so that blow pressure is applied.
次に、 前記パリソンは、 パリソンの材料であるポリオレフイン樹脂の融点より低 い温度でブロー成形される。 前記温度は、 例えば、 ポリオレフイン樹脂の融点より も、 少なくとも 1 0°C以上、 好ましくは、 30°C以上低温側の温度であり、 さらに 好ましくは 30〜 60 °C程度低温側の範囲である。 前記温度が過度に高温の場合、 ブロー成形は容易になるが、 バルーンの破壊強度は低下する。 一方過度に低温では、 バル一ンを賦形するためには、 非常に高圧なブロー圧が必要となり好ましくない。 また、 低温側でブロー成形したバル一ンは、 極端に収縮が起きるので好ましくない。 プロ一成形は、 具体的には、 次の工程による。 上下を固定されたパリソンは、 本 実施形態では、 例えば、 予め 50〜 90 °C前後で、 好ましくは 75〜 85 °Cの範囲 で、 30〜 1 80分間、 好ましくは 1 00〜 1 50分間加熱された後、 上下方向に 1 50〜200%程度延伸される。 次に、 パリソンが延伸されたのと同時に、 両側 から 2つ割りにされた金型 (パリソンと同程度に加熱してある) がパリソンを挟む ように閉まり、 続いて、 第 1ブロー圧力が負荷され、 1 0〜60秒間、 好ましくは 20〜40秒間程度保持される。 次に、 第 1ブロー圧力の少なくとも 2分の 1以下 好ましくは 3分の 1以下のプロ一圧力 (以下、 「第 2プロ一圧力」 と記す。 ) で 0. 5〜3秒間保持され、 その後、 金型が開けられる。 Next, the parison is blow-molded at a temperature lower than the melting point of the polyolefin resin that is the material of the parison. The temperature is, for example, at least 10 ° C. or more, preferably 30 ° C. or more lower than the melting point of the polyolefin resin, and more preferably 30 to 60 ° C. lower temperature. If the temperature is too high, blow molding becomes easier, but the breaking strength of the balloon decreases. On the other hand, if the temperature is excessively low, a very high blow pressure is required to shape the balloon, which is not preferable. Also, a balloon blow-molded on the low temperature side is not preferable because it extremely shrinks. Specifically, the professional molding is based on the following steps. In the present embodiment, the parison fixed at the top and bottom is heated, for example, in advance at about 50 to 90 ° C., preferably in the range of 75 to 85 ° C., for 30 to 180 minutes, preferably 100 to 150 minutes. After being done, 1 Stretched about 50-200%. Next, at the same time as the parison was stretched, the two halves of the mold (heated to the same extent as the parison) were closed so as to sandwich the parison, and then the first blow pressure was applied. And held for 10 to 60 seconds, preferably for about 20 to 40 seconds. Next, the pressure is maintained at a pressure of at least one-half or less, preferably one-third or less, of the first blow pressure (hereinafter, referred to as a “second pressure”) for 0.5 to 3 seconds. The mold can be opened.
パリソン中に導入される気体は、 とくに限定されないが、 例えば、 窒素ガス等を 使用することができる。 パリソンを膨張させるための第 1ブロー圧力は、 例えば 1 0〜3 0 k g i/c m2 、 好ましくは 1 5〜 2 5 k g f /c m2 である。 第 2ブロ —圧力は、 例えば、 3〜:! O k g f c m2 、 好ましくは 5〜8 k g f /c m2 で ある。 The gas introduced into the parison is not particularly limited. For example, nitrogen gas or the like can be used. The first blow pressure for expanding the parison is, for example, 10 to 30 kgi / cm 2 , preferably 15 to 25 kgf / cm 2 . 2nd blow — the pressure is, for example, 3 ~ :! O kgfcm 2 , preferably 5 to 8 kgf / cm 2 .
上述したプロ一成形により、 バルーンは、 例えば F I G. 3 Bに示すように、 ノく ル一ン本体部分 7 eとバルーンカテ一テルと接合するための部分 7 f を有する形状 に成形される。  By the above-mentioned pro-molding, the balloon is formed into a shape having a nozzle body portion 7e and a portion 7f for joining with the balloon catheter as shown in, for example, FIG. 3B. .
ブロー成形により成形されたバルーンの外径は、 レーザ一外径測定器によって、 The outer diameter of the balloon formed by blow molding is measured by a laser
1 a t mまたは 6 a t mの圧力を加えたときの外径を測定する。 バルーンの膜厚は、 マイクロゲージにより測定する。 Measure the outer diameter when a pressure of 1 atm or 6 atm is applied. The thickness of the balloon is measured with a micro gauge.
ブ口一成形により成形されたバルーンの、 架橋チュ一ブからバル一ンに至る有効 延伸倍率 (架橋チューブ断面積 Zバルーン断面積) は、 400〜1 500%、 好ま しくは、 500〜 1 000°/0であることが必要である。 有効延伸倍率が過度に大き い場合は、 バルーンの破壊強度が極端に低下するので好ましくない。 本発明におい ては、 前記押し出しチューブを、 5〜4 OMr a dの条件で電子線を照射し、 ポリ エチレン製架橋チューブを形成することにより、 前記有効延伸倍率を 400〜 1 5 00 %で、 かつ、 前記バルーンの破断強度が 800〜2000 k g f Zc m2 、 好 ましくは、 1 000〜: 1 800 k g f Zc m2 であることが達成される。 The effective stretch ratio (cross-section tube cross-section area, Z-balloon cross-section area) of the balloon formed by the bubbling process from the crosslinked tube to the balloon is 400-1500%, preferably 500-10000. ° / 0 is required. An excessively large effective stretching ratio is not preferable because the breaking strength of the balloon is extremely reduced. In the present invention, the extruded tube is irradiated with an electron beam under conditions of 5 to 4 OMrad to form a cross-linked tube made of polyethylene, whereby the effective stretching ratio is 400 to 1500%, and , the breaking strength of the balloon is 800 to 2000 kgf Zc m 2, good Mashiku is 1 000: it is achieved 1 is 800 kgf Zc m 2.
