WO2001001505A1 - Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and lithium secondary cell - Google Patents

Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and lithium secondary cell Download PDF

Info

Publication number
WO2001001505A1
WO2001001505A1 PCT/JP2000/004133 JP0004133W WO0101505A1 WO 2001001505 A1 WO2001001505 A1 WO 2001001505A1 JP 0004133 W JP0004133 W JP 0004133W WO 0101505 A1 WO0101505 A1 WO 0101505A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
composite oxide
electrode material
secondary battery
Prior art date
Application number
PCT/JP2000/004133
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Shizuka
Kenji Okahara
Takayuki Aoshima
Chikara Kiyohara
Yukinori Minagawa
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2001001505A1 publication Critical patent/WO2001001505A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a lithium secondary battery, and more particularly to a positive electrode material for improving high temperature characteristics of a lithium secondary battery, and further relates to a positive electrode containing the positive electrode material, and the positive electrode as a constituent element. Battery. Background art
  • L i M n 2 0 4 with a Subineru structure is a composite oxide of manganese and lithium, studies that have been conducted actively. It has the advantages of high voltage, high energy density, more reserves than cobalt and nickel, and low cost. In addition, the charge-discharge cycle life at room temperature, which has been a problem, has been improved to the practical stage. However, such a manganese-based lithium secondary battery has a problem that its high-temperature stability is inferior. Therefore, at present, it has not reached a practical level for demands used in a high-temperature environment.
  • Hei 8-231304 discloses that the active material is The surface properties such as fluorination are modified to improve the storage characteristics at high temperatures.
  • Japanese Patent Application Laid-Open No. 10-125307 reports that the surface of the positive electrode active material is coated with an organic substance containing an amino group.
  • a layered lithium-cobalt composite oxide, a layered lithium-nickel composite oxide, and these other metal-substituted materials are converted into a spinel-type lithium-manganese composite oxide. Examples of mixing are known.
  • a spinel-type lithium manganese composite oxide and a layered lithium cobalt composite oxide are mixed to improve cycle characteristics (Japanese Patent No. 27151624), and lithium nickel cobalt aluminum is used.
  • a composite oxide and a lithium manganese composite oxide are mixed to provide an inexpensive and highly safe battery (Japanese Patent Application Laid-Open No. H11-154120).
  • An object of the present invention is to provide a manganese-based compound which is excellent in high-temperature characteristics such as high-temperature stability and high-temperature cycle characteristics and can be used for a lithium ion secondary battery. Disclosure of the invention
  • the present inventors have result of intensive studies, the positive electrode containing the conventional lithium-manganese composite oxide is more under a high temperature environment, promoting the degradation of L i PF 6 salt in the electrolytic solution, P 0 2 F It was found that two anions were generated. It was also found that this decomposition reaction depends on the state of the positive electrode and progresses remarkably in the charged end state. Further, lithium secondary batteries decomposition reaction using the positive electrode as a cause significantly in the L i PF 6 was particularly found that significant performance degradation at high temperatures. Further, the decomposition reaction of L i PF 6 not only use and composition of the positive electrode of the additive has also been found to be determined by the particle diameter and the like various factors of the positive electrode.
  • the present inventors as an index the resulting ease of decomposition reaction of L i PF 6, using a hard positive electrode occurs decomposition of L i PF 6 It has been found that a lithium secondary battery having excellent high-temperature characteristics can be obtained by doing so, and the present invention has been completed.
  • the first gist of the present invention resides in the following (1) to (20).
  • a battery element is prepared using the positive electrode material, and the positive electrode material charged with this is used.
  • a current collector circular aluminum expanded metal with a diameter of 16 mm.
  • assembled battery element was used to charge this After charging to an upper limit voltage of 4.2 V at a current density of 0.2 mA / cm 2 , the battery element is then disassembled, and the charged positive electrode is taken out.
  • the amount of P 0 2 F 2 ion contained in the solution after storage obtained according to the storage test (I) is less than 110 1111 0 1 at 20 ° (1 ) Cathode materials for lithium secondary batteries.
  • the manganese oxide and / or positive electrode material for lithium secondary batteries containing a lithium-manganese composite oxide having a positive electrode active material and PF 6 ⁇ two on decomposition inhibitor as the PF 6 Anion decomposition inhibitor, following A positive electrode material for a lithium secondary battery, characterized in that a material having a decomposition amount of PF 67 2one measured by a storage test (II) of 6 ⁇ 10 jo 1 or less is used.
  • Li 1 + x Mn 2 x ⁇ 4 (here, 0 ⁇ ⁇ ⁇ 0.05)
  • Lithium-manganese composite oxide (0.05 ⁇ L 1/1 ⁇ 11 molar ratio ⁇ 0.09)
  • the addition amount of the PF 6 anion decomposition inhibitor is in the range of 0.0001 to 80% with respect to the positive electrode active material, which is one of (4) to (10).
  • the manganese oxide and / or lithium manganese composite oxide has a subinel-type structure, and a part of the manganese site is replaced with at least one element selected from typical elements.
  • the positive electrode material contains a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, and a part of the manganese site of the lithium manganese composite oxide is composed of another element.
  • the composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at 5% by weight, and mixed to form a thin sheet. After adjusting the total weight to 12.5 mgZcm 2 , this sample is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
  • PTFE polytetrafluoroethylene
  • the obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C.
  • V e (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
  • the average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
  • the lithium-nickel composite oxide has an average voltage of 3.830 V or less when measured by the following measurement method ( ⁇ ).
  • V e (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
  • the average charge voltage or average discharge voltage is the value obtained by measuring the voltage during charge or discharge at 2-second intervals and integrating the voltage over time by the time required for charge or discharge.
  • the present inventors have proposed a lithium manganese composite oxide having a spinel structure in which a part of a manganese site has been replaced with a specific element, and a lithium manganese composite oxide having a layered structure.
  • battery characteristics including high-temperature characteristics are remarkably improved, and when lithium manganese composite oxide having spinel structure and lithium nickel composite oxide having layer structure are used together.
  • the second gist of the present invention resides in the following (21) to (26).
  • a positive electrode material for a lithium ion secondary battery containing a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, wherein the manganese site of the lithium manganese composite oxide A positive electrode material for a lithium ion secondary battery, characterized in that a part of the material is replaced with at least one element selected from typical elements.
  • a positive electrode material for a lithium ion secondary battery comprising a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, wherein the manganese site of the lithium manganese composite oxide Is partially replaced by another element, and the average voltage of the other element-substituted lithium manganese composite oxide measured by the following measurement method (I) is 4.059 V or more.
  • the composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at a ratio of 5% by weight, and mixed to form a thin sheet. After adjusting the total weight to be 12.5 mg / cm 2 , this sample is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
  • PTFE polytetrafluoroethylene
  • a porous polyethylene film of 25 m is used as a separator, a lithium metal foil is used as a counter electrode, and a nonaqueous electrolyte solution is used, in which the volume ratio of ethylene carbonate and getyl carbonate is 3: using a solution prepared by dissolving 1 mol / Li tree torr six full Uz lithium phosphate (L i PF 6) 7 mixed solvent, to prepare a coin-type battery of CR 2 03 2 type.
  • the obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C.
  • V e (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
  • the average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
  • the lithium-nickel composite oxide is characterized by having an average voltage of 3.830 V or less when measured by the following measurement method (II).
  • the obtained coin-type battery is subjected to a current density of 0.2 mA / cm 2 constant current charge / discharge cycle (charge upper limit: 4.2 V, discharge lower limit: 3.2 V), and average voltage V e
  • V e (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
  • the average charge voltage or average discharge voltage is the value obtained by measuring the voltage during charge or discharge at 2-second intervals and integrating the voltage over time by the time required for charge or discharge.
  • the weight ratio of the lithium nickel composite oxide to the total weight of the lithium manganese composite oxide and the lithium nickel composite oxide is 0.7 or less (21) to (25).
  • the positive electrode material for a lithium ion secondary battery according to any one of the above.
  • a positive electrode for a lithium ion secondary battery wherein an active material layer containing the positive electrode material for a lithium secondary battery according to any one of (1) to (26) is formed on a current collector. .
  • a lithium ion secondary battery comprising the positive electrode material for a lithium secondary battery according to any one of (1) to (26) in a positive electrode.
  • a lithium comprising: a positive electrode using the positive electrode material for a lithium secondary battery according to any one of (1) to (26); a negative electrode; and an electrolyte obtained by dissolving a lithium salt in a solvent. Rechargeable battery.
  • lithium salt is L i PF 6 (2 8) to (3 0) Izure or one for lithium secondary battery according the.
  • Feature of the present invention is the use of the manganese compound such as to suppress the decomposition of L i PF 6 in a high temperature environment as the positive electrode of a lithium secondary battery. That is, the present invention There are important points as the positive electrode material is to use a low reactivity to L i PF 6.
  • PF 6 measured by the storage test (I) described below is used as a positive electrode material for a lithium secondary battery containing a positive electrode active material composed of a manganese oxide or a lithium manganese composite oxide.
  • PF 6 measured by the storage test (I) described below is used as a positive electrode material for a lithium secondary battery containing a positive electrode active material composed of a manganese oxide or a lithium manganese composite oxide.
  • a positive electrode made by molding 24 mg of the positive electrode material into a circular shape with a diameter of 12 mm, and crimping it to a current collector (expanded circular aluminum metal with a diameter of 16 mm), and Li as the counter electrode metal, 1. as the electrolyte O mo l / L Echire emissions carbonate and Jechiruka one Poneto a mixture containing L i PF 6 (volume ratio 3: 7) assembled battery element using the charge current so After charging to a maximum voltage of 4.2 V at a density of 0.2 mA / cm 2 , the battery element is then disassembled, and the charged positive electrode is taken out.
  • the amount of PF 6 anion decomposed means the amount of PF 6 anion decomposed.
  • PF 6 anion is decomposed into, for example, P 0 2 F 2 —, P 0 3 F 2 — It is considered something.
  • the PF 6 cation decomposition inhibitor means an agent that suppresses the decomposition of PF 6 cation.
  • a circular aluminum expanded metal with a diameter of 16 mm is used as the current collector.
  • the thickness of the current collector is usually 50 to 300 m, and a thickness of about 200 m may be used.
  • the compression of the positive electrode material to the current collector in al) was performed, for example, by stacking the current collector and 24 mg of the positive electrode material formed into a circular shape with a diameter of 12 mm on a tablet molding machine. Just set and press.
  • the pressure for the crimping is usually 80 to 100 MPa, and the crimping may be performed at around 90 MPa.
  • the acid content is not more than 2.0 mm 01 / L
  • the content of P 0 2 F 2 anion is not more than 0.5 mmo 1 / L
  • the ethanol content is not more than 0.0 lmg.
  • the above condition (i) is based on the condition that the acid content and P 0 2 F 2 ion contained in generally commercially available ethylene carbonate (EC) and ⁇ ethyl carbonate (DEC) are decomposed into PF 6 ion. It is a condition specified to eliminate the influence. Under these conditions, the acid content and the P 0 2 F 2 anion do not affect the decomposition of the PF 6 anion.
  • Lithium rechargeable battery using positive electrode material that can decompose Li PF 6 under high temperature environment The reason for the high-temperature cycle property is deteriorated when used as a positive electrode, yet such is a Tsumabiraka bur, the surface of the positive electrode material that causes the degradation of L i PF 6 is reacted with the solvent Ya lithium ⁇ beam salts of the electrolyte It is speculated that compounds that have an adverse effect on the charging and discharging of the lithium secondary battery may be formed on the surface of the positive electrode. It also has an adverse effect, which is also considered to have an adverse effect on charging and discharging.
  • PF 6 anion decomposition inhibitor such as an inorganic compound, an organic compound, an organometallic compound, or an organic ion into a positive electrode containing manganese oxide and / or lithium manganese composite oxide
  • examples thereof include a method of substituting a part of the element of the positive electrode active material with an inorganic ion such as a group 15 to 17 in the periodic table.
  • the decomposition amount of the PF 6 anion measured by the following storage test (II) is 6 x 10 mol or less as the PF 6 anion decomposition inhibitor. It is preferred to use one.
  • the use of PF 6 ⁇ two on decomposition inhibitor decomposition of PF 6 Anion is 6 XI 0 uo 1 below as measured by the following storage test (II), the high-temperature properties such as high temperature stability and high-temperature cycle characteristics Can be improved.
  • a lithium manganese composite oxide having a spinel structure having a composition of Li 1 + x Mn 2 _ x 04 (here, 0 ⁇ x ⁇ 0.05) is added to water and stirred at room temperature. It is obtained by dropwise addition of acid while the pH is stable at 0.8-1.2. Normally, it may be stabilized at pH1. Sulfuric acid or the like may be used as the acid. Whether pH is stable at 0.8 to 1.2 can be confirmed by continuing stirring for about 6 hours and confirming that there is no fluctuation in pH. If it is confirmed that the pH is stable at 0.8 to 1.2, it can be obtained by repeating water washing several times while performing suction filtration, for example, drying at 90 ° C.
  • the manganese composite oxide (0.05 ⁇ L: 1/1 ⁇ 11 molar ratio ⁇ 0.09) "means" L i Y Mn 2 — ⁇ 0 4 (where 0 ⁇ ⁇ 0. 0 5, 0.1 0 ⁇ y ⁇ 0.18)
  • the lithium of the lithium manganese composite oxide having a Svinel structure having a composition of Li 1 + x Mn 2 x ⁇ 4 (here, 0 ⁇ x ⁇ 0.05)
  • c2) to f2) are performed under the conditions of b2).
  • the mixture of a lithium manganese composite oxide corresponding to the fully charged state of a 2) and the PF 6 anion decomposition inhibitor of d 2) was crushed, and the polytetrafluoro of c 2) was crushed. It is sufficient that the inside of the polyethylene container is under the condition of b2), and the outside of the polytetrafluoroethylene container which does not affect the immersion of the positive electrode does not need to be under the condition of b2).
  • the acid content is 2.0 mm 0 1 ZL or less, and the P 0 2 F 2 anion content is 0.5 mm 01 / L or less, and the ethanol content is 0.5 mg or less.
  • the condition (iv) is for the same reason as described in the above (i).
  • the ability of the PF 6 anion decomposition inhibitor is not determined by the composition of the substance or the specific physicochemical properties. This is because even the compounds of the same composition have different physicochemical properties such as structure, surface area, acidity, basicity, and average voltage depending on the preparation method, pulverization method, storage method, etc. the strength of the interaction between PF 6 is different.
  • composition of the PF 6 dione decomposition inhibitor used in the present invention examples include inorganic compounds, organic compounds, and organometallic compounds. A plurality of types of PF 6 anion decomposition inhibitors may be used.
  • PF 6 anion decomposition inhibitor Specific examples of the PF 6 anion decomposition inhibitor are shown below, but as described above, only the composition It should be noted that whether or not the PF 6 anion decomposition inhibitor of the present invention is satisfied is not uniquely determined.
  • Examples of the inorganic compound that can be used as the PF 6 anion decomposition inhibitor include oxides, composite oxides, nitrides, and sulfides of various metals belonging to Groups 2 to 14 of the periodic table of the elements. These are oxides or composite oxides of various metals belonging to Group 14.
  • As the above-mentioned metal elements specifically, Sr, Ca, Ba, Mg, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, B, Al, and Sn.
  • a compound capable of reversibly storing and releasing lithium ion can also be suitably used as a PF 6 dione decomposition inhibitor.
  • Examples thereof include a lithium iron composite oxide, a lithium cobalt composite oxide, and a lithium nickel composite oxide, preferably a lithium nickel composite oxide, and particularly preferably a lithium nickel composite oxide having a layered structure. be able to. Of course, those obtained by substituting some of these metals with other metal elements can also be used.
  • PF 6 7 two on organic compounds can be used as a decomposition inhibitor, it is a organometallic compound, a chelating agent, i.e. include those which have the property of forming (chelating activity) heavy metal complexes.
  • compounds containing at least one element selected from the group consisting of at least Groups 15 and 16 of the Periodic Table of the Elements are preferred. Specifically, compounds having at least one amino group in the molecule, compounds having at least one amide bond in the molecule, compounds having at least one hydroxyl group in the molecule, or at least one compound in the molecule And compounds having a nitrogen-containing heterocyclic ring.
  • metal salts of these compounds can be suitably used, and the metal element used for the metal salt is at least one selected from the group consisting of Groups 1, 2 and 13 of the periodic table of the elements.
  • One kind of metal element is included. More specifically, bisbenzylidene hydrazide oxalate, bis (cyclohexanone) oxalyldihydrazone, N, N, 1-bis ⁇ 2- (3- (3,5-di-tert-butyl-14-hydroxyphenyl)) ) Propionyloxyl] ethyl ⁇ oxamide, 3- (N-salicyloyl) amino-1,2,4-triazolyl, disalicyloylhydrazine decanedicarboxylate, N, N, 1-bis [3--3,5-] G-t-butyl-41-hydroxyphenyl) propionyl] hydrazine, bis-isophthalate [2-ph Enoxypropionyl hydrazide],
  • a compound having an amino group is used as the PF 6 anion decomposition inhibitor
  • a compound having a secondary or tertiary amino group is preferable.
  • the electrolytic solution containing L i PF 6 This tendency is remarkable. This is considered for the following reasons.
  • tertiary ⁇ Mi emission has a low reactivity with L i PF 6 for not having an active pro tons, but would not cause deterioration of the battery performance as described above, mutual manganese oxide
  • primary or secondary amines tend to have stronger interaction. This is because tertiary amines have a weaker interaction with manganese oxides than primary or secondary amines, which can form ionic or covalent bonds with manganese oxides (coordination bonds). Therefore, it seems that the tertiary amine that has interacted once is easily dissociated. Therefore, it is considered that the ability of the PF 6 anion decomposition inhibitor contained in the positive electrode material is determined by the above two balances.
  • a compound having a secondary or tertiary amine is more preferable than a primary amine.
  • the use of amines having a bulky location substituent since it is possible to suppression reaction itself and the L i PF 6, can also be used primary ⁇ Mi emissions.
  • the presence state of the PF 6 anion decomposition inhibitor in the positive electrode material is usually a state in which the surface of the positive electrode active material is uniformly covered, or a state in which the PF 6 anion decomposition inhibitor is localized or dispersed in the positive electrode material.
  • Ru can stop the direct contact of L i PF 6 and manganese.
  • the positive electrode active material in the coexistence of the L i PF 6 decomposition inhibitor It can inhibit the interaction of L i PF 6 with quality.
  • L i PF 6 decomposition inhibitor used in the present invention in the positive electrode material, for example, dispersive mixing, and the like, other deposition or Zorugeruko one tee ring, the O Rikatsu material particle surface to heat treatment L i method of forming a coating of PF 6 decomposition inhibitor can be employed.
  • coating by heat treatment or the like may cause loss or deterioration of the PF 6 anion decomposition inhibitor, and may lose the intended effect.
  • dispersion mixing is preferred because it is a simple addition method, is not affected by alteration, and can sufficiently exhibit its original effect.
  • dispersed mixing means simply mixing a plurality of substances, and means mixing that does not involve heat treatment at such a high temperature that the mixture is chemically changed. It is preferable that a plurality of substances are mixed to disperse the PF 6 anion decomposition inhibitor used in the present invention in the positive electrode material, and it is preferable that the PF 6 anion decomposition inhibitor is uniformly dispersed. Dispersion mixing may be dry mixing or wet mixing. For physical mixing, a mortar, ball mill, jet mill, Loedige mixer, or the like can be used. In order to effectively remain in the positive electrode material, a material that is hardly dissolved in the electrolytic solution is preferable.
  • PF 6 dione decomposition inhibitor As the PF 6 dione decomposition inhibitor to be used, a compound having low solubility in the electrolytic solution to be used is desirable.
  • PF 6 anion decomposition inhibitors do not often pose a major problem when inorganic compounds are used, but their physical or physicochemical tendencies are those with low average voltage, those with large surface area, Compounds having lattice defects are preferred. However, since these are not unique and are determined by the combination of factors, not all compounds follow the above-mentioned individual tendencies.
  • the content of the PF 6 anion decomposition inhibitor may be arbitrarily determined, but is usually in the range of 0.001 to 80 wt% based on the positive electrode active material. If the amount is too small, only an insufficient effect can be obtained and the high temperature stabilizing effect is hardly exhibited.On the other hand, if the amount is too large, the resistance may increase, and other characteristics such as a decrease in capacity may be reduced. Come out.
  • PF 6 7 two on decomposition inhibitor the use of lithium can occluding and releasing compounds, even many amount is advantageous in that the capacity of the positive electrode does not decrease. In this case, the amount of the additive used is based on manganese oxide and lithium manganese oxide.
  • a compound containing at least one element selected from the group consisting of Groups 15 and 16 of the Periodic Table of the aforementioned elements and not absorbing and releasing lithium is used.
  • the amount of the additive used is usually at least 0.001 wt%, preferably at least 0.001 wt%, more preferably at least 0.000 wt%, based on manganese oxide and lithium manganese oxide. It is at least lwt%, usually at most 10wt%, preferably at most 5wt%, more preferably at most 1wt%.
  • the positive electrode active material to be used may be the PF 6 anion decomposition inhibitor itself. That may be one of the compounds is the positive electrode active material and PF 6 7 two on decomposition inhibitor.
  • the amount of decomposition of PF 6 Anion when performing the above storage test the (I) is 1 x 1 0 juLm o 1 or less, preferably 6 mo 1 below.
  • the lower limit of the amount of degradation is usually 1 x 1 0- 2 mo 1 about.
  • the amount of PF672one decomposed was 6 ⁇ 10 mol or less, preferably 55 mol or less, more preferably 5 ⁇ 1 mol or less. 0 ⁇ mol or less. In this case not feasible even in an effort to reduce the amount of degradation More or is, the lower limit of the amount of degradation is usually about 1 XI 0- 2 mo l.
  • the degradation product of the PF 6 anion of Li PF 6 in the above-mentioned storage test is usually mainly P 0 2 F 2 anion. Therefore, the above storage test (I) In performance and the positive electrode to be evaluated, the performance of the PF 6 Anion decomposition inhibitor to be evaluated by the storage test ([pi) it can also evaluate child generation amount of produced P 02 F 2 as a parameter.
  • the amount of P 0 2 F 2 anion contained in the preservation solution at 20 ° C. at the time of performing the above preservation test is usually 1 ⁇ 10 ⁇ mol under the storage test conditions (I). Hereinafter, it is preferably 5 mol or less.
  • the state of the storage solution at 20 ° C. is a state in which the content of the P 0 2 F 2 anion in the storage solution at 20 ° C. becomes constant regardless of time.
  • the above storage test (I) or ([pi) the PF 6 when the Anio down degradant 80% or more, and particularly 9 5% or more is P_ ⁇ 2 F 2 Anion good Good.
  • ethanol is generated along with the generation of P 2 F 2 anion.
  • the preferred amount of ethanol to be produced is as follows: when the storage in the above-mentioned storage test (II) is extended for another two weeks, that is, when the above-mentioned storage test (II) in which the storage time is three weeks is performed, The amount of ethanol contained in the liquid is 1 mg or less, and even 0.5 mg or less. When a large amount of ethanol is produced in the above storage test (II), the PF 6 anion decomposition inhibitor cannot achieve sufficient improvement in high-temperature properties.
  • the amount of ethanol contained in the preservation solution after the preservation test by the method under the above storage conditions (I) is usually 0.1 mg or less.
  • the amounts of PF 6 anion and P 0 2 F 2 anion contained in the above preservation solution can be determined by various known analytical methods. Examples thereof include ion chromatography analysis, F-NMR and P-NMR. This time important, when performing these analyzes, as a blank, under conditions as not to cause the decomposition of the stored previous 1.
  • Omo l / L be a solution containing L i PF 6 of L i PF 6 The measurement is to be performed.
  • the anion may be analyzed by performing operations such as concentration under conditions that do not change the composition of the anion in the storage solution.
  • Ethanol can be measured by various known analytical methods. For example, gas chromatography, liquid chromatography, NMR and the like can be mentioned. Specifically, it can be measured using the measuring method in the embodiment of the present invention.
  • a manganese oxide and / or a lithium manganese composite oxide is used as an active material.
  • the active material is a main substance that is the basis of an electromotive reaction of the battery, and means a substance that can occlude and release ions.
  • the manganese oxide and / or lithium manganese composite oxide may be any as long as it can reversibly occlude and release Li as an active material, and is preferably a lithium manganese composite oxide, particularly lithium having a spinel structure. Manganese composite oxides are preferred.
  • the composition of a lithium manganese composite oxide having a spinel structure is generally represented by L i M n 2 ⁇ 4 , but some of M n have been replaced with other metals, and oxygen deficiency has occurred. It can also be used, and is included in the lithium manganese composite oxide having a spinel structure.
  • the metal that partially substitutes for Mn include Al, Ti, V, Cr, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, B, Ge and the like.
  • a lithium-ion secondary battery containing a lithium manganese composite oxide having a suberin-type structure and a lithium nickel composite oxide having a layered structure.
  • a high temperature is achieved by containing a lithium nickel composite oxide having a layered structure, and by substituting at least one element selected from typical elements for a part of the manganese site of the lithium manganese composite oxide. High temperature characteristics such as stability and high temperature cycle characteristics have been improved.
  • the lithium manganese composite oxide having a spinel structure used above is, for example, a mixture of a lithium compound, a manganese compound, and a compound of at least one or more typical elements that partially replace the manganese site.
  • Baking in or Can be obtained by mixing a lithium compound and a manganese compound, firing the mixture in the air to produce a subinel-type lithium-manganese composite oxide, and then reacting it with at least one compound of a typical element.
  • typical elements that substitute for the Mn site include Li, B, Mg, Al, Ca, Zn, Ga, and Ge. Of course, it is possible to replace the manganese site with multiple elements.
  • substitution element of the manganese site Li, Mg, A1, and Ga are preferable, and aluminum and / or lithium are particularly preferable.
  • the substitution amount of a typical element is preferably 0.05 mol or more, more preferably 0.06 mol or more, and most preferably 0.08 mol or more in 2 mol of manganese.
  • a lithium ion secondary battery containing a lithium manganese composite oxide having a suberin-type structure and a lithium nickel composite oxide having a layered structure
  • the lithium manganese composite oxide, wherein a part of the manganese site of the lithium manganese composite oxide is replaced by another element, and the average voltage of the lithium manganese composite oxide measured by the following measurement method (I) is:
  • a positive electrode material for lithium ion secondary batteries which is characterized by a voltage of 4.059 V or more.
  • the following measurement method (I) is a measurement method for determining a preferable lithium manganese composite oxide used as a positive electrode material.
