WO1999030651A1 - Artificial spinal disc - Google Patents

Artificial spinal disc Download PDF

Info

Publication number
WO1999030651A1
WO1999030651A1 PCT/US1998/026128 US9826128W WO9930651A1 WO 1999030651 A1 WO1999030651 A1 WO 1999030651A1 US 9826128 W US9826128 W US 9826128W WO 9930651 A1 WO9930651 A1 WO 9930651A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomeric material
main portion
extends
spinal disc
peripheral portion
Prior art date
Application number
PCT/US1998/026128
Other languages
French (fr)
Inventor
James M. Kuras
Alexandre M. Dinello
Carl R. Mcmillin
Original Assignee
Depuy Acromed, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Depuy Acromed, Inc. filed Critical Depuy Acromed, Inc.
Priority to EP98963817A priority Critical patent/EP1041945B1/en
Priority to JP2000538639A priority patent/JP2003517329A/en
Priority to AU19062/99A priority patent/AU754131B2/en
Priority to DE69814460T priority patent/DE69814460T2/en
Priority to KR1020007006286A priority patent/KR100598473B1/en
Priority to CA002313099A priority patent/CA2313099C/en
Publication of WO1999030651A1 publication Critical patent/WO1999030651A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30069Properties of materials and coating materials elastomeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30131Rounded shapes, e.g. with rounded corners horseshoe- or crescent- or C-shaped or U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30182Other shapes
    • A61F2002/30187D-shaped or half-disc-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/3023Three-dimensional shapes cylindrical wedge-shaped cylinders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30574Special structural features of bone or joint prostheses not otherwise provided for with an integral complete or partial collar or flange
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30769Special external or bone-contacting surface, e.g. coating for improving bone ingrowth madreporic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/30805Recesses of comparatively large area with respect to their low depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30879Ribs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30884Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30967Diffusion bonding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0034D-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys

Definitions

  • the present invention relates to a spinal disc prosthesis to replace a damaged or degenerated spinal disc in a spinal column of a human.
  • United States Patents Nos. 5,017,437 and 5,534,030 disclose typical spinal disc prostheses to replace a damaged or degenerated spinal disc in a spinal column of a human.
  • the discs disclosed in these patents include a pair of rigid plates adhered to opposite surfaces of a body of elastomeric material.
  • the disc when in use is positioned between adjacent vertebrae.
  • the disc is subject to forces which act in the spine including compression forces due to loads on the spine, tension forces due to bending of the spine, and torsional forces due to twisting of the spine. These forces can be applied simultaneously to the disc. These forces act to attempt to separate the rigid plates from the body of elastomeric material.
  • the present invention relates to a spinal disc prosthesis to replace a damaged spinal disc in a spinal column of a human.
  • the spinal disc prosthesis includes a body of elastomeric material located between and bonded to upper and lower rigid plates.
  • the body of elastomeric material includes a main portion and a peripheral portion extending around the main portion.
  • the upper and lower plates each have a curved convex plate surface extending around the respective outer perimeters and facing the peripheral portion of the body of elastomeric material.
  • the peripheral portion of the body of elastomeric material has a first part which is bonded to the curved convex plate surfaces of the upper and lower plates and extends toward the main portion.
  • the first part of the peripheral portion increases in thickness as the first part extends from the curved convex plate surfaces toward the main portion.
  • the first part of the peripheral portion of the body of elastomeric material has a convexly curved outer surface which forms a part of the outer surface of the body of elastomeric material.
  • Fig. 1 is an elevational view of a human spinal column having a spinal disc in accordance with the present invention between adjacent vertebrae of the spinal column;
  • Fig. 2 is a top perspective view of the spinal disc of Fig. 1;
  • Fig. 3 is a bottom plan view of the spinal disc of Fig. 1;
  • Fig. 4 is an elevational view, partly in section, of the spinal disc of Fig. 1, taken generally along line 4-4 of Fig. 3;
  • Fig. 5 is a sectional view of the spinal disc of Fig. 1, taken generally along line 5-5 of Fig. 3 and with parts removed;
  • Fig. 6 is an enlarged view of a portion of Fig. 4;
  • Fig. 7 is an enlarged sectional view of a portion of the spinal disc of Fig. 1, shown in a first condition;
  • Fig. 8 is a view similar to Fig. 7 showing the spinal disc in a second condition.
  • the present invention relates to an artificial spinal disc prosthesis to replace a damaged or degenerated spinal disc in a spinal column of a human.
  • Fig. 1 illustrates a spinal disc prosthesis, i.e., spinal disc 10.
  • the spinal disc 10 is illustrated in use between adjacent upper and lower vertebrae 12 and 14 of a human spinal column 16.
  • the vertebrae 12 and 14 have portions which face anteriorly (to the right as viewed in Fig. 1) and portions which face posteriorly (to the left as viewed in Fig. 1).
  • the disc 10 comprises a first or upper rigid plate 20, a second or lower rigid plate 120, and an elastomeric core 200 interposed between and adhered to the two plates.
  • the upper and lower plates 20 and 120 are identical to each other, and the disc 10 is symmetrical about an anterior-posterior, horizontally extending plane A (Fig. 4) and is also symmetrical about a sagittal plane B (Fig. 3).
  • the terms "upper” and “lower” are used herein with reference to the orientation of the disc 10 when it is implanted in the human body as illustrated in Fig. 1, to distinguish the two identical plates for reference purposes.
  • the upper plate 20 (Fig. 5) is rigid and is preferably made of a biocompatible metal such as a titanium-vanadium-aluminum alloy having about 90% by weight titanium, about 6% by weight aluminum, and about 4% by weight vanadium.
  • the upper plate 20 can be made of any suitable biocompatible material, including but not limited to a composite plastic material.
  • the upper plate 20 is preferably milled out of a single block of metal.
  • the upper plate 20 could, however, be made in a different manner, for example, by casting.
  • the upper plate 20 has an anterior portion 22 and a posterior portion 24.
  • the anterior portion 22 of the upper plate 20 is that portion of the upper plate which is disposed anteriorly in the spine 16 when the disc 10 is implanted in the spine.
  • the posterior portion 24 of the upper plate 20 is that portion of the upper plate which is disposed posteriorly in the spine 16 when the disc 10 is implanted in the spine.
  • the anterior portion of the upper plate can be said to be located generally on one side (to the right as viewed in Fig. 5) of an axis 28 of the disc 10; the posterior portion of the upper plate can be said to be located generally on the other side (to the left as viewed in Fig. 6) of the axis 28.
  • the axis 28 extends through the disc between the upper and lower plates 20 and 120.
  • the axis 28 extends generally along the length of the spinal column 16 when the disc 10 is implanted in the spinal column.
  • the configuration of the disc 10 (as viewed in plan) is designed to conform generally to the shape of a natural human spinal disc.
  • the outer perimeter 30 (Fig. 3) of the disc 10 has a flat posterior portion 32.
  • the outer perimeter 30 of the disc 10 has a curved convex portion 34 which extends between opposite ends 36 and 38 of the flat portion 32 of the outer perimeter.
  • the outer perimeter 30 of the disc 10 including the outer perimeter of the core 200 and the outer perimeters 83 and 183 of the plates 20 and 120, does not have any outwardly projecting lobes.
  • the outer perimeter of the core 200 has the same configuration (as viewed in plan) as the outer perimeter of the upper and lower plates 20 and 120.
  • the upper plate 20 has an inner major side surface 40 which is presented downward as viewed in Fig. 5.
  • the inner major side surface 40 includes all of the surface area of the upper plate 20 which is visible from below (in plan) as viewed in Fig. 5.
  • the inner major side surface 40 of the upper plate 20 includes a planar first surface 42 of the upper plate which extends perpendicular to the axis 28.
  • the area of the first surface 42 is at least 65% of the area of the inner major side surface 40 as viewed in plan, that is, with all points on the inner major side surface 40 viewed in a direction parallel to the axis 28.
  • the area of the first surface 42 is 75% of the area of the inner major side surface 40.
  • the first surface 42 is circumscribed by a first rim 44 of the upper plate 20.
  • the first rim 44 has a generally semi-cylindrical cross-sectional configuration as shown in Fig. 5 including an arcuate outer surface 46.
  • the first surface 42 forms the bottom of the recess 48.
  • the outer surface 46 on the first rim 44 forms a part of the inner major side surface 40 of the upper plate 20.
  • the upper plate 20 has an outer major side surface 50 which is presented upward as viewed in Fig. 5.
  • the outer major side surface 50 includes all of the surface area of the upper plate 20 which is visible from above (in plan) as viewed in Fig. 5.
  • the outer major side surface 50 includes a planar second surface 52 of the upper plate 20.
  • the second surface 52 is circumscribed by a second rim 54 of the upper plate 20.
  • the area of the second surface 52 is greater than the area of the first surface 42.
  • the area of the second surface 52 is 85% or more, and preferably 92%, of the area of the inner major side surface 40.
  • the second rim 54 is located outward of (as viewed in plan) the first rim 44.
  • the second rim 54 has an inner surface 56, which extends perpendicular to the second surface 52 and extends entirely around the upper plate 20, and a curved outer surface 58.
  • the second surface 52 forms the bottom of the recess 60.
  • the distance by which the second rim 54 projects from the second surface 52 is less than the distance by which the first rim 44 projects from the first surface 42.
  • the recess 60 in the outer major side surface 50 of the upper plate 20 is shallower than the recess 48 in the inner major side surface 40 of the upper plate.
  • the second surface 52 of the upper plate 20 is inclined relative to the first surface 42 of the upper plate.
  • the second surface 52 is inclined at an angle in the range of from about 1.5° to about 7.5° relative to the first surface 42. In the illustrated preferred embodiment, the second surface 52 is inclined at an angle of 5° relative to the first surface 42. In another preferred embodiment, not illustrated, the second surface 52 is inclined at an angle of 2.5° relative to the first surface 42.
  • the first and second surfaces 42 and 52 are oriented relative to each other so that they are closest together at the posterior portion 24 of the upper plate 20, and farthest apart at the anterior portion 22 of the upper plate.
  • the second surface 52 is inclined away from the first surface 42 as the second surface 52 extends from the posterior to the anterior of the disc 10.
  • the first and second surfaces 42 and 52 diverge as they extend from the posterior portion 24 of the upper plate 20 to the anterior portion 22 of the upper plate. This divergence of the first and second surfaces 42 and 52 gives the upper plate 20 a wedge-shaped configuration as viewed in a lateral or medial direction (Fig. 4).
  • a single projection in the form of a dome 62 extends from the second surface 52 of the upper plate 20.
  • the dome 62 has a crescent-shaped configuration including a central portion 64 and two opposite tips 66 and 68 (see Fig. 3).
  • the dome 62 is oriented on the second surface 52 so that the tips 66 and 68 of the crescent-shaped configuration point generally posteriorly and the central portion 64 of the crescent- shaped configuration is located anteriorly of the tips.
  • the dome 62 is also located anteriorly of the axis 28.
  • the outer surface 58 of the second rim 54 merges with an outer peripheral side surface 74 of the upper plate 20.
  • the outer peripheral side surface 74 of the upper plate 20 extends perpendicular to the first surface 42 of the upper plate and also extends entirely around the upper plate. Thus, the outer peripheral side surface 74 of the upper plate 20 is not perpendicular to the plane of the second surface 52. Because of the inclination of the second surface 52 to the first surface 42, the outer peripheral side surface 74 of the upper plate 20 has a greater axial extent in the anterior portion 22 of the upper plate (to the right as viewed in Fig. 5) than in the posterior portion 24 of the upper plate (to the left as viewed in Fig. 5).
  • the upper plate 20 has an outer peripheral flange 78 which extends around the periphery of the upper plate.
  • the flange 78 has a generally planar first surface 80 which extends outward from the outer peripheral side surface 74, in a direction parallel to the first surface 42.
  • the first surface 80 of the flange 78 forms a part of the outer major side surface 50 of the upper plate 20.
  • the flange 78 has a curved convex second surface 82 which extends downward (as viewed in Fig. 5) and inward from the first surface 80 of the flange.
  • the curved convex second surface 82 extends around the outer perimeter 83 of the upper plate 20.
  • the curved convex surface 82 is disposed outward of the second surface 52 of the upper plate 20.
  • a planar third surface 84 of the flange 78 extends inward from the second surface 82, in a direction parallel to the first surface 80 of the flange and parallel to the first surface 42 of the upper plate 20.
  • the third surface 84 of the flange 78 lies in a plane located between the plane of the first surface 42 of the upper plate 20 and the plane of the second surface 52 of the upper plate.
  • the third surface 84 of the flange 78 extends from a location outward of the outer peripheral side surface 74, to a location inward of the outer peripheral side surface 74, and merges with the outer surface 46 of the first rim 44.
  • the second and third surfaces 82 and 84 of the flange 78 form a part of the inner major side surface 40 of the upper plate 20.
  • a porous coating 90 (Figs. 4 and 6) is located in the recess 48 in the inner major side surface 40 of the upper plate 20.
  • the coating 90 is formed on the first surface 42 and is circumscribed by, or lies inward of, the first rim 44.
  • the coating 90 covers the entire extent of the first surface 42.
  • the coating 90 comprises a layer of small spherical particles or beads 92.
  • the beads 92 are preferably made of commercially pure titanium, but could be made of any suitable biocompatible material.
  • the beads 92 are sized such that none of the beads pass through a 25 mesh U.S. Series Sieve and all the beads pass through a 40 mesh U.S. Series Sieve.
  • the beads 92 are preferably adhered to the upper plate 20 by diffusion bonding.
  • the beads 92 can, alternatively, be applied to the upper plate 20 by any other suitable technique.
  • the coating 90 of beads 92 is firmly adhered to the upper plate 20 and is incapable of removal by normal abrasions. As described below, the coating 90 in combination with a primary adhesive interlocks with the material of the elastomeric core 200 to provide a strong bond between the upper plate 20 and the elastomeric core 16. The coating 90 of beads 92 does not project past the first rim 44, that is, in a downward direction as viewed in Figs. 4 and 6.
  • a porous coating 94 (Figs. 2, 4 and 6) is located in the recess 60 in the outer major side surface 50 of the upper plate 20.
  • the coating 94 is made from beads 96 which are the same size as, and are applied in the same manner as, the beads 92 on the first surface 42.
  • the coating 94 is formed on the second surface 52 of the upper plate 20 and is circumscribed by, or lies inward of, the second rim 54.
  • the coating 94 covers the entire extent of the second surface 52.
  • the coating 94 also covers the dome 62.
  • the coating 94 on the second surface 52 as described below, provides for ingrowth of bony tissue when the disc 10 is implanted in the spine 16.
  • the coating 94 of beads 96 is thicker than the depth of the recess 60.
  • the beads 96 of the coating 94 project axially outward past the second rim 54. This is in contrast to the coating 90, which does not project axially outward past the first rim 44.
  • the lower plate 120 is identical in configuration to the upper plate.
  • the lower plate 120 is rigid and is made from the same material as the upper plate.
  • the lower plate 120 (Fig. 5) has an anterior portion 122 which is disposed anteriorly in the spine 16 when the disc 10 is implanted in the spine.
  • a posterior portion 124 of the lower plate 120 is disposed posteriorly in the spine 16 when the disc 10 is implanted in the spine.
  • the configuration of the lower plate 120 as viewed in plan is the same as the configuration of the upper plate 20.
  • the outer perimeter 183 of the lower plate 120 has a flat posterior portion and a curved convex portion which extends between opposite ends and of the flat portion of the outer perimeter.
  • the lower plate 120 like the upper plate 20, does not have any outwardly projecting lobes.
  • the lower plate 120 has an inner major side surface 140 (Fig. 5) which is presented upward as viewed in Fig. 5.
  • the inner major side surface 140 includes all of the surface area of the lower plate 120 which is visible from above (in plan) as viewed in Fig. 5.
  • the inner major side surface 140 of the lower plate 120 includes a planar third surface 142 of the lower plate 120 which extends perpendicular to the axis 28.
  • the area of the first surface 142 is at least 65% or more of the area of the inner major side surface 140 as viewed in plan, that is, with all points on the inner major side surface 140 viewed in a direction parallel to the axis 28.
  • the area of the third surface 142 is 75% of the area of the inner major side surface 140.
  • the third surface 142 is circumscribed by a first rim 144 of the lower plate 20.
  • the first rim 144 has a generally semi-cylindrical cross-sectional configuration as shown in Fig. 5 including an arcuate outer surface 146.
  • the third surface 142 forms the bottom of the recess 148.
  • the outer surface 146 on the first rim 144 forms a part of the inner major side surface 140 of the lower plate 120.
  • the lower plate 120 has an outer major side surface 150 which is presented downward as viewed in Fig. 5.
  • the outer major side surface 150 includes all of the surface area of the lower plate 120 which is visible from below (in plan) as viewed in Fig. 5.
  • the outer major side surface 150 of the lower plate 120 includes a planar fourth surface 152 of the lower plate.
  • the fourth surface 152 is circumscribed by a second rim 154 of the lower plate 120.
  • the area of the fourth surface 152 is greater than the area of the third surface 142.
  • the area of the fourth surface 152 is 85% or more, and preferably 92%, of the area of the inner major side surface 140.
  • the second rim 154 is located outward of (as viewed in plan) the first rim 144.
  • the second rim 154 has an inner surface 156, which extends perpendicular to the second surface 152 and extends entirely around the lower plate 120, and a curved outer surface 158.
  • the fourth surface 152 forms the bottom of the recess 160.
  • the distance by which the second rim 154 projects from the fourth surface 152 is less than the distance by which the first rim 144 projects from the third surface 142.