本発明においては、 前記ブロー成形により成形されたバルーンの膜厚は、 5〜4 0 μπι、 好ましくは、 25〜3 5 μ πιである。  In the present invention, the thickness of the balloon formed by the blow molding is 5 to 40 μπι, preferably 25 to 35 μπι.
バルーンの破断強度は、 3 7°Cの水中において、 バル一ンに 1 5 p s i加圧して 1 5秒間保持し、 続いて、 更に 1 5 p s iを追加圧して 1 5秒間保持し、 このステ ップを、 バルーンが破裂するまで繰り返し、 破裂したときの圧力を、 破断強度とし て測定する。 The rupture strength of the balloon was maintained at 37 ° C in water at a pressure of 15 psi on the balloon and held for 15 seconds, followed by an additional 15 psi and hold for 15 seconds. Repeat until the balloon ruptures, and measure the pressure at the time of rupture as the breaking strength.
上述した方法でブロー成形したバルーンの破壊強度を表 1に示す。 なお、 電子線 の照射量を、 4 O M r a d、 及び 6 O M r a dで調製し、 ゲル含量を従来の架橋チ ュ一ブと同じ程度に有するものを用いてブロー成形したバルーンの破壊強度を、 比 較例として表 1に示した。 表 1の結果から、 本発明のバルーンカテーテル用バル一 ンは、 有効延伸倍率が 5 0 0 %以上において、 バルーンの膜厚が薄く、 かつ破壊強 が大幅に増大していることがわかる。  Table 1 shows the breaking strength of the balloon blow-molded by the method described above. The irradiation strength of electron beam was adjusted to 4 OM rad and 6 OM rad, and the breaking strength of a balloon formed by blow molding using a gel having the same gel content as that of a conventional cross-linked tube was compared. Table 1 shows a comparative example. From the results in Table 1, it can be seen that the balloon for balloons of the present invention has a thin balloon thickness and significantly increased breaking strength at an effective stretching ratio of 500% or more.
Figure imgf000010_0001
次に、 本発明のバルーンカテーテル用バルーンを使用したバル一ンカテーテルの 実施形態を、 図面に基づき説明する。
Figure imgf000010_0001
Next, an embodiment of a balloon catheter using the balloon for a balloon catheter of the present invention will be described with reference to the drawings.
F I G . 1に示す本実施形態に係るバル一ンカテ一テル 2は、 例えば経皮的冠動 脈形成術 (P T C A) 、 四肢等の血管の拡張術、 上部尿管の拡張術、 腎血管拡張術 などの方法に用いられ、 血管あるいはその他の体腔に形成された狭窄部を拡張する ために用いられる。 以下の説明では、 本実施形態のバルーンカテーテル 2を P T C Aに用いる場合を例として説明する。  The valve catheter 2 according to the present embodiment shown in FIG. 1 includes, for example, percutaneous coronary angioplasty (PTCA), dilation of a blood vessel such as a limb, dilation of an upper ureter, and renal vasodilation. It is used to dilate a stenosis formed in a blood vessel or other body cavity. In the following description, a case where the balloon catheter 2 of the present embodiment is used for PTCA will be described as an example.
本実施形態の拡張用バルーンカテーテル 2は、 いわゆるモノレール方式のバル一 ンカテーテルであり、 バルーン部 4と、 カテーテルチューブとしての外チューブ 6 と、 コネクタ 8とを有する。 外チューブ 6は、 比較的柔軟性のある第 1外チューブ 部材 6 aと、 当該第 1外チューブ部材 6 aに接合部 9にて接合される比較的剛性が 高い第 2外チューブ部材 6 bとで構成してある。 The balloon catheter for expansion 2 of the present embodiment is a so-called monorail balloon catheter, and has a balloon portion 4, an outer tube 6 as a catheter tube, and a connector 8. The outer tube 6 has a relatively flexible first outer tube member 6 a and a relatively rigid first joint member 9 joined to the first outer tube member 6 a at a joint 9. And a high second outer tube member 6b.
本実施形態は、 内チューブの近位端開口部が、 第 1外チューブ部材 6 aの長手方 向の途中に位置するチューブ壁を貫通して外部に開口し、 内チューブの近位端開口 部と、 第 1外チューブ部材 6 aのチューブ壁とが気密に熱融着してある構造を採用 することにより、 バルーンカテーテルの遠位端部のみが、 いわゆる同軸構造のカテ 一テルチューブ構造となるものである。  In the present embodiment, the proximal end opening of the inner tube penetrates a tube wall positioned halfway in the longitudinal direction of the first outer tube member 6a and opens to the outside, and the proximal end opening of the inner tube is formed. And the tube wall of the first outer tube member 6a is heat-sealed in a gas-tight manner, so that only the distal end of the balloon catheter has a so-called coaxial catheter tube structure. Things.
本実施形態では、 F I G. 1 Cに示すように、 第 2外チューブ部材 6 bの横断面 外形形状は、 Y軸方向に細長い楕円形状を有し、 外チューブ部材 6の断面で、 Y軸 と垂直な X軸方向のカテーテルチューブの最大断面幅 xmと、 Y軸方向の最大断面 幅 ymとの比 (xmZym) 、 0. 8〜0. 1の範囲にあり、 断面半円形の第 3 ルーメン 24および断面円形の第 4ルーメン 26が、 前記 Y軸方向に沿って分離し て形成してある。  In the present embodiment, as shown in FIG. 1C, the cross-sectional outer shape of the second outer tube member 6b has an elongated elliptical shape in the Y-axis direction. The ratio (xmZym) between the maximum cross-sectional width xm of the catheter tube in the X-axis direction and the maximum cross-sectional width ym in the Y-axis direction (xmZym), which is in the range of 0.8 to 0.1, is the third lumen with a semicircular cross-section 24 and a fourth lumen 26 having a circular cross section are formed separately along the Y-axis direction.
第 3ルーメン 24の半円形の横断面積は、 バルーン拡張用圧力流体が流通するた めに十分な横断面積であれば良く、 特に限定されないが、 好ましくは 0. 08〜0. 20mm2 である。 また、 第 4ルーメン 26の円形の横断面積は、 内部に補強ロッ ド 28が挿入されるために十分な面積であれば良く、 特に限定されないが、 好まし くは 0. 05〜0. 5mm2 、 さらに好ましくは 0. :!〜 0. 2mm2 である。 本実施形態では、 第 2外チューブ部材 6 bの断面において、 Y軸方向の最大断面 幅 ymは、 0. 6〜1. 2 mm程度が好ましい。 第 2外チューブ部材 6 bの遠位端 は、 断面円形の第 1外チューブ部材 6 aの近位端に対して接合されるため、 その接 合部 9付近の横断面形状は、 第 1外チューブ部材 6 aとの円形断面形状と一致させ るために、 接合部 9に向けて、 異形断面から円形断面に徐々に変化するような断面 形状とする。 The semicircular cross-sectional area of the third lumen 24 is not particularly limited as long as it is a cross-sectional area sufficient for the flow of the balloon expansion pressure fluid, and is preferably 0.08 to 0.20 mm 2 . The circular cross-sectional area of the fourth lumen 26 is not particularly limited as long as it is a sufficient area for inserting the reinforcing rod 28 therein, but is preferably in the range of 0.05 to 0.5 mm 2 . , more preferably 0.5:! a ~ 0. 2mm 2. In the present embodiment, in the cross section of the second outer tube member 6b, the maximum cross section width ym in the Y axis direction is preferably about 0.6 to 1.2 mm. Since the distal end of the second outer tube member 6b is joined to the proximal end of the first outer tube member 6a having a circular cross section, the cross-sectional shape near the joint 9 is the first outer tube member 6b. In order to match the circular cross-sectional shape with the tube member 6a, the cross-sectional shape gradually changes from the irregular cross-section to the circular cross-section toward the joint portion 9.
この第 2外チューブ部材 6 bの長手方向に沿って形成された第 3ル一メン 24は、 第 1外チューブ部材 6 aの第 1ル一メン 1 0と連通し、 これらを通して、 バルーン 部 4の拡張用空間に流体の出し入れを行う。 第 2外チューブ 6 bの第 4ルーメン 2 6は、 補強ロッド 28を挿入するためのル一メンであり、 第 1外チューブ部材 6 a の第 1ルーメン 10とも連通するが、 このル一メン 26の近位端は、 コネクタ 8の 部分で閉じられており、 流体の出入りは行わない。 コネクタ 8には、 第 2外チュー ブ部材 6 cの近位端部が連結され、 第 2外チューブ 6 bの第 3ルーメン 24に対し て連通するポートが形成してある。 ポートは、 圧力流体の出入りを行う部分であり、 第 4ル一メン 26には連通しないようになっている。 The third lumen 24 formed along the longitudinal direction of the second outer tube member 6b communicates with the first lumen 10 of the first outer tube member 6a, and passes through the balloon portion 4 The fluid is taken in and out of the expansion space. The fourth lumen 26 of the second outer tube 6b is a lumen for inserting the reinforcing rod 28, and communicates with the first lumen 10 of the first outer tube member 6a. The proximal end is closed at the connector 8 and no fluid enters or exits. Connector 8 has a second outer tube The proximal end of the valve member 6c is connected to form a port communicating with the third lumen 24 of the second outer tube 6b. The port is a part that allows the pressure fluid to enter and exit, and does not communicate with the fourth lumen 26.
F I G. I B, F I G. 1 Cおよび F I G. 1 Fに示す補強ロッド 28は、 第 2 外チューブ部材 6 bの第 4ル一メン 26の内部に、 全長に亘り挿入され、 その遠位 端部は、 第 1外チューブ部材 6 aとの接合部 9を乗り越えて、 第 1外チューブ部材 6 aの第 1ル一メン 1 0内に飛び出している。 補強ロッド 28の近位端部は、 断面 円形であり、 途中から遠位端側に向けてテーパ状に細くなり、 さらに遠位端部では、 断面平板形状に成るように、 その断面形状が徐々に変化している。 断面平板状の補 強ロッド 28の遠位端部は、 F I G. I Dおよび F I G. 2に示すように、 内チュ ーブ 1 2の近位端開口部 22をも僅かに (好ましくは 1〜1 0 cm程度) 乗り越え た位置で、 第 1外チューブ部材 6 aの内壁に対して熱融着または接着などの手段で 接合してある。  The reinforcing rod 28 shown in FIGS. FI G. IB, FI G. 1C, and FI G. 1F is inserted into the fourth lumen 26 of the second outer tube member 6b over its entire length, and its distal end is The end portion of the first outer tube member 6a jumps out of the joint portion 9 with the first outer tube member 6a and protrudes into the first lumen 10 of the first outer tube member 6a. The proximal end of the reinforcing rod 28 has a circular cross-section, tapers from the middle toward the distal end, and has a gradually increasing cross-sectional shape at the distal end so as to have a flat cross-section. Has changed. The distal end of the stiffening rod 28 having a flat cross-section has a slight (preferably 1) opening at the proximal end opening 22 of the inner tube 12 as shown in FIG. ID and FIG. (About 10 cm) At the position where the vehicle has climbed over, it is joined to the inner wall of the first outer tube member 6 a by means of heat fusion or adhesion.
なお、 補強ロッド 28の最大外径は、 第 2外チューブ部材 6 bの第 4ル一メン 2 6の内部に揷入可能に決定され、 特に限定されないが、 好ましくは 0. 3〜0. 6 m mであ 。  The maximum outer diameter of the reinforcing rod 28 is determined so as to be able to be inserted into the fourth lumen 26 of the second outer tube member 6b, and is not particularly limited, but is preferably 0.3 to 0.6. mm.
F I G. 1 Aおよび F I G. 2に示すバルーン部 4は、 両端部が縮径された筒状 の膜体で構成され、 その膜厚は、 1 0〜40 //m、 好ましくは 1 5〜35 mであ る。 バルーン部 4は、 筒状であれば、 特に限定されず、 円筒または多角筒形状でも 良い。 また、 拡張時のバル一ン部 4の外径は、 通常 1. 5〜1 0. Omm程度、 好 ましくは、 3〜7mmである。 バルーン部 4の軸方向長さは、 特に限定されないが、 1 5〜50mm、 好ましくは 20〜 40 mmである。 拡張する前のバルーン部 4は、 内チューブ 1 2の周囲に折り畳まれて巻き付けられ、 可能な限り外径が小さくなつ ている。  The balloon portion 4 shown in FI G.1A and FI G.2 is formed of a cylindrical film having both ends reduced in diameter, and has a film thickness of 10 to 40 // m, preferably 15 ~ 35 m. The balloon portion 4 is not particularly limited as long as it is cylindrical, and may be cylindrical or polygonal. The outer diameter of the balloon portion 4 when expanded is generally about 1.5 to 10 Omm, preferably 3 to 7 mm. Although the axial length of the balloon portion 4 is not particularly limited, it is 15 to 50 mm, preferably 20 to 40 mm. The balloon portion 4 before being expanded is folded and wound around the inner tube 12 so that the outer diameter is as small as possible.
F I G. 2に示すように、 第 1外チューブ部材 6 aの遠位端部外周には、 バル一 ン部 4の近位端部 5が熱融着または接着などの手段で接合してあり、 第 1外チュー ブ部材 6 aの第 1ルーメン 1 0がバル一ン部 4の内部拡張用空間と連通するように なっている。 バルーン部 4の遠位端部 7は、 内チューブ 14の遠位端部外周に対し て熱融着または接着などの手段で接合してあり、 バルーン部 4の内部拡張用空間は、 第 1ル一メン 1 0以外では、 外部に対して密封してある。 第 1外チューブ部材 6 a の第 1ル一メン 1 0は、 バルーン部 4の内部拡張空間に流体を送り込み、 バルーン 部 4を拡張させたり、 流体をバルーン部 4の拡張空間から抜き取りバルーン部 4を 収縮させたりするための通路である。 As shown in FIG. 2, the proximal end 5 of the balloon 4 is joined to the outer periphery of the distal end of the first outer tube member 6 a by means such as heat fusion or adhesion. The first lumen 10 of the first outer tube member 6 a communicates with the space for internal expansion of the valve unit 4. The distal end portion 7 of the balloon portion 4 is joined to the outer periphery of the distal end portion of the inner tube 14 by means such as heat fusion or adhesion, and the internal expansion space of the balloon portion 4 is Except for the first lumen 10, it is sealed to the outside. The first lumen 10 of the first outer tube member 6 a sends fluid into the internal expansion space of the balloon section 4 to expand the balloon section 4, or draws fluid out of the expansion space of the balloon section 4, and removes the fluid from the balloon section 4. It is a passage for contracting.
F I G . 2に示すように、 内チューブ 1 2は、 バル一ン部 4の拡張空間および第 1外チューブ部材 6 aの遠位端側第 1ルーメン 1 0の内部を同軸状に軸方向に伸び、 いわゆる同軸構造のカテーテルチューブ構造となっている。 バルーン部 4の内部に 位置する内チューブ 1 2の外周には、 造影リング 1 5が装着してあり、 バルーン力 テ一テル 2を生体内に挿入する際に、 生体の外部から X線などで造影リング 1 5の 位置を造影が可能になっている。 造影リング 1 5の材料としては、 金、 白金、 タン ダステンなどの金属が例示される。  As shown in FIG. 2, the inner tube 12 extends coaxially in the axial direction through the expansion space of the valve portion 4 and the inside of the first lumen 10 on the distal end side of the first outer tube member 6a. It has a so-called coaxial catheter tube structure. A contrast ring 15 is attached to the outer periphery of the inner tube 12 located inside the balloon part 4, and when the balloon force catheter 2 is inserted into the living body, it is exposed to X-rays from the outside of the living body. The position of the imaging ring 15 can be imaged. Examples of the material of the contrast ring 15 include metals such as gold, platinum, and tungsten.
内チューブ 1 2の内部には、 第 2ル一メン 1 4が形成してあり、 その遠位端開口 部 2 0は、 バル一ン部 4の遠位端部 7で開口している。 内チューブ 1 2の近位端開 口部 2 2は、 第 1外チューブ部材 6 aの長手方向の途中に位置するチューブ壁の貫 通孔 2 1を貫通して外部に開口している。 內チューブ 1 2の近位端開口部 2 2の周 縁と、 第 1外チューブ部材 6 aのチューブ壁の貫通孔 2 1の周縁とは、 後述する熱 融着方法により気密に接合してある。 内チューブ 1 2の近位端開口部 2 2の形状は、 特に限定されず、 円形、 楕円形など種々の形状を採り得るが、 本実施形態では、 内 チューブ 1 2の開口端部を斜めに切断した楕円形状である。 内チューブ 1 2の第 2 ルーメン 1 4は、 バルーンカテーテル 2を体腔内に案内するための F I G . 2に示 すガイドワイヤ 4 2が挿通するガイ ドワイヤ挿入用ル一メンとなる。  A second lumen 14 is formed inside the inner tube 12, and a distal end opening 20 thereof is open at a distal end 7 of the ball portion 4. The proximal end opening portion 22 of the inner tube 12 is opened to the outside through a through hole 21 of a tube wall located in the longitudinal direction of the first outer tube member 6a.周 The periphery of the proximal end opening 22 of the tube 12 and the periphery of the through hole 21 of the tube wall of the first outer tube member 6a are hermetically joined by a heat fusion method described later. . The shape of the proximal end opening 22 of the inner tube 12 is not particularly limited, and may take various shapes such as a circle and an ellipse. In the present embodiment, the opening end of the inner tube 12 is formed obliquely. It is a cut elliptical shape. The second lumen 14 of the inner tube 12 is a guide wire insertion lumen through which a guide wire 42 shown in FIG. 2 for guiding the balloon catheter 2 into a body cavity is inserted.
内チューブ 1 2は、 第 1外チューブ部材 6 aと同様な材料の軟質合成樹脂で構成 することができるが、 第 1外チューブ部材 6 aよりも硬質の合成樹脂で構成しても 良い。 内チューブ 1 2の近位端開口部 2 2が第 1外チューブ部材 6 aの外側に開口 する位置は、 第 1外チューブ部材 6 aの遠位端から長さ L 1の位置であることが好 ましく、 長さ L 1は、 好ましくは 1 5 0〜3 5 O mm、 さらに好ましくは 2 0 0〜 3 0 O mmである。  The inner tube 12 can be made of a soft synthetic resin of the same material as the first outer tube member 6a, but may be made of a synthetic resin harder than the first outer tube member 6a. The position where the proximal end opening 22 of the inner tube 12 opens outside the first outer tube member 6a may be a position of length L1 from the distal end of the first outer tube member 6a. Preferably, the length L1 is preferably between 150 and 35 Omm, more preferably between 200 and 30 Omm.
第 1外チューブ部材 6 aの外径は、 特に限定されないが、 好ましくは 0 . 5〜5 mm, さらに好ましくは 0 . 5〜 l mmである。 第 1外チューブ部材 6 aの肉厚は、 特に限定されないが、 好ましくは 0. 05〜0. 5mm、 さらに好ましくは 0. 1 〜0. 2mmである。 The outer diameter of the first outer tube member 6a is not particularly limited, but is preferably 0.5 to 5 mm, more preferably 0.5 to 1 mm. The thickness of the first outer tube member 6a is Although not particularly limited, it is preferably from 0.05 to 0.5 mm, more preferably from 0.1 to 0.2 mm.
内チューブ 1 2の外径は、 第 1外チューブ部材 6 aとの間に隙間が形成されるよ うに決定され、 特に限定されないが、 好ましくは 0. 3〜3mm、 さらに好ましく は 0. 3〜0. 8mmである。 内チューブ 1 2の内径は、 ガイドワイヤ 42を揷通 できる径であれば特に限定されず、 例えば 0. 1 5〜1. Omm、 好ましくは 0. 25〜0. 6 mmである。  The outer diameter of the inner tube 12 is determined so that a gap is formed between the inner tube 12 and the first outer tube member 6a, and is not particularly limited, but is preferably 0.3 to 3 mm, and more preferably 0.3 to 3 mm. 0.8 mm. The inner diameter of the inner tube 12 is not particularly limited as long as it can pass through the guide wire 42, and is, for example, 0.15 to 1.0 mm, preferably 0.25 to 0.6 mm.
本実施形態では、 開口部 22付近から近位端側の第 1外チューブ部材 6 aの強度 を補強するために、 F I G. 2に示すように、 補強ロッド 28を、 開口部 22付近 から近位端側の第 1外チューブ部材 6 aの内部に配置しても良い。 この補強口ッド 28の近位端部は、 断面円形であり、 途中から遠位端側に向けてテーパ状に細くな り、 さらに遠位端部では、 断面平板形状に成るように、 その断面形状が徐々に変化 している。 断面平板状の補強口ッド 28の遠位端部は、 F I G. 2に示すように、 内チューブ 1 2の近位端開口部 22を僅かに (好ましくは 1〜1 0 cm程度) 乗り 越えた位置で、 第 1外チューブ部材 6 aの内壁に対して熱融着または接着などの手 段で接合してある。  In the present embodiment, in order to reinforce the strength of the first outer tube member 6 a on the proximal end side from the vicinity of the opening 22, as shown in FIG. It may be arranged inside the first outer tube member 6a on the distal end side. The proximal end of the reinforcing mouthpiece 28 is circular in cross section, tapered from the middle toward the distal end side, and has a flat cross section at the distal end. The cross-sectional shape is gradually changing. As shown in FIG. 2, the distal end of the reinforcing tab 28 having a flat cross section rides the proximal end opening 22 of the inner tube 12 slightly (preferably about 1 to 10 cm). At the position beyond, it is joined to the inner wall of the first outer tube member 6a by means such as heat sealing or bonding.
なお、 補強ロッド 28は、 ステンレス鋼、 銅、 銅合金、 チタン、 チタン合金など の金属材料、 あるいはポリイミ ド、 ポリアミ ド、 ポリエチレンテレフタレートなど の合成樹脂で構成してある。 補強ロッド 28の最大外径は、 第 1外チューブ部材 6 aのルーメン 1 0を塞がないように決定され、 特に限定されないが、 好ましくは 0. The reinforcing rod 28 is made of a metal material such as stainless steel, copper, copper alloy, titanium, or titanium alloy, or a synthetic resin such as polyimide, polyamide, or polyethylene terephthalate. The maximum outer diameter of the reinforcing rod 28 is determined so as not to block the lumen 10 of the first outer tube member 6a, and is not particularly limited.
3〜0. 6mmである。 3 to 0.6 mm.
第 1外チューブ部材 6 aは、 例えばバルーン部 4と同様な材料で構成されて良い 力、 可撓性を有する材料で構成されることが好ましレ、。 例えば、 ポリエチレン、 ポ リエチレンテレフタレート、 ポリプロピレン、 エチレン一プロピレン共重合体、 ェ チレン一酢酸ビュル共重合体、 ポリ塩化ビュル (PVC) 、 架橋型エチレン—酢酸 ビュル共重合体、 ポリウレタン、 ポリアミ ド、 ポリアミ ドエラストマ一、 ポリイミ ド、 ポリイミ ドエラストマー、 ポリ四フッ化工チレン樹脂、 四フッ化工チレン一六 フッ化プロピレン共重合樹脂、 四フッ化工チレンーパ一フルォロアルキルビニルェ —テル共重合樹脂、 三フッ化塩化エチレン樹脂、 四フッ化工チレン一エチレン共重 合樹脂、 ポリフッ化ビユリデン樹脂、 ポリフッ化ビニル樹脂、 シリコーンゴム、 天 然ゴム等が挙げられる。 なかでも、 ポリエチレン、 ポリアミ ド、 ポリイミ ドが好ま しい。 また、 当該第 1外チューブ部材 6 aの硬さは、 J 1 3硬度が5 0八〜9 0 程度のものを用いることができる。 The first outer tube member 6a may be made of, for example, a material similar to that of the balloon portion 4, and is preferably made of a material having flexibility. For example, polyethylene, polyethylene terephthalate, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polychlorinated vinyl (PVC), cross-linked ethylene-vinyl acetate copolymer, polyurethane, polyamide, polyamide Elastomer, Polyimide, Polyimide elastomer, Polytetrafluoroethylene resin, Polytetrafluoroethylene 16-propylene copolymer resin, Polytetrafluoroethylene-fluoroalkylvinylether copolymer resin, Trifluoride Ethylene chloride resin, tetrafluoride ethylene-ethylene Synthetic resin, polyvinylidene fluoride resin, polyvinyl fluoride resin, silicone rubber, natural rubber, and the like. Of these, polyethylene, polyamide, and polyimide are preferred. As the hardness of the first outer tube member 6a, a member having a J13 hardness of about 508 to 90 can be used.
第 2外チューブ部材 6 bは、 前記第 1外チューブ部材と同様な材料で構成される。 当該第 2外チューブ部材 6 bの硬さは、 J I S硬度が 5 0 D〜7 5 D程度のものを 用いることができる。  The second outer tube member 6b is made of the same material as the first outer tube member. As the hardness of the second outer tube member 6b, a member having a JIS hardness of about 50D to 75D can be used.
なお、 本実施形態では、 第 1外チューブ部材 6 a及びフッ素樹脂製第 2外チュー ブ部材とから成る外チューブ 6の外周には、 湿潤状態で潤滑性を持つ親水性高分子 物質から成る被覆材が被覆してあることが好ましい。 産業上の利用分野  In the present embodiment, the outer periphery of the outer tube 6 composed of the first outer tube member 6a and the second outer tube member made of fluororesin is coated with a hydrophilic polymer substance having lubricity in a wet state. Preferably, the material is coated. Industrial applications
本発明のバルーンカテーテル用バルーンは、 例えば、 P T C Aバルーン力テ一テ ル用バルーンとして利用することができる。 本発明のバル一ンカテ一テル用バル一 ンは、 通常、 ポリエチレン樹脂をその融点近傍 (1 1 0 °C) でブロー成形して得ら れるバルーンと比較して、 バルーンの膜厚が薄く、 その破壊強度が高いので、 P T C Aバルーンカテーテルを細径化することが可能となる。 さらに、 バル一ン拡張の ための高圧力に耐えることができ、 P T C Aバルーンカテーテルとして使用した場 合は、 血管狭窄部分を拡張する際の安全性が極めて優れている。  The balloon for a balloon catheter of the present invention can be used, for example, as a balloon for a PTC A balloon force terminal. The balloon for balloon catheters of the present invention generally has a thinner balloon film thickness than a balloon obtained by blow molding a polyethylene resin near its melting point (110 ° C.). Because of its high breaking strength, the diameter of the PTCA balloon catheter can be reduced. Furthermore, it can withstand high pressure for balloon dilatation, and when used as a PTCA balloon catheter, it is extremely safe when dilating a vascular stenosis.

Claims

請求の範囲 The scope of the claims
1. ポリオレフィン樹脂からなる架橋チューブを用いてプロ一成形により成形され たバル一ンであって、 前記バルーンの膜厚が 1 0〜4 0 μ mであり、 前記バルーン の破断強度が 80 0〜 2 0 0 0 k g ί /c m2 であることを特徴とするバルーン力 テーテル用バル一ン。 1. A balloon formed by professional molding using a crosslinked tube made of a polyolefin resin, wherein the balloon has a film thickness of 10 to 40 μm and the balloon has a breaking strength of 800 to Balloon force for a catheter characterized by a weight of 200 kg / cm 2 .
2. ポリオレフイン樹脂が、 炭素数 2〜4 0のォレフインをモノマ一として使用し て、 重合反応により製造したものであって、 その密度が、 0. 9 5 0 g/c m3 以 下のものである請求項 1に記載されたバル一ンカテーテル用バル一ン。 2. A polyolefin resin produced by a polymerization reaction using olefins having 2 to 40 carbon atoms as a monomer and having a density of 0.95 g / cm 3 or less. A balloon for a balloon catheter according to claim 1.
3. ポリオレフイン樹脂が、 ポリエチレン及びエチレンと炭素原子数 4〜4 0の α ーォレフインとの共重合体から選ばれたものである請求項 1または 2に記載された ノくノレ一ン力テ一テノレ用ノ ノレ一ン。  3. The polyolefin resin according to claim 1 or 2, wherein the polyolefin resin is selected from polyethylene and a copolymer of ethylene and α-olefin having 4 to 40 carbon atoms. For knowledge.
4. ポリオレフイン樹脂からなるチューブを電子線架橋して、 ゲル含量が 0. 2〜 0. 8 %である架橋チューブを調製する工程と、 前記ポリオレフイン樹脂の融点よ りも 1 0°C以上低い温度で、 前記架橋チューブに 1次プロ一圧を負荷し、 次いで、 前記架橋チューブに前記 1次ブロー圧よりも低い圧力である 2次ブロー圧を負荷す ることにより該架橋チューブからバルーンに至る有効延伸倍率が 500〜 1 00 0%となるように、 ブロー成形してバルーン部を調製する工程とを有する、 バル一 ンカテーテル用バルーンの製造方法。  4. A step of preparing a cross-linked tube having a gel content of 0.2 to 0.8% by electron beam cross-linking a tube made of polyolefin resin, and a temperature lower than the melting point of the polyolefin resin by 10 ° C or more. By applying a primary professional pressure to the cross-linking tube, and then applying a secondary blow pressure, which is lower than the primary blow pressure, to the cross-linking tube, it is effective to reach the balloon from the cross-linking tube to the balloon. Blow molding to prepare a balloon portion so that the stretching ratio is 500 to 100%.
5. ポリオレフイン樹脂からなるチューブに 5〜4 OM r a dの電子線を照射して、 前記チューブを電子線架橋することからなる請求項 4に記載したバルーン力テーテ ル用バルーンの製造方法。  5. The method for producing a balloon for a balloon force tail according to claim 4, comprising irradiating the tube made of polyolefin resin with an electron beam of 5 to 4 OMrad to crosslink the tube with an electron beam.
6. 1次ブ口一圧が 1 5〜2 5 k g f /"c m2 であり、 2次ブロー圧が 5〜8 k g f /c m2 である請求項 4または 5に記載したバルーンカテーテル用バルーンの製 造方法。 6.1 Tsugibu opening one pressure is 1 5~2 5 kgf / "cm 2 , manufactured balloon catheter balloon according to claim 4 or 5 secondary blow pressure is 5 to 8 kgf / cm 2 Construction method.
7. 少なくとも一つのバルーン拡張用ル一メンが長手方向に沿って形成してある外 チューブと、 前記外チューブの遠位端部にバルーン部の近位端部が接合され、 前記 バルーン拡張用ルーメンと内部が連通するバルーン部と、 前記バルーン部の内部に 密閉された拡張用空間を形成するように、 バルーン部の遠位端部が内チューブの遠 位端部に接合され、 前記バルーン部の内部と前記外チューブのバルーン拡張用ルー メンの内部とに軸方向に延在する内チューブとを有し、 前記バルーン部が、 ポリオ レフィン樹脂からなる架橋チューブを用いてプロ一成形により成形されたバル一ン であって、 前記バルーンの膜厚が 1 0〜40 μ mであり、 前記バルーンの破断強度 が 800〜 2000 k g ί /c m2 であることを特徴とするバル一ンカテーテル。 7. an outer tube in which at least one balloon inflation lumen is formed along a longitudinal direction; and a proximal end of a balloon portion joined to a distal end of the outer tube; A distal end portion of the balloon portion, the distal end portion of the inner tube being formed so as to form a sealed expansion space inside the balloon portion. An inner tube that is joined to the distal end, and has an inner tube extending in the axial direction inside the balloon portion and inside the balloon expansion lumen of the outer tube, wherein the balloon portion is formed of a polyolefin resin. A balloon formed by professional molding using a tube, wherein the balloon has a film thickness of 10 to 40 μm and the balloon has a breaking strength of 800 to 2000 kgί / cm 2. A balloon catheter, characterized in that:
8. バル一ンカテーテルが経皮的血管内冠状動脈形成術用バルーンカテーテルであ る請求項 7に記載されたバルーンカテーテル。 8. The balloon catheter according to claim 7, wherein the balloon catheter is a balloon catheter for percutaneous intravascular coronary angioplasty.
9. バルーンカテーテルがモノレール方式の経皮的血管内冠状動脈形成術用バル一 ンカテーテルである請求項 7または 8に記載されたバル一ンカテーテル。  9. The balloon catheter according to claim 7, wherein the balloon catheter is a monorail balloon catheter for percutaneous intravascular coronary angioplasty.
1 0. 外チューブが、 比較的柔軟性のある第 1外チューブ部材と比較的剛性が高い 第 2外チューブ部材 6 bとで構成されるものであり、 内チューブの近位端開口部が、 第 1外チューブ部材の長手方向の途中に位置するチューブ壁を貫通して外部に開口 し、 内チューブの近位端開口部と、 第 1外チューブ部材のチューブ壁とが気密に熱 融着してある構造である請求項 7ないし 9に記載されたバル一ンカテ一テル。  10. The outer tube is composed of a relatively flexible first outer tube member and a relatively rigid second outer tube member 6b, and the inner tube has a proximal end opening, The first outer tube member is opened to the outside through a tube wall located in the middle of the longitudinal direction of the first outer tube member, and the proximal end opening of the inner tube and the tube wall of the first outer tube member are heat-sealed in an airtight manner. 10. The balloon catheter according to claim 7, wherein the balloon catheter has a structure.
PCT/JP2000/004729 1999-07-19 2000-07-14 Balloon for balloon catheter and production method thereof WO2001005444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/205064 1999-07-19
JP11205064A JP2001029449A (en) 1999-07-19 1999-07-19 Balloon for balloon catheter and its manufacture

Publications (1)

Publication Number Publication Date
WO2001005444A1 true WO2001005444A1 (en) 2001-01-25

Family

ID=16500842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004729 WO2001005444A1 (en) 1999-07-19 2000-07-14 Balloon for balloon catheter and production method thereof

Country Status (2)

Country Link
JP (1) JP2001029449A (en)
WO (1) WO2001005444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131795B2 (en) * 2001-05-31 2013-01-30 川澄化学工業株式会社 Balloon catheter
CA2545167A1 (en) 2003-11-07 2005-05-19 Kaneka Corporation Aspiration catheter
US7345256B2 (en) * 2004-04-08 2008-03-18 Ziyun Chen Methods and apparatus for delivering laser energy for joining parts
KR100887988B1 (en) * 2007-05-26 2009-03-09 (주)비엠코리아 Manufacturing method of balloon for catheter
US20080317991A1 (en) * 2007-06-19 2008-12-25 Tyco Electronics Corporation Multiple wall dimensionally recoverable tubing for forming reinforced medical devices
JP6304886B2 (en) * 2014-10-28 2018-04-04 日本ライフライン株式会社 Balloon catheter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490421A (en) * 1983-07-05 1984-12-25 E. I. Du Pont De Nemours And Company Balloon and manufacture thereof
US5306247A (en) * 1991-12-11 1994-04-26 Schneider (Europe) A.G. Balloon catheter
JPH08196620A (en) * 1995-01-27 1996-08-06 Terumo Corp Extending catheter and its manufacture
JPH1033658A (en) * 1996-07-22 1998-02-10 Terumo Corp Extention catheter and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490421A (en) * 1983-07-05 1984-12-25 E. I. Du Pont De Nemours And Company Balloon and manufacture thereof
US5306247A (en) * 1991-12-11 1994-04-26 Schneider (Europe) A.G. Balloon catheter
JPH08196620A (en) * 1995-01-27 1996-08-06 Terumo Corp Extending catheter and its manufacture
JPH1033658A (en) * 1996-07-22 1998-02-10 Terumo Corp Extention catheter and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods

Also Published As

Publication number Publication date
JP2001029449A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US7736362B2 (en) Catheter balloons
US7425357B2 (en) Surface modification of expanded ultra high molecular weight polyethylene(eUHMWPE) for improved bondability
US7011646B2 (en) Balloon catheter having a balloon with a thickened wall portion
US5411477A (en) High-strength, thin-walled single piece catheters
CA2074304C (en) Drug delivery catheter
JP3659664B2 (en) Medical tube
JP4336689B2 (en) Medical catheter and method for forming the same
US5344400A (en) Balloon catheters containing molded polyarylenesulfide material
US6336936B2 (en) High pressure catheter balloon
JPS6326655B2 (en)
IL166908A (en) Catheter balloon having improved balloon bonding
WO1999047203A1 (en) Balloon catheter
US20060136032A1 (en) Balloon catheter having a balloon with hybrid porosity sublayers
JPWO2005056101A1 (en) Balloon catheter
WO2001005444A1 (en) Balloon for balloon catheter and production method thereof
JP3270183B2 (en) Balloon for balloon catheter and catheter with balloon
WO2000059570A1 (en) Balloon catheter having balloon formed by blow molding at low temperature
US20040197501A1 (en) Catheter balloon formed of a polyurethane of p-phenylene diisocyanate and polycaprolactone
JP2004298354A (en) Dilation balloon, and balloon catheter equipped with the same
JP2001029448A (en) Balloon for balloon catheter and its manufacture
JP4402218B2 (en) Balloon catheter
JP2005342503A (en) Balloon catheter
JP2004121276A (en) Balloon catheter and production method therefor
JP2000279509A (en) Baloon catheter having external tube member made of fluororesin
JP2003275319A (en) Catheter balloon and balloon expansion catheter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase