WO2000010049A1 - Medizinisches handstück für laserstrahlungsquelle - Google Patents

Medizinisches handstück für laserstrahlungsquelle Download PDF

Info

Publication number
WO2000010049A1
WO2000010049A1 PCT/EP1999/005889 EP9905889W WO0010049A1 WO 2000010049 A1 WO2000010049 A1 WO 2000010049A1 EP 9905889 W EP9905889 W EP 9905889W WO 0010049 A1 WO0010049 A1 WO 0010049A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
laser
cross
section
laser radiation
Prior art date
Application number
PCT/EP1999/005889
Other languages
English (en)
French (fr)
Inventor
Jens Elbrecht
Eckhard SCHRÖDER
Jürgen Kühnert
Gabriele Zimmermann
Original Assignee
Asclepion-Meditec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asclepion-Meditec Ag filed Critical Asclepion-Meditec Ag
Priority to EP99944374A priority Critical patent/EP1112524B1/de
Priority to DE59914776T priority patent/DE59914776D1/de
Priority to US09/762,834 priority patent/US6537270B1/en
Priority to AU57332/99A priority patent/AU5733299A/en
Publication of WO2000010049A1 publication Critical patent/WO2000010049A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/241Light guide terminations

Definitions

  • the invention relates to a medical handpiece which is connected to a laser radiation source via a beam guiding device and with which a laser beam is directed onto a treatment area, the handpiece being relatively freely movable relative to the laser radiation source.
  • the invention further relates to a method for the cosmetic treatment of skin areas when using the handpiece according to the invention.
  • laser radiation is often used for the treatment of fire stains, for the removal of tattoos, for skin renewal and for hair removal.
  • short laser pulses with a pulse duration in the nano and microsecond range are introduced into the tissue. Treatments of this type are used primarily to improve the quality of life of patients and are usually associated with cosmetics.
  • the medical-technical devices for carrying out such treatments essentially comprise a laser radiation source and a handpiece which is used for manual alignment of the radiation emitted by the laser radiation source to the target area.
  • the laser radiation source and handpiece are designed as separate assemblies, the transmission of the Laser radiation from the radiation source to the handpiece takes place by means of a movable beam guiding device.
  • the beam guiding device can consist of a plurality of rigid transmission members which are connected to one another by joints or can also be designed as flexible fiber optics.
  • the handpieces to which the invention relates have a coupling element at the transition from the beam guiding device and are equipped with a radiation surface for the laser radiation.
  • the laser beam is emitted with the same properties with which it is coupled into the handpiece, i.e. in particular, the distribution of the radiation intensity within the beam cross-section and the geometry of the beam cross-section are largely preserved, and the laser radiation is also directed towards the treatment site in this way.
  • a laser beam with a circular cross-section is unfavorable, since with circular spots placed next to one another, either overlaps or imperfections always occur, as a result of which uniform energy irradiation into a treatment area is not possible.
  • the published patent application DE 44 29 1 93 AI specifies a device for generating cross-section-homogenized laser radiation, which is designed as a medical handpiece in the sense of the present new invention. With this device, a mode-homogenized and spatially homogenized radiation can be generated, as is required, for example, for ablation of the cornea of the eye.
  • a pulsed solid-state laser with an emission in the wavelength range of 2 ⁇ m to 3 ⁇ m is used as the radiation source.
  • the pulse energy is between 1 00 ⁇ j and 1J.
  • a fiber is provided which has a length of at least 0.2 m and a diameter between 50 and 1,000 ⁇ m.
  • a transparent rod of quartz, sapphire or YAG with a circular cross-section is provided inside the handpiece, arranged downstream of the fiber.
  • a radiation is obtained intensity profile with a rotationally symmetrical on the emitting surface, wherein the radiated from the laser mode mixtures can be effectively converted into the homogenized radially symmetrical beam profile, for example with Gauss's shear, parabolic or annular intensity distribution.
  • the object of the invention is to further develop a handpiece of the type described above in such a way that laser radiation with a uniform intensity distribution down to the edge zones of the beam cross section is available on the radiation surface and the geometry of the beam cross section is designed in such a way that the risk of influencing the target area is significantly reduced by unwanted energy input.
  • This object is achieved in a handpiece of the aforementioned type in that at least one optical element with a surface structured in the micrometer range and therefore having a micro-optical effect is provided within the handpiece, downstream of the exit surface of the beam guiding device.
  • the optical element with the transparent surface structured in the micrometer range can be realized as a micro-optical array which, through the diffractive or refractive effect, causes a change in the intensity distribution within the laser beam cross section and / or a beam shaping in the sense of a change in cross section.
  • this surface has a diffractively effective structure, the structure width of which is in the order of magnitude of the wavelength of the laser radiation used for the treatment.
  • This can be a height profile varying in this order of magnitude with stripes, cross-shaped, funnel-shaped and / or other shaped elevations, a refractive index varied in the structure width mentioned and / or absorption coefficient varying in this structure width.
  • the surface has a refractive structure in the form of an array of spherical, aspherical, cylindrical and / or elliptical lenses, each of the lenses having an extension perpendicular to the direction of radiation from 10 ⁇ m to 100 ⁇ m. These lenses can be arranged hexagonally and / or orthogonally on the surface.
  • both concave and convex lenses can also be present side by side on the surface.
  • Statistically distributed concave recesses are conceivable, but notches arranged in a circle or spiraling or crossing grids are also suitable.
  • Preferred dimensions for the refractive structures are 0.35 mm in diameter and 0.005 mm in depth.
  • the ratio of depth to diameter should not exceed 0.5. In the case of lens structures, this ratio should be greater than 0.02 and preferably in the range from 0.1 to 0.3.
  • the plurality of optically active structural elements divides the radiation into a plurality of partial beams, the number of partial beams depending on the number of structural elements present on the surface.
  • the finer the micro-optically effective structure the more uniform and homogeneous the radiation intensity is distributed over the entire cross-section of the laser radiation after passing through the area described. In other words: when passing through the microstructured surface, an uneven energy distribution within the beam cross-section is transformed into an energy distribution that is even down to the edge areas of the beam cross-section.
  • the microstructured surface not only achieves the intended homogenization of the intensity within the beam cross section, but depending on the design of the individual structural elements, the direction of the individual partial beams can also be influenced, if this is intended and desired.
  • a laser beam emerging from a fiber for example with a circular cross-section, can be converted into a laser beam with a square, rectangular, hexagonal or other shaped beam cross-section by specifically predetermined configuration of the individual structural elements.
  • the individual spots can be placed next to each other without overlapping and without any untreated defects. With the exclusion of overlaps, too high an energy input, with the exclusion of untreated defects, too low an energy input is avoided and the treatment result is thus significantly improved.
  • the beam cross section is reshaped by the structural elements on the microstructured surface being selected, shaped and positioned in such a way that the partial beams, especially the peripheral partial beams, are given a direction within the laser beam cross section which is aimed at a desired outer contour of the cross section.
  • the partial beams no longer fill a circular beam cross-section, but instead, for example, fill a square-shaped cross-section evenly (the circular sections are left blank).
  • the handpiece according to the invention is thus distinguished from the prior art by an intensity of the laser radiation on the radiation surface that is homogenized over the entire cross section and also by an adapted cross-sectional shape of the radiation.
  • micro-optically active structures can easily be produced, for example, with the aid of electron beam lithography, photolithography or ion exchange processes.
  • a device for beam focusing is arranged upstream or downstream of the micro-optically structured surface. With this device, the size of the beam cross section can be adjusted.
  • a converging lens can be provided, for example, which is positioned in the beam path before or after the structured surface.
  • zoom optics can also be provided as the device for beam focusing, with which it is possible in a simple manner to influence the size of the spot. If the zoom optics are coupled with a corresponding automatic setting, the spot size can be changed easily during the treatment.
  • the optical element with the micro-optically active surface is designed as a beam-guiding rod, in which the radiation is transmitted by total reflection.
  • the rod has an irradiation surface and a radiation surface for the laser radiation; the irradiation surface is provided with the micro-optically active structure.
  • the beam-guiding rod can be made of quartz glass.
  • the size and cross-sectional shape of the irradiation surface and radiation surface can differ.
  • the irradiation surface should advantageously be circular, this cross section should be retained over at least 90% of the length of the rod, and a reduction and / or change in shape of the cross section should only be provided on the remaining length section.
  • the microoptical structures can also be the structures of a diffusing screen known from the prior art.
  • the indefinable structures of the lens since with the indefinable structures of the lens, the light also enters at an unfavorable angle, the rear radiation, energy losses and thus undesirably high heat development.
  • this is avoided with the micro-optically effective structures provided according to the invention, since they are designed in such a way that unfavorable entry angles do not occur.
  • the radiation surface can have both a circular and a polygonal, such as square or hexagonal cross-section.
  • a layer of a transparent gel for example an ultrasound gel, can be provided between the radiation surface and the skin surface to be treated. This further optimizes the radiation of the laser beam into the skin area to be treated by reducing the reflection and reducing scatter. This also means that lower energy densities are required for the laser light.
  • the refractive index of the gel should match the refractive index of the skin and the gel should be transparent at least for the wavelength of the laser light used.
  • the object of the invention is achieved with a method for the cosmetic treatment of skin areas using the above-described handpiece, in which a gel is applied to the skin area to be treated before the start of the treatment, and is transparent to the wavelength of the laser light used and its Refractive index is adapted to the refractive index of the skin.
  • An ultrasound gel is preferably used which is physiologically harmless and is therefore suitable for cosmetic purposes. It also has good thermal conductivity.
  • the gel further reduces the risk of damage to the epidermis and the formation of smoke and odor during the treatment is avoided since the area of the skin to be treated is at a better temperature.
  • the effectiveness of Gels can be increased even further by removing any hair growth that may be present on the skin area before the treatment begins.
  • Fig.l a first schematic diagram of the arrangement according to the invention
  • FIG. 3 shows a second schematic representation of the arrangement according to the invention.
  • FIG. 4 shows an embodiment variant of the rod
  • the beam path 1 which can be configured by a beam guiding device 2, which can be configured both as a flexible optical fiber and in the form of rigid transmission elements which are connected to one another by joints, there is an optical element, for example a disk 3 made of quartz glass, which has a micro-optical lens effective surface 4 is provided, and zoom optics, indicated by the lenses 5 and 6.
  • the laser radiation is directed onto a skin area 7, for example for the purpose of hair removal or another cosmetic treatment.
  • the surface 4 has, for example, a refractive structure in which a multiplicity of concavely shaped spherical lenses are arranged orthogonally to one another and which is placed in the beam path 1 such that the entire beam path 1 must pass through these microlenses.
  • Each of the lenses has a diameter of approximately 0.35 mm and a depth of 0.005 mm measured perpendicular to the direction of radiation.
  • a microlens array offered by AMS Mikrooptik GmbH, Saar Hampshire, Germany, can be used as disk 3.
  • the position deviations of the individual lenses are less than 0.2 ⁇ m.
  • This division into the multiplicity of partial beams has the effect that the circular cross-section 8 indicated in the beam path 1 is transformed into radiation with a uniform intensity distribution within a square cross-section 9 with a radiation, for example, coming from a ruby laser (see FIG. 2).
  • the radiation is now directed onto the skin area 7 to be treated, the size of the cross-sectional area 1 0 impinging on the skin area 7 being able to be influenced with the aid of the zoom optics 5, 6.
  • the zoom optics for example, the cross-sectional area 1 0 can be enlarged or reduced. This makes it easy to adapt to the area of the area to be treated.
  • the area to be treated is larger than the cross-sectional area 10, which can be adjusted with the zoom optics 5, 6, several spots are placed next to one another on the treatment area 7 such that the treatment area 7 is not only completely covered, but also an overlap of the individual spots is avoided.
  • the surface 4 is provided with a diffractive structure instead of the refractive structure, the homogenization is not achieved by dividing the laser beam into a plurality of partial beams, but by changing the phase.
  • a circular beam cross section with an uneven intensity distribution can be transformed into a square cross section with a uniform intensity distribution with the aid of the optical element that is equipped with this surface.
  • Such diffractive optical elements are acting in Berlin, for example, by the company BIFO Institute of Optics GmbH, Rudower Clice 6, 1 2484 Berlin, German ⁇ land, produced and offered.
  • the beam path 1 of the laser radiation coupled in via the beam guiding device 2 also initially has a circular cross section 8 with an inhomogeneous distribution of the radiation intensity.
  • a collecting lens 1 2 is placed in this radiation, which focuses the laser beam onto the irradiation surface 1 3 of a beam-guiding rod 1 4, which can be made of quartz glass with a length of 55 mm and a circular cross-section of 8 mm diameter, for example.
  • the irradiation surface 13 is provided with a structure of microlenses arranged next to one another.
  • the laser radiation is also divided into a plurality of partial radiations as it passes through the irradiation surface 13, thereby achieving a homogenization of the intensity distribution.
  • the laser radiation is passed on by total reflection, a further homogenization being achieved.
  • a laser beam is available on the radiation surface 15, which is placed on the treatment area 7, the cross section of which has a radiation intensity that is uniform down to the edge regions.
  • the cross section of the beam-guiding rod 14 tapers in the shape of a truncated cone in the direction of radiation, as is shown by way of example in FIG.
  • the rod 1 4 not only is an improved homogenization achieved, but at the same time the cross-section of the laser radiation is also influenced, in that the radiation surface 1 5, like the radiation surface 1 3, has a circular cross-section, but with a smaller diameter (see FIG. 5 a ).
  • the radiation surface 15 has a cross-sectional shape, as shown in FIGS. 5b to 5d, that is to say a hexagonal, square or also triangular cross section.
  • the irradiation surface 1 3, as shown in FIG. 6, is flat (FIG. 6 a), concave (FIG. 6 b) or also convex (FIG. 6 c).
  • FIG. 6 a shows several design variants of the irradiation surface 1 3 in plan view.
  • Various structures are shown here, which have been enlarged considerably to clarify them and are also not drawn to scale.
  • FIG. 7 a shows the arrangement of a plurality of lens-like depressions which are statistically distributed over the entire irradiation surface 1 3.
  • FIG. 7 a shows the arrangement of a plurality of lens-like depressions which are statistically distributed over the entire irradiation surface 1 3.
  • the structure consists of centrally arranged grooves of different diameters, each of which has a wedge-shaped cross section.
  • a cross section is shown by way of example in FIG. 8.
  • Fig.7c a spiral structure of grooves is provided.
  • FIG. 7d shows a network of intersecting straight-line grooves, which can likewise have a cross section according to FIG. 8.

Abstract

Die Erfindung bezieht sich auf ein medizinisches Handstück, das über eine Strahlführungseinrichtung (2) mit einer Laserstrahlungsquelle verbunden ist und mit dem ein Strahlengang (1) auf ein Behandlungsareal (7) gerichtet wird, wobei das Handstück relativ zur Laserstrahlungsquelle beweglich ist. Die Erfindung bezieht sich weiterhin auf ein Verfahren zur kosmetischen Behandlung von Hautflächen bei Verwendung des erfindungsgemäßen Handstücks. Erfindungsgemäß ist innerhalb des Handstückes, der Austrittsfläche der Strahlführungseinrichtung (2) nachgeordnet, mindestens ein optisches Element, beispielsweise eine transparente Scheibe (3), mit einer im Mikrometerbereich strukturierten und dadurch mikrooptisch wirksamen Fläche (4) vorgesehen. Dem optischen Element kann eine aus Linsen (5, 6) gebildete Zoomoptik zugeordnet sein. Die im Mikrometerbereich strukturierte Fläche (4) kann durch mikrooptische Arrays realisiert sein, die je nach Struktur durch diffraktive oder refraktive Wirkung eine Änderung der Intensitätsverteilung innerhalb des Laserstrahlquerschnittes und/oder eine Strahlformung im Sinne einer Änderung des Strahlquerschnittes (8, 9, 10) bewirken.

Description

Titel
MED IZINISCHES HANDSTÜCK FÜR LASERSTRAHLUNGSQUELLE
Gebiet der Erfindung Die Erfindung bezieht sich auf ein medizinisches Handstück, das über eine Strahlführungseinrichtung mit einer Laserstrahlungsquelle verbunden ist und mit dem ein Laserstrahl auf ein Behandlungsareal gerichtet wird, wobei das Handstück zur Laserstrahlungsquelle relativ frei beweglich ist. Die Erfindung bezieht sich weiterhin auf ein Verfahren zur kosmetischen Behandlung von Hautflächen bei Verwendung des erfindungsgemäßen Handstücks.
Stand der Technik
In der Dermatologie wird häufig Laserstrahlung zur Behandlung von Feuermalen, zur Entfernung von Tätowierungen, zur Hauterneuerung wie auch zur Haarentfernung genutzt. Dabei werden meist kurze Laserimpulse mit einer Impulsdauer im Nano- und Mikrosekundenbereich in das Gewebe eingebracht. Derartige Behandlungen dienen vorwiegend der Verbesserung der Lebensqualität der Patienten und sind in der Regel der Kosmetik zuzuordnen.
Die medizinisch-technischen Geräte zur Durchführung solcher Behandlungen umfassen im wesentlichen eine Laserstrahlungsquelle und ein Handstück, das zur manuellen Ausrichtung der von der Laserstrahlungsquelle emittierten Strahlung auf das Zielgebiet dient.
Um eine leichtgewichtige Bauweise des Handstückes zu erzielen und so eine möglichst ungehinderte Manipulation zu ermöglichen, sind Laserstrahlungsquelle und Handstück als getrennte Baugruppen ausgeführt, wobei die Übertragung der Laserstrahlung von der Strahlungsquelle zum Handstück mittels einer beweglichen Strahlführungseinrichtung erfolgt. Die Strahlführungseinrichtung kann aus mehreren, durch Gelenke miteinander verbundenen starren Übertragungsgliedern bestehen oder auch als biegsame Faseroptik ausgebildet sein.
Die Handstücke, auf die sich die Erfindung bezieht, weisen am Übergang von der Strahlführungseinrichtung ein Einkoppelelement auf und sind mit einer Abstrahlfläche für die Laserstrahlung ausgestattet.
Bei bekannten Handstücken dieser Art erfolgt die Abstrahlung des Laserstrahles mit denselben Eigenschaften, mit denen dieser in das Handstück eingekoppelt wird, d.h. es bleiben insbesondere die Verteilung der Strahlungsintensität innerhalb des Strahlquerschnittes und die Geometrie des Strahlquerschnittes weitest- gehend erhalten, und die Laserstrahlung wird auch so auf den Behandlungsort gerichtet.
Nun ist es für viele dermatologische Anwendungen, bei denen große Hautareale zu lasern sind, jedoch erforderlich, während der Behandlung die Abstrahlfläche mehrmals nebeneinander aufzusetzen, um die gesamte zu behandelnde Fläche abzudecken. Dabei ist es im Sinne einer gleichmäßigen Behandlung der gesamten Fläche von Bedeutung, daß einerseits die einzelnen Aufsetzflächen (Spots) einander nicht Überschneiden, andererseits aber auch keine unbehandelten Fehlstellen zwischen den Aufsetzflächen verbleiben.
Unter diesem Aspekt ist beispielsweise ein Laserstrahl mit kreisrundem Querschnitt ungünstig, da bei nebeneinandergesetzten kreisrunden Spots stets entweder Überschneidungen oder Fehlstellen auftreten, wodurch eine gleichmäßige Energieeinstrahlung in ein Behandlungsareal nicht möglich ist. Es ist also wünschenswert, zur effektiven Bearbeitung die Strahlform am abstrahlungsseitigen Ende des Handstückes so zu gestalten, daß bei Abrasterung eines Behandlungsareals mit mehreren Spots ein gleichmäßiger Energieeintrag gewährleistet ist.
Das gilt auch in bezug auf die Energieverteilung innerhalb des Laserstrahlquerschnittes. Ist die Energiedichte am Rand des Laserstrahlquerschnittes geringer als in dessen Zentrum, wie das beispielsweise bei einer gauß'schen Verteilung der Fall ist, ist eine gleichmäßige Einwirkung über die gesamte Fläche des Strahlquerschnittes hinweg nicht erzielbar. Bei Laserstrahlung mit gauß'scher Energieverteilung ist es notwendig, während der Behandlung die einzelnen Spots zu überlappen, um ein angenähert kontinuierliches Behandlungsergebnis über die gesamte zu behandelnde Fläche hinweg zu erzielen. Das allerdings ist sehr schwer zu bewerkstelligen, hängt weitestgehend vom Feingefühl des Operateurs ab und kann insbesondere bei einer unkontrollierten Überlappung der Randge- biete zu einer Summierung der in die Hautpartien eingetragenen Energien an einzelnen Stellen des Behandlungsareals führen, durch die die Haut stärker als erwünscht geschädigt werden kann. Außerdem dauert die Behandlung um so länger, je weiter die einzelnen Spots sich überschneiden müssen.
In der Offenlegungsschrift DE 44 29 1 93 AI ist eine Vorrichtung zur Erzeugung einer querschnittshomogenisierten Laserstrahlung angegeben, die als medizinisches Handstück im Sinne der vorliegenden neuen Erfindung ausgebildet ist. Mit dieser Vorrichtung kann eine modenhomogenisierte und räumlich homogenisierte Strahlung erzeugt werden, wie sie beispielsweise zur Abtragung der Hornhaut des Auges benötigt wird.
Als Strahlungsquelle wird hierbei ein gepulster Festkörperlaser mit einer Emission im Wellenlängenbereich 2μm bis 3μm eingesetzt. Die Pulsenergie liegt zwischen 1 00 μj und 1J. Zur Übertragung der Energie von der Laseranordnung zum Handstück ist eine Faser vorgesehen, die eine Länge von mindestens 0,2 m und einen Durchmesser zwischen 50 und 1 000 μm aufweist. Innerhalb des Handstük- kes ist, der Faser nachgeordnet, ein transparenter, im Querschnitt kreisrunder Stab aus Quarz, Saphir oder YAG vorgesehen.
Durch die Kombination der Faser mit dem nachgeordneten transparenten Stab wird an der Abstrahlfläche eine Strahlung mit einem rotationssymmetrischen intensitätsprofil erzielt, bei dem die vom Laser abgestrahlten Modengemische effektiv in das homogenisierte radialsymmetrische Strahlprofil, beispielsweise mit gauß ' scher, parabolischer oder ringförmiger Intensitätsverteilung, umgesetzt werden.
Damit ist dieses Handstück jedoch für Anwendungen ungeeignet, die, wie oben beschrieben, eine gleichmäßige Energieverteilung über den gesamten Strahlungsquerschnitt erfordern. Beschreibunq der Erfindung
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Handstück der vorbeschriebenen Art dahingehend weiterzuentwickeln, daß an der Abstrahlfläche eine Laserstrahlung mit bis in die Randzonen des Strahlquerschnittes hinein gleichmäßiger Intensitätsverteilung verfügbar und die Geometrie des Strahlquerschnittes so gestaltet ist, daß die Gefahr der Beeinflussung des Zielareals durch ungewollten Energieeintrag wesentlich verringert wird.
Diese Aufgabe wird bei einem Handstück der vorgenannten Art dadurch gelöst, daß innerhalb des Handstückes, der Austrittsfläche der Strahlführungseinrichtung nachgeordnet, mindestens ein optisches Element mit einer im Mikrometerbereich strukturierten und dadurch mikrooptisch wirksamen Fläche vorgesehen ist.
Das optische Element mit der transparenten, im Mikrometerbereich strukturierten Fläche kann als mikrooptisches Array realisiert sein, das durch diffraktive oder refraktive Wirkung eine Änderung der Intensitätsverteilung innerhalb des Laserstrahlquerschnittes und/oder eine Strahlformung im Sinne einer Querschnittsänderung hervorruft.
In einer Ausgestaltung der Erfindung ist vorgesehen, daß diese Fläche eine dif- fraktiv wirksame Struktur aufweist, deren Strukturbreite in der Größenordnung der Wellenlänge der zur Behandlung genutzten Laserstrahlung liegt. Das kann ein in dieser Größenordnung variierendes Höhenprofil mit streifenförmigen, kreuz- förmigen, trichterförmigen und/oder anderweitig geformten Erhebungen, ein in der genannten Strukturbreite variierter Brechungsindex und/oder in dieser Strukturbreite variierender Absorptionskoeffizienten sein. Elemente, die mit derartigen Flächen ausgestattet sind, sind beispielsweise in der Fachliteratur Naumann/Schröder „Bauelemente der Optik", Carl Hanser Verlag München Wien, 6. Auflage, Seite 584 beschrieben.
Mit der in dieser Weise mikrostrukturierten Fläche wird erreicht, daß sich bei Durchgang der Laserstrahlung durch diese Fläche die Energieverteilung innerhalb des Strahlungsquerschnittes bis in die Randbereiche hinein vergleichmäßigt, d.h. über den gesamten Strahlungsquerschnitt hinweg ist im Strahlengang nach dieser Fläche eine über den Querschnitt vergleichmäßigte Strahlungsintensität vorhanden. Bei einer besonders bevorzugten Ausgestaltung weist die Fläche eine refraktiv wirkende Struktur in Form eines Arrays aus sphärischen, asphärischen, zylindrischen und/oder elliptischen Linsen auf, wobei jede der Linsen eine Ausdehnung senkrecht zur Strahlungsrichtung von l Oμm bis l OOOμm hat. Diese Linsen kön- nen auf der Fläche hexagonal und/oder orthogonal angeordnet sein. Sie können sowohl als Zerstreuungslinsen konkav oder auch als Sammellinsen konvex geformt sein; es können auch sowohl konkav als auch konvex geformte Linsen nebeneinander auf der Fläche vorhanden sein. Es sind statistisch verteilte konkave Aussparungen denkbar, geeignet sind aber auch kreisförmig angeordnete bzw. spiralförmig verlaufende Einkerbungen oder auch sich kreuzende Gitter.
Bevorzugte Abmessungen für die refraktiv wirkenden Strukturen sind Durchmesser von 0,35mm und Tiefen von 0,005mm. Das Verhältnis von Tiefe zu Durchmesser sollte den Wert 0,5 nicht überschreiten. Bei Linsenstrukturen sollte dieser Verhältniswert größer als 0,02 sein und bevorzugt im Bereich von 0, 1 bis 0,3 liegen.
Passiert der Laserstrahl die so strukturierte Fläche, erfolgt durch die Vielzahl der optisch wirksamen Strukturelemente (Linsen oder Höhenprofile) eine Aufteilung der Strahlung in eine Vielzahl von Teilstrahlen, wobei die Anzahl der Teilstrahlen von der Anzahl der auf der Fläche vorhandenen Strukturelemente abhängig ist. Je feiner die mikrooptisch wirksame Struktur ausgebildet ist, um so gleichmäßiger und homogener ist die Strahlungsintensität über den gesamten Querschnitt der Laserstrahlung nach Durchgang durch die beschriebene Fläche verteilt. Mit ande- ren Worten: beim Passieren der mikrostrukturierten Fläche erfolgt die Transformation einer ungleichmäßigen Energieverteilung innerhalb des Strahlquerschnittes in eine bis in die Randbereiche des Strahlquerschnittes hinein vergleichmäßigte Energieverteilung.
Diese Vergleichmäßigung ist insbesondere bei Verwendung eines Rubinlasers als Strahlungsquelle notwendig und vorteilhaft, da dessen Strahlung bekanntermaßen eine stark inhomogene Intensitätsverteilung in ihrem Querschnitt aufweist. Dabei kommt noch hinzu, daß die Intensitätsverteilung in der Rubinlaserstrahlung nicht konstant ist, sondern sich von Spot zu Spot ändert, so daß es bei Ver- wendung des Rubinlasers ohne die erfindungsgemäß vorgeschlagene Einrichtung leicht zu Verbrennungen kommen kann. Mit der mikrostrukturierten Fläche wird nicht nur die beabsichtigte Vergleichmäßigung der Intensität innerhalb des Strahlquerschnittes erzielt, sondern je nach Ausbildung der einzelnen Strukturelemente kann weiterhin, sofern das beabsichtigt und gewünscht ist, auch die Richtung der einzelnen Teilstrahlen beeinflußt werden. Das heißt, ein aus einer Faser beispielhaft mit kreisrundem Querschnitt austretender Laserstrahl kann durch gezielt vorgegebene Ausgestaltung der einzelnen Strukturelemente in einen Laserstrahl mit quadratisch, rechteckig, sechseckig oder anderweitig geformtem Strahlquerschnitt übergeführt werden.
Werden nämlich quadratisch, rechteckig oder sechseckig geformte Strahlquerschnitte auf das zu behandelnde Hautareal gerichtet, lassen sich die einzelnen Spots ohne gegenseitige Überlappung und auch ohne unbehandelte Fehlstellen nebeneinander setzen. Mit dem Ausschluß von Überlappungen wird ein zu hoher, mit Ausschluß von unbehandelten Fehlstellen ein zu niedriger Energieeintrag vermieden und so das Behandlungsergebnis bedeutend verbessert.
Die Umformung des Strahlquerschnittes wird erreicht, indem die Strukturelemente auf der mikrostrukturierten Fläche so ausgewählt, geformt und positioniert sind, daß den Teilstrahlen, vor allem den peripheren Teilstrahlen, eine Richtung innerhalb des Laserstrahlquerschnittes gegeben wird, die auf eine gewünschte Außenkontur des Querschnitts zielt. Die Teilstrahlen füllen also nicht mehr einen kreisrunden Strahlquerschnitt, sondern beispielsweise einen quadratisch geformten Querschnitt gleichmäßig aus (die Kreisabschnitte sind ausgespart).
Das erfindungsgemäße Handstück zeichnet sich also gegenüber dem Stand der Technik durch eine über den gesamten Querschnitt homogenisierte Intensität der Laserstrahlung an der Abstrahlfläche und außerdem durch eine angepaßte Querschnittsform der Strahlung aus.
Die mikrooptisch wirksamen Strukturen sind beispielsweise mit Hilfe von Elek- tronenstrahllithographie, Photolithographie oder lonenaustauschverfahren leicht herstellbar.
Hier werden gemäß der Fresnelschen Gleichungen (Zusammenhang zwischen Polarisation, Reflexion, Absorption) circa 96 % der Laserstrahlung eingekoppelt, wodurch der Energieverlust und damit auch die Wärmeentwicklung auf ein vertretbares Maß beschränkt ist. ln einer Ausgestaltung der Erfindung ist vorgesehen, daß der mikrooptisch strukturierten Fläche eine Einrichtung zur Strahlfokussierung vor- oder nachgeordnet ist. Mit dieser Einrichtung läßt sich die Größe des Strahlquerschnittes einstellen. Als derartige Einrichtung kann beispielhaft eine Sammellinse vorgesehen sein, die im Strahlengang vor oder nach der strukturierten Fläche positioniert ist.
Als Einrichtung zur Strahlfokussierung kann aber auch eine Zoomoptik vorgesehen sein, mit der es in einfacher Weise möglich ist, die Größe des Spots zu beeinflussen. Ist die Zoomoptik mit einer entsprechenden Stellautomatik gekoppelt, kann die Spotgröße unkompliziert während der Behandlung verändert werden.
In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß das optische Element mit der mikrooptisch wirksamen Fläche als strahlführender Stab ausgebildet ist, in welchem die Strahlung durch Totalreflexion weitergeleitet wird. Der Stab verfügt über eine Einstrahlfläche und eine Abstrahlfläche für die Laserstrahlung; dabei ist die Einstrahlfläche mit der mikrooptisch wirksamen Struktur versehen. Der strahlführende Stab kann aus Quarzglas gefertigt sein. Die Größe und Querschnittsform können bei Einstrahlfläche und Abstrahlfläche voneinander abweichen. Vorteilhaft jedoch sollte die Einstrahlfläche kreisrund ausgeführt sein, dieser Querschnitt über wenigstens 90% der Länge des Stabes erhalten bleiben und erst auf dem verbleibenden Längenabschnitt eine Reduzierung und/oder Formänderung des Querschnitts vorgesehen sein.
Aufgrund der Totalreflexionen innerhalb des strahlführenden Stab wird eine wei- tere „Durchmischung" der nach dem Passieren der strukturierten Fläche vorhandenen Vielzahl der einzelnen Teilstrahlen erreicht und damit eine weitere Vergleichmäßigung der Strahlungsintensität, bezogen auf den Strahlquerschnitt, bewirkt.
Eine zusätzliche Beeinflussung der über den Querschnitt verteilten Strahlungsintensität läßt sich erzielen, wenn die strukturierte Fläche gewölbt, bevorzugt konkav, besonders bevorzugt aber auch konvex ausgebildet ist.
Es ist anzumerken, daß als mikrooptische Strukturen, sofern diese wie erfin- dungsgemäß vorgesehen auf der Einstrahlfläche eines strahlführenden Stabes ausgebildet sind, auch die Strukturen einer aus dem Stand der Technik bekannten Streuscheibe sein können. Da bei den undefinierbaren Strukturen der Streuscheibe jedoch das Licht auch unter ungünstigen Winkel eintritt, hätte das Rück- strahlungen, Energieverluste und damit auch unerwünscht hohe Wärmeentwicklung zur Folge. Das aber wird mit den erfindungsgemäß vorgesehenen mikrooptisch wirksamen Strukturen vermieden, da diese so ausgebildet sind, daß ungünstige Eintrittswinkel nicht auftreten.
Die Abstrahlfläche kann sowohl einen kreisrunden als auch einen vieleckigen, wie beispielsweise quadratischen oder sechseckigen Querschnitt aufweisen.
Im Rahmen der Erfindung liegen weiterhin Ausgestaltungen, bei denen als Laser- Strahlungsquelle ein Rubinlaser oder eine in das Handstück integriert Laserdiode vorgesehen ist.
Des weiteren kann zwischen der Abstrahlfläche und der zu behandelnden Hautfläche eine Schicht aus einem transparenten Gel, beispielsweise einem Ultra- schallgel vorgesehen sein. Hiermit wird die Einstrahlung des Laserstrahls in die zu behandelnde Hautfläche durch Reduzierung der Reflexion und verminderte Streuung weiter optimiert. Dies führt auch dazu, daß für das Laserlicht geringere Energiedichten benötigt werden. Der Brechungsindex des Gels soll dem Brechungsindex der Haut angepaßt und das Gel sollte mindestens für die Wellenlän- ge des verwendeten Laserlichtes transparent sein.
In diesem Zusammenhang wird die Aufgabe der Erfindung mit einem Verfahren zur kosmetischen Behandlung von Hautflächen unter Verwendung des vorbeschriebenen Handstückes gelöst, bei dem auf die zu behandelnde Hautfläche vor Beginn der Behandlung ein Gel aufgetragen wird, das für die Wellenlänge des verwendeten Laserlichtes transparent ist und dessen Brechungsindex dem Brechungsindex der Haut angepaßt ist.
Damit wird eine effektive Eintragung der Laserenergie in die Haut erzielt, da das von der Haut reflektierte Licht auf einen unwesentlichen Anteil reduziert wird, wodurch Nebenwirkungen, die sonst durch Verlustwärme entstehen, vermieden werden. Bevorzugt wird ein Ultraschallgel verwendet, das physiologisch unbedenklich und insofern für kosmetische Zwecke geeignet ist. Es besitzt außerdem gute Wärmeleitfähigkeit.
Durch das Gel wird die Gefahr der Beschädigung der Epidermis noch weiter verringert und die Bildung von Rauch und Geruch bei der Behandlung wird vermieden, da die zu behandelnde Hautstelle besser temperiert ist. Die Wirksamkeit des Gels kann noch weiter gesteigert werden, indem von der behandelnden Hautpartie vor Beginn der Behandlung eventuell vorhandener Haarwuchs entfernt wird.
Kurze Beschreibung der Zeichnungen
In den zugehörigen Zeichnungen zeigen
Fig.l eine erste Prinzipdarstellung der erfindungsgemäßen Anordnung
Fig.2 unterschiedliche Strahlquerschnitte
Fig.3 eine zweite Prinzipdarstellung der erfindungsgemäßen Anordnung Fig.4 eine Ausführungsvariante des Stabes
Fig.5 Querschnittsformen der Abstrahlfläche
Fig.6 Gestaltungsvarianten der Einstrahlfläche
Fig.7 Gestaltungsvarianten der MikroStruktur
Fig.8 einen Querschnitt durch eine MikroStruktur
Ausführliche Beschreibung der Zeichnungen
In Fig. l ist die erfindungsgemäße Strahlführung und Beeinflussung der Laserstrahlung innerhalb des medizinischen Handstückes in einer ersten Ausgestal- tungsvariante prinzipiell dargestellt. Im Strahlengang 1 der von einer Strahlführungseinrichtung 2, die sowohl als flexible Lichtleitfaser als auch in Form starrer Übertragungsglieder, die durch Gelenke miteinander verbunden sind, ausgestaltet sein kann, befinden sich ein optisches Element, beispielsweise eine aus Quarzglas bestehende Scheibe 3, die mit einer mikrooptisch wirksamen Fläche 4 versehen ist, und eine Zoomoptik, angedeutet durch die Linsen 5 und 6.
Die Laserstrahlung ist bei entsprechender Handhabung des Handstückes auf eine Hautpartie 7 gerichtet, etwa zum Zweck der Haarentfernung oder einer anderweitigen kosmetischen Behandlung.
Die Fläche 4 weist beispielhaft eine refraktiv wirksame Struktur auf, bei der eine Vielzahl konkav geformter sphärischer Linsen orthogonal zueinander angeordnet ist und die so in den Strahlengang 1 gestellt ist, daß der gesamte Strahlengang 1 diese Mikrolinsen passieren muß. Jede der Linsen hat dabei einen senkrecht zur Strahlungsrichtung gemessenen Durchmesser von etwa 0,35 mm und einer Tiefe von 0,005 mm. Als Scheibe 3 kann beispielsweise ein von der Firma AMS Mikrooptik GmbH, Saarbrücken, Deutschland, angebotenes Mikrolinsenarray eingesetzt sein. Die Positionsabweichungen der einzelnen Linsen sind dabei kleiner als 0,2 μm. Beim Durchgang der Laserstrahlung durch die Mikrolinsenanordnung auf der Fläche 4 erfolgt die Aufteilung der Laserstrahlung in eine Vielzahl von Teilstrahlungen, die der Anzahl der Mikrolinsen entspricht.
Diese Aufteilung in die Vielzahl von Teilstrahlen bewirkt, daß der im Strahlengang 1 angedeutete kreisrunde Querschnitt 8 mit einer beispielhaft von einem Rubinlaser kommenden Strahlung ungleichmäßiger Intensitätsverteilung in eine Strahlung mit gleichmäßiger Intensitätsverteilung innerhalb eines quadratischen Querschnittes 9 transformiert wird (vgl. Fig.2).
Mit dieser quadratischen Querschnittsform wird nun die Strahlung auf die zu behandelnde Hautpartie 7 gerichtet, wobei mit Hilfe der Zoomoptik 5, 6 die Größe der auf die Hautpartie 7 auftreffenden Querschnittsfläche 1 0 beeinflußbar ist. Durch Variation der Zoomoptik beispielsweise läßt sich die Querschnittsfläche 1 0 vergrößern oder verkleinern. Damit ist eine Anpassung an die Fläche des zu behandelnden Areals unkompliziert möglich.
Ist das zu behandelnde Areal größer als die Querschnittsfläche 1 0, die mit der Zoomoptik 5,6 einstellbar ist, werden mehrere Spots auf dem Behandlungsareal 7 so nebeneinander gesetzt, daß das Behandlungsareal 7 nicht nur lückenlos abgedeckt ist, sondern auch eine Überschneidung der einzelnen Spots vermieden wird.
Wird beispielhaft die Fläche 4 anstelle der refraktiv wirksamen Struktur mit einer diffraktiv wirksamen Struktur versehen, so wird die Homogenisierung nicht durch Aufteilung des Laserstrahles in eine Vielzahl von Teilstrahlen, sondern durch Phasenänderung erzielt. Auch dabei läßt sich mit Hilfe des optischen Elementes, das mit dieser Fläche ausgestattet ist, beispielsweise ein kreisrunder Strahlquerschnitt mit ungleichmäßiger Intensitätsverteilung in einen quadratischen Querschnitt mit vergleichmäßigter Intensitätsverteilung transformieren. Derartige diffraktiv wirkende optische Elemente werden beispielsweise von der Firma BIFO Berliner Institut für Optik GmbH, Rudower Chaussee 6, 1 2484 Berlin, Deutsch¬ land, hergestellt und angeboten. Fig.3 zeigt eine zweite Ausgestaltungsvariante der Erfindung, bei welcher der Strahlengang 1 der über die Strahlführungseinrichtung 2 eingekoppelten Laserstrahlung zunächst ebenfalls einen kreisrunden Querschnitt 8 mit inhomogener Verteilung der Strahlungsintensität aufweist. In diese Strahlung ist eine Sammel- linse 1 2 gestellt, die den Laserstrahl auf die Einstrahlfläche 1 3 eines strahlführenden Stabes 1 4 fokussiert, der beispielhaft aus Quarzglas mit einer Länge von 55 mm und einem kreisrunden Querschnitt von 8mm Durchmesser gefertigt sein kann.
Die Einstrahlfläche 1 3 ist, wie bereits oben anhand der Fläche 4 beschrieben, mit einer Struktur aus nebeneinander angeordneten Mikrolinsen versehen. Dabei wird die Laserstrahlung auch hier beim Durchgang durch die Einstrahlfläche 1 3 in eine Vielzahl von Teilstrahlungen aufgeteilt und dadurch eine Homogenisierung der Intensitätsverteilung erzielt.
Innerhalb des strahlführenden Stabes 1 4 wird die Laserstrahlung durch Totalreflexion weitergeleitet, wobei eine weitere Homogenisierung erzielt wird. Somit ist an der Abstrahlfläche 1 5, die auf das Behandlungsareal 7 aufgesetzt ist, ein Laserstrahl verfügbar, dessen Querschnitt eine bis in die Randbereiche hinein gleichmäßige Strahlungsintensität aufweist.
In Ausgestaltungen kann allerdings auch vorgesehen sein, daß sich der Querschnitt des strahlführenden Stabes 14 in Strahlungsrichtung kegelstumpfförmig verjüngt, wie das beispielhaft in Fig.4 dargestellt ist. Damit wird mit dem Stab 1 4 nicht nur eine verbesserte Homogenisierung erzielt, sondern zugleich auch eine Beeinflussung des Querschnitts der Laserstrahlung vorgenommen, indem die Abstrahlfläche 1 5 wie die Einstrahlfläche 1 3 einen kreisrunden Querschnitt aufweist, jedoch mit kleinerem Durchmesser (vgl. Fig.5a). In weiteren Ausgestaltungsvarianten ist es auch denkbar, daß die Abstrahlfläche 1 5 eine Querschnitts- form aufweist, wie in Fig.5b bis 5d dargestellt ist, also einen sechseckigen, quadratischen oder auch dreieckigen Querschnitt.
In weiteren Ausgestaltungen der Erfindung ist die Einstrahlfläche 1 3, wie in Fig.6 dargestellt, plan (Fig.6a), konkav (Fig.6b) oder auch konvex (Fig.6c) geformt. Durch Zusammenwirken mit der strukturierten Einstrahlfläche 1 3 ist so eine weitere gezielte Beeinflussung der Intensitätsverteilung wie auch der Querschnittsform möglich. In Fig.7 sind mehrere Ausgestaltungsvarianten der Einstrahlfläche 1 3 in Draufsicht erkennbar. Hier sind verschiedene Strukturen dargestellt, die zu ihrer Verdeutlichung wesentlich vergrößert und auch nicht maßstäblich gezeichnet sind. So zeigt Fig.7a beispielsweise die Anordnung einer Vielzahl von linsenartigen Vertiefungen, die über die gesamte Einstrahlfläche 1 3 statistisch verteilt sind. In Fig.7b besteht die Struktur aus zentrisch angeordneten Rillen verschiedener Durchmesser, die jeweils einen keilförmigen Querschnitt aufweisen. Ein solcher Querschnitt ist beispielhaft in Fig.8 dargestellt. In Fig.7c ist eine spiralförmige Struktur aus Rillen vorgesehen. Fig.7d dagegen zeigt ein Netz aus sich kreuzen- den geradlinigen Rillen, die ebenfalls einen Querschnitt gemäß Fig.8 aufweisen können.

Claims

Ansprüche
1 . Medizinisches Handstück, das über eine Strahlführungseinrichtung (2) mit einer Laserstrahlungsquelle verbunden ist und mit dem ein Laserstrahl auf ein Behandlungsareal (7) gerichtet wird, wobei das Handstück zur Laserstrahlungsquelle relativ frei beweglich ist, dadurch gekennzeichnet, daß der Austrittsfläche der Strahlführungseinrichtung (2) innerhalb des Handstückes mindestens ein optisches Element nachgeordnet ist, das eine im Mikrometer- bereich strukturierte und dadurch mikrooptisch wirksame Fläche (4, 1 3) aufweist.
2. Medizinisches Handstück nach Anspruch 1 , dadurch gekennzeichnet, daß die Fläche (4, 1 3) eine diffraktiv wirksame Struktur aufweist, bei der die Struktur- breite etwa der Wellenlänge der zur Behandlung genutzten Laserstrahlung entspricht und die als variierendes Höhenprofil mit streifenförmigen, kreuzförmigen, trichterförmigen und/oder anderweitig geformten Erhebungen, als variierter Brechungsindex und/oder - in Form eines variierten Absorptionskoeffizienten ausgebildet ist.
3. Medizinisches Handstück nach Anspruch 1 , dadurch gekennzeichnet, daß die Fläche (4, 1 3) eine refraktiv wirksame Struktur in Form eines Arrays aus sphärischen, asphärischen, zylindrischen und/oder elliptischen, hexagonal und/oder orthogonal angeordneten, konkav und/oder konvex geformten
Linsen aufweist, wobei die Ausdehnung einer einzelnen Linse senkrecht zur Strahlungsrichtung l Oμm bis 1 OOOμm beträgt.
4. Medizinisches Handstück nach einem der Ansprüche 1 bis 3 , dadurch ge- kennzeichnet, daß dem optischen Element eine Einrichtung zur Strahlfokussierung, bevorzugt eine Sammellinse (1 2), vor- oder nachgeordnet ist.
5. Medizinisches Handstück nach einem der Ansprüche 1 bis 3, dadurch ge¬ kennzeichnet, daß dem optischen Element eine Zoomoptik (5 ,6) nachge- ordnet ist.
6. Medizinisches Handstück nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das optische Element als strahlführender Stab (1 4) ausgebildet ist, in welchem die Strahlung durch Totalreflexion weitergeleitet wird und der über eine Einstrahlfläche (1 3) und eine Abstrahlfläche
(1 5) für die Laserstrahlung verfügt, wobei die Einstrahlfläche (1 3) refraktiv wirkend strukturiert ist.
7. Medizinisches Handstück nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die strukturierte Fläche (4,1 3) gewölbt, bevorzugt konkav, besonders bevorzugt konvex ausgebildet ist.
8. Medizinisches Handstück nach Anspruch 6, dadurch gekennzeichnet, daß die Abstrahlfläche (1 5) einen kreisrunden Querschnitt aufweist.
9. Medizinisches Handstück nach Anspruch 6, dadurch gekennzeichnet, daß die Abstrahlfläche (1 5) einen vieleckigen Querschnitt, bevorzugt einen quadratischen, besonders bevorzugt einen sechseckigen Querschnitt aufweist.
10. Medizinisches Handstück nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß als Laserstrahlungsquelle ein Rubinlaser vorge- sehen ist.
1 1 . Medizinisches Handstück nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß zwischen der Abstrahlfläche (1 5) und dem Behandlungsareal (7) eine Schicht aus einem für die Laserstrahlung transpa- renten Medium, bevorzugt ein Gel, besonders bevorzugt ein Ultraschallgel, vorgesehen ist.
1 2. Verfahren zur kosmetischen Behandlung von Hautflächen bei Verwendung eines Handstücks nach einem der Ansprüche 1 bis 1 1 , dadurch gekenn- zeichnet, daß vor Beginn der Behandlung ein Medium auf die Abstrahlfläche (1 5) und/oder auf das Behandlungsareal (7) aufgetragen wird, durch das die Reflexion der Laserstrahlung von der Haut verringert dadurch die Effizienz des Energieeintrages in die Haut erhöht wird.
1 3. Medizinisches Handstück nach einem der Ansprüche 1 1 oder 1 2, dadurch gekennzeichnet, daß als Medium ein Ultraschallgel bis zu einer Dicke von 1 mm auf das Behandlungsareal (7) aufgetragen wird.
PCT/EP1999/005889 1998-08-13 1999-08-11 Medizinisches handstück für laserstrahlungsquelle WO2000010049A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99944374A EP1112524B1 (de) 1998-08-13 1999-08-11 Medizinisches handstück für laserstrahlungsquelle
DE59914776T DE59914776D1 (de) 1998-08-13 1999-08-11 Medizinisches handstück für laserstrahlungsquelle
US09/762,834 US6537270B1 (en) 1998-08-13 1999-08-11 Medical hand piece for a laser radiation source
AU57332/99A AU5733299A (en) 1998-08-13 1999-08-11 Medical hand piece for a laser radiation source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19836649A DE19836649C2 (de) 1998-08-13 1998-08-13 Medizinisches Handstück
DE19836649.3 1998-08-13

Publications (1)

Publication Number Publication Date
WO2000010049A1 true WO2000010049A1 (de) 2000-02-24

Family

ID=7877374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/005889 WO2000010049A1 (de) 1998-08-13 1999-08-11 Medizinisches handstück für laserstrahlungsquelle

Country Status (7)

Country Link
US (1) US6537270B1 (de)
EP (1) EP1112524B1 (de)
AT (1) ATE397231T1 (de)
AU (1) AU5733299A (de)
DE (2) DE19836649C2 (de)
ES (1) ES2306524T3 (de)
WO (1) WO2000010049A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354573A1 (de) * 2002-04-08 2003-10-22 Lumenis Inc. Gerät und Methode zur gleichförmigen Beleuchtung
US7128737B1 (en) * 1997-10-22 2006-10-31 Carl Zeiss Meditec Ag Object figuring device
US7438713B2 (en) 2001-03-22 2008-10-21 Lumenis, Inc. Scanning laser handpiece with shaped output beam
EP1896893B1 (de) * 2006-06-02 2013-08-14 LIMO Patentverwaltung GmbH & Co. KG Vorrichtung zur strahlformung
CN107242904A (zh) * 2017-07-19 2017-10-13 重庆半岛医疗科技有限公司 一种光束均化的治疗装置

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6517532B1 (en) * 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US20060149343A1 (en) * 1996-12-02 2006-07-06 Palomar Medical Technologies, Inc. Cooling system for a photocosmetic device
US8182473B2 (en) * 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
DK0991372T3 (da) 1997-05-15 2004-12-06 Palomar Medical Tech Inc Apparat til dermatologisk behandling
AUPP176898A0 (en) * 1998-02-12 1998-03-05 Moldflow Pty Ltd Automated machine technology for thermoplastic injection molding
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
CA2398238A1 (en) * 2000-01-25 2001-08-02 Palomar Medical Technologies, Inc. Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US20080214988A1 (en) * 2000-12-28 2008-09-04 Palomar Medical Technologies, Inc. Methods And Devices For Fractional Ablation Of Tissue
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
EP1365699A2 (de) * 2001-03-02 2003-12-03 Palomar Medical Technologies, Inc. Vorrichtung und verfahren zur fotokosmetischen und fotodermatologischen behandlung
US8287524B2 (en) * 2001-08-23 2012-10-16 Jerry Siegel Apparatus and method for performing radiation energy treatments
US20040147984A1 (en) * 2001-11-29 2004-07-29 Palomar Medical Technologies, Inc. Methods and apparatus for delivering low power optical treatments
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
DE10221368A1 (de) * 2002-05-13 2003-12-04 Asclepion Meditec Ag Verfahren und Anordnung zur Erzeugung einer vorgegebenen Intensitätsverteilung im Querschnitt eines Laserstrahlbündels
US20070213698A1 (en) * 2006-03-10 2007-09-13 Palomar Medical Technologies, Inc. Photocosmetic device
BR0312430A (pt) 2002-06-19 2005-04-26 Palomar Medical Tech Inc Método e aparelho para tratamento de condições cutâneas e subcutâneas
JP2006500972A (ja) * 2002-06-19 2006-01-12 パロマー・メディカル・テクノロジーズ・インコーポレイテッド ある深さの組織を輻射熱によって治療する方法および装置
US20070219604A1 (en) * 2006-03-20 2007-09-20 Palomar Medical Technologies, Inc. Treatment of tissue with radiant energy
EP1555948A2 (de) * 2002-10-23 2005-07-27 Palomar Medical Technologies, Inc. Lichtbehandlungseinrichtung zur verwendung mit kühlmitteln und topischen substanzen
US20040225339A1 (en) * 2002-12-20 2004-11-11 Palomar Medical Technologies Inc. Light treatments for acne and other disorders of follicles
ES2441408T3 (es) 2003-03-27 2014-02-04 The General Hospital Corporation Aparato para tratamiento dermatológico y rejuvenecimiento cutáneo fraccional
JP2007531544A (ja) * 2003-07-11 2007-11-08 リライアント・テクノロジーズ・インコーポレイテッド 皮膚の分画光治療のための方法と装置
US7184184B2 (en) 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7220254B2 (en) * 2003-12-31 2007-05-22 Palomar Medical Technologies, Inc. Dermatological treatment with visualization
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
DE102004015148B4 (de) * 2004-03-27 2007-04-19 Fuhrberg, Teichmann, Windolph LISA laser products oHG Faserlaser mit einer Optischen Vorrichtung zur Formung der Intensitätsverteilung eines Lichtstrahlenbündels
EP1742588B1 (de) 2004-04-01 2016-10-19 The General Hospital Corporation Gerät für die dermatologische behandlung und gewebeumformung
JP2008500846A (ja) * 2004-04-09 2008-01-17 パロマー メディカル テクノロジーズ,インク. 組織中にemr処理孤立点の格子を作製するための方法および生成物、ならびにその使用
US7413572B2 (en) * 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
EP1858588A2 (de) * 2005-02-18 2007-11-28 Palomar Medical Technologies, Inc. Vorrichtung für dermatologische behandlungen
US20060253176A1 (en) * 2005-02-18 2006-11-09 Palomar Medical Technologies, Inc. Dermatological treatment device with deflector optic
DE102005038999A1 (de) * 2005-08-16 2007-03-01 Schott Ag Strahlformungseinrichtung eines optischen Systems, insbesondere eines optischen Signalaufnehmers und optisches System, insbesondere optischer Signalaufnehmer mit Strahlformungseinrichtung
DE102005009642B4 (de) * 2005-03-03 2010-01-21 Schott Ag Optischer Signalaufnehmer mit Strahlformungseinrichtung
US7856985B2 (en) * 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US7929140B2 (en) * 2005-05-18 2011-04-19 Axsun Technologies, Inc. Spectroscopy probe and material processing system
US20060293644A1 (en) * 2005-06-21 2006-12-28 Donald Umstadter System and methods for laser-generated ionizing radiation
AU2006292526A1 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
US7656592B2 (en) * 2005-12-16 2010-02-02 Reliant Technologies, Inc. Optical system having aberrations for transforming a Gaussian laser-beam intensity profile to a quasi-flat-topped intensity profile in a focal region of the optical system
US20070194717A1 (en) * 2006-02-17 2007-08-23 Palomar Medical Technologies, Inc. Lamp for use in a tissue treatment device
US20070255355A1 (en) * 2006-04-06 2007-11-01 Palomar Medical Technologies, Inc. Apparatus and method for skin treatment with compression and decompression
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
DE102006039074B4 (de) * 2006-08-09 2009-04-02 Jenoptik Laser, Optik, Systeme Gmbh Optische Anordnung zum Pumpen von Festkörperlasern
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
WO2008052189A2 (en) * 2006-10-26 2008-05-02 Reliant Technologies, Inc. Micropore delivery of active substances
US20080186591A1 (en) * 2007-02-01 2008-08-07 Palomar Medical Technologies, Inc. Dermatological device having a zoom lens system
KR100820164B1 (ko) * 2007-03-31 2008-04-08 한국전기연구원 피부질환 치료용 레이저 장치
US9474576B2 (en) * 2007-10-05 2016-10-25 The Research Foundation For The State University Of New York Coherent imaging fiber based hair removal device
KR100798108B1 (ko) 2007-10-12 2008-01-24 주식회사 유니온 메디칼 레이저치료기의 핸드피스
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
TWI402467B (zh) * 2010-09-24 2013-07-21 Wintek China Technology Ltd 導光柱
DE102011122209A1 (de) * 2011-12-23 2013-06-27 Carl Zeiss Meditec Ag Vorrichtung zur Homogenisierung eines Laserstrahlprofils
EP2839552A4 (de) 2012-04-18 2015-12-30 Cynosure Inc Pikosekunderlaservorrichtung und verfahren zur behandlung von zielgewebe damit
US10285757B2 (en) 2013-03-15 2019-05-14 Cynosure, Llc Picosecond optical radiation systems and methods of use
EP2815695B1 (de) * 2013-06-20 2019-06-19 Erbe Elektromedizin GmbH Chirurgisches Instrument mit Gewebeerkennung
DE102013016413A1 (de) * 2013-09-27 2015-04-02 Carl Zeiss Microscopy Gmbh Vorrichtung zur Homogenisierung von Licht
BR112020011689A2 (pt) 2017-12-14 2020-11-17 Avava, Inc. sistema e método de digitalização de feixe de radiação eletromagnética
WO2019165426A1 (en) 2018-02-26 2019-08-29 Cynosure, Inc. Q-switched cavity dumped sub-nanosecond laser
CN111897134B (zh) * 2020-07-31 2022-02-25 西安炬光科技股份有限公司 一种光学模组和医疗激光装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004829A1 (en) * 1989-10-06 1991-04-18 B.V. Optische Industrie 'de Oude Delft' Device for providing a beam of laser radiation having a homogeneous energy distribution
DE4103615A1 (de) * 1991-02-07 1992-08-13 Schwind Gmbh & Co Kg Herbert Vorrichtung zur chirurgischen behandlung einer augenhornhautoberflaeche
WO1995018984A1 (en) * 1994-01-07 1995-07-13 Coherent, Inc. Apparatus for creating a square or rectangular laser beam with a uniform intensity profile
US5558666A (en) * 1994-01-14 1996-09-24 Coherent, Inc. Handpiece for producing highly collimated laser beam for dermatological procedures
FR2738082A1 (fr) * 1995-08-21 1997-02-28 Quantel Dispositif pour la conformation avec homogeneisation de la repartition spatiale transverse d'intensite, d'un faisceau laser
DE19623749A1 (de) * 1996-06-14 1997-05-07 Vladimir Prof Dr Semchishen Optik zur Profilierung von Laserstrahlen, insbesondere von Excimerlasern
US5755751A (en) * 1992-10-20 1998-05-26 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
WO1998052481A1 (en) * 1997-05-23 1998-11-26 Medical Laser Technologies Limited Apparatus and method for delivery of light to skin

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507741A (en) * 1983-11-17 1996-04-16 L'esperance, Jr.; Francis A. Ophthalmic method for laser surgery of the cornea
US5380318A (en) * 1986-05-12 1995-01-10 Surgical Laser Technologies, Inc. Contact or insertion laser probe having wide angle radiation
US4852567A (en) * 1988-01-21 1989-08-01 C. R. Bard, Inc. Laser tipped catheter
US4929246A (en) * 1988-10-27 1990-05-29 C. R. Bard, Inc. Method for closing and sealing an artery after removing a catheter
US5860967A (en) * 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
DE4429193A1 (de) * 1994-08-18 1996-02-22 Aesculap Ag Vorrichtung zur Erzeugung einer querschnittshomogenisierten Laserstrahlung und Verwendung dieser Strahlung
US6102905A (en) * 1994-09-09 2000-08-15 Cardiofocus, Inc. Phototherapy device including housing for an optical element and method of making
DE19709861C2 (de) * 1997-03-11 1999-04-01 Vitcon Projektconsult Gmbh Einrichtung zur Ablation von Material mit Hilfe von Laserstrahlung
US6213998B1 (en) * 1998-04-02 2001-04-10 Vanderbilt University Laser surgical cutting probe and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004829A1 (en) * 1989-10-06 1991-04-18 B.V. Optische Industrie 'de Oude Delft' Device for providing a beam of laser radiation having a homogeneous energy distribution
DE4103615A1 (de) * 1991-02-07 1992-08-13 Schwind Gmbh & Co Kg Herbert Vorrichtung zur chirurgischen behandlung einer augenhornhautoberflaeche
US5755751A (en) * 1992-10-20 1998-05-26 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
WO1995018984A1 (en) * 1994-01-07 1995-07-13 Coherent, Inc. Apparatus for creating a square or rectangular laser beam with a uniform intensity profile
US5558666A (en) * 1994-01-14 1996-09-24 Coherent, Inc. Handpiece for producing highly collimated laser beam for dermatological procedures
FR2738082A1 (fr) * 1995-08-21 1997-02-28 Quantel Dispositif pour la conformation avec homogeneisation de la repartition spatiale transverse d'intensite, d'un faisceau laser
DE19623749A1 (de) * 1996-06-14 1997-05-07 Vladimir Prof Dr Semchishen Optik zur Profilierung von Laserstrahlen, insbesondere von Excimerlasern
WO1998052481A1 (en) * 1997-05-23 1998-11-26 Medical Laser Technologies Limited Apparatus and method for delivery of light to skin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128737B1 (en) * 1997-10-22 2006-10-31 Carl Zeiss Meditec Ag Object figuring device
US7545515B2 (en) 1997-10-22 2009-06-09 Carl Zeiss Meditec Ag Object shaping device
US7859684B2 (en) 1997-10-22 2010-12-28 Carl Zeiss Meditec Ag Object figuring device
US7438713B2 (en) 2001-03-22 2008-10-21 Lumenis, Inc. Scanning laser handpiece with shaped output beam
US7824396B2 (en) 2001-03-22 2010-11-02 Lumenis Ltd. Scanner laser handpiece with shaped output beam
EP1354573A1 (de) * 2002-04-08 2003-10-22 Lumenis Inc. Gerät und Methode zur gleichförmigen Beleuchtung
US7263255B2 (en) 2002-04-08 2007-08-28 Lumenis Inc. System, method and apparatus for providing uniform illumination
EP1896893B1 (de) * 2006-06-02 2013-08-14 LIMO Patentverwaltung GmbH & Co. KG Vorrichtung zur strahlformung
CN107242904A (zh) * 2017-07-19 2017-10-13 重庆半岛医疗科技有限公司 一种光束均化的治疗装置
CN107242904B (zh) * 2017-07-19 2023-06-20 重庆半岛医疗科技有限公司 一种光束均化的治疗装置

Also Published As

Publication number Publication date
EP1112524A1 (de) 2001-07-04
EP1112524B1 (de) 2008-05-28
AU5733299A (en) 2000-03-06
US6537270B1 (en) 2003-03-25
DE19836649C2 (de) 2002-12-19
DE19836649A1 (de) 2001-05-03
DE59914776D1 (de) 2008-07-10
ATE397231T1 (de) 2008-06-15
ES2306524T3 (es) 2008-11-01

Similar Documents

Publication Publication Date Title
EP1112524B1 (de) Medizinisches handstück für laserstrahlungsquelle
EP1128775B1 (de) Dermatologisches handstück
DE2145921C2 (de) Einrichtung zur Materialbearbeitung durch ein Laserstrahlungsbündel mit einem biegsamen Lichtleiter
EP1129812B1 (de) Laserinstrument
DE102007019812B4 (de) Laserchirurgische Vorrichtung zur Augenbehandlung
DE60032637T2 (de) Medizinisches diodenlasersystem mit zwei wellenlängen
DE3620744C2 (de)
EP1309284B1 (de) Handstück zur abstrahlung von licht auf eine hautfläche
EP2226031B1 (de) Laserskalpell
DE3833992A1 (de) Bestrahlungseinrichtung
DE4415269A1 (de) Laseranordnung mit einem axial optisch gepumpten Laser
EP1188206B1 (de) Festkörperlaser
WO2003016963A2 (de) Anordnung und vorrichtung zur optischen strahlhomogenisierung
AT504335B1 (de) Laserzündvorrichtung
DE102008027229A1 (de) Vorrichtung zur Strahlformung
DE102011122209A1 (de) Vorrichtung zur Homogenisierung eines Laserstrahlprofils
EP0776492B1 (de) Vorrichtung zur erzeugung einer modenhomogenisierten laserstrahlung
EP0160689B1 (de) Neodym-yag-laser insbesondere zur ophtalmologischen behandlung
DE19739456A1 (de) Applikationsvorrichtung für die Behandlung von Körpergewebe mittels Licht
DE102005017014B4 (de) Verfahren zur Formung eines Beleuchtungslaserstrahls und Beleuchtungseinrichtung mit einem Laser
DE10033786A1 (de) Prismenförmige Blende
WO2011134605A1 (de) Verfahren zur modenbeeinflussung von optischer strahlung in einem medium
EP1318524A2 (de) Röntgen-optisches System und Verfahren zur Abbildung einer Quelle
DE10021278A1 (de) Handstück zur Abstrahlung von Licht auf eine Hautfläche bei einer medizinischen oder kosmetischen Hautbehandlung
WO1999028077A2 (de) Vorrichtung zur homogenisierung eines licht- oder laserstrahls

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999944374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09762834

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944374

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999944374

Country of ref document: EP