  • the average voltage measured by the following measurement method (I) is 4.059 V or higher. It is preferable from the viewpoint of improving high temperature characteristics such as characteristics.
  • the composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at 5% by weight and mixed to form a thin sheet. After adjusting the total weight to 12.5 mg / cm 2 , this sample is further pressed against aluminum expanded metal to make a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
  • PTFE polytetrafluoroethylene
  • the obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C.
  • V e (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
  • the average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
  • the sample was pressed onto expanded metal in step (1), for example, in a tableting machine, (1) aluminum expanded metal and (2) 75% by weight of the composite oxide, acetylene black 2 0 wt%, and mixed and weighed at a ratio of Porite Torafuroroechi Ren (PTFE) powder 5% by weight, thin sheet and one preparative shape, overlapping those total weight was adjusted 1 2. 5 mg / cm 2 and so as Just set it and press it.
  • the pressure for crimping is usually 80 to 100 MPa, and the pressure may be about 90 MPa.
  • the thickness of the expanded metal is usually 50 to 300 3m, and a thickness of about 200 ⁇ m may be used.
  • the spinel-type lithium manganese composite oxide used as the above active material has an average voltage of 4.059 V or more, preferably an average voltage of 4.060 V or more, and more preferably 4.06 V or more. 5 V or more, most preferably 4.070 V or more.
  • the average voltage is usually less than 4.3 V, because of the difficulties in manufacturing high voltage ones.
  • the average voltage is a value measured according to the above 1 to 3.
  • the average voltage can be uniquely determined.
  • the lithium manganese composite oxide having a spinel structure used above and having a part of the manganese site replaced by another element is, for example, a part of the manganese site replaced by at least one or more elements.
  • the element that replaces the Mn site such as Al, Ti, V, Cr, Fe, Co, Li, Ni, and Cu, Zn, Mg, Ga, Zr, B, Ge and the like, preferably Li, B, Mg, Al, Ca, Zn, Ga, Ge and the like typical elements No.
  • the manganese site with multiple elements.
  • Aluminum and / or lithium are particularly preferable as the manganese site substitution element, since it is possible to increase the average voltage of the spinel-type lithium manganese composite oxide with a small amount.
  • a lithium manganese composite oxide having a spinel structure used hereinafter referred to as “composite oxide (A)” Of the “may be”
  • y is usually 0.5 or less, preferably 0.25 or less, and usually 0.1 or more.
  • Z is usually 0.1 or less, preferably 0.08 or less, and usually 0.02 or more. If y and z are too small, the high-temperature characteristics may deteriorate, while if too large, the capacity tends to decrease.
  • the oxygen atoms of the composite oxide (A) may have non-stoichiometric properties, and some of the oxygen atoms may be substituted with a halogen element such as fluorine.
  • the lithium nickel composite oxide having a layered structure used in the preferred embodiment of the first embodiment, the second embodiment of the present invention and the third embodiment of the present invention (hereinafter sometimes referred to as “composite oxide (B)”
  • composite oxide (B) In general, those having a basic composition formula L i N i ⁇ 2 are preferred. Among them, those having an average voltage of 3.830 V or less are preferable, and especially those having an average voltage of 3.820 V or less. More preferably, the voltage is 3.810 V or lower, and more preferably, the voltage is 3.80 V.
  • the average voltage of the composite oxide (B) By lowering the average voltage of the composite oxide (B), the potential difference from the composite oxide (A) is reduced. It is expected that the interaction between the composite oxides (A) and (B) will increase as described in the section of action, and as a result, the characteristics at high temperatures can be improved.
  • the average voltage is more than 3.5 V because the one with too low average voltage is difficult to manufacture.
  • the method of measuring the average voltage of the composite oxide (B) is the same as that of the composite oxide (A). It is almost the same as the measurement method, except that in step (3), the current density is 0.2 mA / cm 2 and the upper limit of charge is 4.2 V.
  • Such a composite oxide (B) having a reduced average voltage can be obtained by substituting a part of nickel with another element. Further, it can also be obtained by making the particle size of the composite oxide (B) small, so that lithium can be easily taken in and out.
  • Examples of the element capable of partially replacing nickel include metal elements such as B, Al, Fe, Sn, Cr, Cu, Ti, Zn, Co, and Mn. Of course, it is possible to replace the nickel site with multiple elements. Particularly, aluminum and / or cobalt are preferable.
  • y and z are each independently usually 0.5 or less, preferably 0.25 or less, and usually 0.1 or more.
  • Z is usually 0.1 or less, preferably 0.08 or less, and usually 0.02 or more. If y and z are too small, the high temperature characteristics tend to be poor, while if too large, the capacity tends to decrease.
  • the oxygen atoms of the composite oxide (B) may have non-stoichiometric properties, and some of the oxygen atoms may be substituted with a halogen element such as fluorine.
  • a halogen element such as fluorine.
  • the composite oxide (A) and the composite oxide (B) are in the form of a mixture thereof. Or a complex involving a chemical bond.
  • the active material is based on the total amount of the composite oxide (A) and the composite oxide (B)
  • the weight ratio R of the composite oxide (B) is usually 0.7 or less, preferably 0.6 or less, and more preferably 0.3 or less. Further, it is usually at least 0.05, preferably at least 0.1. If the mixing ratio of the lithium-nickel composite oxide is too small, the effect of improving the high-temperature characteristics tends to be small, while if too large, a problem may occur in terms of cost and safety.
  • the particle size of the composite oxide (A) or (B), or a composite of these is usually at least 0.3 lm, preferably at least 0.3, more preferably at least 0.3 ⁇ m, and usually at least 0.3 ⁇ m. 0 m or less, preferably 10 m or less, more preferably 5 m or less.
  • the specific surface area by these nitrogen adsorption methods is usually 0.3 m 2 / g or more, and usually 15 m 2 / g or less. If the particle size is too small or the specific surface area is too large, the cycle deterioration of the battery may increase, or safety problems may occur. If the particle size is too large or the specific surface area is too small, the internal resistance of the battery may be large and output may be difficult to obtain.
  • the present invention also relates to a positive electrode and a battery for a lithium ion secondary battery using the positive electrode material for a lithium secondary battery as described above. That is, the positive electrode for a lithium ion secondary battery of the present invention is obtained by forming an active material layer containing the positive electrode material on a current collector.
  • the positive electrode is generally formed by forming an active material layer containing an active material and a binder on a current collector.
  • the active material layer can be usually obtained by preparing a slurry containing the above constituent components, applying the slurry on a current collector, and drying.
  • the proportion of the active material of the present invention in the active material layer is usually at least 10% by weight, preferably at least 30% by weight, more preferably at least 50% by weight, and usually at most 99.9% by weight, preferably at most 99.9% by weight. Is less than 99% by weight.
  • binder used for the positive electrode examples include polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), and SBR (styrene-styrene). Butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluoroelastomer, polyvinyl benzoate, polymethyl methacrylate, polyethylene, nitrocellulose and the like.
  • the proportion of the binder in the active material layer is usually at least 0.1% by weight, preferably at least 1% by weight, more preferably at least 5% by weight, and usually at most 80% by weight, preferably at most 6% by weight.
  • the active material layer usually contains a conductive agent to increase conductivity.
  • the conductive agent include carbon materials such as graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle cox.
  • the proportion of the conductive agent in the active material layer is usually at least 0.01% by weight, preferably at least 0.1% by weight, more preferably at least 1% by weight, and usually at most 50% by weight, preferably at most 3% by weight. 0% by weight or less, more preferably 15% by weight or less. If the proportion of the conductive agent is too low, the conductivity may be insufficient, and if it is too high, the battery capacity may decrease.
  • the slurry solvent an organic solvent that usually dissolves or disperses the binder is used.
  • an organic solvent that usually dissolves or disperses the binder is used.
  • a dispersant, a thickener, and the like can be added to water to form a slurry of the active material with a latex such as SBR.
  • the thickness of the active material layer is usually about 10 to 200 m.
  • the material of the current collector used for the positive electrode aluminum, stainless steel, nickel steel, or the like is used, and aluminum is preferable.
  • the active material layer obtained by coating and drying is preferably compacted by a roller press or the like in order to increase the packing density of the active material.
  • a lithium ion secondary battery can be obtained using the active material of the present invention and the positive electrode.
  • the lithium ion secondary battery of the present invention contains the active material in the positive electrode, and usually has the positive electrode, the negative electrode, and a non-aqueous electrolyte.
  • the negative electrode active material used for the negative electrode of the secondary battery of the present invention may be a lithium alloy such as lithium-poly-aluminum alloy, but can store and release lithium with higher safety.
  • Carbon materials are preferred.
  • the carbon material include natural or artificial graphite, petroleum-based coke, coal-based coke, carbide of petroleum-based pitch, carbide of coal-based pitch, and carbide of resin such as phenolic resin and crystalline cellulose, and the like.
  • the negative electrode is usually formed by forming an active material layer on a current collector as in the case of the positive electrode. At this time, as the binder used and the conductive agent / slurry used as needed, the same solvent as that used for the positive electrode can be used.
  • the current collector of the negative electrode copper, nickel, stainless steel, nickel plating steel, or the like is used, and copper is preferably used.
  • non-aqueous electrolyte solution examples include those in which various electrolyte salts are dissolved in a non-aqueous solvent.
  • Non-aqueous solvents include, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, halogenated hydrocarbons, amines, esters, amides, phosphate esters Compounds and the like can be used.
  • Typical examples of these are propylene carbonate, ethylene carbonate, and ethylene ethylene oxide—ponate, trifluoropropylene carbonate, getyl carbonate, dimethyl carbonate, ethyl methyl carbonate, vinylene carbonate, and terephthalate.
  • the above-mentioned non-aqueous solvent preferably contains a high dielectric constant solvent for dissociating the electrolyte.
  • the high dielectric constant solvent means a solvent having a relative dielectric constant at 25 ° C. of 20 or more.
  • the high dielectric constant solvents it is preferable that ethylene carbonate, propylene carbonate, and a compound in which hydrogen atoms thereof are replaced with another element such as halogen or an alkyl group are contained in the electrolytic solution.
  • the proportion of the high dielectric constant solvent in the electrolyte is preferably 20% by weight or more, more preferably 3% by weight or more. It is at least 0% by weight, most preferably at least 40% by weight. If the content of the high dielectric constant solvent is small, desired battery characteristics may not be obtained in some cases.
  • any conventionally known can be used, L i C L_ ⁇ 4, L i A s F 6 , L i PF 6, L i BF 4, L i B (C 6 H 5) 4, L i C l, L i B r , L i CH 3 S_ ⁇ 3 L i, L i CF a S 0 3.
  • L i N (SO 2 CF 3) had L i N (SO 2 C 2 F 5) 2, L i C (SO 2 CF 3 ) 3, L i N (S 0 3 CF 3) lithium salts of 2, and the like.
  • the additive which produces a good film which enables the above-mentioned process may be added to the above-mentioned solvent alone or in a mixed solvent at an arbitrary ratio.
  • a solid polymer electrolyte which is a conductor of an alkali metal cation such as lithium ion can also be used.
  • a conventionally known polymer can be used as the polymer, but a polymer having high ionic conductivity to lithium ions is preferably used. Examples of such a polymer include polyethylene oxide, polypropylene oxide, polyethylene imide and the like.
  • the polymer solid electrolyte contains the above-mentioned polymer and the above-mentioned lithium salt, but it is also possible to add the above-mentioned solvent and use it as a gel electrolyte. That is, in this case, the electrolyte solution is made into a matrix by a polymer.
  • a known crystalline or amorphous solid electrolyte can be used for the inorganic substance.
  • L i 2 O-glass such as 0-6 1 B 205, 33.3 L i 20-6 6.7 S i ⁇ 2 and 0.45 L i I-0.37 L i 2 S-0.26 B 2 S 3 , 0.30 L i I-0.42 L i 2 S — 0.28 S i S 2 and other sulfide glasses.
  • a plurality of these can be used.
  • a separation is provided between the positive electrode and the negative electrode.
  • a microporous polymer film is used.
  • a polymer made of a polyolefin-based polymer such as polybutene can be used.
  • a nonwoven fabric filter made of glass fiber or the like, or a composite nonwoven fabric filter made of glass fiber and polymer fiber can also be used.
  • a polyolefin polymer is preferable, and it is preferable to be made of polyethylene from the viewpoint of the self-closing temperature, which is one of the purposes of the battery separation.
  • polyethylene separator it is preferably ultra-high molecular weight polyethylene from the viewpoint of high-temperature shape retention, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 150,000. It is ten thousand.
  • the upper limit of the molecular weight is preferably 500,000, more preferably 400,000, and most preferably 300,000. If the molecular weight is too large, the fluidity is too low and the pores of the separator may not be closed when heated.
  • Subineru type lithium manganese complex oxide L i [ ⁇ ⁇ L i O . 4] 0 4 was prepared as follows.
  • Lithium manganese composite oxide of the spinel-type L i [Mnj. 8 5 A 1 0.! ! L i o. O 4] 0 4 was prepared as follows.
  • Manganese sesquioxide (Mn 2 0 3), lithium carbonate (L i 2 C 0 3) , and alumina hydrate (A 100H) was used as a starting material, and that of an compound molar ratio is 0.9 4: It was blended so that 1.04: 0.10. Ethanol was added to this formulation and ground well in a mortar to form a uniform mixture.
  • the obtained mixture is heated in the air at 500 ° C (heating rate: 5 ° C / min), 600 ° C (heating rate: 5 ° C / min), 700 ° C (heating rate: 5 ° C / min) and 800 ° C (heating rate: 5 ° C / min) for 6 hours, then 900 ° C in air (heating rate: 5 °) C / min) for 24 hours, then cooled to 300 ° C. at a cooling rate of 0.2 ° C./min, and then slowly cooled down to room temperature by natural cooling. Elemental analysis showed that Li [Mn J. 96 Lio. 4] 0 4 was obtained.
  • the obtained spinel-type lithium manganese composite oxide was designated as lithium manganese composite oxide (B).
  • a mixture obtained by weighing 75% by weight of the obtained mixture, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene powder was sufficiently mixed in a mortar to form a positive electrode material. It was punched out with a punch of 12 mm ( ⁇ . At this time, the total weight was adjusted to be about 18 mg. This was pressed against aluminum expansive metal to form a positive electrode.
  • the initial desorption capacity was Q s (C) mAh / g
  • the initial insertion capacity was Q s (D) mAh / g.
  • PVdF polyvinylidene fluoride
  • NMP N-methyl bilolidon
  • This slurry was applied to one side of a copper foil 20 m thick, dried at 120 ° C to evaporate the solvent, punched out 12 mm, and shaken at 0.5 ton / cm 2 . After the treatment, the negative electrode was used.
  • Place the positive electrode on the positive electrode can, place a 25 ⁇ m porous polyethylene film as a separator on top of it, press it with a polypropylene gasket, place the negative electrode, and arrange a thickness adjustment space.
  • was impregnated sufficiently in addition to the batteries sealing said battery carrying the negative electrode can
  • a CR203 type coin-type battery was obtained.
  • the balance between the weight of the positive electrode active material and the weight of the negative electrode active material is almost
  • the obtained battery element was evaluated as follows. To compare the high temperature characteristics of the batteries obtained in this way,
  • constant current 0.2 C charge / discharge 2 cycles and constant current 1 C charge / discharge 1 cycle are performed at room temperature, and then constant current 0.2 C charge / discharge 1 cycle is performed at a high temperature of 50 ° C.
  • a cycle test of 100 charge / discharge cycles of C was performed.
  • the upper charging limit was 4.1 V and the lower limit voltage was 3.0 V.
  • the discharge capacity Qh (10 °) at the 100th cycle was compared with the discharge capacity Qh (1) at the 1st cycle in the 1C charge / discharge cycle test at 50 ° C.
  • the ratio is the high-temperature cycle capacity retention ratio P, that is,
  • This value was used to evaluate the high temperature characteristics of the battery.
  • the one-hour rate current value of the battery that is, 1 C
  • a battery was prepared and evaluated in the same manner as in Example 1 except that the lithium manganese composite oxide (B) was used instead of the lithium manganese composite oxide (A) as the lithium manganese composite oxide.
  • Table 1 shows the results.
  • Example 4 Using the lithium manganese composite oxide (B) in place of the lithium manganese composite oxide (A) as the lithium manganese composite oxide; and A battery was fabricated and evaluated in the same manner as in Example 1, except that the weight ratio of the manganese composite oxide to the layered lithium nickel oxide was 9: 1. Table 1 shows the results.
  • Example 4 Using the lithium manganese composite oxide (B) in place of the lithium manganese composite oxide (A) as the lithium manganese composite oxide; and A battery was fabricated and evaluated in the same manner as in Example 1, except that the weight ratio of the manganese composite oxide to the layered lithium nickel oxide was 9: 1. Table 1 shows the results.
  • Example 4 shows the results.
  • the lithium manganese composite oxide (B) was used in place of the lithium manganese composite oxide (A). Further, instead of the PF 6 anion decomposition inhibitor ( a ), those jet mill powder ⁇ in nitrogen in the same manner as in example 1 except for using (hereinafter i PF 6 decomposition inhibitor may be referred to as (b)), produce a battery was evaluated. Table 1 shows the results.
  • a lithium-manganese composite oxide (B), as PF 6 7 two on decomposition inhibitor 3- (N- salicyloyl) amino-1, 2 , 41-triazole (hereinafter sometimes referred to as PF 6 -dione decomposition inhibitor (C)) was added in an amount of 0.6 wt% based on the total weight of the lithium manganese composite oxide.
  • a battery was prepared in the same manner as in Example 1, except that the mixture was mixed with ethanol and vacuum-dried at 120 ° C for 1 hour, and the upper limit of charge during the cycle test was set to 4.2 V. , evaluated. Table 1 shows the results.
  • the battery was manufactured in the same manner as in Example 1, except that the lithium-manganese composite oxide (A) was used alone as the positive electrode active material, and that the upper limit of charge during the cycle test was set to 4.2 V. Were fabricated and evaluated. Table 1 shows the results.
  • a 200 mm thick, 16 mm-diameter circular aluminum expanded metal (current collector) and a 12 mm-diameter circular shape were formed on a tablet press.
  • the same positive electrode material as used, 24 mg, was stacked and set, and the positive electrode material was pressed against aluminum expanded metal at a pressure of 90 MPa to form a positive electrode.
  • a battery was fabricated device had use with. After charging the battery to a charging current density of 0.2 mA / cm 2 and an upper limit voltage of 4.2 V, the battery was disassembled so as not to cause a short circuit, and a positive electrode material in a charged state was obtained.
  • the battery element was a CR203 type coin-type battery. That is, a positive electrode is placed on a positive electrode can, a 25- ⁇ m porous polyethylene film is placed on the positive electrode can as a separator, pressed with a polypropylene gasket, and then a counter electrode is placed on the positive electrode can. After placing the sampler, add a mixed solution of ethylene carbonate and getyl carbonate in a volume ratio of 3: 7 with L i PF 6 concentration of l mol / L as a non-aqueous electrolyte solution in the battery. After soaking, the negative electrode can was placed and the battery was sealed.
  • the acid-treated lithium manganese composite was placed in a sealed polytetrafluoroethylene container with a content of about 15 ml, which was dried at 80 ° C for 3 hours in an argon gas atmosphere with a dew point of -75 ° C or less. and oxide 1 6 0 mg, PF 6 and Anion decomposition inhibitor 1 6 0 mg, the content of the acid component and P 0 2 F 2 Anion, it it 2. O mmo l / L or less and 0. 5 mm 0 1 / L or less and ethanol content detection limit (0. 0 1 mg) of the following, 1.
  • LiPF 6 decomposition inhibitor (a) (a) (a) (b) (c) (d)
  • a mixture of 75% by weight of the composite oxide to be measured, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene (PTFE) powder is weighed and mixed well in a mortar to form a thin sheet. It was punched into a circle with a punch. At this time, the total weight was adjusted to 12.5 mgZcm 2 in order to keep the thickness almost constant. This sample was further pressed against aluminum expanded metal to form a test electrode. The test electrode was dried at 120 ° C under reduced pressure for lhr.
  • PTFE polytetrafluoroethylene
  • a CR202 type coin-type battery was created in a dry box in an argon atmosphere. That is, the test electrode was placed on the positive electrode can, a 25 m porous polyethylene film was placed thereon as a separator, pressed with a polypropylene gasket, and a 15 mm0 lithium metal foil was placed as a counter electrode. After placing the thickness adjustment sensor, 1 liter of a mixed solvent of ethylene carbonate (EC) and getyl carbonate (DEC) in a volume ratio of 3: 7 is added to lithium fluoride (1 liter).
  • EC ethylene carbonate
  • DEC getyl carbonate
  • a solution in which 1 mol of L i PF 6 ) was dissolved was used as a non-aqueous electrolyte solution, and the solution was added to the inside of the battery and sufficiently permeated. Then, a negative electrode can was placed and the battery was sealed.
  • V e (Average charge voltage in the second cycle + Average discharge voltage in the second cycle) / 2
  • the average charge voltage or average discharge voltage in the above formula is obtained by measuring the voltage during charge or discharge at 2 second intervals. The value obtained by integrating the voltage with time is used for charging or discharging. It was calculated by dividing by the time required.
  • the initial charge capacity of the composite oxide (A) used in this test was Q c (A) mA h / g
  • the initial discharge capacity was Q d (A) mA h / g
  • the initial charge of the composite oxide (B) was The capacity was defined as Q c (B) mA / g
  • the initial discharge capacity was defined as Q d (B) mAh / g.
  • a mixture of the composite oxide (A) and the composite oxide (B) is used as a positive electrode active material.
  • a positive electrode was prepared in the same manner as in Example 1 except that the positive electrode was weighed at a ratio of 1.
  • a negative electrode was manufactured in the same manner as in Example 1.
  • a coin-type battery was assembled using the negative electrode as a test electrode and Li metal as a counter electrode in the same manner as when the average voltage of the composite oxide was measured, and the current was sufficiently low.
  • the initial insertion capacity for the test in which Li ions were inserted (lower limit 0 V) and desorbed (upper limit 1.5 V) into the negative electrode was Q (F) mA h / g.
  • a battery element was assembled in the same manner as in Example 1. At this time, the balance between the weight of the positive electrode active material and the weight of the negative electrode active material is determined by the weight of the composite oxide (B) in the mixture of the composite oxide (A) and the composite oxide (B). Calculate the ratio R from the following formula,
  • Amount of positive electrode active material [g] / Amount of negative electrode active material [g]
  • the ratio of the discharge capacity Qh (100) at the 100th cycle to the discharge capacity Qh (1) at the 1C cycle of the 100C test section at 50 ° C was determined by the following equation, and the high-temperature characteristics of the batteries were compared using this value of P.
  • L i is Subineru type was 0.04 molar substitution on Mn support wells L i M n 2 0 4, namely L i [Mn was 9 e L i. . 4] 0 4 was prepared in the same manner as in Preparation Example 1.
  • the average particle size of the obtained lithium manganese composite oxide was 4.
  • the average voltage measured by the above method was 4.060 V.
  • N i part of site is layered substituted with cobalt and aluminum L i N I_ ⁇ 2, i.e. ⁇ sales of L i [N i. 8 . C 0. . I 5 A 1. . 5 ] 0 2 composition (average particle size 6.2
  • a positive electrode was prepared by setting the weight mixing ratio R of the composite oxide (B) in the positive electrode active material to 0.5, and a high-temperature cycle test was performed by the above-described method to maintain the capacity after 100 cycles. The rate was determined. The results are shown in Table 1-2.
  • lithium manganese composite oxide having a spinel structure As the lithium manganese composite oxide having a spinel structure, it 0.04 lithium and aluminum in Mn site, 0.1 1 mol substituted spinel Le type L i Mn 2 0 4, namely L i tMnusA l o. ! : L i 0. 04 ] ⁇ 4 It was prepared in the same manner as in Preparation Example 2. The average particle size of the obtained lithium manganese composite oxide was 7.4 zm. The average voltage measured by the above method was 4.071 V.
  • Example 2 The same oxide as in Example 1 was used as the composite oxide (B), and a positive electrode was prepared by setting the weight mixing ratio R of the composite oxide (B) in the positive electrode active material to 0.5. The test was performed. The results are shown in Table 1-2.
  • Example 2 A high-temperature cycle test was performed in the same manner as in Example 2 except that the weight mixing ratio R of the composite oxide (B) in the positive electrode active material was set to 0.25. The results are shown in Table 1-2.
  • the composite oxide (B) used in Examples 7 to 9 was further pulverized in a nitrogen atmosphere, and this was newly used as the composite oxide (B) (average particle diameter 0.55 ⁇ m).
  • the average voltage of this composite oxide (B) was 3.786 V.
  • Example 9 The other conditions were the same as in Example 9 to prepare a positive electrode, and a high-temperature cycle test was performed by the method described above. The results are shown in Table 1-2.
  • Example 7 A high-temperature cycle test was performed in the same manner as in Example 7, except that the composite oxide (A) used in Example 7 was used alone as the positive electrode active material. The results are shown in Table 1-2.
  • Example 11 Comparative Example 4 for the third aspect of the present invention
  • spinel type LiMn 2 ⁇ 4 in which lithium and conjugate are substituted at Mn site by 0.04 and 0.10 mol, respectively, that is, LifMnus C o o. L i o. OJC was created by the following method.
  • Manganese sesquioxide (Mn 2 0 3), lithium carbonate (L i 2 C 0 3) , carbonate cobalt (C o C 0 3) was used as a starting material, it molar ratio of about 0.5 that of Compound 9 3 : 0.52: 0.10.
  • Ethanol was added to the mixture, and the mixture was ground well in a mortar to form a uniform mixture and then dried. The resulting mixture is airborne at 500 ° C for 6 hours, 600 ° C for 6 hours, 700 ° C for 6 hours, 800 ° C For 6 hours, and then calcined in air at 850 ° C. for 24 hours, and slowly cooled to room temperature at 0.2 ° C./min.
  • the average particle size of the obtained lithium manganese composite oxide was 5.2 zm.
  • the average voltage measured by the above method was 4.081 V.
  • Example 2 The same oxide as in Example 1 was used as the composite oxide (B), and a positive electrode was prepared by setting the weight mixing ratio R of the composite oxide (B) in the positive electrode active material to 0.5. The test was performed. The results are shown in Table 1-2.
  • Example 12 Comparative Example 5 for the third embodiment of the present invention
  • lithium manganese composite oxide having a Subineru structure commercially available unsubstituted L i M n 204 (elemental analysis:... L i ..Mn 2 ..0 4 with measuring the average voltage at said process As a result, it was 4.052 V.
  • Example 7 The same oxide as in Example 7 was used as the composite oxide (B), and a positive electrode was prepared with the weight mixing ratio R of the composite oxide (B) in the positive electrode active material being 0.5. The test was performed. The results are shown in Table 1-2.
  • Example 9 1.85 0.12 0.00 0.04 0.25 4.071 3.809 84%
  • Example 1 0 1.85 0.12 0.00 0.04 0.25 4.071 3.786 89%
  • Example 1 1 1.86 0.00 0.10 0.04 0.50 4.041 3.809 79%
  • Example 1 2 0.50 4.052 3.809 74% Comparative Example 3 1.96 0.00 0.00 0.04 0.00 4.060 65%
  • Example ⁇ in which the composite oxide (A) was a composite oxide in which part of the manganese site was replaced with lithium, exhibited very good high-temperature characteristics with a retention of 85% in a high-temperature 100-cycle test. You can see that.
  • the high-temperature cycle retention rate was further increased by substituting aluminum and using a composite oxide (A) having a high average voltage.
  • the mixing ratio of the composite oxide (B) is reduced as in Example 9
  • the high-temperature cycle retention rate slightly decreases, but as in Example 10, the average voltage of the composite oxide (B) is reduced. It can be seen that the use of a material improves the maintenance rate.
  • the positive electrode material with favorable high temperature characteristics when used as a lithium secondary battery, the positive electrode material with favorable high temperature characteristics can be provided. Further, according to the present invention, a lithium secondary battery having good high-temperature characteristics can be provided. Therefore, since inexpensive material manganese can be used practically as a cathode material, a high-performance, safe and inexpensive lithium secondary battery can be supplied to a wide range of uses, and its industrial value is great.

Abstract

A positive electrode material for a lithium secondary cell containing a manganese oxide and/or a lithium manganese composite oxide as a positive electrode active material and exhibiting a decomposed amount of PF6 anion as measured by the following storage test of 10 νmol or less, the storage test having the procedure that: a) a cell element is assembled which uses a positive electrode having a collector and, crimped thereto, 24 mg of a positive electrode material, a counter electrode comprising Li, and a mixed solution from EC and DMC containing 1.0 mol/l of LiPF6 as an electrolyte, and the cell element is charged with a charge current density of 0.2 mA/cm2 until a high limit of 4.2 V and then destructed; the positive electrode is taken out and immersed b) under an argon gas atmosphere, c) in a dried PTFE container, d) into a mixed solution from EC and DEC containing 1.0 mol/l of LiPF¿6?, and is e) stored for a week at 80°C; and a decomposed amount of PF6 anion is determined through measuring the amounts of PF6 anion in the mixed solution before and after the storage.

Description

明 細 リチウム二次電池用正極材料、 リチウム二次電池用正極及びリチウム二次電池 技術分野  Description Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
本発明はリチウム二次電池用の正極材料に関し、 特にリチウム二次電池の高 温特性を向上させる正極材料に関するものであり、 更には該正極材料を含有す る正極、 該正極を構成要素とする電池に関する。 背景技術  The present invention relates to a positive electrode material for a lithium secondary battery, and more particularly to a positive electrode material for improving high temperature characteristics of a lithium secondary battery, and further relates to a positive electrode containing the positive electrode material, and the positive electrode as a constituent element. Battery. Background art
リチウム二次電池の正極活物質として、 マンガンとリチウムの複合酸化物で あるスビネル構造を有する L i M n 2 0 4が提案され、 研究が盛んに行われてい る。 高電圧 · 高エネルギー密度であり、 加えてコバルトやニッケルに比較して 埋蔵量が多く、 安価というメ リ ッ トも有している。 また、 これまで問題とされ てきた常温下における充放電サイクル寿命においては、 実用段階レベルまで改 善されてきている。 しかし、 このようなマンガン系リチウム二次電池は高温安 定性に劣るという問題を抱えているため、 高温環境下において使用されるよう な需要に対しては実用レベルに達していなのが現状である。 As a cathode active material for a lithium secondary battery is proposed L i M n 2 0 4 with a Subineru structure is a composite oxide of manganese and lithium, studies that have been conducted actively. It has the advantages of high voltage, high energy density, more reserves than cobalt and nickel, and low cost. In addition, the charge-discharge cycle life at room temperature, which has been a problem, has been improved to the practical stage. However, such a manganese-based lithium secondary battery has a problem that its high-temperature stability is inferior. Therefore, at present, it has not reached a practical level for demands used in a high-temperature environment.
従来、 高温安定性の改良に関しては、 高温環境下でのサイクル特性改良や保 存特性改良を目的とした種々の検討が行われ、 報告されている。 例えば、 Journ al of P ower Sources 74( 1998 )228-233 では、 M nの一部を C oで置換したも のが提案され、 E lectrochemi cal Soc iety Proceedings Volume97- 18.49 では、 M nの一部を C oで置換したり、 酸素の一部を Fで置換したものが高温サイク ル特性の改善効果があるということが開示されている。 また、 特開平 8 - 2 6 4 1 8 3号公報では、 活物質表面に金属フッ化物からなる被膜を設けることが 開示され、 特開平 8 - 2 1 3 0 1 4号公報では、 活物質をフッ素化処理するな ど表面改質を行うことで高温下での保存特性改良を図っている。 また、 特開平 1 0 - 1 2 5 3 0 7号公報では、 正極活物質表面をアミ ノ基を含む有機物によ り被覆することが報告されている。 更に、 スピネル型リチウムマンガン複合酸化物の改良例として、 層状のリチ ゥムコバルト複合酸化物や、 層状のリチウムニッケル複合酸化物、 さらにはこ れらの他金属置換体をスピネル型リチウムマンガン複合酸化物に混合する例が 知られている。 例えば、 スピネル型リチウムマンガン複合酸化物と層状のリチ ゥムコバル ト複合酸化物とを混合して、 サイクル特性の向上を図る例( 特許第 2 7 5 1 6 2 4 号公報) や、 リチウムニッケルコノ ルトアルミニゥム複合酸化 物と リチウムマンガン複合酸化物とを混合して、 安価で安全性の高い電池を提 供する例(特開平 1 1 一 5 4 1 2 0号公報) 等が知られている。 In the past, various studies have been conducted on the improvement of high-temperature stability with the aim of improving cycle characteristics and storage characteristics under high-temperature environments, and reports have been made. For example, in Journal of Power Sources 74 (1998) 228-233, it is proposed that a part of M n is replaced by C o, and in Electrochemical Society Proceedings Volume 97-18.49, a part of M n is proposed. It is disclosed that substituting C with Co or substituting a part of oxygen with F has an effect of improving high-temperature cycle characteristics. In addition, Japanese Patent Application Laid-Open No. Hei 8-264314 discloses providing a coating made of metal fluoride on the surface of the active material, and Japanese Patent Application Laid-Open No. Hei 8-231304 discloses that the active material is The surface properties such as fluorination are modified to improve the storage characteristics at high temperatures. In addition, Japanese Patent Application Laid-Open No. 10-125307 reports that the surface of the positive electrode active material is coated with an organic substance containing an amino group. Further, as an improved example of the spinel-type lithium-manganese composite oxide, a layered lithium-cobalt composite oxide, a layered lithium-nickel composite oxide, and these other metal-substituted materials are converted into a spinel-type lithium-manganese composite oxide. Examples of mixing are known. For example, a spinel-type lithium manganese composite oxide and a layered lithium cobalt composite oxide are mixed to improve cycle characteristics (Japanese Patent No. 27151624), and lithium nickel cobalt aluminum is used. There is known an example in which a composite oxide and a lithium manganese composite oxide are mixed to provide an inexpensive and highly safe battery (Japanese Patent Application Laid-Open No. H11-154120).
しかしながら、 マンガン系複合酸化物を用いる電池にとっての大きな問題点 は高温環境下でのサイ クル特性や保存特性が悪いことであり、 この改善がなさ れるかどうかについては充分議論されておらず、 まして高温環境下でのサイ ク ル特性や保存特性の改善にとってどの様なマンガン系複合酸化物と、 どの様な 化合物の組み合わせがよいかは全く議論されていなかった。  However, a major problem with batteries using manganese-based composite oxides is poor cycle and storage characteristics under high-temperature environments, and it has not been sufficiently discussed whether this improvement can be achieved. There was no discussion on what manganese-based composite oxide and what combination of compounds should be used to improve the cycle characteristics and storage characteristics under high temperature environments.
上記従来の技術では、 未だ高温環境下でのサイ クル特性や保存特性は不十分 であり、 さらなる高温安定性や高温環境下でのサイクル特性の向上が強く望ま れていた。  With the above-mentioned conventional technology, the cycle characteristics and storage characteristics under a high-temperature environment are still insufficient, and further improvement in high-temperature stability and cycle characteristics under a high-temperature environment has been strongly desired.
本発明の目的は、 高温安定性や高温サイクル特性等の高温特性に優れる リチ ゥムイオン二次電池に使用できるマンガン系化合物を提供することにある。 発明の開示  An object of the present invention is to provide a manganese-based compound which is excellent in high-temperature characteristics such as high-temperature stability and high-temperature cycle characteristics and can be used for a lithium ion secondary battery. Disclosure of the invention
本発明者らは鋭意検討を重ねた結果、 従来のリチウムマンガン複合酸化物を 含む正極は、 より高温の環境下で、 電解液中において L i P F 6塩の分解を促進 し、 P 0 2 F 2ァニオンを生成させることを見出した。 また、 この分解反応は正 極の状態に依存し、 充電端状態で著しく進行することも見出した。 更に、 この L i P F 6の分解反応を著しく引き起こすような正極を用いたリチウム二次電 池は、 特に高温下での性能の劣化が著しいことを見出した。 また、 L i P F 6 の分解反応は、 添加剤の使用や正極の組成だけでなく、 正極の粒径等様々な因 子によって決定されることも見出した。 以上よ り、 本発明者らは、 L i P F 6 の分解反応の生じ易さを指標として、 L i P F 6の分解が生じにくい正極を使用 すれば高温特性に優れたリチウムニ次電池とすることができることを見出し、 本発明を完成するに至った。 The present inventors have result of intensive studies, the positive electrode containing the conventional lithium-manganese composite oxide is more under a high temperature environment, promoting the degradation of L i PF 6 salt in the electrolytic solution, P 0 2 F It was found that two anions were generated. It was also found that this decomposition reaction depends on the state of the positive electrode and progresses remarkably in the charged end state. Further, lithium secondary batteries decomposition reaction using the positive electrode as a cause significantly in the L i PF 6 was particularly found that significant performance degradation at high temperatures. Further, the decomposition reaction of L i PF 6 not only use and composition of the positive electrode of the additive has also been found to be determined by the particle diameter and the like various factors of the positive electrode. Ri above, the present inventors as an index the resulting ease of decomposition reaction of L i PF 6, using a hard positive electrode occurs decomposition of L i PF 6 It has been found that a lithium secondary battery having excellent high-temperature characteristics can be obtained by doing so, and the present invention has been completed.
即ち、 本発明の第 1 の要旨は、 下記 ( 1 ) 〜 ( 2 0 ) に存する。  That is, the first gist of the present invention resides in the following (1) to (20).
( 1 ) マンガン酸化物及び/又はリチウムマンガン複合酸化物を正極活物質 として含有する リチウム二次電池用正極材料において、 該正極材料を用いて電 池素子を作成し、 これを充電した正極材料の保存試験である下記保存試験 ( I ) によって測定される P F 6ァニオンの分解量が 1 x l 0〃 m o 1以下であるこ とを特徴とする リチウム二次電池用正極材料。 (1) In a positive electrode material for a lithium secondary battery containing a manganese oxide and / or a lithium manganese composite oxide as a positive electrode active material, a battery element is prepared using the positive electrode material, and the positive electrode material charged with this is used. A positive electrode material for a lithium secondary battery, wherein the amount of PF 6 anion decomposed measured by the following storage test (I) is 1 xl 0〃mo 1 or less.
保存試験 ( I ) Storage test (I)
a 1 ) 2 4 m gの正極材料を直径 1 2 mmの円形状に成形し、 集電体 (直径 1 6 mmの円形状のアルミニゥムのエキスパン ドメタル) に圧着してなる正極と、 対極として L i金属、 電解液として 1 . O mo l/Lの L i P F 6を含むェチレ ンカーボネー トとジェチルカ一ポネートとの混合液 (体積比 3 : 7 ) を使用し て電池素子を組み立て、 これを充電電流密度 0. 2 mA/c m2で上限電圧 4. 2 Vまで充電した後、 次いで電池素子を解体し、 充電状態にある正極を取り出 し、 該正極を、 a 1) A positive electrode formed by molding 24 mg of the positive electrode material into a circular shape with a diameter of 12 mm, and crimping it to a current collector (circular aluminum expanded metal with a diameter of 16 mm). i metal, 1 O mo l / L mixture of Echire Nkabone bets and Jechiruka one Poneto containing L i PF 6 (volume ratio 3: 7) as the electrolytic solution. assembled battery element was used to charge this After charging to an upper limit voltage of 4.2 V at a current density of 0.2 mA / cm 2 , the battery element is then disassembled, and the charged positive electrode is taken out.
b 1 ) 露点が— Ί 5 °C以下のアルゴンガス雰囲気下 b 1) In an argon gas atmosphere with a dew point of —5 ° C or less
c 1 ) 8 0 °Cで 3時間乾燥させたポリテ トラフルォロエチレン容器内で、 d 1 ) 1 . O mo l/Lの L i P F 6を含む、 エチレン力一ポネート 1 . 5 m l とジェチルカ一ボネート 3 . 5 m 1 との混合液 (酸分 : 2. 0 mm o l /L以 下、 P 02 F 2ァニオン : 0. 5 mmo l/L以下、 且つエタノール : 0. 0 1 mg以下) 中に浸漬し、 c 1) 8 0 ° 3 hours Porite trough Ruo ii ethylene vessel dried at C, d 1) 1. containing O mo l / L of L i PF 6, ethylene force one Poneto 1. 5 ml and Jechiruka Liquid mixture with 3.5 ml of monocarbonate (acid content: 2.0 mmol / L or less, P 2 F 2 anion: 0.5 mmol / L or less, and ethanol: 0.01 mg or less) Dipped in
e 1 ) 8 0 °Cで一週間 e 1) One week at 80 ° C
保存し、 保存前後の混合液中の P F 6ァニオンの量をそれそれ測定 (測定温度 : 2 0 °C) し、 その差から P F 6ァ二オン分解量を求める。 Save, PF 6 The amount of Anion it it measurement (measurement temperature: 2 0 ° C) in the mixture before and after the storage, and obtains the PF 6 § two on amount of degradation from the difference.
( 2 ) 保存試験 ( I ) に従って得られた保存後の液中に含まれる P 02 F 2ァ 二オンの量が、 2 0 °〇で 1 1 0〃111 0 1以下でぁる ( 1 ) のリチウム二次電 池用正極材料。 (2) The amount of P 0 2 F 2 ion contained in the solution after storage obtained according to the storage test (I) is less than 110 1111 0 1 at 20 ° (1 ) Cathode materials for lithium secondary batteries.
( 3 ) 正極材料がバイ ンダー樹脂を含有する ( 1 ) 又は ( 2 ) に記載のリチ ゥム二次電池用正極材料。 (3) The cathode according to (1) or (2), wherein the cathode material contains a binder resin. Positive electrode material for aluminum secondary batteries.
( 4 ) 正極材料中に、 P F 6ァ二オン分解抑制剤が分散混合されていることを 特徴とする ( 1 ) 乃至 ( 3 ) のいずれか 1つに記載のリチウム二次電池用正極 材料。 (4) The positive electrode material for a lithium secondary battery according to any one of (1) to (3), wherein a PF 6 anion decomposition inhibitor is dispersed and mixed in the positive electrode material.
( 5 ) マンガン酸化物及び/又はリチウムマンガン複合酸化物からなる正極 活物質と P F 6ァ二オン分解抑制剤とを含有する リチウムニ次電池用正極材料 において、 該 P F 6ァニオン分解抑制剤として、 下記保存試験 (II) によって測 定される P F 67二オンの分解量が 6 X 1 0 j o 1以下であるものを使用す ることを特徴とする リチウム二次電池用正極材料。 (5) In the manganese oxide and / or positive electrode material for lithium secondary batteries containing a lithium-manganese composite oxide having a positive electrode active material and PF 6 § two on decomposition inhibitor, as the PF 6 Anion decomposition inhibitor, following A positive electrode material for a lithium secondary battery, characterized in that a material having a decomposition amount of PF 67 2one measured by a storage test (II) of 6 × 10 jo 1 or less is used.
保存試験 (II) Storage test (II)
a 2 ) L i 1 + xMn2 x4 (ここで、 0 ^χ≤ 0. 0 5 ) なる組成のスピネル 構造を有する リチウムマンガン複合酸化物のリチウムを抜き出した、 満充電状 態に相当する リチウムマンガン複合酸化物 ( 0. 0 5 ≤ L 1/1^ 11モル比≤ 0. 0 9 ) 1 6 0 m gを、 a 2) Li 1 + x Mn 2 x4 (here, 0 ^ χ ≤ 0.05) A lithium-manganese composite oxide with a spinel structure of the composition extracted from lithium, equivalent to a fully charged state Lithium-manganese composite oxide (0.05 ≤ L 1/1 ^ 11 molar ratio ≤ 0.09)
b 2 ) 露点が— 7 5 °C以下のアルゴンガス雰囲気下で、 b 2) In an argon gas atmosphere with a dew point of --75 ° C or less,
c 2 ) 8 0 で 3時間乾燥させたポリテ トラフルォロェチレン容器内で、 d 2 ) 前記 P F 6ァ二オン分解抑制剤 1 6 0 mgと混合し、 c 2) d2) In a polytetrafluoroethylene container dried for 3 hours at 80, d 2) mixed with 160 mg of the above-mentioned PF 6 -dione decomposition inhibitor,
e 2 ) 1 . O m o l /Lの L i P F 6を含む、 エチレンカーボネート 2. 4 m l ジェチルカ一ボネート 5. 6 m lの混合液 (酸分 : 2 . O mm o l /L以下、 P〇 2 F 2ァニオン : 0. 5 mm o l/L以下、 且つエタノール : 0. 0 l m g 以下) 中に浸漬し、 . e 2) 1 including O mol / L of L i PF 6, ethylene carbonate 2. 4 ml Jechiruka one Boneto 5. mixture of 6 ml (acid content:. 2 O mm ol / L or less, P_〇 2 F 2 Anion: 0.5 mmol / L or less, and Ethanol: 0.0 lmg or less)
f 2 ) 7 0 °Cで一週間 f 2) One week at 70 ° C
保存し、 保存前後の混合液中の P F 6ァニオンの量を測定 (測定温度 : 2 0 °C) し、 P F 6ァニオン分解量を求める。 Save, measure the amount of PF 6 anion in the mixture before and after storage (measurement temperature: 20 ° C), and determine the amount of PF 6 anion decomposed.
( 6 ) 保存試験 (Π) に従って得られた保存後の液中に含まれる P 02 F 2ァ 二オンの量が、 2 0 °〇で 5 1 0〃111 0 1以下でぁる ( 5 ) に記載のリチウム 二次電池用正極材料。 (6) Storage test The amount of P 0 2 F 2 ion contained in the solution after storage obtained according to (Π) is less than 5 10〃111 0 1 at 20 ° 〇 (5 The positive electrode material for a lithium secondary battery according to).
( 7 ) 保存試験 (II) の保存をさらに 2週間延長した際の、 保存後の液中に 含まれるエタノールの量が、 l mg以下である ( 5 ) 又は ( 6 ) に記載のリチ ゥム二次電池用正極材料。 (7) Storage test When the storage of (II) is extended for another two weeks, the amount of ethanol contained in the solution after storage is lmg or less, and the amount of ethanol described in (5) or (6) Positive electrode material for aluminum secondary batteries.
( 8 ) P F 6ァニオン分解抑制剤が分散混合されていることを特徴とする ( 5 ) 乃至 ( 7 ) のいずれか 1つに記載のリチウム二次電池用正極材料。 (8) The positive electrode material for a lithium secondary battery according to any one of (5) to (7), wherein a PF 6 anion decomposition inhibitor is dispersed and mixed.
( 9 ) P F 6ァニオン分解抑制剤が、 リチウムニッケル複合酸化物を含有する (4) 乃至 ( 8) のいずれか 1つに記載のリチウム二次電池用正極材料。 (9) The positive electrode material for a lithium secondary battery according to any one of (4) to (8), wherein the PF 6 anion decomposition inhibitor contains a lithium nickel composite oxide.
( 1 0 ) P F 6ァニオン分解抑制剤が、 元素周期律表の 1 5族及び 1 6族から なる群から選ばれた少なく とも 1種の元素を含有する化合物、 分子内に少なく とも 2級のアミノ基を有する化合物、 分子内に少なく とも 3級のアミ ノ基を有 する化合物、 分子内に少なく とも 1つのアミ ド結合を有する化合物、 分子内に 少なく とも 1つの含窒素複素環を有する化合物、 又は分子内に少なく とも 1つ の水酸基を有する化合物を含有する (4 ) 乃至 ( 8 ) のいずれか 1つに記載の リチウム二次電池用正極材料。 (1 0) PF 6 Anion decomposition inhibitor, 1 group 5 and 1 at least selected from the group consisting of Group 6 containing one element compounds of the Periodic Table of the Elements, at least 2 class in the molecule Compounds having an amino group, compounds having at least a tertiary amino group in the molecule, compounds having at least one amide bond in the molecule, compounds having at least one nitrogen-containing heterocycle in the molecule Or the positive electrode material for a lithium secondary battery according to any one of (4) to (8), containing a compound having at least one hydroxyl group in a molecule.
( 1 1 ) P F 6ァニオン分解抑制剤の添加量が、 正極活物質に対して 0. 0 0 0 1〜 8 0 七%の範囲にある (4 ) 乃至 ( 1 0 ) のいずれか 1つに記載のリ チウムニ次電池用正極材料。 (11) The addition amount of the PF 6 anion decomposition inhibitor is in the range of 0.0001 to 80% with respect to the positive electrode active material, which is one of (4) to (10). The positive electrode material for a lithium secondary battery as described above.
( 1 2 ) P F 6ァ二オン分解抑制剤の添加量が、 正極活物質に対して 1 ~ 8 0 wt %の範囲にある ( 9 ) に記載のリチウム二次電池用正極材料。 (12) The positive electrode material for a lithium secondary battery according to (9), wherein the amount of the PF 6 anion decomposition inhibitor added is in the range of 1 to 80 wt% with respect to the positive electrode active material.
( 1 3 ) P F 6ァニオン分解抑制剤の添加量が、 正極活物質に対して 0. 0 0 0 1〜 1 Owt %の範囲にある ( 1 0 ) に記載のリチウム二次電池用正極材料。 (13) The positive electrode material for a lithium secondary battery according to (10), wherein the amount of the PF 6 anion decomposition inhibitor is in the range of 0.001 to 1 Owt% based on the positive electrode active material.
( 1 4) マンガン酸化物及び/又はリチウムマンガン複合酸化物が、 スビネ ル型構造を有し、 マンガンサイ 卜の一部が典型元素から選ばれる少なく とも 1 種の元素で置換されたリチウムマンガン複合酸化物である ( 1 ) 乃至 ( 1 3 ) のいずれか 1つに記載のリチウムイオン二次電池用正極材料。  (14) The manganese oxide and / or lithium manganese composite oxide has a subinel-type structure, and a part of the manganese site is replaced with at least one element selected from typical elements. The positive electrode material for a lithium ion secondary battery according to any one of (1) to (13), which is an oxide.
( 1 5 ) マンガンサイ トの一部を置換する典型元素が、 アルミニウム及び/ 又はリチウムであることを特徴とする ( 1 4 ) に記載のリチウムイオン二次電 池用正極材料。  (15) The positive electrode material for a lithium ion secondary battery according to (14), wherein the typical element that replaces part of the manganese site is aluminum and / or lithium.
( 1 6 ) 典型元素の置換量が、 マンガン 2モルの中 0. 0 5モル以上である ことを特徴とする ( 1 4 ) 又は ( 1 5 ) に記載のリチウムイオン二次電池用正 極物質。 ( 1 7 ) 正極材料が、 スピネル型構造を有する リチウムマンガン複合酸化物 及び層状構造を有する リチウムニッケル複合酸化物とを含有し、 該リチウムマ ンガン複合酸化物のマンガンサイ トの一部が他元素で置換されていて、 該他元 素置換リチウムマンガン複合酸化物の下記測定方法 ( I ) で測定される平均電 圧が、 4. 0 5 9 V以上であることを特徴とする ( 1 ) 乃至 ( 9 ) 、 ( 1 1 ) 、 ( 1 2 ) 及び ( 1 4 ) 乃至 ( 1 6 ) のいずれか 1 つに記載のリチウムイオン二 次電池用正極材料。 (16) The positive electrode material for a lithium ion secondary battery according to (14) or (15), wherein the substitution amount of the typical element is 0.05 mol or more in 2 mol of manganese. . (17) The positive electrode material contains a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, and a part of the manganese site of the lithium manganese composite oxide is composed of another element. (1) to (9), wherein the average voltage measured by the following measuring method (I) of the substituted element-substituted lithium manganese composite oxide is 4.059 V or more. 9) The positive electrode material for a lithium ion secondary battery according to any one of (11), (12), and (14) to (16).
<平均電圧の測定方法 ( I ) > <Measurement method of average voltage (I)>
① 当該複合酸化物を 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ ト ラフロロエチレン (P T F E) パウダー 5重量%の割合で秤量したものを混合 し、 薄くシート状にする。 全体重量が 1 2. 5mgZcm2になるように調整し た後、 この試料をさらにアルミニウムのエキスパン ドメタルに圧着して試験極 とする。 試験極は減圧下 1 2 0°Cで 1時間の乾燥を行う。 (1) The composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at 5% by weight, and mixed to form a thin sheet. After adjusting the total weight to 12.5 mgZcm 2 , this sample is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
② アルゴン雰囲気下、 2 5 /mの多孔性ポリエチレンフィルムをセパレー夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレン力一ポネートとジェチルカ一ポネートとの体積比 3 : 7の混合溶媒に 1 モル /リ ツ トルの六フッ化リン酸リチウム ( L i P F 6 ) を溶解させた溶液を 用いて、 C R 2 0 3 2型のコイン型電池を作製する。 (2) Under an argon atmosphere, a 25 / m porous polyethylene film was used as a separator, lithium metal foil was used as a counter electrode, and a nonaqueous electrolyte solution was used. : with 1 mol / Li Tsu solution obtained by dissolving lithium hexafluorophosphate (L i PF 6) of torr to 7 mixed solvent, to prepare a coin-type battery of CR 2 0 3 2 type.
③ 得られたコイン型電池を、 2 5 °Cの環境下で、 電流密度 0. 5 mA/c m2 の定電流充放電サイクル (充電上限 4. 3 5 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを ③ The obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C. The average voltage V e
V e = ( 2サイクル目の充電平均電圧 + 2サイ クル目の放電平均電圧) / 2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割ることにより算出する。  The average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
( 1 8 ) リチウムニッケル複合酸化物が、 下記測定方法 (Π) で測定した際 に、 平均電圧 3. 8 3 0 V以下である リチウムニッケル複合酸化物であること を特徴とする ( 1 4 ) 乃至 ( 1 7 ) のいずれか 1 つに記載のリチウムイオン二 次電池用正極材料。 (18) The lithium-nickel composite oxide has an average voltage of 3.830 V or less when measured by the following measurement method (Π). (14) To lithium ion secondary battery according to any one of (17) to (17). Positive electrode material for secondary batteries.
<平均電圧の測定方法 (Π) >  <Measurement method of average voltage (Π)>
① リチウムニッケル複合酸化物 7 5重量% 、 アセチレンブラック 2 0重量% - ポリテ トラフロロエチレンパウダー 5重量%の割合で混合し、 薄く シー ト状に 成形する。 全体重量が 1 2. 5mg/cm2になるように調整した後、 このシー トをさらにアルミニウムのエキスパン ドメタルに圧着して試験極とする。 試験 極は減圧下 1 2 0°Cで 1時間の乾燥を行う。 ① Lithium-nickel composite oxide 75% by weight, acetylene black 20% by weight-polytetrafluoroethylene powder 5% by weight and mix to form a thin sheet. After adjusting the total weight to 12.5 mg / cm 2 , this sheet is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
② アルゴン雰囲気下、 2 5〃mの多孔性ポリエチレンフィルムをセパレ一夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液と して、 エチレンカーボネート とジェチルカーボネート との体積比 3 : 7の混合溶媒に 1モル/リ ツ トルの六フヅ化リ ン酸リチウム ( L i P F 6 ) を溶解させた溶液を 用いて、 CR 2 03 2型のコイ ン型電池を作製する。 ② In an argon atmosphere, a porous polyethylene film of 25 2m was used as the separator, lithium metal foil was used as the counter electrode, and the volume ratio of ethylene carbonate and getyl carbonate was used as the non-aqueous electrolyte solution. 3: 7 six full Uz potash lithium phosphate mixtures 1 mol / Li tree torr solvent (L i PF 6) using a solution obtained by dissolving as to produce a coin-type battery of CR 2 03 2 type .
③ 得られたコイン型電池を、 2 5 °Cの環境下で、 電流密度 0. 2 mA/cm2 の定電流充放電サイクル (充電上限 4. 2 V、 放電下限 3. 2 V) を行い、 平 均電圧 V eを ③ The obtained coin battery was subjected to a constant current charge / discharge cycle with a current density of 0.2 mA / cm 2 (charge upper limit 4.2 V, discharge lower limit 3.2 V) at 25 ° C. , The average voltage V e
V e = ( 2サイ クル目の充電平均電圧 + 2サイクル目の放電平均電圧) / 2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割った値である。  The average charge voltage or average discharge voltage is the value obtained by measuring the voltage during charge or discharge at 2-second intervals and integrating the voltage over time by the time required for charge or discharge.
( 1 9 ) リチウムマンガン複合酸化物とリチウムニッケル複合酸化物との合 計量に対する リチウムニッケル複合酸化物の重量比が 0. 7以下であることを 特徴とする ( 1 4) 乃至 ( 1 8 ) のいずれか 1つに記載のリチウムイオン二次 電池用正極材料。  (19) The method according to (14) to (18), wherein the weight ratio of the lithium nickel composite oxide to the total weight of the lithium manganese composite oxide and the lithium nickel composite oxide is 0.7 or less. The positive electrode material for a lithium ion secondary battery according to any one of the above.
( 2 0 )保存試験 ( I )又は (Π)後の液中の P F 6ァニオンの分解物の 8 0 % 以上が P〇 2 F 2ァニオンである ( 1 ) 乃至 ( 1 9 ) のいずれか 1つに記載のリ チウムニ次電池用正極材料。 (2 0) either storage test (I) or ([pi) 8 0% of PF 6 Anion degradation products in the solution after it is P_〇 2 F 2 Anion (1) to (1-9) 1 The positive electrode material for lithium secondary batteries described in (1).
更に本発明者らは、 マンガンサイ 卜の一部を特定の元素で置換したスピネル 型構造を有する リチウムマンガン複合酸化物と層状構造を有する リチウムニッ ケル複合酸化物とを併用すると、 高温特性をはじめとする電池特性が格段に向 上すること、 スピネル型構造を有するリチウムマンガン複合酸化物と層状構造 を有する リチウムニッケル複合酸化物とを併用するに際し、 リチウムマンガン 複合酸化物として、 通常よ りも相対的に高めの平均電圧のものを使用すれば、 高温特性をはじめとする電池特性が格段に向上することをも見いだした。 Further, the present inventors have proposed a lithium manganese composite oxide having a spinel structure in which a part of a manganese site has been replaced with a specific element, and a lithium manganese composite oxide having a layered structure. When used in combination with Kel composite oxide, battery characteristics including high-temperature characteristics are remarkably improved, and when lithium manganese composite oxide having spinel structure and lithium nickel composite oxide having layer structure are used together. However, they also found that the use of lithium manganese composite oxides with an average voltage relatively higher than usual significantly improved battery characteristics, including high-temperature characteristics.
即ち、 本発明の第 2の要旨は、 下記 ( 2 1 ) 〜 ( 2 6 ) に存する。  That is, the second gist of the present invention resides in the following (21) to (26).
( 2 1 ) スピネル型構造を有する リチウムマンガン複合酸化物及び層状構造 を有する リチウムニッケル複合酸化物を含有する リチウムイオン二次電池用正 極材料であって、 該リチウムマンガン複合酸化物のマンガンサイ 卜の一部が典 型元素から選ばれる少なく とも 1種の元素で置換されていることを特徴とする リチウムイオン二次電池用正極材料。  (21) A positive electrode material for a lithium ion secondary battery containing a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, wherein the manganese site of the lithium manganese composite oxide A positive electrode material for a lithium ion secondary battery, characterized in that a part of the material is replaced with at least one element selected from typical elements.
( 2 2 ) マンガンサイ トの一部を置換する典型元素が、 アルミニゥム及び/ 又はリチウムであることを特徴とする ( 2 1 ) に記載のリチウムイオン二次電 池用正極材料。  (22) The positive electrode material for a lithium ion secondary battery according to (21), wherein the typical element that substitutes a part of the manganese site is aluminum and / or lithium.
( 2 3 ) 典型元素の置換量が、 マンガン 2モルの中 0. 0 5モル以上である ことを特徴とする ( 2 1 ) 又は ( 2 2 ) に記載のリチウムイオン二次電池用正 極材料。  (23) The positive electrode material for a lithium ion secondary battery according to (21) or (22), wherein the substitution amount of the typical element is 0.05 mol or more in 2 mol of manganese. .
( 2 4 ) スピネル型構造を有する リチウムマンガン複合酸化物及び層状構造 を有する リチウムニッケル複合酸化物とを含有する リチウムィオン二次電池用 正極材料であって、 該リチウムマンガン複合酸化物のマンガンサイ トの一部が 他元素で置換されていて、 該他元素置換リチウムマンガン複合酸化物の下記測 定方法 ( I ) で測定される平均電圧が、 4. 0 5 9 V以上であることを特徴と する リチウムイオン二次電池用正極材料。  (24) A positive electrode material for a lithium ion secondary battery, comprising a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, wherein the manganese site of the lithium manganese composite oxide Is partially replaced by another element, and the average voltage of the other element-substituted lithium manganese composite oxide measured by the following measurement method (I) is 4.059 V or more. A positive electrode material for lithium ion secondary batteries.
<平均電圧の測定方法 ( I ) > <Measurement method of average voltage (I)>
① 当該複合酸化物を 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ ト ラフロロエチレン (P T F E) パウダ一 5重量%の割合で秤量したものを混合 し、 薄く シート状にする。 全体重量が 1 2. 5 mg/c m2になるように調整し た後、 この試料をさらにアルミニウムのエキスパン ドメタルに圧着して試験極 とする。 試験極は減圧下 1 2 0 °Cで 1時間の乾燥を行う。 ② アルゴン雰囲気下、 2 5 mの多孔性ボリエチレンフィルムをセパレ一タ とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネートとジェチルカ一ボネートとの体積比 3 : 7の混合溶媒に 1モル/リ ツ トルの六フヅ化リン酸リチウム ( L i P F 6 ) を溶解させた溶液を 用いて、 C R 2 03 2型のコイン型電池を作製する。 (1) The composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at a ratio of 5% by weight, and mixed to form a thin sheet. After adjusting the total weight to be 12.5 mg / cm 2 , this sample is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure. (2) Under an argon atmosphere, a porous polyethylene film of 25 m is used as a separator, a lithium metal foil is used as a counter electrode, and a nonaqueous electrolyte solution is used, in which the volume ratio of ethylene carbonate and getyl carbonate is 3: using a solution prepared by dissolving 1 mol / Li tree torr six full Uz lithium phosphate (L i PF 6) 7 mixed solvent, to prepare a coin-type battery of CR 2 03 2 type.
③ 得られたコイン型電池を、 2 5 °Cの環境下で、 電流密度 0. 5 mA/cm2 の定電流充放電サイクル (充電上限 4. 3 5 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを ③ The obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C. The average voltage V e
V e = ( 2サイクル目の充電平均電圧 + 2サイクル目の放電平均電圧) / 2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割ることにより算出する。  The average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
( 2 5 ) リチウムニッケル複合酸化物が、 下記測定方法 (II) で測定した際 に、 平均電圧 3. 8 3 0 V以下である リチウムニッケル複合酸化物であること を特徴とする ( 2 1 ) 乃至 ( 24 ) のいずれか 1つに記載のリチウムイオン二 次電池用正極材料。  (25) The lithium-nickel composite oxide is characterized by having an average voltage of 3.830 V or less when measured by the following measurement method (II). (21) The positive electrode material for a lithium ion secondary battery according to any one of claims 24 to 25.
<平均電圧の測定方法 (II) > <Measurement method of average voltage (II)>
① リチウムニッケル複合酸化物 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ トラフロロエチレンパウダー 5重量%の割合で混合し、 薄く シート状に 成形する。 全体重量が 1 2. 5mgZcm2になるように調整した後、 このシ一 トをさらにアルミニウムのエキスパン ドメタルに圧着して試験極とする。 試験 極は減圧下 1 2 0°Cで 1時間の乾燥を行う。 (1) Mix 75% by weight of lithium nickel composite oxide, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene powder, and form a thin sheet. After adjusting the total weight to 12.5 mgZcm 2 , this sheet is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
② アルゴン雰囲気下、 2 5〃mの多孔性ポリエチレンフィルムをセパレ一タ とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネート とジェチルカ一ボネー トとの体積比 3 : 7の混合溶媒に 1モル/リ ツ トルの六フッ化リン酸リチウム ( L i P F 6) を溶解させた溶液を 用いて、 CR 2 03 2型のコイン型電池を作製する。 (2) Under an argon atmosphere, a porous polyethylene film of 25〃m is used as a separator, a lithium metal foil is used as a counter electrode, and a volume ratio of ethylene carbonate and getyl carbonate is used as a non-aqueous electrolyte solution. : with 1 mol / Li Tsu solution obtained by dissolving lithium hexafluorophosphate (L i PF 6) of torr to 7 mixed solvent, to prepare a coin-type battery of CR 2 03 2 type.
③ 得られたコイ ン型電池を、 2 5 °Cの環境下で、 電流密度 0. 2 mA/cm 2の定電流充放電サイ クル (充電上限 4. 2 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを ③ The obtained coin-type battery is subjected to a current density of 0.2 mA / cm 2 constant current charge / discharge cycle (charge upper limit: 4.2 V, discharge lower limit: 3.2 V), and average voltage V e
V e = ( 2サイクル目の充電平均電圧 + 2サイクル目の放電平均電圧) /2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割った値である。  The average charge voltage or average discharge voltage is the value obtained by measuring the voltage during charge or discharge at 2-second intervals and integrating the voltage over time by the time required for charge or discharge.
( 2 6 ) リチウムマンガン複合酸化物とリチウム二ヅケル複合酸化物との合 計量に対する リチウムニッケル複合酸化物の重量比が 0. 7以下であることを 特徴とする ( 2 1 ) 乃至 ( 2 5 ) のいずれか 1つに記載のリチウムイオン二次 電池用正極材料。  (26) The weight ratio of the lithium nickel composite oxide to the total weight of the lithium manganese composite oxide and the lithium nickel composite oxide is 0.7 or less (21) to (25). The positive electrode material for a lithium ion secondary battery according to any one of the above.
また、 本発明の別の要旨としては、 下記 (2 7 ) 〜 ( 3 1 ) が挙げられる。 Further, as another gist of the present invention, the following (27) to (31) are given.
( 2 7 ) ( 1 ) 乃至 ( 2 6 ) のいずれかに記載のリチウム二次電池用正極材 料を含有する活物質層を集電体上に形成してなる リチウムイオン二次電池用正 極。 (27) A positive electrode for a lithium ion secondary battery, wherein an active material layer containing the positive electrode material for a lithium secondary battery according to any one of (1) to (26) is formed on a current collector. .
( 2 8 ) ( 1 ) 乃至 ( 2 6 ) のいずれかに記載のリチウムニ次電池用正極材 料を正極中に含有する リチウムイオン二次電池。  (28) A lithium ion secondary battery comprising the positive electrode material for a lithium secondary battery according to any one of (1) to (26) in a positive electrode.
( 2 9 ) ( 1 ) 乃至 ( 2 6 ) のいずれかに記載のリチウム二次電池用正極材 料を使用した正極と、 負極と、 リチウム塩を溶媒に溶解してなる電解液とから なるリチウム二次電池。  (29) A lithium comprising: a positive electrode using the positive electrode material for a lithium secondary battery according to any one of (1) to (26); a negative electrode; and an electrolyte obtained by dissolving a lithium salt in a solvent. Rechargeable battery.
( 3 0 ) 負極が、 炭素材料を含有する ( 2 8 ) 又は ( 2 9 ) に記載のリチウ ムニ次電池  (30) The lithium secondary battery according to (28) or (29), wherein the negative electrode contains a carbon material.
( 3 1 ) リチウム塩が L i P F 6である ( 2 8) 乃至 ( 3 0) のいづれか 1つ に記載のリチウム二次電池。 発明の実施するための最良の形態 (3 1) lithium salt is L i PF 6 (2 8) to (3 0) Izure or one for lithium secondary battery according the. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明をより詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明の特徴は、高温環境下で L i PF6の分解を抑制させるようなマンガン 化合物をリチウム二次電池の正極として用いることにある。 即ち、 本発明にお いて重要なポイン トは、 正極材料として、 L i P F 6に対する反応性が低いもの を使用することにある。 Feature of the present invention is the use of the manganese compound such as to suppress the decomposition of L i PF 6 in a high temperature environment as the positive electrode of a lithium secondary battery. That is, the present invention There are important points as the positive electrode material is to use a low reactivity to L i PF 6.
具体的には、 第 1の態様として、 マンガン酸化物又はリチウムマンガン複合 酸化物からなる正極活物質を含有する リチウム二次電池用正極材料として、 下 記保存試験 ( I ) によって測定される P F 6ァ二オンの分解量が 1 X 1 0〃m o 1以下であるものを使用する。 この P F 6ァニオンの分解量が 1 X 1 0〃mo 1 より大きい場合には、 高温安定性や高温サイクル特性等の高温特性が悪く、 好 ましくない。 従来品の正極材料の場合、 高温安定性や高温サイクル特性等の高 温特性が好ましくなく、通常上記の P F 6ァニオンの分解量は 1 X 1 0〃mo 1 より大きい。 Specifically, as a first embodiment, as a positive electrode material for a lithium secondary battery containing a positive electrode active material composed of a manganese oxide or a lithium manganese composite oxide, PF 6 measured by the storage test (I) described below is used. Use one with a decomposition amount of 1 × 10〃mo 1 or less. If the decomposition amount of this PF 6 anion is larger than 1 × 10〃mo 1, the high-temperature characteristics such as high-temperature stability and high-temperature cycle characteristics are poor, which is not preferable. For conventional cathode materials, high temperature characteristics not preferred, such as high temperature stability and high-temperature cycle characteristics, degradation of normal above PF 6 Anion is greater than 1 X 1 0〃Mo 1.
保存試験 ( I )  Storage test (I)
a 1 ) 2 4 mgの正極材料を直径 1 2 mmの円形状に成形し、 集電体 (直径 1 6 mmの円形状のアルミニウムのエキスパンドメタル) に圧着してなる正極と、 対極として L i金属、 電解液として 1. O mo l/Lの L i P F 6を含むェチレ ンカーボネートとジェチルカ一ポネート との混合液 (体積比 3 : 7 ) を使用し て電池素子を組み立て、 これを充電電流密度 0. 2 mA/cm2で上限電圧 4. 2 Vまで充電した後、 次いで電池素子を解体し、 充電状態にある正極を取り出 し、 該正極を、 a 1) A positive electrode made by molding 24 mg of the positive electrode material into a circular shape with a diameter of 12 mm, and crimping it to a current collector (expanded circular aluminum metal with a diameter of 16 mm), and Li as the counter electrode metal, 1. as the electrolyte O mo l / L Echire emissions carbonate and Jechiruka one Poneto a mixture containing L i PF 6 (volume ratio 3: 7) assembled battery element using the charge current so After charging to a maximum voltage of 4.2 V at a density of 0.2 mA / cm 2 , the battery element is then disassembled, and the charged positive electrode is taken out.
b 1 ) 露点が一 7 5 °C以下のアルゴンガス雰囲気下 b 1) Under an argon gas atmosphere with a dew point of less than 75 ° C
c 1 ) 8 0°Cで 3時間乾燥させたポリテ トラフルォロエチレン容器内で、 d 1 ) 1. Omo l/Lの L i P F6を含む、 エチレン力一ポネート 1. 5m l とジェチルカ一ポネート 3. 5 m 1との混合液 (酸分 : 2. 0 mmo l/L以 下、 P〇2 F27二オン : 0. 5mmo l/L以下、 且つェタノ一ル : 0. 0 1 mg以下) 中に浸漬し、 c 1) 8 0 ° 3 hours Porite trough Ruo ii ethylene vessel dried at C, d 1) 1. including Omo l / L of L i PF 6, ethylene force one Poneto 1. 5 m l and Jechiruka one Poneto 3. mixed solution of 5 m 1 (acid content: 2. 0 mmo l / L hereinafter, P_〇 2 F 2 7 two oN: 0. 5mmo l / L or less, and Etano Ichiru: 0. 0 1 mg or less)
e 1 ) 8 0 °Cで一週間 e 1) One week at 80 ° C
保存し、 保存前後の混合液中の P F 6ァニオンの量をそれそれ測定 (測定温度 :Store and measure the amount of PF 6 anion in the mixture before and after storage (measurement temperature:
2 0 °C) し、 その差から P F 6ァ二オン分解量を求める。 20 ° C), and determine the amount of PF 6 dione decomposition from the difference.
本発明において、 P F6ァニオン分解量とは、 P F 6ァニオンの分解量を意味 する。 P F6ァニオンは、 例えば P 02 F 2—、 P 03 F 2—等に分解されている ものと考えられる。 なお、 本発明において P F 6ァ二オン分解抑制剤とは、 P F 6ァ二オンの分解を抑制する剤を意味する。 In the present invention, the amount of PF 6 anion decomposed means the amount of PF 6 anion decomposed. PF 6 anion is decomposed into, for example, P 0 2 F 2 —, P 0 3 F 2 — It is considered something. In the present invention, the PF 6 cation decomposition inhibitor means an agent that suppresses the decomposition of PF 6 cation.
上記保存試験 ( I ) において、 集電体としては直径 1 6 mmの円形状のアル ミニゥムのエキスパン ドメタルを用いる。 集電体の厚さは通常 5 0〜 3 0 0〃 mであり、 2 0 0 m前後のものを用いればよい。 上記保存試験 ( I ) におい て、 a l ) における正極材料の集電体への圧着は、 例えば錠剤成型器に集電体 と直径 1 2 mmの円形状に成形した 24 mgの正極材料を重ねてセッ ト し、 プ レスすればよい。 圧着の圧力としては通常 8 0〜 1 0 0 MP aであり、 9 0 M P a前後で圧着すればよい。  In the above storage test (I), a circular aluminum expanded metal with a diameter of 16 mm is used as the current collector. The thickness of the current collector is usually 50 to 300 m, and a thickness of about 200 m may be used. In the above storage test (I), the compression of the positive electrode material to the current collector in al) was performed, for example, by stacking the current collector and 24 mg of the positive electrode material formed into a circular shape with a diameter of 12 mm on a tablet molding machine. Just set and press. The pressure for the crimping is usually 80 to 100 MPa, and the crimping may be performed at around 90 MPa.
上記保存試験 ( I ) においては、 c 1 ) 〜 e 1 ) を b 1 ) の条件下行う。 な お、 e l ) については、 a 1 ) の正極の浸漬された c 1 ) のポリテ トラフルォ 口エチレン容器内が b l ) の条件下であればよく、 正極の浸潰に影響を与えな いポリテ トラフルォロエチレン容器の外部は b 1 ) の条件下である必要はない。 上記保存試験 ( I ) の d l ) において 「 1. Omo l/Lの L i P F6を含む、 エチレンカーボネート 1. 5 m 1とジェチルカ一ボネート 3. 5m lとの混合 液 (酸分 : 2. Ommo lZL以下、 P 02F 2ァニオン : 0. 5mmo l/L 以下、 且つエタノール : 0. 0 l mg以下) 中に浸漬し」 とあるのは、 即ち 「下 記 ( i) 〜 (iii) を満たす混合液に浸漬し」 ということである。 In the storage test (I), c1) to e1) are performed under the conditions of b1). For el)), it is sufficient that the inside of the ethylene container of c1) in which the positive electrode of a1) is immersed is bl) in the ethylene container of the c1), and it does not affect the immersion of the positive electrode. The exterior of the polyethylene container does not need to be under the conditions of b1). In dl) of the storage test (I) containing L i PF 6 of "1. Omo l / L, ethylene carbonate 1. 5 m 1 and Jechiruka one Boneto 3. mixed solution of 5 m l (acid content: 2. Ommo lZL or less, P 0 2 F 2 anion: 0.5 mmo l / L or less, and ethanol: 0.0 l mg or less) ”means that“ the following (i) to (iii) Immersed in a mixture that satisfies
( i ) 酸分の含量が 2 · 0 mm 0 1 / L以下、 及び P 02 F 2ァニオンの含量が 0. 5 mmo 1/L以下で且つエタノール含量が 0. 0 l mg以下。 (i) The acid content is not more than 2.0 mm 01 / L, the content of P 0 2 F 2 anion is not more than 0.5 mmo 1 / L, and the ethanol content is not more than 0.0 lmg.
(ii) 1. 0 m 0 1 /Lの L i P F 6を含む。 (ii) Includes 1.0 m 01 / L of L i PF 6 .
(iii) エチレンカーボネート 1. 5 m 1とジェチルカ一ポネート 3. 5m lと からなる。  (iii) Consists of 1.5 ml of ethylene carbonate and 3.5 ml of getylcapone.
上記 ( i ) の条件は、 一般に市販されているエチレンカーボネート (E C) ゃジェチルカーボネート (D E C) に物によって含まれる酸分及び P 02 F2ァ 二オンが、 P F 6ァ二オンの分解に影響を与えるので、 その影響を除くために規 定した条件である。 この条件下であれば、 酸分及び P 02 F 2ァニオンは P F 6 ァニオンの分解に影響を与えない。 The above condition (i) is based on the condition that the acid content and P 0 2 F 2 ion contained in generally commercially available ethylene carbonate (EC) and ゃ ethyl carbonate (DEC) are decomposed into PF 6 ion. It is a condition specified to eliminate the influence. Under these conditions, the acid content and the P 0 2 F 2 anion do not affect the decomposition of the PF 6 anion.
高温環境下で L i P F 6の分解を起こすような正極材料をリチウム二次電池 の正極として用いると高温サイクル特性が悪くなる理由は、 未だ詳らかではな いが、 L i P F 6の分解を起こすような正極材料の表面は、 電解液の溶媒ゃリチ ゥム塩等との反応を起こしやすく、 その結果、 正極の表面にリチウム二次電池 の充放電にとって悪影響のある化合物が生成されるのではないかと推論される < また、 このような正極表面は、 内部の正極活物質にも悪影響を与え、 やはり充 放電に悪影響を及ぼすとも考えられる。 Lithium rechargeable battery using positive electrode material that can decompose Li PF 6 under high temperature environment The reason for the high-temperature cycle property is deteriorated when used as a positive electrode, yet such is a Tsumabiraka bur, the surface of the positive electrode material that causes the degradation of L i PF 6 is reacted with the solvent Ya lithium © beam salts of the electrolyte It is speculated that compounds that have an adverse effect on the charging and discharging of the lithium secondary battery may be formed on the surface of the positive electrode. It also has an adverse effect, which is also considered to have an adverse effect on charging and discharging.
前記保存試験 ( I ) において L i P F 6の分解を抑制させる手段としては、 特 に限定はされないが、 例えば、 正極材料中に P F 6ァ二オン分解抑制剤を存在さ せる。 具体的には、 マンガン酸化物或いは/及びリチウムマンガン複合酸化物 を含む正極に無機化合物、 有機化合物、 有機金属化合物、 有機イオン等の P F 6 ァニオン分解抑制剤を含有させる方法や、 他金属元素や元素周期律表の 1 5〜 1 7族等の無機イオンで正極活物質の一部の元素を置換する方法等が挙げられ る。 As the means for suppressing the decomposition of L i PF 6 in the storage test (I), but are not limited especially, for example, the presence of PF 6 § two on decomposition inhibitor in the positive electrode material. Specifically, a method of incorporating a PF 6 anion decomposition inhibitor such as an inorganic compound, an organic compound, an organometallic compound, or an organic ion into a positive electrode containing manganese oxide and / or lithium manganese composite oxide, Examples thereof include a method of substituting a part of the element of the positive electrode active material with an inorganic ion such as a group 15 to 17 in the periodic table.
正極材料に P F 6ァニオン分解抑制剤を含有させる場合は、 該 P F 6ァニオン 分解抑制剤として、 下記保存試験 (II) によって測定される P F 6ァニオンの分 解量が 6 x 1 0 m o l以下であるものを使用するのが好ましい。 下記保存試 験 (II) によって測定される P F 6ァニオンの分解量が 6 X I 0 u o 1以下で ある P F 6ァ二オン分解抑制剤を用いれば、高温安定性や高温サイクル特性等の 高温特性が改善できる。 When the PF 6 anion decomposition inhibitor is contained in the positive electrode material, the decomposition amount of the PF 6 anion measured by the following storage test (II) is 6 x 10 mol or less as the PF 6 anion decomposition inhibitor. It is preferred to use one. The use of PF 6 § two on decomposition inhibitor decomposition of PF 6 Anion is 6 XI 0 uo 1 below as measured by the following storage test (II), the high-temperature properties such as high temperature stability and high-temperature cycle characteristics Can be improved.
保存試験 (II)  Storage test (II)
a 2 ) L i 1 + xMn2x4( ここで、 0≤ χ ^ 0. 0 5 ) な'る組成のスピネル 構造を有する リチウムマンガン複合酸化物のリチウムを抜き出した、 満充電状 態に相当する リチウムマンガン複合酸化物 ( 0. 0 5 ≤ L :1/ 11モル比≤ 0 . 0 9 ) 1 6 0 m gを、 a 2) Li 1 + x Mn 2x4 (where 0 χ ^ 0. 05) Fully-charged lithium extracted from lithium manganese composite oxide having a spinel structure with a composition of Lithium-manganese composite oxide (0.05 ≤ L: 1/11 / molar ratio ≤ 0.09)
b 2 ) 露点が一 7 5 °C以下のアルゴンガス雰囲気下で、 b 2) Under an argon gas atmosphere with a dew point of less than 75 ° C,
c 2 ) 8 0 で 3時間乾燥させたポリテ トラフルォロエチレン容器内で、 d 2 ) 前記 P F 6ァニオン分解抑制剤 1 6 O mgと混合し、 c 2) In a polyethylene tetrafluoroethylene container dried for 3 hours at 80, d 2) mixed with the PF 6 anion decomposition inhibitor 16 O mg,
e 2 ) 1 . O mo l/Lの L i P F 6を含む、 エチレン力一ポネート 2 . 4 m l ジェチルカーボネート 5. 6 m 1の混合液 (酸分 : 2 . 0 mm o l/L以下、 P 02 F 2ァニオン : 0. 5mmo 1/L以下、 且つエタノール : 0. 0 1 m g 以下) 中に浸潰し、 . e 2) 1 O containing mo l / L of L i PF 6, ethylene force one Poneto 2 4 ml Jefferies chill carbonate 5. mixture of 6 m 1 (acid content:.. 2 0 mm ol / L or less, P 0 2 F 2 anion: 0.5 mmo 1 / L or less, and ethanol: 0.01 mg or less)
f 2 ) 7 0 °Cで一週間 f 2) One week at 70 ° C
保存し、 保存前後の混合液中の P F 6ァニオンの量を測定 (測定温度 : 2 0°C) し、 P F 6ァ二オン分解量を求める。 Save, PF 6 Anion amount measurement (measurement temperature: 2 0 ° C) in the mixture before and after the storage, and obtains the PF 6 § two on amount of degradation.
上記保存試験 (Π) の a 2 ) における 「L i 1 + xMn2x04 (ここで、 0≤ X≤ 0. 0 5) なる組成のスピネル構造を有するリチウムマンガン複合酸化物 のリチウムを抜き出した、 満充電状態に相当する リチウムマンガン複合酸化物 ( 0. 0 5≤ L i /Mnモル比≤ 0. 0 9 ) 」 は、 L i 1 + xMn2x04 (ここ で、 0≤x≤ 0. 0 5) なる組成のスピネル構造を有する リチウムマンガン複 合酸化物を酸で処理することにより得られる。 具体的には、 L i 1 + xMn2_x 04 (ここで、 0≤x≤ 0. 0 5 ) なる組成のスピネル構造を有する リチウムマ ンガン複合酸化物を水中に加え、 室温下において攪拌しながら P Hが 0. 8〜 1. 2で安定するまで酸を滴下することにより得られる。 通常 p H 1で安定さ せればよい。 酸としては硫酸等を使用すればよい。 p Hが 0. 8〜 1. 2で安 定しているか否かは、 攪拌をしばら く ( 6時間程度) 続け p Hの変動がないこ とを確認すればよい。 pHが p Hが 0. 8〜 1. 2で安定したことが確認でき れば、 吸引濾過をしながら水洗を数回繰り返し、 例えば 9 0 °Cにて乾燥するこ とにより得られる。 The storage test ([pi) of a 2) in the "L i 1 + x Mn 2 - x 0 4 ( here, lithium of the lithium-manganese composite oxide having a spinel structure 0≤ X≤ 0. 0 5) a composition the extracted, lithium manganese composite oxide corresponding to the fully charged state (0. 0 5≤ L i / Mn molar ratio ≤ 0. 0 9) "is, L i 1 + x Mn 2 - x 0 4 ( wherein 0 ≦ x ≦ 0.05) It can be obtained by treating a lithium manganese composite oxide having a spinel structure of the following composition with an acid. Specifically, a lithium manganese composite oxide having a spinel structure having a composition of Li 1 + x Mn 2 _ x 04 (here, 0 ≤ x ≤ 0.05) is added to water and stirred at room temperature. It is obtained by dropwise addition of acid while the pH is stable at 0.8-1.2. Normally, it may be stabilized at pH1. Sulfuric acid or the like may be used as the acid. Whether pH is stable at 0.8 to 1.2 can be confirmed by continuing stirring for about 6 hours and confirming that there is no fluctuation in pH. If it is confirmed that the pH is stable at 0.8 to 1.2, it can be obtained by repeating water washing several times while performing suction filtration, for example, drying at 90 ° C.
「L i 1 +xMn2 x4 (ここで、 0≤χ ^ 0. 0 5 ) なる組成のスビネル構 造を有するリチウムマンガン複合酸化物のリチウムを抜き出した、 満充電状態 に相当するリチウムマンガン複合酸化物 ( 0. 0 5≤ L :1/1^ 11モル比≤ 0. 0 9 ) 」 とは、 即ち 「L i YMn2χ04 (ここで、 0≤χ^ 0. 0 5、 0. 1 0≤ y≤ 0. 1 8) なる組成の化合物である。 "Lithium equivalent to a fully charged state extracted from lithium of a lithium manganese composite oxide having a Sbinel structure having a composition of Li 1 + x Mn 2 x4 (where 0≤χ ^ 0.05) The manganese composite oxide (0.05≤L: 1/1 ^ 11 molar ratio≤0.09) "means" L i Y Mn 2χ 0 4 (where 0≤χ ^ 0. 0 5, 0.1 0 ≤ y ≤ 0.18)
上記保存試験 (II) の a 2 ) における 「L i 1 +xMn2 x4 (ここで、 0≤ x≤ 0. 0 5 ) なる組成のスビネル構造を有する リチウムマンガン複合酸化物 のリチウムを抜き出した、 満充電状態に相当する リチウムマンガン複合酸化物 ( 0. 0 5≤ L丄/ 11モル比≤ 0. 0 9 ) 」 は、 本発明の正極活物質として 用いるスピネル構造を有する リチウムマンガン酸化物 (L i 1 + xMn2x04 (ここで、 0≤x≤ 0. 0 5 )) の満充電状態を表しており、 この L i/Mnモ ル比のふれは保存試験 (II) における P F 6ァ二オンの分解量に与える影響はほ とんどない範囲である。 In the storage test (II) a2), the lithium of the lithium manganese composite oxide having a Svinel structure having a composition of Li 1 + x Mn 2 x4 (here, 0≤x≤0.05) The extracted lithium manganese composite oxide (0.05≤L 丄 / 11 molar ratio≤0.09) corresponding to the fully charged state "is a lithium manganese oxide having a spinel structure used as the positive electrode active material of the present invention. Object (L i 1 + x Mn 2x 0 4 (Here, 0≤x≤ 0. 0 5) represents a fully charged state of) deflection of the L i / Mn molar ratio gives the amount of decomposition of PF 6 § two on the storage test (II) The impact is minimal.
上記保存試験 (II) においては、 c 2 ) 〜f 2 ) を b 2 ) の条件下行う。 な お、 : 2 ) については、 a 2 ) の満充電状態に相当する リチウムマンガン複合 酸化物と d 2 ) の P F 6ァニオン分解抑制剤との混合物が浸潰された c 2 ) の ポリテ トラフルォロエチレン容器内が b 2 ) の条件下であればよく、 正極の浸 漬に影響を与えないポリテトラフルォロエチレン容器の外部は b 2 ) の条件下 である必要はない。 In the storage test (II), c2) to f2) are performed under the conditions of b2). In addition, for 2), the mixture of a lithium manganese composite oxide corresponding to the fully charged state of a 2) and the PF 6 anion decomposition inhibitor of d 2) was crushed, and the polytetrafluoro of c 2) was crushed. It is sufficient that the inside of the polyethylene container is under the condition of b2), and the outside of the polytetrafluoroethylene container which does not affect the immersion of the positive electrode does not need to be under the condition of b2).
上記保存試験 (II) の e 2 ) において 「 1. Omo lZLの L i P F6を含 む、 エチレンカーボネート 2. 4 m 1ジェチルカ一ポネート 5. 6 m lの混合 液 (酸分 : 2. Ommo l/L以下、 P〇 2 F2ァニオン : 0. 5mmo l/L 以下、 且つエタノール : 0. 0 1 mg以下) 中に浸漬し」 とあるのは、 即ち 「下 記 (iv) 〜 (vi) を満たす混合液に浸漬し」 ということである。 "1. Omo lZL of L i PF 6 and including, ethylene carbonate 2. 4 m 1 Jechiruka one Poneto 5. mixture of 6 ml (acid content in e 2) of the storage test (II): 2. Ommo l / L or less, P〇 2 F 2 anion: 0.5 mmol / L or less, and ethanol: 0.01 mg or less) ”means that“ (iv) to (vi) Immersed in a mixture that satisfies
(iv) 酸分の含量が 2. 0 mm 0 1 ZL以下、 及び P 02 F 2ァニオンの含量が 0. 5 mm 0 1 /L以下で且つエタノール含量が 0. O l mg以下。 (iv) The acid content is 2.0 mm 0 1 ZL or less, and the P 0 2 F 2 anion content is 0.5 mm 01 / L or less, and the ethanol content is 0.5 mg or less.
( V ) 1. 0 m o 1 /Lの L i P F 6を含む。 (V) including the L i PF 6 of 1. 0 mo 1 / L.
(vi) エチレン力一ポネート 2. 4 m lとジェチルカーボネート 5. 6 m lと からなる。  (vi) Consists of 2.4 ml of ethylene glycol and 5.6 ml of getyl carbonate.
上記 ( iv) の条件は、 上記 ( i) で説明したのと同様の理由によるものである。 本発明においては P F 6ァ二オン分解抑制剤は、物質の組成や特定の物理化学 的な性質でその能力が決められるものではない。 これは、 同じ組成の化合物で も、 調製法、 粉砕法、 保存法等によ り、 その構造、 表面積、 酸性度、 塩基度、 平均電圧等の物理化学的な性質が異なり、その結果 L i P F 6との相互作用の強 さが異なるからである。 The condition (iv) is for the same reason as described in the above (i). In the present invention, the ability of the PF 6 anion decomposition inhibitor is not determined by the composition of the substance or the specific physicochemical properties. This is because even the compounds of the same composition have different physicochemical properties such as structure, surface area, acidity, basicity, and average voltage depending on the preparation method, pulverization method, storage method, etc. the strength of the interaction between PF 6 is different.
本発明で用いる P F 6ァ二オン分解抑制剤の組成としては、 無機化合物、 有機 化合物、 有機金属化合物等を挙げることができる。 P F 6ァ二オン分解抑制剤と して、 複数種類を用いてもよい。 Examples of the composition of the PF 6 dione decomposition inhibitor used in the present invention include inorganic compounds, organic compounds, and organometallic compounds. A plurality of types of PF 6 anion decomposition inhibitors may be used.
以下 P F 6ァ二オン分解抑制剤の具体例を示すが、 前述のように、 組成だけで 本願発明の P F 6ァニオン分解抑制剤の規定を満足するか否かが一義的に決ま るわけではないことに留意する必要がある。 Specific examples of the PF 6 anion decomposition inhibitor are shown below, but as described above, only the composition It should be noted that whether or not the PF 6 anion decomposition inhibitor of the present invention is satisfied is not uniquely determined.
P F 6ァニオン分解抑制剤として使用できる無機化合物としては、元素周期律 表の 2〜 1 4族の種々の金属の酸化物、 複合酸化物、 窒化物、 硫化物等が挙げ られ、 好ましくは 2〜 1 4族の種々の金属の酸化物又は複合酸化物である。 上 記金属元素としては、 具体的には、 S r、 C a、 B a、 M g、 T i、 V、 C r、 M n、 F e、 C o、 N i、 C u、 Z n、 B、 A l、 S nが挙げられる。 また、 可逆的にリチウムィオンを吸蔵放出可能な化合物も P F 6ァ二オン分解抑制剤 として好適に使用できる。 例えば、 リチウム鉄複合酸化物、 リチウムコバル ト 複合酸化物、 リチウムニッケル複合酸化物を挙げることができ、 好ましくはリ チウムニッケル複合酸化物、 特に好ましくは層状構造を有する リチウムニッケ ル複合酸化物を挙げることができる。 無論、 これらの一部の金属を他の金属元 素で置換したものも用いることができる。 Examples of the inorganic compound that can be used as the PF 6 anion decomposition inhibitor include oxides, composite oxides, nitrides, and sulfides of various metals belonging to Groups 2 to 14 of the periodic table of the elements. These are oxides or composite oxides of various metals belonging to Group 14. As the above-mentioned metal elements, specifically, Sr, Ca, Ba, Mg, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, B, Al, and Sn. Further, a compound capable of reversibly storing and releasing lithium ion can also be suitably used as a PF 6 dione decomposition inhibitor. Examples thereof include a lithium iron composite oxide, a lithium cobalt composite oxide, and a lithium nickel composite oxide, preferably a lithium nickel composite oxide, and particularly preferably a lithium nickel composite oxide having a layered structure. be able to. Of course, those obtained by substituting some of these metals with other metal elements can also be used.
P F 6 7二オン分解抑制剤として使用できる有機化合物、有機金属化合物とし ては、 キレート剤、 即ち重金属と錯体を形成する特性 (キレート化作用) を有 するものが挙げられる。 その中でも、 少なく とも元素周期律表の 1 5族及び 1 6族からなる群から選ばれた少なく とも 1種の元素を含有する化合物が好まし い。 具体的には、 分子内に少なく とも一つのアミノ基を有する化合物、 分子内 に少なく とも 1つのアミ ド結合を有する化合物、 分子内に少なく とも水酸基を 有する化合物、 または分子内に少なく とも 1つの含窒素複素環を有する化合物 が挙げられる。 また、 これらの化合物の金属塩も好適に用いることもでき、 金 属塩に使用する金属元素としては、 元素周期律表の 1族、 2族及び 1 3族から なる群から選ばれた少なく とも 1種の金属元素が挙げられる。 具体的には、 シ ユウ酸ビスべンジリデンヒ ドラジ ド、 ビス (シクロへキサノン) ォキサリルジ ヒ ドラゾン、 N, N, 一ビス { 2— [ 3— ( 3, 5—ジー t—ブチル一 4ーヒ ドロキシフエニル) プロピオ二ルォキシル] ェチル } ォキサミ ド、 3— ( N— サリチロイル) アミノー 1, 2, 4— ト リァゾ一ル、 デカンジカルボン酸ジサ リチロイルヒ ドラジ ド、 N, N, 一ビス [ 3— 3, 5—ジー t 一プチルー 4一 ヒ ドロキシフエニル) プロピオニル] ヒ ドラジン、 イソフタル酸ビス [ 2—フ エノキシプロピオニルヒ ドラジド] 、 ピロ一ル、 ピラゾ一ル、 イ ミダゾ一ル、 ベンゾイ ミダゾ一ル、 1 , 2, 4一 ト リァゾ一ル、 3 _ ( N—サリチロイル) アミノー 1 , 2, 4一 ト リァゾ一ル、 及びそれらのリチウム塩、 ナ ト リゥム塩、 マグネシウム塩、 アルミニウム塩などが挙げられる。 PF 6 7 two on organic compounds can be used as a decomposition inhibitor, it is a organometallic compound, a chelating agent, i.e. include those which have the property of forming (chelating activity) heavy metal complexes. Among them, compounds containing at least one element selected from the group consisting of at least Groups 15 and 16 of the Periodic Table of the Elements are preferred. Specifically, compounds having at least one amino group in the molecule, compounds having at least one amide bond in the molecule, compounds having at least one hydroxyl group in the molecule, or at least one compound in the molecule And compounds having a nitrogen-containing heterocyclic ring. Also, metal salts of these compounds can be suitably used, and the metal element used for the metal salt is at least one selected from the group consisting of Groups 1, 2 and 13 of the periodic table of the elements. One kind of metal element is included. More specifically, bisbenzylidene hydrazide oxalate, bis (cyclohexanone) oxalyldihydrazone, N, N, 1-bis {2- (3- (3,5-di-tert-butyl-14-hydroxyphenyl)) ) Propionyloxyl] ethyl} oxamide, 3- (N-salicyloyl) amino-1,2,4-triazolyl, disalicyloylhydrazine decanedicarboxylate, N, N, 1-bis [3--3,5-] G-t-butyl-41-hydroxyphenyl) propionyl] hydrazine, bis-isophthalate [2-ph Enoxypropionyl hydrazide], pyrrol, pyrazol, imidazole, benzoimidazole, 1, 2, 4-triazole, 3_ (N-salicyloyl) amino-1,2,4-1 Triazoles and their lithium salts, sodium salts, magnesium salts, aluminum salts and the like.
P F 6ァニオン分解抑制剤としてアミノ基を有する化合物を使用する場合、 2 級又は 3級のアミノ基を有する化合物が好ましい。 特に、 L i P F 6を含む電解 液を用いた場合はこの傾向が顕著である。 これは、 次のような理由によると考 えられる。 When a compound having an amino group is used as the PF 6 anion decomposition inhibitor, a compound having a secondary or tertiary amino group is preferable. Particularly, in the case of using the electrolytic solution containing L i PF 6 This tendency is remarkable. This is considered for the following reasons.
即ち、 P F 6ァ二オン分解抑制剤としてアミノ基を有する化合物を使用する場 合、 ァミ ノ基の窒素原子に水素原子が結合していると、 この水素原子が活性プ 口 トンとして機能し、 この化合物が L i P F 6と反応して H Fのような酸が発生 する結果、 これがさらに電極と反応し、 電池としての性能を低下させてしまう ことがあると推定される。 この傾向は、 活性プロ トンの多い 1級ァミンに顕著 である。 一方、 3級ァミ ンは、 活性プロ トンを有しないため L i P F 6との反応 性が低いため、 前述のような電池性能の劣化を引き起こさないと考えられるが、 マンガン酸化物との相互作用という観点からは、 一般に 1級又は 2級アミ ンの 方が相互作用が強い傾向にある。 これは、 マンガン酸化物とイオン性或いは共 有結合性の結合を形成しうる 1級或いは 2級アミ ンに比べ、 3級アミ ンの場合 はマンガン酸化物との相互作用が弱い (配位結合である) ため、 一度相互作用 をした 3級ァミ ンが容易に解離しやすいためであると思われる。 従って、 正極 材中に含有させる P F 6ァニオン分解抑制剤としての能力は、上述の 2つのバラ ンスで決まると考えられる。 その結果として、 1級ァミ ンより も 2級又は 3級 アミ ンを有する化合物の方が好ましいと推定される。 しかしながら、 嵩高い置 換基を有するアミンを使用することにより、それ自身と L i P F 6との反応を抑 制させることができるため、 1級ァミ ンも用いることができる。 That is, when a compound having an amino group is used as a PF 6 anion decomposition inhibitor, if a hydrogen atom is bonded to the nitrogen atom of the amino group, this hydrogen atom functions as an active proton. the compound L i PF 6 react with results acids such as HF are generated, which further reacts with the electrode, it is estimated that there may be lowered performance as a battery. This tendency is remarkable for primary amine having a large amount of active protons. On the other hand, tertiary § Mi emission has a low reactivity with L i PF 6 for not having an active pro tons, but would not cause deterioration of the battery performance as described above, mutual manganese oxide From the viewpoint of action, generally, primary or secondary amines tend to have stronger interaction. This is because tertiary amines have a weaker interaction with manganese oxides than primary or secondary amines, which can form ionic or covalent bonds with manganese oxides (coordination bonds). Therefore, it seems that the tertiary amine that has interacted once is easily dissociated. Therefore, it is considered that the ability of the PF 6 anion decomposition inhibitor contained in the positive electrode material is determined by the above two balances. As a result, it is presumed that a compound having a secondary or tertiary amine is more preferable than a primary amine. However, the use of amines having a bulky location substituent, since it is possible to suppression reaction itself and the L i PF 6, can also be used primary § Mi emissions.
P F 6ァ二オン分解抑制剤の正極材料内での存在状態としては、通常正極活物 質表面を均一に覆った状態、 又は正極材料中に局在化若しくは分散した状態で ある。 前者の場合、 L i P F 6とマンガンの直接の接触を食い止めることができ る。 また、 後者の場合、 L i P F 6分解抑制剤を共存させることにより正極活物 質への L i P F 6の相互作用を阻害させることができる。正極材料中に本発明で 使用する L i P F 6分解抑制剤を存在させるには、例えば分散混合が挙げられ、 その他、 蒸着やゾルゲルコ一ティ ング、 熱処理等によ り活物質粒子表面に L i P F 6分解抑制剤の被膜を形成させる方法を採用することができる。 ただし、 熱 処理等による被覆は P F 6ァニオン分解抑制剤の種類によっては、 P F 6ァニォ ン分解抑制剤が損失したり、 変質する場合があり、 目的とする効果を失ってし まう場合がある。 一方、 分散混合は、 簡便な添加法であり、 かつ変質の影響が なく、 本来の効果を十分に発揮しうる点で好ましい。 なお、 本発明における分 散混合とは、 複数の物質を単に混ぜ合わせることを意味し、 混合物が化学変化 してしまう程の高温での熱処理などを伴わない混合を意味する。 複数の物質を かき混ぜて正極材料中に本発明で使用する P F 6ァニオン分解抑制剤を分散さ せたものが好ましく、 均一に分散されていることが好ましい。 分散混合は、 乾 式混合でも湿式混合でもよい。 物理混合には、 乳鉢、 ボールミル、 ジヱッ ト ミ ル、 レディゲミキサー等を使用することができる。 また正極材料中に有効に留 まらせるために、 電解液に溶解しにくいものが好ましい。 The presence state of the PF 6 anion decomposition inhibitor in the positive electrode material is usually a state in which the surface of the positive electrode active material is uniformly covered, or a state in which the PF 6 anion decomposition inhibitor is localized or dispersed in the positive electrode material. In the former case, Ru can stop the direct contact of L i PF 6 and manganese. In the latter case, the positive electrode active material in the coexistence of the L i PF 6 decomposition inhibitor It can inhibit the interaction of L i PF 6 with quality. In the presence of L i PF 6 decomposition inhibitor used in the present invention in the positive electrode material, for example, dispersive mixing, and the like, other deposition or Zorugeruko one tee ring, the O Rikatsu material particle surface to heat treatment L i method of forming a coating of PF 6 decomposition inhibitor can be employed. However, depending on the type of the PF 6 anion decomposition inhibitor, coating by heat treatment or the like may cause loss or deterioration of the PF 6 anion decomposition inhibitor, and may lose the intended effect. On the other hand, dispersion mixing is preferred because it is a simple addition method, is not affected by alteration, and can sufficiently exhibit its original effect. In the present invention, “dispersed mixing” means simply mixing a plurality of substances, and means mixing that does not involve heat treatment at such a high temperature that the mixture is chemically changed. It is preferable that a plurality of substances are mixed to disperse the PF 6 anion decomposition inhibitor used in the present invention in the positive electrode material, and it is preferable that the PF 6 anion decomposition inhibitor is uniformly dispersed. Dispersion mixing may be dry mixing or wet mixing. For physical mixing, a mortar, ball mill, jet mill, Loedige mixer, or the like can be used. In order to effectively remain in the positive electrode material, a material that is hardly dissolved in the electrolytic solution is preferable.
用いる P F 6ァ二オン分解抑制剤としては、使用する電解液に対する溶解度の 低い化合物が望ましい。 また、 P F 6ァニオン分解抑制剤は、 無機化合物を用い る際は大きな問題にならないことが多いが、 物理的或いは物理化学的な傾向と しては、 平均電圧が低いもの、 表面積が大きいもの、 格子欠陥があるものが化 合物が好ましい。 ただし、 これらは一義的なものでなく、 それそれの因子の組 み合わせにより決まる為、 必ずしもすべての化合物が上記のそれそれの傾向に 従うとは限らない。 As the PF 6 dione decomposition inhibitor to be used, a compound having low solubility in the electrolytic solution to be used is desirable. In addition, PF 6 anion decomposition inhibitors do not often pose a major problem when inorganic compounds are used, but their physical or physicochemical tendencies are those with low average voltage, those with large surface area, Compounds having lattice defects are preferred. However, since these are not unique and are determined by the combination of factors, not all compounds follow the above-mentioned individual tendencies.
P F 6ァ二オン分解抑制剤の含有量は任意で構わないが、通常正極活物質に対 して 0 . 0 0 0 1 〜 8 0 w t %の範囲である。 少なすぎると不十分な効果しか 得られず高温安定化効果が発現しにく く、 逆に多すぎると抵抗が増大すること があり、 且つ容量が低下するなどの他の特性を低下させる恐れが出てく る。 P F 6 7二オン分解抑制剤として、 リチウムを吸蔵放出できる化合物を使用すると、 添加量が多くても正極の容量が減少しないという利点がある。 この場合の添加 物の使用量としては、 マンガン酸化物及びリチウムマンガン酸化物に対して通 常 1 w t %以上、 好ましくは 5 w t %以上、 さらに好ましくは 1 0 w t %以上 であ り、 また通常 8 0wt %以下、 好ま しくは 6 0 w t %以下、 さらに好ま し くは 3 5wt %以下である。 一方、 前述の元素周期律表の 1 5族及び 1 6族か らなるの群から選ばれた少なく とも 1種の元素を含有する化合物であってリチ ゥムを吸蔵放出しない化合物を使用する場合には、 添加物の使用量としては、 マンガン酸化物及びリチウムマンガン酸化物に対して、通常 0. 0 0 0 1 w t % 以上、 好ましくは 0. O O l wt %以上、 さらに好ましくは 0. O l wt %以 上であり、 一方通常 1 0w t %以下、 好ましくは 5w t %以下、 さらに好まし くは 1 w t %以下である。 The content of the PF 6 anion decomposition inhibitor may be arbitrarily determined, but is usually in the range of 0.001 to 80 wt% based on the positive electrode active material. If the amount is too small, only an insufficient effect can be obtained and the high temperature stabilizing effect is hardly exhibited.On the other hand, if the amount is too large, the resistance may increase, and other characteristics such as a decrease in capacity may be reduced. Come out. As PF 6 7 two on decomposition inhibitor, the use of lithium can occluding and releasing compounds, even many amount is advantageous in that the capacity of the positive electrode does not decrease. In this case, the amount of the additive used is based on manganese oxide and lithium manganese oxide. Always at least 1 wt%, preferably at least 5 wt%, more preferably at least 10 wt%, and usually at most 80 wt%, preferably at most 60 wt%, more preferably at most 35 wt%. It is. On the other hand, when a compound containing at least one element selected from the group consisting of Groups 15 and 16 of the Periodic Table of the aforementioned elements and not absorbing and releasing lithium is used. The amount of the additive used is usually at least 0.001 wt%, preferably at least 0.001 wt%, more preferably at least 0.000 wt%, based on manganese oxide and lithium manganese oxide. It is at least lwt%, usually at most 10wt%, preferably at most 5wt%, more preferably at most 1wt%.
なお、 本発明においては、 使用する正極活物質が P F 6ァニオン分解抑制剤そ のものであってもよい。 即ち、 1つの化合物が正極活物質であり且つ P F67二 オン分解抑制剤であってもよい。 In the present invention, the positive electrode active material to be used may be the PF 6 anion decomposition inhibitor itself. That may be one of the compounds is the positive electrode active material and PF 6 7 two on decomposition inhibitor.
P F67二オンの分解を抑制させる手段として、他金属元素や元素周期律表の 1 5 ~ 1 7族等の無機イオンで正極活物質の一部の元素を置換する方法も好ま しい。 この場合、 正極活物質としては、 高温下で酸素放出しにくい、 格子欠陥 が少ない或いはリチウムイオンの吸蔵 · 放出に伴い構造変化が少ない等の性質 を有するものが好ましいが、 これらも、 P F 6ァ二オン分解抑制剤の場合と同様 に特にそれそれの因子のみで P F 6ァ二オンの分解を抑制させる程度が一義的 に決定されるわけではない。 As means for suppressing the decomposition of PF 6 7 two on, arbitrary favored method of replacing a part of the elements of the positive electrode active material in 1 5 to 1 7 group or the like of inorganic ions other metal elements and the Periodic Table of the Elements. In this case, as the positive electrode active material, hardly oxygen release at high temperatures, but preferably those having the properties of structural changes with occlusion and release of lattice defects is small or lithium ion is small, and these also, PF 6 § As in the case of the dione decomposition inhibitor, the degree to which the decomposition of PF 6 dione is suppressed is not uniquely determined by the factors alone.
本発明において、 上記の保存試験 ( I ) を行った際の P F 6ァニオンの分解量 は、 1 x 1 0 juLm o 1以下であり、 好ましくは 6 mo 1以下である。 ただし、 あま りに分解量を抑えよう としても現実的ではないので、 分解量の下限として は通常 1 x 1 0— 2 mo 1程度である。 一方、 上記の保存試験 (Π) を行つ た際の P F67二オンの分解量は、 6 x 1 0 mo l以下であり、 好ましくは 5 5〃mo l以下、さらに好ましくは 5 x 1 0〃mo l以下である。 この場合もあ ま りに分解量を抑えよう としても現実的ではないので、 分解量の下限としては 通常 1 X I 0— 2 mo l程度である。 In the present invention, the amount of decomposition of PF 6 Anion when performing the above storage test the (I) is 1 x 1 0 juLm o 1 or less, preferably 6 mo 1 below. However, because it is not realistic even in an effort to reduce the amount of degradation in Ri linseed, the lower limit of the amount of degradation is usually 1 x 1 0- 2 mo 1 about. On the other hand, when the above storage test ( 6 ) was performed, the amount of PF672one decomposed was 6 × 10 mol or less, preferably 55 mol or less, more preferably 5 × 1 mol or less. 0〃mol or less. In this case not feasible even in an effort to reduce the amount of degradation More or is, the lower limit of the amount of degradation is usually about 1 XI 0- 2 mo l.
また、 本発明では、 上記の保存試験をした際の L i P F 6の P F 6ァニオンの 分解物は通常主として P 02 F 2ァニオンである。 従って、 上記保存試験 ( I ) で評価される正極の性能や、 上記保存試験 (Π) で評価される P F 6ァニオン分 解抑制剤の性能は、 生成する P 02 F 2の生成量をパラメータとして評価するこ ともできる。 本発明において、 上記の保存試験を行った際の 2 0 °Cでの保存液 中に含まれる P 02 F2ァニオンの量は、 保存試験条件 ( I ) では通常 1 X 1 0 〃mo l以下、 好ましくは 5 mo l以下である。 一方、 保存試験条件 (II) では通常 5 X 1 0〃m o 1以下であり、 好ましくは 4 x l 0〃mo l以下であ る。 ここで、 「 2 0 °Cでの」 量と制限されるのは、 しばしば生成した P〇 2 F 2 ァニオンが沈殿物中に含有される場合がある為である。 従って、 2 0°Cでの保 存液の状態とは、 2 0°Cで P 02 F 2ァニオンの保存液中の含量が時間に因らず 一定となる状態である。 In the present invention, the degradation product of the PF 6 anion of Li PF 6 in the above-mentioned storage test is usually mainly P 0 2 F 2 anion. Therefore, the above storage test (I) In performance and the positive electrode to be evaluated, the performance of the PF 6 Anion decomposition inhibitor to be evaluated by the storage test ([pi) it can also evaluate child generation amount of produced P 02 F 2 as a parameter. In the present invention, the amount of P 0 2 F 2 anion contained in the preservation solution at 20 ° C. at the time of performing the above preservation test is usually 1 × 10 〃mol under the storage test conditions (I). Hereinafter, it is preferably 5 mol or less. On the other hand, under the storage test condition (II), it is usually 5 × 10〃mol or less, preferably 4 xl0〃mol or less. Here, the amount is limited to “at 20 ° C.” because the generated P〇 2 F 2 anion is often contained in the precipitate. Therefore, the state of the storage solution at 20 ° C. is a state in which the content of the P 0 2 F 2 anion in the storage solution at 20 ° C. becomes constant regardless of time.
本発明においては、 上記の保存試験 ( I ) 又は (Π) をした際の P F6ァニォ ンの分解物の 8 0%以上、 特に 9 5 %以上が P〇2 F 2ァニオンであることが好 ましい。 In the present invention, the above storage test (I) or ([pi) the PF 6 when the Anio down degradant 80% or more, and particularly 9 5% or more is P_〇 2 F 2 Anion good Good.
更に、 本発明において、 上記の保存試験(Π)の方法で保存試験を行った際に、 P 02 F2ァニオンの生成に伴ってエタノールが生成する。 その好ましいェタノ ールの生成量としては、 上記保存試験 (II) の保存をさらに 2週間延長した際、 即ち保存時間を 3週間とした上記保存試験 (II) を行った際の、 保存後の液中 に含まれるエタノールの量として 1 mg以下、 さらには 0. 5mg以下である。 上記保存試験(II)においてェタノ一ルが多く生成する場合は、その P F 6ァニォ ン分解抑制剤では充分な高温特性の改善は達成できない。 なお、 上記の保存試 験 ( I ) の場合でもエタノールの生成が確認される場合があるが、 その生成量 は極微量である。 上記の保存条件 ( I ) の方法による保存試験後の保存液中に 含まれるエタノールの量は、 通常 0. l mg以下である。 Further, in the present invention, when a storage test is performed by the method of the storage test (Π), ethanol is generated along with the generation of P 2 F 2 anion. The preferred amount of ethanol to be produced is as follows: when the storage in the above-mentioned storage test (II) is extended for another two weeks, that is, when the above-mentioned storage test (II) in which the storage time is three weeks is performed, The amount of ethanol contained in the liquid is 1 mg or less, and even 0.5 mg or less. When a large amount of ethanol is produced in the above storage test (II), the PF 6 anion decomposition inhibitor cannot achieve sufficient improvement in high-temperature properties. Even in the case of the above storage test (I), the production of ethanol may be confirmed in some cases, but the amount produced is extremely small. The amount of ethanol contained in the preservation solution after the preservation test by the method under the above storage conditions (I) is usually 0.1 mg or less.
上記の保存液中に含まれる P F6ァニオンならびに P 02 F2ァニオンの量は 公知の種々の分析法で決定できる。 その例としては、 例えば、 イオンクロマ ト グラフ分析や F— NMR或いは P— NMR等が挙げられる。 この際重要な点は、 これらの分析を行う場合、 ブランクとして、 保存前の 1. Omo l/Lの L i P F 6を含む液を用いても L i P F 6の分解が起こらない条件下で測定を行うこ とである。 また、 特に保存液中の P 02 F 2ァニオンの量が少ない場合には、 必 要に応じて、 保存液中のァニオンの組成を変化させない条件下で濃縮等の操作 を行い、 ァニオンの分析を行ってもよい。 The amounts of PF 6 anion and P 0 2 F 2 anion contained in the above preservation solution can be determined by various known analytical methods. Examples thereof include ion chromatography analysis, F-NMR and P-NMR. This time important, when performing these analyzes, as a blank, under conditions as not to cause the decomposition of the stored previous 1. Omo l / L be a solution containing L i PF 6 of L i PF 6 The measurement is to be performed. In addition, especially when the amount of P 0 2 F 2 anion in the preservation solution is small, If necessary, the anion may be analyzed by performing operations such as concentration under conditions that do not change the composition of the anion in the storage solution.
ェタノ一ルの測定は公知の種々の分析法を用いればよい。 例えばガスクロマ トグラフ ィ一、 液クロマ トグラフ ィー、 N M R等が挙げられ、 具体的には本発 明の実施例における測定方法を用いて測定することができる。  Ethanol can be measured by various known analytical methods. For example, gas chromatography, liquid chromatography, NMR and the like can be mentioned. Specifically, it can be measured using the measuring method in the embodiment of the present invention.
本発明において、 マンガン酸化物及び/又はリチウムマンガン複合酸化物は 活物質と して用いられている。 なお、 本発明において活物質とは該電池の起電 反応のも とになる主要物質であり、 L iィオンを吸蔵 · 放出できる物質を意味 する。 マンガン酸化物及び/又はリチウムマンガン複合酸化物は、 活物質とし て L iを可逆的に吸蔵 · 放出できるものであればよく、 好ましくはリチウムマ ンガン複合酸化物であ り、 特にスピネル構造を有する リチウムマンガン複合酸 化物が好ましい。 スピネル構造を有する リチウムマンガン複合酸化物の組成は 一般に L i M n 24で表されるが、 M nの一部が他の金属で置換されているも のや、 酸素欠損の生じているものも使用可能であ り、 スピネル構造を有する リ チウムマンガン複合酸化物に包含される。 M nの一部を置換する金属としては、 A l、 T i、 V、 C r、 F e、 C o、 L i、 N i、 C u、 Z n、 M g、 G a、 Z r、 B、 G e等が挙げられる。 In the present invention, a manganese oxide and / or a lithium manganese composite oxide is used as an active material. Note that, in the present invention, the active material is a main substance that is the basis of an electromotive reaction of the battery, and means a substance that can occlude and release ions. The manganese oxide and / or lithium manganese composite oxide may be any as long as it can reversibly occlude and release Li as an active material, and is preferably a lithium manganese composite oxide, particularly lithium having a spinel structure. Manganese composite oxides are preferred. The composition of a lithium manganese composite oxide having a spinel structure is generally represented by L i M n 24 , but some of M n have been replaced with other metals, and oxygen deficiency has occurred. It can also be used, and is included in the lithium manganese composite oxide having a spinel structure. Examples of the metal that partially substitutes for Mn include Al, Ti, V, Cr, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, B, Ge and the like.
本発明の第 1 の態様の好ましい態様及び本発明の第 2の態様として、 スビネ ル型構造を有する リチウムマンガン複合酸化物及び層状構造を有するリチウム ニッケル複合酸化物を含有するリチウムイオン二次電池用正極材料であって、 該リチウムマンガン複合酸化物のマンガンサイ 卜の一部が典型元素から選ばれ る少なく とも 1種の元素で置換されていることを特徴とする リチウムイオン二 次電池用正極材料が挙げられる。 本発明においては、 層状構造を有するリチウ ムニッケル複合酸化物を含有、 及びリチウムマンガン複合酸化物のマンガンサ ィ 卜の一部を典型元素から選ばれる少なく とも 1種の元素で置換することによ り高温安定性や高温サイクル特性等の高温特性の改善を達成している。  As a preferred embodiment of the first embodiment of the present invention and a second embodiment of the present invention, there is provided a lithium-ion secondary battery containing a lithium manganese composite oxide having a suberin-type structure and a lithium nickel composite oxide having a layered structure. A positive electrode material for a lithium ion secondary battery, wherein a part of the manganese site of the lithium-manganese composite oxide is replaced with at least one element selected from typical elements. Is mentioned. In the present invention, a high temperature is achieved by containing a lithium nickel composite oxide having a layered structure, and by substituting at least one element selected from typical elements for a part of the manganese site of the lithium manganese composite oxide. High temperature characteristics such as stability and high temperature cycle characteristics have been improved.
上記で使用するスピネル構造を有する リチウムマンガン複合酸化物は、 例え ば、 リチウム化合物とマンガン化合物及びマンガンサイ 卜の一部を置換する少 なく とも 1種類以上の典型元素の化合物を混合し、 大気中で焼成するか、 或い は、 リチウム化合物とマンガン化合物を混合し、 大気中で焼成してスビネル型 リチウムマンガン複合酸化物を製造し、 次いで、 少なく とも一種以上の典型元 素の化合物と反応させることによって得ることができる。 このような、 Mnサ ィ トを置換する典型元素としては、 L i、 B 、 Mg、 A l、 C a、 Z n、 G a、 G e等が挙げられる。 無論複数の元素でマンガンサイ トを置換することも可能 である。 マンガンサイ トの置換元素としては、 L i、 M g、 A 1、 G aが好ま しく、 特にアルミニウム及び/又はリチウムが好ましい。 典型元素の置換量は マンガン 2モルの中の 0. 0 5モル以上が好ましく、 更に好ましくは 0. 0 6 以上、 最も好ましくは 0. 0 8モル以上である。 The lithium manganese composite oxide having a spinel structure used above is, for example, a mixture of a lithium compound, a manganese compound, and a compound of at least one or more typical elements that partially replace the manganese site. Baking in or Can be obtained by mixing a lithium compound and a manganese compound, firing the mixture in the air to produce a subinel-type lithium-manganese composite oxide, and then reacting it with at least one compound of a typical element. Such typical elements that substitute for the Mn site include Li, B, Mg, Al, Ca, Zn, Ga, and Ge. Of course, it is possible to replace the manganese site with multiple elements. As the substitution element of the manganese site, Li, Mg, A1, and Ga are preferable, and aluminum and / or lithium are particularly preferable. The substitution amount of a typical element is preferably 0.05 mol or more, more preferably 0.06 mol or more, and most preferably 0.08 mol or more in 2 mol of manganese.
本発明の第 1の態様の好ましい態様及び本発明の第 3の態様として、 スビネ ル型構造を有するリチウムマンガン複合酸化物及び層状構造を有する リチウム ニッケル複合酸化物とを含有する リチウムイオン二次電池用正極材料であって、 該リチウムマンガン複合酸化物のマンガンサイ 卜の一部が他元素で置換されて いて、 該リチウムマンガン複合酸化物の下記測定方法 ( I ) で測定される平均 電圧が、 4. 0 5 9 V以上であることを特徴とする リチウムイオン二次電池用 正極材料が挙げられる。 ここで下記測定方法 ( I ) は正極材料として用いる好 ましいリチウムマンガン複合酸化物を決定するための測定方法である。 下記測 定方法 ( I ) で測定される平均電圧が、 4. 0 5 9 V以上であるマンガンサイ トの一部が他元素で置換されたリチウムマンガン複合酸化物が高温安定性や高 温サイクル特性等の高温特性の改善の点で好ましい。  As a preferred embodiment of the first embodiment of the present invention and a third embodiment of the present invention, a lithium ion secondary battery containing a lithium manganese composite oxide having a suberin-type structure and a lithium nickel composite oxide having a layered structure The lithium manganese composite oxide, wherein a part of the manganese site of the lithium manganese composite oxide is replaced by another element, and the average voltage of the lithium manganese composite oxide measured by the following measurement method (I) is: A positive electrode material for lithium ion secondary batteries, which is characterized by a voltage of 4.059 V or more. Here, the following measurement method (I) is a measurement method for determining a preferable lithium manganese composite oxide used as a positive electrode material. The average voltage measured by the following measurement method (I) is 4.059 V or higher. It is preferable from the viewpoint of improving high temperature characteristics such as characteristics.
<平均電圧の測定方法 ( I ) >  <Measurement method of average voltage (I)>
① 当該複合酸化物を 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ ト ラフロロエチレン (P T F E) パウダー 5重量%の割合で秤量したものを混合 し、 薄く シート状にする。 全体重量が 1 2. 5 mg/ cm2になるように調整し た後、 この試料をさらにアルミニウムのエキスパン ドメタルに圧着して試験極 とする。 試験極は減圧下 1 2 0 °Cで 1時間の乾燥を行う。 (1) The composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at 5% by weight and mixed to form a thin sheet. After adjusting the total weight to 12.5 mg / cm 2 , this sample is further pressed against aluminum expanded metal to make a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
② アルゴン雰囲気下、 2 5〃mの多孔性ポリエチレンフィルムをセパレ一夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネート とジェチルカーボネートとの体積比 3 : 7の混合溶媒に 1モル/リ ッ トルの六フッ化リン酸リチウム (L i P F6) を溶解させた溶液を 用いて、 C R 2 03 2型のコイ ン型電池を作製する。 ② Under an argon atmosphere, a porous polyethylene film of 25 2m was used as a separator, lithium metal foil was used as a counter electrode, and a nonaqueous electrolyte solution was used, in which the volume ratio of ethylene carbonate and getyl carbonate was 3: 7 mixed solvent With 1 mol / Li Tsu solution obtained by dissolving lithium hexafluorophosphate (L i PF 6) torr, to produce a coin-type battery of CR 2 03 2 type.
③ 得られたコイン型電池を、 2 5 °Cの環境下で、 電流密度 0. 5 mA/cm2 の定電流充放電サイクル (充電上限 4. 3 5 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを ③ The obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C. The average voltage V e
V e = ( 2サイ クル目の充電平均電圧 + 2サイクル目の放電平均電圧) /2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割ることにより算出する。  The average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
上記測定方法 ( I ) の①における試料のエキスパン ドメタルへの圧着は、 例 えば錠剤成型器に ( 1 ) アルミニウムのエキスパン ドメタルと ( 2 ) 当該複合 酸化物を 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ トラフロロェチ レン (P T F E) パウダー 5重量%の割合で秤量したものを混合し、 薄く シ一 ト状し、 全体重量が 1 2. 5 mg/ cm2となるよう調整したものを重ねてセッ ト し、 プレスすればよい。 圧着の圧力としては通常 8 0〜 1 0 0 MP aであり、 9 0 MP a前後で圧着すればよい。 In the above measurement method (I), the sample was pressed onto expanded metal in step (1), for example, in a tableting machine, (1) aluminum expanded metal and (2) 75% by weight of the composite oxide, acetylene black 2 0 wt%, and mixed and weighed at a ratio of Porite Torafuroroechi Ren (PTFE) powder 5% by weight, thin sheet and one preparative shape, overlapping those total weight was adjusted 1 2. 5 mg / cm 2 and so as Just set it and press it. The pressure for crimping is usually 80 to 100 MPa, and the pressure may be about 90 MPa.
エキスパン ドメタルの厚さは通常 5 0〜 3 0 0〃mであり、 2 0 0〃m前後 のものを用いればよい。  The thickness of the expanded metal is usually 50 to 300 3m, and a thickness of about 200〃m may be used.
上記の活物質として使用されるスピネル型のリチウムマンガン複合酸化物は、 平均電圧が 4. 0 5 9 V以上、 好ましくは平均電圧が 4. 0 6 0 V以上、 さら に好ましくは 4. 0 6 5 V以上、 最も好ましくは 4. 0 7 0 V以上である。 た だし、 あま りに高い電圧のものは製造するのが困難なので、 平均電圧は通常 4. 3 V以下である。 ここで、 平均電圧とは、 上記①〜③に従って測定したもので ある。  The spinel-type lithium manganese composite oxide used as the above active material has an average voltage of 4.059 V or more, preferably an average voltage of 4.060 V or more, and more preferably 4.06 V or more. 5 V or more, most preferably 4.070 V or more. However, the average voltage is usually less than 4.3 V, because of the difficulties in manufacturing high voltage ones. Here, the average voltage is a value measured according to the above ① to ③.
この様に厳密に方法を規定すれば、 平均電圧は一義的に決定できる。  If the method is strictly defined in this way, the average voltage can be uniquely determined.
上記で使用するスピネル構造を有し、 マンガンサイ 卜の一部が他元素で置換 されたリチウムマンガン複合酸化物は、 例えば、 マンガンサイ トの一部を少な く とも 1種類以上の元素によって置換することによって得ることができる。 こ のような、 Mnサイ トを置換する元素としては、 Mnの一部を置換する金属と しては、 A l、 T i、 V、 C r、 F e、 C o、 L i、 N i、 Cu、 Z n、 Mg、 G a、 Z r、 B、 G e等が挙げられ、 好ましくは L i、 B 、 Mg、 A l、 C a、 Z n、 G a、 G e等の典型元素が挙げられる。 無論複数の元素でマンガンサイ トを置換することも可能である。 マンガンサイ 卜の置換元素としては、 少量で スピネル型リチウムマンガン複合酸化物の平均電圧を上げることが可能である ため、 特にアルミニゥム及び/又はリチウムが好ましい。 The lithium manganese composite oxide having a spinel structure used above and having a part of the manganese site replaced by another element is, for example, a part of the manganese site replaced by at least one or more elements. Can be obtained by: This Examples of the element that replaces the Mn site, such as Al, Ti, V, Cr, Fe, Co, Li, Ni, and Cu, Zn, Mg, Ga, Zr, B, Ge and the like, preferably Li, B, Mg, Al, Ca, Zn, Ga, Ge and the like typical elements No. Of course, it is possible to replace the manganese site with multiple elements. Aluminum and / or lithium are particularly preferable as the manganese site substitution element, since it is possible to increase the average voltage of the spinel-type lithium manganese composite oxide with a small amount.
第 1の態様の好ましい態様、 本発明の第 2の態様及び本発明の第 3の態様に おいて、 使用するスピネル型構造を有する リチウムマンガン複合酸化物 「以下 「複合酸化物(A) 」 ということもある」のうち好ましいものは、 一般式 L i [M n — ^ A l yL i jO 但し、 x、 y及び zはそれそれ 0以上の数であり、 x = y + zである。 ただし yと zは同時に 0でない。 ) で表わすことができる。 ここで、 yとしては、 通常 0. 5以下、 好ましくは 0. 2 5以下であり、 また 通常は 0. 1以上である。 また、 zとしては、 通常 0. 1以下、 好ましくは 0. 0 8以下であり、 また通常 0. 0 2以上である。 yや zが小さすぎると高温特 性が悪化することがあり、 一方大きすぎると容量が低下する傾向にある。  In the preferred embodiment of the first embodiment, the second embodiment of the present invention, and the third embodiment of the present invention, a lithium manganese composite oxide having a spinel structure used, hereinafter referred to as “composite oxide (A)” Of the "may be", a preferred one is a general formula L i [M n — ^ A L y L i jO where x, y and z are each 0 or more, and x = y + z. However, y and z are not simultaneously 0. ). Here, y is usually 0.5 or less, preferably 0.25 or less, and usually 0.1 or more. Z is usually 0.1 or less, preferably 0.08 or less, and usually 0.02 or more. If y and z are too small, the high-temperature characteristics may deteriorate, while if too large, the capacity tends to decrease.
なお、 上記において、 複合酸化物 (A) の酸素原子は不定比性を有してもよ く、 また酸素原子の一部がフッ素等のハロゲン元素で置換されていてもよい。 第 1の態様の好ましい態様、 本発明の第 2の態様及び本発明の第 3の態様に おいて使用する層状構造を有する リチウムニッケル複合酸化物 (以下 「複合酸 化物 (B) ということもある」 としては、 基本的な組成式 L i N i〇 2を有する ものが一般的である。 中でも、 平均電圧は 3. 8 3 0 V以下のものが好ましく、 特に 3. 8 2 0 V以下、 さらには 3. 8 1 0 V以下、 さらには 3. 8 0 0 V以 下のものが好ましい。 複合酸化物 (B) の平均電圧を下げることによって、 複 合酸化物 (A) との電位差が広がるので、 作用欄で述べたような、 複合酸化物 (A) と (B) との相互作用が大き くなることが予想され、 その結果高温での 特性等を向上させることができる。 ただし、 あま りに平均電圧の低いものは製 造が困難なので、 通常平均電圧は 3. 5 V以上である。 In the above description, the oxygen atoms of the composite oxide (A) may have non-stoichiometric properties, and some of the oxygen atoms may be substituted with a halogen element such as fluorine. The lithium nickel composite oxide having a layered structure used in the preferred embodiment of the first embodiment, the second embodiment of the present invention and the third embodiment of the present invention (hereinafter sometimes referred to as “composite oxide (B)” In general, those having a basic composition formula L i N i〇 2 are preferred. Among them, those having an average voltage of 3.830 V or less are preferable, and especially those having an average voltage of 3.820 V or less. More preferably, the voltage is 3.810 V or lower, and more preferably, the voltage is 3.80 V. By lowering the average voltage of the composite oxide (B), the potential difference from the composite oxide (A) is reduced. It is expected that the interaction between the composite oxides (A) and (B) will increase as described in the section of action, and as a result, the characteristics at high temperatures can be improved. Usually, the average voltage is more than 3.5 V because the one with too low average voltage is difficult to manufacture.
なお、 複合酸化物 (B) の平均電圧の測定法は、 複合酸化物 (A) における 測定法とほぼ同一であるが、 ③の工程において、 電流密度を 0. 2 mA/cm2 とし、 充電上限を 4. 2 Vとする点が異なる。 The method of measuring the average voltage of the composite oxide (B) is the same as that of the composite oxide (A). It is almost the same as the measurement method, except that in step (3), the current density is 0.2 mA / cm 2 and the upper limit of charge is 4.2 V.
このような平均電圧を下げた複合酸化物 (B ) は、 ニッケルの一部を他元素 によって置換することによって得ることができる。 また、 複合酸化物 (B) の 粒径を小さくすることによって、 リチウムの出し入れを容易にすることによつ ても得ることができる。  Such a composite oxide (B) having a reduced average voltage can be obtained by substituting a part of nickel with another element. Further, it can also be obtained by making the particle size of the composite oxide (B) small, so that lithium can be easily taken in and out.
ニッケルの一部を置換できる元素としては、 B、 A l、 F e、 S n、 C r、 Cu、 T i、 Z n、 C o、 Mn等の金属元素を挙げることができる。 無論複数 の元素でニッケルサイ トを置換することも可能である。 特にはアルミニウム及 び/又はコバルトが好ましい。  Examples of the element capable of partially replacing nickel include metal elements such as B, Al, Fe, Sn, Cr, Cu, Ti, Zn, Co, and Mn. Of course, it is possible to replace the nickel site with multiple elements. Particularly, aluminum and / or cobalt are preferable.
特に好ましい複合酸化物 (B) は、 一般式 L i [N i ( 1_x) C oyA l z]02 ( ただし x、 y及び zはそれそれ 0以上の数であり、 x = y+ z である。 ただ し yと zは同時に 0でない。 ) で表わすことができる。 ここで、 y及び zとし ては、 それそれ独立に、 通常 0. 5以下、 好ましくは 0. 2 5以下であり、 ま た通常は 0. 1以上である。 また、 zとしては、 通常 0. 1以下、 好ましくは 0. 0 8以下であり、 また通常 0. 0 2以上である。 yや zが小さすぎると高 温特性が良くない傾向にあり、 一方大きすぎると容量が低下する傾向にある。 なお、 上記において、 複合酸化物 (B) の酸素原子は不定比性を有してもよ く、 また酸素原子の一部がフッ素等のハロゲン元素で置換されていてもよい。 第 1の態様の好ましい態様、 本発明の第 2の態様及び本発明の第 3の態様に おいては、 複合酸化物 (A) と複合酸化物 (B) とは、 それらの混合物の形態 であってもよく、 また、 化学的な結合を伴う複合体であってもよい。 Particularly preferred composite oxide (B) has the general formula L i [N i (1 _ x) C o y A l z] 0 2 ( provided that x, y and z is a number which it zero or more, x = y + z, except that y and z are not both 0 at the same time. Here, y and z are each independently usually 0.5 or less, preferably 0.25 or less, and usually 0.1 or more. Z is usually 0.1 or less, preferably 0.08 or less, and usually 0.02 or more. If y and z are too small, the high temperature characteristics tend to be poor, while if too large, the capacity tends to decrease. In the above, the oxygen atoms of the composite oxide (B) may have non-stoichiometric properties, and some of the oxygen atoms may be substituted with a halogen element such as fluorine. In the preferred embodiment of the first embodiment, the second embodiment of the present invention and the third embodiment of the present invention, the composite oxide (A) and the composite oxide (B) are in the form of a mixture thereof. Or a complex involving a chemical bond.
第 1の態様の好ましい態様、 本発明の第 2の態様及び本発明の第 3の態様に おいて、 活物質中における、 複合酸化物 (A) と複合酸化物 (B ) との合計量 に対する複合酸化物 (B ) の重量比率 Rとしては、 通常 0. 7以下であり、 好 ましくは 0. 6以下、 さらに好ましくは 0. 3以下である。 また、 通常は 0. 0 5以上であ り、 好ましくは 0. 1以上である。 リチウムニッケル複合酸化物 の混合比率が少なすぎると、 高温特性の改善効果が小さ くなる傾向にあり、 逆 に多すぎるとコス トアツブゃ安全性の面で問題が生じることがあるためである。 また、 複合酸化物 (A ) 若しくは (B ) 、 又はこれらの複合体の粒径は通常 0 . l m以上、 好ましくは 0 . 以上、 さらに好ましくは 0 . 3〃m以 上であり、 また通常 3 0 m以下、 好ましくは 1 0 m以下、 さらに好ましく は 5 m以下である。 また、 これらの窒素吸着法による比表面積は通常 0 . 3 m 2 / g以上であり、 また通常 1 5 m 2 / g以下である。 粒径が小さすぎたり 比表面積が大きいと電池のサイクル劣化大きくなつたり、 安全性に問題が生じ たりすることがある。 粒径が大きすぎたり、 比表面積が小さすぎると、 電池の 内部抵抗が大きなり、 出力が出しにく くなることがある。 In the preferred embodiment of the first embodiment, the second embodiment of the present invention, and the third embodiment of the present invention, the active material is based on the total amount of the composite oxide (A) and the composite oxide (B) The weight ratio R of the composite oxide (B) is usually 0.7 or less, preferably 0.6 or less, and more preferably 0.3 or less. Further, it is usually at least 0.05, preferably at least 0.1. If the mixing ratio of the lithium-nickel composite oxide is too small, the effect of improving the high-temperature characteristics tends to be small, while if too large, a problem may occur in terms of cost and safety. The particle size of the composite oxide (A) or (B), or a composite of these, is usually at least 0.3 lm, preferably at least 0.3, more preferably at least 0.3 μm, and usually at least 0.3 μm. 0 m or less, preferably 10 m or less, more preferably 5 m or less. The specific surface area by these nitrogen adsorption methods is usually 0.3 m 2 / g or more, and usually 15 m 2 / g or less. If the particle size is too small or the specific surface area is too large, the cycle deterioration of the battery may increase, or safety problems may occur. If the particle size is too large or the specific surface area is too small, the internal resistance of the battery may be large and output may be difficult to obtain.
本発明は又、 上述の如き リチウム二次電池用正極材料を使用したリチウムィ オン二次電池用の正極と電池に関する。 即ち、 本発明のリチウムイオン二次電 池用正極は、 前記正極材料を含有する活物質層を集電体上に形成してなるもの である。  The present invention also relates to a positive electrode and a battery for a lithium ion secondary battery using the positive electrode material for a lithium secondary battery as described above. That is, the positive electrode for a lithium ion secondary battery of the present invention is obtained by forming an active material layer containing the positive electrode material on a current collector.
正極は、 通常、 活物質とバインダーとを含有する活物質層を集電体上に形成 してなる。 活物質層は、 通常、 上記構成成分を含有するスラリーを調製し、 こ れを集電体上に塗布 · 乾燥することで得ることができる。  The positive electrode is generally formed by forming an active material layer containing an active material and a binder on a current collector. The active material layer can be usually obtained by preparing a slurry containing the above constituent components, applying the slurry on a current collector, and drying.
活物質層中の本発明の活物質の割合は、 通常 1 0重量%以上、 好ましくは 3 0重量%以上、 さらに好ましくは 5 0重量%以上であり、 通常 9 9 . 9重量% 以下、 好ましくは 9 9重量%以下である。  The proportion of the active material of the present invention in the active material layer is usually at least 10% by weight, preferably at least 30% by weight, more preferably at least 50% by weight, and usually at most 99.9% by weight, preferably at most 99.9% by weight. Is less than 99% by weight.
正極に使用されるパイ ンダ一としては、 例えば、 ポリフッ化ビニリデン、 ポ リテ トラフルォロエチレン、 フッ素化ポリフヅ化ビニリデン、 E P D M (ェチ レン一プロピレン一ジェン三元共重合体) 、 S B R (スチレン一ブタジエンゴ ム) 、 N B R (アク リ ロニ ト リル一ブタジエンゴム) 、 フッ素ゴム、 ポリ醉酸 ビニル、 ポリメチルメタク リ レート、 ポリエチレン、 ニトロセルロース等が挙 げられる。 活物質層中のバイ ンダーの割合は、 通常 0 . 1重量%以上、 好ま し くは 1重量%以上、 さらに好ましくは 5重量%以上であり、 通常 8 0重量%以 下、 好ま しくは 6 0重量%以下、 さらに好ましくは 4 0重量%以下、 最も好ま しくは 1 0重量%以下である。 バイ ンダ一の割合が低すぎると、 活物質を十分 に保持できずに正極の機械的強度が不足し、 サイ クル特性等の電池性能を悪化 させることがあり、 一方高すきると電池容量や導電性を下げることがある。 活物質層は、 通常導電性を高めるため導電剤を含有する。 導電剤としては、 天然黒鉛、 人造黒鉛等の黒鉛や、 アセチレンブラック等のカーボンブラック、 ニー ドルコ一クス等の無定形炭素等の炭素材料を挙げることができる。 活物質 層中の導電剤の割合は、 通常 0 . 0 1重量%以上、 好ましくは 0 . 1重量%以 上、 さらに好ましくは 1重量%以上であり、 通常 5 0重量%以下、 好ましくは 3 0重量%以下、 さらに好ましくは 1 5重量%以下である。 導電剤の割合が低 すぎると導電性が不十分になることがあり、 逆に高すぎると電池容量が低下す ることがある。 Examples of the binder used for the positive electrode include polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), and SBR (styrene-styrene). Butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluoroelastomer, polyvinyl benzoate, polymethyl methacrylate, polyethylene, nitrocellulose and the like. The proportion of the binder in the active material layer is usually at least 0.1% by weight, preferably at least 1% by weight, more preferably at least 5% by weight, and usually at most 80% by weight, preferably at most 6% by weight. 0% by weight or less, more preferably 40% by weight or less, and most preferably 10% by weight or less. If the ratio of the binder is too low, the active material cannot be sufficiently retained, resulting in insufficient mechanical strength of the positive electrode, which may degrade battery performance such as cycle characteristics. May reduce sex. The active material layer usually contains a conductive agent to increase conductivity. Examples of the conductive agent include carbon materials such as graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle cox. The proportion of the conductive agent in the active material layer is usually at least 0.01% by weight, preferably at least 0.1% by weight, more preferably at least 1% by weight, and usually at most 50% by weight, preferably at most 3% by weight. 0% by weight or less, more preferably 15% by weight or less. If the proportion of the conductive agent is too low, the conductivity may be insufficient, and if it is too high, the battery capacity may decrease.
また、 スラ リー溶媒としては、 通常はバイ ンダーを溶解あるいは分散する有 機溶剤が使用される。 例えば、 N—メチルピロ リ ドン、 ジメチルホルムアミ ド、 ジメチルァセ トアミ ド、 メチルェチルケ トン、 シクロへキサノン、 酢酸メチル、 アク リル酸メチル、 ジエチレン ト リアミ ン、 N , N—ジメチルアミ ノブ口ピル ァミ ン、 エチレンォキシ ド、 テ トラヒ ドロフラン等を挙げることができる。 ま た、 水に分散剤、 増粘剤等を加えて S B R等のラテックスで活物質をスラリー 化することもできる。  As the slurry solvent, an organic solvent that usually dissolves or disperses the binder is used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N, N-dimethylaminobutyrol pyramine, ethyleneoxy And tetrahydrofuran. In addition, a dispersant, a thickener, and the like can be added to water to form a slurry of the active material with a latex such as SBR.
活物質層の厚さは、 通常 1 0〜 2 0 0 m程度である。  The thickness of the active material layer is usually about 10 to 200 m.
正極に使用する集電体の材質としては、 アルミニウム、 ステンレス鋼、 ニッ ケルメ ツキ鋼等が用いられ、 好ましくはアルミニウムである。  As the material of the current collector used for the positive electrode, aluminum, stainless steel, nickel steel, or the like is used, and aluminum is preferable.
なお、 塗布 · 乾燥によって得られた活物質層は、 活物質の充填密度を上げる ためローラ一ブレス等により圧密されるのが好ましい。  The active material layer obtained by coating and drying is preferably compacted by a roller press or the like in order to increase the packing density of the active material.
本発明の活物質、 正極を用いてリチウムイオン二次電池とすることができる。 本発明のリチウムイオン二次電池は、 前記活物質を正極中に含有するが、 通 常上記正極と負極及び非水系電解液とを有する。  A lithium ion secondary battery can be obtained using the active material of the present invention and the positive electrode. The lithium ion secondary battery of the present invention contains the active material in the positive electrode, and usually has the positive electrode, the negative electrode, and a non-aqueous electrolyte.
本発明の二次電池の負極に使用される負極活物質と しては、 リチウムゃリチ ゥムアルミニウム合金などのリチウム合金であっても良いが、 より安全性の高 いリチウムを吸蔵、 放出できる炭素材料が好ましい。 この炭素材料としては、 天然乃至人造の黒鉛、 石油系コ一クス、 石炭系コ一クス、 石油系ピッチの炭化 物、 石炭系ピッチの炭化物、 フエノール樹脂 · 結晶セルロース等の樹脂の炭化 物およびこれらを一部炭化した炭素材、 ファーネスブラック、 アセチレンブラ ック等の力一ボンブラック、 ピヅチ系炭素繊維、 P A N 系炭素繊維、 あるいは これらの 2種以上の混合物等が挙げられる。 The negative electrode active material used for the negative electrode of the secondary battery of the present invention may be a lithium alloy such as lithium-poly-aluminum alloy, but can store and release lithium with higher safety. Carbon materials are preferred. Examples of the carbon material include natural or artificial graphite, petroleum-based coke, coal-based coke, carbide of petroleum-based pitch, carbide of coal-based pitch, and carbide of resin such as phenolic resin and crystalline cellulose, and the like. Carbon material, furnace black, acetylene bra And carbon black, peach-based carbon fiber, PAN-based carbon fiber, or a mixture of two or more of these.
負極は、 通常、 正極の場合と同様、 活物質層を集電体上に形成させてなる。 この際使用するバイ ンダ一や、 必要に応じて使用される導電剤ゃスラリ一溶媒 としては、 正極で使用するものと同様のものを使用することができる。 また、 負極の集電体としては、 銅、 ニッケル、 ステンレス鋼、 ニッケルメ ヅキ鋼等が 使用され、 好ましくは銅が用いられる。  The negative electrode is usually formed by forming an active material layer on a current collector as in the case of the positive electrode. At this time, as the binder used and the conductive agent / slurry used as needed, the same solvent as that used for the positive electrode can be used. As the current collector of the negative electrode, copper, nickel, stainless steel, nickel plating steel, or the like is used, and copper is preferably used.
本発明のリチウム二次電池に使用できる非水系電解液としては、 各種の電解 質塩を非水系溶媒に溶解したものを挙げることができる。 非水溶媒としては、 例えばカーボネート類、 エーテル類、 ケ トン類、 スルホラン系化合物、 ラク ト ン類、 二 ト リル類、 ハロゲン化炭化水素類、 アミ ン類、 エステル類、 アミ ド類、 燐酸エステル化合物等を使用することができる。 これらの代表的なものを列挙 すると、 プロピレンカーボネート、 エチレンカーボネート、 クロ口エチレン力 —ポネー ト、 ト リフルォロプロピレンカーボネー ト、 ジェチルカ一ボネート、 ジメチルカ一ボネート、 ェチルメチルカ一ボネー ト、 ビニレンカーボネート、 テ トラヒ ドロフラン、 2 —メチルテ トラヒ ドロフラン、 1, 4 一ジォキサン、 4ーメチルー 2 —ペンタノ ン、 1 , 2 —ジメ トキシェ夕ン、 1, 2 —ジェ トキ シェタン、 ァープチロラク トン、 1 , 3 —ジォキゾラン、 4ーメチルー 1 , 3 ージォキソラン、 ジェチルェ一テル、 スルホラン、 メチルスルホラン、 ァセ ト 二ト リル、 ブロピオ二 ト リル、 ベンゾニ ト リル、 ブチロニト リル、 ノ、'レロニ ト リル、 1, 2 —ジクロロェタン、 ジメチルホルムアミ ド、 ジメチルスルホキシ ド、 燐酸ト リメチル、 燐酸ト リェチル等の単独も しくは 2種類以上の混合溶媒 が使用できる。  Examples of the non-aqueous electrolyte solution that can be used in the lithium secondary battery of the present invention include those in which various electrolyte salts are dissolved in a non-aqueous solvent. Non-aqueous solvents include, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, halogenated hydrocarbons, amines, esters, amides, phosphate esters Compounds and the like can be used. Typical examples of these are propylene carbonate, ethylene carbonate, and ethylene ethylene oxide—ponate, trifluoropropylene carbonate, getyl carbonate, dimethyl carbonate, ethyl methyl carbonate, vinylene carbonate, and terephthalate. Trahydrofuran, 2—Methylte Trahydrofuran, 1,4-dioxane, 4-methyl-2, pentanone, 1,2—Dimethoxane, 1,2—Jetokishetan, Arptyloractone, 1,3—Dioxolan, 4-methylol 1,3 Dioxolane, Jetylether, Sulfolane, Methylsulfolane, Acetonitrile, Bropionitrile, Benzonitrile, Butyronitrile, Nono, 'Leronitrile, 1,2-Dichloroethane, Dimethylformamide The Chirusuruhokishi de, phosphate preparative Rimechiru, even alone, such as phosphoric acid DOO Ryechiru properly mixed solvent of two or more can be used.
上述の非水系溶媒には、 電解質を解離させるために高誘電率溶媒が含まれる ことが好ましい。 ここで、 高誘電率溶媒とは、 2 5 °Cにおける比誘電率が 2 0 以上の溶媒を意味する。 高誘電率溶媒の中では、 エチレンカーボネート、 プロ ピレンカーボネート及びそれらの水素原子をハロゲン等の他の元素またはアル キル基等で置換した化合物が電解液中に含まれることが好ましい。 高誘電率溶 媒の電解液中に占める割合は、 好ましくは 2 0重量%以上、 更に好ましくは 3 0重量%以上、 最も好まし くは 4 0重量%以上である。 高誘電率溶媒の含有量 が少ないと、 所望の電池特性が得られない場合があるからである。 The above-mentioned non-aqueous solvent preferably contains a high dielectric constant solvent for dissociating the electrolyte. Here, the high dielectric constant solvent means a solvent having a relative dielectric constant at 25 ° C. of 20 or more. Among the high dielectric constant solvents, it is preferable that ethylene carbonate, propylene carbonate, and a compound in which hydrogen atoms thereof are replaced with another element such as halogen or an alkyl group are contained in the electrolytic solution. The proportion of the high dielectric constant solvent in the electrolyte is preferably 20% by weight or more, more preferably 3% by weight or more. It is at least 0% by weight, most preferably at least 40% by weight. If the content of the high dielectric constant solvent is small, desired battery characteristics may not be obtained in some cases.
電解質塩としては、 従来公知のいずれもが使用でき、 L i C l〇 4、 L i A s F 6、 L i P F 6, L i B F 4, L i B (C 6H5) 4、 L i C l、 L i B r , L i C H3 S〇 3 L i、 L i C F a S 03. L i N ( S O 2 C F 3 ) い L i N (S O 2 C 2 F 5) 2、 L i C ( S O 2 C F 3 ) 3、 L i N ( S 03 C F 3) 2等のリチウム 塩が挙げられる。 As the electrolyte salt, any conventionally known can be used, L i C L_〇 4, L i A s F 6 , L i PF 6, L i BF 4, L i B (C 6 H 5) 4, L i C l, L i B r , L i CH 3 S_〇 3 L i, L i CF a S 0 3. L i N (SO 2 CF 3) had L i N (SO 2 C 2 F 5) 2, L i C (SO 2 CF 3 ) 3, L i N (S 0 3 CF 3) lithium salts of 2, and the like.
また、 C 02、 N20、 C〇、 S◦ 2等のガスやポリサルフアイ ド Sx ^ ―、 ビ 二レンカーボネート、 カテコール力一ボネ一トなど負極表面に リチウムイオン の効率よぃ充放電を可能にする良好な皮膜を生成する添加剤を任意の割合で上 記単独又は混合溶媒に添加してもよい。 Further, C 0 2, N 2 0 , C_〇, S◦ 2 like gas or Porisarufuai de S x ^ -, bi two alkylene carbonate, catechol force one Bonnet one preparative such efficiency Yoi charge and discharge of the lithium ion to the negative electrode surface The additive which produces a good film which enables the above-mentioned process may be added to the above-mentioned solvent alone or in a mixed solvent at an arbitrary ratio.
また、 リチウムイオン等のアル力 リ金属カチオンの導電体である高分子固体 電解質を用いることもできる。 この場合、 該高分子として従来公知のものを用 いることができるが、 好ま しくはリチウムイオンに対するイオン導電性の高い 高分子を使用する。 このような高分子としては、 例えば、 ポリエチレンォキサ イ ド、 ポリプロピレンオキサイ ド、 ポリエチレンィ ミ ン等が挙げられる。 通常 高分子固体電解質は上記高分子と前記リチウム塩とを含有するが、 さらに前記 の溶媒を加えてゲル状電解質として使用することも可能である。 即ち、 この場 合は、 前記電解液を高分子によってマ ト リ ックス化したものを使用することに なる。  Further, a solid polymer electrolyte which is a conductor of an alkali metal cation such as lithium ion can also be used. In this case, a conventionally known polymer can be used as the polymer, but a polymer having high ionic conductivity to lithium ions is preferably used. Examples of such a polymer include polyethylene oxide, polypropylene oxide, polyethylene imide and the like. Usually, the polymer solid electrolyte contains the above-mentioned polymer and the above-mentioned lithium salt, but it is also possible to add the above-mentioned solvent and use it as a gel electrolyte. That is, in this case, the electrolyte solution is made into a matrix by a polymer.
無機固体電解質を使用する場合にも、 この無機物に公知の結晶質、 非晶質固 体電解質を用いることができる。 結晶質の固体電解質としては例えば、 L i I、 L i 3N、 L i 1 + xMxT i 2x (P〇 4) 3 (M = A 1 , S c , Y, L a) 、 L i 0. 53 xRE。. 5 + xT i 03 (R E = L a , P r , Nd, Sm) 等が挙げられ、 非晶質の固体電解質としては、 例えば、 4. 9 L i I - 34. 1 L i 20 - 6 1 B 205 , 3 3. 3 L i 20 - 6 6. 7 S i〇 2等の酸化物ガラスや 0. 4 5 L i I - 0. 3 7 L i 2 S - 0. 2 6 B2 S 3、 0. 3 0 L i I - 0. 4 2 L i 2 S — 0. 2 8 S i S 2等の硫化物ガラス等が挙げられる。 これらの中から複数種を 使用することもできる。 正極と負極との間には、 通常セパレ一夕一が設けられる。 セパレー夕として は、 微多孔性の高分子フィルムが用いられ、 ポリアミ ド、 ポリエステル、 セル ロースアセテート、 ニトロセルロース、 ポリスルホン、 ポリアク リロニト リル、 ポリ フッ化ビニリデン、 ボリテ トラフルォロエチレンや、 ポリプロピレン、 ポ リエチレン、 ポリブテン等のポリオレフイ ン系高分子よりなるものを用いるこ とができる。 また、 ガラス繊維等の不織布フィルタ一、 さらにはガラス繊維と 高分子繊維の複合不織布フィルタ一を用いることもできる。 セパレー夕の化学 的及び電気化学安定性は重要な因子である。 この点からポリオレフィ ン系高分 子が好ま しく、 電池セパレー夕の目的の一つである自己閉塞温度の点からポリ エチレン製であることが好ましい。 Even when an inorganic solid electrolyte is used, a known crystalline or amorphous solid electrolyte can be used for the inorganic substance. Examples of the crystalline solid electrolyte include L i I, L i 3 N, L i 1 + x M x T i 2x (P〇 4 ) 3 (M = A 1, S c, Y, La) , L i 0 5 -. 3 x RE. . 5 + x T i 0 3 (RE = L a, P r, Nd, Sm) and the like, as the solid electrolyte of the amorphous, for example, 4. 9 L i I - 34. 1 L i 2 O-glass such as 0-6 1 B 205, 33.3 L i 20-6 6.7 S i〇 2 and 0.45 L i I-0.37 L i 2 S-0.26 B 2 S 3 , 0.30 L i I-0.42 L i 2 S — 0.28 S i S 2 and other sulfide glasses. A plurality of these can be used. Normally, a separation is provided between the positive electrode and the negative electrode. For separation, a microporous polymer film is used. A polymer made of a polyolefin-based polymer such as polybutene can be used. Further, a nonwoven fabric filter made of glass fiber or the like, or a composite nonwoven fabric filter made of glass fiber and polymer fiber can also be used. The chemical and electrochemical stability of the separation is an important factor. From this point, a polyolefin polymer is preferable, and it is preferable to be made of polyethylene from the viewpoint of the self-closing temperature, which is one of the purposes of the battery separation.
ポリエチレン製セパレ一夕の場合、 高温形状維持性の点から超高分子量ボリ エチレンであることが好ましく、 その分子量の下限は好ましくは 5 0万、 更に 好ましくは 1 00万、 最も好ましくは 1 5 0万である。 他方分子量の上限は、 好ま しくは 5 0 0万、 更に好ましくは 4 0 0万、 最も好ましくは 3 0 0万であ る。 分子量が大きすぎると、 流動性が低すぎて加熱されたときセパレータの孔 が閉塞しない場合があるからである。  In the case of polyethylene separator, it is preferably ultra-high molecular weight polyethylene from the viewpoint of high-temperature shape retention, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 150,000. It is ten thousand. On the other hand, the upper limit of the molecular weight is preferably 500,000, more preferably 400,000, and most preferably 300,000. If the molecular weight is too large, the fluidity is too low and the pores of the separator may not be closed when heated.
以下、 実施例によって本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
[ チウムマンガン複合酸化物の調製]  [Preparation of manganese composite oxide]
調製例 1 L i [Mn 96 L i 4]04調製 Preparation Example 1 L i [Mn 96 L i 4] 0 4 Preparation
スビネル型リチウムマンガン複合酸化物 L i [Μη^ L i O. 4]04を以下 のように作成した。 Subineru type lithium manganese complex oxide L i [Μη ^ L i O . 4] 0 4 was prepared as follows.
三酸化二マンガン( Mn 203 )及び水酸化リチウム( L i OH ' H20) を出 発原料とし、 それそれの化合物のモル比が 1 : 1. 04となるように配合した。 この配合物にエタノールを加え、 乳鉢中でよくすりつぶし、 均一な混合物とし た。 得られた混合物を大気中で 5 0 0 °C (昇温速度 : 5 °C/m i n) にて 2 4 時間仮焼し、 次に大気中で 7 8 0 °C (昇温速度 : 5°C/mi n) にて 24時間 本焼し、 次いで 4 5 0 °C (冷却速度 : 0. 2 °C/m i n) まで冷却し 24時間 保持し、 その後自然冷却で室温まで充分徐冷し取り出した。 元素分析したとこ ろ、 L i fMrii g e L i 0. 。4]〇 4が得られていた。 得られたスピネル型リチウ ムマンガン複合酸化物をリチウムマンガン複合酸化物 (A) とした。 調製例 2 L i tMn u s A l o. H L i oj jC の調製 Manganese sesquioxide (Mn 2 0 3) and the departure material Lithium hydroxide (L i OH 'H 2 0 ), it molar ratio of its compound 1: was blended so that 1.04. Ethanol was added to this formulation and ground well in a mortar to make a homogeneous mixture. The obtained mixture is calcined in the air at 500 ° C (heating rate: 5 ° C / min) for 24 hours, and then in the air at 780 ° C (heating rate: 5 °). (C / min) for 24 hours, then cool to 450 ° C (cooling rate: 0.2 ° C / min), hold for 24 hours, then slowly cool to room temperature by natural cooling and take out Was. Elemental analysis was Toko filtration, L i fMrii ge L i 0. . 4]4 had been obtained. The resulting spinel type lithium The lithium manganese composite oxide was designated as lithium manganese composite oxide (A). Preparation Example 2 Preparation of LitMn us Alo.HLiojjC
スピネル型のリチウムマンガン複合酸化物 L i [Mnj. 85 A 10. !! L i o. o 4]04を以下のように作成した。 Lithium manganese composite oxide of the spinel-type L i [Mnj. 8 5 A 1 0.! ! L i o. O 4] 0 4 was prepared as follows.
三酸化二マンガン( Mn 203 )、 炭酸リチウム ( L i 2 C 03) 、 及びアルミ ナ水和物 (A 100H) を出発原料とし、 それそれの化合物のモル比が 0. 9 4 : 1. 04 : 0. 1 0となるように配合した。 この配合物にエタノールを加 え、 乳鉢中でよくすりつぶし、 均一な混合物とした。 得られた混合物を大気中 で 5 00 °C (昇温速度 : 5 °C/m i n) , 60 0 °C (昇温速度 : 5 °C/m i n) , 7 0 0 °C (昇温速度 : 5 °C/m i n) , 8 0 0 °C (昇温速度 : 5 °C/m i n) にて順次各々 6時間仮焼し、 次に大気中で 9 0 0 °C (昇温速度 : 5°C/mi n) にて 24時間本焼し、 次いで 3 0 0 °Cまで冷却速度 : 0. 2°C/m i nで冷却 し、 その後自然冷却で室温まで充分徐冷し取り出した。 元素分析したところ、 L i [Mn J . 9 6 L i o .。 4 ] 04が得られていた。 得られたスピネル型リチウムマ ンガン複合酸化物をリチウムマンガン複合酸化物 (B) とした。 Manganese sesquioxide (Mn 2 0 3), lithium carbonate (L i 2 C 0 3) , and alumina hydrate (A 100H) was used as a starting material, and that of an compound molar ratio is 0.9 4: It was blended so that 1.04: 0.10. Ethanol was added to this formulation and ground well in a mortar to form a uniform mixture. The obtained mixture is heated in the air at 500 ° C (heating rate: 5 ° C / min), 600 ° C (heating rate: 5 ° C / min), 700 ° C (heating rate: 5 ° C / min) and 800 ° C (heating rate: 5 ° C / min) for 6 hours, then 900 ° C in air (heating rate: 5 °) C / min) for 24 hours, then cooled to 300 ° C. at a cooling rate of 0.2 ° C./min, and then slowly cooled down to room temperature by natural cooling. Elemental analysis showed that Li [Mn J. 96 Lio. 4] 0 4 was obtained. The obtained spinel-type lithium manganese composite oxide was designated as lithium manganese composite oxide (B).
調製例 3 酸処理リチウムマンガン酸化物 L ixMny4の調製 Preparation of Preparation 3 acid treatment lithium manganese oxide L i x Mn y4
空気下、室温で 3 0 0 m lビ一カー中、上記リチウムマンガン複合酸化物(A) 6. 6 0 gの蒸留水 ( 1 8 0 m 1 ) 懸濁液に、 懸濁液の p Hが 1. 0 0になる まで 4. 5 N硫酸を加え、 6 時間撹拌後、 得られた懸濁液を濾過して、 粗製し i xMny04を暗赤褐色粉末として得た。 これを、 蒸留水 ( 2 0ml ) で 6回 洗浄後、 一昼夜の風乾を行い、 更に常圧下で 9 0°Cで 1時間乾燥することによ り 4. 8 8 の、 リチウムを抜き出した満充電状態相当にリチウムを抜き出し た酸処理リチウムマンガン複合酸化物を得た。 この酸処理リチウムマンガン複 合酸化物の L i /Mn モル比は 0. 0 7であった。 また X線回折測定により立 方晶スピネル構造を維持していることを確認し、 かつ I Rによ り水が含まれて いないことを確認した。 In a 300 ml beaker at room temperature under air, the pH of the suspension was added to a suspension of 6.60 g of the above-mentioned lithium manganese composite oxide (A) in distilled water (180 ml). 1.0 0 4. 5 N sulfuric acid until the addition, after stirring for 6 hours, the resulting suspension was filtered to give the crude was i xMn y 0 4 as a dark red-brown powder. This was washed 6 times with distilled water (20 ml), air-dried all day and night, and further dried at 90 ° C under normal pressure for 1 hour to obtain 4.88 full charge after extracting lithium. An acid-treated lithium manganese composite oxide was obtained from which lithium was extracted to an extent equivalent to the state. The L i / Mn molar ratio of this acid-treated lithium manganese composite oxide was 0.07. X-ray diffraction measurement confirmed that the cubic spinel structure was maintained, and IR confirmed that water was not contained.
実施例 1 Example 1
正極の作成と容量確認  Preparation of positive electrode and confirmation of capacity
リチウムマンガン複合酸化物 (A) に、 添加剤として市販の組成 L i 。 5N ΐ o . 8 0 C O o . 1 5 A 1 o . 。 52なる層状リチウムニッケル酸化物 (以下 P F 6 ァニオン分解抑制剤 (a) と称することがある) を、 重量比でリチウムマンガ ン複合酸化物 (A) /添加剤 = 3/ 1 となるように添加し混合した。 Commercially available composition Li as an additive to lithium manganese composite oxide (A). 5 N ΐ o. 80 CO o. 15 A 1 o. 52 layered lithium nickel oxide (hereinafter sometimes referred to as PF 6 anion decomposition inhibitor (a)) was added such that the weight ratio of lithium manganese composite oxide (A) / additive = 3/1. And mixed.
得られた混合物を 7 5重量% 、 アセチレンブラック 2 0重量% 、 ポリテ トラ フロロエチレンパウダー 5重量% の割合で秤量したものを乳鉢で十分混合して 正極材料とし、 これを薄く シート状にした後 1 2 mm (^のポンチで打ち抜いた。 この際全体重量は約 1 8 mgになるように調整した。 これをアルミニウムのェ キスパン ドメタルに圧着して正極とした。  A mixture obtained by weighing 75% by weight of the obtained mixture, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene powder was sufficiently mixed in a mortar to form a positive electrode material. It was punched out with a punch of 12 mm (^. At this time, the total weight was adjusted to be about 18 mg. This was pressed against aluminum expansive metal to form a positive electrode.
次いで、 得られた正極を試験極、 L i金属を対極として電池素子を組み、 0. 2 mA/ cm2 の定電流充電、 すなわち正極から L iイオンを脱離させる反応 を上限 4. 2 Vないし 4. 3 5 V で行い、 さらに 0. 2 mA/cm2 の定電流 放電すなわち正極に L iイオンを挿入させる試験を下限 3. 2 Vで行い、 この 際の正極活物質単位重量当たりの初期脱離容量を Q s ( C) mAh/g 、 初期 挿入容量を Q s (D) mAh/gとした。 Then, the obtained positive electrode of the test electrode, L i metal assembled battery element as a counter electrode, a constant current charge of 0. 2 mA / cm 2, i.e. up to desorb reacting L i ions from the positive electrode 4. 2 V Or 4.35 V, and a constant current discharge of 0.2 mA / cm 2 , that is, a test to insert Li ions into the positive electrode, was performed at the lower limit of 3.2 V. The initial desorption capacity was Q s (C) mAh / g, and the initial insertion capacity was Q s (D) mAh / g.
負極の作成と容量確認  Preparation of negative electrode and capacity confirmation
平均粒径約 8〜 1 0〃mの黒鉛粉末( d 0 0 2 = 3. 3 5 オングス ト口一 ム) を負極活物質とし、 これにポリ フ ヅ化ビニリデン( 以下 P Vd Fと略記す ることがある) を、 重量比で 9 2. 5 : 7. 5の割合で、 N—メチルビロ リ ド ン( 以下 NMPと略記することがある) 溶液中で混合し、 負極合剤スラ リーと した。 このスラ リーを 2 0 m厚さの銅箔の片面に塗布し、 1 2 0°Cにて乾燥 して溶媒を蒸発させた後、 1 2 mm こ打ち抜き、 0. 5 t o n/cm2でブレ ス処理をしたものを負極とした。 Graphite powder with an average particle size of about 8 to 10 μm (d002 = 3.35 Å) is used as the negative electrode active material, and this is abbreviated as polyvinylidene fluoride (PVdF). Are mixed in a solution of N-methyl bilolidon (hereinafter may be abbreviated as NMP) at a weight ratio of 92.5: 7.5, and then mixed with the negative electrode mixture slurry. did. This slurry was applied to one side of a copper foil 20 m thick, dried at 120 ° C to evaporate the solvent, punched out 12 mm, and shaken at 0.5 ton / cm 2 . After the treatment, the negative electrode was used.
なお、 この負極を試験極、 L i金属を対極として電池素子を組み、 0. 2 m A/ c m2の定電流で負極に L iイオン挿入させる試験を下限 0 Vで行い、 この 際の負極活物質単位重量当たりの初期挿入容量を Q f mAh/g とした。 Incidentally, pole test this negative electrode, L i metal assembled battery element as a counter electrode, were tested to insert L i ions in the negative electrode at a constant current of 0. 2 m A / cm 2 at the lower limit 0 V, the negative electrode at this time The initial insertion capacity per unit weight of the active material was defined as Q f mAh / g.
電池素子の組立  Assembling the battery element
正極缶の上に正極を置き、 その上にセパレータとして 2 5〃mの多孔性ポリ エチレンフィルムを置き、 ポリプロピレン製ガスケッ トで押さえた後、 負極を 置き、 厚み調整用のスぺ一サ一を置いた後、 非水電解液溶液 (エチレンカーボ ネ一ト /ジェチルカ一ボネ一 ト = 3 / 7の混合溶媒 1 リ ッ トルに L i P F 6 1 モルを溶解) を電池内に加えて充分しみ込ませた後、 負極缶を載せ電池を封口 して CR 2 0 3 2型のコイ ン型電池とした。 なお、 この時、 正極活物質の重量 と負極活物質重量のバランスは、 ほぼ Place the positive electrode on the positive electrode can, place a 25 μm porous polyethylene film as a separator on top of it, press it with a polypropylene gasket, place the negative electrode, and arrange a thickness adjustment space. After placing, place the non-aqueous electrolyte solution (ethylene carbonate Ne one DOO / Jechiruka one Bonnet one DOO = 3/7 mixture solvent 1 liter to dissolve L i PF 6 1 mol of) was impregnated sufficiently in addition to the batteries, sealing said battery carrying the negative electrode can Thus, a CR203 type coin-type battery was obtained. At this time, the balance between the weight of the positive electrode active material and the weight of the negative electrode active material is almost
正極活物質量 [g] /負極活物質量 [g] = (Q f / 1. 2 ) /Q s (C) となるよう設定した。  It was set so that the amount of the positive electrode active material [g] / the amount of the negative electrode active material [g] = (Qf / 1.2) / Qs (C).
試験方法  Test method
得られた電池素子を下記のようにして評価した。 この様に得られた電池の高 温特性を比較するため、  The obtained battery element was evaluated as follows. To compare the high temperature characteristics of the batteries obtained in this way,
まず室温で定電流 0. 2 C充放電 2サイクルおよび定電流 1 C充放電 1サイ クルを行い、 次に 5 0 °Cの高温で定電流 0. 2 C充放電 1サイクル、 さらに定 電流 1 C充放電 1 0 0サイ クルのサイクル試験を行った。 なお充電上限は 4. 1 V、 下限電圧は 3. 0 Vとした。  First, constant current 0.2 C charge / discharge 2 cycles and constant current 1 C charge / discharge 1 cycle are performed at room temperature, and then constant current 0.2 C charge / discharge 1 cycle is performed at a high temperature of 50 ° C. A cycle test of 100 charge / discharge cycles of C was performed. The upper charging limit was 4.1 V and the lower limit voltage was 3.0 V.
この時 5 0 °Cでの 1 C充放電 1 0 0サイクル試験における 1サイ クル目の放 電容量 Q h ( 1 ) に対する、 1 0 0サイ クル目の放電容量 Q h ( 1 0◦ ) の割 合を高温サイクル容量維持率 P、 即ち、  At this time, the discharge capacity Qh (10 °) at the 100th cycle was compared with the discharge capacity Qh (1) at the 1st cycle in the 1C charge / discharge cycle test at 50 ° C. The ratio is the high-temperature cycle capacity retention ratio P, that is,
P [%] = {Q h ( 1 0 0) /Q h ( 1 ) } x 1 0 0  P [%] = {Q h (1 0 0) / Q h (1)} x 1 0 0
とし、 この値で電池の高温特性を評価した。 This value was used to evaluate the high temperature characteristics of the battery.
なお、 この際、 電池の 1時間率電流値すなわち 1 Cを、  At this time, the one-hour rate current value of the battery, that is, 1 C,
1 C [mA]= Q s (D ) x正極活物質量 [g]  1 C [mA] = Q s (D) x positive electrode active material amount [g]
と設定した。 Was set.
結果を表一 1に示す。  Table 1 shows the results.
実施例 2 Example 2
リチウムマンガン複合酸化物として、 リチウムマンガン複合酸化物 (A) の 代わりに前記リチウムマンガン複合酸化物 (B) を用いたこと以外実施例 1 と 同様にして、 電池を作製、 評価した。 結果を表一 1に示す。  A battery was prepared and evaluated in the same manner as in Example 1 except that the lithium manganese composite oxide (B) was used instead of the lithium manganese composite oxide (A) as the lithium manganese composite oxide. Table 1 shows the results.
実施例 3 Example 3
リチウムマンガン複合酸化物として、 リチウムマンガン複合酸化物 (A) の 代わりに前記リチウムマンガン複合酸化物 (B) を用いたこと、 及びリチウム マンガン複合酸化物と層状リチウムニッケル酸化物との重量比を 9 : 1 とした こと以外実施例 1 と同様にして、 電池を作製、 評価した。 結果を表一 1に示す。 実施例 4 Using the lithium manganese composite oxide (B) in place of the lithium manganese composite oxide (A) as the lithium manganese composite oxide; and A battery was fabricated and evaluated in the same manner as in Example 1, except that the weight ratio of the manganese composite oxide to the layered lithium nickel oxide was 9: 1. Table 1 shows the results. Example 4
リチウムマンガン複合酸化物として、 リチウムマンガン複合酸化物 (A) の 代わりに前記リチウムマンガン複合酸化物 (B) を用いたこと、 及び、 P F 6 ァニオン分解抑制剤 ( a) の代わりに、 これをさらに窒素中でジェッ ト ミル粉 碎したもの (以下 i P F 6分解抑制剤 (b) と称することがある) を使用した こと以外実施例 1 と同様にして、 電池を作製、 評価した。 結果を表一 1に示す。 実施例 5 As the lithium manganese composite oxide, the lithium manganese composite oxide (B) was used in place of the lithium manganese composite oxide (A). Further, instead of the PF 6 anion decomposition inhibitor ( a ), those jet mill powder碎in nitrogen in the same manner as in example 1 except for using (hereinafter i PF 6 decomposition inhibitor may be referred to as (b)), produce a battery was evaluated. Table 1 shows the results. Example 5
リチウムマンガン複合酸化物と P F 6ァ二オン分解抑制剤との混合物として、 リチウムマンガン複合酸化物 (B) に、 P F67二オン分解抑制剤としての 3— (N—サリチロイル) アミノー 1, 2, 4一 ト リァゾ一ル (以下 P F 6ァ二オン 分解抑制剤 ( C ) と称することがある) をリチウムマンガン複合酸化物との合 計量に対して 0. 6 wt %となるように添加してエタノール混合した後、 1 2 0°C, 1時間真空乾燥したものを用いたこと、 及びサイクル試験時の充電上限 を 4. 2 Vとしたこと以外実施例 1 と同様にして、 電池を作製、 評価した。 結 果を表一 1に示す。 As a mixture of lithium-manganese composite oxide and PF 6 § two on decomposition inhibitor, a lithium-manganese composite oxide (B), as PF 6 7 two on decomposition inhibitor 3- (N- salicyloyl) amino-1, 2 , 41-triazole (hereinafter sometimes referred to as PF 6 -dione decomposition inhibitor (C)) was added in an amount of 0.6 wt% based on the total weight of the lithium manganese composite oxide. A battery was prepared in the same manner as in Example 1, except that the mixture was mixed with ethanol and vacuum-dried at 120 ° C for 1 hour, and the upper limit of charge during the cycle test was set to 4.2 V. , evaluated. Table 1 shows the results.
実施例 6 Example 6
P F 6ァ二オン分解抑制剤として、 リチウムマンガン複合酸化物との合計量に 対して 1. 6 wt %となる量のビス (シクロへキサノ ン) ォキサリルジヒ ドラ ゾン (以下 P F 6ァ二オン分解抑制剤 (d) と称することがある) を用いたこと 以外実施例 5と同様にして、 電池を作製、 評価した。 結果を表一 1に示す。 比較例 1 PF as 6 § two on decomposition inhibitor, Okisarirujihi Dora hydrazone (hereinafter PF 6 § two on suppressing decomposition for the total amount of the lithium-manganese composite oxide 1. amount corresponding to 6 wt% bis (Kisano down to cyclo) A battery was fabricated and evaluated in the same manner as in Example 5, except that the agent (d) was used. Table 1 shows the results. Comparative Example 1
リチウムマンガン複合酸化物 (A) をそのまま単独で正極活物質として使用 して用いたこと、 及びサイ クル試験時の充電上限を 4. 2 Vとしたこと以外実 施例 1 と同様にして、 電池を作製、 評価した。 結果を表一 1に示す。  The battery was manufactured in the same manner as in Example 1, except that the lithium-manganese composite oxide (A) was used alone as the positive electrode active material, and that the upper limit of charge during the cycle test was set to 4.2 V. Were fabricated and evaluated. Table 1 shows the results.
比較例 2 Comparative Example 2
リチウムマンガン複合酸化物 (B) をそのまま単独で正極活物質として使用 して用いたこと、 及びサイ クル試験時の充電上限を 4. 2 Vとしたこと以外実 施例 1 と同様にして、 電池を作製、 評価した。 結果を表一 1に示す。 保存試験 Except that the lithium manganese composite oxide (B) was used alone as the positive electrode active material and that the upper limit of charge during the cycle test was set to 4.2 V. A battery was fabricated and evaluated in the same manner as in Example 1. Table 1 shows the results. Storage test
保存試験 ( I )  Storage test (I)
錠剤成型器に、 厚さ 2 0 0〃m、 直径 1 6 mmの円形状のアルミニゥムのェ キスパン ドメタル (集電体) と直径 1 2 mmの円形状に成形した前記実施例及 び比較例で使用したのと同じ正極材料 2 4mgを重ねてセッ ト し、 9 0MP a の圧力で正極材料をアルミ二ゥムのエキスパン ドメタルに圧着して正極とし、 これと、 対極としての L i金属と、 1 . 0 mo 1/Lの L i P F 6を含むェチレ ンカーボネートとジェチルカ一ポネート との混合電解液 (体積比 3 : 7 ) と用 いた電池素子を作製した。 これを、 充電電流密度 0. 2 mA/cm2、 上限電圧 4. 2 Vまで充電した後、 短絡が起きないように電池を分解し、 充電状態とし ての正極材料を得た。 In the above example and the comparative example, a 200 mm thick, 16 mm-diameter circular aluminum expanded metal (current collector) and a 12 mm-diameter circular shape were formed on a tablet press. The same positive electrode material as used, 24 mg, was stacked and set, and the positive electrode material was pressed against aluminum expanded metal at a pressure of 90 MPa to form a positive electrode. This was combined with Li metal as a counter electrode. , 1 0 mo 1 / L Echire emissions carbonate and Jechiruka mixed electrolytic solution as one Poneto containing L i PF 6 (volume ratio 3: 7). a battery was fabricated device had use with. After charging the battery to a charging current density of 0.2 mA / cm 2 and an upper limit voltage of 4.2 V, the battery was disassembled so as not to cause a short circuit, and a positive electrode material in a charged state was obtained.
なお、 電池素子は、 CR 2 0 3 2型のコイ ン型電池とした。 即ち、 正極缶の 上に正極を置き、 その上にセパレ一タとして 2 5〃mの多孔性ポリエチレンフ イルムを置き、 ポリプロピレン製ガスケッ トで押さえた後、 対極を置き、 厚み 調整用のスぺ一サーを置いた後、 非水電解液として、 L i P F 6濃度が l mo l /Lのエチレンカーボネートとジェチルカ一ボネート との体積分率 3 : 7の混 合溶液を電池内に加えて充分しみ込ませた後、 負極缶を載せ電池を封口した。 露点が一 7 5 °C以下のアルゴンガス雰囲気下、 8 0 °Cで 3時間乾燥させた内 容量が約 7 m 1の密閉ポリテ トラフルォロエチレン容器中に、 上記のようにし て得た充電状態としての正極材料を、 1. Omo l/Lの L i P F6を含む、 ェ チレン力一ポネート 1 . 5 m 1とジェチルカ一ボネート 3. 5mlとの混合液 (酸分 : 2. 0mmo l/L以下、 P〇 2 F2ァニオン : 0. 5mmo l/L以 下、 且つエタノール : 検出限界以下) 中で、 8 0 °Cで一週間保存した。 The battery element was a CR203 type coin-type battery. That is, a positive electrode is placed on a positive electrode can, a 25-μm porous polyethylene film is placed on the positive electrode can as a separator, pressed with a polypropylene gasket, and then a counter electrode is placed on the positive electrode can. After placing the sampler, add a mixed solution of ethylene carbonate and getyl carbonate in a volume ratio of 3: 7 with L i PF 6 concentration of l mol / L as a non-aqueous electrolyte solution in the battery. After soaking, the negative electrode can was placed and the battery was sealed. Charged as above in a sealed polytetrafluoroethylene container with a capacity of approximately 7 ml, dried at 80 ° C for 3 hours in an argon gas atmosphere with a dew point of 75 ° C or less the cathode material as a state, 1. including Omo l / L of L i PF 6, E styrene force one Poneto 1 5 m 1 and Jechiruka one Boneto 3. mixed solution of 5 ml (acid content:. 2. 0mmo l / L or less, P〇 2 F 2 anion: 0.5 mmol / L or less, and ethanol: below the detection limit) and stored at 80 ° C for one week.
P F6ァニオンの分解量、 並びに保存液中の P 02 F 2ァニオンの含有量及び エタノールの含有量の分析は、 温度を 8 0 °Cから 2 0 °Cまで冷却後、 露点が一 7 5 °C以下のアルゴンガス雰囲気下で保存容器を開け、 溶液部のみを採取して 後述の方法で行った。 結果を表一 1 に示す。 なお、 ェ夕ノールの分析について は、 8 0°Cで 3週間保存後のものに対して行なった。 また、 同様の保存試験を保存温度 2 0 °Cでも行ったが、 この場合は有意な差 の P F 6ァ二オンの分解及び P 02 F 2ァ二オンの生成は観測されず、 P F 6ァニ オンの生成が持ち込みの水分に因らないことが確認された。 Analysis of the amount of PF 6 anion decomposed, and the content of P 2 F 2 anion and ethanol in the preservation solution was performed after the temperature was cooled from 80 ° C to 20 ° C, and the dew point was The storage container was opened under an argon gas atmosphere at a temperature of not more than ° C, and only the solution part was sampled and subjected to the method described later. Table 1 shows the results. The analysis of ethanol was performed after storage at 80 ° C for 3 weeks. Although subjected to the same storage test even storage temperature 2 0 ° C, generation of decomposition and P 0 2 F 2 § two on the PF 6 § two on the significant difference in this case is not observed, PF 6 It was confirmed that the formation of anions did not depend on the moisture brought in.
保存試験 (II)  Storage test (II)
露点が— 7 5 °C以下のアルゴンガス雰囲気下、 8 0 °Cで 3時間乾燥させた内 容量が約 1 5 m lの密閉ポリテトラフルォロェチレン容器中に、 前記の酸処理 リチウムマンガン複合酸化物 1 6 0 mgと、 P F 6ァニオン分解抑制剤 1 6 0 m gとを、 酸分及び P 02 F 2ァニオンの含有量が、 それそれ 2 . O mmo l/L 以下及び 0. 5 mm 0 1 /L以下で且つエタノール含量が検出限界 ( 0. 0 1 mg) 以下の、 1 . 0 m o 1 /Lの L i P F 6を含むエチレンカーボネート/ジ ェチルカ一ボネ一トの混合液 (エチレン力一ポネー ト 2 . 4 m l及びジェチル 力一ポネート 5. 6 m l ) 中で、 7 0 °Cで一週間保存した。 The acid-treated lithium manganese composite was placed in a sealed polytetrafluoroethylene container with a content of about 15 ml, which was dried at 80 ° C for 3 hours in an argon gas atmosphere with a dew point of -75 ° C or less. and oxide 1 6 0 mg, PF 6 and Anion decomposition inhibitor 1 6 0 mg, the content of the acid component and P 0 2 F 2 Anion, it it 2. O mmo l / L or less and 0. 5 mm 0 1 / L or less and ethanol content detection limit (0. 0 1 mg) of the following, 1. 0 mo 1 / L mixture of ethylene carbonate / di Echiruka one Bonnet Ichito containing L i PF 6 (ethylene The cells were stored at 2.4 ° C. for one week at 2.4 ° C. in 2.4 ml of lipstick and 5.6 ml of getyl liponate.
P F 6ァニオンの分解量、 並びに保存液中の P 02 F 2ァ二オンの含有量及び エタノールの含有量の分析は、 温度を Ί 0 °Cから 2 0 °Cまで冷却後、 露点が一 7 5 °C以下のアルゴンガス雰囲気下で保存容器を開け、 溶液部のみを採取して 後述の方法で行った。 結果を表一 1 に示す。 なお、 エタノールの分析について は、 8 0 °Cで 3週間保存後のものに対して行なった。 Analysis of the amount of PF 6 anion decomposed and the content of P 0 2 F 2 anion and ethanol in the preservation solution showed that after cooling the temperature from ま で 0 ° C to 20 ° C, the dew point was The storage container was opened under an argon gas atmosphere of 75 ° C. or lower, and only the solution part was sampled, and the method was described later. Table 1 shows the results. The analysis of ethanol was performed after storage at 80 ° C for 3 weeks.
また、 同様の保存試験を保存温度 2 0 °Cでも行ったが、 この場合は有意な差 の P F 6ァニオンの分解及び P 02 F 2ァ二オンの生成は観測されず、 P F 6ァニ オンの生成が持ち込みの水分に因らないことが確認された。 Although subjected to the same storage test even storage temperature 2 0 ° C, generation of decomposition and P 0 2 F 2 § two on the PF 6 Anion significant difference in this case is not observed, PF 6 § two It was confirmed that the formation of ON was not due to the water carried in.
[分析方法]  [Analysis method]
保存液中に含まれるァニオンの分析  Analysis of anion contained in storage solution
アルゴンガス雰囲気下で保存液を採取後、該溶液中の P F 6ァニオン及び P〇 2 F 2ァニオンの濃度を Dionex社製 DX— 1 2 0イオンクロマ トグラフ分析装置 を用い定量した。 なお、 ブランクとして、 同様の分析で保存前の 1 . O mo l /Lの L i P F 6含有の電解液のァニオン量を測定することにより、 この分析法 による L i P F 6の分解は起こらないことを確認した。 After collecting the storage solution under an argon gas atmosphere, the concentrations of PF 6 anion and P 及 び2 F 2 anion in the solution were quantified using a DX-120 ion chromatograph analyzer manufactured by Dionex. Incidentally, as a blank, by measuring 1. O mo l / Anion amount of the electrolytic solution of L i PF 6 containing L before storage in a similar analysis, the decomposition of L i PF 6 by this analysis does not take place It was confirmed.
なお、 表一 1 に示したように、 保存試験のブランク試験として電解液のみを 7 0 °Cで 1週間保存した場合、 いずれも有意の P F 6ァ二オンの分解及び P 02 F 2ァ二オンの生成は確認できなかった。 Incidentally, as shown in Table one 1, when stored for one week only electrolyte as a blank test test under 7 0 ° C, any decomposition of significant PF 6 § two on and P 0 2 The formation of F 2 anion could not be confirmed.
保存液中に含まれるエタノールの分析  Analysis of ethanol contained in storage solution
アルゴンガス雰囲気下で保存液を採取後、 乾燥窒素下、 公知の方法 (trap to trap condensation) で揮発成分のみを全て採取し、 保存液中に含まれるェ タノ一ル量をガスクロマ トグラフィ一で定量した。  After collecting the preservation solution in an argon gas atmosphere, only the volatile components are collected under dry nitrogen by a known method (trap to trap condensation), and the amount of ethanol contained in the preservation solution is determined by gas chromatography. did.
なお、 表一 1 に示したように、 保存試験のブランク試験として電解液のみを 7 0 °Cで 3週間保存した結果、 いずれもエタノールの生成は確認できなかった。 As shown in Table 1, as a blank test of the storage test, only the electrolytic solution was stored at 70 ° C for 3 weeks, and no production of ethanol was confirmed in any case.
¾— 1 実施例 実施例 実施例 実施例 実施例 実施例 比較例 比較例 ブラン 1 2 3 4 5 6 1 2 ク試験 正極剂 リチウムマンガン複合酸化 (A) (Β) (B) (B) (B) (B) (A) (13) ¾— 1 Example Example Example Example Example Example Example Example Comparative example Comparative example Blanc 1 2 3 4 5 6 1 2 試 験 Test Positive electrode 剂 Lithium manganese composite oxidation (A) (Β) (B) (B) (B ) (B) (A) (13)
物の種類  Kind of thing
LiPF6分解仰制剤の 類 (a) (a) (a) (b) (c) (d) LiPF 6 decomposition inhibitor (a) (a) (a) (b) (c) (d)
保存試験方法 リチウムマンガン ¾合酸化 フ 5 フ 5 90 75 99.4 98.4 100 100 一Storage test method Lithium manganese composite oxide 5 5 5 75 75 99.4 98.4 100 100 1
(I) の組成 物 sift(wt%) Composition of (I) sift (wt%)
τ · /I'll il  τ · / I'll il
LiPF 6 分 iff-仰 ili1]剤 a S 25 25 10 25 0.6 1.6 0 0 保存試験 (I) PF67 オンの分解 S 1 v 1 Π q 1 JL vX Ί Π A x 9v 1 Π LiPF 6 minutes iff- elevation ili 1] agent a S 25 25 10 25 0.6 1.6 0 0 storage test (I) PF 6 7 on the decomposition S 1 v 1 Π q 1 JL vX Ί Π A x 9v 1 Π
(i mo\)  (i mo \)
P〇2F2ァニオン量 ( imol) 1x10 9 1x10 4 2x10 2x10 生成 E t OH量 (mg) ぐ 0.05 ぐ 0.05 ぐ 0.05 <0.05 ぐ 0.1 <0.05 保存試験 (II) PF6ァニオンの分解量 38 17 15 25 240 >1 P〇 2 F 2 Anion amount (imol) 1x10 9 1x10 4 2x10 2x10 Generated EtOH amount (mg) 0.05 0.05 0.05 0.05 0.05 0.05 <0.05 0.1 0.1 <0.05 Storage test (II) PF 6 Anion degradation 38 17 15 25 240> 1
(jumol)  (jumol)
P02F2ァニオン fl (umo\) 37 17 14 20 198 >0.8 生成 E t OH iS(mg) 0.4 0.3 >0.05 >0.05 1.9 >0.01 高温サイクル容 f 維持率 P (%) 81 84 83 89 82 88 68 76 P0 2 F 2 anion fl (umo \) 37 17 14 20 198> 0.8 E t OH iS (mg) 0.4 0.3>0.05> 0.05 1.9> 0.01 High temperature cycle capacity f Retention P (%) 81 84 83 89 82 88 68 76
表— 1 より、 本発明の規定を満足する実施例においては、 高温サイクル特性 が大き く改良されていることがわかる。 From Table 1, it can be seen that in the examples satisfying the requirements of the present invention, the high-temperature cycle characteristics have been greatly improved.
上記の実施例、 比較例より、 特定のリチウムマンガン酸化物に P F 67二オン 分解抑制剤を使用すれば高温サイクル特性が改良されることがわかったので、 本発明者等は P F 6ァニオン分解抑制の 1 つである リチウムニッケル酸化物に 着目し、 更に下記の検討を行った。 Above examples, Comparative Examples, since the high-temperature cycle characteristics Using PF 6 7 two on decomposition inhibitor to a particular lithium manganese oxide was found to be improved, the present inventors have PF 6 Anion decomposition Focusing on lithium nickel oxide, which is one of the controls, the following study was further conducted.
< 1 . 複合酸化物の平均電圧の測定 >  <1. Measurement of average voltage of composite oxide>
①測定対象となる複合酸化物を 7 5重量% 、 アセチレンブラック 2 0重量% 、 ポリテ トラフロロエチレン (P T F E) パウダー 5重量% の割合で秤量した ものを乳鉢で十分混合し、 薄く シート状にし、 打ち抜きポンチで円形に打ち抜 いた。 この際厚みをほぼ一定にするため全体重量が 1 2. 5mgZcm2になる ように調整した。 この試料をさらにアルミニウムのエキスパン ドメタルに圧着 して試験極とした。 試験極は減圧下 1 2 0 °Cで l h r の乾燥を行った。 ① A mixture of 75% by weight of the composite oxide to be measured, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene (PTFE) powder is weighed and mixed well in a mortar to form a thin sheet. It was punched into a circle with a punch. At this time, the total weight was adjusted to 12.5 mgZcm 2 in order to keep the thickness almost constant. This sample was further pressed against aluminum expanded metal to form a test electrode. The test electrode was dried at 120 ° C under reduced pressure for lhr.
②アルゴン雰囲気の ドライボックス内で、 C R 2 0 3 2型のコィ ン型電池を 作成した。 即ち、 正極缶の上に試験極を置き、 その上にセパレ一タとして 2 5 m の多孔性ポリエチレンフィルムを置き、 ポリプロピレン製ガスケヅ トで押 さえ、 対極として 1 5 mm0のリチウム金属箔を置き、 厚み調整用のスぺ一サ —を置いた後、 エチレンカーボネー ト (E C) とジェチルカ一ボネート (D E C ) の体積比 3 : 7の混合溶媒 1 リ ッ トルに六フッ化リ ン酸リチウム (L i P F 6) 1モルを溶解させた溶液を非水電解液溶液として用い、 これを電池内に 加えて充分しみ込ませた後、 負極缶を載せ電池を封口した。 (2) A CR202 type coin-type battery was created in a dry box in an argon atmosphere. That is, the test electrode was placed on the positive electrode can, a 25 m porous polyethylene film was placed thereon as a separator, pressed with a polypropylene gasket, and a 15 mm0 lithium metal foil was placed as a counter electrode. After placing the thickness adjustment sensor, 1 liter of a mixed solvent of ethylene carbonate (EC) and getyl carbonate (DEC) in a volume ratio of 3: 7 is added to lithium fluoride (1 liter). A solution in which 1 mol of L i PF 6 ) was dissolved was used as a non-aqueous electrolyte solution, and the solution was added to the inside of the battery and sufficiently permeated. Then, a negative electrode can was placed and the battery was sealed.
③上記で作成した電池を 2 5 °Cの環境下で、 複合酸化物 (A) の場合は電流 密度 0. 5 mA/c m2の定電流充放電サイクル (充電上限 4. 3 5 V 、 放電 下限 3. 2 V) を、 複合酸化物 (B) の場合は、 電流密度 0 . 2 mA/c m2 の定電流充放電サイクル (充電上限 4. 2 0 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを下式により算出した。 ③ Under the environment of 25 ° C, in the case of composite oxide (A), charge the battery prepared above at a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge The lower limit is 3.2 V), and the composite oxide (B) has a constant current charge / discharge cycle of 0.2 mA / cm 2 (charge upper limit 4.20 V, discharge lower limit 3.2 V). The average voltage V e was calculated by the following equation.
V e =(2サイクル目の充電平均電圧 + 2 サイクル目の放電平均電圧) / 2 なお上記式の充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時 の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に 要した時間で割ることにより算出した。 V e = (Average charge voltage in the second cycle + Average discharge voltage in the second cycle) / 2 The average charge voltage or average discharge voltage in the above formula is obtained by measuring the voltage during charge or discharge at 2 second intervals. The value obtained by integrating the voltage with time is used for charging or discharging. It was calculated by dividing by the time required.
またこの試験で行った複合酸化物( A) の初期充電容量を Q c (A) mA h /g、 初期放電容量を Q d (A) mA h/g, 複合酸化物( B ) の初期充電容 量を Q c (B ) mA/g、 初期放電容量を Q d (B ) mAh/gとしておいた。  The initial charge capacity of the composite oxide (A) used in this test was Q c (A) mA h / g, the initial discharge capacity was Q d (A) mA h / g, and the initial charge of the composite oxide (B) was The capacity was defined as Q c (B) mA / g, and the initial discharge capacity was defined as Q d (B) mAh / g.
< 2. 高温サイクル試験 >  <2. High temperature cycle test>
(正極の作成)  (Creation of positive electrode)
複合酸化物 (A) と複合酸化物 (B) との混合物を正極活物質とし、 この 正極活物質を Ί 5重量 ¾ 、 ァセチレンブラック 2 0重量% 、 ポリテトラフロロ ェチレンパウダー 5重量% の割合で秤量した以外は実施例 1 と同様にして正極 を作成した。  A mixture of the composite oxide (A) and the composite oxide (B) is used as a positive electrode active material. A positive electrode was prepared in the same manner as in Example 1 except that the positive electrode was weighed at a ratio of 1.
(負極の作成)  (Creation of negative electrode)
実施例 1 と同様にして負極を製造した。 なお実施例 1 と同様、 この負極を試 験極、 L i金属を対極として、 前記複合酸化物の平均電圧の測定時を行ったの と同様にコィン型電池を組み、充分に低い電流量で負極に L iイオンを挿入(下 限 0 V) および脱離 (上限 1 . 5 V) させる試験を行った際の初期挿入容量 を Q ( F ) mA h/gとした。  A negative electrode was manufactured in the same manner as in Example 1. As in Example 1, a coin-type battery was assembled using the negative electrode as a test electrode and Li metal as a counter electrode in the same manner as when the average voltage of the composite oxide was measured, and the current was sufficiently low. The initial insertion capacity for the test in which Li ions were inserted (lower limit 0 V) and desorbed (upper limit 1.5 V) into the negative electrode was Q (F) mA h / g.
(電池素子の組立)  (Assembly of battery element)
実施例 1 と同様にして電池素子を組み立てた。 なおこの時、 正極活物質の重 量と負極活物質重量のバランスは、 前記正極活物質すなわち、 複合酸化物 (A) と複合酸化物 (B) の混合物中における複合酸化物 (B ) の重量比率 Rを下式 より求め、  A battery element was assembled in the same manner as in Example 1. At this time, the balance between the weight of the positive electrode active material and the weight of the negative electrode active material is determined by the weight of the composite oxide (B) in the mixture of the composite oxide (A) and the composite oxide (B). Calculate the ratio R from the following formula,
R = (複合酸化物 (B) の重量) / { (複合酸化物 (A) の重量)  R = (weight of composite oxide (B)) / {(weight of composite oxide (A))
+ (複合酸化物 (B) の重量) }  + (Weight of composite oxide (B))}
これを用いて、 下記式となるように設定した。 Using this, the following equation was set.
正極活物質量 [g] /負極活物質量 [g] =  Amount of positive electrode active material [g] / Amount of negative electrode active material [g] =
Q ( F) / {Q c (A) · ( 1 -R) + Q c (B ) · R } / 1 . 2 (試験方法)  Q (F) / {Qc (A) · (1-R) + Qc (B) · R} / 1.2 (Test method)
得られた電池の高温特性を比較するため、 電池の 1時間率電流値すなわち 1 Cを便宜的に、 下記式の如く設定し、 以下の試験を行った。 1 C [mA]= {Q d (A) . ( 1 - R) + Q d (B) - R} In order to compare the high temperature characteristics of the obtained batteries, the 1 hour rate current value of the battery, that is, 1 C, was set as the following formula for convenience, and the following test was performed. 1 C [mA] = {Q d (A). (1-R) + Q d (B)-R}
x( 正極活物質量 [g〗) まず室温で定電流 0. 2 C充放電 2サイクルおよび定電流 1 C充放電 1サイ クルを行い、 次に 5 0 °Cの高温で定電流 0. 2 C充放電 1サイ クル、 ついで定 電流 1 C充放電サイ クル 1 0 0 サイ クルの試験を行った。 なお充電上限は 4. 1 V、 下限電圧は 3. 0 Vとした。  x (amount of positive electrode active material [g〗]) First, two cycles of constant current 0.2 C charge / discharge and one cycle of constant current 1 C charge / discharge are performed at room temperature, and then constant current 0.2 at a high temperature of 50 ° C. One cycle of C charge / discharge and then 100 cycles of constant current 1 C charge / discharge were tested. The upper charging limit was 4.1 V and the lower limit voltage was 3.0 V.
この時 5 0 °Cでの 1 C充放電 1 0 0 サイ クル試験部分の 1サイ クル目放電 容量 Q h ( 1 ) に対する、 1 00 サイ クル目の放電容量 Q h ( 1 0 0 ) の割合 を高温サイ クル容量維持率 P ] を、 下記式によ り求め、 この Pの値で電池の 高温特性を比較した。  At this time, the ratio of the discharge capacity Qh (100) at the 100th cycle to the discharge capacity Qh (1) at the 1C cycle of the 100C test section at 50 ° C The high-temperature cycle capacity retention rate P] was determined by the following equation, and the high-temperature characteristics of the batteries were compared using this value of P.
P[%] = {Qh ( 1 0 0 ) /Q h ( 1 ) } x l O O ( v)  P [%] = {Qh (100) / Qh (1)} x l O O (v)
実施例 7 Example 7
スピネル型構造を有する リチウムマンガン複合酸化物として、 L iが Mnサ イ トに 0. 04モル置換したスビネル型 L i M n 204、 すなわち L i [Mn し 9 e L i。. 。 4]04を上記調製例 1 と同様にして作成した。 得られたリチウム マンガン複合酸化物の平均粒径は 4. であった。 前記方法にてその平均 電圧を測定したところ、 4. 0 6 0 Vであった。 As the lithium manganese composite oxide having a spinel structure, L i is Subineru type was 0.04 molar substitution on Mn support wells L i M n 2 0 4, namely L i [Mn was 9 e L i. . 4] 0 4 was prepared in the same manner as in Preparation Example 1. The average particle size of the obtained lithium manganese composite oxide was 4. The average voltage measured by the above method was 4.060 V.
一方、 層状構造を有する リチウム二ヅケル複合酸化物として、 N iサイ トの 一部がコバルト及びアルミニウムで置換された層状の L i N i〇 2、すなわち巿 販の L i [N i。. 8。 C 0。. i 5 A 1。. 。 5 ]02なる組成のもの (平均粒径 6. 2On the other hand, as the lithium secondary characterizing complex oxide having a layered structure, N i part of site is layered substituted with cobalt and aluminum L i N I_〇 2, i.e.巿sales of L i [N i. 8 . C 0. . I 5 A 1. . 5 ] 0 2 composition (average particle size 6.2
〃m) を使用した。 前記方法にて平均電圧を測定したところ、 3. 8 0 9 Vで あった。 〃M) was used. The average voltage measured by the above method was 3.809 V.
次に正極活物質中の複合酸化物 (B) の重量混合比率 Rを 0. 5 として正 極を作成し、 前記方法にて高温サイ クル試験を行ない、 1 0 0サイ クル後の容 量維持率を求めた。 結果を表一 2に示した。  Next, a positive electrode was prepared by setting the weight mixing ratio R of the composite oxide (B) in the positive electrode active material to 0.5, and a high-temperature cycle test was performed by the above-described method to maintain the capacity after 100 cycles. The rate was determined. The results are shown in Table 1-2.
実施例 8 Example 8
スピネル型構造を有する リチウムマンガン複合酸化物として、 リチウム及び アルミニウムが Mnサイ トにそれそれ 0. 04、 0. 1 1モル置換したスピネ ル型 L i Mn204、 すなわち L i tMnusA l o. ! : L i 0. 04 ]〇 4を上記調 製例 2と同様にして作成した。 得られたリチウムマンガン複合酸化物の平均粒 径は 7. 4 zmであった。 前記方法にて平均電圧を測定したところ、 4. 0 7 1 Vであった。 As the lithium manganese composite oxide having a spinel structure, it it 0.04 lithium and aluminum in Mn site, 0.1 1 mol substituted spinel Le type L i Mn 2 0 4, namely L i tMnusA l o. ! : L i 0. 04 ] 〇 4 It was prepared in the same manner as in Preparation Example 2. The average particle size of the obtained lithium manganese composite oxide was 7.4 zm. The average voltage measured by the above method was 4.071 V.
複合酸化物 (B ) は実施例 1 と同様のものを使用し、 正極活物質中の複合酸 化物 (B ) の重量混合比率 Rを 0. 5 として正極を作成し、 前記方法にて高温 サイクル試験を行った。 結果を表一 2に示した。  The same oxide as in Example 1 was used as the composite oxide (B), and a positive electrode was prepared by setting the weight mixing ratio R of the composite oxide (B) in the positive electrode active material to 0.5. The test was performed. The results are shown in Table 1-2.
実施例 9 Example 9
正極活物質中の複合酸化物 (B ) の重量混合比率 Rを 0. 2 5とする以外は 実施例 2と同様にして高温サイクル試験を行った。 結果を表一 2に示した。  A high-temperature cycle test was performed in the same manner as in Example 2 except that the weight mixing ratio R of the composite oxide (B) in the positive electrode active material was set to 0.25. The results are shown in Table 1-2.
実施例 1 0 Example 10
実施例 7〜 9で使用した複合酸化物 (B ) をさらに窒素雰囲気中で粉砕し、 これを新たに複合酸化物 (B ) (平均粒径 0. 5 5〃m) として使用した。 こ の複合酸化物 (B ) の平均電圧は 3. 7 8 6 Vであった。  The composite oxide (B) used in Examples 7 to 9 was further pulverized in a nitrogen atmosphere, and this was newly used as the composite oxide (B) (average particle diameter 0.55 μm). The average voltage of this composite oxide (B) was 3.786 V.
その他の条件は実施例 9 と同様にして正極を作成し、 前記方法にて高温サイ クル試験を行った。 結果を表一 2に示した。  The other conditions were the same as in Example 9 to prepare a positive electrode, and a high-temperature cycle test was performed by the method described above. The results are shown in Table 1-2.
比較例 3 Comparative Example 3
正極活物質として、 実施例 7で使用した複合酸化物 (A) を単独で用いたこ と以外実施例 7と同様にして高温サイクル試験を行った。 結果を表一 2に示し た。  A high-temperature cycle test was performed in the same manner as in Example 7, except that the composite oxide (A) used in Example 7 was used alone as the positive electrode active material. The results are shown in Table 1-2.
実施例 1 1 (本発明の第 3の態様に関しては比較例 4 ) Example 11 (Comparative Example 4 for the third aspect of the present invention)
スピネル型構造を有する リチウムマンガン複合酸化物として、 リチウムとコ ノヽ'ルトとが M nサイ トにそれそれ 0. 04、 0. 1 0モル置換したスピネル型 L iMn24、 すなわち L i fMnus C o o. L i o. oJC を以下の方法 で作成した。 As a lithium manganese composite oxide having a spinel type structure, spinel type LiMn 24 in which lithium and conjugate are substituted at Mn site by 0.04 and 0.10 mol, respectively, that is, LifMnus C o o. L i o. OJC was created by the following method.
三酸化二マンガン (Mn 203 ) 、 炭酸リチウム (L i 2 C 03) 、 炭酸コバル ト ( C o C 03) を出発原料とし、 それそれの化合物のモル比が約 0. 9 3 : 0. 5 2 : 0. 1 0となるように配合した。 この配合物にエタノールを加え、 乳鉢 中でよくすりつぶし、 均一な混合物とした後乾燥した。 得られた混合物を大気 中で 5 0 0 °Cで 6時間、 6 0 0 °Cで 6時間、 7 0 0 °Cで 6時間、 8 0 0 °C で 6時間と多段階で仮焼し、 次に大気中で 8 5 0 °C、 24時間本焼し、 0. 2 °C /mi nで室温まで充分徐冷した。 得られたリチウムマンガン複合酸化物の平均 粒径は 5. 2 zmであった。 前記方法にて平均電圧を測定したところ、 4. 0 8 1 Vであった。 Manganese sesquioxide (Mn 2 0 3), lithium carbonate (L i 2 C 0 3) , carbonate cobalt (C o C 0 3) was used as a starting material, it molar ratio of about 0.5 that of Compound 9 3 : 0.52: 0.10. Ethanol was added to the mixture, and the mixture was ground well in a mortar to form a uniform mixture and then dried. The resulting mixture is airborne at 500 ° C for 6 hours, 600 ° C for 6 hours, 700 ° C for 6 hours, 800 ° C For 6 hours, and then calcined in air at 850 ° C. for 24 hours, and slowly cooled to room temperature at 0.2 ° C./min. The average particle size of the obtained lithium manganese composite oxide was 5.2 zm. The average voltage measured by the above method was 4.081 V.
複合酸化物 (B ) は実施例 1 と同様のものを使用し、 正極活物質中の複合酸 化物 (B ) の重量混合比率 Rを 0. 5 として正極を作成し、 前記方法にて高温 サイクル試験を行った。 結果を表一 2に示した。  The same oxide as in Example 1 was used as the composite oxide (B), and a positive electrode was prepared by setting the weight mixing ratio R of the composite oxide (B) in the positive electrode active material to 0.5. The test was performed. The results are shown in Table 1-2.
実施例 1 2 (本発明の第 3の態様に関しては比較例 5 ) Example 12 (Comparative Example 5 for the third embodiment of the present invention)
スビネル型構造を有する リチウムマンガン複合酸化物として、 市販の無置換 L i M n 204 (元素分析値 : L i . 。。Mn2. 。。04を用いた。 前記方法にて 平均電圧を測定したところ、 4. 0 5 2 Vであった。 As the lithium manganese composite oxide having a Subineru structure, commercially available unsubstituted L i M n 204 (elemental analysis:... L i ..Mn 2 ..0 4 with measuring the average voltage at said process As a result, it was 4.052 V.
複合酸化物 (B) は実施例 7と同様のものを使用し、 正極活物質中の複合酸 化物 (B ) の重量混合比率 Rを 0. 5 として正極を作成し、 前記方法にて高温 サイクル試験を行った。 結果を表一 2に示した。 The same oxide as in Example 7 was used as the composite oxide (B), and a positive electrode was prepared with the weight mixing ratio R of the composite oxide (B) in the positive electrode active material being 0.5. The test was performed. The results are shown in Table 1-2.
¾— 2 複合酸化物 (A ) 組成式 複合酸化物 (B ) 複合酸化物 (A) 複合酸化物 (Β ) 高温サイクル¾-2 Complex oxide (A) Composition formula Complex oxide (B) Complex oxide (A) Complex oxide (Β) High temperature cycle
M nサイ ト 11換元素モル!: 重 S割合 平均 ί¾圧 平均 ¾圧 維持率M n-site 11 conversion element mole !: Heavy S ratio Average ί¾ pressure Average ¾ pressure maintenance rate
M n A 1 C o L i R V V Ρ 実施例 7 1.96 0.00 0.00 0.04 0.50 4.060 3.809 85% 実施例 8 1.85 0.11 0.00 0.04 0.50 4.071 3.809 88%M n A 1 C o L i R V V Ρ Example 7 1.96 0.00 0.00 0.04 0.50 4.060 3.809 85% Example 8 1.85 0.11 0.00 0.04 0.50 4.071 3.809 88%
¾施例 9 1.85 0.12 0.00 0.04 0.25 4.071 3.809 84% 実施例 1 0 1.85 0.12 0.00 0.04 0.25 4.071 3.786 89% 実施例 1 1 1.86 0.00 0.10 0.04 0.50 4.041 3.809 79% ¾Example 9 1.85 0.12 0.00 0.04 0.25 4.071 3.809 84% Example 1 0 1.85 0.12 0.00 0.04 0.25 4.071 3.786 89% Example 1 1 1.86 0.00 0.10 0.04 0.50 4.041 3.809 79%
2.00 0.00 0.00 0.00  2.00 0.00 0.00 0.00
実施例 1 2 0.50 4.052 3.809 74% 比較例 3 1.96 0.00 0.00 0.04 0.00 4.060 65% Example 1 2 0.50 4.052 3.809 74% Comparative Example 3 1.96 0.00 0.00 0.04 0.00 4.060 65%
複合酸化物 (A ) としてマンガンサイ トの一部をリチウムで置換した複合酸 化物を用いた実施例 Ίは高温 1 0 0 サイ クル試験で維持率が 8 5 %と非常に 良い高温特性を示すことが判る。 実施例 8はさらにアルミを置換し、 平均電圧 が高い複合酸化物 (A ) を使用することによって、 さらに高温サイ クル維持率 が高くなつている。 また、 実施例 9のように複合酸化物 (B ) の混合する割合 を減らすと若干高温サイクル維持率は低下するが、 実施例 1 0の様に複合酸化 物 (B ) の平均電圧を下げたものを使用すると維持率がやはり向上することが 判る。 Example た, in which the composite oxide (A) was a composite oxide in which part of the manganese site was replaced with lithium, exhibited very good high-temperature characteristics with a retention of 85% in a high-temperature 100-cycle test. You can see that. In Example 8, the high-temperature cycle retention rate was further increased by substituting aluminum and using a composite oxide (A) having a high average voltage. Also, when the mixing ratio of the composite oxide (B) is reduced as in Example 9, the high-temperature cycle retention rate slightly decreases, but as in Example 10, the average voltage of the composite oxide (B) is reduced. It can be seen that the use of a material improves the maintenance rate.
比較例 3の様に複合酸化物 (A ) を単独で用いると高温サイ クル維持率は非 常に低い。 また、 実施例 1 1及び 1 2の様に P F 6ァニオン分解抑制剤を用いる と、 P F 6ァ二オン分解抑制剤を加えていない比較例に比べると明らかにサイ ク ル維持率がよい。 しかしながら、 実施例 1 1及び 1 2では平均電位が 4 . 0 5 9 Vより低い複合酸化物 (A ) を用いているので、 平均電圧が 4 . ◦ 5 9 Vよ り高い複合酸化物 (A ) を用いた実施例 7〜 1 0に比べると若干高温サイ クル 維持率が低いことも判る。 産業上の利用可能性 When the composite oxide (A) is used alone as in Comparative Example 3, the high-temperature cycle retention is very low. Moreover, the use of PF 6 Anion decomposition inhibitor as in Example 1 1 and 1 2, PF 6 good § two turned compared to the comparative example decomposition inhibitor is not added to clearly re-Gu Le retention. However, in Examples 11 and 12, the composite oxide (A) having an average potential lower than 4.059 V was used, so that the composite oxide (A) having an average voltage higher than 4.05 V was used. )), It can be seen that the high-temperature cycle maintenance ratio is slightly lower than those of Examples 7 to 10 using). Industrial applicability
本発明によれば、 リチウム二次電池として使用する際に、 高温特性の良好な 正極材料を提供することができる。 また、 本発明によれば、 高温特性の良好な リチウム二次電池を提供することができる。 従って、 安価な材料のマンガンが 正極材料として実用上使用可能となるため、 高性能で安全で安価なリチウム二 次電池が広い用途に供給できるようになりその工業的価値は大である。  ADVANTAGE OF THE INVENTION According to this invention, when used as a lithium secondary battery, the positive electrode material with favorable high temperature characteristics can be provided. Further, according to the present invention, a lithium secondary battery having good high-temperature characteristics can be provided. Therefore, since inexpensive material manganese can be used practically as a cathode material, a high-performance, safe and inexpensive lithium secondary battery can be supplied to a wide range of uses, and its industrial value is great.

Claims

請 求 の 範 囲 The scope of the claims
1 . マンガン酸化物及び/又はリチウムマンガン複合酸化物を正極活物質と して含有する リチウム二次電池用正極材料において、 該正極材料を用いて電池 素子を作成し、 これを充電した正極材料の保存試験である下記保存試験 ( I ) によって測定される P F 6ァ二オンの分解量が 1 x l 0〃 m o 1以下であるこ とを特徴とする リチウム二次電池用正極材料。 1. In a positive electrode material for a lithium secondary battery containing a manganese oxide and / or a lithium manganese composite oxide as a positive electrode active material, a battery element is prepared using the positive electrode material, and a positive electrode material charged with the battery element is prepared. the positive electrode material for a lithium secondary battery degradation amount of PF 6 § two on as determined by the following storage test is a storage test (I) is characterized and this is 1 xl 0〃 mo 1 below.
保存試験 ( I ) Storage test (I)
a 1 ) 2 4 mgの正極材料を直径 1 2 mmの円形状に成形し、 集電体 (直径 1 6 mmの円形状のアルミニゥムのエキスパン ドメタル) に圧着してなる正極と、 対極として i金属、 電解液として 1 . O mo lZLの L i P F 6を含むェチレ ンカーボネートとジェチルカ一ボネート との混合液 (体積比 3 : 7 ) を使用し て電池素子を組み立て、 これを充電電流密度 0. 2 mA/c m2で上限電圧 4. 2 Vまで充電した後、 次いで電池素子を解体し、 充電状態にある正極を取り出 し、 該正極を、 a 1) A positive electrode formed by molding 24 mg of a positive electrode material into a circular shape with a diameter of 12 mm, and crimping it to a current collector (a circular aluminum expanded metal with a diameter of 16 mm). metal, 1 as an electrolyte solution mixture of O mo lZL Echire emissions carbonate and Jechiruka one containing L i PF 6 of Boneto (volume ratio 3: 7). assembled battery element using the charge current density 0 this After charging to a maximum voltage of 4.2 V at 2 mA / cm 2 , the battery element was then disassembled, and the charged positive electrode was taken out.
b 1 ) 露点が一 Ί 5 °C以下のアルゴンガス雰囲気下 b 1) Under an argon gas atmosphere with a dew point of 1 Ί5 ° C or less
c 1 ) 8 0 °Cで 3時間乾燥させたポリテトラフルォロェチレン容器内で、 d 1 ) 1 . O m o l/Lの L i P F 6を含む、 エチレンカーボネート 1 . 5 m l とジェチルカ一ポネー ト 3 . 5 m 1 との混合液 (酸分 : 2 . 0 mm o l/L以 下、 P 02 F 2ァニオン : 0. 5 mmo l/L以下、 且つエタノール : 0. 0 1 mg以下) 中に浸漬し、 c 1) In a polytetrafluoroethylene container dried at 80 ° C for 3 hours, d 1) 1.5 ml of ethylene carbonate containing 1.5 mol of L i PF 6 and G Mixed with 3.5 ml (acid content: 2.0 mmol / L or less, P 0 2 F 2 anion: 0.5 mmol / L or less, and ethanol: 0.01 mg or less) Immersed in
e 1 ) 8 0 °Cで一週間 e 1) One week at 80 ° C
保存し、 保存前後の混合液中の P F 6ァ二オンの量をそれそれ測定 (測定温度 : 2 0 °C) し、 その差から P F 6ァ二オン分解量を求める。 Store and measure the amount of PF 6 dione in the mixed solution before and after storage (measurement temperature: 20 ° C), and calculate the amount of PF 6 dione decomposition from the difference.
2 . 保存試験 ( I ) に従って得られた保存後の液中に含まれる P 02 F 2ァニ オンの量が、 2 0°Cで 1 X 1 0〃m o 1以下である請求項 1 に記載のリチウム 二次電池用正極材料。 2. The amount of P 0 2 F 2 anion contained in the solution after storage obtained according to the storage test (I) is 1 X 10 1mo 1 or less at 20 ° C. The positive electrode material for a lithium secondary battery according to the above.
3. 正極材料がバイ ンダ一樹脂を含有する請求項 1 又は 2に記載のリチウム 二次電池用正極材料。 3. The positive electrode material for a lithium secondary battery according to claim 1, wherein the positive electrode material contains a binder resin.
4. 正極材料中に、 P F 6ァ二オン分解抑制剤が分散混合されている請求項 1 乃至 3のいずれか 1つに記載のリチウム二次電池用正極材料。 4. The positive electrode material for a lithium secondary battery according to any one of claims 1 to 3, wherein a PF 6 anion decomposition inhibitor is dispersed and mixed in the positive electrode material.
5. マンガン酸化物及び/又はリチウムマンガン複合酸化物からなる正極活 物質と P F 67二オン分解抑制剤とを含有する リチウム二次電池用正極材料に おいて、 該 P F 6ァニオン分解抑制剤として、 下記保存試験 (II) によって測定 される P F 6ァニオンの分解量が 6 X 1 0 m o 1以下であるものを使用する ことを特徴とするリチウム二次電池用正極材料。 5. Oite manganese oxide and / or a positive electrode active material and a positive electrode material for a lithium secondary battery containing a PF 6 7 two on decomposition inhibitor comprising a lithium-manganese composite oxide, as the PF 6 Anion decomposition inhibitor A positive electrode material for a lithium secondary battery, wherein a material having a decomposition amount of PF 6 anion measured by the following storage test (II) of 6 × 10 mo 1 or less is used.
保存試験 (Π) Storage test (Π)
a 2 ) L i 1 + xMn2_x04 (ここで、 0≤x≤ 0. 0 5 ) なる組成のスピネル 構造を有する リチウムマンガン複合酸化物のリチウムを抜き出した、 満充電状 態に相当するリチウムマンガン複合酸化物 (0. 0 5≤ L i/Mnモル比≤ 0. 0 9 ) 1 6 0 m gを、 a 2) Li 1 + x Mn 2 _ x 0 4 (where 0 ≤ x ≤ 0.05) Lithium-manganese composite oxide with a spinel structure of composition The corresponding lithium-manganese composite oxide (0.05 ≤ L i / Mn molar ratio ≤ 0.09)
b 2 ) 露点が一 7 5 °C以下のアルゴンガス雰囲気下で、 b 2) Under an argon gas atmosphere with a dew point of less than 75 ° C,
c 2 ) 8 0 °Cで 3時間乾燥させたポリテトラフルォロエチレン容器内で、 d 2 ) 前記 P F 6ァ二オン分解抑制剤 1 6 0 mgと混合し、 c 2) In a polytetrafluoroethylene container dried at 80 ° C for 3 hours, d 2) mixed with 160 mg of the above PF 6 -dione decomposition inhibitor,
e 2 ) 1. Omo l/Lの L i P F6を含む、 エチレンカーボネート 2. 4ml ジェチルカーボネート 5. 6m lの混合液 (酸分 : 2. Ommo l/L以下、 P〇 2 F2ァニオン : 0. 5mmo l/L以下、 且つエタノール : 0. O l mg 以下) 中に浸漬し、 e 2) 1. including Omo l / L of L i PF 6, a mixture of ethylene carbonate 2. 4 ml Jefferies chill carbonate 5. 6 m l (acid content: 2. Ommo l / L or less, P_〇 2 F 2 Anion : 0.5mmol / L or less and ethanol: 0.5Olmg or less)
f 2 ) 7 0 °Cで一週間 f 2) One week at 70 ° C
保存し、 保存前後の混合液中の P F 6ァニオンの量を測定 (測定温度 : 2 0°C) し、 P F 6ァニオン分解量を求める。 Save, measure the amount of PF 6 anion in the mixture before and after storage (measurement temperature: 20 ° C), and determine the amount of PF 6 anion decomposed.
6. 保存試験 (II) に従って得られた保存後の液中に含まれる P 02F 2ァニ オンの量が、 2 0^で 5 1 0〃1110 1以下である請求項 5に記載のリチウム 二次電池用正極材料。 6. The method according to claim 5, wherein the amount of P 0 2 F 2 anion contained in the solution after storage obtained according to the storage test (II) is not more than 5 10〃1110 1 in 20 ^. Positive electrode material for lithium secondary batteries.
7. 保存試験 (II) の保存をさらに 2週間延長した際の、 保存後の液中に含 まれるエタノールの量が、 1 mg以下である請求項 5又は 6に記載のリチウム 二次電池用正極材料。  7. The lithium secondary battery according to claim 5 or 6, wherein the amount of ethanol contained in the solution after storage is 1 mg or less when the storage test (II) is further extended for 2 weeks. Positive electrode material.
8. P F 67二オン分解抑制剤が分散混合されている請求項 5乃至 7のいずれ か 1つに記載のリチウム二次電池用正極材料。 8. PF 6 7 two on decomposition inhibitor is any of the claims 5 to 7 are dispersed mixed The positive electrode material for a lithium secondary battery according to any one of the above.
9 . P F 6ァニオン分解抑制剤が、 リチウムニッケル複合酸化物を含有する請 求項 4乃至 8のいずれか 1つに記載のリチウム二次電池用正極材料。 9. The positive electrode material for a lithium secondary battery according to any one of claims 4 to 8, wherein the PF 6 anion decomposition inhibitor contains a lithium nickel composite oxide.
1 0 . P F 6ァニオン分解抑制剤が、 元素周期律表の 1 5族及び 1 6族からなる 群から選ばれた少なく とも 1種の元素を含有する化合物、 分子内に少なく とも 2級のアミノ基を有する化合物、 分子内に少なく とも 3級のアミ ノ基を有する 化合物、 分子内に少なく とも 1つのアミ ド結合を有する化合物、 分子内に少な く とも 1 つの含窒素複素環を有する化合物、 又は分子内に少なく とも 1つの水 酸基を有する化合物を含有する請求項 4乃至 8のいずれか 1つに記載のリチウ ムニ次電池用正極材料。 10. The PF 6 anion decomposition inhibitor is a compound containing at least one element selected from the group consisting of Groups 15 and 16 of the Periodic Table of the Elements, and at least a secondary amino group in the molecule. Compounds having at least one tertiary amino group in the molecule, compounds having at least one amide bond in the molecule, compounds having at least one nitrogen-containing heterocycle in the molecule, 9. The positive electrode material for a lithium secondary battery according to claim 4, further comprising a compound having at least one hydroxyl group in a molecule.
1 1 . P F 6ァ二オン分解抑制剤の添加量が、 正極活物質に対して 0 . 0 0 0 1 〜 8 0 w t %の範囲にある請求項 4乃至 1 0のいずれか 1つに記載のリチウム 二次電池用正極材料。 11. The method according to any one of claims 4 to 10, wherein the amount of the PF 6 anion decomposition inhibitor added is in the range of 0.001 to 80 wt% with respect to the positive electrode active material. Positive electrode material for lithium secondary batteries.
1 2 . P F 6ァニオン分解抑制剤の添加量が、 正極活物質に対して 1〜 8 0 w t %の範囲にある請求項 9記載のリチウム二次電池用正極材料。 12. The positive electrode material for a lithium secondary battery according to claim 9, wherein the amount of the PF 6 anion decomposition inhibitor added is in the range of 1 to 80 wt% based on the positive electrode active material.
1 3 . P F 6ァ二オン分解抑制剤の添加量が、 正極活物質に対して 0 . 0 0 0 1 〜 1 0 w t %の範囲にある請求項 1 0に記載のリチウム二次電池用正極材料。13. The positive electrode for a lithium secondary battery according to claim 10, wherein the amount of the PF 6 anion decomposition inhibitor added is in the range of 0.0001 to 10 wt% with respect to the positive electrode active material. material.
1 4 . マンガン酸化物及びノ又はリチウムマンガン複合酸化物が、 スピネル型 構造を有し、 マンガンサイ トの一部が典型元素から選ばれる少なく とも 1種の 元素で置換されたリチウムマンガン複合酸化物である請求項 1乃至 1 3のいず れか 1つに記載のリチウムイオン二次電池用正極材料。 14. Manganese oxide and lithium or lithium manganese composite oxide have a spinel structure, and a part of manganese site is replaced by at least one element selected from typical elements. The positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 13, wherein
1 5 . マンガンサイ トの一部を置換する典型元素が、 アルミニウム及び/又は リチウムである請求項 1 4記載のリチウムイオン二次電池用正極材料。  15. The positive electrode material for a lithium ion secondary battery according to claim 14, wherein the typical element that substitutes a part of the manganese site is aluminum and / or lithium.
1 6 . 典型元素の置換量が、 マンガン 2モルの中 0 . 0 5モル以上である請求 項 1 4又は 1 5に記載のリチウムイオン二次電池用正極物質。  16. The positive electrode material for a lithium ion secondary battery according to claim 14 or 15, wherein the substitution amount of the typical element is 0.05 mol or more in 2 mol of manganese.
1 7 . 正極材料が、 スピネル型構造を有する リチウムマンガン複合酸化物及び 層状構造を有する リチウムニッケル複合酸化物とを含有し、 該リチウムマンガ ン複合酸化物のマンガンサイ トの一部が他元素で置換されていて、 該他元素置 換リチウムマンガン複合酸化物の下記測定方法 ( I ) で測定される平均電圧が、 17. The positive electrode material contains a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, and part of the manganese site of the lithium manganese composite oxide is composed of another element. And the average voltage of the other element-substituted lithium manganese composite oxide measured by the following method (I) is as follows:
4. 0 5 9 V以上であることを特徴とする請求項 1乃至 9、 1 1、 1 2及び 1 4乃至 1 6のいずれか 1つに記載のリチウムィオン二次電池用正極材料。 The positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 9, 11, 12, and 14 to 16, wherein the positive electrode material has a voltage of 4.059 V or more.
<平均電圧の測定方法 ( I ) > <Measurement method of average voltage (I)>
① 当該複合酸化物を 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ ト ラフロロエチレン (P T F E) パウダー 5重量%の割合で秤量したものを混合 し、 薄く シート状にする。 全体重量が 1 2. 5 mgZ cm2になるように調整し た後、 この試料をさらにアルミニウムのエキスパン ドメタルに圧着して試験極 とする。 試験極は減圧下 1 2 0。Cで 1時間の乾燥を行う。 (1) The composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at 5% by weight and mixed to form a thin sheet. After adjusting the total weight to 12.5 mgZ cm 2 , this sample is further pressed against aluminum expanded metal to form a test electrode. The test electrode was under reduced pressure. Dry at C for 1 hour.
② アルゴン雰囲気下、 2 5〃mの多孔性ポリエチレンフィルムをセパレ一夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネート とジェチルカ一ポネートとの体積比 3 : 7の混合溶媒に 1モル/リ ヅ トルの六フッ化リン酸リチウム ( L i P F 6) を溶解させた溶液を 用いて、 C R 2 03 2型のコイン型電池を作製する。 ② In an argon atmosphere, a porous polyethylene film of 25 2m is used as a separator, lithium metal foil is used as a counter electrode, and a nonaqueous electrolyte solution is used, in which the volume ratio of ethylene carbonate and getylcapone is 3: using a solution prepared by dissolving 1 mol / Li Uz torr of lithium hexafluorophosphate (L i PF 6) 7 mixed solvent, to prepare a coin-type battery of CR 2 03 2 type.
③ 得られたコイン型電池を、 2 5 °Cの環境下で、 電流密度 0. 5 mA/cm2 の定電流充放電サイクル (充電上限 4. 3 5 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを ③ The obtained coin-type battery is subjected to a constant current charge / discharge cycle of 0.5 mA / cm 2 (charge upper limit 4.35 V, discharge lower limit 3.2 V) in an environment of 25 ° C. The average voltage V e
V e = ( 2サイクル目の充電平均電圧 + 2サイ クル目の放電平均電圧) / 2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割ることにより算出する。  The average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
1 8. リチウムニッケル複合酸化物が、 下記測定方法 (II) で測定した際に、 平均電圧 3. 8 3 0 V以下であるリチウムニッケル複合酸化物である請求項 1 1 8. The lithium nickel composite oxide having an average voltage of 3.830 V or less when measured by the following measurement method (II).
4乃至 1 7のいずれか 1つに記載のリチウムイオン二次電池用正極材料。 The positive electrode material for a lithium ion secondary battery according to any one of items 4 to 17.
<平均電圧の測定方法 (II) > <Measurement method of average voltage (II)>
① リチウムニッケル複合酸化物 7 5重量% 、 アセチレンブラック 2 0重量%、 ボリテ トラフロロエチレンパウダー 5重量%の割合で混合し、 薄く シート状に 成形する。 全体重量が 1 2. 5mg/cm2になるように調整した後、 このシー トをさらにアルミニウムのエキスパン ドメタルに圧着して試験極とする。 試験 極は減圧下 1 2 0 °Cで 1時間の乾燥を行う。 (1) A mixture of 75% by weight of lithium nickel composite oxide, 20% by weight of acetylene black, and 5% by weight of borotetrafluoroethylene powder is mixed to form a thin sheet. After adjusting the total weight to 12.5 mg / cm 2 , this sheet is further pressed against aluminum expanded metal to form a test electrode. test The electrode is dried under reduced pressure at 120 ° C for 1 hour.
② アルゴン雰囲気下、 2 5〃mの多孔性ポリエチレンフィルムをセパレ一夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネート とジェチルカ一ボネート との体積比 3 : 7の混合溶媒に 1モル/リ ッ トルの六フッ化リ ン酸リチウム ( L i P F 6 ) を溶解させた溶液を 用いて、 C R 2 0 3 2型のコイ ン型電池を作製する。 ② In an argon atmosphere, a 25〃m porous polyethylene film was used as a separator, lithium metal foil was used as a counter electrode, and a nonaqueous electrolyte solution was used, in which the volume ratio of ethylene carbonate and getyl carbonate was 3: using a solution obtained by dissolving hexafluoride potash lithium phosphate in 1 mol / liter (L i PF 6) 7 mixed solvent, to prepare a coin battery of CR 2 0 3 2 type.
③ 得られたコイ ン型電池を、 2 5 °Cの環境下で、 電流密度 0 . 2 m A / c m 2 の定電流充放電サイ クル (充電上限 4 . 2 V、 放電下限 3 . 2 V ) を行い、 平 均電圧 V eを ③ The obtained coin-type battery, in an environment of 2 5 ° C, current density 0. 2 m constant current charge and discharge cycles of the A / cm 2 (charging upper limit 4. 2 V, the discharge lower limit 3. 2 V ) To change the average voltage V e
V e = ( 2サイクル目の充電平均電圧 + 2サイクル目の放電平均電圧) / 2 として求める。 V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割った値である。  The average charge voltage or average discharge voltage is the value obtained by measuring the voltage during charge or discharge at 2-second intervals and integrating the voltage over time by the time required for charge or discharge.
1 9 . リチウムマンガン複合酸化物とリチウムニッケル複合酸化物との合計量 に対する リチウムニッケル複合酸化物の重量比が 0 . 7以下である請求項 1 4 乃至 1 8のいずれか 1 つに記載のリチウムイオン二次電池用正極材料。  19. The lithium according to any one of claims 14 to 18, wherein the weight ratio of the lithium nickel composite oxide to the total amount of the lithium manganese composite oxide and the lithium nickel composite oxide is 0.7 or less. Positive electrode material for ion secondary batteries.
2 0 . 保存試験 ( I ) 又は (I I ) 後の液中の P F 6ァニオンの分解物の 8 0 %以 上が P 0 2 F 2ァ二オンである請求項 1乃至 1 9のいずれか 1つに記載のリチウ ムニ次電池用正極材料。 20. Any one of claims 1 to 19, wherein at least 80% of the decomposition product of PF 6 anion in the liquid after the storage test (I) or (II) is P 0 2 F 2 anion. The positive electrode material for lithium secondary batteries described in (1).
2 1 . スピネル型構造を有する リチウムマンガン複合酸化物及び層状構造を有 する リチウムニッケル複合酸化物を含有する リチウムイオン二次電池用正極材 料であって、 該リチウムマンガン複合酸化物のマンガンサイ トの一部が典型元 素から選ばれる少なく とも 1種の元素で置換されていることを特徴とする リチ ゥムイオン二次電池用正極材料。  21. A positive electrode material for a lithium ion secondary battery containing a lithium manganese composite oxide having a spinel type structure and a lithium nickel composite oxide having a layered structure, wherein the manganese site of the lithium manganese composite oxide A positive electrode material for a lithium ion secondary battery, characterized in that a part of the positive electrode material is substituted with at least one element selected from typical elements.
2 2 . マンガンサイ トの一部を置換する典型元素が、 アルミニウム及び/又は リチウムであることを特徴とする請求項 2 1記載のリチウムイオン二次電池用 正極材料。  22. The positive electrode material for a lithium ion secondary battery according to claim 21, wherein the typical element that substitutes a part of the manganese site is aluminum and / or lithium.
2 3 . 典型元素の置換量が、 マンガン 2モルの中 0 . 0 5モル以上である請求 項 2 1又は 2 2に記載のリチウムイオン二次電池用正極材料。 23. Claim that the substitution amount of the typical element is 0.05 mol or more in 2 mol of manganese Item 21. The positive electrode material for a lithium ion secondary battery according to Item 21 or 22.
2 4. スピネル型構造を有する リチウムマンガン複合酸化物及び層状構造を有 する リチウムニッケル複合酸化物とを含有する リチウムイオン二次電池用正極 材料であって、 該リチウムマンガン複合酸化物のマンガンサイ 卜の一部が他元 素で置換されていて、 該他元素置換リチウムマンガン複合酸化物の下記測定方 法 ( I ) で測定される平均電圧が、 4. 0 5 9 V以上であることを特徴とする リチウムイオン二次電池用正極材料。  2 4. A positive electrode material for a lithium ion secondary battery, comprising: a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure, wherein the manganese site of the lithium manganese composite oxide is Is partially substituted by another element, and the average voltage of the other element-substituted lithium manganese composite oxide measured by the following measurement method (I) is 4.059 V or more. A positive electrode material for a lithium ion secondary battery.
<平均電圧の測定方法 ( I ) > <Measurement method of average voltage (I)>
① 当該複合酸化物を 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ ト ラフロロエチレン (P T F E) パウダー 5重量%の割合で秤量したものを混合 し、 薄く シート状にする。 全体重量が 1 2. 5 mg/cm2になるように調整し た後、 この試料をさらにアルミニウムのエキスパン ドメタルに圧着して試験極 とする。 試験極は減圧下 1 2 0°Cで 1時間の乾燥を行う。 (1) The composite oxide is weighed at 75% by weight, acetylene black at 20% by weight, and polytetrafluoroethylene (PTFE) powder at 5% by weight and mixed to form a thin sheet. After adjusting the total weight to be 12.5 mg / cm 2 , this sample is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
② アルゴン雰囲気下、 2 5 /mの多孔性ポリエチレンフィルムをセパレー夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネート とジェチルカーボネート との体積比 3 : 7の混合溶媒に 1モル/リ ッ トルの六フヅ化リン酸リチウム ( L i P F 6) を溶解させた溶液を 用いて、 C R 2 03 2型のコイン型電池を作製する。 (2) Under an argon atmosphere, a 25 / m porous polyethylene film was used as a separator, lithium metal foil was used as a counter electrode, and a non-aqueous electrolyte solution was used in which the volume ratio of ethylene carbonate to getyl carbonate was 3: 7. using a solution prepared by dissolving 1 mol / Li Tsu six full Uz lithium phosphate torr (L i PF 6) in a mixed solvent of, to prepare a coin-type battery of CR 2 03 2 type.
③ 得られたコイ ン型電池を、 2 5 °Cの環境下で、 電流密度 0. 5 mA/cm2 の定電流充放電サイクル (充電上限 4. 3 5 V、 放電下限 3. 2 V) を行い、 平均電圧 V eを ③ The obtained coin-type battery is charged and discharged at a constant current of 0.5 mA / cm 2 at an environment of 25 ° C (charge upper limit 4.35 V, discharge lower limit 3.2 V). And the average voltage V e
V e = ( 2サイ クル目の充電平均電圧 + 2サイクル目の放電平均電圧) / 2 として求める。  V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割ることにより算出する。  The average charge voltage or average discharge voltage is calculated by measuring the voltage during charge or discharge at 2-second intervals, and dividing the value obtained by integrating the voltage over time by the time required for charge or discharge.
2 5. リチウムニッケル複合酸化物が、 下記測定方法 (II) で測定した際に、 平均電圧 3. 8 3 0 V以下である リチウムニッケル複合酸化物である請求項 2 1乃至 2 4のいずれか 1つに記載のリチウムィオン二次電池用正極材料。 ぐ平均電圧の測定方法 (II) > 25. The lithium nickel composite oxide according to any one of claims 21 to 24, wherein the lithium nickel composite oxide has an average voltage of 3.830 V or less when measured by the following measurement method (II). The positive electrode material for a lithium ion secondary battery according to one of the above. Method of measuring average voltage (II)>
① リチウムニッケル複合酸化物 7 5重量% 、 アセチレンブラック 2 0重量%、 ポリテ トラフロロエチレンパウダー 5重量%の割合で混合し、 薄く シート状に 成形する。 全体重量が 1 2. 5mg/cm2になるように調整した後、 このシ一 トをさらにアルミニウムのエキスパン ドメタルに圧着して試験極とする。 試験 極は減圧下 1 2 0°Cで 1時間の乾燥を行う。 (1) Mix 75% by weight of lithium nickel composite oxide, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene powder, and form a thin sheet. After adjusting the total weight to 12.5 mg / cm 2 , this sheet is further pressed against aluminum expanded metal to form a test electrode. The test electrode is dried for 1 hour at 120 ° C under reduced pressure.
② アルゴン雰囲気下、 2 5〃mの多孔性ポリエチレンフィルムをセパレ一夕 とし、 対極としてリチウム金属箔を使用し、 さらに、 非水電解液溶液として、 エチレンカーボネート とジェチルカ一ポネートとの体積比 3 : 7の混合溶媒に 1モル/リ ツ トルの六フヅ化リン酸リチウム ( L i P F 6 ) を溶解させた溶液を 用いて、 CR 2 03 2型のコイ ン型電池を作製する。 ② In an argon atmosphere, a porous polyethylene film of 25 2m is used as a separator, lithium metal foil is used as a counter electrode, and a nonaqueous electrolyte solution is used, in which the volume ratio of ethylene carbonate and getylcapone is 3: using a solution prepared by dissolving 1 mol / Li tree torr six full Uz lithium phosphate (L i PF 6) 7 mixed solvent, to prepare a coin battery of CR 2 03 2 type.
③ 得られたコイン型電池を、 2 5 °Cの環境下で、 電流密度 0. 2 mA/cm2 の定電流充放電サイクル (充電上限 4. 2 V、 放電下限 3. 2 V) を行い、 平 均電圧 V eを ③ The obtained coin battery was subjected to a constant current charge / discharge cycle with a current density of 0.2 mA / cm 2 (charge upper limit 4.2 V, discharge lower limit 3.2 V) at 25 ° C. , The average voltage V e
V e = ( 2サイクル目の充電平均電圧 + 2サイクル目の放電平均電圧) /2 として求める。 V e = (average charge voltage in the second cycle + average discharge voltage in the second cycle) / 2.
なお充電平均電圧あるいは放電平均電圧は、 充電時あるいは放電時の電圧を 2秒間隔で測定し、 電圧を時間で積算した値を、 充電あるいは放電に要した時 間で割った値である。  The average charge voltage or average discharge voltage is the value obtained by measuring the voltage during charge or discharge at 2-second intervals and integrating the voltage over time by the time required for charge or discharge.
2 6. リチウムマンガン複合酸化物とリチウムニッケル複合酸化物との合計量 に対する リチウムニッケル複合酸化物の重量比が 0. 7以下であることを特徴 とする請求項 2 1乃至 2 5のいずれか 1つに記載のリチウムィオン二次電池用 正極材料。 26. The weight ratio of the lithium nickel composite oxide to the total amount of the lithium manganese composite oxide and the lithium nickel composite oxide is 0.7 or less, wherein the weight ratio is 0.7 or less. The positive electrode material for a lithium ion secondary battery according to any one of the above.
2 7. 請求項 1乃至 2 6のいずれかに記載のリチウム二次電池用正極材料を含 有する活物質層を集電体上に形成してなる リチウムイオン二次電池用正極。  27. A positive electrode for a lithium ion secondary battery, comprising an active material layer containing the positive electrode material for a lithium secondary battery according to claim 1 formed on a current collector.
2 8. 請求項 1乃至 2 6のいずれかに記載のリチウム二次電池用正極材料を正 極中に含有する リチウムイオン二次電池。  28. A lithium ion secondary battery comprising the positive electrode material for a lithium secondary battery according to claim 1 in a positive electrode.
2 9. 請求項 1乃至 2 6のいずれかに記載のリチウム二次電池用正極材料を使 用した正極と、 負極と、 リチウム塩を溶媒に溶解してなる電解液とからなる リ チウムニ次電池。 2 9. Lithium comprising a positive electrode using the positive electrode material for a lithium secondary battery according to any one of claims 1 to 26, a negative electrode, and an electrolytic solution obtained by dissolving a lithium salt in a solvent. Rechargeable lithium battery.
3 0 . 負極が、 炭素材料を含有する請求項 2 8又は 2 9に記載のリチウム二次 電池  30. The lithium secondary battery according to claim 28 or 29, wherein the negative electrode contains a carbon material.
3 1 . リチウム塩が L i P F 6である請求項 2 8乃至 3 0のいづれか 1つに記載 のリチウム二次電池。 3 1. The lithium secondary battery according to the lithium salt is one either of claims 2 8 to 3 0 a L i PF 6.
PCT/JP2000/004133 1999-06-24 2000-06-23 Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and lithium secondary cell WO2001001505A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP11/178000 1999-06-24
JP17800099 1999-06-24
JP11/199884 1999-07-14
JP19988499 1999-07-14
JP11/317861 1999-11-09
JP31786199 1999-11-09
JP2000/131998 2000-05-01
JP2000131998A JP4843831B2 (en) 1999-06-24 2000-05-01 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2001001505A1 true WO2001001505A1 (en) 2001-01-04

Family

ID=27474796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004133 WO2001001505A1 (en) 1999-06-24 2000-06-23 Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and lithium secondary cell

Country Status (2)

Country Link
JP (1) JP4843831B2 (en)
WO (1) WO2001001505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132042B2 (en) * 2005-08-24 2013-01-30 株式会社デンソー Non-aqueous electrolyte secondary battery
CN104979547B (en) * 2006-03-20 2018-02-06 株式会社Lg化学 Lithium and cobalt oxides of stoichiometry and preparation method thereof
JP4923661B2 (en) * 2006-03-24 2012-04-25 株式会社デンソー Method for producing non-aqueous electrolyte secondary battery
JP5958343B2 (en) * 2010-11-05 2016-07-27 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using the same
JP6036811B2 (en) * 2012-04-13 2016-11-30 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using the same
JP7080043B2 (en) * 2017-12-20 2022-06-03 株式会社エンビジョンAescジャパン Lithium ion secondary battery
CN113707877A (en) * 2021-08-23 2021-11-26 湖州南木纳米科技有限公司 Surface modified titanium magnesium phosphate material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169736A (en) * 1990-08-09 1992-12-08 Varta Batterie Aktiengesellschaft Electrochemical secondary element
US5378445A (en) * 1993-12-23 1995-01-03 Fmc Corporation Preparation of lithium hexafluorophosphate solutions
US5496661A (en) * 1993-08-24 1996-03-05 Moli Energy (1990) Limited Simplified preparation of LiPF6 based electolyte for non-aqueous batteries
US5677087A (en) * 1995-04-26 1997-10-14 Japan Storage Battery Co., Ltd. Method for manufacturing positive electrode material for a lithium battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092430A (en) * 1996-09-20 1998-04-10 Yuasa Corp Lithium secondary battery
JPH11154512A (en) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11283671A (en) * 1998-03-27 1999-10-15 Japan Storage Battery Co Ltd Organic electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169736A (en) * 1990-08-09 1992-12-08 Varta Batterie Aktiengesellschaft Electrochemical secondary element
US5496661A (en) * 1993-08-24 1996-03-05 Moli Energy (1990) Limited Simplified preparation of LiPF6 based electolyte for non-aqueous batteries
US5378445A (en) * 1993-12-23 1995-01-03 Fmc Corporation Preparation of lithium hexafluorophosphate solutions
US5677087A (en) * 1995-04-26 1997-10-14 Japan Storage Battery Co., Ltd. Method for manufacturing positive electrode material for a lithium battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A DE KOCK ET AL.: "The effect of multivalent cation dopants on lithium manganese spinel cathodes", JOURNAL OF POWER SOURCES, vol. 70, no. 2, February 1998 (1998-02-01), pages 247 - 252, XP002932675 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
WO2003009407A3 (en) * 2001-07-14 2004-10-28 Univ St Andrews Managanese oxide material for electrochemical cells

Also Published As

Publication number Publication date
JP2001202962A (en) 2001-07-27
JP4843831B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5910627B2 (en) Secondary battery
EP2876723B1 (en) Lithium secondary battery
CN109216759B (en) Lithium ion battery electrolyte and lithium ion battery
EP2849266B1 (en) Nonaqueous electrolyte battery
US10141601B2 (en) Electrolyte for electrochemical device and the electrochemical device thereof
EP2840639B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
EP2190054A1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
KR20150010556A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode and rechargeable lithium battery including the same
JPWO2007007636A1 (en) Non-aqueous electrolyte secondary battery
WO2009020369A1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
WO2010116744A1 (en) Lithium battery
EP3890092A1 (en) Electrolyte solution composition and secondary battery using same
EP2259375A1 (en) Nonaqueous electrolytic solution and lithium secondary battery
WO2001001505A1 (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and lithium secondary cell
KR102582117B1 (en) Method of producing cathode material for electrode of secondary battery
JP6800417B2 (en) Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries and lithium ion secondary batteries
JP2016170958A (en) Positive electrode active substance material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2013069791A1 (en) Non-aqueous electrolyte secondary cell
WO2013069790A1 (en) Non-aqueous electrolyte secondary cell
KR101479559B1 (en) Cathode active materials for lithium secondary battery and lithium secondary battery comprising the same, and preparation method for the cathode active material
JP2011029199A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN114573615A (en) Saturated heterochain ternary electrolyte and preparation method and application thereof
WO2013069793A1 (en) Non-aqueous electrolyte secondary cell
JP5192897B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase