WO2000074560A1 - Integral gamma-ray camera and compression member - Google Patents

Integral gamma-ray camera and compression member Download PDF

Info

Publication number
WO2000074560A1
WO2000074560A1 PCT/US2000/015439 US0015439W WO0074560A1 WO 2000074560 A1 WO2000074560 A1 WO 2000074560A1 US 0015439 W US0015439 W US 0015439W WO 0074560 A1 WO0074560 A1 WO 0074560A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
breast
gamma
imaging apparatus
head
Prior art date
Application number
PCT/US2000/015439
Other languages
French (fr)
Inventor
Jan S. Iwanczyk
Bradley E. Patt
Original Assignee
Iwanczyk Jan S
Patt Bradley E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwanczyk Jan S, Patt Bradley E filed Critical Iwanczyk Jan S
Priority to CA2375190A priority Critical patent/CA2375190C/en
Publication of WO2000074560A1 publication Critical patent/WO2000074560A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/508Clinical applications for non-human patients

Definitions

  • Radiation imaging systems typically are used to generate images of the distribution of radiation either transmitted through an object or emitted from an object Such radiation is not visible to the naked eye
  • the various modalities of imaging distributions of radiation include Transmission Imaging and Emission Imaging Both of
  • Classical transmission imaging or x-ray radiography is a technique wherein the radiation is generated externally and caused to propagate through an organ or body to the detector In this way an image of the distribution of radiation absorption, or transmission, in the organ or body is obtained
  • One of the examples of the transmission imaging is mammography used for providing images of the breast in sufficient detail to
  • Mammography is accepted as the best means of screening for non-palpable breast cancer
  • signatures of breast cancer such as micro-calcifications or masses, seen for most malignant lesions, are also associated with benign processes
  • the sensitivity of mammography is reported to be about 85%, its specificity is only 20-30%, and only about 30%o of biopsies based on mammography are positive according to the following papers "Tc-99m-SestaMIBI Prone Imaging in Patients (PTS) with Suspicion of Breast Cancer (Ca)" by Khalkhali, I , I Mena, E Jouanne, L Diggles, K
  • the scintillator is generally a single crystal (70 cm diameter) which is coupled to multiple PMT's Each PMT covers several square centimeters of area of the scintillation crystal
  • PMT covers several square centimeters of area of the scintillation crystal
  • the solid state detector based camera can be one which has a scintillator coupled to a solid state detector
  • the solid state detector has replaced the PMT or PSPMT as the device which converts the light emanating from the scintillator into electrical signals
  • implementation is a gamma-ray camera based on a silicon pin photodetector array coupled
  • An example of emission imaging is breast imaging using the radiopharmaceutical MiraLumaTM (Tc-99m-Sestamibi) Recent developments in testing of this radiopharmaceutical, which was initially developed for measuring blood flow in the
  • Tc-99m-Sestamib ⁇ 10-20 mCi of Tc-99m-Sestamib ⁇ is a typical dose as reported in papers such as the ones by Kalkhali et al and Taillefer et al referenced above
  • the resulting whole body dose is 0.3 Rad (3mGy), according to the above referenced Kalkhali paper, with minimal dose to
  • This whole body dose is less than the dose from a standard chest X-ray and comparable to the dose from atypical mammogram.
  • a typical mammogram with a measured entrance exposure of 1 Roentgen from a Mo/Mo target/filter system at 30 kVp with a 0.36 mm aluminum HVL yields a glandular dose of 0.19 Rad (1.9mGy) as described in the Mammography Quality Control Manual, 2nd Ed., eds. R.E. Hendrick, L.
  • the standard scintillation camera of the prior art is too bulky to place in a position close to the breast and still image without the bulk of the body as background.
  • the radiopharmaceutical which is fixed in the heart, liver, and other organs contributes a significant background and scattered radiation component.
  • the background and scatter degrade the image quality.
  • the gamma-ray camera is specifically separated from the immobilization apparatus in order to facilitate easy movement of the gamma-ray camera head with respect to the immobilized organ for the purpose of obtaining multiple projections. With such an apparatus, it is not possible to achieve the benefits of extreme proximity to the lesion.
  • partial compression (10 lbs/in 2 ) is used This typically provides compression to approximately 5 cm, which is tolerated for 30 - 45
  • the thickness of the partially compressed breast is approximately 2 - 6 cm, which is excellent for imaging with a scintillation camera
  • Tc-99m-Sestamibi In typical use with the small gamma-ray camera one injects the patient with Tc-99m-Sestamibi and images a suspicious lesion within 10-20 minutes of the
  • the gamma-ray camera is at once a part of the means for breast compression as well as a gamma-ray imaging system for providing an image of radio tracer distribution in the breast.
  • An example of a suitable radio tracer is the radiopharmaceutical MiraLumaTM (Tc-99m-
  • the gamma-ray camera apparatus has resolutions and signal to noise ratios that are significantly better (up to factor of 2 for resolution and greater than 60% for signal to noise) than standard
  • the apparatus allows for alignment of the breast and the gamma-ray camera head in a fixed position during each imaging session This represents an
  • the apparatus of the present invention allows for positioning of the breast in different manners between the imaging sessions to obtain multiple projection views of the breast and to view the
  • FIGURE 1 is a diagrammatic side view of the present invention showing the breast compressed on one side by the mammography apparatus' compression plate and on the other by the imaging head of the gamma-ray camera.
  • FIGURE 2 is a diagrammatic side view of the present invention showing
  • FIGURE 3 is a diagrammatic side view of the present invention showing the breast compressed between two separate gamma-ray camera imaging heads.
  • FIGURE 4 is a diagrammatic side view of the present invention showing the breast compressed against the gamma-ray camera imaging head by gravity.
  • FIGURE 5 is a fragmentary, exploded perspective view illustrating, in simplified form, how the gamma-ray camera attaches to an attachment mechanism which is easily attachable and detachable from the mammography unit on rails The attachment
  • mechanism also includes electrical connections accommodating specific requirements for
  • FIGURE 6 is a perspective view illustrating, in simplified form, how the gamma-ray camera attaches to the mammography unit using a strap with fasteners
  • FIGURE 7 is a diagrammatic side view of the present invention showing
  • FIGURE 1 a breast 10 is compressed between a gamma- ray camera head 30 and a compression member or compression plate 20
  • FIGURE 2 shows the breast 10 being compressed between a gamma-ray camera head 31 and a cassette holder 34
  • FIGURE 3 illustrates the breast 10 being compressed between two
  • the breast 10 can be compressed against the gamma-ray camera head 30 using the force of gravity alone
  • An attachment mechanism 32 is used to attach the gamma-ray camera head 30 to a film cassette holder 34 of a conventional mammography unit (FIGURES 1, 3 and 4).
  • attachment mechanism 33 is used to attach the gamma-ray camera head 31 to the compression member 20 of the conventional mammography unit (FIGURES 2 and 3).
  • the gamma-ray camera heads 30 and 3 1 are part of the means for breast compression as well as the imaging system. This allows for the closest possible distance