  • the recess 160 in the outer major side surface 150 of the lower plate 120 is shallower than the recess 148 in the inner major side surface 140 of the lower plate.
  • the fourth surface 152 of the lower plate 120 is inclined relative to the third surface 142 of the lower plate.
  • the fourth surface 152 is inclined at an angle in the range of from about 1.5° to about 7.5° relative to the third surface 142. In the illustrated preferred embodiment, the fourth surface 152 is inclined at an angle of 5° relative to the third surface 142. In another preferred embodiment, not illustrated, the fourth surface 152 is inclined at an angle of 2.5° relative to the third surface 142.
  • the third and fourth surfaces 142 and 152 are oriented relative to each other so that they are closest together at the posterior portion 124 of the lower plate 120, and farthest apart at the anterior portion 122 of the lower plate.
  • the fourth surface 152 is inclined away from the third surface 142 as the fourth surface 152 extends from the posterior to the anterior of the disc 10.
  • the third and fourth surfaces 142 and 152 diverge as they extend from the posterior portion 124 of the lower plate 120 to the anterior portion 122 of the lower plate. This divergence of the third and fourth surfaces 142 and 152 gives the lower plate 120 the same wedge-shaped configuration as the upper plate 20.
  • a single projection in the form of a dome 162 extends from the fourth surface 152 of the lower plate 120.
  • the dome 162 has a crescent-shaped configuration including a central portion 164 and two opposite tips 166 and 168 (see Fig. 3).
  • the dome 162 is oriented on the fourth surface 152 so that the tips 166 and 168 of the crescent-shaped configuration point generally posteriorly and the central portion 164 of the crescent-shaped configuration is located anteriorly of the tips.
  • the dome 162 is also located anteriorly of the axis 28.
  • the outer surface 158 of the second rim 154 merges with an outer peripheral side surface 174 of the lower plate 120.
  • the outer peripheral side surface 174 extends perpendicular to the third surface 142 of the lower plate 120 and also extends entirely around the lower plate. Thus, the outer peripheral side surface 174 of the lower plate 120 is not perpendicular to the plane of the fourth surface 152. Because of the inclination of the fourth surface 152 to the third surface 142, the outer peripheral side surface 174 of the lower plate 120 has a greater axial extent in the anterior portion 122 of the lower plate (to the right as viewed in Fig. 5) than in the posterior portion 124 of the lower plate (to the left as viewed in Fig. 5).
  • the lower plate 120 has an outer peripheral flange 178 which extends around the periphery of the lower plate.
  • the flange 178 has a generally planar first surface 180 which extends outward from the outer peripheral side surface 174, in a direction parallel to the third surface 142.
  • the first surface 180 on the flange 178 forms a part of the outer major side surface 150 of the lower plate 120.
  • the flange 178 has a curved second surface 182 which extends upward (as viewed in Fig. 5) and inward from the first surface 180 of the flange.
  • the curved convex second surface 182 extends around the outer perimeter 183 of the lower plate 120.
  • the curved convex second surface 182 is disposed outward of the second surface 152 of the lower plate 120.
  • a planar third surface 184 of the flange 178 extends inward from the second surface 182, in a direction parallel to the first surface 180 of the flange and parallel to the third surface 142 of the lower plate 120.
  • the third surface 184 of the flange 178 lies in a plane located between the plane of the third surface 142 of the lower plate 120 and the plane of the fourth surface 152 of the lower plate.
  • the third surface 184 of the flange 178 extends from a location outward of the outer peripheral side surface 174, to a location inward of the outer peripheral side surface 174, and merges with the outer surface 146 of the first rim 144.
  • the second and third surfaces 182 and 84 of the flange 178 form a part of the inner major side surface 140 of the lower plate 120.
  • a porous coating 190 (Fig. 4) is located in the recess 148 in the inner major side surface 140 of the lower plate 120.
  • the coating 190 is formed on the third surface 142 and is circumscribed by, or lies inward of, the first rim 144.
  • the coating 190 covers the entire extent of the third surface 142.
  • the coating 190 comprises a layer of small spherical particles or beads 192.
  • the beads 192 are made from the same material as the beads 92 of the coating 90.
  • the beads 192 are preferably adhered to the lower plate 120 by diffusion bonding.
  • the beads 192 can, alternatively, be applied to the lower plate 120 by any other suitable technique.
  • the coating 190 of beads 192 is firmly adhered to the lower plate 120 and is incapable of removal by normal abrasions. As described below, the coating 190 in combination with a primary adhesive interlocks with the material of the elastomeric core 200 to provide a strong bond between the lower plate 120 and the elastomeric core 16.
  • the coating 190 of beads 192 does not project axially outward of the first rim 144.
  • a similar porous coating 194 (Figs. 3 and 4) is located in the recess 60 in the outer major side surface 150 of the lower plate 120.
  • the coating 194 is formed on the fourth surface 152 and is circumscribed by, or lies inward of, the second rim 154.
  • the coating 194 covers the entire extent of the fourth surface 152.
  • the coating 194 also covers the dome 162.
  • the coating 194 is made from a plurality of beads 196 which are the same as, and are applied in the same manner as, the beads 192 on the third surface 142.
  • the coating 194 on the fourth surface 152 as described below, provides for ingrowth of bony tissue when the disc 10 is implanted in the spine 16.
  • the layer 190 of beads 196 is thicker than the depth of the recess 160.
  • the beads 196 of the coating 194 project axially outward past the second rim 154. This is in contrast to the coating 190, which does not project axially outward past the first rim 144.
  • the elastomeric core 200 is preferably made of a polyolefin rubber or carbon black reinforced polyolefin rubber.
  • the hardness of the elastomeric core is 56-72 shore A durometer.
  • the ultimate tensile strength of the core is greater than 1600 psi.
  • the core has an ultimate elongation greater than 300% using the ASTM D412-87 testing method, and a tear resistance greater than 100 ppi using the ASTM D624-86 testing method.
  • the elastomeric core 200 is disclosed as being made of a polyolefin rubber, it can be made of any elastomeric material that simulates the characteristics of a natural disc.
  • the plates 20 and 120 are cleaned in a methyl ethyl ketone or similar reagent bath for approximately 25 minutes.
  • the plates 20 and 120 are etched, for example with a nitric hydrofluoric acid solution, to remove any oxide coating from the plates.
  • the plates 20 and 120 are rinsed in distilled water, and a primer is applied to the plates that will be bonded to the core 200.
  • the primer is applied within about 2 hours of the etch, and at a nominal thickness of 0.35 mils. After the primer has dried for not less than 60 minutes, an adhesive is applied at a nominal thickness of 0.65 mils.
  • the plates 20 and 120 are then placed in a mold and the elastomeric material of the core 200 is flowed into the mold and adhered to the plates.
  • the elastomeric material of the core 200 is then cured to form the completed disc 10.
  • the elastomeric core 200 includes a main portion 201 and a peripheral portion
  • the peripheral portion 203 of the core 200 is located outward of the first rims 44 and 144 and the imaginary line 205 in Figs. 7 and 8.
  • the main portion 201 of the core 200 is located inward of the peripheral portion 203 of the core; the peripheral portion of the core extends around the main portion of the core.
  • the core 200 has a planar upper surface 202 (Figs. 2, 4 and 6) which is affixed to and overlies the first surface 42 of the upper plate 20.
  • a portion 204 (Fig.
  • the first surface 42 of the upper plate 20 is bonded to the upper surface 202 of the elastomeric core 200 and to the beads throughout the entire extent of the first surface.
  • the main portion 201 of the core 200 includes a portion 206 (Fig. 6) which extends over and is adhered to the curved outer surface 46 of the first rim 44 on the upper plate 20. As a result, the first rim 44 is bonded to the main portion 201 of the core 200.
  • a portion 208 of the peripheral portion 203 of the core 200 overlies the outside of the rim 44.
  • the core portion 208 extends over and is adhered to the planar third surface 84 of the flange 78 of the upper plate 20.
  • the core portion 208 increases in thickness as it extends from the convex second surface 82 toward the main portion 201 and the rim 44.
  • the peripheral portion 203 of the core includes yet another portion 210.
  • the material portion 210 of the core 200 extends over and is adhered or bonded to the curved convex second surface 82 of the upper plate 20.
  • the curved convex second surface 82 of the flange 78 of the upper plate 20 faces the portion 210 of the peripheral portion 203 of the core 200.
  • the peripheral portion 203 of the core 200 decreases in thickness as it extends from the planar third surface 84 toward the curved second surface 82 of the upper plate 20.
  • the material portion 210 which overlies the second surface 82 of the flange 78 tapers to a zero thickness, as it approaches the first surface 80 of the flange. Conversely, the material portion 210 increases in thickness as it extends from the curved convex plate surface 82 toward the main portion 201 of the core 200, that is, in a direction to the right as viewed in Fig. 6.
  • the material of the core 200 is also affixed to the inner side surface 140 of the lower plate 120.
  • the main portion 201 of the core 200 extends into and interlocks with the third surface 142 of the lower plate 120, as well as with the porous coating 190 on the third surface.
  • the core 200 has a planar lower surface 212 (Fig. 4) which is affixed to the third surface 142 of the lower plate 120.
  • the lower surface 212 of the core 200 is parallel to the upper surface 202 of the core.
  • the third surface 142 of the lower plate 120 is bonded to the lower surface 212 of the elastomeric core 200 throughout the entire extent of the third surface.
  • the main portion 201 of the core 200 includes a portion 216 (Fig. 6) which extends over and is adhered to the curved outer surface 146 of the first rim 144 on the lower plate 120. As a result, the first rim 144 is bonded to the main portion 201 of the core 200.
  • a portion 218 of the peripheral portion 203 of the core 200 extends over and is adhered to the planar third surface 184 of the flange 178 of the lower plate 20.
  • the core portion 218 also overlies the outer side of the first rim 144.
  • the core portion 218 increases in thickness as it extends from the convex second surface 182 toward the rim 144 and the main portion 201.
  • the peripheral portion 203 of the core 200 decreases in thickness as it extends from the planar third surface 184 toward the curved second surface 182 of the lower plate 120.
  • the peripheral portion of the core includes yet another portion 220.
  • the material portion 220 of the core 200 extends over and is adhered or bonded to the curved convex second surface 182 of the lower plate 120.
  • the curved convex second surface 182 of the flange 178 of the lower plate 120 faces the portion 220 of the material of the core 200.
  • the material portion 220 which overlies the second surface 182 of the flange 178 tapers to a zero thickness, as it approaches the first surface 180 of the flange. Conversely, the material portion 220 increases in thickness as it extends from the curved convex second surface 182 toward the main portion 201 of the core 200, that is, in a direction to the left as viewed in Fig. 4.
  • the core 200 has an exposed outer side surface 230 (Figs. 2, 4 and 6) which extends between the upper and lower plates 20 and 120.
  • the outer side surface 230 of the core 200 has a generally hourglass-shaped configuration (best seen in Fig. 4) which is widest at the curved convex surfaces 82 and 182 of the upper and lower plates 20 and 120, respectively.
  • the outer side surface 230 of the core 200 includes a first surface portion 232 (Figs. 4 and 6) extending substantially perpendicular to the first surface 42 of the upper plate 20.
  • the first surface portion 232 is located outward of the flange 78 of the upper plate 20.
  • a convexly curved second portion 234 of the outer side surface 230 of the core 200 extends from the first surface portion 232, in a direction toward the lower plate 120.
  • the surface portion 234 is formed on the core material portion 210 (Fig. 6) which overlies the curved convex outer surface 82 of the upper plate 20.
  • a concave third portion 236 of the outer side surface 230 of the core 200 extends from the second surface portion 234, in a direction toward the lower plate 120.
  • the outer side surface 230 of the core 200 includes an innermost or narrowest fourth surface portion 238 extending from the third surface portion 236, in a direction substantially perpendicular to the first surface 42 of the upper plate 20 and parallel to the axis 28 of the disc 10.
  • the fourth surface portion 238 is disposed axially at a location between the upper plate 20 and the lower plate 120.
  • the fourth surface portion 238 is disposed inward of the outer periphery of the plate flanges 78 and 178, but outward of the first rims 44 and 144 of the plates.
  • the fourth surface portion 238 merges with a concave fifth surface portion 240 (Fig. 4) which is a mirror image of the third surface portion 236.
  • the fifth surface portion 240 merges with a convex sixth surface portion 242 which is a mirror image of the second surface portion 234.
  • the sixth surface portion 242 overlies the curved convex outer surface 182 of the lower plate 120.
  • the sixth surface portion 242 merges with a seventh surface portion 244 which is a mirror image of the first surface portion 232.
  • the seventh surface portion 244 is located outward of the flange 178 of the lower plate 120.
  • the main portion 201 of the core 200 is of substantially uniform thickness. Because the main portion 201 of the core 200 is of uniform thickness and the plates 20 and 120 are wedge-shaped, the overall configuration of the disc 10 is wedge-shaped. The disc 10 is thicker in the anterior portion 22 of the disc and is thinner in the posterior portion 24 of the disc.
  • the upper plate 20 When the disc 10 is in use in the spinal column 16, the upper plate 20 is affixed to the upper vertebra 12.
  • the dome 62 on the upper plate 20 is fitted into a corresponding recess or cavity 260 (not shown) formed in the upper vertebra 12.
  • the engagement of the dome 62 of the upper plate 20 in the cavity 260 in the upper vertebra 12 resists relative movement between the upper plate and the upper vertebra.
  • the porous coating 94 on the second surface 52 of the upper plate 20 promotes bone ingrowth between the upper vertebra 12 and the upper plate 20.
  • the second surface 52 (Fig. 6) of the upper plate 20 engages the bony material of the upper vertebra 12. Interlocking engagement between the upper plate 20 and the bony material of the upper vertebra 12 is enhanced by the fact that the beads 96 of the coating 94 project axially outward past the second rim 54.
  • the lower plate 120 is affixed to the lower vertebra 14.
  • the dome 162 on the lower plate 120 is fitted into a corresponding recess or cavity 262 (not shown) formed in the lower vertebra 14.
  • the engagement of the dome 162 of the lower plate 120 in the cavity 262 in the lower vertebra 14 resists relative movement between the lower plate and the lower vertebra.
  • the configuration of the dome 162 on the lower plate 120 has the same advantages as described above with reference to the dome 62 on the upper plate 20.
  • the porous coating 194 on the fourth surface 152 promotes bone ingrowth between the lower vertebra 14 and the lower plate 120.
  • the fourth surface 152 of the lower plate 120 engages the material of the lower vertebra 14. Interlocking engagement between the lower plate 120 and the bony material of the lower vertebra 14 is enhanced by the fact that the beads 196 of the coating 194 project axially outward past the second rim 154.
  • the configuration of the areas of engagement between the elastomeric core 200 and the plates 20 and 120 minimizes any tendency of the plates to separate from the elastomeric core.
  • the molding of the perimeter of the core 200 to the curved convex outer surfaces 82 and 182 of the plates 20 and 120, respectively helps to reduce the stress concentrations at the perimeter of the core and increases the fatigue life in cycles of the spinal disc 10 when subjected to shear deformation.
  • the peripheral portion 203 of the core 200, and particularly portion 208 is a pool of elastomeric material which can stretch to absorb the stress induced on the disc 10.
  • the stress concentrations are minimized on the main portion 201 of the core, which extends generally between the first surface 42 of the upper plate 42 and the third surface 142 of the lower plate 120.
  • first rims 44 and 144 on the plates 20 and 120, respectively, with their curved outer surfaces 46 and 146, provide strain relief at the perimeter of the flat main portion 201 of the elastomeric core 200.

Abstract

A spinal disc prosthesis (10) includes an upper rigid plate (20) having an outer perimeter (83) and a lower rigid plate (120) having an outer perimeter (183). A body (200) of elastomeric material is located between and bonded to upper and lower rigid plates (83, 183) and includes a main portion (201) and a peripheral portion (203). Upper and lower plates (83, 183) each have a curved convex plate surface (82, 182). Peripheral portion (203) has a first part (208) which is bonded to curved convex plate surfaces (82, 182) of upper and lower plates (20, 120) and extends toward main portion (201). First part (208) increases in thickness as first part (208) extends toward main portion (201).

Description

ARTIFICIAL SPINAL DISC
Background and Summary of the Invention
The present invention relates to a spinal disc prosthesis to replace a damaged or degenerated spinal disc in a spinal column of a human.
United States Patents Nos. 5,017,437 and 5,534,030 disclose typical spinal disc prostheses to replace a damaged or degenerated spinal disc in a spinal column of a human. The discs disclosed in these patents include a pair of rigid plates adhered to opposite surfaces of a body of elastomeric material. The disc when in use is positioned between adjacent vertebrae. The disc is subject to forces which act in the spine including compression forces due to loads on the spine, tension forces due to bending of the spine, and torsional forces due to twisting of the spine. These forces can be applied simultaneously to the disc. These forces act to attempt to separate the rigid plates from the body of elastomeric material. The present invention relates to a spinal disc prosthesis to replace a damaged spinal disc in a spinal column of a human. The spinal disc prosthesis includes a body of elastomeric material located between and bonded to upper and lower rigid plates. The body of elastomeric material includes a main portion and a peripheral portion extending around the main portion. The upper and lower plates each have a curved convex plate surface extending around the respective outer perimeters and facing the peripheral portion of the body of elastomeric material. The peripheral portion of the body of elastomeric material has a first part which is bonded to the curved convex plate surfaces of the upper and lower plates and extends toward the main portion. The first part of the peripheral portion increases in thickness as the first part extends from the curved convex plate surfaces toward the main portion. The first part of the peripheral portion of the body of elastomeric material has a convexly curved outer surface which forms a part of the outer surface of the body of elastomeric material.
Brief Description of the Drawings
The foregoing and other features of the present invention will become more apparent to one skilled in the art upon reading the following description of a preferred embodiment with reference to the accompanying drawings, wherein:
Fig. 1 is an elevational view of a human spinal column having a spinal disc in accordance with the present invention between adjacent vertebrae of the spinal column; Fig. 2 is a top perspective view of the spinal disc of Fig. 1;
Fig. 3 is a bottom plan view of the spinal disc of Fig. 1;
Fig. 4 is an elevational view, partly in section, of the spinal disc of Fig. 1, taken generally along line 4-4 of Fig. 3;
Fig. 5 is a sectional view of the spinal disc of Fig. 1, taken generally along line 5-5 of Fig. 3 and with parts removed;
Fig. 6 is an enlarged view of a portion of Fig. 4;
Fig. 7 is an enlarged sectional view of a portion of the spinal disc of Fig. 1, shown in a first condition; and
Fig. 8 is a view similar to Fig. 7 showing the spinal disc in a second condition.
Description of a Preferred Embodiment
The present invention relates to an artificial spinal disc prosthesis to replace a damaged or degenerated spinal disc in a spinal column of a human. As representative of the present invention, Fig. 1 illustrates a spinal disc prosthesis, i.e., spinal disc 10. The spinal disc 10 is illustrated in use between adjacent upper and lower vertebrae 12 and 14 of a human spinal column 16. The vertebrae 12 and 14 have portions which face anteriorly (to the right as viewed in Fig. 1) and portions which face posteriorly (to the left as viewed in Fig. 1).
The disc 10 comprises a first or upper rigid plate 20, a second or lower rigid plate 120, and an elastomeric core 200 interposed between and adhered to the two plates. The upper and lower plates 20 and 120 are identical to each other, and the disc 10 is symmetrical about an anterior-posterior, horizontally extending plane A (Fig. 4) and is also symmetrical about a sagittal plane B (Fig. 3). The terms "upper" and "lower" are used herein with reference to the orientation of the disc 10 when it is implanted in the human body as illustrated in Fig. 1, to distinguish the two identical plates for reference purposes.
The upper plate 20 (Fig. 5) is rigid and is preferably made of a biocompatible metal such as a titanium-vanadium-aluminum alloy having about 90% by weight titanium, about 6% by weight aluminum, and about 4% by weight vanadium. Alternatively, the upper plate 20 can be made of any suitable biocompatible material, including but not limited to a composite plastic material. The upper plate 20 is preferably milled out of a single block of metal. The upper plate 20 could, however, be made in a different manner, for example, by casting.
The upper plate 20 has an anterior portion 22 and a posterior portion 24. The anterior portion 22 of the upper plate 20 is that portion of the upper plate which is disposed anteriorly in the spine 16 when the disc 10 is implanted in the spine. The posterior portion 24 of the upper plate 20 is that portion of the upper plate which is disposed posteriorly in the spine 16 when the disc 10 is implanted in the spine. The anterior portion of the upper plate can be said to be located generally on one side (to the right as viewed in Fig. 5) of an axis 28 of the disc 10; the posterior portion of the upper plate can be said to be located generally on the other side (to the left as viewed in Fig. 6) of the axis 28. The axis 28 extends through the disc between the upper and lower plates 20 and 120. The axis 28 extends generally along the length of the spinal column 16 when the disc 10 is implanted in the spinal column.
The configuration of the disc 10 (as viewed in plan) is designed to conform generally to the shape of a natural human spinal disc. The outer perimeter 30 (Fig. 3) of the disc 10 has a flat posterior portion 32. The outer perimeter 30 of the disc 10 has a curved convex portion 34 which extends between opposite ends 36 and 38 of the flat portion 32 of the outer perimeter. The outer perimeter 30 of the disc 10, including the outer perimeter of the core 200 and the outer perimeters 83 and 183 of the plates 20 and 120, does not have any outwardly projecting lobes. The outer perimeter of the core 200 has the same configuration (as viewed in plan) as the outer perimeter of the upper and lower plates 20 and 120.
The upper plate 20 has an inner major side surface 40 which is presented downward as viewed in Fig. 5. The inner major side surface 40 includes all of the surface area of the upper plate 20 which is visible from below (in plan) as viewed in Fig. 5. The inner major side surface 40 of the upper plate 20 includes a planar first surface 42 of the upper plate which extends perpendicular to the axis 28. The area of the first surface 42 is at least 65% of the area of the inner major side surface 40 as viewed in plan, that is, with all points on the inner major side surface 40 viewed in a direction parallel to the axis 28. Preferably, the area of the first surface 42 is 75% of the area of the inner major side surface 40.
The first surface 42 is circumscribed by a first rim 44 of the upper plate 20. The first rim 44 has a generally semi-cylindrical cross-sectional configuration as shown in Fig. 5 including an arcuate outer surface 46. The outer surface 46 on the first rim 44, and the first surface 42, together define a shallow cavity or recess 48 in the inner major side surface 40 of the upper plate 20. The first surface 42 forms the bottom of the recess 48. The outer surface 46 on the first rim 44 forms a part of the inner major side surface 40 of the upper plate 20.
The upper plate 20 has an outer major side surface 50 which is presented upward as viewed in Fig. 5. The outer major side surface 50 includes all of the surface area of the upper plate 20 which is visible from above (in plan) as viewed in Fig. 5. The outer major side surface 50 includes a planar second surface 52 of the upper plate 20. The second surface 52 is circumscribed by a second rim 54 of the upper plate 20. The area of the second surface 52 is greater than the area of the first surface 42. The area of the second surface 52 is 85% or more, and preferably 92%, of the area of the inner major side surface 40.
The second rim 54 is located outward of (as viewed in plan) the first rim 44. The second rim 54 has an inner surface 56, which extends perpendicular to the second surface 52 and extends entirely around the upper plate 20, and a curved outer surface 58. The inner surface 56 of the second rim 54, and the second surface 52, together define a shallow cavity or recess 60 in the outer major side surface 50 of the upper plate 20. The second surface 52 forms the bottom of the recess 60. The distance by which the second rim 54 projects from the second surface 52 is less than the distance by which the first rim 44 projects from the first surface 42. Thus, the recess 60 in the outer major side surface 50 of the upper plate 20 is shallower than the recess 48 in the inner major side surface 40 of the upper plate.
The second surface 52 of the upper plate 20 is inclined relative to the first surface 42 of the upper plate. The second surface 52 is inclined at an angle in the range of from about 1.5° to about 7.5° relative to the first surface 42. In the illustrated preferred embodiment, the second surface 52 is inclined at an angle of 5° relative to the first surface 42. In another preferred embodiment, not illustrated, the second surface 52 is inclined at an angle of 2.5° relative to the first surface 42.
The first and second surfaces 42 and 52 are oriented relative to each other so that they are closest together at the posterior portion 24 of the upper plate 20, and farthest apart at the anterior portion 22 of the upper plate. The second surface 52 is inclined away from the first surface 42 as the second surface 52 extends from the posterior to the anterior of the disc 10. Thus, the first and second surfaces 42 and 52 diverge as they extend from the posterior portion 24 of the upper plate 20 to the anterior portion 22 of the upper plate. This divergence of the first and second surfaces 42 and 52 gives the upper plate 20 a wedge-shaped configuration as viewed in a lateral or medial direction (Fig. 4).
A single projection in the form of a dome 62 extends from the second surface 52 of the upper plate 20. The dome 62 has a crescent-shaped configuration including a central portion 64 and two opposite tips 66 and 68 (see Fig. 3). The dome 62 is oriented on the second surface 52 so that the tips 66 and 68 of the crescent-shaped configuration point generally posteriorly and the central portion 64 of the crescent- shaped configuration is located anteriorly of the tips. The dome 62 is also located anteriorly of the axis 28.
The outer surface 58 of the second rim 54 merges with an outer peripheral side surface 74 of the upper plate 20. The outer peripheral side surface 74 of the upper plate 20 extends perpendicular to the first surface 42 of the upper plate and also extends entirely around the upper plate. Thus, the outer peripheral side surface 74 of the upper plate 20 is not perpendicular to the plane of the second surface 52. Because of the inclination of the second surface 52 to the first surface 42, the outer peripheral side surface 74 of the upper plate 20 has a greater axial extent in the anterior portion 22 of the upper plate (to the right as viewed in Fig. 5) than in the posterior portion 24 of the upper plate (to the left as viewed in Fig. 5).
The upper plate 20 has an outer peripheral flange 78 which extends around the periphery of the upper plate. The flange 78 has a generally planar first surface 80 which extends outward from the outer peripheral side surface 74, in a direction parallel to the first surface 42. The first surface 80 of the flange 78 forms a part of the outer major side surface 50 of the upper plate 20. The flange 78 has a curved convex second surface 82 which extends downward (as viewed in Fig. 5) and inward from the first surface 80 of the flange. The curved convex second surface 82 extends around the outer perimeter 83 of the upper plate 20. The curved convex surface 82 is disposed outward of the second surface 52 of the upper plate 20.
A planar third surface 84 of the flange 78 extends inward from the second surface 82, in a direction parallel to the first surface 80 of the flange and parallel to the first surface 42 of the upper plate 20. The third surface 84 of the flange 78 lies in a plane located between the plane of the first surface 42 of the upper plate 20 and the plane of the second surface 52 of the upper plate. The third surface 84 of the flange 78 extends from a location outward of the outer peripheral side surface 74, to a location inward of the outer peripheral side surface 74, and merges with the outer surface 46 of the first rim 44. The second and third surfaces 82 and 84 of the flange 78 form a part of the inner major side surface 40 of the upper plate 20. A porous coating 90 (Figs. 4 and 6) is located in the recess 48 in the inner major side surface 40 of the upper plate 20. The coating 90 is formed on the first surface 42 and is circumscribed by, or lies inward of, the first rim 44. The coating 90 covers the entire extent of the first surface 42. The coating 90 comprises a layer of small spherical particles or beads 92. The beads 92 are preferably made of commercially pure titanium, but could be made of any suitable biocompatible material. The beads 92 are sized such that none of the beads pass through a 25 mesh U.S. Series Sieve and all the beads pass through a 40 mesh U.S. Series Sieve. The beads 92 are preferably adhered to the upper plate 20 by diffusion bonding. The beads 92 can, alternatively, be applied to the upper plate 20 by any other suitable technique.
The coating 90 of beads 92 is firmly adhered to the upper plate 20 and is incapable of removal by normal abrasions. As described below, the coating 90 in combination with a primary adhesive interlocks with the material of the elastomeric core 200 to provide a strong bond between the upper plate 20 and the elastomeric core 16. The coating 90 of beads 92 does not project past the first rim 44, that is, in a downward direction as viewed in Figs. 4 and 6.
A porous coating 94 (Figs. 2, 4 and 6) is located in the recess 60 in the outer major side surface 50 of the upper plate 20. The coating 94 is made from beads 96 which are the same size as, and are applied in the same manner as, the beads 92 on the first surface 42. The coating 94 is formed on the second surface 52 of the upper plate 20 and is circumscribed by, or lies inward of, the second rim 54. The coating 94 covers the entire extent of the second surface 52. The coating 94 also covers the dome 62. The coating 94 on the second surface 52, as described below, provides for ingrowth of bony tissue when the disc 10 is implanted in the spine 16. The coating 94 of beads 96 is thicker than the depth of the recess 60. Thus, the beads 96 of the coating 94 project axially outward past the second rim 54. This is in contrast to the coating 90, which does not project axially outward past the first rim 44.
The lower plate 120 is identical in configuration to the upper plate. The lower plate 120 is rigid and is made from the same material as the upper plate. The lower plate 120 (Fig. 5) has an anterior portion 122 which is disposed anteriorly in the spine 16 when the disc 10 is implanted in the spine. A posterior portion 124 of the lower plate 120 is disposed posteriorly in the spine 16 when the disc 10 is implanted in the spine.
The configuration of the lower plate 120 as viewed in plan (Fig. 3) is the same as the configuration of the upper plate 20. The outer perimeter 183 of the lower plate 120 has a flat posterior portion and a curved convex portion which extends between opposite ends and of the flat portion of the outer perimeter. The lower plate 120, like the upper plate 20, does not have any outwardly projecting lobes.
The lower plate 120 has an inner major side surface 140 (Fig. 5) which is presented upward as viewed in Fig. 5. The inner major side surface 140 includes all of the surface area of the lower plate 120 which is visible from above (in plan) as viewed in Fig. 5. The inner major side surface 140 of the lower plate 120 includes a planar third surface 142 of the lower plate 120 which extends perpendicular to the axis 28. The area of the first surface 142 is at least 65% or more of the area of the inner major side surface 140 as viewed in plan, that is, with all points on the inner major side surface 140 viewed in a direction parallel to the axis 28. Preferably, the area of the third surface 142 is 75% of the area of the inner major side surface 140.
The third surface 142 is circumscribed by a first rim 144 of the lower plate 20. The first rim 144 has a generally semi-cylindrical cross-sectional configuration as shown in Fig. 5 including an arcuate outer surface 146. The outer surface 146 on the first rim 144, and the third surface 142, together define a shallow cavity or recess 148 in the inner major side surface 140 of the lower plate 120. The third surface 142 forms the bottom of the recess 148. The outer surface 146 on the first rim 144 forms a part of the inner major side surface 140 of the lower plate 120.
The lower plate 120 has an outer major side surface 150 which is presented downward as viewed in Fig. 5. The outer major side surface 150 includes all of the surface area of the lower plate 120 which is visible from below (in plan) as viewed in Fig. 5. The outer major side surface 150 of the lower plate 120 includes a planar fourth surface 152 of the lower plate. The fourth surface 152 is circumscribed by a second rim 154 of the lower plate 120. The area of the fourth surface 152 is greater than the area of the third surface 142. The area of the fourth surface 152 is 85% or more, and preferably 92%, of the area of the inner major side surface 140. The second rim 154 is located outward of (as viewed in plan) the first rim 144.
The second rim 154 has an inner surface 156, which extends perpendicular to the second surface 152 and extends entirely around the lower plate 120, and a curved outer surface 158. The inner surface 156 of the second rim 154, and the fourth surface 152, together define a shallow cavity or recess 160 in the outer major side surface 150 of the lower plate 120. The fourth surface 152 forms the bottom of the recess 160.
The distance by which the second rim 154 projects from the fourth surface 152 is less than the distance by which the first rim 144 projects from the third surface 142. Thus, the recess 160 in the outer major side surface 150 of the lower plate 120 is shallower than the recess 148 in the inner major side surface 140 of the lower plate. The fourth surface 152 of the lower plate 120 is inclined relative to the third surface 142 of the lower plate. The fourth surface 152 is inclined at an angle in the range of from about 1.5° to about 7.5° relative to the third surface 142. In the illustrated preferred embodiment, the fourth surface 152 is inclined at an angle of 5° relative to the third surface 142. In another preferred embodiment, not illustrated, the fourth surface 152 is inclined at an angle of 2.5° relative to the third surface 142.
The third and fourth surfaces 142 and 152 are oriented relative to each other so that they are closest together at the posterior portion 124 of the lower plate 120, and farthest apart at the anterior portion 122 of the lower plate. The fourth surface 152 is inclined away from the third surface 142 as the fourth surface 152 extends from the posterior to the anterior of the disc 10. Thus, the third and fourth surfaces 142 and 152 diverge as they extend from the posterior portion 124 of the lower plate 120 to the anterior portion 122 of the lower plate. This divergence of the third and fourth surfaces 142 and 152 gives the lower plate 120 the same wedge-shaped configuration as the upper plate 20.
A single projection in the form of a dome 162 extends from the fourth surface 152 of the lower plate 120. The dome 162 has a crescent-shaped configuration including a central portion 164 and two opposite tips 166 and 168 (see Fig. 3). The dome 162 is oriented on the fourth surface 152 so that the tips 166 and 168 of the crescent-shaped configuration point generally posteriorly and the central portion 164 of the crescent-shaped configuration is located anteriorly of the tips. The dome 162 is also located anteriorly of the axis 28. The outer surface 158 of the second rim 154 merges with an outer peripheral side surface 174 of the lower plate 120. The outer peripheral side surface 174 extends perpendicular to the third surface 142 of the lower plate 120 and also extends entirely around the lower plate. Thus, the outer peripheral side surface 174 of the lower plate 120 is not perpendicular to the plane of the fourth surface 152. Because of the inclination of the fourth surface 152 to the third surface 142, the outer peripheral side surface 174 of the lower plate 120 has a greater axial extent in the anterior portion 122 of the lower plate (to the right as viewed in Fig. 5) than in the posterior portion 124 of the lower plate (to the left as viewed in Fig. 5).
The lower plate 120 has an outer peripheral flange 178 which extends around the periphery of the lower plate. The flange 178 has a generally planar first surface 180 which extends outward from the outer peripheral side surface 174, in a direction parallel to the third surface 142. The first surface 180 on the flange 178 forms a part of the outer major side surface 150 of the lower plate 120.
The flange 178 has a curved second surface 182 which extends upward (as viewed in Fig. 5) and inward from the first surface 180 of the flange. The curved convex second surface 182 extends around the outer perimeter 183 of the lower plate 120. The curved convex second surface 182 is disposed outward of the second surface 152 of the lower plate 120.
A planar third surface 184 of the flange 178 extends inward from the second surface 182, in a direction parallel to the first surface 180 of the flange and parallel to the third surface 142 of the lower plate 120. The third surface 184 of the flange 178 lies in a plane located between the plane of the third surface 142 of the lower plate 120 and the plane of the fourth surface 152 of the lower plate. The third surface 184 of the flange 178 extends from a location outward of the outer peripheral side surface 174, to a location inward of the outer peripheral side surface 174, and merges with the outer surface 146 of the first rim 144. The second and third surfaces 182 and 84 of the flange 178 form a part of the inner major side surface 140 of the lower plate 120.
A porous coating 190 (Fig. 4) is located in the recess 148 in the inner major side surface 140 of the lower plate 120. The coating 190 is formed on the third surface 142 and is circumscribed by, or lies inward of, the first rim 144. The coating 190 covers the entire extent of the third surface 142. The coating 190 comprises a layer of small spherical particles or beads 192.
The beads 192 are made from the same material as the beads 92 of the coating 90. The beads 192 are preferably adhered to the lower plate 120 by diffusion bonding. The beads 192 can, alternatively, be applied to the lower plate 120 by any other suitable technique. The coating 190 of beads 192 is firmly adhered to the lower plate 120 and is incapable of removal by normal abrasions. As described below, the coating 190 in combination with a primary adhesive interlocks with the material of the elastomeric core 200 to provide a strong bond between the lower plate 120 and the elastomeric core 16. The coating 190 of beads 192 does not project axially outward of the first rim 144.
A similar porous coating 194 (Figs. 3 and 4) is located in the recess 60 in the outer major side surface 150 of the lower plate 120. The coating 194 is formed on the fourth surface 152 and is circumscribed by, or lies inward of, the second rim 154. The coating 194 covers the entire extent of the fourth surface 152. The coating 194 also covers the dome 162. The coating 194 is made from a plurality of beads 196 which are the same as, and are applied in the same manner as, the beads 192 on the third surface 142. The coating 194 on the fourth surface 152, as described below, provides for ingrowth of bony tissue when the disc 10 is implanted in the spine 16. The layer 190 of beads 196 is thicker than the depth of the recess 160. Thus, the beads 196 of the coating 194 project axially outward past the second rim 154. This is in contrast to the coating 190, which does not project axially outward past the first rim 144.
The elastomeric core 200 is preferably made of a polyolefin rubber or carbon black reinforced polyolefin rubber. The hardness of the elastomeric core is 56-72 shore A durometer. The ultimate tensile strength of the core is greater than 1600 psi. The core has an ultimate elongation greater than 300% using the ASTM D412-87 testing method, and a tear resistance greater than 100 ppi using the ASTM D624-86 testing method. Although the elastomeric core 200 is disclosed as being made of a polyolefin rubber, it can be made of any elastomeric material that simulates the characteristics of a natural disc.
To construct the spinal disc 10, the plates 20 and 120, with the coatings 90, 94, 190 and 194 in place, are cleaned in a methyl ethyl ketone or similar reagent bath for approximately 25 minutes. The plates 20 and 120 are etched, for example with a nitric hydrofluoric acid solution, to remove any oxide coating from the plates. Thereafter, the plates 20 and 120 are rinsed in distilled water, and a primer is applied to the plates that will be bonded to the core 200. The primer is applied within about 2 hours of the etch, and at a nominal thickness of 0.35 mils. After the primer has dried for not less than 60 minutes, an adhesive is applied at a nominal thickness of 0.65 mils. The plates 20 and 120 are then placed in a mold and the elastomeric material of the core 200 is flowed into the mold and adhered to the plates. The elastomeric material of the core 200 is then cured to form the completed disc 10. The elastomeric core 200 includes a main portion 201 and a peripheral portion
203, separated by an imaginary line 205 (Figs. 4, 6, 7 and 8). The first rims 44 and 144 of the upper and lower plates 20 and 120, respectively, define the outer perimeter of the main portion 201 of the core 200. The peripheral portion 203 of the core 200 is located outward of the first rims 44 and 144 and the imaginary line 205 in Figs. 7 and 8. The main portion 201 of the core 200 is located inward of the peripheral portion 203 of the core; the peripheral portion of the core extends around the main portion of the core. The core 200 has a planar upper surface 202 (Figs. 2, 4 and 6) which is affixed to and overlies the first surface 42 of the upper plate 20. A portion 204 (Fig. 6) of the material of the core 200 extends into and interlocks with the first surface 42 of the upper plate 20, as well as with the porous coating 90 on the first surface. The first surface 42 of the upper plate 20 is bonded to the upper surface 202 of the elastomeric core 200 and to the beads throughout the entire extent of the first surface.
The main portion 201 of the core 200 includes a portion 206 (Fig. 6) which extends over and is adhered to the curved outer surface 46 of the first rim 44 on the upper plate 20. As a result, the first rim 44 is bonded to the main portion 201 of the core 200.
A portion 208 of the peripheral portion 203 of the core 200 overlies the outside of the rim 44. The core portion 208 extends over and is adhered to the planar third surface 84 of the flange 78 of the upper plate 20. The core portion 208 increases in thickness as it extends from the convex second surface 82 toward the main portion 201 and the rim 44.
The peripheral portion 203 of the core includes yet another portion 210. The material portion 210 of the core 200 extends over and is adhered or bonded to the curved convex second surface 82 of the upper plate 20. The curved convex second surface 82 of the flange 78 of the upper plate 20 faces the portion 210 of the peripheral portion 203 of the core 200.
The peripheral portion 203 of the core 200 decreases in thickness as it extends from the planar third surface 84 toward the curved second surface 82 of the upper plate 20. The material portion 210 which overlies the second surface 82 of the flange 78 tapers to a zero thickness, as it approaches the first surface 80 of the flange. Conversely, the material portion 210 increases in thickness as it extends from the curved convex plate surface 82 toward the main portion 201 of the core 200, that is, in a direction to the right as viewed in Fig. 6.
The material of the core 200, as thus formed, is also affixed to the inner side surface 140 of the lower plate 120. The main portion 201 of the core 200 extends into and interlocks with the third surface 142 of the lower plate 120, as well as with the porous coating 190 on the third surface. The core 200 has a planar lower surface 212 (Fig. 4) which is affixed to the third surface 142 of the lower plate 120. The lower surface 212 of the core 200 is parallel to the upper surface 202 of the core. The third surface 142 of the lower plate 120 is bonded to the lower surface 212 of the elastomeric core 200 throughout the entire extent of the third surface.
The main portion 201 of the core 200 includes a portion 216 (Fig. 6) which extends over and is adhered to the curved outer surface 146 of the first rim 144 on the lower plate 120. As a result, the first rim 144 is bonded to the main portion 201 of the core 200.
A portion 218 of the peripheral portion 203 of the core 200 extends over and is adhered to the planar third surface 184 of the flange 178 of the lower plate 20. The core portion 218 also overlies the outer side of the first rim 144. The core portion 218 increases in thickness as it extends from the convex second surface 182 toward the rim 144 and the main portion 201. The peripheral portion 203 of the core 200 decreases in thickness as it extends from the planar third surface 184 toward the curved second surface 182 of the lower plate 120. The peripheral portion of the core includes yet another portion 220. The material portion 220 of the core 200 extends over and is adhered or bonded to the curved convex second surface 182 of the lower plate 120. The curved convex second surface 182 of the flange 178 of the lower plate 120 faces the portion 220 of the material of the core 200. The material portion 220 which overlies the second surface 182 of the flange 178 tapers to a zero thickness, as it approaches the first surface 180 of the flange. Conversely, the material portion 220 increases in thickness as it extends from the curved convex second surface 182 toward the main portion 201 of the core 200, that is, in a direction to the left as viewed in Fig. 4.
The core 200 has an exposed outer side surface 230 (Figs. 2, 4 and 6) which extends between the upper and lower plates 20 and 120. The outer side surface 230 of the core 200 has a generally hourglass-shaped configuration (best seen in Fig. 4) which is widest at the curved convex surfaces 82 and 182 of the upper and lower plates 20 and 120, respectively.
Specifically, the outer side surface 230 of the core 200 includes a first surface portion 232 (Figs. 4 and 6) extending substantially perpendicular to the first surface 42 of the upper plate 20. The first surface portion 232 is located outward of the flange 78 of the upper plate 20. A convexly curved second portion 234 of the outer side surface 230 of the core 200 extends from the first surface portion 232, in a direction toward the lower plate 120. The surface portion 234 is formed on the core material portion 210 (Fig. 6) which overlies the curved convex outer surface 82 of the upper plate 20. A concave third portion 236 of the outer side surface 230 of the core 200 extends from the second surface portion 234, in a direction toward the lower plate 120.
The outer side surface 230 of the core 200 includes an innermost or narrowest fourth surface portion 238 extending from the third surface portion 236, in a direction substantially perpendicular to the first surface 42 of the upper plate 20 and parallel to the axis 28 of the disc 10. The fourth surface portion 238 is disposed axially at a location between the upper plate 20 and the lower plate 120. The fourth surface portion 238 is disposed inward of the outer periphery of the plate flanges 78 and 178, but outward of the first rims 44 and 144 of the plates.
The fourth surface portion 238 merges with a concave fifth surface portion 240 (Fig. 4) which is a mirror image of the third surface portion 236. The fifth surface portion 240 merges with a convex sixth surface portion 242 which is a mirror image of the second surface portion 234. The sixth surface portion 242 overlies the curved convex outer surface 182 of the lower plate 120.
The sixth surface portion 242 merges with a seventh surface portion 244 which is a mirror image of the first surface portion 232. The seventh surface portion 244 is located outward of the flange 178 of the lower plate 120.
The main portion 201 of the core 200 is of substantially uniform thickness. Because the main portion 201 of the core 200 is of uniform thickness and the plates 20 and 120 are wedge-shaped, the overall configuration of the disc 10 is wedge-shaped. The disc 10 is thicker in the anterior portion 22 of the disc and is thinner in the posterior portion 24 of the disc.
When the disc 10 is in use in the spinal column 16, the upper plate 20 is affixed to the upper vertebra 12. The dome 62 on the upper plate 20 is fitted into a corresponding recess or cavity 260 (not shown) formed in the upper vertebra 12. The engagement of the dome 62 of the upper plate 20 in the cavity 260 in the upper vertebra 12 resists relative movement between the upper plate and the upper vertebra.
The porous coating 94 on the second surface 52 of the upper plate 20 promotes bone ingrowth between the upper vertebra 12 and the upper plate 20. The second surface 52 (Fig. 6) of the upper plate 20 engages the bony material of the upper vertebra 12. Interlocking engagement between the upper plate 20 and the bony material of the upper vertebra 12 is enhanced by the fact that the beads 96 of the coating 94 project axially outward past the second rim 54.
The lower plate 120 is affixed to the lower vertebra 14. The dome 162 on the lower plate 120 is fitted into a corresponding recess or cavity 262 (not shown) formed in the lower vertebra 14. The engagement of the dome 162 of the lower plate 120 in the cavity 262 in the lower vertebra 14 resists relative movement between the lower plate and the lower vertebra. The configuration of the dome 162 on the lower plate 120 has the same advantages as described above with reference to the dome 62 on the upper plate 20.
The porous coating 194 on the fourth surface 152 promotes bone ingrowth between the lower vertebra 14 and the lower plate 120. The fourth surface 152 of the lower plate 120 engages the material of the lower vertebra 14. Interlocking engagement between the lower plate 120 and the bony material of the lower vertebra 14 is enhanced by the fact that the beads 196 of the coating 194 project axially outward past the second rim 154.
The configuration of the areas of engagement between the elastomeric core 200 and the plates 20 and 120 minimizes any tendency of the plates to separate from the elastomeric core. Specifically, the molding of the perimeter of the core 200 to the curved convex outer surfaces 82 and 182 of the plates 20 and 120, respectively, helps to reduce the stress concentrations at the perimeter of the core and increases the fatigue life in cycles of the spinal disc 10 when subjected to shear deformation. Also, when the spinal disc 10 is subjected to shear stress, for example as illustrated in Fig. 8, the peripheral portion 203 of the core 200, and particularly portion 208, is a pool of elastomeric material which can stretch to absorb the stress induced on the disc 10. The stress concentrations are minimized on the main portion 201 of the core, which extends generally between the first surface 42 of the upper plate 42 and the third surface 142 of the lower plate 120.
In addition, the first rims 44 and 144 on the plates 20 and 120, respectively, with their curved outer surfaces 46 and 146, provide strain relief at the perimeter of the flat main portion 201 of the elastomeric core 200.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications in the invention. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.

Claims

CLAIMS:
1. A spinal disc prosthesis to replace a damaged spinal disc in a spinal column of a human, said spinal disc prosthesis comprising: an upper rigid plate having an outer perimeter; a lower rigid plate having an outer perimeter; a body of elastomeric material located between and bonded to said upper and lower rigid plates, said body of elastomeric material including a main portion and a peripheral portion extending around said main portion; said upper and lower plates each having a curved convex plate surface extending around said respective outer perimeters and facing said peripheral portion of said body of elastomeric material; said peripheral portion of said body of elastomeric material having a first part which is bonded to said curved convex plate surfaces of said upper and lower plates and extends toward said main portion, said first part of said peripheral portion increasing in thickness as said first part extends from said curved convex plate surfaces toward said main portion; said first part of said peripheral portion of said body of elastomeric material having a convexly curved outer surface which forms a part of the outer surface of said body of elastomeric material.
2. A spinal disc prosthesis as set forth in claim 1 wherein each one of said upper and lower plates has a respective rim which encircles said plate and which is bonded to said main portion of said body of elastomeric material.
3. A spinal disc prosthesis as set forth in claim 2 wherein said upper and lower plates each have a flat surface portion extending from said rim toward said curved convex plate surface, said peripheral portion of said body of elastomeric material being bonded to said flat surfaces.
4. A spinal disc prosthesis as set forth in claim 3 wherein said peripheral portion has an increasing thickness as it extends from said curved surfaces toward said flat surfaces and has a decreasing thickness as it extends from said flat surfaces toward said main portion.
5. A spinal disc prosthesis as set forth in claim 2 wherein said rims of said upper and lower plates define the outer perimeter of said main portion of said body of elastomeric material.
6. A spinal disc prosthesis as set forth in claim 5 wherein said rims of said upper and lower plates have curved outer surfaces which are bonded to said main portion of said body of elastomeric material.
7. A spinal disc prosthesis as set forth in claim 1 wherein said peripheral portion of said body of elastomeric material overlies respective flat surfaces on said upper and lower plates and overlies respective rims which encircle said plates and which are bonded to said main portion of said body of elastomeric material.
8. A spinal disc prosthesis as set forth in claim 7 wherein said peripheral portion has an increasing thickness as it extends from said curved surfaces toward said flat surfaces and has a decreasing thickness as it extends from said flat surfaces toward said main portion.
9. A spinal disc prosthesis as set forth in claim 1 wherein said main portion of said body of elastomeric material has a substantially uniform thickness across its entire extent, said peripheral portion of said body of elastomeric material having a thickness which varies as it extends outward in a direction away from said main portion of said body of elastomeric material
10. A spinal disc prosthesis as set forth in claim 1 wherein said upper plate has an inner major side surface presented toward an inner major side surface of said lower plate, each one of said inner major side surfaces including a rim which extends around a planar first surface having an area which is at least about 90% of the area of said respective inner major side surface, said first surfaces and said rims defining the axial ends of said main portion of said body of elastomeric material.
11. A spinal disc prosthesis as set forth in claim 1 wherein each one of said upper and lower plates has a generally planar vertebral contact surface which extends outward of said main portion of said body of elastomeric material, said curved convex surfaces of said upper and lower plates being disposed outward of said vertebral contact surfaces.
12. A spinal disc prosthesis to replace a damaged spinal disc in a spinal column of a human, said spinal disc prosthesis comprising: an upper rigid plate having an outer perimeter; a lower rigid plate having an outer perimeter; a body of elastomeric material located between and bonded to said upper and lower rigid plates, said body of elastomeric material including a main portion and a peripheral portion extending around said main portion; said upper and lower plates each having a rim which encircles said plate and which is bonded to said main portion of said body of elastomeric material; said upper and lower plates each having a curved convex plate surface extending around said outer perimeters and facing said peripheral portion of said body of elastomeric material; said peripheral portion of said body of elastomeric material having a first part which is bonded to said curved surfaces of said upper and lower plates and extends toward said main portion, said first part of said peripheral portion increasing in thickness as said first part extends from said curved surfaces toward said main portion; said upper and lower plates each having a flat surface extending from said curved convex plate surface toward said rim, said peripheral portion of said body of elastomeric material being bonded to said flat surfaces, said peripheral portion having an increasing thickness as it extends from said curved convex plate surfaces toward said flat surfaces and having a decreasing thickness as it extends from said flat surfaces toward said rims.
13. A spinal disc prosthesis as set forth in claim 12 wherein said body of elastomeric material has an outer surface with an hourglass-shaped configuration which is widest at said curved convex surfaces of said upper and lower plates.
PCT/US1998/026128 1997-12-12 1998-12-09 Artificial spinal disc WO1999030651A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP98963817A EP1041945B1 (en) 1997-12-12 1998-12-09 Artificial spinal disc
JP2000538639A JP2003517329A (en) 1997-12-12 1998-12-09 Artificial disc
AU19062/99A AU754131B2 (en) 1997-12-12 1998-12-09 Artificial spinal disc
DE69814460T DE69814460T2 (en) 1997-12-12 1998-12-09 ARTIFICIAL DISC
KR1020007006286A KR100598473B1 (en) 1997-12-12 1998-12-09 Artificial spinal disc
CA002313099A CA2313099C (en) 1997-12-12 1998-12-09 Artificial spinal disc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/991,224 1997-12-12
US08/991,224 US6162252A (en) 1997-12-12 1997-12-12 Artificial spinal disc

Publications (1)

Publication Number Publication Date
WO1999030651A1 true WO1999030651A1 (en) 1999-06-24

Family

ID=25536996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/026128 WO1999030651A1 (en) 1997-12-12 1998-12-09 Artificial spinal disc

Country Status (8)

Country Link
US (1) US6162252A (en)
EP (1) EP1041945B1 (en)
JP (1) JP2003517329A (en)
KR (1) KR100598473B1 (en)
AU (1) AU754131B2 (en)
CA (1) CA2313099C (en)
DE (1) DE69814460T2 (en)
WO (1) WO1999030651A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051919A (en) * 1999-11-24 2001-06-25 디퍼이 아크로메드 인코포레이티드 Prosthetic implant element
US6981989B1 (en) 2003-04-22 2006-01-03 X-Pantu-Flex Drd Limited Liability Company Rotatable and reversibly expandable spinal hydraulic prosthetic device
WO2006023466A1 (en) * 2004-08-19 2006-03-02 Sdgi Holdings, Inc. Intervertebral disc system
US8262731B2 (en) 2002-05-23 2012-09-11 Pioneer Surgical Technology, Inc. Artificial disc device
WO2012146615A1 (en) 2011-04-27 2012-11-01 Centre National De La Recherche Scientifique Intervertebral-disc prosthesis made from a thermoplastic material and having graduated mechanical properties
US8398712B2 (en) 2005-02-04 2013-03-19 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US8506631B2 (en) 2007-08-09 2013-08-13 Spinalmotion, Inc. Customized intervertebral prosthetic disc with shock absorption
US8636805B2 (en) 2008-07-17 2014-01-28 Spinalmotion, Inc. Artificial intervertebral disc placement system
US8758441B2 (en) 2007-10-22 2014-06-24 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
US8771356B2 (en) 2003-05-27 2014-07-08 Spinalmotion, Inc. Intervertebral prosthetic disc
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US8845730B2 (en) 2008-07-18 2014-09-30 Simplify Medical, Inc. Posterior prosthetic intervertebral disc
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US9011544B2 (en) 2008-05-05 2015-04-21 Simplify Medical, Inc. Polyaryletherketone artificial intervertebral disc
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US9107762B2 (en) 2003-05-27 2015-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US9241807B2 (en) 2011-12-23 2016-01-26 Pioneer Surgical Technology, Inc. Systems and methods for inserting a spinal device
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9333087B2 (en) 1999-08-18 2016-05-10 Intrinsic Therapeutics, Inc. Herniated disc repair
US9351852B2 (en) 2002-05-23 2016-05-31 Pioneer Surgical Technology, Inc. Artificial disc device
US9402745B2 (en) 2003-01-31 2016-08-02 Simplify Medical, Inc. Intervertebral prosthesis placement instrument
US9439775B2 (en) 2008-03-11 2016-09-13 Simplify Medical Pty Ltd Artificial intervertebral disc with lower height
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9655741B2 (en) 2003-05-27 2017-05-23 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US9839525B2 (en) 2002-09-19 2017-12-12 Simplify Medical Pty Ltd Intervertebral prosthesis
US9839532B2 (en) 2004-08-06 2017-12-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
USRE47796E1 (en) 2006-04-12 2020-01-07 Simplify Medical Pty Ltd Posterior spinal device and method
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
FR2787018B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
FR2787017B1 (en) 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
US6245108B1 (en) * 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6579318B2 (en) 2000-06-12 2003-06-17 Ortho Development Corporation Intervertebral spacer
USD501555S1 (en) 2000-06-12 2005-02-01 Ortho Development Corporation Implant
AU2001281166B2 (en) 2000-08-08 2006-07-20 Warsaw Orthopedic, Inc. Implantable joint prosthesis
WO2002011633A2 (en) 2000-08-08 2002-02-14 Sdgi Holdings, Inc. Improved method and apparatus for stereotactic implantation
US8535378B2 (en) * 2004-05-10 2013-09-17 Roger P. Jackson Vertebral interbody spacer
US20060167548A1 (en) * 2000-08-23 2006-07-27 Jackson Roger P Non-linear spinal fusion interbody spacer
US6562045B2 (en) 2001-02-13 2003-05-13 Sdgi Holdings, Inc. Machining apparatus
US6673113B2 (en) 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
US7563285B2 (en) * 2001-07-16 2009-07-21 Spinecore, Inc. Artificial intervertebral disc utilizing a ball joint coupling
US6989032B2 (en) * 2001-07-16 2006-01-24 Spinecore, Inc. Artificial intervertebral disc
US6863689B2 (en) * 2001-07-16 2005-03-08 Spinecore, Inc. Intervertebral spacer having a flexible wire mesh vertebral body contact element
US7169182B2 (en) * 2001-07-16 2007-01-30 Spinecore, Inc. Implanting an artificial intervertebral disc
US6368351B1 (en) * 2001-03-27 2002-04-09 Bradley J. Glenn Intervertebral space implant for use in spinal fusion procedures
US20090234457A1 (en) * 2001-06-29 2009-09-17 The Regents Of The University Of California Systems, devices and methods for treatment of intervertebral disorders
US7156877B2 (en) 2001-06-29 2007-01-02 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US6607558B2 (en) 2001-07-03 2003-08-19 Axiomed Spine Corporation Artificial disc
US6471725B1 (en) * 2001-07-16 2002-10-29 Third Millenium Engineering, Llc Porous intervertebral distraction spacers
US7771477B2 (en) 2001-10-01 2010-08-10 Spinecore, Inc. Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves
US7713302B2 (en) 2001-10-01 2010-05-11 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves
US6736850B2 (en) * 2001-12-28 2004-05-18 Spinal Concepts, Inc. Vertebral pseudo arthrosis device and method
US6761723B2 (en) 2002-01-14 2004-07-13 Dynamic Spine, Inc. Apparatus and method for performing spinal surgery
US8038713B2 (en) 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US20080027548A9 (en) 2002-04-12 2008-01-31 Ferree Bret A Spacerless artificial disc replacements
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
CA2495373C (en) 2002-08-15 2012-07-24 David Gerber Controlled artificial intervertebral disc implant
GB0223327D0 (en) * 2002-10-08 2002-11-13 Ranier Ltd Artificial spinal disc
AU2003286531A1 (en) * 2002-10-21 2004-05-13 3Hbfm, Llc Intervertebral disk prosthesis
US20040133278A1 (en) * 2002-10-31 2004-07-08 Marino James F. Spinal disc implant
DE10253169A1 (en) * 2002-11-14 2004-08-05 Sepitec Foundation Implant used in procedures for stiffening the vertebral column consists of a compression-resistant hollow body made from two open receptacles which are pressed apart with insertion of filler material
US7169181B2 (en) * 2002-12-10 2007-01-30 Axiomed Spine Corporation Artificial disc
EP1587437B1 (en) * 2003-01-31 2013-02-27 Spinalmotion, Inc. Spinal midline indicator
KR20050107426A (en) 2003-02-14 2005-11-11 디퍼이 스파인 인코포레이티드 In-situ formed intervertebral fusion device and method
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
EP1610740A4 (en) 2003-04-04 2009-04-08 Theken Disc Llc Artificial disc prosthesis
US8012212B2 (en) * 2003-04-07 2011-09-06 Nuvasive, Inc. Cervical intervertebral disk prosthesis
US7419505B2 (en) * 2003-04-22 2008-09-02 Fleischmann Lewis W Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
US7105024B2 (en) 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
DE20308171U1 (en) * 2003-05-21 2003-07-31 Aesculap Ag & Co Kg Vertebral body replacement implant
US20040267367A1 (en) * 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US20050043796A1 (en) * 2003-07-01 2005-02-24 Grant Richard L. Spinal disc nucleus implant
DE20310433U1 (en) 2003-07-08 2003-09-04 Aesculap Ag & Co Kg Surgical device for inserting dual component implant into appropriate space at spine, comprising particularly shaped holding area
DE10330698B4 (en) 2003-07-08 2005-05-25 Aesculap Ag & Co. Kg Intervertebral implant
US20050015150A1 (en) * 2003-07-17 2005-01-20 Lee Casey K. Intervertebral disk and nucleus prosthesis
US7153325B2 (en) 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
US20060229729A1 (en) * 2003-08-05 2006-10-12 Gordon Charles R Expandable intervertebral implant for use with instrument
US7794480B2 (en) 2003-08-05 2010-09-14 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
EP1651150B1 (en) 2003-08-07 2021-03-24 Dynamic Spine, Inc. Intervertebral prosthetic device and associated devices and methods for implanting the intervertebral prosthetic device
DE10337088A1 (en) 2003-08-12 2005-03-10 Biedermann Motech Gmbh Placeholder for vertebral bodies or intervertebral discs
DE10339170B4 (en) 2003-08-22 2009-10-15 Aesculap Ag Intervertebral implant
US20050055099A1 (en) * 2003-09-09 2005-03-10 Ku David N. Flexible spinal disc
US7766914B2 (en) * 2003-09-10 2010-08-03 Warsaw Orthopedic, Inc. Adjustable drill guide
US7794465B2 (en) * 2003-09-10 2010-09-14 Warsaw Orthopedic, Inc. Artificial spinal discs and associated implantation instruments and methods
US7691146B2 (en) 2003-11-21 2010-04-06 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US7217291B2 (en) 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
DE102004016032B4 (en) * 2004-03-30 2006-07-13 Hjs Gelenk System Gmbh Artificial intervertebral disc
DE102004028967B4 (en) 2004-06-16 2006-05-24 Aesculap Ag & Co. Kg Intervertebral implant
WO2006004848A1 (en) 2004-06-30 2006-01-12 Synergy Disc Replacement, Inc. Artificial spinal disc
US8172904B2 (en) 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US8172855B2 (en) 2004-11-24 2012-05-08 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
JP5028276B2 (en) * 2005-01-19 2012-09-19 ケー2エム, インコーポレイテッド Fixing elastomers to rigid structures
CN101188986A (en) * 2005-01-19 2008-05-28 耐可真脊柱有限公司 Elastomeric intervertebral disc prosthesis
US7632312B2 (en) * 2005-03-24 2009-12-15 Neurocare International, Inc. Artifical lumbar disc
US20060293752A1 (en) * 2005-06-27 2006-12-28 Missoum Moumene Intervertebral disc prosthesis and associated methods
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US7731753B2 (en) 2005-09-01 2010-06-08 Spinal Kinetics, Inc. Prosthetic intervertebral discs
US20070050032A1 (en) 2005-09-01 2007-03-01 Spinal Kinetics, Inc. Prosthetic intervertebral discs
EP2420209B1 (en) 2005-09-01 2015-10-07 Spinal Kinetics, Inc. Prosthetic Intervertebral Discs
US8814938B2 (en) 2005-10-24 2014-08-26 K2M, Inc. Intervertebral disc replacement and associated instrumentation
WO2007075411A2 (en) * 2005-12-16 2007-07-05 Thomas Haider Patents, A Limited Liability Company An intervertebral prosthesis for supporting adjacent vertebral bodies enabling the creation of soft fusion and method
US8163018B2 (en) 2006-02-14 2012-04-24 Warsaw Orthopedic, Inc. Treatment of the vertebral column
EP1988854A2 (en) * 2006-02-15 2008-11-12 M. S. Abdou Devices and methods for inter-vertebral orthopedic device placement
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
US20070270971A1 (en) * 2006-03-14 2007-11-22 Sdgi Holdings, Inc. Intervertebral prosthetic disc with improved wear resistance
US20070233246A1 (en) * 2006-03-31 2007-10-04 Sdgi Holdings, Inc. Spinal implants with improved mechanical response
DE102006016986A1 (en) * 2006-04-06 2007-10-18 Aesculap Ag & Co. Kg Intervertebral implant
US8303660B1 (en) 2006-04-22 2012-11-06 Samy Abdou Inter-vertebral disc prosthesis with variable rotational stop and methods of use
US20070276492A1 (en) * 2006-05-09 2007-11-29 Ranier Limited Artificial spinal disc implant
US20080021462A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic Inc. Spinal stabilization implants
US20080021557A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic, Inc. Spinal motion-preserving implants
US20080051900A1 (en) * 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Offset Anchors
US20080051901A1 (en) 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Multiple Pillar Anchors
ES2542691T3 (en) 2006-09-26 2015-08-10 Nexgen Spine, Inc. End plate of intervertebral prosthesis featuring double dome
US20080082172A1 (en) * 2006-09-29 2008-04-03 Jackson Roger P Interspinous process spacer
US8066750B2 (en) 2006-10-06 2011-11-29 Warsaw Orthopedic, Inc Port structures for non-rigid bone plates
US8070823B2 (en) * 2006-11-07 2011-12-06 Biomedflex Llc Prosthetic ball-and-socket joint
US9005306B2 (en) * 2006-11-07 2015-04-14 Biomedflex, Llc Medical Implants With Compliant Wear-Resistant Surfaces
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
US7905919B2 (en) * 2006-11-07 2011-03-15 Biomedflex Llc Prosthetic joint
US7914580B2 (en) * 2006-11-07 2011-03-29 Biomedflex Llc Prosthetic ball-and-socket joint
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
US8029574B2 (en) * 2006-11-07 2011-10-04 Biomedflex Llc Prosthetic knee joint
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US20110166671A1 (en) * 2006-11-07 2011-07-07 Kellar Franz W Prosthetic joint
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US7905922B2 (en) 2006-12-20 2011-03-15 Zimmer Spine, Inc. Surgical implant suitable for replacement of an intervertebral disc
US7959677B2 (en) 2007-01-19 2011-06-14 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US7803192B2 (en) 2007-07-31 2010-09-28 Custom Spine, Inc. Artificial intervertebral disc
US8162994B2 (en) 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
US8182514B2 (en) 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8157844B2 (en) 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8187330B2 (en) * 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8523912B2 (en) 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
DE102008005998B4 (en) * 2008-01-25 2010-01-14 Aesculap Ag Intervertebral implant
US20110029087A1 (en) * 2008-04-04 2011-02-03 Haider Thomas T Intervertebral prostheses with compliant filler material for supporting adjacent vertebral bodies and method
WO2009124269A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US20090270988A1 (en) * 2008-04-24 2009-10-29 Ranier Limited Artificial spinal disc implant
WO2009137518A1 (en) * 2008-05-05 2009-11-12 Nexgen Spine, Inc. Endplate for an intervertebral prosthesis and prosthesis incorporating the same
US8323292B2 (en) 2008-12-15 2012-12-04 Spinecore, Inc. Adjustable pin drill guide and methods therefor
US20100161058A1 (en) * 2008-12-24 2010-06-24 Custom Spine, Inc. Multiple-State Geometry Artificial Disc With Compliant Insert and Method
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9282979B2 (en) 2010-06-24 2016-03-15 DePuy Synthes Products, Inc. Instruments and methods for non-parallel disc space preparation
EP2588034B1 (en) 2010-06-29 2018-01-03 Synthes GmbH Distractible intervertebral implant
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8353964B2 (en) 2010-11-04 2013-01-15 Carpenter Clyde T Anatomic total disc replacement
US8449616B2 (en) * 2011-03-15 2013-05-28 Axiomed Spine Corporation Apparatus for replacing a damaged spinal disc
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US9345583B2 (en) 2011-12-20 2016-05-24 Warsaw Orthopedic, Inc. Spinal implant
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10617531B2 (en) 2015-10-26 2020-04-14 K2M, Inc. Cervical disc and instrumentation
EP3195833B1 (en) 2016-01-19 2022-01-12 K2M, Inc. Surgical instrument
WO2017189517A1 (en) 2016-04-26 2017-11-02 Alethea Spine, Llc Orthopedic implant with integrated core
WO2018002715A2 (en) 2016-06-28 2018-01-04 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
CN109688981A (en) 2016-06-28 2019-04-26 Eit 新兴移植技术股份有限公司 Distensible, adjustable angle intervertebral cage
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071437A (en) * 1989-02-15 1991-12-10 Acromed Corporation Artificial disc
US5534030A (en) * 1993-02-09 1996-07-09 Acromed Corporation Spine disc
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824094A (en) * 1997-10-17 1998-10-20 Acromed Corporation Spinal disc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5071437A (en) * 1989-02-15 1991-12-10 Acromed Corporation Artificial disc
US5534030A (en) * 1993-02-09 1996-07-09 Acromed Corporation Spine disc

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US10327907B2 (en) 1999-05-28 2019-06-25 Suture Concepts Inc. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9084616B2 (en) 1999-05-28 2015-07-21 Anova Corporation Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9333087B2 (en) 1999-08-18 2016-05-10 Intrinsic Therapeutics, Inc. Herniated disc repair
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
AU772817B2 (en) * 1999-11-24 2004-05-06 Depuy Acromed, Inc. Prosthetic implant element
KR20010051919A (en) * 1999-11-24 2001-06-25 디퍼이 아크로메드 인코포레이티드 Prosthetic implant element
EP1103237A3 (en) * 1999-11-24 2002-04-24 DePuy Acromed, Inc. Prosthetic implant element
US8262731B2 (en) 2002-05-23 2012-09-11 Pioneer Surgical Technology, Inc. Artificial disc device
US9351852B2 (en) 2002-05-23 2016-05-31 Pioneer Surgical Technology, Inc. Artificial disc device
US11285013B2 (en) 2002-09-19 2022-03-29 Simplify Medical Pty Ltd Intervertebral prosthesis
US10413420B2 (en) 2002-09-19 2019-09-17 Simplify Medical Pty Ltd Intervertebral prosthesis
US10517738B2 (en) 2002-09-19 2019-12-31 Simplify Medical Pty Ltd Intervertebral prothesis
US9839525B2 (en) 2002-09-19 2017-12-12 Simplify Medical Pty Ltd Intervertebral prosthesis
US11344427B2 (en) 2002-09-19 2022-05-31 Simplify Medical Pty Ltd Intervertebral prosthesis
US11707360B2 (en) 2002-09-19 2023-07-25 Simplify Medical Pty Ltd Intervertebral prosthesis
US10166113B2 (en) 2002-09-19 2019-01-01 Simplify Medical Pty Ltd Intervertebral prosthesis
US10105131B2 (en) 2003-01-31 2018-10-23 Simplify Medical Pty Ltd Intervertebral prosthesis placement instrument
US9402745B2 (en) 2003-01-31 2016-08-02 Simplify Medical, Inc. Intervertebral prosthesis placement instrument
US6981989B1 (en) 2003-04-22 2006-01-03 X-Pantu-Flex Drd Limited Liability Company Rotatable and reversibly expandable spinal hydraulic prosthetic device
US9788965B2 (en) 2003-05-27 2017-10-17 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US10342670B2 (en) 2003-05-27 2019-07-09 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US10219911B2 (en) 2003-05-27 2019-03-05 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
USRE46802E1 (en) 2003-05-27 2018-04-24 Simplify Medical Pty Limited Intervertebral prosthetic disc with metallic core
US11771565B2 (en) 2003-05-27 2023-10-03 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US9107762B2 (en) 2003-05-27 2015-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
US8771356B2 (en) 2003-05-27 2014-07-08 Spinalmotion, Inc. Intervertebral prosthetic disc
US8845729B2 (en) 2003-05-27 2014-09-30 Simplify Medical, Inc. Prosthetic disc for intervertebral insertion
US11376130B2 (en) 2003-05-27 2022-07-05 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US10342671B2 (en) 2003-05-27 2019-07-09 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US9439774B2 (en) 2003-05-27 2016-09-13 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US10357376B2 (en) 2003-05-27 2019-07-23 Simplify Medical Pty Ltd Intervertebral prosthetic disc
US8974533B2 (en) 2003-05-27 2015-03-10 Simplify Medical, Inc. Prosthetic disc for intervertebral insertion
US9655741B2 (en) 2003-05-27 2017-05-23 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
US9839532B2 (en) 2004-08-06 2017-12-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US10888437B2 (en) 2004-08-06 2021-01-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US10130494B2 (en) 2004-08-06 2018-11-20 Simplify Medical Pty Ltd. Methods and apparatus for intervertebral disc prosthesis insertion
US10085853B2 (en) 2004-08-06 2018-10-02 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US9956091B2 (en) 2004-08-06 2018-05-01 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US11857438B2 (en) 2004-08-06 2024-01-02 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
WO2006023466A1 (en) * 2004-08-19 2006-03-02 Sdgi Holdings, Inc. Intervertebral disc system
US8398712B2 (en) 2005-02-04 2013-03-19 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US11185354B2 (en) 2005-12-28 2021-11-30 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US9610106B2 (en) 2005-12-28 2017-04-04 Intrinsic Therapeutics, Inc. Bone anchor systems
US10470804B2 (en) 2005-12-28 2019-11-12 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
USRE47796E1 (en) 2006-04-12 2020-01-07 Simplify Medical Pty Ltd Posterior spinal device and method
US10245018B2 (en) 2006-06-13 2019-04-02 Suture Concepts Inc. Method and apparatus for closing fissures in the annulus fibrosus
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US9693872B2 (en) 2006-09-15 2017-07-04 Pioneer Surgical Technology, Inc. Intervertebral disc implant
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US10080667B2 (en) 2006-09-15 2018-09-25 Pioneer Surgical Technology, Inc. Intervertebral disc implant
US9687355B2 (en) 2007-08-09 2017-06-27 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US10548739B2 (en) 2007-08-09 2020-02-04 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US9827108B2 (en) 2007-08-09 2017-11-28 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US11229526B2 (en) 2007-08-09 2022-01-25 Simplify Medical Pty Ltd. Customized intervertebral prosthetic disc with shock absorption
US9554917B2 (en) 2007-08-09 2017-01-31 Simplify Medical Pty Ltd Customized intervertebral prosthetic disc with shock absorption
US8506631B2 (en) 2007-08-09 2013-08-13 Spinalmotion, Inc. Customized intervertebral prosthetic disc with shock absorption
US10076424B2 (en) 2007-09-07 2018-09-18 Intrinsic Therapeutics, Inc. Impaction systems
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US10716685B2 (en) 2007-09-07 2020-07-21 Intrinsic Therapeutics, Inc. Bone anchor delivery systems
US8758441B2 (en) 2007-10-22 2014-06-24 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
USRE47470E1 (en) 2007-10-22 2019-07-02 Simplify Medical Pty Ltd Vertebral body placement and method for spanning a space formed upon removal of a vertebral body
US11364129B2 (en) 2007-10-22 2022-06-21 Simplify Medical Pty Ltd Method and spacer device for spanning a space formed upon removal of an intervertebral disc
US11357633B2 (en) 2008-03-11 2022-06-14 Simplify Medical Pty Ltd Artificial intervertebral disc with lower height
US9439775B2 (en) 2008-03-11 2016-09-13 Simplify Medical Pty Ltd Artificial intervertebral disc with lower height
US10517733B2 (en) 2008-03-11 2019-12-31 Simplify Medical Pty Ltd Artificial intervertebral disc with lower height
US9668878B2 (en) 2008-03-11 2017-06-06 Simplify Medical Pty Ltd Artificial intervertebral disc with lower height
US9883945B2 (en) 2008-03-11 2018-02-06 Simplify Medical Pty Ltd Artificial intervertebral disc with lower height
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
US9011544B2 (en) 2008-05-05 2015-04-21 Simplify Medical, Inc. Polyaryletherketone artificial intervertebral disc
US11207190B2 (en) 2008-05-05 2021-12-28 Simplify Medical Pty Ltd Polyaryletherketone artificial intervertebral disc
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
US8636805B2 (en) 2008-07-17 2014-01-28 Spinalmotion, Inc. Artificial intervertebral disc placement system
US11413156B2 (en) 2008-07-18 2022-08-16 Simplify Medical Pty Ltd. Posterior prosthetic intervertebral disc
US11324605B2 (en) 2008-07-18 2022-05-10 Simplify Medical Pty Ltd Posterior prosthetic intervertebral disc
US8845730B2 (en) 2008-07-18 2014-09-30 Simplify Medical, Inc. Posterior prosthetic intervertebral disc
US9351846B2 (en) 2008-07-18 2016-05-31 Simplify Medical, Inc. Posterior prosthetic intervertebral disc
WO2012146615A1 (en) 2011-04-27 2012-11-01 Centre National De La Recherche Scientifique Intervertebral-disc prosthesis made from a thermoplastic material and having graduated mechanical properties
US10159514B2 (en) 2011-12-23 2018-12-25 Pioneer Surgical Technology, Inc. Method of implanting a bone plate
US10980575B2 (en) 2011-12-23 2021-04-20 Pioneer Surgical Technology, Inc. Instrument for inserting a spinal device
US11696786B2 (en) 2011-12-23 2023-07-11 Pioneer Surgical Technology, Inc. Instrument for inserting a spinal device
US9241807B2 (en) 2011-12-23 2016-01-26 Pioneer Surgical Technology, Inc. Systems and methods for inserting a spinal device
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD968613S1 (en) 2017-10-09 2022-11-01 Pioneer Surgical Technology, Inc. Intervertebral implant
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant

Also Published As

Publication number Publication date
AU1906299A (en) 1999-07-05
EP1041945B1 (en) 2003-05-07
AU754131B2 (en) 2002-11-07
CA2313099A1 (en) 1999-06-24
DE69814460T2 (en) 2004-03-18
CA2313099C (en) 2007-02-20
EP1041945A1 (en) 2000-10-11
KR100598473B1 (en) 2006-07-11
KR20010015870A (en) 2001-02-26
JP2003517329A (en) 2003-05-27
DE69814460D1 (en) 2003-06-12
US6162252A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
EP1041945B1 (en) Artificial spinal disc
EP1023011B1 (en) Spinal disc prosthesis
EP1032331B1 (en) Spinal disc prosthesis
US20010016773A1 (en) Spinal disc
US5534030A (en) Spine disc
EP1103237B1 (en) Prosthetic implant element
US20200297505A1 (en) Internal Bone Fixation Device
US20030208271A1 (en) Artificial disc
EP2299939B1 (en) Artificial spinal disc implant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2313099

Country of ref document: CA

Ref country code: CA

Ref document number: 2313099

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 538639

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 19062/99

Country of ref document: AU

Ref document number: 1020007006286

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998963817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998963817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007006286

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 19062/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998963817

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007006286

Country of ref document: KR