  • a commercial mammography unit typically compresses a breast between a compression plate and an x-ray film cassette.
  • X-rays pass from an x-ray generator, through the compression plate and through the compressed breast to create an image on the film in the x-ray film cassette.
  • the x-ray film cassette houses the x-ray image receptor system including an image receptor support, an antiscatter grid, a cassette with film and screen, and an automatic exposure control detector. Rather than using x-ray film cassettes, digital x-ray image-receptor systems are sometimes used.
  • the x-ray film includes an image receptor support, an antiscatter grid, a cassette with film and screen, and an automatic exposure control detector.
  • cassette typically employs an attachment mechanism such as a slide and rails to allow it to be easily attached and detached from a cassette holder portion of the mammography unit.
  • FIGURES 1, 3 and 4 show the gamma-ray camera head 30 replaces the x-ray film cassette or digital x-ray image-receptor system of known mammography units.
  • the compression plate and gamma-ray camera heads of FIGURES 1 -4 can also be part of a dedicated unit for performing emission type imaging rather than part of a modification to a new or already
  • combinations of camera heads and compression plate are disposed so that the gamma-ray camera heads press directly against the breast or other body part
  • the gamma-ray camera head 30 is attached to the cassette holder 34 via the attachment mechanism 32, and compresses the breast 10 under examination against the compression plate 20 on the opposing side
  • the gamma-ray camera head 30 replaces the digital or film based x-ray image- receptor systems that are part of digital mammography units
  • the attachment mechanism 32 differs for various manufacturers of mammography equipment so as to attach the gamma-ray camera head 30 to that particular manufacturer's cassette holder 34 After installation of the gamma-ray camera head on the mammography unit the breast is
  • the gamma-ray camera head 30 is at once an integral part of the compression mechanism and a gamma-ray imaging system for providing an image of the radio tracer distribution in the breast 10 to image a lesion 16.
  • This approach allows for keeping the breast and gamma-ray camera co-aligned in a well-defined and specific position with respect to the gamma-ray camera head during each imaging session Improvements are realized by utilizing small gamma-ray cameras, such as the one described in US Patent 5,773,829, offering better energy resolution (approximately 8 %). This improvement is partially due to the better scatter rejection they provide.
  • Placing the gamma-ray camera heads in direct contact with the breast 10 to minimize the distance between the gamma-ray camera heads and the lesion 16, and removing all unnecessary objects from between the gamma- ray camera heads and the lesion, serves to minimize image degrading scatter and to maximize image resolution and the signal to noise ratio.
  • the compact nature of the apparatus of the present invention ensures that the detector is not more than 1 cm to 3 cm from any lesion.
  • Typical values of the bore hole diameter and the bore-hole length are 1.5 mm and 2.5 cm, respectively, for a standard high resolution collimator.
  • the calculated improvement in spatial resolution using the apparatus of the present invention is 43 % (from 5 1 mm to 2 9 mm) compared with the apparatus described in US Patent 5,519,221 where the lesion to detector separation is increased by a minimum of 2 inches (5 08 cm) due mainly to the additional compression plate
  • FIGURE 2 shows the apparatus A with the gamma-ray camera head 31 attached to the compression plate 20 via the attachment mechanism 33 to compress the breast 10 under examination against the cassette holder 34 on the opposing side of the breast 10 Compression is applied to the breast 10 in the direction shown by arrows 40
  • the compression system compresses the breast
  • the two gamma-ray cameras can provide three-dimensional images Compression is applied in conjunction with compression mechanisms that are currently used in mammography or stand-alone systems
  • the two gamma-ray camera heads 30 and 31 are attached to the cassette holder 34 and compression member 20 via attachment mechanisms 32 and 33, respectively, as is done
  • FIGURE 4 illustrates the apparatus A with the gamma-ray camera head
  • the gamma-ray cameras can be based on Position Sensitive Photomultiplier Tubes (PSPMT's) coupled to one or more scintillators, solid state detectors, or on standard Photomultiplier Tubes (PMT's) coupled to one or more scintillators
  • PSPMT's Position Sensitive Photomultiplier Tubes
  • PMT's standard Photomultiplier Tubes
  • the present invention can also use other types of gamma-ray cameras.
  • various radiopharmaceuticals or other radiation bearing substances can be used and different detectors can be used for detecting emissions other than gamma-rays for
  • the integral gamma-ray camera and compression member of the present invention can be used in compression systems for acquisition of radio tracer images from other soft organs other than breast or for acquisition of radio tracer images from small
  • the attachment mechanism 32 includes an
  • the gamma-ray camera head 30 can be attached to the attachment mechanism 32 utilizing a strap 52
  • the strap 52 can also be used to attach the gamma-ray camera head 30 directly to the cassette holder 34 or to the compression plate 20 of the mammography machine 72
  • the strap can be attached to
  • the mammography machine 72 or to a stand-alone machine, so long as it secures the gamma-ray camera head 30 for positioning against the body part
  • the gamma-ray camera head 30 can alternatively be secured using rails, bolts, adhesives, or other fastening methods
  • a pad or sheet of suitable material 86 can be
  • pads or sheets can also be inserted between the breast and the compression plate 20 of FIGURE 1 or the breast and cassette holder 34 of FIGURE 2
  • the pad or sheet 86 can be up to a few millimeters thick, and in particular 2-5 mm thick The pad or sheet 86 should provide minimal interference with image acquisition while minimizing patient discomfort
  • the apparatus in the present invention allows for positioning the breasts in different manners for the imaging sessions to obtain multiple projection views of the breast Typical views of the breast for scintimammography are similar to those used in mammographic projections
  • the names for views and the abbreviated codes listed in TABLE 1 are based on the ACT Breast Imaging Reporting and Data System (ACT BI- RADSTM) recommendation for standardized mammographic terminology
  • the integral gamma-ray camera and compression member of the present invention is used in conjunction with known compression systems for compressing the breast 10.
  • a radiopharmaceutical is first introduced into the patient.
  • the breast 10 is then
  • Partial compression of 5-15 lbs/in 2 is usually applied for approximately 10 minutes while the gamma-ray camera head 30 acquires the radio tracer images In certain cases, full breast compression of up to 18 lbs/in 2 can be applied for a short time The effectiveness of compression and distance of the camera head to the examined lesions is
  • the amount of compression and the compressed breast thickness are usually clearly displayed on the mammography unit
  • An automatic immediate post examination release and power failure release to minimize discomfort and ensure patient safety is usually implemented in the mammography equipment

Abstract

At breast (10) is compressed between a gamma ray camera head (30) and a compression member or compression plate (20). The breast (10) is compressed between a gamma-ray camera head (31) and a cassette holder (34).

Description

INTEGRAL GAMMA-RAY CAMERA AND COMPRESSION MEMBER
BACKGROUND OF THE INVENTION
Radiation imaging systems typically are used to generate images of the distribution of radiation either transmitted through an object or emitted from an object Such radiation is not visible to the naked eye The various modalities of imaging distributions of radiation include Transmission Imaging and Emission Imaging Both of
these modalities are applied in medicine
Classical transmission imaging or x-ray radiography is a technique wherein the radiation is generated externally and caused to propagate through an organ or body to the detector In this way an image of the distribution of radiation absorption, or transmission, in the organ or body is obtained One of the examples of the transmission imaging is mammography used for providing images of the breast in sufficient detail to
assure high sensitivity screening for abnormal tissue
Mammography is accepted as the best means of screening for non-palpable breast cancer However, signatures of breast cancer, such as micro-calcifications or masses, seen for most malignant lesions, are also associated with benign processes Thus, while the sensitivity of mammography is reported to be about 85%, its specificity is only 20-30%, and only about 30%o of biopsies based on mammography are positive according to the following papers "Tc-99m-SestaMIBI Prone Imaging in Patients (PTS) with Suspicion of Breast Cancer (Ca)" by Khalkhali, I , I Mena, E Jouanne, L Diggles, K
Alle, S. Klein in J Nucl Med , 24 140P, May 1993, "Sensitivity and specificity of first screen mammography in the Canadian National Breast Screening Study a preliminary report from five centres" by Baines CJ, Miller AB, Wall C, McFarlane DV, Simor IS, Jong
R, Shapiro BJ, Audet L, Petitclerc M, Ouimet-OlivaD, et al, in Radiology, 160 295-298, (1986), and "Mammographic parenchymal patterns risk indicator for breast cancer'?" by Tabar, L and Dean PB, in JAMA 247 185-189, (1982)
Excisional biopsies on a false positive patient result in large unnecessary costs and the scarring that can cause difficulties in interpretation of future mammograms according to a paper titled "Radiographic Breast Anatomy Radiological Signs of Breast
Cancer" by Shaw de Paredes E in Syllabus A Categorical Course in Physics & Technical Aspects ofBreast Imaging, eds A G Haus & M J Yaffe, RSN A Publications, OakBrook
IL, 1992 Many centers now use stereotactic systems for core biopsies immediately after mammography, while the breast is compressed in the same position as in the mammogram
While the stereotactic procedure is somewhat less traumatic, the cost is still significant, especially for the 70% of patients who had false positives
In emission imaging ("Nuclear Medicine") radiation is generated within the
organ by radiopharmaceutical or other radiation bearing substance which passes through
or in some cases is designed to accumulate in the organ Many emission imaging applications exist including single photon planar imaging and Single Photon Emission Computed Tomography (SPECT) for imaging the structure or function of internal organs Gamma-ray cameras employed in single photon emission imaging
applications typically consist of a collimator for "focusing" the gamma-rays, a detector for determining the position of each incident gamma-ray and a device for displaying the acquired images Traditional gamma-ray cameras utilize scintillation detectors coupled to photomultiplier tubes (PMT's) for detecting the light emitted from the scintillator This development is described in a paper titled "Scintillation Camera", by Hal O Anger,
published 1958, The Review of Scientific Instruments, Vol 29 No 1 and in a paper titled "Gamma-Camera Systems," by M D Short, in 1984, Nuclear Instruments and Methods,
Vol 221 In these cameras, the scintillator is generally a single crystal (70 cm diameter) which is coupled to multiple PMT's Each PMT covers several square centimeters of area of the scintillation crystal Recently, smaller, higher spatial and energy resolution gamma- ray cameras dedicated to particular applications have been developed or are under
development These new cameras are based on PMT's, position sensitive PMT's
(PSPMT) or solid state detectors The solid state detector based camera can be one which has a scintillator coupled to a solid state detector In this case the solid state detector has replaced the PMT or PSPMT as the device which converts the light emanating from the scintillator into electrical signals A typical example of such an
implementation is a gamma-ray camera based on a silicon pin photodetector array coupled
to CsI(Tl) scintillator described in US Patent 5,773,829, which is incorporated by
reference in its entirety into the present disclosure Another approach utilizes a solid state detector, which directly converts the radiation to electrical signals
An example of emission imaging is breast imaging using the radiopharmaceutical MiraLuma™ (Tc-99m-Sestamibi) Recent developments in testing of this radiopharmaceutical, which was initially developed for measuring blood flow in the
myocardium, show that the compound is also selectively taken up in tumors, apparently in proportion to the malignancy of the tumor The compound compares favorably with
Tl-201 in tumor uptake as described in the papers titled "In vitro uptake of technetium- 99m-teboroxime in carcinoma cell lines and normal cells comparison with technetium- 99m-Sestamibi and thallium-201 " by Maublant JC, Zhang Z, Rapp M, Oilier M, Michelot
J, Veyre in A J Nuc Med , 1993 Nov, 34 (11) 1949-52, "Thallium-201 versus technetium-99m-MTBI SPECT in evaluation of childhood brain tumors a within-subject comparison" by O'Tuama LA, Treves ST, Larar JN, Packard AB, Kwan AJ, Barnes PD, Scott RM; Black PM, Madsen JR, Goumnerova LC et al in J Nuc Med , 1993 Jul, 34(7):1045-51 , and "Concordant uptake of Tc-99m Sestamibi and Tl-201 in unsuspected breast tumor" by Campeau RJ, Kronemer KA, Sutherland CM, in Clin Nucl Med , 1992
Dec, 17 (12) 936-7 It is believed that the Tl-201 uptake is a measure of blood flow, while the Sestamibi is sensitive to tumor metabolic rate or malignancy In addition, Sestamibi's mechanism of uptake fixes the compound and minimizes redistribution Uptake of Sestamibi is also very rapid It is fixed in the heart, liver and tumor in about
10 minutes, and has a maximum uptake in the tumor at about 5 minutes Recent reports
such as the one reported in papers on detection of breast tumors using Sestamibi titled
" Scintimammography the complementary role of Tc-99m Sestamibi prone breast imaging for the diagnosis of breast carcinoma" by I Khalkhali, J A Cutrone, I G Mena, L.E Dingles, et al , in Radiology 196 (1995) 421-426, and "Technetium-99m-Sestamibi Prone Scinti-mammography to Detect Primary Breast Cancer and Axillary Lymph Node
Involvement" by Taillefer, R , Robidoux, A , Lambert, R , Turpin, S , and Laperriere, J in J Nuc Med 36 1758, Oct 1995, all give sensitivities and specificities in the neighborhood of 90 % Recently, equally encouraging results were also reported for Tc- 99m-Methylene Diphosphonate (MDP) with a sensitivity of 92%) and a specificity of 95%> in a paper titled "Technetιum-99m-Methylene Diphosphonate Scintimammography to Image Primary Breast Cancer" by Piccolo, S , Lastoria, S , Mainolfi, C , Muto, P , Bazzicalupo, L , Salvatore, M in J Nuc Med 1995 36 718-724
Part of the 10% or so of the lesions missed in the studies such as the ones reported by Kalkhali and Taillefer cited above were due to the small size and/or lower uptake of the particular lesions In one study reported in a paper titled "Technetium-99m- sestamibi uptake in breast tumor and associated lymph nodes" by J Maublant, M de Latour, D Mestas, et al in j Nucl Med 37 (1996) 922-925, patients were injected with Tc-99m Sestamibi and imaged with a scintillation camera one day prior to a second injection of Sestamibi prior to excisional breast and/or axillary biopsy All patients had positive mammograms, and 78% had positive scintimammograms It was found that all
excised tumor tissue had significant Tc-99m Sestamibi uptake (6 13 ± 2 37 tumor to tissue ratio) This included tumors missed with scintimammography The implication is that the uptake of Tc-99m Sestamibi is extracted into essentially all tumors and that the false negatives with Tc-99m Sestamibi scintimammography are due to the limitations in the sensitivity, resolution and clinical placement during the procedure of current scintillation
cameras Thus, it would be desirable to provide a scintillation camera with the necessary sensitivity, resolution and clinical placement to prevent false negatives
In emission imaging of the breast using MiraLuma™ (Tc99m- Sestamibi),
10-20 mCi of Tc-99m-Sestamibι is a typical dose as reported in papers such as the ones by Kalkhali et al and Taillefer et al referenced above The resulting whole body dose is 0.3 Rad (3mGy), according to the above referenced Kalkhali paper, with minimal dose to
the breast. This whole body dose is less than the dose from a standard chest X-ray and comparable to the dose from atypical mammogram. For example, a typical mammogram with a measured entrance exposure of 1 Roentgen from a Mo/Mo target/filter system at 30 kVp with a 0.36 mm aluminum HVL yields a glandular dose of 0.19 Rad (1.9mGy) as described in the Mammography Quality Control Manual, 2nd Ed., eds. R.E. Hendrick, L.
Bassett, M.N Botsco, et al., American College of Radiology 1994: 159-165.
The standard scintillation camera of the prior art is too bulky to place in a position close to the breast and still image without the bulk of the body as background. Thus, the radiopharmaceutical which is fixed in the heart, liver, and other organs contributes a significant background and scattered radiation component. The background and scatter degrade the image quality. Thus, it would be desirable to provide a
scintillation camera that could be placed close to the breast image without unwanted
background.
In US Patent 5,519,221, which is incorporated by reference in its entirety into the present disclosure, the gamma-ray camera head is shown to be separated by
substantial distance from the compressed breast, and additional materials such as a compression plate are placed between the breast and the gamma-ray camera head. In this reference, the gamma-ray camera is specifically separated from the immobilization apparatus in order to facilitate easy movement of the gamma-ray camera head with respect to the immobilized organ for the purpose of obtaining multiple projections. With such an apparatus, it is not possible to achieve the benefits of extreme proximity to the lesion. For stereotactic biopsy, partial compression (10 lbs/in2) is used This typically provides compression to approximately 5 cm, which is tolerated for 30 - 45
minutes as described in "Chapter 7 Stereotactic large-core breast biopsy", in Percutaneous Breast Biopsy, eds. S.H. Parker, W.E Jobe, Raven Press, Ltd., New York, 1993 by S.H. Parker. Typical full compression for standard x-ray mammography, at 18 lbs/in2 is usually tolerated for only 1 minute, compressing the breast to approximately 4 cm An example of the caudal compression is that achieved with the Instrumentarium™ mammography unit, which allows extended compression periods with little pain or trauma
and still provides approximately 80% of full compression The thickness of the partially compressed breast is approximately 2 - 6 cm, which is excellent for imaging with a scintillation camera In typical use with the small gamma-ray camera one injects the patient with Tc-99m-Sestamibi and images a suspicious lesion within 10-20 minutes of the
initial diagnosis
SUMMARY OF THE INVENTION
The integral gamma-ray camera and compression member of the present invention eliminates many of the disadvantages of the prior art apparatus for examining the breast for suspicious lesions A small gamma-ray camera is attached to a mammography unit or to a stand-alone system in such a way that the gamma-ray camera is in direct contact with the breast as part of the breast compression system
Incorporating the gamma-ray camera into the breast compression fixture assures minimum distance between the lesion in the compressed breast tissue and the gamma-ray camera All unnecessary materials are removed from between the compressed breast and the gamma-ray camera, with the possible exception of a pad or sheet of suitable material for
cushioning the breast and minimizing patient discomfort. The gamma-ray camera
comprises a collimator and a gamma-ray sensitive imaging detector. The gamma-ray camera is at once a part of the means for breast compression as well as a gamma-ray imaging system for providing an image of radio tracer distribution in the breast. An example of a suitable radio tracer is the radiopharmaceutical MiraLuma™ (Tc-99m-
Sestamibi).
The approach of the present invention allows for the closest distance to the
lesion under examination and minimizes radiation scatter from breast tissue itself and other objects placed between the gamma-ray camera and breast. The gamma-ray camera apparatus has resolutions and signal to noise ratios that are significantly better (up to factor of 2 for resolution and greater than 60% for signal to noise) than standard
scintillation cameras. This improvement in signal to noise is due to higher sensitivity and
better spatial resolution achieved by the close proximity of the camera to breast lesions.
In order to obtain these improvements it is important to apply the compression with the gamma-ray camera itself being part of the compression mechanism and to eliminate any additional media placed between the imaging gamma-ray camera and breast.
The proximity affords a transition from collimator limited camera resolution, which is characteristic of Anger camera imaging intended to image objects at depth, to a regime of intrinsic detector-limited resolution of relatively shallow objects which are fairly close to the detector. Thus the present invention leads to a significant improvement in spatial resolution compared to what can be obtained with the apparatus described in US Patent 5,519,221
The small size of the camera and substantial improvement in geometric efficiency afforded by the proximity to the object being imaged allows the camera to be positioned for breast imaging without the remainder of the body in the background This leads to improvements in image quality due to reduction of background and scattering due to parts of the body other than the breast
The apparatus allows for alignment of the breast and the gamma-ray camera head in a fixed position during each imaging session This represents an
improvement over the apparatus described in US Patent 5,519,221 where the organ
(breast) is immobilized and the gamma-ray camera head is allowed to move with respect to the immobilized organ for the purpose of obtaining multiple projections The apparatus of the present invention allows for positioning of the breast in different manners between the imaging sessions to obtain multiple projection views of the breast and to view the
lesion with the least separation from the detector Typical views of breast taken with the
apparatus are similar to those used in mammographic projections
Because scintimammography using the apparatus of the present invention takes approximately 10 minutes to perform, the use of partial compression and newer caudal compression techniques is appropriate, thus reducing patient discomfort as compared to the use of full compression Because of the increased efficiency and better signal to noise ratio afforded by the apparatus of the present invention, it is possible to use lower doses of the radiopharmaceutical, or shorter image acquisition times, with equal or better image quality than is possible without the use of the subject invention.
Other features and advantages of the present invention will be apparent
from the following detailed description when read in conjunction with the accompanying
drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings, which constitute part of this specification, embodiments demonstrating various features of the invention are set forth as follows:
FIGURE 1 is a diagrammatic side view of the present invention showing the breast compressed on one side by the mammography apparatus' compression plate and on the other by the imaging head of the gamma-ray camera.
FIGURE 2 is a diagrammatic side view of the present invention showing
the breast compressed on one side by the mammography apparatus' cassette holder and on the other by the imaging head of the gamma-ray camera.
FIGURE 3 is a diagrammatic side view of the present invention showing the breast compressed between two separate gamma-ray camera imaging heads.
FIGURE 4 is a diagrammatic side view of the present invention showing the breast compressed against the gamma-ray camera imaging head by gravity. FIGURE 5 is a fragmentary, exploded perspective view illustrating, in simplified form, how the gamma-ray camera attaches to an attachment mechanism which is easily attachable and detachable from the mammography unit on rails The attachment
mechanism also includes electrical connections accommodating specific requirements for
different models of mammography equipment
FIGURE 6 is a perspective view illustrating, in simplified form, how the gamma-ray camera attaches to the mammography unit using a strap with fasteners
FIGURE 7 is a diagrammatic side view of the present invention showing
a pad or sheet for cushioning the breast and minimizing patient discomfort
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Although detailed illustrative embodiments are disclosed herein, other suitable structures and machines for practicing the invention may be employed and will be apparent to persons of ordinary skill in the art Consequently, specific structural and functional details disclosed herein are representative only, they describe the preferred
embodiments of the invention
As illustrated in FIGURE 1, a breast 10 is compressed between a gamma- ray camera head 30 and a compression member or compression plate 20 FIGURE 2 shows the breast 10 being compressed between a gamma-ray camera head 31 and a cassette holder 34 FIGURE 3 illustrates the breast 10 being compressed between two
gamma-ray camera heads 30 and 31 As illustrated in FIGURE 4, the breast 10 can be compressed against the gamma-ray camera head 30 using the force of gravity alone An attachment mechanism 32 is used to attach the gamma-ray camera head 30 to a film cassette holder 34 of a conventional mammography unit (FIGURES 1, 3 and 4). An
attachment mechanism 33 is used to attach the gamma-ray camera head 31 to the compression member 20 of the conventional mammography unit (FIGURES 2 and 3). Thus, the gamma-ray camera heads 30 and 3 1 are part of the means for breast compression as well as the imaging system. This allows for the closest possible distance
to the lesions under examination, minimizes the radiation scatter, and maximizes the resolution and signal to noise ratio.
A commercial mammography unit typically compresses a breast between a compression plate and an x-ray film cassette. X-rays pass from an x-ray generator, through the compression plate and through the compressed breast to create an image on the film in the x-ray film cassette. The x-ray film cassette houses the x-ray image receptor system including an image receptor support, an antiscatter grid, a cassette with film and screen, and an automatic exposure control detector. Rather than using x-ray film cassettes, digital x-ray image-receptor systems are sometimes used. The x-ray film
cassette typically employs an attachment mechanism such as a slide and rails to allow it to be easily attached and detached from a cassette holder portion of the mammography unit.
As illustrated in FIGURES 1-4, the x-ray film cassette or digital x-ray image-receptor system is not needed for the present invention. FIGURES 1, 3 and 4 show the gamma-ray camera head 30 replaces the x-ray film cassette or digital x-ray image-receptor system of known mammography units. The compression plate and gamma-ray camera heads of FIGURES 1 -4 can also be part of a dedicated unit for performing emission type imaging rather than part of a modification to a new or already
existing transmission type imaging unit As part of a dedicated unit, the various
combinations of camera heads and compression plate are disposed so that the gamma-ray camera heads press directly against the breast or other body part
Referring to FIGURE 1 , in an apparatus N the gamma-ray camera head 30 is attached to the cassette holder 34 via the attachment mechanism 32, and compresses the breast 10 under examination against the compression plate 20 on the opposing side
of the breast 10 Compression is applied to the breast 10 in the direction shown by arrows 40 and 42 The gamma-ray camera head 30 replaces the digital or film based x-ray image- receptor systems that are part of digital mammography units The attachment mechanism 32 differs for various manufacturers of mammography equipment so as to attach the gamma-ray camera head 30 to that particular manufacturer's cassette holder 34 After installation of the gamma-ray camera head on the mammography unit the breast is
compressed between the camera and the compression plate to reduce the thickness of
breast tissue during acquisition of radio tracer images The gamma-ray camera head 30 is at once an integral part of the compression mechanism and a gamma-ray imaging system for providing an image of the radio tracer distribution in the breast 10 to image a lesion 16. This approach allows for keeping the breast and gamma-ray camera co-aligned in a well-defined and specific position with respect to the gamma-ray camera head during each imaging session Improvements are realized by utilizing small gamma-ray cameras, such as the one described in US Patent 5,773,829, offering better energy resolution (approximately 8 %). This improvement is partially due to the better scatter rejection they provide. Placing the gamma-ray camera heads in direct contact with the breast 10 to minimize the distance between the gamma-ray camera heads and the lesion 16, and removing all unnecessary objects from between the gamma- ray camera heads and the lesion, serves to minimize image degrading scatter and to maximize image resolution and the signal to noise ratio.
Spatial resolution is important due to the necessity for discerning non-
palpable tumors (dimensions < 1 cm) for lesion diagnosis. The system spatial resolution, R is approximated by the equation R = sqrt(Ri2 + Re2), where Ri is the intrinsic camera spatial resolution and Re is the collimator resolution. The collimator resolution is in turn approximated by Re = d(L + z)/L, where d is the collimator bore hole diameter, L is the collimator bore hole length, and z is the distance separating the source (lesion in question) from the gamma-ray entrance side of the collimator which is at the front of the gamma-ray
camera head.
With the breast partially compressed against the gamma-ray camera head to a thickness of between approximately 2 cm and 6 cm, the compact nature of the apparatus of the present invention ensures that the detector is not more than 1 cm to 3 cm from any lesion. Typical values of the bore hole diameter and the bore-hole length are 1.5 mm and 2.5 cm, respectively, for a standard high resolution collimator. Using these
values, the calculated improvement in spatial resolution using the apparatus of the present invention is 43 % (from 5 1 mm to 2 9 mm) compared with the apparatus described in US Patent 5,519,221 where the lesion to detector separation is increased by a minimum of 2 inches (5 08 cm) due mainly to the additional compression plate
FIGURE 2 shows the apparatus A with the gamma-ray camera head 31 attached to the compression plate 20 via the attachment mechanism 33 to compress the breast 10 under examination against the cassette holder 34 on the opposing side of the breast 10 Compression is applied to the breast 10 in the direction shown by arrows 40
and 42 Rather than compressing the breast 10 against the cassette holder, it can be compressed against a second compression member or the film cassette
As illustrated in FIGURE 3, the compression system compresses the breast
10 between two gamma-ray camera heads 30 and 31 to reduce the thickness of the breast tissue during the acquisition of radio tracer images The two gamma-ray cameras can provide three-dimensional images Compression is applied in conjunction with compression mechanisms that are currently used in mammography or stand-alone systems
The two gamma-ray camera heads 30 and 31 are attached to the cassette holder 34 and compression member 20 via attachment mechanisms 32 and 33, respectively, as is done
in the setups of FIGURES 1 and 2 Compression is applied to the breast 10 in the direction shown by arrows 40 and 42
FIGURE 4 illustrates the apparatus A with the gamma-ray camera head
30 attached to the cassette holder 34 via the attachment mechanism 32 The breast 10 is compressed against the gamma-ray camera head 0 using the force of gravity acting in the direction of arrow 43 The gamma-ray camera head 30 presses against the breast 10 in the direction of arrow 42 This setup allows for increased patient comfort and longer imaging times
The gamma-ray cameras can be based on Position Sensitive Photomultiplier Tubes (PSPMT's) coupled to one or more scintillators, solid state detectors, or on standard Photomultiplier Tubes (PMT's) coupled to one or more scintillators The present invention can also use other types of gamma-ray cameras. In addition, various radiopharmaceuticals or other radiation bearing substances can be used and different detectors can be used for detecting emissions other than gamma-rays for
imaging.
The integral gamma-ray camera and compression member of the present invention can be used in compression systems for acquisition of radio tracer images from other soft organs other than breast or for acquisition of radio tracer images from small
animals.
As illustrated in FIGURE 5, the attachment mechanism 32 includes an
electrical connector 84 matching a mating connector 82 on the mammography machine
72 in order to enable the compression mechanism The electrical connections are designed to accommodate the specific requirements for different models of mammography
equipment.
As illustrated in FIGURE 6, the gamma-ray camera head 30 can be attached to the attachment mechanism 32 utilizing a strap 52 The strap 52 can also be used to attach the gamma-ray camera head 30 directly to the cassette holder 34 or to the compression plate 20 of the mammography machine 72 The strap can be attached to
other parts of the mammography machine 72, or to a stand-alone machine, so long as it secures the gamma-ray camera head 30 for positioning against the body part The gamma-ray camera head 30 can alternatively be secured using rails, bolts, adhesives, or other fastening methods
As illustrated in FIGURE 7, a pad or sheet of suitable material 86 can be
inserted between the breast and the gamma-ray camera head 30 for cushioning the breast
and minimizing patient discomfort For the same purpose, pads or sheets can also be inserted between the breast and the compression plate 20 of FIGURE 1 or the breast and cassette holder 34 of FIGURE 2 The pad or sheet 86 can be up to a few millimeters thick, and in particular 2-5 mm thick The pad or sheet 86 should provide minimal interference with image acquisition while minimizing patient discomfort
The apparatus in the present invention allows for positioning the breasts in different manners for the imaging sessions to obtain multiple projection views of the breast Typical views of the breast for scintimammography are similar to those used in mammographic projections The names for views and the abbreviated codes listed in TABLE 1 are based on the ACT Breast Imaging Reporting and Data System (ACT BI- RADS™) recommendation for standardized mammographic terminology
Figure imgf000018_0001
Figure imgf000019_0001
TABLE 1
The integral gamma-ray camera and compression member of the present invention is used in conjunction with known compression systems for compressing the breast 10. A radiopharmaceutical is first introduced into the patient. The breast 10 is then
positioned on the gamma-ray camera head 30 as shown in FIGURE 1. Then, as in commercial mammography units, compression is accomplished by a motorized mechanism with foot pedal controls enabling the technologist to use both hands to position the breasts while the foot pedals are used to apply compression. Compression is applied to the breast 10 in the direction shown by arrows 40 and 42. Manual fine-tuning can be used to adjust
the final amount of compression
Partial compression of 5-15 lbs/in2 is usually applied for approximately 10 minutes while the gamma-ray camera head 30 acquires the radio tracer images In certain cases, full breast compression of up to 18 lbs/in2 can be applied for a short time The effectiveness of compression and distance of the camera head to the examined lesions is
related to how the breast is positioned and how the compression is applied, and these factors can be as important as the actual amount of compression force For this reason in certain cases full breast compression is sometimes used
The amount of compression and the compressed breast thickness are usually clearly displayed on the mammography unit An automatic immediate post examination release and power failure release to minimize discomfort and ensure patient safety is usually implemented in the mammography equipment
A similar procedure is performed when using the arrangements illustrated in FIGURES 2 and 3
While the above description contains many specific features of the invention, these should not be construed as limitations on the scope of the invention, but rather as one exemplary embodiment thereof Many other variations are possible.
Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their legal equivalents

Claims

WHAT IS CLAIMED IS
1 Imaging apparatus for imaging an object, comprising
an imaging head disposed to press against said object,
a compression member disposed to press against said object and to compress said object between said imaging head and said compression member
The imaging apparatus of Claim 1, wherein
said object is a human body part
3 The imaging apparatus of Claim 2, further comprising
an attachment mechanism for attaching said imaging head to a mammography machine
4 The imaging apparatus of Claim 3, wherein
said attachment mechanism attaches said imaging head to a cassette holder of said mammography machine The imaging apparatus of Claim 4, wherein
said attachment mechanism is detachable from said cassette holder
6. The imaging apparatus of Claim 5, wherein
said attachment mechanism has a slide and rails for attaching to the casette holder
7. The imaging apparatus of Claim 5, further comprising
an electrical connector matching a mating connector on the mammography machine in order to enable compression
8. The imaging apparatus of Claim 3, wherein
said attachment mechanism attaches said imaging head to a compression member of said mammography machine
9 The imaging apparatus of Claim 8, wherein
said compression member is a compression plate 10 The imaging apparatus of Claim 1, wherein
said compression member is a second imaging head
1 1 The imaging apparatus of Claim 3, wherein
said imaging head is a gamma-ray camera head for acquisition of radio tracer images of a lesion in a breast
12 The imaging apparatus of Claim 1, wherein
said object is a small animal
The imaging apparatus of Claim 1, wherein
a pad is disposed on said imaging head for contact with said object.
14 The imaging apparatus of Claim 13, wherein
said pad is a sheet of material between 2 and 5 millimeters thick
15. Imaging apparatus for imaging a breast, comprising
a gamma-ray camera disposed to press against said breast in order to acquire radio tracer images of a lesion in said breast
16 Themaging apparatus of Claim 15, further wherein
a gamma-ray camera disposed to press against said breast in order to acquire radio tracer images of a lesion in said breast a pad is disposed between said breast and said gamma-ray camera
17 The imaging apparatus of Claim 16, wherein
said gamma-ray camera has a surface disposed to support said breast against the force of gravity
18. The imaging apparatus of Claim 16, further comprising
an attachment mechanism for attaching said gamma-ray camera head to a mammography machine
19 The imaging apparatus of Claim 18, wherein said attachment mechanism attaches said gamma-ray head to a cassette holder of said mammography machine
20 The imaging apparatus of Claim 19, wherein
said attachment mechanism is detachable from said cassette holder
21 The imaging apparatus of Claim 20, wherein
said attachment mechanism has a slide and rails for attaching to the cassette holder
22 A method for imaging a body part, comprising the steps of
compressing a body part between an imaging head and a compression member, and
obtaining multiple projection views of said body part by repositioning said body part between said imaging head and said compression member between imaging sessions corresponding to each of said views
23 The method for imaging a body part of Claim 22, wherein said imaging head is a gamma-ray camera head for acquisition of radio
tracer images of a lesion in a breast
24 The method for imaging a body part of Claim 23, wherein
said gamma-ray camera head is attached to a cassette holder of a
mammography machine using an attachment mechanism
PCT/US2000/015439 1999-06-04 2000-06-02 Integral gamma-ray camera and compression member WO2000074560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2375190A CA2375190C (en) 1999-06-04 2000-06-02 Integral gamma-ray camera and compression member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/326,204 US6377838B1 (en) 1999-06-04 1999-06-04 Integral gamma-ray camera and compression member
US09/326,204 1999-06-04

Publications (1)

Publication Number Publication Date
WO2000074560A1 true WO2000074560A1 (en) 2000-12-14

Family

ID=23271245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/015439 WO2000074560A1 (en) 1999-06-04 2000-06-02 Integral gamma-ray camera and compression member

Country Status (3)

Country Link
US (1) US6377838B1 (en)
CA (1) CA2375190C (en)
WO (1) WO2000074560A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2356660A4 (en) * 2008-12-09 2013-10-09 Mayo Foundation Collimator for low-dose molecular breast imaging

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580939B1 (en) * 1999-11-04 2003-06-17 Board Of Regents, The University Of Texas System Method and system for reducing background artifacts from uniformly redundant array collimators in single photon emission computed tomography
WO2001085010A2 (en) * 2000-05-09 2001-11-15 Imaging Diagnostic Systems, Inc. Medical optical imaging scanner using multiple wavelength simultaneous data acquisition for breast imaging
US8489176B1 (en) 2000-08-21 2013-07-16 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US7615008B2 (en) * 2000-11-24 2009-11-10 U-Systems, Inc. Processing and displaying breast ultrasound information
US7940966B2 (en) 2000-11-24 2011-05-10 U-Systems, Inc. Full-field breast image data processing and archiving
US7556602B2 (en) 2000-11-24 2009-07-07 U-Systems, Inc. Breast cancer screening with adjunctive ultrasound mammography
US7597663B2 (en) 2000-11-24 2009-10-06 U-Systems, Inc. Adjunctive ultrasound processing and display for breast cancer screening
US7103205B2 (en) * 2000-11-24 2006-09-05 U-Systems, Inc. Breast cancer screening with ultrasound image overlays
US6671541B2 (en) * 2000-12-01 2003-12-30 Neomed Technologies, Inc. Cardiovascular imaging and functional analysis system
US7297958B2 (en) 2001-12-03 2007-11-20 Hitachi, Ltd. Radiological imaging apparatus
EP1316818A3 (en) * 2001-12-03 2012-04-11 Hitachi, Ltd. Radiological imaging apparatus
WO2003058275A1 (en) * 2002-01-08 2003-07-17 Pem Technologies, Inc. Open-access emission tomography scanner
EP1485160B1 (en) * 2002-03-19 2008-07-16 Cytyc Corporation Intraductal management of breast lesions involving therapeutic or diagnostic agents
US8571881B2 (en) 2004-11-09 2013-10-29 Spectrum Dynamics, Llc Radiopharmaceutical dispensing, administration, and imaging
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
US7176466B2 (en) 2004-01-13 2007-02-13 Spectrum Dynamics Llc Multi-dimensional image reconstruction
WO2006054296A2 (en) * 2004-11-17 2006-05-26 Spectrum Dynamics Llc Methods of detecting prostate cancer
WO2006051531A2 (en) * 2004-11-09 2006-05-18 Spectrum Dynamics Llc Radioimaging
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US8586932B2 (en) * 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
US8298146B2 (en) * 2004-03-16 2012-10-30 Helix Medical Systems Ltd. Circular ultrasound tomography scanner and method
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd Radioactive-emission-measurement optimization to specific body structures
US7444009B1 (en) * 2004-10-08 2008-10-28 Jefferson Science Associates Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US8423125B2 (en) * 2004-11-09 2013-04-16 Spectrum Dynamics Llc Radioimaging
US8615405B2 (en) * 2004-11-09 2013-12-24 Biosensors International Group, Ltd. Imaging system customization using data from radiopharmaceutical-associated data carrier
WO2008059489A2 (en) 2006-11-13 2008-05-22 Spectrum Dynamics Llc Radioimaging applications of and novel formulations of teboroxime
US8644910B2 (en) 2005-07-19 2014-02-04 Biosensors International Group, Ltd. Imaging protocols
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8785869B2 (en) * 2005-11-01 2014-07-22 General Electric Company System and method for providing emission mammography
US7581884B1 (en) * 2006-02-07 2009-09-01 Barnes Gary T Mobile radiography system and grid alignment process
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US20080084961A1 (en) * 2006-10-04 2008-04-10 Cynthia Keppel Method and apparatus for combined gamma/x-ray imaging in stereotactic biopsy
US7711409B2 (en) 2006-10-04 2010-05-04 Hampton University Opposed view and dual head detector apparatus for diagnosis and biopsy with image processing methods
US20080086059A1 (en) * 2006-10-04 2008-04-10 Cynthia Keppel Method and apparatus for lesion localization using a dual modality x-ray/gamma biopsy system
US8923952B2 (en) 2006-12-11 2014-12-30 Mayo Foundation For Medical Education And Research System and method for quantitative molecular breast imaging
US20100104505A1 (en) * 2006-12-11 2010-04-29 O'connor Michael K System and Method for Quantitative Molecular Breast Imaging
WO2008075362A2 (en) * 2006-12-20 2008-06-26 Spectrum Dynamics Llc A method, a system, and an apparatus for using and processing multidimensional data
US8521253B2 (en) 2007-10-29 2013-08-27 Spectrum Dynamics Llc Prostate imaging
US8338788B2 (en) * 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
US20130225987A1 (en) * 2010-09-20 2013-08-29 Stephen Yarnall Dedicated breast imaging with improved gamma-ray collection
US10617382B2 (en) 2015-04-10 2020-04-14 Kromek Group, PLC Molecular breast imaging system
WO2018213076A1 (en) * 2017-05-19 2018-11-22 Saint-Gobain Ceramics & Plastics, Inc. System for fastening a scintillator device, a scintillator thereof, and a method thereof
US11096636B2 (en) * 2018-06-21 2021-08-24 Jefferson Science Associates, Llc Method and apparatus to obtain limited angle tomographic images from stationary gamma cameras

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965891A (en) * 1992-01-22 1999-10-12 Frederick M. Mako Dedicated apparatus and method for emission mammography

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519221A (en) 1992-01-22 1996-05-21 Ansel M. Schwartz Dedicated apparatus and method for emission mammography
US5474072A (en) * 1993-10-29 1995-12-12 Neovision Corporation Methods and apparatus for performing sonomammography
US5742060A (en) * 1994-12-23 1998-04-21 Digirad Corporation Medical system for obtaining multiple images of a body from different perspectives
US5999836A (en) * 1995-06-06 1999-12-07 Nelson; Robert S. Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth
US5967983A (en) * 1995-10-31 1999-10-19 Digirad Corporation Apparatus for securing a medical imaging device to a body
US5825031A (en) * 1996-10-11 1998-10-20 Board Of Regents The University Of Texas System Tomographic pet camera with adjustable diameter detector ring
US5773829A (en) 1996-11-05 1998-06-30 Iwanczyk; Jan S. Radiation imaging detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965891A (en) * 1992-01-22 1999-10-12 Frederick M. Mako Dedicated apparatus and method for emission mammography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2356660A4 (en) * 2008-12-09 2013-10-09 Mayo Foundation Collimator for low-dose molecular breast imaging

Also Published As

Publication number Publication date
US6377838B1 (en) 2002-04-23
CA2375190A1 (en) 2000-12-14
CA2375190C (en) 2010-06-01

Similar Documents

Publication Publication Date Title
US6377838B1 (en) Integral gamma-ray camera and compression member
EP0765484B1 (en) Dedicated apparatus and method for emission mammography
US6229145B1 (en) Dedicated apparatus and method emission mammography
US5252830A (en) Dedicated apparatus and method for emission mammography
Cleveland et al. Voiding cystourethrography in children: value of digital fluoroscopy in reducing radiation dose.
Thompson et al. Feasibility study for positron emission mammography
Karellas et al. Breast cancer imaging: a perspective for the next decade
EP2575620B1 (en) Method and apparatus for dual-modality ultrasonic and nuclear emission mammography
Smith Full-field breast tomosynthesis
JP2008541963A (en) X-ray apparatus for displaying an image of an object to be examined and use of the X-ray apparatus
US20110248174A1 (en) Collimator for Low-Dose Molecular Breast Imaging
Gong et al. Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms
Scheiber New developments in clinical applications of CdTe and CdZnTe detectors
Pani et al. Dedicated gamma camera for single photon emission mammography (SPEM)
US5965891A (en) Dedicated apparatus and method for emission mammography
Alnafea Detection and diagnosis of breast diseases
Adler et al. Method for Combined FDG‐PET and Radiographic Imaging of Primary Breast Cancers
US6389098B1 (en) Dual mode stereotactic localization method and application
Taibi 2.05 Breast Imaging
US5751787A (en) Materials and methods for improved radiography
Williams et al. Analysis of position-dependent Compton scatter in scintimammography with mild compression
Williams et al. Combined structural and functional imaging of the breast
Weisenberger et al. Small field of view scintimammography gamma camera integrated to a stereotactic core biopsy digital X-ray system
Goode et al. A system for dual modality breast imaging
Weisenberger et al. A combined scintimammography/stereotactic core biopsy digital X-ray system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2375190

Country of ref document: CA

Ref country code: CA

Ref document number: 2375190

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP